WO2011080657A2 - Methods for producing silicon tetrafluoride - Google Patents
Methods for producing silicon tetrafluoride Download PDFInfo
- Publication number
- WO2011080657A2 WO2011080657A2 PCT/IB2010/055927 IB2010055927W WO2011080657A2 WO 2011080657 A2 WO2011080657 A2 WO 2011080657A2 IB 2010055927 W IB2010055927 W IB 2010055927W WO 2011080657 A2 WO2011080657 A2 WO 2011080657A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- set forth
- silicon
- metal
- fluoride
- salt
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
- C01B33/10705—Tetrafluoride
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/04—Hydrides of silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/04—Hydrides of silicon
- C01B33/043—Monosilane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/08—Compounds containing halogen
- C01B33/107—Halogenated silanes
Definitions
- the present disclosure relates to methods for producing fluoride compounds and, particularly, methods for producing silicon tetrafluoride by acid digestion of fluoride salts of alkali metal or alkaline earth metal and aluminum.
- Silane is a versatile compound that has many industrial uses.
- silane may be utilized for deposition of an epitaxial silicon layer on semiconductor wafers and for production of polycrystallme silicon.
- Polycrystallme silicon is a vital raw material used to produce many commercial products including, for example, integrated circuits and photovoltaic (i.e., solar) cells that may be produced by thermal decomposition of silane onto silicon particles in a fluidized bed reactor.
- Silane may be produced by reacting silicon tetrafluoride with an alkali or alkaline earth metal aluminum hydride such as sodium aluminum tetrahydride as disclosed in U.S. Patent No. 4,632,816 which is incorporated herein by reference for all relevant and consistent purposes. Production of silane may result in several by-products such as various fluoride salts of alkali metal or alkaline earth metal and aluminum (e.g., NaAlF 4 , Na 5 Al 3 F 14 and Na 3 AlF 6 ). Conventionally, these waste products are sold at low prices or are disposed of in a landfill.
- an alkali or alkaline earth metal aluminum hydride such as sodium aluminum tetrahydride as disclosed in U.S. Patent No. 4,632,816 which is incorporated herein by reference for all relevant and consistent purposes. Production of silane may result in several by-products such as various fluoride salts of alkali metal or alkaline earth metal and aluminum (e.g., NaAlF 4 ,
- Aluminum trifluoride is a versatile material that may be used as a component in an electrolyte melt for production of aluminum and may be used in various fluorination reactions.
- Aluminum trifluoride is conventionally produced by reacting hydrogen fluoride with relatively expensive alumina or alumina trihydrate.
- Silicon tetrafluoride is also a versatile material that may be used to produce silane or various halosilanes and can be used for ion implantation, plasma deposition of fluorinated silica, production of pure silica or of silicon nitride and may be used as a metal silicide etch.
- a method for producing silicon tetrafluoride includes contacting a fluoroaluminate feed, an acid and a source of silicon to produce silicon tetrafluoride and at least one by-product.
- the fluoroaluminate feed contains at least about 30% by weight fluoride salts of alkali metal or alkaline earth-metal and aluminum.
- a method for producing silicon tetrafluoride includes contacting a fluoride salt of alkali metal or alkaline earth-metal and aluminum, an acid and a source of silicon to produce silicon tetrafluoride and at least one by-product.
- the silicon tetrafluoride is separated from the by-product to recover silicon tetrafluoride as a product.
- Yet a further aspect of the present disclosure is directed to a method for producing silane and silicon tetrafluoride.
- the method includes contacting silicon tetrafluoride and an alkali or alkaline earth-metal salt of aluminum tetrahydride to produce silane and an effluent.
- the effluent contains a fluoride salt of alkali metal or alkaline earth-metal and aluminum.
- the effluent, an acid and a source of silicon are contacted to produce silicon tetrafluoride and at least one by-product.
- the silicon tetrafluoride is separated from the by-product.
- a method for producing silane and silicon tetrafluoride includes contacting a fluoroaluminate feed, an acid and a source of silicon to produce silicon tetrafluoride and at least one by-product.
- the fluoroaluminate feed contains a fluoride salt of alkali metal or alkaline earth-metal and aluminum.
- the silicon tetrafluoride is separated from the by-product.
- the silicon tetrafluoride is reacted with an alkali or alkaline earth-metal salt of aluminum tetrahydride to produce silane.
- Provisions of the present disclosure include methods for producing fluorides (e.g., aluminum trifluoride or silicon tetrafluoride) by digestion of fluoride salts of alkali metal or alkaline earth metal and aluminum.
- the digestion reaction may occur in an aqueous environment or in a substantially anhydrous environment.
- Other provisions include methods for producing silane and
- fluoroaluminate by-products and use of such by-products for production of a raw material selected from aluminum trifluoride and silicon tetrafluoride.
- the reaction proceeds by contacting a fluoride salt of alkali metal or alkaline earth metal and aluminum with an acid selected from sulfuric acid and hydrochloric acid to produce a fluoride compound (e.g., aluminum trifluoride or silicon tetrafluoride) and various by-products such as hydrogen fluoride and a chloride or sulfate salt of an alkali or alkaline earth-metal.
- a fluoride compound e.g., aluminum trifluoride or silicon tetrafluoride
- various by-products such as hydrogen fluoride and a chloride or sulfate salt of an alkali or alkaline earth-metal.
