WO2011080446A1 - Gestion d'itinerance en mode paquet dans un reseau de radiocommunication - Google Patents

Gestion d'itinerance en mode paquet dans un reseau de radiocommunication Download PDF

Info

Publication number
WO2011080446A1
WO2011080446A1 PCT/FR2010/052690 FR2010052690W WO2011080446A1 WO 2011080446 A1 WO2011080446 A1 WO 2011080446A1 FR 2010052690 W FR2010052690 W FR 2010052690W WO 2011080446 A1 WO2011080446 A1 WO 2011080446A1
Authority
WO
WIPO (PCT)
Prior art keywords
server
network
sgsn
cell
sgsn2
Prior art date
Application number
PCT/FR2010/052690
Other languages
English (en)
Inventor
Vincent Jonack
Original Assignee
France Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom filed Critical France Telecom
Publication of WO2011080446A1 publication Critical patent/WO2011080446A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/087Mobility data transfer for preserving data network PoA address despite hand-offs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the invention relates generally to the field of telecommunications and relates more particularly to a packet roaming management method in a cellular radio network.
  • the invention applies in particular to cellular networks using GPRS technology or UMTS technology, as defined in particular in standards 23.002, 23.003 and 29.060 of the 3GPP project ("Third-Generation Partnership Project”). so-called “Femto NodeB” architectures (also known as “Femto 3G”) as defined in 3GPP document TR 25.820 V8.2.0 (2008-09), in which mini-base stations are used to deploy a low-level home mobile network. cost using the broadband infrastructure already present at the subscriber.
  • GPRS General Packet Radio Service
  • GSM-derived mobile telephony Global System for Mobile Communications
  • GSM Global System for Mobile Communications
  • This standard is defined in version 97 and later versions of the GSM standard. It is often referred to as “2.5G”: ie “G” is the abbreviation of generation, and the "2.5” indicates that it is midway between the GSM technology (2nd Generation) and UMTS (3rd generation).
  • GPRS is an extension of the GSM protocol: it adds, compared to the transmission mode "CS" (initials of the English words “circuit-switched” meaning “circuit switching"), which includes all the services related to telephony, the transmission mode "PS" (initials of the English words “packet-switched”, meaning “packet switching”).
  • CS mode the required resources are allocated for the duration of the connection, whether there is data to be transmitted or not ;
  • GPRS is used to provide a mobile station with permanently available Internet Protocol (IP) connectivity, but in which radio resources are allocated only when data needs to be transferred, giving users good access. network operators, and network operators save radio resources, and no dialing delay is required.
  • IP Internet Protocol
  • GPRS uses a signaling protocol called "GMM” (initials of the words “GPRS Mobility Management”) to manage mobility issues such as roaming choice of an encryption algorithm.
  • GMM signaling protocol
  • the Universal Mobile Telecommunications System specifies a new packet mode data carrier, which in particular allows subscribers of a mobile operator to access services using the IP protocol (such as e-mail). electronic, file download, website consultation or WAP).
  • IP protocol such as e-mail
  • WAP electronic, file download, website consultation or WAP
  • W-CDMA Wideband Code Division Multiple Access
  • ITU Internationale des Communications
  • the UMTS network is subdivided into two subnetworks, the so-called terrestrial radio access network UTRAN ("UMTS Terrestrial Radio Access Network”), and the CN core network ("Core Network”). in English), as shown in Figure 1.
  • UTRAN UMTS Terrestrial Radio Access Network
  • Core Network Core Network
  • the UTRAN comprises a plurality of basic radio stations, called “NodeB”, which are intended to communicate with UE devices ("User Equtpmenf") by means of resources.
  • radio allocated by an RNC initials of the words “Radio Network Controllet” meaning “Controller of Radio Resources”).
  • RNC plays a role in UMTS networks equivalent to that played by BSCs.
  • the RNC controls the NodeBs by allocating them the available UTRAN and CN resources, and by providing them with information to be disseminated within their
  • the RNC acts as an intermediary between the NodeBs and the CN and communicates with the CN, for the data traffic and the CS and PS signaling, through interfaces called “lu” (respectively, “lu-CS” and “lu-PS”).
  • HNBs located in private networks (for example home networks) each combine the functions of NodeB and RNC.
  • Each HNB is connected to a gateway ("HNB Gateway") located outside the private network in the operator's radio access network, the HNB Gateway manages HNB and subscriber traffic, and acts as an intermediary with the CN core network via lu-CS and lu-PS interfaces
  • GSM networks also include HNB gateways with similar functionality.
  • the UTRAN network must be able to allocate all its resources (ie radio resources, transport resources and processing capacity) among the different users of the system, from the priority parameters sent by the CN core network. .
