WO2011080475A1 - Cermet with improved heat conductivity and nuclear fuel comprising said cermet - Google Patents

Cermet with improved heat conductivity and nuclear fuel comprising said cermet Download PDF

Info

Publication number
WO2011080475A1
WO2011080475A1 PCT/FR2010/052910 FR2010052910W WO2011080475A1 WO 2011080475 A1 WO2011080475 A1 WO 2011080475A1 FR 2010052910 W FR2010052910 W FR 2010052910W WO 2011080475 A1 WO2011080475 A1 WO 2011080475A1
Authority
WO
WIPO (PCT)
Prior art keywords
cermet
particles
average
nuclear fuel
distribution
Prior art date
Application number
PCT/FR2010/052910
Other languages
French (fr)
Inventor
Pierre Matheron
Méryl BROTHIER
Jacques Lechelle
Tangui Derriennic
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2011080475A1 publication Critical patent/WO2011080475A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/64Ceramic dispersion fuel, e.g. cermet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the technical field of the present invention is that of nuclear fuels.
  • the present invention relates more particularly to a cermet comprising a steel matrix in which particles of uranium dioxide (UO 2 ) are dispersed.
  • a "cermet” designates a composite material comprising a metallic phase and a ceramic phase.
  • the invention also relates to the nuclear fuel comprising this cermet, intended in particular for supplying a nuclear reactor type Pressurized Water Reactor (PWR).
  • PWR Pressurized Water Reactor
  • PWR Pressurized Water Reactor
  • cermet-type composite material in which particles of U0 2 , constituting the ceramic phase, are separated from each other by a metallic phase whose good property of thermal conductivity, inherent to metals, is put to use.
  • the metal phase should not be too important a part of the cermet, because it also has the property of being neutron, which limits the yield of nuclear combustion.
  • the NPT generally sets a U-limit
  • This content is respected for a cermet which has a metal content of between 10% and 30% of its volume.
  • One of the aims of the invention is precisely to meet this need by providing a cermet having in particular a specific microstructure.
  • the cermet of the invention comprises a steel matrix in which particles of UO 2 are dispersed which occupy 70% to 90% of the volume of the cermet and which have a mean size of between 50 ⁇ m and 400 ⁇ m and a mean sphericity coefficient, measured by the average of the ratio between the maximum dimension and the minimum dimension of each of said particles (Dmax / Dmin), between 1.1 and 4.
  • the average sphericity coefficient of the particles of UO2 between 1.1 and 4 (preferably between 1.1 and 2.5) makes it possible to improve the thermal conductivity of the cermet of the invention, in particular the radial thermal conductivity.
  • a mean sphericity coefficient of the UO2 particles of between 1.5 and 2.5 (preferably between 1.5 and 2) constitutes a very good compromise when it comes to to improve both radial and global thermal conductivities.
  • axial and radial refer to the axial or radial direction of a nuclear fuel pellet composed in whole or in part of the cermet of the invention.
  • a nuclear fuel pellet composed in whole or in part of the cermet of the invention.
  • Such a pellet generally has dimensions of 8.2mm in diameter and 12mm to 13mm in height (REP pellet), or 15mm in height (MOx pellet).
  • the sphericity coefficient makes it possible to evaluate the flattening rate of an object such as, for example, an U02 granule or a U02 particle. It is measured by the ratio between its maximum dimension and its minimum dimension (Dmax / Dmin), each object being considered in first approximation as an oblate-shaped ellipsoid (flattened sphere).
  • the ratio Dmax / Dmin can be calculated from the axial section of a cermet pellet for which the dimension Dmax and Dmin for each particle of U02 is measured according to at least 6 fields of observation. The measurement is generally performed using an image analysis software, each image representing fifty particles. The average sphericity coefficient is then the average of the Dmax / Dmin ratios measured for each U02 particle.
  • the mechanical strength under irradiation of the cermet of the invention is in turn improved by the fact that the metal phase constituting its matrix comprises a steel.
  • Such an alloy has the advantage of having better mechanical compatibility with the constituent material of a nuclear fuel cladding generally made of steel.
  • the cermet steel of the invention is identical or similar to the steel constituting the nuclear fuel cladding. This is for example a stainless steel, preferably selected from 316L steel, AIM, F17 or EM10.
  • the average minimum size of 50m is an acceptable value with respect to the degraded volume ratio of the matrix under the action of the irradiation, by making it possible to increase the surface area ratio developed by the U02 particles / total volume. they occupy.
  • the average maximum size of 400 m is in turn related to the geometry of the rods containing the nuclear fuel pellets of a PWR reactor: in order to be able to produce a sufficiently compact stack of pellets, it is necessary to limit the edge effects of each pellet by retaining a ratio (pencil sheath diameter) / (U02 particle diameter) that is greater than 20.
  • the average size of the U02 particles is between 200 ⁇ m and 250 ⁇ m.
  • the average particle size distribution of UO2 can be monomodal or multimodal, ie, this distribution is centered on one or more values, with a dispersion of the average size of the order of 10% around each value.
  • a monomodal distribution can be obtained by performing a single sieving of the granules or UO 2 particles so that their average size is centered on a value.
  • a multimodal distribution can be obtained by performing a number N of co-sieving granules or UO 2 particles, so that the average size of each sieve is centered on a value distinct from that of any other sieve, and then bringing together the N fractions obtained so that the average size of the resulting mixture is centered on N values.
  • N 1 (monomodal distribution).
  • a multimodal distribution makes it possible to increase the UO 2 fuel content within the cermet, as well as its radial thermal conductivity, in particular that of its steel matrix.
  • the distribution of the average size of the UC particles is bimodal. As illustrated below, this allows unexpectedly to increase both the radial and axial thermal conductivity.
  • the average particle size distribution of UC 2 is from 50 ⁇ m to 65 ⁇ m (ie for example a mean size of between 100 ⁇ m and 150 ⁇ m, 140 ⁇ m and 190 ⁇ m, or 250 ⁇ m and 31 ⁇ m).
  • the minimum average distance between the particles of U0 2 (in particular in their radial direction) is between 0.27 m and 0.49 m.
  • the invention also relates to the nuclear fuel comprising the cermet.
  • this fuel is in the form of pellet.
  • the cermet then composes the pellet such that, preferably, the principal dimension (Dmax) of the UO2 particles entering into the composition of the cermet is oriented in the radial direction of the pellet. The heat is thus evacuated more easily from the pellet.
  • Figure 1 is a Scanning Electron Microscopy (SEM) shot of U02 pellets -
  • Figures 2 to 4 are snapshots of a section of a cermet according to the invention.
  • FIG. 5 is a graph showing the evolution of the thermal conductivity of a cermet as a function of the average sphericity coefficient and the average size distribution of its U02 particles.
  • Figure 6 is a graph showing the evolution of the average distance between U02 particles as a function of their average sphericity coefficient.
  • Figure 7 is a graph showing the evolution of the radial thermal conductivity of a cermet as a function of the average distance between its U02 particles -
  • the following example describes a method of manufacturing a cermet according to the invention. This process essentially comprises two series of steps: a first in which U02 granules are formed, followed by a second during which the cermet is obtained by sintering these granules with a steel powder.
  • a quantity of 200 g of a uranium dioxide powder (UO2) with a BET surface area equal to 3.3 m 2 / g is placed in a cylindrical latex blind case. It is compressed by vibrations, then the case is closed by a plug of diameter adjusted and maintained by latex elastics.