- the reaction may proceed in the presence of a source of silicon in which case silicon tetrafluoride is produced. If the reaction occurs in the absence of a source of silicon, aluminum trifluoride is produced.
- fluoride salts of alkali metal or alkaline earth metal and aluminum include compounds of the general formula M x Al y F z , where x, y and z are integers from 1 to 20 or even from 1 to 10 and M is an alkali metal or alkaline earth metal.
- the fluoride salts may also generally be referred to as “fluoride aluminum salts,” “fluoroaluminates” or simply “salts” without departing from the scope of the present disclosure.
- the structure of the salt is not essential to the present disclosure and any salts that contain a fluorine atom, aluminum atom and an atom of alkali or alkaline earth metal may be used without limitation.
- the fluoride salt used in accordance with the present disclosure include compounds of the general formula M x Al y F(2x/ p +3y), where M is an alkali or alkaline earth-metal and p is 2 when M is an alkali and p is 1 when M is an alkaline earth-metal.
- An exemplary embodiment of the methods of the present disclosure includes introducing a fluoroaluminate and an acid (e.g., HCl or sulfuric acid) into a reaction vessel optionally with or without a source of silicon.
- a fluoride product such as aluminum trifluoride (A1F 3 ) or silicon tetrafluoride (SiF 4 ) and several by-products are produced.
- the fluoride product and the by-products and any unreacted starting materials may be introduced into a purification system to separate the fluoride product and/or purify and isolate by-products.
- the fluoroaluminate feed material (synonymously “fluoroaluminate feed,” “fluoroaluminate effluent” or simply
- effluent includes an alkali metal or alkaline earth-metal fluoroaluminate.
- Suitable alkali or alkaline earth-metal fluoroaluminates include lithium fluoroaluminates, sodium fluoroaluminates, potassium fluoroaluminates, magnesium fluoroaluminates, barium fluoroaluminates, calcium fluoroaluminates and mixtures thereof.
- the fluoroaluminate may be a sodium fluoroaluminate produced as a by-product of silane production.
- the fluoroaluminate feed may include at least one of NaAlF 4 , Na 5 Al 3 Fi 4 , and Na 3 AlF 6 , and, in some embodiments, includes a mixture of NaAlF 4 , Na 5 Al 3 Fi 4 and Na 3 AlF 6 .
- the purity of the fluoroaluminate feed is not critically important as unreacted impurities in the feed may be removed during subsequent processing.
- the fluoroaluminate feed may include an amount of silicon trifluoride, alkali or alkaline earth metal fluoride and/or chloride salts of alkali or alkaline earth- metals and/or aluminum or other impurities.
- the fluoroaluminate feed may include an amount of silicon trifluoride, alkali or alkaline earth metal fluoride and/or chloride salts of alkali or alkaline earth- metals and/or aluminum or other impurities.
- fluoroaluminate feed contains less than about 15% by weight impurities on a dry basis or even less than 10% by weight impurities.
- impurities refers to compounds other than fluoroaluminates such as, for example, aluminum trifluoride and fluoride salt (e.g., NaF).
- the amount of moisture in the fluoroaluminate feed is not critical.
- the fluoroaluminate feed may be solid and/or dry (i.e., generally flowable); however, in some embodiments the fluoroaluminate feed is dissolved in a solvent.
- a solvent e.g., a solvent other than water is preferred due to low solubility of fluoroaluminates in water.
- Suitable solvents may be non-polar and include, for example, dimethoxyethane (DME) and toluene.
- Solid fluoroaluminate feed may contain less than about 5%, less than about 1% or even less than about 0.1% by weight water.
- the particle size of the fluoroaluminate feed may be relatively small to facilitate solids reactivity; however, the feed material should be sufficiently large to allow the material to be handled without significant difficulty. In one or more embodiments, the particle sizes of the fluoroaluminate feed may be less than about 500 ⁇ and, in other embodiments, less than about 300 um, from about 100 ⁇ to about 500 ⁇ or from about 200 um to about 300 ⁇ . In some embodiments, fluoroaluminates are included in an aqueous solution for transport of the material to the reaction vessel (i.e., a sluice-type system may be utilized).
- the fluoroaluminate feed may be produced by any of the known methods for producing a fluoroaluminate (or fluoroaluminates if more than one are used) including processes wherein a fluoroaluminate is produced as a byproduct.
- the fluoroaluminate feed is a by-product of silane production.
- Silane may be produced by reacting an aluminum hydride (e.g., lithium or sodium aluminum tetrahydride) with silicon tetrafluoride as described below under the section entitled "Production of Silane and Fluoride Product" and in U.S. Patent No. 4,632,816, which is incorporated herein by reference for all relevant and consistent purposes.
- Such processes produce a liquid reaction medium with by-product solids (dissolved or slurried) included in the reaction medium.
- the by-product solids typically include a large amount of fluoroaluminates and may be used as the fluoroaluminate feed of the present disclosure.
- the amount of fluoroaluminates in the fluoroaluminate feed may be at least about 30% by weight of the fluoroaluminate feed on a dry basis and, in other embodiments, is at least about 50%, at least about 70%, at least about 80%, at least about 90%>, from about 30%> to about 95% or from about 70%> to about 95% by weight fluoroaluminates by weight of the feed on a dry basis.