  • the CN core network of GSM and UMTS architectures hosts an HLR server (initials of the English words "Home Location Registef” meaning "Nominal Location Register”), which is a database common to the CS and PS domains and in which are stored the information about each subscriber of the network operator, such as the subscriber's phone number, mobile identity, and subscription information.
  • HLR also contains quality of service information related to subscribers and services. It is therefore from this database that the management of mobile subscribers within the network takes place.
  • the CN core network of the GSM and UMTS architectures also hosts SC circuit switches (initials of the words “Mobile Switching Centei” meaning “Mobile Switching Center”) and SGSN packet switches (initials of the English words “Serving GPRS Support Node”). “meaning” Service Node for GPRS Support ").
  • SC circuit switches initials of the words “Mobile Switching Centei” meaning “Mobile Switching Center”
  • SGSN packet switches initials of the English words "Serving GPRS Support Node”
  • Service Node for GPRS Support “meaning” Service Node for GPRS Support ").
  • GMSC Gateway Mobile Switching Centef
  • RTC Network Switched Telephone
  • ISDN Digital Integrated Services Network
  • the SGSN For the packet domain, the SGSN handles roaming, authentication and encryption. It is associated with another service node, the Gateway GPRS Support Node (GGSN) (not shown in FIG. 1), which serves as a gateway to the external packet-switched networks, in particular the Internet network.
  • the UMTS core network so far as the packet domain is concerned, is thus connected externally via the GGSN, which contains the routing information enabling the mobile to communicate with an external network.
  • SGSN and GGSN integrate IP router functions. When the SGSN and the GGSN are located in different networks, they are usually interconnected via an interface called "Gp", which provides security functions.
  • TIMSI Temporal Mobile Subscriber Ideniity
  • P- TIMSI assigned to it by the SGSN to which the subscriber is attached.
  • the UE sends to the network an attachment request, which contains the P-TMSI previously assigned to the UE within this network;
  • the SGSN verifies the authenticity of the UE by sending an authentication request to the HLR;
  • the profile of the subscriber is transferred from the HLR to the SGSN, this profile containing in particular the address of the GGSN which serves as a gateway with the PDN network (initials of the English words "Packet Data Network” meaning “Packet Data Network”) of the telecommunications operator; and
  • the SGSN confirms to the EU that the latter is now attached to the network.
  • the UE To be able to access the PDN network, the UE must then request the SGSN to open a Packet Protocol Protocol ("PDP") protocol "context", which will allow the EU to reserve resources in the network.
  • PDP Packet Protocol Protocol
  • core network for the execution of the service desired by the subscriber, the SGSN then contacts the GGSN to obtain a 1P address from the PDN, and then establishes an IP connection between the UE and the PDN at a GTP Tunneling Protocol (GTP) between the SGSN and the GGSN.
  • GTP GTP Tunneling Protocol
  • the PDP context contains the login and password of the subscriber, as well as QoS level information (initials of the English words "Quafity of Service” meaning "Quality of Service”).
  • QoS level information initials of the English words "Quafity of Service” meaning "Quality of Service”
  • LAI localization information (initials of the English words "Location Area identifier 11 meaning” Localization Area Identifier "), as defined in the 3GPP documents.
  • TS 23.002 and TS 23.003 This information consists of a country code MCC (for "Mobile Country Code” in English) and a mobile network code MNC (for "Mobile Network Code” in English), as well as a location area code LAC (for "Location Area Code” in English) assigned to a cell or a group of cells within the identified network
  • MCC and MNC identifiers form a PLMN network identifier (for "Public Land Mobile Network '), which identifies the mobile network of an operator for a country.
  • An LA area (initials of the English words "Location Area” meaning “Location Area”) can therefore correspond to a geographical area covered by several cells, and serves to manage the mobility of a UE.
  • the LAI parameter can also be used for access control, in particular in the context of roaming (or "roaming" in English), so as to prohibit certain network changes, for example to prohibit switching from a 2G network to a 3G network.
  • the GSM or Macro NodeB UMTS radio networks are networks whose deployment, and therefore the geographical position of the various network equipment, have been carefully planned by a telecommunications operator; such a planning relates in particular to the prior allocation of values to location parameters, such as LAI / RAI (depending whether one considers, respectively, a network type UMTS or GSM type) mentioned above.
  • the terminal enters a zone of radio coverage of the type Home NodeB, Wi-Fi or Bluetooth, its location is lost since the network architecture of the UMTS or GSM type is not adapted to locate a terminal located in a such a zone to the extent that access points of type Home NodeB or Wi-Fi can not be located as can the base stations of type GSM or Macro NodeB UMTS. For similar reasons, it is very complex to set up an access control service in a Home NodeB or Wi-Fi radio coverage area.