  • UO2 uranium dioxide powder
  • the whole is immersed in a soluble oil bath contained in the cylinder of an isostatic press which is then closed hermetically.
  • the UO 2 powder is then agglomerated by isostatic compaction using a 150 MPa granulation pressure applied for 3 minutes.
  • the rate of rise and fall in granulation pressure is 100 MPa / min. It can be between 50MPa / min and 500MPa / min.
  • Isostatic pressing makes it possible to compact large quantities of material at one time with a good homogeneity of density in the compact, which guarantees the achievement of a homogeneous density and therefore a behavior (in particular an average sphericity coefficient). homogeneous when formatting later.
  • the U0 2 log (or the discs) are crushed by means of a pestle to obtain fragments of a medium size of order of 3mm to 5mm.
  • a sieve with a mesh size of 400 ⁇ m is placed above a second sieve of mesh size 315 mm, itself placed on a recovery container.
  • Fragments forced at 400 mm fall on the sieve at 315 mm, then the fragments of average size less than 315 mm fall into the container placed under the sieves.
  • the average sphericity coefficient of the latter is increased by placing them in a container whose bottom is covered with a self-adhesive abrasive disk N 400 (400 abrasive particles / cm 2 ). They are agitated manually by means of a brush so as to give them a rotational movement allowing the abrasion of their sharp angles.
  • the screened fragments of UO2 can also be spheronized using a powder mixer (Turbula® type for example). The abrasion then occurs by friction between the sieved UO2 fragments. The quantities treated with each batch are larger but the stirring time is longer.
  • a 315mM sieve is placed over a second 250m mesh sieve, itself placed on a recovery vessel.
  • the UO2 fragments obtained in the previous step are placed on the upper sieve and the whole is vibrated by means of an automatic sieve for 10 minutes with a small amplitude (0.4 mm) so as not to create fines. additional abrasion fragments between them.
  • the average size of the UO2 granules is between 60 ⁇ m and 500 ⁇ m (preferably between 250 ⁇ m to 315 ⁇ m), with a distribution of this average size preferably ranging from 50 ⁇ m to 65 ⁇ m.
  • UC granules 100 g of UC granules and 30 g of 316L steel powder with a BET specific surface area of 0.2 m 2 / g are mixed in a container by slow manual stirring in order not to generate fines.
  • the UO 2 granules then represent 70% by volume of the primary mixture obtained.
  • the BET surface area of the steel and UO 2 powders is preferably measured using the three-point BET method known to those skilled in the art.
  • the primary mixture of the UO 2 granules with the steel powder can be produced using a powder mixer (of the Turbula® type, for example), for example at 40 rpm for 1 hour. at 5 minutes.
  • a powder mixer of the Turbula® type, for example
  • a binder for example Polyethylene Glycol (PEG) 3% molar) which allows to glue the pellets of U0 2 and then add the steel powder that will stick on it.
  • PEG Polyethylene Glycol
  • the primary mixture of UO 2 granules and steel powder is shaped to reduce its porosity and to flatten the UO 2 granules.
  • zinc stearate or ammonium oxalate may be added to the primary mixture or sprayed onto the press matrix by means of an aerosol.
  • the compact mixture is placed in a nacelle, itself placed in a molybdenum metal furnace.
  • the furnace is placed under an oxidizing atmosphere (here composed of industrial argon, that is to say argon generally comprising 10 ppm to 30 ppm of O 2), which allows the UO 2 forming the granules to oxidize into the atmosphere.
  • UO2 uranium dioxide called "surstoichiometry"
  • the compact mixture is then sintered according to the following thermal cycle: temperature rise at a rate of 300 ° C./h (most often between 150 ° C./h and 300 ° C./h) up to a limit temperature of 1380 ° C. ° C (lower than the melting temperature of 316L steel, namely 1480 ° C) which is maintained for 3 hours.
  • the U02 + x granules substantially densify to their final value at a temperature of 1000 ° C to form U02 + x particles. Then, from 1000 ° C, the steel densifies in turn up to 1200 ° C in order to reach (approximately 80%) its final density: this sequential withdrawal (UO2 then steel) avoids the tensioning of the steel and thus the cracking of the material sintered, and allows to form a continuous metal matrix ensuring a good thermal diffusivity.
  • the sintering is completed by maintaining the limit temperature of 1380 ° C in order to reach the maximum degree of densification of the sintered material.
  • the temperature limit of 1380 ° C is maintained under this atmosphere for one hour.
  • cermet composed of a 316L steel matrix is obtained in which U02 particles are dispersed, each of these components occupying respectively 30% and 70% of the volume of the cermet.
  • the average sphericity coefficient of U02 pellets is preserved during the manufacturing process of the invention. It then corresponds to the average sphericity coefficient of the U02 particles contained in the cermet.
  • Figures 2 and 4 are the snapshots of the same section of the cermet obtained.
  • Figure 2 is an optical micrograph in which the U02 particles appear in dark gray.
  • Figure 4 is a close SEM image of the same section in which the U02 particles appear this time in light gray and the steel matrix as a black-colored cross-section. The porosity within the U02 particles is also black.
  • Figures 2 and 3 are the snapshots of the same section of the cermet obtained.
  • Figure 2 is a close-up SEM image in which the UC particles appear in light gray and the steel matrix as a black-colored cross-section. The porosity within the UC particles is also black.
  • Figure 3 is an optical micrograph in which UC particles appear in dark gray.
  • thermodynamic simulations based on inventors' own calculation codes, the effects of various characteristics of the cermet of the invention were evaluated.
  • the radial and axial thermal conductivities were evaluated at a temperature of 1400K for cermets comprising U0 2 particles stacked in an ideal mode of cubic face-centered type for which the average sphericity coefficients and the distribution of the average height.
  • the average sphericity coefficient (Dmax / Dmin) can be modulated by varying the granulation pressure (Pg) between 80 MPa and 150 MPa and the forming pressure (MP) between 400 MPa and 100 MPa, in a ratio Pm / Pg less than 9.
  • FIGS. 3 and 4 show SEM images of cermets manufactured under the same conditions, except for the pressures Pm and Pg, in order to obtain particles of UC 2 having average sphericity coefficients. different, namely:
  • interparticular distance the average distance between these particles in a plane perpendicular to the thermal flux passing through a nuclear fuel pellet (called interparticular distance ) depends on the average sphericity coefficient (Dmax / Dmin).
  • the radial thermal conductivity of a pellet composed of the cermet of the invention (comprising, for example, 28% of steel) is improved when the interparticular distance decreases or the coefficient of mean sphericity (Dmax / Dmin) increases, as the average particle size of U0 2 are distributed either monomodally or multimodally (especially bimodal).
  • a minimum interparticular distance of 0.27m.sup.i corresponds to an average sphericity coefficient of about 4 and a radial thermal conductivity of the order of 9.18W.m.sup.- 1 K.sup.- 1.
  • a maximum interparticle distance of 0.49ym corresponds to a mean sphericity coefficient of about 1.1 and a radial thermal conductivity of the order of 8.2W.m _1 K _1.
  • the minimum interparticle distance stabilizes at about 0.1 ⁇ m.
  • the cermet of the invention has a low metal content and exhibits mechanical strength under irradiation and / or thermal conductivity (particularly in a radial direction of a nuclear fuel pellet) which is improved.
  • the cermet of the invention can thus reach (at least) a radial thermal conductivity value greater than 80% (at 1000 K) compared to that of a material consisting of pure UO2.