- the fluoroaluminate feed is reacted with an acid present in an acid feed stream as more fully described below. Suitable acids include HCl, sulfuric acid or a mixture thereof.
- the acid feed stream contains HCl and may contain HCl as the only acid present in the acid feed stream.
- the concentration of HCl may be, on a weight basis, at least about 2.5%, at least about 7.5%, at least about 9%), from about 3% to about 20%> or from about 3% to about 15% of the aqueous solution.
- sulfuric acid is included in an aqueous solution
- the concentration of sulfuric acid may be, on a weight basis, at least about 50%, at least about 75%, at least about 90% or from about 75% to about 99% of the aqueous solution.
- a mixture of sulfuric acid and HCl may be used in the acid feed stream.
- the mixture may contain at least about 10% HCl by weight on a dry basis, at least about 25%, at least about 50%, at least about 75% or even at least about 90% HCl by weight on a dry basis.
- the acid feed contains HCl and not sulfuric acid or may contain sulfuric acid and not HCl.
- the acid is a substantially anhydrous gas stream.
- substantially anhydrous for the purposes of the present disclosure generally refers to process streams that contain less than about 5% by weight water.
- the acid feed contains less than about 1% by weight water or even less than about 0.1% by weight water.
- a source of silicon may optionally be included in the reaction mixture.
- the presence of silicon determines the fluoride product (i.e., SiF 4 forms in the presence of silicon while A1F 3 forms in its absence).
- Sources of silicon include sand (i.e., Si0 2 ), quartz, flint, diatomite, mineral silicates, metallurgical grade silicon (i.e., a polycrystalline silicon), fumed silica, fluorosilicates and mixtures thereof.
- Some amount of silicon impurities may be present in the fluoroaluminate feed (e.g., as when the fluoroaluminate feed is a by-product of silane production).
- the reactions of the present disclosure occur upon contacting the fluoroaluminate feed with the acid feed in a reaction vessel so as to suitably form a reaction mixture.
- the reactions may occur in an aqueous or anhydrous environment as more fully described below.
- the molar ratio of acid to fluoroaluminates added to the reaction vessel may be about the stoichiometric ratio which is dependent on the fluoroaluminate starting material and which may be determined from reactions i to x (e.g., 5 moles of acid added per mole of chiolite as in reaction iii).
- a molar excess of acid may be used (e.g., at least about a 5% molar excess, at least about a 10%, at least about a 25%, at least about a 50%, at least about a 100%, at least about a 250% or even at least about a 500% molar excess of acid).
- the molar ratio of acid (e.g., HC1 or sulfuric acid) fed to the reaction vessel to the amount of fluoroaluminates fed to the reaction vessel (or the ratio of the rates of addition as in a continuous system) may be at least about 1 : 1 , at least about 2: 1 , at least about 3 : 1 , at least about 10: 1 , at least about 25 : 1 , at least about 50: 1 or even at least about 100: 1. In some embodiments, the ratio is from about 1 : 1 to about 100: 1 , from about 1 : 1 to about 50: 1 or from about 1 : 1 to about 25 : 1.
- the source of silicon (e.g., sand) may be added to the reaction vessel in a ratio with respect to the fluoroaluminates that is near the stoichiometric ratio.
- the ratio of silicon atoms to fluorine atoms added to the reaction mixture may be about 1 :4.
- silicon may be added in a molar excess.
- the molar ratio of silicon to fluorine atoms added to the reaction vessel may be greater than about 1 :3.5, greater than about 1 :3, greater than about 1 :2 or even at least about 1 : 1.
- the molar excess of silicon may be at least about 5%, at least about 10%, at least about 25%o, at least about 50%>, at least about 100%, at least about 250% or even at least about 500%).
- the source of silicon may be added in an amount other than as listed above.
- Silicon may be added in a ratio less than about stoichiometric such that the reaction product contains both silicon tetrafluoride and aluminum trifluoride (i.e., the reaction results in silicon tetrafluoride when silicon is present and results in aluminum trifluoride when silicon is consumed and not present). Silicon may be added to the reaction vessel separately or may be mixed with the fluoroaluminate feed prior to introduction into the reaction vessel. i. Aqueous Reaction Systems
- an aqueous solution of acid is used in the reactor system.
- the acid may be present in a reaction vessel in which the fluoroaluminate is fed.
- the acid may be continually fed to the reaction vessel as in a continuous process or a discreet amount of acid may be present as in a batch process.
- the acid may be fed as an aqueous solution of acid or as a gas that is dissolved into an aqueous solution present in the reactor vessel.
- the contents of the reaction vessel may be mixed continuously by, for example, mechanical agitation (e.g., impeller or bubbling action).
- the temperature of the reaction vessel is at ambient (about 20°C to about 25°C) and, alternatively or in addition, the temperature does not need to be controlled during the reaction, i.e., in some embodiments external heat or cooling is not used.
- the temperature of the reactor is maintained at a temperature of at least about 100°C, at least about 150°C, at least about 200°C from ambient to about 300°C, from ambient to about 250°C or from about 100°C to about 250°C.
- the concentration of acid increases, the temperature at which the reaction vessel should be maintained to complete the reaction decreases.
- reaction vessel in aqueous systems is generally within the ability of one of ordinary skill in the art and may be dependent on the desired production rates, conversions, operating temperatures and the like.