  • the international patent application WO 02/34000 in the name of Ericsson discloses a method in which each of the SC / SGSN is able to assign to the mobile terminals a TMSI / P-TMSI in all the available set of TIMSI / PT! MS1. According to this method, determination of the TMSI / P-TMSI for a given mobile terminal attached to an MSC / SGSN is performed within a predetermined TIMS1 / P-TIMSI subset associated with the LA / RA where the mobile terminal.
  • this second SGSN server can, on the basis of the old RAI and P-TIMSI, identify the first SGSN server to request information about the subscriber.
  • the state-of-the-art MSC and SGSN servers behave as follows:
  • the server MSC considers (wrongly) that it is a transfer from one MSC to another MSC, and issues an IMSI number request (the IMSI, initials of the English words "International Mobile Subscriber ideniit, is a private identifier used by the network to identify a terminal), and
  • the SGSN server rejects the routing zone update request, so that, in the case where there is an active PDP context for the terminal, this context is lost.
  • This behavior of the SGSN server can have serious consequences, since the loss of connection in PS mode can cause, for example, the failure to receive calls or incoming emails, and this until the establishment of a new PDP context in the Macro cell.
  • the present invention thus relates to a packet roaming management method in a cellular radio network, comprising, during the migration of a user equipment from a first cell managed by a first SGSN server to a second cell managed by a second SGSN server, said user equipment having previously established a PDP context in said first cell, a step in which the user equipment transmits, to said second server, a request for update of routing area parameterized by the zone identifier of the first cell at the access network level.
  • the method is remarkable in that it then comprises the following steps:
  • the second server obtains the IP address of a server, called "SGSN- proxy", which is connected to a gateway HNB Gateway and which is declared as a cooperative SGSN vis-à-vis the SGSN of the core network; b) the second server sends to said SGSN-proxy server an interrogation request parameterized by an identifier of the user equipment, and by said zone identifier of the first cell at the access network;
  • the SGSN-proxy server executes a translation between the zone identifier of the first cell at the access network level and the zone identifier of the first cell at the core network level; d) the proxy SGSN sends the second server said zone identifier at the backbone;
  • the second server sends to the proxy SGSN a PDP context request parameterized by the zone identifier at the core of the network;
  • the second server receives from the proxy SGSN said PDP context of the user equipment.
  • user equipment is used to designate uniformly any type of computing device, for example a personal computer or a server.
  • this PDP context can be maintained during a migration procedure of that user equipment.
  • step a) above comprises the following substeps:
  • the second server sends to a DNS server a DNS lookup request parameterized by routing zone information relating to said first and second cells;
  • said DNS server sends the second server the IP address of said SGSN-proxy server. Thanks to these provisions, it is possible to declare all the LAI / RAI-air on each SGSN of the core network, and to match to them the IP address of the SGSN-proxy server.
  • the methods according to the invention are particularly well suited to cases where said cellular radiocommunication network is either a GSM network or a UMTS network.
  • the invention also relates, correlatively, a device, called "SGSN-proxy server", for the management of packet mode roaming in a cellular radio network.
  • Said device is remarkable in that it is connected to a gateway HNB Gateway, in that it is declared as a cooperative SGSN vis-à-vis the SGSN heart network, and in that it includes means for during the migration of a user equipment from a first cell managed by a first SGSN server to a second cell managed by a second SGSN server, said user equipment having previously established a PDP context in said first cell:
  • this roaming management device is essentially the same as those offered by the correlative method succinctly set forth above.
  • this device is particularly well suited to cases where said cellular radio network is either a GSM network or a UMTS network.
  • the invention is also directed to an HNB Gateway comprising a roaming management device as briefly described above, said device being physically integrated in said gateway HNB Gateway.
  • HNB Gateway The benefits offered by this HNB Gateway are essentially the same as those offered by the associated device.
  • the invention also provides a computer program downloadable from a telecommunications network and / or stored on a computer readable medium and / or executable by a microprocessor.
  • This computer program is notable in that it includes instructions for performing the steps of any of the roaming management methods succinctly set forth above, when run on a computer.
  • FIG. 1 already described, schematically represents a conventional UMTS network architecture comprising a Home NodeB,
  • FIG. 2 represents a conventional DNS look-up procedure during the migration of a user equipment from a first cell to a second cell
  • FIG. 3 diagrammatically represents a UMTS network architecture comprising a Home NodeB, according to one embodiment of the invention.
  • FIG. 4 represents a PDP context recovery procedure according to one embodiment of the invention.