Abstract

The invention relates to a cermet having a specific microstructure comprising a steel matrix in which uranium dioxide (UO2) particles are dispersed. Said cermet has a mechanical strength under irradiation and/or an improved heat conductivity. The invention also relates to a nuclear fuel comprising said cermet.

Description

CERMET A CONDUCTIVITE THERMIQUE AMELIOREE ET COMBUSTIBLE NUCLEAIRE COMPRENANT LE CERMET.  IMPROVED THERMAL CONDUCTIVITY CERMET AND NUCLEAR COMBUSTIBLE COMPRISING THE CERMET.
DESCRIPTION DESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
Le domaine technique de la présente invention est celui des combustibles nucléaires. The technical field of the present invention is that of nuclear fuels.
La présente invention concerne plus particulièrement un cermet comprenant une matrice en acier dans laquelle sont dispersées des particules de dioxyde d'uranium (U02) · Au sens de l'invention, un « cermet » désigne un matériau composite comprenant une phase métallique et une phase céramique . The present invention relates more particularly to a cermet comprising a steel matrix in which particles of uranium dioxide (UO 2 ) are dispersed. For the purposes of the invention, a "cermet" designates a composite material comprising a metallic phase and a ceramic phase.
L'invention concerne également le combustible nucléaire comprenant ce cermet, destiné en particulier à alimenter un réacteur nucléaire de type Réacteur à Eau Pressurisée (REP) .  The invention also relates to the nuclear fuel comprising this cermet, intended in particular for supplying a nuclear reactor type Pressurized Water Reactor (PWR).
ETAT DE LA TECHNIQUE STATE OF THE ART
Une des voies d'amélioration de la sûreté de fonctionnement d'un Réacteur à Eau Pressurisée (REP) est l'emploi d'un combustible nucléaire évacuant au mieux l'énergie thermique produite dans le cœur du réacteur. One of the ways to improve the operational safety of a Pressurized Water Reactor (PWR) is the use of a nuclear fuel that best evacuates the heat energy produced in the reactor core.
Dans ce but, il a été proposé d'utiliser un matériau composite de type cermet dans lequel des particules d'U02, constituant la phase céramique, sont séparées les unes des autres par une phase métallique dont la bonne propriété de conductivité thermique, inhérente aux métaux, est mise à profit . La phase métallique ne doit toutefois pas constituer une part trop importante du cermet, car elle a également pour propriété d' être neutrophage, ce qui limite le rendement de la combustion nucléaire. For this purpose, it has been proposed to use a cermet-type composite material in which particles of U0 2 , constituting the ceramic phase, are separated from each other by a metallic phase whose good property of thermal conductivity, inherent to metals, is put to use. However, the metal phase should not be too important a part of the cermet, because it also has the property of being neutron, which limits the yield of nuclear combustion.
Afin de garder un taux suffisant de matière fissile In order to keep a sufficient rate of fissile material
(U02) au sein du combustible nucléaire, il deviendrait alors nécessaire d'augmenter le taux d'enrichissement en U de la matière fissile au-delà des limites imposées par le Traité de Non Prolifération (TNP) . (U0 2 ) Within the nuclear fuel, it would then be necessary to increase the U enrichment rate of the fissile material beyond the limits imposed by the Non Proliferation Treaty (NPT).
Le TNP fixe généralement une teneur limite en U a The NPT generally sets a U-limit
20% en poids de l'uranium composant l'υθ2, teneur descendue par l'exploitant énergétique à 5%. 20% by weight of the uranium composing the υθ 2 , a content lowered by the energy operator to 5%.
Cette teneur est respectée pour un cermet qui présente une teneur en métal comprise entre 10% et 30% de son volume.  This content is respected for a cermet which has a metal content of between 10% and 30% of its volume.
II existe donc un besoin pour un cermet à faible teneur en métal dont on a également amélioré la tenue mécanique sous irradiation et/ou la conductivité thermique, en particulier la conductivité selon une direction radiale d'une pastille de combustible nucléaire composée en tout ou partie de ce cermet.  There is therefore a need for a cermet with a low metal content which has also been improved with respect to the mechanical strength under irradiation and / or the thermal conductivity, in particular the conductivity in a radial direction of a nuclear fuel pellet composed in whole or in part of this cermet.
EXPOSE DE L' INVENTION SUMMARY OF THE INVENTION
Un des buts de l'invention est précisément de répondre à ce besoin en fournissant un cermet présentant notamment une microstructure spécifique. One of the aims of the invention is precisely to meet this need by providing a cermet having in particular a specific microstructure.
Le cermet de l'invention comprend une matrice en acier dans laquelle sont dispersées des particules d'U02 qui occupent 70% à 90% du volume du cermet et qui présentent une taille moyenne comprise entre 50ym et 400ym et un coefficient de sphéricité moyen, mesuré par la moyenne du rapport entre la dimension maximale et la dimension minimale de chacune desdites particules (Dmax/Dmin), compris entre 1,1 et 4. Le coefficient de sphéricité moyen des particules d' U02 compris entre 1,1 et 4 (de préférence entre 1,1 et 2,5) permet d'améliorer la conductivité thermique du cermet de l'invention, en particulier la conductivité thermique radiale. The cermet of the invention comprises a steel matrix in which particles of UO 2 are dispersed which occupy 70% to 90% of the volume of the cermet and which have a mean size of between 50 μm and 400 μm and a mean sphericity coefficient, measured by the average of the ratio between the maximum dimension and the minimum dimension of each of said particles (Dmax / Dmin), between 1.1 and 4. The average sphericity coefficient of the particles of UO2 between 1.1 and 4 (preferably between 1.1 and 2.5) makes it possible to improve the thermal conductivity of the cermet of the invention, in particular the radial thermal conductivity.
Selon un mode préférentiel de l'invention, un coefficient de sphéricité moyen des particules d' UO2 compris entre 1,5 et 2,5 (de préférence entre 1,5 et 2) constitue un très bon compromis lorsqu'il s'agit d'améliorer à la fois les conductivités thermique radiale et globale.  According to a preferred embodiment of the invention, a mean sphericity coefficient of the UO2 particles of between 1.5 and 2.5 (preferably between 1.5 and 2) constitutes a very good compromise when it comes to to improve both radial and global thermal conductivities.
Dans la présente description, les termes « axial » et « radial » se réfèrent à la direction axiale ou radiale d'une pastille de combustible nucléaire composée en tout ou partie du cermet de l'invention. Une telle pastille a généralement pour dimensions 8,2mm de diamètre et 12mm à 13mm de hauteur (pastille REP), voire 15mm de hauteur (pastille MOx) .  In the present description, the terms "axial" and "radial" refer to the axial or radial direction of a nuclear fuel pellet composed in whole or in part of the cermet of the invention. Such a pellet generally has dimensions of 8.2mm in diameter and 12mm to 13mm in height (REP pellet), or 15mm in height (MOx pellet).
Le coefficient de sphéricité permet d'évaluer le taux d'aplatissement d'un objet tel que par exemple un granulé d' U02 ou une particule d' U02 - Il est mesuré par le rapport entre sa dimension maximale et sa dimension minimale (Dmax/Dmin) , chaque objet étant considéré en première approximation comme un ellipsoïde de forme oblate (sphère aplatie) .  The sphericity coefficient makes it possible to evaluate the flattening rate of an object such as, for example, an U02 granule or a U02 particle. It is measured by the ratio between its maximum dimension and its minimum dimension (Dmax / Dmin), each object being considered in first approximation as an oblate-shaped ellipsoid (flattened sphere).
En pratique, le rapport Dmax/Dmin peut être calculé à partir de la coupe axiale d'une pastille de cermet pour laquelle on mesure la dimension Dmax et Dmin pour chaque particule d' U02 selon au moins 6 champs d'observation. La mesure est généralement réalisée à l'aide d'un logiciel d'analyse d'images, chaque image représentant une cinquantaine de particules. Le coefficient de sphéricité moyen est alors la moyenne des rapports Dmax/Dmin mesurés pour chaque particule d' U02 . La tenue mécanique sous irradiation du cermet de l'invention est quant à elle améliorée par le fait que la phase métallique constituant sa matrice comprend un acier. Un tel alliage a pour avantage d'avoir une meilleure compatibilité mécanique avec le matériau constitutif d'une gaine de combustible nucléaire généralement composée d'acier. Ainsi, de préférence, l'acier du cermet de l'invention est identique ou similaire à l'acier constituant la gaine de combustible nucléaire. Il s'agit par exemple d'un acier inoxydable, choisi de préférence parmi l'acier 316L, AIM, F17 ou EM10. In practice, the ratio Dmax / Dmin can be calculated from the axial section of a cermet pellet for which the dimension Dmax and Dmin for each particle of U02 is measured according to at least 6 fields of observation. The measurement is generally performed using an image analysis software, each image representing fifty particles. The average sphericity coefficient is then the average of the Dmax / Dmin ratios measured for each U02 particle. The mechanical strength under irradiation of the cermet of the invention is in turn improved by the fact that the metal phase constituting its matrix comprises a steel. Such an alloy has the advantage of having better mechanical compatibility with the constituent material of a nuclear fuel cladding generally made of steel. Thus, preferably, the cermet steel of the invention is identical or similar to the steel constituting the nuclear fuel cladding. This is for example a stainless steel, preferably selected from 316L steel, AIM, F17 or EM10.