- reaction vessel is an agitated tank and, in other
- the slurry bubble column may operate by continuously adding by top or side injection the fluoroaluminate material (either as a powder or slurry) into an aqueous reaction mixture within the column and bubbling in the acid (e.g., via a sparger).
- the reaction slurry may be removed from the bottom of the column.
- the slurry bubble column may operate in a batch mode wherein each stream is added to the reactor from the top or side with the acidic gas being added by a bottom sparger. The reaction may occur for a desired residence time and the reaction contents may then be removed from the reactor.
- the pressure of the reaction vessel may be about atmospheric or may be maintained at a pressure of at least about 5 bar, at least about 10 bar, at least about 15 bar, from about atmospheric to about 20 bar, from about atmospheric to about 15 bar or from about atmospheric to about 10 bar.
- the reaction is allowed to proceed for at least about 10 minutes, at least about 30 minutes, at least about 60 minutes, at least about 90 minutes, from about 10 minutes to about 120 minutes or from about 15 minutes to about 60 minutes.
- the residence time in the reaction vessel may be from about 1 minute to about 60 minutes or even from about 5 minutes to about 30 minutes.
- fluoroaluminate is a substantially anhydrous gas stream.
- substantially anhydrous acid e.g., substantially anhydrous HC1 or sulfuric acid
- a reaction vessel in which the fluoroaluminate and optionally a source of silicon are suspended such as, for example, a fluidized bed reactor.
- the design of the reaction vessel in anhydrous systems is generally within the ability of one of ordinary skill in the art and is dependent on the desired production rates, conversions, operating temperatures and the like.
- the reaction system may be batch, continuous or semi-batch without departing from the scope of the present disclosure.
- the fluidized bed reactor may generally be a cylindrical vertical vessel; however, any configuration that is acceptable to fluidized bed operations may be utilized.
- the particular dimensions of the vessel will primarily depend upon system design factors that may vary from system to system such as the desired system output, heat transfer efficiencies and system fluid dynamics, without departing from the scope of the present disclosure.
- the fluidizing gas velocity through the reaction zone of the fluidized bed reactor is maintained above the minimum fluidization velocity of the fluoroaluminate and optionally the source of silicon.
- the gas velocity through the fluidized bed reactor is generally maintained at a velocity of from about one to about eight times the minimum fluidization velocity necessary to fluidize the particles within the fluidized bed. In some embodiments, the gas velocity is from about two to about five times and may even be about four times the minimum fluidization velocity necessary to fluidize the particles within the fluidized bed.
- the minimum fluidization velocity varies depending on the properties of the gas and particles involved. The minimum fluidization velocity may be determined by conventional means (see p. 17-4 of Perry's Chemical Engineers' Handbook, 7th.
- minimum fluidization velocities useful in the present disclosure range from about 0.7 cm/sec to about 350 cm/sec or even from about 6 cm/sec to about 150 cm/sec.
- the contact between solids and gases becomes less effective.
- the surface area of solids in contact with reacting gases decreases with increasing bed voidage resulting in reduced conversion to the fluoride product. Accordingly, the gas velocity should be controlled to maintain conversion within acceptable levels.
- the temperature of the reaction vessel may be maintained at a temperature of at least about 75°C, at least about 150°C, at least about 200°C, from about 75°C to about 300°C or from about 75°C to about 200°C.
- the heat that is used to maintain the reaction zone at such temperatures may be provided by conventional heating systems such as electrical resistance heaters disposed on the exterior of the reactor vessel wall.
- the reaction vessel may operate at pressures from about 1 bar to about 20 bar or from about 1 bar to about 10 bar.
- the residence time in the reactor may be less than about 10 minutes, less than about 5 minutes or even less than about 1 minute.
- conversion of the fluoroaluminate to the fluoride product may be at least about 50%, and, in other embodiments, at least about 60%, at least about 75%, at least about 90%, or even at least about 95% (e.g., from about 50% to about 98%, from about 60% to about 98% or from about 75% to about 98%).
- any reactor capable of carrying out the above described reactions may be used without departing from the scope of the present disclosure.
- the process of embodiments of the present disclosure may be conducted in continuous or batch systems and may be carried out in a single reaction vessel or may incorporate one or more reaction vessels configured in series or in parallel.
- the methods of the present disclosure generally involve preparation of a fluoride product (e.g., aluminum trifluoride and/or silicon
- the equipment and methods to separate and purify the fluoride product may generally be selected from any of the equipment and methods known and available to one of ordinary skill in the art without limitation.
- Anhydrous systems are generally simpler to operate than aqueous systems as anhydrous systems do not involve slurry treatment operations; however anhydrous systems may involve a controlled particle size distribution of the fluoroaluminate feed (and source of silicon if any) and may involve higher processing temperatures.
- the reaction mixture contains an amount of aluminum trifluoride product that is slurried in the reaction mixture.
- a salt of the acid e.g., alkali or alkaline earth-metal chloride or sulfate
- the reaction also may produce an amount of hydrogen fluoride which may be dissolved in the reaction mixture or may be drawn from the reaction mixture in an effluent gas. This effluent gas may also contain an amount of hydrogen gas and unreacted and vaporized acid.
- the liquid reaction mixture containing slurried fluoride product may be introduced into a solid-liquid separation unit to produce a solid fraction containing the aluminum trifluoride product and a salt of the acid (e.g., chloride and/or sulfate salt) and a liquid fraction containing hydrogen fluoride, a salt of the acid and an amount of unreacted acid.
- Solid-liquid separation units are generally known in the art and include, for example, centrifuges, decanters, filters (e.g., sieve screens) and the like.
- the solid fraction may be introduced into one or more wash units.
- the salt is more soluble in water than the aluminum trifluoride product.
- the wash unit generally operates by contacting the fluoride/salt solid fraction with water for a sufficient amount of time to allow the salt to dissolve into the aqueous phase.
- the salt-enriched water may then be separated from the slurried aluminum trifluoride product by a second solid-liquid separation unit for product recovery.
- This second solid-liquid separation unit may form part of the wash unit itself.
- a number of wash units may be used and the wash units may be arranged in series or parallel without limitation.
- the spent wash water may be processed (e.g., by drying such as flash drying) to recover the salt which may be sold commercially or further processed as described below.
- Aluminum trifluoride product may be dried to remove any remaining water by the addition of extraneous heat and/or reduction in pressure to remove additional water and/or acid from the product. Suitable drying temperatures are at least about 50°C, at least about 100°C, at least about 130°C, from about 50°C to about 150°C or from about 100°C to about 150°C.
- aluminum trifluoride when aluminum trifluoride is produced as a fluoride product, the aluminum trifluoride may be present in a number of hydrated forms. Without being bound to any particularly theory, it is believed that aluminum trifluoride solid (e.g., filter cake) that is dewatered in the solid-liquid separation device is in the trihydrate form, A1F 3 ⁇ 3H 2 0. Further it is believed that drying results in dehydration of the product and formation of at least one of the mono-hydrate, semi-hydrate or even anhydrous form of aluminum trifluoride.
- aluminum trifluoride solid e.g., filter cake
- the liquid fraction separated from the solid fraction in the solid-liquid separation device and the effluent gas removed from the reaction vessel may be introduced into a distillation column to remove and separate one or more of the unused acid, hydrogen fluoride and hydrogen gas.
- the design and operation of distillation methods are generally within the skill of one of ordinary skill in the art and are dependent on various factors including the composition of the feed, the desired recovered product(s), the desired recovery and the like. Unreacted acid may be recycled back to the reaction vessel in continuous systems.
- the reaction produces solid aluminum trifluoride product which may be withdrawn from the reactor.
- the product particulate may include an amount of solid by-product salt (e.g., NaCl, NaHS0 4 or Na 2 S0 4 ) which may be separated out as described below.
- Hydrogen fluoride and hydrogen gas may be generated as gaseous by-products that are withdrawn from the reaction vessel with unreacted acid.
- the particulates that typically include aluminum trifluoride product and salt may be introduced into one or more wash units to separate the salt from the aluminum trifluoride product.
- the wash units may be similar to the wash units described above for aqueous systems.
- the solid product may be dried to at least partially dehydrate the fluoride product as described above.
- the spent gas that is removed from the reaction vessel may be subjected to distillation to recover at least one of unreacted acid, hydrogen fluoride and hydrogen gas.
- silicon tetrafluoride gas is produced as a product.
- a salt of the acid may be slurried within the reaction mixture as a by-product.
- the reaction also may produce an amount of hydrogen fluoride which may be dissolved in the reaction mixture and/or may be withdrawn from the reaction mixture with the product gas.
- This product gas may also contain an amount of vaporized acid and/or F 3 SiOSiF 3 byproduct.
- the solid fluoroaluminate decomposes into particulate salt (e.g., NaCl, NaHSC ⁇ or Na 2 S0 4 ) during the reaction.
- Hydrogen fluoride may be generated as a gaseous byproduct that is withdrawn from the reaction vessel with any unreacted acid and silicon tetrafluoride.
- the silicon tetrafluoride gas may be separated from the other gases by distillation, acid baths (e.g., sulfuric acid bath to remove unreacted HF) and/or adsorption units (e.g., a zinc-based adsorber to remove acid) which may be operated in any combination and number and may be operated in series or parallel without limitation.
- acid baths e.g., sulfuric acid bath to remove unreacted HF
- adsorption units e.g., a zinc-based adsorber to remove acid
- Silicon tetrafluoride product gas may be condensed for storage as a liquid product and/or may be further processed by, for example, reaction with an alkali or alkaline earth-metal aluminum tetrahydride for the production of silane.
- hydrogen fluoride by-product may suitably be reacted with a source of silicon to produce silicon tetrafluoride gas.
- Hydrogen fluoride may be separated from other gases in a distillation column.
- the hydrogen fluoride may be introduced into a reaction vessel in which a source of silicon (e.g., sand) is present such as a packed bed or fluidized bed to produce silicon tetrafluoride.
- the silicon tetrafluoride gas may be washed with sulfuric acid to remove further by-product gases and may be introduced into an adsorber, preferably with zinc media, to remove any unreacted acid.
- Dissolved chloride or sulfate salts may be recovered by drying. Such drying operations typically vaporize any unreacted acid present in the solution which allows the acids to be recovered for re-use.
- Recovered by-product chloride or sulfate salts may be commercially sold or may be reacted with fluorosilicic acid to regenerate the starting acids (HC1 or sulfuric acid) and produce fluorosilicates which may be used as starting materials for the production of the fluoride products of the present disclosure (e.g., silicon tetrafluoride).