Cette tenue mécanique est encore optimisée par le fait que les particules d' U02 du cermet présentent une taille moyenne comprise entre 50ym et 400ym.  This mechanical strength is further optimized by the fact that the U02 particles of the cermet have an average size of between 50 μm and 400 μm.
La taille moyenne minimale de 50ym correspond à une valeur acceptable vis-à-vis du taux volumique dégradé de la matrice sous l'action de l'irradiation, en permettant d'augmenter le rapport surface développée par les particules d' U02/volume total qu'elles occupent.  The average minimum size of 50m is an acceptable value with respect to the degraded volume ratio of the matrix under the action of the irradiation, by making it possible to increase the surface area ratio developed by the U02 particles / total volume. they occupy.
La taille moyenne maximale de 400ym est quant à elle liée à la géométrie des crayons renfermant les pastilles de combustible nucléaire d'un réacteur REP : afin de pouvoir réaliser un empilement suffisamment compact des pastilles, il faut limiter les effets de bord de chaque pastille en conservant un rapport (diamètre de la gaine du crayon) / (diamètre des particules d' U02 ) qui est supérieur à 20.  The average maximum size of 400 m is in turn related to the geometry of the rods containing the nuclear fuel pellets of a PWR reactor: in order to be able to produce a sufficiently compact stack of pellets, it is necessary to limit the edge effects of each pellet by retaining a ratio (pencil sheath diameter) / (U02 particle diameter) that is greater than 20.
Préférentiellement , la taille moyenne des particules d' U02 est comprise entre 200ym et 250ym.  Preferably, the average size of the U02 particles is between 200 μm and 250 μm.
La distribution de la taille moyenne des particules d' U02 peut être monomodale ou multimodale, à savoir que cette distribution est centrée sur une ou sur plusieurs valeurs, avec une dispersion de la taille moyenne de l'ordre de 10% autour de chaque valeur. Une distribution monomodale peut être obtenue en réalisant un unique tamisage des granulés ou des particules d'U02 afin que leur taille moyenne soit centrée sur une valeur . The average particle size distribution of UO2 can be monomodal or multimodal, ie, this distribution is centered on one or more values, with a dispersion of the average size of the order of 10% around each value. A monomodal distribution can be obtained by performing a single sieving of the granules or UO 2 particles so that their average size is centered on a value.
Une distribution multimodale peut être obtenue en réalisant un nombre N de tamisages concomitants des granulés ou des particules d'U02, de telle sorte que la taille moyenne de chaque tamisât est centrée sur une valeur distincte de celle de tout autre tamisât, puis en réunissant les N fractions obtenues afin que la taille moyenne du mélange résultant soit centrée sur N valeurs. A multimodal distribution can be obtained by performing a number N of co-sieving granules or UO 2 particles, so that the average size of each sieve is centered on a value distinct from that of any other sieve, and then bringing together the N fractions obtained so that the average size of the resulting mixture is centered on N values.
Généralement, le nombre N de valeurs sur lesquelles la distribution de la taille moyenne des granulés d'UC^ est centrée est préservé lors du frittage conduisant aux particules d'UC^ correspondantes, notamment lorsque N=l (distribution monomodale) .  Generally, the number N of values on which the distribution of the mean size of the CPU granules is centered is preserved during sintering leading to the corresponding UC particles, especially when N = 1 (monomodal distribution).
Une distribution multimodale permet en particulier d'augmenter la teneur en combustible UO2 au sein du cermet, ainsi que sa conductivité thermique radiale, en particulier celle de sa matrice en acier. In particular, a multimodal distribution makes it possible to increase the UO 2 fuel content within the cermet, as well as its radial thermal conductivity, in particular that of its steel matrix.
Selon un mode de réalisation avantageux du cermet de l'invention, la distribution de la taille moyenne des particules d'UC^ est bimodale. Comme illustré ci-après, ceci permet de façon inattendue d'augmenter à la fois la conductivité thermique radiale et axiale.  According to an advantageous embodiment of the cermet of the invention, the distribution of the average size of the UC particles is bimodal. As illustrated below, this allows unexpectedly to increase both the radial and axial thermal conductivity.
Préférentiellement , la distribution de la taille moyenne des particules d'UC^ est d'une étendue de 50ym à 65ym (soit par exemple une taille moyenne comprise entre lOOym et 150ym, 140ym et 190ym, ou 250ym et 315ym) .  Preferably, the average particle size distribution of UC 2 is from 50 μm to 65 μm (ie for example a mean size of between 100 μm and 150 μm, 140 μm and 190 μm, or 250 μm and 31 μm).
Selon un autre mode de réalisation avantageux, la distance moyenne minimale entre les particules d'U02 (en particulier selon leur direction radiale), est comprise entre 0,27ym et 0,49ym. L' invention concerne également 1 e combustible nucléaire comprenant le cermet. According to another advantageous embodiment, the minimum average distance between the particles of U0 2 (in particular in their radial direction) is between 0.27 m and 0.49 m. The invention also relates to the nuclear fuel comprising the cermet.
De préférence, ce combustible se présente sous forme de pastille. Le cermet compose alors la pastille de telle sorte que, préférentiellement , la dimension principale (Dmax) des particules d ' UO2 entrant dans la composition du cermet est orientée selon la direction radiale de la pastille. La chaleur est ainsi évacuée plus facilement de la pastille .  Preferably, this fuel is in the form of pellet. The cermet then composes the pellet such that, preferably, the principal dimension (Dmax) of the UO2 particles entering into the composition of the cermet is oriented in the radial direction of the pellet. The heat is thus evacuated more easily from the pellet.
D'autres objets, caractéristiques et avantages de l'invention vont maintenant être précisées dans la description qui suit donnée à titre illustratif et non limitatif, en référence aux Figures 1 à 7 annexées.  Other objects, features and advantages of the invention will now be specified in the following description given by way of illustration and not limitation, with reference to Figures 1 to 7 attached.
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
La Figure 1 est un cliché de Microscopie Electronique à Balayage (MEB) de granulés d' U02 -Figure 1 is a Scanning Electron Microscopy (SEM) shot of U02 pellets -
Les Figures 2 à 4 sont des clichés d'une coupe d'un cermet selon l'invention. Figures 2 to 4 are snapshots of a section of a cermet according to the invention.
La Figure 5 est un graphique représentant l'évolution de la conductivité thermique d'un cermet en fonction du coefficient de sphéricité moyen et de la distribution de la taille moyenne de ses particules d' U02 - FIG. 5 is a graph showing the evolution of the thermal conductivity of a cermet as a function of the average sphericity coefficient and the average size distribution of its U02 particles.
La Figure 6 est un graphique représentant l'évolution de la distance moyenne entre particules d' U02 en fonction de leur coefficient de sphéricité moyen. Figure 6 is a graph showing the evolution of the average distance between U02 particles as a function of their average sphericity coefficient.
La Figure 7 est un graphique représentant l'évolution de la conductivité thermique radiale d'un cermet en fonction de la distance moyenne entre ses particules d' U02 -  Figure 7 is a graph showing the evolution of the radial thermal conductivity of a cermet as a function of the average distance between its U02 particles -
EXPOSE DETAILLE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
1. Fabrication d'un cermet. L' exemple qui suit décrit un procédé de fabrication d'un cermet conforme à l'invention. Ce procédé comprend essentiellement deux séries d'étapes : une première au cours de laquelle on forme des granulés d' U02 , suivie par une seconde au cours de laquelle on obtient le cermet en frittant ces granulés avec une poudre d'acier. 1. Making a cermet. The following example describes a method of manufacturing a cermet according to the invention. This process essentially comprises two series of steps: a first in which U02 granules are formed, followed by a second during which the cermet is obtained by sintering these granules with a steel powder.
1.1. Compaction . 1.1. Compaction.
Une quantité de 200g d'une poudre de dioxyde d'uranium ( UO2 ) de surface spécifique BET égale à 3,3m2/g est placée dans un étui borgne en latex de forme cylindrique. Elle est tassée par vibrations, puis l'étui est refermé par un bouchon de diamètre ajusté et maintenu par des élastiques en latex . A quantity of 200 g of a uranium dioxide powder (UO2) with a BET surface area equal to 3.3 m 2 / g is placed in a cylindrical latex blind case. It is compressed by vibrations, then the case is closed by a plug of diameter adjusted and maintained by latex elastics.