- the fluorosilicates may be used as the source of silicon to produce silicon tetrafluoride.
- the fluoride production methods described above may generally be incorporated into a process for producing silane such that the by-products of silane production may be used to generate value-added products.
- silicon tetrafluoride is contacted with an alkali or alkaline earth-metal salt of aluminum tetrahydride to produce silane and an effluent that contains one or more f uoroaluminates.
- the fluoroaluminate may be contacted with an acid to produce aluminum trifluoride (in the absence of silicon) or silicon tetrafluoride (in the presence of silicon) and at least one by-product which may be separated from the fluoride product.
- Silicon tetrafluoride starting material may be produced by evaporating solutions of fluorosilicic acid. Alternatively or in addition, a portion of the silicon tetrafluoride that is reacted with aluminum tetrahydride to produce silane may be generated from the methods described above. Alkali or alkaline earth-metal salts of aluminum tetrahydride may be produced by reacting their elemental precursors (Na, Al and H) under high pressure and temperature.
- Gaseous silicon tetrafluoride may be introduced into an agitated liquid reaction medium containing aluminum tetrahydride salt.
- the liquid reaction medium may include solvents selected from polyethers (e.g., diglyme, monoglyme or dioxane), hydrocarbons (e.g., toluene or pentane) and mixtures thereof.
- the reaction mixture may be maintained from about 30°C to about 80°C and atmospheric pressure may be used.
- the reaction mixture may also be maintained at higher pressures such as pressures up to about 100 atm. In some embodiments, the reaction medium is maintained at a pressure of from about 1 to about 10 atm.
- Stoichiometric amounts of silicon tetrafluoride and aluminum tetrahydride may be used to produce silane; however, in some embodiments a molar excess of tetrahydrides is used to suppress formation of by-products.
- the reaction may be performed batch- wise or continuously such as in a continuous back-mixed reactor or in a slurry bubble column.
- the reaction generates silane gas and slurried fluoroaluminate salt.
- the fluoroaluminates may be separated from the reaction medium by means generally known in the art such as by use of solid-liquid separation units (centrifuges, decanters, filters and the like). Upon separation, the fluoroaluminates may be introduced to a reaction vessel with acid to a produce the fluoride product (aluminum trifluoride or silicon tetrafluoride) as described above.
- Example 1 Production of Aluminum Trifluoride by Hydrochloric Acid Digestion of Fluoroaluminates with Continuous Exhaustion of Generated Gas
- a solid mixture (15.7 g) of sodium aluminum fluoride (NaAlF 4 ), chiolite (Na 5 Al 3 F 14 ) and cryolite (Na 3 AlF 6 ) (“fluoroaluminate mixture”) was mixed with silica (8 g).
- the solids mixture was then mixed in a TEFLON beaker containing aqueous hydrochloric acid (243 g at 36 wt%).
- the initial mole ratio of hydrochloric acid to the fluoroaluminate mixture was 20: 1.
- a magnetic stirrer was placed at the bottom of the beaker for mechanical agitation of the mixture.
- the beaker was at an ambient pressure of 1 bar and at an ambient temperature of 20°C.
- the fluoroaluminate powder reacted violently with aqueous hydrochloric acid to produce fumes (SiF 4 ) that were exhausted continuously.
- the mixture was agitated for 45 minutes when the grayish slurry of the fluoroaluminate mixture and aqueous hydrochloric acid completely turned to a whitish slurry.
- the liquid in the slurry was decanted and the resulting solids mixture was dried under a lamp to yield 27.3 g of solids.
- Analysis of dry solids indicated the loss in the fluorine moles to be 11%, which on weight basis was equivalent to the gain in the chlorine moles. Based on stoichiometry, the conversion from fluoroaluminates to aluminum trifluoride semi- hydrate and hydrogen fluoride was estimated to be approximately 60%.
- Example 2 Production of Aluminum Trifluoride by Hydrochloric Acid Digestion of Fluoroaluminates in an Enclosed Vessel
- a fluoroaluminate mixture (24.7 g) was mixed with 36 wt% hydrochloric acid in an enclosed digestion vessel made of TEFLON.
- the vessel and the contents were heated to 150°C and the relief valve on the vessel was set to release at 100 psig. After 30 minutes of heating, the contents of the vessel were cooled to ambient and the relief valve was opened. The loss in the weight of the vessel or the gas released was 0.11 g.