L'ensemble est plongé dans un bain d'huile soluble contenu dans le cylindre d'une presse isostatique qui est ensuite refermé hermétiquement.  The whole is immersed in a soluble oil bath contained in the cylinder of an isostatic press which is then closed hermetically.
Afin de lui conférer une tenue mécanique suffisante, la poudre d' U02 est ensuite agglomérée par compaction isostatique à l'aide d'une pression de granulation de 150MPa appliquée pendant 3 minutes. La vitesse de montée et de descente en pression de granulation est de 100MPa/min. Elle peut-être comprise entre 50MPa/min et 500MPa/min.  In order to give it sufficient mechanical strength, the UO 2 powder is then agglomerated by isostatic compaction using a 150 MPa granulation pressure applied for 3 minutes. The rate of rise and fall in granulation pressure is 100 MPa / min. It can be between 50MPa / min and 500MPa / min.
Après retour à la pression atmosphérique, l'étui est sorti de la presse et un rondin d' U02 compacté est extrait.  After returning to atmospheric pressure, the case is removed from the press and a compacted U02 log is extracted.
Le pressage isostatique permet de compacter de grandes quantités de matière en une seule fois avec une bonne homogénéité de densité dans le compact, ce qui garantit l'obtention d'une masse volumique homogène et donc un comportement (en particulier un coefficient de sphéricité moyen) homogène lors de la mise en forme ultérieure.  Isostatic pressing makes it possible to compact large quantities of material at one time with a good homogeneity of density in the compact, which guarantees the achievement of a homogeneous density and therefore a behavior (in particular an average sphericity coefficient). homogeneous when formatting later.
A titre alternatif, d'autres types de compaction peuvent néanmoins être utilisés, telle qu'une compaction uniaxiale permettant de réaliser des disques compacts d' U02 de grand diamètre (20mm à 30mm) mais de faible épaisseur (3mm à 4mm) afin de conserver une homogénéité de densité dans le compact. 1.2. Concassage . As an alternative, other types of compaction may nevertheless be used, such as uniaxial compaction making it possible to make U02 compact disks. large diameter (20mm to 30mm) but thin (3mm to 4mm) to maintain density homogeneity in the compact. 1.2. Crushing.
A l'aide d'un récipient et d'un pilon en agate, le rondin d'U02 (ou bien les disques) sont concassés au moyen d'un pilon de manière à obtenir des fragments d'une taille moyenne de l'ordre de 3mm à 5mm. Using an agate container and pestle, the U0 2 log (or the discs) are crushed by means of a pestle to obtain fragments of a medium size of order of 3mm to 5mm.
1.3. Premier tamisage. 1.3. First sieving.
Un tamis d'ouverture de maille de 400ym est placé au dessus d'un second tamis d'ouverture de maille de 315ym, lui-même posé sur un récipient de récupération.  A sieve with a mesh size of 400 μm is placed above a second sieve of mesh size 315 mm, itself placed on a recovery container.
De petites quantités (20g à 50g) des fragments d'U02 issus du concassage sont placées sur le tamis et forcées au travers au moyen d'une spatule en inox. Small amounts (20g to 50g) of U0 2 fragments from crushing are placed on the sieve and forced through with a stainless steel spatula.
Les fragments forcés à 400ym tombent sur le tamis à 315ym, puis les fragments de taille moyenne inférieure à 315ym tombent dans le récipient placé sous les tamis.  Fragments forced at 400 mm fall on the sieve at 315 mm, then the fragments of average size less than 315 mm fall into the container placed under the sieves.
Seule la fraction 315-400ym, récupérée dans le tamis de 315ym, est conservée.  Only the fraction 315-400ym, recovered in the sieve of 315ym, is preserved.
1.4. Sphéroïdisation . 1.4. Spheroidization.
Afin d'atteindre ou de tendre vers une distribution monomodale de la taille moyenne des fragments tamisés d'U02, le coefficient de sphéricité moyen de ces derniers est augmenté en les plaçant dans un récipient dont le fond est recouvert avec un disque abrasif autocollant N°400 (400 particules abrasives/cm2) . Ils sont agités manuellement au moyen d'un pinceau de manière à leur donner un mouvement de rotation permettant l'abrasion de leurs angles vifs. In order to achieve or tend towards a monomodal distribution of the average size of the screened fragments of U0 2 , the average sphericity coefficient of the latter is increased by placing them in a container whose bottom is covered with a self-adhesive abrasive disk N 400 (400 abrasive particles / cm 2 ). They are agitated manually by means of a brush so as to give them a rotational movement allowing the abrasion of their sharp angles.
L'opération se poursuit jusqu'à ce que le coefficient de sphéricité moyen des fragments tamisés d ' UO2 soit inférieur ou égal à 4 afin d'obtenir des fragments d' U02 quasi sphériques ou de la forme d'un ellipsoïde. The operation continues until the average sphericity coefficient of the sieved UO 2 fragments is less than or equal to 4 in order to obtain quasi-spherical U02 fragments or in the form of an ellipsoid.
De façon alternative, les fragments tamisés d' U02 peuvent également être sphéroïdisés à l'aide d'un mélangeur de poudres (de type Turbula® par exemple) . L'abrasion se produit alors par frottements entre les fragments tamisés d' U02 - Les quantités traitées à chaque lot sont plus grandes mais la durée de brassage est plus longue.  Alternatively, the screened fragments of UO2 can also be spheronized using a powder mixer (Turbula® type for example). The abrasion then occurs by friction between the sieved UO2 fragments. The quantities treated with each batch are larger but the stirring time is longer.
Un exemple de granulés d' U02 obtenus après l'étape de sphéroïdisation est illustré par la Figure 1. Cette étape a diminué la taille moyenne des granulés d' U02 .  An example of U02 pellets obtained after the spheronization step is illustrated in Figure 1. This step decreased the average size of the UO 2 pellets.
1.5. Second tamisage. 1.5. Second sieving.
Un tamis d'ouverture de maille de 315ym est placé au dessus d'un second tamis d'ouverture de maille de 250ym, lui-même posé sur un récipient de récupération.  A 315mM sieve is placed over a second 250m mesh sieve, itself placed on a recovery vessel.
Les fragments d' U02 obtenus à l'étape précédente sont placés sur le tamis supérieur et l'ensemble est vibré au moyen d'une tamiseuse automatique pendant 10 minutes avec une amplitude faible (0,4mm) de manière à ne pas créer de fines supplémentaires par abrasion des fragments entre eux.  The UO2 fragments obtained in the previous step are placed on the upper sieve and the whole is vibrated by means of an automatic sieve for 10 minutes with a small amplitude (0.4 mm) so as not to create fines. additional abrasion fragments between them.
A l'issue de cette seconde étape de tamisage, on obtient 30 g de granulés d' U02 présentant un coefficient de sphéricité moyen compris entre 1,1 et 4 et une distribution monomodale de leur taille moyenne d'une étendue de 65ym se situant dans une gamme de 250ym à 315ym.  At the end of this second sieving step, 30 g of UO 2 granules having an average sphericity coefficient of between 1.1 and 4 and a monomodal distribution of their average size of an extension of 65 μm are obtained. a range of 250ym to 315ym.
Le plus souvent, la taille moyenne des granulés d' U02 est comprise entre 60ym et 500ym (préférentiellement entre 250ym à 315ym) , avec de préférence une distribution de cette taille moyenne d'une étendue de 50ym à 65ym.  Most often, the average size of the UO2 granules is between 60 μm and 500 μm (preferably between 250 μm to 315 μm), with a distribution of this average size preferably ranging from 50 μm to 65 μm.
L'ensemble des opérations précédentes (de la compaction au second tamisage) est répété afin d'obtenir 100g de granulés d'UC>2 . 1.6. Mélange des granulés d' UQ2 avec la poudre d' acier . All previous operations (from the compaction to the second sieving) is repeated in order to obtain 100 g of granules of UC> 2. 1.6. Mixing UQ 2 granules with steel powder.
100g de granulés d'UC^ et 30g de poudre d'acier 316L d'une surface spécifique BET de 0,2 m2/g sont mélangés dans un récipient par brassage manuel lent afin de ne pas générer de fines. Les granulés d' U02 représentent alors 70% en volume du mélange primaire obtenu. 100 g of UC granules and 30 g of 316L steel powder with a BET specific surface area of 0.2 m 2 / g are mixed in a container by slow manual stirring in order not to generate fines. The UO 2 granules then represent 70% by volume of the primary mixture obtained.
La surface spécifique BET des poudres d'acier et d' U02 est de préférence mesurée à l'aide de la méthode BET à trois points connue de l'homme du métier. The BET surface area of the steel and UO 2 powders is preferably measured using the three-point BET method known to those skilled in the art.
A la fin de l'opération de mélange, on évite de manipuler le récipient pour éviter les phénomènes de ségrégation pondérale, à savoir que, dans le récipient, les plus grosses particules d' U02 peuvent, sous l'effet de vibrations, remonter à la surface des particules d'acier plus fines. Ce phénomène conduirait à une hétérogénéité de composition entre les premiers comprimés mis en forme et les derniers . At the end of the mixing operation, it is avoided to manipulate the container to avoid the phenomena of weight segregation, namely that, in the container, the largest particles of U0 2 can, under the effect of vibrations, back on the surface of the finer steel particles. This phenomenon would lead to a heterogeneity of composition between the first shaped tablets and the last.
A titre alternatif, le mélange primaire des granulés d' U02 avec la poudre d'acier peut être réalisé à l'aide d'un mélangeur de poudres (de type Turbula® par exemple) , par exemple à 40 tours/minutes durant 1 à 5 minutes. Alternatively, the primary mixture of the UO 2 granules with the steel powder can be produced using a powder mixer (of the Turbula® type, for example), for example at 40 rpm for 1 hour. at 5 minutes.
Toujours à titre alternatif, on peut rajouter un liant (par exemple du Polyéthylène Glycol (PEG) à 3% molaire) ) qui permet d'encoller les granulés d' U02 puis ajouter la poudre d'acier qui viendra se coller dessus. Still alternatively, we can add a binder (for example Polyethylene Glycol (PEG) 3% molar)) which allows to glue the pellets of U0 2 and then add the steel powder that will stick on it.
1.7. Mise en forme. 1.7. Fitness.
Le mélange primaire de granulés d' U02 et de poudre d'acier est mis en forme afin de diminuer sa porosité et d'aplatir les granulés d' U02 -The primary mixture of UO 2 granules and steel powder is shaped to reduce its porosity and to flatten the UO 2 granules.
Pour cela, il subit un pressage uniaxial double effet comprenant une montée de la pression de mise en forme selon une vitesse de 100MPa/s afin d'atteindre une pression de mise en forme limite de lOOOMPa qui est maintenue pendant 5 à 10s, puis une diminution de la pression de mise en forme selon une vitesse de 100MPa/s, à l'issue de laquelle on obtient un mélange compact sous forme d'un cylindre de diamètre 10mm et de hauteur 12mm. For this, it undergoes a double-acting uniaxial pressing comprising a rise of the shaping pressure at a speed of 100 MPa / sec in order to reach a limiting shaping pressure of 100 MPa which is maintained for 5 minutes. at 10 s, then a reduction in the shaping pressure at a speed of 100 MPa / s, at the end of which a compact mixture is obtained in the form of a cylinder of diameter 10 mm and height 12 mm.
Afin de limiter les frottements particules/matrice et l'apparition de défauts lors du démoulage, du stéarate de zinc ou de l'oxalate d'ammonium peuvent être ajoutés au mélange primaire ou pulvérisés sur la matrice de presse au moyen d'un aérosol.  In order to limit the particles / matrix friction and the appearance of defects during demolding, zinc stearate or ammonium oxalate may be added to the primary mixture or sprayed onto the press matrix by means of an aerosol.
D'autres pressages sont envisageables, tel qu'un pressage uniaxial à matrice flottante.  Other pressing is possible, such as uniaxial floating matrix pressing.
1.8. Frittage . 1.8. Sintering.
Le mélange compact est placé dans une nacelle, elle- même placée dans un four métallique en molybdène.  The compact mixture is placed in a nacelle, itself placed in a molybdenum metal furnace.
Le four est mis sous une atmosphère oxydante (composée ici d'argon industriel, c'est à dire de l'argon comprenant généralement lOppm à 30ppm d' O2 ) , ce qui permet à 1 ' UO2 formant les granulés de s'oxyder en UO2 (dioxyde d'uranium dit en « surstœchiométrie ») .  The furnace is placed under an oxidizing atmosphere (here composed of industrial argon, that is to say argon generally comprising 10 ppm to 30 ppm of O 2), which allows the UO 2 forming the granules to oxidize into the atmosphere. UO2 (uranium dioxide called "surstoichiometry").
Le mélange compact est ensuite fritté selon le cycle thermique suivant : montée en température selon une vitesse de 300°C/h (le plus souvent comprise entre 150°C/h et 300°C/h) jusqu'à une température limite de 1380°C (inférieure à la température de fusion de l'acier 316L, à savoir 1480°C) qui est maintenue pendant 3 heures.  The compact mixture is then sintered according to the following thermal cycle: temperature rise at a rate of 300 ° C./h (most often between 150 ° C./h and 300 ° C./h) up to a limit temperature of 1380 ° C. ° C (lower than the melting temperature of 316L steel, namely 1480 ° C) which is maintained for 3 hours.
Lors de la montée en température de cette étape de frittage, les granulés d' U02+x se densifient pratiquement jusqu'à leur valeur finale à une température de 1000°C afin de former des particules d' U02+x . Puis, à partir de 1000°C, l'acier densifie à son tour jusque 1200°C afin d'atteindre pratiquement (soit environ 80%) sa densité finale : ce retrait séquentiel ( UO2 puis acier) évite la mise en tension de l'acier et donc la fissuration du matériau fritté, et permet de former une matrice métallique continue garante d'une bonne diffusivité thermique. During the temperature rise of this sintering step, the U02 + x granules substantially densify to their final value at a temperature of 1000 ° C to form U02 + x particles. Then, from 1000 ° C, the steel densifies in turn up to 1200 ° C in order to reach (approximately 80%) its final density: this sequential withdrawal (UO2 then steel) avoids the tensioning of the steel and thus the cracking of the material sintered, and allows to form a continuous metal matrix ensuring a good thermal diffusivity.
Le frittage se termine par le maintien de la température limite de 1380°C afin d'atteindre le degré de densification maximal du matériau fritté.  The sintering is completed by maintaining the limit temperature of 1380 ° C in order to reach the maximum degree of densification of the sintered material.
1.9. Traitement sous atmosphère réductrice. 1.9. Treatment in a reducing atmosphere.
A l'issue de l'étape de frittage, de l'hydrogène est rajouté au milieu réactionnel afin d'obtenir une atmosphère réductrice constituée d'un mélange Ar + 5% en volume d'¾.  At the end of the sintering step, hydrogen is added to the reaction medium in order to obtain a reducing atmosphere consisting of a mixture Ar + 5% by volume of ¾.
La température limite de 1380°C est maintenue sous cette atmosphère pendant Iheure.  The temperature limit of 1380 ° C is maintained under this atmosphere for one hour.
Une telle atmosphère permet de réduire 1 ' U02+x 6ΠSuch an atmosphere can reduce 1 'U0 2 + x 6Π
U02 , o o . U0 2 , oo.
Après refroidissement jusqu'à température ambiante selon un gradient thermique de 300°C/h (le plus souvent compris entre 150°C/h et 300°C/h), on obtient un cermet composé d'une matrice en acier 316L dans laquelle sont dispersées des particules d' U02 , chacun de ces composants occupant respectivement 30% et 70% du volume du cermet.  After cooling to room temperature according to a thermal gradient of 300 ° C./h (most often between 150 ° C./h and 300 ° C./h), a cermet composed of a 316L steel matrix is obtained in which U02 particles are dispersed, each of these components occupying respectively 30% and 70% of the volume of the cermet.
Généralement, le coefficient de sphéricité moyen des granulés d' U02 est préservé au cours du procédé de fabrication de l'invention. Il correspond alors au coefficient de sphéricité moyen des particules d' U02 contenues dans le cermet.  Generally, the average sphericity coefficient of U02 pellets is preserved during the manufacturing process of the invention. It then corresponds to the average sphericity coefficient of the U02 particles contained in the cermet.
Les Figures 2 et 4 sont les clichés d'une même coupe du cermet obtenu. La Figure 2 est un cliché de microscopie optique dans lequel les particules d' U02 apparaissent en gris foncé. La Figure 4 est un cliché MEB rapproché de la même coupe dans lequel les particules d' U02 apparaissent cette fois en gris clair et la matrice en acier sous forme d'une zone transversale de couleur noire. La porosité au sein des particules d' U02 est également de couleur noire. Les Figures 2 et 3 sont les clichés d'une même coupe du cermet obtenu. La Figure 2 est un cliché MEB rapproché dans lequel les particules d'UC^ apparaissent en gris clair et la matrice en acier sous forme d'une zone transversale de couleur noire. La porosité au sein des particules d'UC^ est également de couleur noire. La Figure 3 est un cliché de microscopie optique dans lequel les particules d'UC^ apparaissent en gris foncé. Figures 2 and 4 are the snapshots of the same section of the cermet obtained. Figure 2 is an optical micrograph in which the U02 particles appear in dark gray. Figure 4 is a close SEM image of the same section in which the U02 particles appear this time in light gray and the steel matrix as a black-colored cross-section. The porosity within the U02 particles is also black. Figures 2 and 3 are the snapshots of the same section of the cermet obtained. Figure 2 is a close-up SEM image in which the UC particles appear in light gray and the steel matrix as a black-colored cross-section. The porosity within the UC particles is also black. Figure 3 is an optical micrograph in which UC particles appear in dark gray.
Ces figures permettent de confirmer que le cermet obtenu par le procédé de fabrication de l'invention possède une matrice en acier qui est globalement continue et ne présente pas de fissuration.  These figures make it possible to confirm that the cermet obtained by the manufacturing method of the invention has a steel matrix which is generally continuous and does not exhibit cracking.
2. Etudes des propriétés du cermet. 2. Studies of the properties of the cermet.
A l'aide de simulations thermodynamiques basées sur des codes de calcul propres aux inventeurs, on a évalué les effets de différentes caractéristiques du cermet de 1 ' invention .  Using thermodynamic simulations based on inventors' own calculation codes, the effects of various characteristics of the cermet of the invention were evaluated.