- the liquid in the digestion vessel was decanted and the solids mixture was dried under a lamp. The solids yield on drying was 28%. The resulting solids were washed with water and dried again. The yield of solids on the second drying was 64%. Based on stoichiometry, the conversion of fluoroaluminate to aluminum trifluoride semi-hydrate was 93%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080060027XA CN102686515A (en) | 2009-12-30 | 2010-12-18 | Methods for producing silicon tetrafluoride |
JP2012546531A JP5658763B2 (en) | 2009-12-30 | 2010-12-18 | Method for producing silicon tetrafluoride |
KR1020127017085A KR101788891B1 (en) | 2009-12-30 | 2010-12-18 | Methods for producing silicon tetrafluoride |
EP10813032A EP2519468A2 (en) | 2009-12-30 | 2010-12-18 | Methods for producing silicon tetrafluoride |
IN5121DEN2012 IN2012DN05121A (en) | 2009-12-30 | 2010-12-18 | |
RU2012132438/05A RU2560377C2 (en) | 2009-12-30 | 2010-12-18 | Method of silicon tetrafluoride production |
NO20120827A NO20120827A1 (en) | 2009-12-30 | 2012-07-17 | Process for the production of silicon tetrafluoride |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29114909P | 2009-12-30 | 2009-12-30 | |
US61/291,149 | 2009-12-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2011080657A2 true WO2011080657A2 (en) | 2011-07-07 |
WO2011080657A3 WO2011080657A3 (en) | 2011-12-01 |
WO2011080657A4 WO2011080657A4 (en) | 2012-01-26 |
Family
ID=43975183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2010/055927 WO2011080657A2 (en) | 2009-12-30 | 2010-12-18 | Methods for producing silicon tetrafluoride |
Country Status (10)
Country | Link |
---|---|
US (1) | US8529860B2 (en) |
EP (1) | EP2519468A2 (en) |
JP (1) | JP5658763B2 (en) |
KR (1) | KR101788891B1 (en) |
CN (2) | CN106587074B (en) |
IN (1) | IN2012DN05121A (en) |
NO (1) | NO20120827A1 (en) |
RU (1) | RU2560377C2 (en) |
TW (2) | TWI477448B (en) |
WO (1) | WO2011080657A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011080656A3 (en) * | 2009-12-30 | 2012-03-01 | Memc Electronic Materials, Inc. | Methods for producing aluminum trifluoride |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103648980B (en) * | 2011-06-28 | 2017-10-13 | Memc电子材料有限公司 | The method that silane is prepared in bubble column |
CN112919476B (en) * | 2021-03-04 | 2023-03-17 | 中国科学院过程工程研究所 | Utilization method of fluorine-rich mixture |
CN113816340B (en) * | 2021-10-13 | 2024-01-30 | 中国科学院过程工程研究所 | Method for preparing anhydrous hydrogen fluoride and co-producing silicon tetrafluoride from sodium fluosilicate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4632816A (en) | 1982-12-13 | 1986-12-30 | Ethyl Corporation | Process for production of silane |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3218124A (en) | 1962-09-10 | 1965-11-16 | Tennessee Corp | Process of producing hydrogen fluoride as a dry gas from clear fluosilicic acid-containing solutions |
DE1220839B (en) | 1964-10-19 | 1966-07-14 | Bayer Ag | Process for the production of aluminum fluoride |
US3619136A (en) * | 1968-11-12 | 1971-11-09 | Atlantic Richfield Co | Process for producing phosphoric acid |
JPS5033992B1 (en) | 1970-12-23 | 1975-11-05 | ||
US3969485A (en) | 1971-10-28 | 1976-07-13 | Flemmert Goesta Lennart | Process for converting silicon-and-fluorine-containing waste gases into silicon dioxide and hydrogen fluoride |
US4062930A (en) | 1973-05-31 | 1977-12-13 | Bohdan Zawadzki | Method of production of anhydrous hydrogen fluoride |
JPS5321399B2 (en) | 1975-03-25 | 1978-07-03 | ||
DE2815881A1 (en) | 1978-04-12 | 1979-10-25 | Lentia Gmbh | PROCESS FOR PRODUCING ALUMINUM FLUORIDE |
US4213952A (en) | 1978-10-23 | 1980-07-22 | Occidental Research Corporation | Recovery of hydrofluoric acid from fluosilicic acid with high pH hydrolysis |
GB2079262B (en) * | 1980-07-02 | 1984-03-28 | Central Glass Co Ltd | Process of preparing silicon tetrafluoride by using hydrogen fluoride gas |
US4348849A (en) | 1980-08-11 | 1982-09-14 | Alcan Aluminum Corporation | Starter strip for horizontal siding panels |
US4446120A (en) | 1982-01-29 | 1984-05-01 | The United States Of America As Represented By The United States Department Of Energy | Method of preparing silicon from sodium fluosilicate |
US4407783A (en) * | 1982-08-16 | 1983-10-04 | Allied Corporation | Producing silane from silicon tetrafluoride |
JPS60500251A (en) * | 1982-12-13 | 1985-02-28 | エシル コ−ポレ−シヨン | Silane manufacturing method |
US4748014A (en) | 1982-12-27 | 1988-05-31 | Sri International | Process and apparatus for obtaining silicon from fluosilicic acid |
US4470959A (en) | 1983-06-20 | 1984-09-11 | Allied Corporation | Continuous production of silicon tetrafluoride gas in a vertical column |
US4508689A (en) | 1983-07-21 | 1985-04-02 | Aluminum Company Of America | Aluminum-fluorine compound manufacture |
US4753033A (en) * | 1985-03-24 | 1988-06-28 | Williams Technologies, Inc. | Process for producing a clean hydrocarbon fuel from high calcium coal |
US5075092A (en) * | 1987-07-20 | 1991-12-24 | Ethyl Corporation | Process for preparation of silane |