2.1. Influence du coefficient de sphéricité moyen.  2.1. Influence of the average sphericity coefficient.
Les conductivités thermiques radiale et axiale ont été évaluées à une température de 1400K pour des cermets comprenant des particules d'U02 empilées selon un mode idéal de type cubique faces centrées pour lesquelles on a fait varier les coefficients de sphéricité moyen et la distribution de la taille moyenne. The radial and axial thermal conductivities were evaluated at a temperature of 1400K for cermets comprising U0 2 particles stacked in an ideal mode of cubic face-centered type for which the average sphericity coefficients and the distribution of the average height.
Les résultats sont regroupés sur la Figure 5 qui reproduit les conductivités thermiques suivantes :  The results are grouped in Figure 5 which reproduces the following thermal conductivities:
- radiale selon une distribution monomodale de particules d'U02 sous forme de sphères (soit le point Dmax/Dmin = 1) et d'ellipsoïdes (Dmax/Dmin variable et différent de 1) : courbe (a), - radial with a monomodal distribution of U0 2 particles in the form of spheres (the point Dmax / Dmin = 1) and ellipsoids (Dmax / Dmin variable and different from 1): curve (a),
- radiale selon une distribution bimodale de ces sphères et ellipsoïdes, - axiale selon une distribution monomodale de ces sphères et ellipsoïdes : courbe (b) , - Radial according to a bimodal distribution of these spheres and ellipsoids, - axial according to a monomodal distribution of these spheres and ellipsoids: curve (b),
- radiale selon une distribution bimodale de ces sphères et ellipsoïdes.  - Radial according to a bimodal distribution of these spheres and ellipsoids.
Ces résultats ont montré qu'il existe un coefficient de sphéricité moyen maximal au-delà duquel il y a saturation, comme indiqué par la courbe (a) de la conductivité radiale qui tend vers une asymptote quand le rapport Dmax/Dmin augmente.  These results have shown that there is a maximum mean sphericity coefficient beyond which saturation occurs, as indicated by the curve (a) of the radial conductivity which tends to an asymptote when the Dmax / Dmin ratio increases.
Par ailleurs, il est apparu qu'une valeur Dmax/Dmin comprise entre 1,1 (gain significatif sur la conductivité radiale par rapport au cas Dmax/Dmin = 1) et 4 (gain sur la conductivité radiale proche de la valeur asympt ot ique ) permet de conserver une conductivité axiale au moins égale à 50 % de sa valeur initiale (courbe (b) ) . Même si la conductivité thermique radiale a augmenté au détriment de la conductivité thermique axiale, une valeur Dmax/Dmin comprise entre 1,1 et 4 (de préférence entre 1,5 et 2,5) constitue donc un bon compromis lorsqu'il s'agit d'améliorer à la fois les conductivités thermique radiale et globale.  Furthermore, it has been found that a value Dmax / Dmin of between 1.1 (significant gain on the radial conductivity with respect to the case Dmax / Dmin = 1) and 4 (gain on the radial conductivity close to the asymptotic value ) makes it possible to maintain an axial conductivity at least equal to 50% of its initial value (curve (b)). Even if the radial thermal conductivity has increased at the expense of the axial thermal conductivity, a Dmax / Dmin value of between 1.1 and 4 (preferably between 1.5 and 2.5) constitutes a good compromise when it is is to improve both the radial and global thermal conductivities.
En pratique, on peut moduler le coefficient de sphéricité moyen (Dmax/Dmin) en faisant varier la pression de granulation (Pg) entre 80MPa et 150MPa et la pression de mise en forme (Pm) entre 400MPa et lOOOMPa, selon un rapport Pm/Pg inférieur à 9.  In practice, the average sphericity coefficient (Dmax / Dmin) can be modulated by varying the granulation pressure (Pg) between 80 MPa and 150 MPa and the forming pressure (MP) between 400 MPa and 100 MPa, in a ratio Pm / Pg less than 9.
Ainsi, à titre illustratif, les Figures 3 et 4 représentent des clichés MEB de cermets fabriqués selon les mêmes conditions, si ce n'est les pressions Pm et Pg, afin d'obtenir des particules d'UC^ présentant des coefficients de sphéricité moyen différents, à savoir :  Thus, by way of illustration, FIGS. 3 and 4 show SEM images of cermets manufactured under the same conditions, except for the pressures Pm and Pg, in order to obtain particles of UC 2 having average sphericity coefficients. different, namely:
- cermet de la Figure 3 : Pm = lOOOMPa, Pg = 150MPa, Dmax/Dmin = 2,1 ;  cermet of Figure 3: Pm = 100OMPa, Pg = 150MPa, Dmax / Dmin = 2.1;
- cermet de la Figure 4 : Pm = 400MPa, Pg = 80MPa, Dmax/Dmin = 1,5. 2.2. Influence de la distribution de la taille moyenne des particules d' UQ2. cermet of Figure 4: Pm = 400MPa, Pg = 80MPa, Dmax / Dmin = 1.5. 2.2. Influence of the distribution of the average particle size of UQ 2 .
Les résultats de la Figure 5 ont également montré que la conductivité axiale se dégrade inversement à l'évolution de la conductivité radiale et ce, d'une manière non symétrique .  The results of FIG. 5 also show that the axial conductivity degrades inversely with the evolution of the radial conductivity in a non-symmetrical manner.
Toutefois, de façon inattendue, lorsque la distribution de la taille moyenne des particules d'U02 est bimodale, les conductivités thermiques radiale et axiale sont toutes deux améliorées, en particulier pour une valeur Dmax/Dmin comprise entre 1 ,5 et 2,5, voire égale à 2. However, unexpectedly, when the distribution of the average particle size of U0 2 is bimodal, the radial and axial thermal conductivities are both improved, in particular for a Dmax / Dmin value of between 1.5 and 2.5. , even equal to 2.
2.3. Influence de la distribution de la taille moyenne des particules d' UQ2. 2.3. Influence of the distribution of the average particle size of UQ 2 .
Comme illustré par la Figure 6 dans le cas d'une répartition monomodale ou bimodale de la taille moyenne des particules d'U02, la distance moyenne entre ces particules dans un plan perpendiculaire au flux thermique traversant une pastille de combustible nucléaire (appelée distance interparticulaire) dépend du coefficient de sphéricité moyen (Dmax/Dmin) . As illustrated in Figure 6 in the case of a monomodal or bimodal distribution of the average particle size of U0 2 , the average distance between these particles in a plane perpendicular to the thermal flux passing through a nuclear fuel pellet (called interparticular distance ) depends on the average sphericity coefficient (Dmax / Dmin).
Par ailleurs, comme illustré par la Figure 7, il est apparu que la conductivité thermique radiale d'une pastille composée du cermet de l'invention (comprenant par exemple 28% d'acier) est améliorée lorsque la distance interparticulaire diminue ou le coefficient de sphéricité moyen (Dmax/Dmin) augmente, que la taille moyenne des particules d'U02 soient répartis de façon monomodale ou multimodale (en particulier bimodale) . Moreover, as illustrated by FIG. 7, it has been found that the radial thermal conductivity of a pellet composed of the cermet of the invention (comprising, for example, 28% of steel) is improved when the interparticular distance decreases or the coefficient of mean sphericity (Dmax / Dmin) increases, as the average particle size of U0 2 are distributed either monomodally or multimodally (especially bimodal).
Par exemple, notamment dans le cas d'une distribution monomodale, une distance interparticulaire minimale de 0,27ym correspond à un coefficient de sphéricité moyen d'environ 4 et une conductivité thermique radiale de l'ordre de 9, 18W.m_1K_1. Une distance interparticulaire maximale de 0,49ym correspond quand à elle à un coefficient de sphéricité moyen d'environ 1,1 et une conductivité thermique radiale de l'ordre de 8,2W.m_1K_1 For example, especially in the case of a monomodal distribution, a minimum interparticular distance of 0.27m.sup.i corresponds to an average sphericity coefficient of about 4 and a radial thermal conductivity of the order of 9.18W.m.sup.- 1 K.sup.- 1. . A maximum interparticle distance of 0.49ym corresponds to a mean sphericity coefficient of about 1.1 and a radial thermal conductivity of the order of 8.2W.m _1 K _1.
A partir d'un coefficient de sphéricité moyen d'environ 20, la distance interparticulaire minimale se stabilise à environ 0,lym.  From an average sphericity coefficient of about 20, the minimum interparticle distance stabilizes at about 0.1 μm.
Il ressort de la description qui précède que le cermet de 1 ' invention à faible teneur en métal présente une tenue mécanique sous irradiation et/ou une conductivité thermique (en particulier selon une direction radiale d'une pastille de combustible nucléaire) qui est améliorée. It will be apparent from the foregoing description that the cermet of the invention has a low metal content and exhibits mechanical strength under irradiation and / or thermal conductivity (particularly in a radial direction of a nuclear fuel pellet) which is improved.
A taux de porosité équivalent et pour une teneur en acier fixée par exemple à 20% volumique, le cermet de l'invention peut ainsi atteindre (a minima) une valeur de conductivité thermique radiale supérieure de 80 % (à 1000K) comparativement à celle d'un matériau constitué d'U02 pur.  At an equivalent porosity rate and for a steel content set for example at 20% by volume, the cermet of the invention can thus reach (at least) a radial thermal conductivity value greater than 80% (at 1000 K) compared to that of a material consisting of pure UO2.

Claims

REVENDICATIONS
1) Cermet comprenant une matrice en acier dans laquelle sont dispersées des particules d' U02 qui occupent 70% à 90% du volume du cermet et qui présentent une taille moyenne comprise entre 50ym et 400ym et un coefficient de sphéricité moyen, mesuré par la moyenne du rapport entre la dimension maximale et la dimension minimale de chacune desdites particules (Dmax/Dmin) , compris entre 1,1 et 4. 1) Cermet comprising a steel matrix in which UO 2 particles are dispersed which occupy 70% to 90% of the volume of the cermet and which have an average size of between 50 μm and 400 μm and an average sphericity coefficient, measured by the average of the ratio between the maximum dimension and the minimum dimension of each of said particles (Dmax / Dmin), between 1.1 and 4.
2) Cermet selon la revendication 1, dans lequel le coefficient de sphéricité moyen est compris entre 1,5 et 2,5. 2) cermet according to claim 1, wherein the average sphericity coefficient is between 1.5 and 2.5.
3) Cermet selon la revendication 1 ou 2, dans lequel la taille moyenne des particules d' U02 est comprise entre 200ym et 250ym. 3) cermet according to claim 1 or 2, wherein the average particle size of U0 2 is between 200ym and 250ym.
4) Cermet selon l'une quelconque des revendications précédentes, dans lequel la distribution de la taille moyenne des particules d' U02 est bimodale. 4) cermet according to any one of the preceding claims, wherein the distribution of the average particle size of U0 2 is bimodal.
5) Cermet selon l'une quelconque des revendications précédentes, dans lequel la distribution de la taille moyenne des particules d' U02 est d'une étendue de 50ym à 65ym. 5) Cermet according to any one of the preceding claims, wherein the distribution of the average size of the U0 2 particles is from 50m to 65m.
6) Cermet selon l'une quelconque des revendications précédentes, dans lequel la distance moyenne minimale entre les particules d' U02 est comprise entre 0,27ym et 0,49ym. 7) Combustible nucléaire comprenant le cermet tel que défini selon l'une quelconque des revendications 1 à 6. 6) cermet according to any one of the preceding claims, wherein the minimum average distance between the particles of U0 2 is between 0.27ym and 0.49ym. 7) Nuclear fuel comprising the cermet as defined in any one of claims 1 to 6.
8) Combustible nucléaire selon la revendication 7, se présentant sous forme de pastille. 9) Combustible nucléaire selon la revendication 8, dans lequel la dimension principale (Dmax) des particules d'U02 entrant dans la composition du cermet est orientée selon la direction radiale de la pastille. 8) nuclear fuel according to claim 7, in the form of pellet. 9) Nuclear fuel according to claim 8, wherein the main dimension (Dmax) of the U02 particles used in the composition of the cermet is oriented in the radial direction of the pellet.
PCT/FR2010/052910 2009-12-31 2010-12-23 Cermet with improved heat conductivity and nuclear fuel comprising said cermet WO2011080475A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0906423 2009-12-31
FR0906423A FR2954850B1 (en) 2009-12-31 2009-12-31 IMPROVED THERMAL CONDUCTIVITY CERMET AND NUCLEAR COMBUSTIBLE COMPRISING THE CERMET

Publications (1)

Publication Number Publication Date
WO2011080475A1 true WO2011080475A1 (en) 2011-07-07

Family

ID=42863402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052910 WO2011080475A1 (en) 2009-12-31 2010-12-23 Cermet with improved heat conductivity and nuclear fuel comprising said cermet

Country Status (2)

Country Link
FR (1) FR2954850B1 (en)
WO (1) WO2011080475A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088892A (en) * 1960-05-05 1963-05-07 Jr Francis M Cain Dispersion element consisting of chromium coated uo2 particles uniformly distributedin a zircaloy matrix
US3712809A (en) * 1968-03-23 1973-01-23 Kernforschung Gmbh Ges Fuer Method of making cermets of high static and dynamical strength
GB1411024A (en) * 1972-06-05 1975-10-22 Commissariat Energie Atomique Method of fabricating porous cermets containing a fissile material
EP0789365A1 (en) * 1996-02-07 1997-08-13 Commissariat A L'energie Atomique Composite nuclear fuel material and process for its fabrication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088892A (en) * 1960-05-05 1963-05-07 Jr Francis M Cain Dispersion element consisting of chromium coated uo2 particles uniformly distributedin a zircaloy matrix
US3712809A (en) * 1968-03-23 1973-01-23 Kernforschung Gmbh Ges Fuer Method of making cermets of high static and dynamical strength
GB1411024A (en) * 1972-06-05 1975-10-22 Commissariat Energie Atomique Method of fabricating porous cermets containing a fissile material
EP0789365A1 (en) * 1996-02-07 1997-08-13 Commissariat A L'energie Atomique Composite nuclear fuel material and process for its fabrication

Also Published As

Publication number Publication date
FR2954850B1 (en) 2013-07-26
FR2954850A1 (en) 2011-07-01

Similar Documents

Publication Publication Date Title
EP0789365B1 (en) Composite nuclear fuel material and process for its fabrication
EP2474000B1 (en) Process for the production of porous nuclear fuel on the basis of at least one minor actinide
FR2909479A1 (en) Nuclear fuel pellet producing method, involves producing mixed powder by mixing uraninite and uranium dioxide powders, producing compact body by compressing mixed powder, and sintering body in reducing gas atmosphere at preset temperature
EP1683162B1 (en) Method of fabrication of nuclear fuel pellets based on mixed oxides (u,pu)o2 or (u,th)o2
FR2738076A1 (en) PROCESS FOR PRODUCING NUCLEAR FUEL PELLETS BASED ON MIXED OXIDE (U, PU) O2 WITH ADDITION OF AN ORGANIC SULFUR PRODUCT
CA2822764C (en) Method for preparing a powder of an alloy based on uranium and molybdenum
EP3233756A1 (en) Process for manufacturing a pellet of at least one metal oxide
FR2861888A1 (en) PROCESS FOR MANUFACTURING NUCLEAR FUEL PELLETS
EP0249549A1 (en) Method of manufacturing uranium oxide-based nuclear-fuel pellets
EP0432065B1 (en) Process for manufacturing UO2 nuclear fuel pellets from Uranium metal, without production of any effluent
WO2011080475A1 (en) Cermet with improved heat conductivity and nuclear fuel comprising said cermet
WO2011080474A1 (en) Method for producing a cermet comprising uranium dioxide particles
EP1417687A1 (en) Method for sulphurizing a uo 2? powder and method for making nuclear fuel pellets based on uo 2? or mixed (u, pu)o 2? oxide with added sulphur
EP0653094B1 (en) Neutron absorber material and method of manufacture
EP1402539B1 (en) Method for making a composite nuclear fuel material consisting of dispersed (u, pu)o 2? aggregates
EP1048037B1 (en) Absorbent neutronic composite material and method for producing same
FR2860639A1 (en) Manufacture of nuclear fuel pellets from mixed uranium and plutonium oxide powders employs super-stoichiometric conditions for co-grinding and/or fritting stages
FR2485515A1 (en) PROCESS FOR THE PREPARATION OF FRESH BODIES IN U3O8
FR2814179A1 (en) Creep-resistant silver-based alloy for production of neutron absorption elements includes indium, cadmium and, optionally, hafnium, and their oxides in the form of particles distributed in the alloy
FR3068169B1 (en) PROCESS FOR PREPARING PELLETS OF MIXED DENSE FUEL BASED ON URANIUM, PLUTONIUM AND POSSIBLY MINOR ACTINIDE (S)
FR2899574A1 (en) Powder production, capable of being sintered, used in field of nuclear materials, e.g. high temperature nuclear reactor components, comprises mixing particles, and crushing and/or grinding obtained mixture, in absence of oxygen
FR2536571A1 (en) Process for the manufacture of nuclear fuel pellets containing a temporary neutron absorbent.
FR2503695A1 (en) Porous boron carbide pellets prodn. - by mixing carbide powder with resin binder, compressing and heating to carbonise the resin, used in nuclear reactors
WO2002045097A1 (en) Method for making oxide nuclear fuel pellets

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809315

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809315

Country of ref document: EP

Kind code of ref document: A1