US4847061A (en) * | 1987-07-20 | 1989-07-11 | Ethyl Corporation | Process for preparation of silane |
RU2046095C1 (en) * | 1991-06-25 | 1995-10-20 | Всероссийский научно-исследовательский институт неорганических материалов им.акад. А.А.Бочвара | Method of silicon trifluoride producing |
US5242670A (en) * | 1992-07-02 | 1993-09-07 | Gehringer Ronald C | Method for hydrofluoric acid digestion of silica/alumina matrix material for the production of silicon tetrafluoride, aluminum fluoride and other residual metal fluorides and oxides |
US6217840B1 (en) | 1995-12-08 | 2001-04-17 | Goldendale Aluminum Company | Production of fumed silica |
US5723097A (en) | 1995-12-08 | 1998-03-03 | Goldendale Aluminum Company | Method of treating spent potliner material from aluminum reduction cells |
US6193944B1 (en) | 1995-12-08 | 2001-02-27 | Goldendale Aluminum Company | Method of recovering fumed silica from spent potliner |
JPH10231114A (en) | 1997-02-18 | 1998-09-02 | Mitsui Chem Inc | Production of sif4 |
AU2006318589A1 (en) * | 2005-11-25 | 2007-05-31 | Vesta Research Ltd. | Process for producing a silicon nitride compound |
RU2348581C2 (en) * | 2006-05-12 | 2009-03-10 | Общество с Ограниченной Ответственностью "Гелиос" | Method of silicon tetrafluoride extraction from gas mix and aggregate for implementation of method |
US8124039B2 (en) | 2009-01-26 | 2012-02-28 | Vithal Revankar | Process of silicon tetrafluoride gas synthesis |
CN101544374B (en) | 2009-03-12 | 2010-12-01 | 六九硅业有限公司 | Method for preparing silicon tetrafluoride |
-
2010
- 2010-12-15 US US12/969,089 patent/US8529860B2/en not_active Expired - Fee Related
- 2010-12-18 IN IN5121DEN2012 patent/IN2012DN05121A/en unknown
- 2010-12-18 EP EP10813032A patent/EP2519468A2/en not_active Withdrawn
- 2010-12-18 CN CN201611206327.XA patent/CN106587074B/en not_active Expired - Fee Related
- 2010-12-18 CN CN201080060027XA patent/CN102686515A/en active Pending
- 2010-12-18 RU RU2012132438/05A patent/RU2560377C2/en not_active IP Right Cessation
- 2010-12-18 JP JP2012546531A patent/JP5658763B2/en not_active Expired - Fee Related
- 2010-12-18 KR KR1020127017085A patent/KR101788891B1/en active IP Right Grant
- 2010-12-18 WO PCT/IB2010/055927 patent/WO2011080657A2/en active Application Filing
- 2010-12-29 TW TW099146706A patent/TWI477448B/en not_active IP Right Cessation
- 2010-12-29 TW TW104103064A patent/TW201518211A/en unknown
-
2012
- 2012-07-17 NO NO20120827A patent/NO20120827A1/en not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4632816A (en) | 1982-12-13 | 1986-12-30 | Ethyl Corporation | Process for production of silane |
Non-Patent Citations (2)
Title |
---|
"Perry's Chemical Engineers' Handbook", pages: 17 - 4 |
"Perry's Chemical Engineers' Handbook, 7", 1997, pages: 23 - 49 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011080656A3 (en) * | 2009-12-30 | 2012-03-01 | Memc Electronic Materials, Inc. | Methods for producing aluminum trifluoride |
US8388925B2 (en) | 2009-12-30 | 2013-03-05 | Memc Electronic Materials, Inc. | Methods for producing aluminum trifluoride |
EP2765117A1 (en) * | 2009-12-30 | 2014-08-13 | MEMC Electronic Materials, Inc. | Method for producing aluminum trifluoride |
US9527752B2 (en) | 2009-12-30 | 2016-12-27 | Sunedison, Inc. | Methods for producing aluminum trifluoride |
Also Published As
Publication number | Publication date |
---|---|
JP2013516377A (en) | 2013-05-13 |
EP2519468A2 (en) | 2012-11-07 |
RU2560377C2 (en) | 2015-08-20 |
US8529860B2 (en) | 2013-09-10 |
IN2012DN05121A (en) | 2015-10-23 |
KR20120110110A (en) | 2012-10-09 |
TW201518211A (en) | 2015-05-16 |
JP5658763B2 (en) | 2015-01-28 |
TWI477448B (en) | 2015-03-21 |
WO2011080657A3 (en) | 2011-12-01 |
CN106587074B (en) | 2019-03-08 |
US20110158882A1 (en) | 2011-06-30 |
TW201129504A (en) | 2011-09-01 |
WO2011080657A4 (en) | 2012-01-26 |
CN102686515A (en) | 2012-09-19 |
KR101788891B1 (en) | 2017-10-20 |
CN106587074A (en) | 2017-04-26 |
NO20120827A1 (en) | 2012-07-17 |
RU2012132438A (en) | 2014-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9527752B2 (en) | Methods for producing aluminum trifluoride | |
US8529860B2 (en) | Methods for producing silicon tetrafluoride | |
US8974761B2 (en) | Methods for producing silane | |
JP4436904B2 (en) | Si manufacturing method | |
US9487406B2 (en) | Systems for producing silane | |
TWI429588B (en) | Methods and systems for producing silane | |
KR20110020773A (en) | Production of silanes by acid hydrolysis of alloys of silicon and of alkaline-earth metals or alkaline-earth metal silicides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080060027.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10813032 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5121/DELNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012546531 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010813032 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127017085 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012132438 Country of ref document: RU |