  • the UEs communicate with CN within a logical layer called "NAS" (initials of the words “Non-Access Stratum”) to distinguish it from the "Access Layer”.
  • NAS logical layer
  • Signaling for UE roaming management is described in the "MAP” ("Mobile Application Part") section of the 3GPP standards.
  • UMTS For the radio control signaling between the CN and the UTRAN network, UMTS uses a protocol called "RANAP" (initials of the words “Radio Access Network Application Part” meaning “Application Part of the Radio Access Network”).
  • the RANAP protocol is implemented on the lu interfaces mentioned above, and is used in roaming situations and in the transport of NAS signaling between TUE and CN, using a location parameter called " RANAP RAI ".
  • an UE user equipment that is in a RAI-land (at the backbone) and RAl-air (at the access network) parameter cell behaves the following way: 1) the UE periodically transmits, in its cell, a request from RAU (Routing Area Update) based on the information broadcast by the access point of the cell;
  • this access point then transmits this RAU request after replacing, for the parameter RANAP RAI, the value "RAI-air" by the value
  • the EU updates its attachment to the cell, with parameters like its P-TMSI, and "RAI-land” at the NAS RAI and RANAP levels.
  • the UE issues a new request from RAU in which it selects the Macro cell, with parameters as its P-TMSI, and NAS RAI with the value "RAI-air" (of the private cell);
  • the SGSN does not recognize the RAI RAI-air NAS as one of its local or cooperative RAIs, and therefore denies the new RAU request (without performing a P-TMSI audit);
  • the EU therefore issues a GPRS-Attach request (with, as provided by the standard, the default value "FFFE" for the NAS RAI);
  • the rejection by the SGSN, in step 2) above, of the attempt to update the routing area has the consequence that the UE remains for a certain time (Le., Between the moment the EU leaves the private cell and the time when the HLR is updated) without a PDP context, and therefore unreachable by other subscribers.
  • the first problem to be solved is that of declaring on each SGSN of the core network all the LAI-air deployed in a Femto architecture. It can theoretically be up to 65535 LAl / RAl-air by HNB Gateway in the Femto architecture, to which correspond a smaller number of LAI / RAI-land (the HNB Gateway has a correspondence and translation table such that each LAI-land encompasses a certain set of LAl / RAI-air ). Due to its complexity, this problem can not be solved by maintenance or network planning operations, nor is it addressed by SGSN equipment suppliers.
  • This first problem can for example be solved conventionally by means of a DNS lookup procedure (initials of the English words "Domain Name Service” meaning "Domain Name Service”).
  • the UE emits, in a conventional manner, a request from RAU mentioning routing data broadcast by the access points of cells 1 and 2.
  • this request will mention for example the elements :
  • code LAC 601
  • code RAC 10.
  • the DNS lookup procedure then includes the following steps: 1) the SGSN2 server transforms at least some of the routing area information above into a logical name (in the example considered, the SGSN2 server can create the logical name RAC0010.LAC0601.MCC208 NC01.GPRS);
  • said DNS server sends the SGSN2 server the IP address of the SGSN1 server.
  • DNS servers may be internal or external to the SGSNs; if the DNS servers are external, only one DNS server shared by all SGSNs can be used.
  • the DNS server must be aware of all LAI / RAI-air declarations indicating a default SGSN function, in order to establish a correspondence between LAI / RAI broadcast in radio access networks, and the LAI / RAI used in the heart network.
  • the DNS polling procedure thus allows the operator not to have to declare all LAl / RAI-air on his SGSN servers.
  • a DNS query is implemented during an attempt to recover the PDP context in order to point to the correct SGSN, that is to say the SGSN on which TUE was registered before his migration.
  • This PDP context recovery implements the UMTS network architecture illustrated schematically in FIG.
  • FIG. 3 shows, in the radio access network of the operator, an intermediate node, called "SGSN-mandataire"("SGSNProxy” in English) in the context of the present invention.
  • is declared as a cooperative SGSN vis-à-vis the SGSN of the UMTS core network, so as to be able to interface, when migrating a UE from a first cell 1 to a second cell 2 between the SGSN1 and SGSN2 servers using the GTP protocol mentioned above.
  • proxy SGSN may optionally be physically integrated into the HNB Gateway. Whichever is the case, the SGSN-mandatary is referred to as the "SGSN-proxy server" in this document.
  • the HNB Gateway maintains, and executes according to the RANAP protocol on the read interface, the correspondence between the LAI / RAI-air broadcast and the LAI / RAI-land used in the UMTS core network. Thanks to the invention, it is therefore possible to associate with a LAI / RAI-air the address of the appropriate SGSN. Note that the HNB Gateway as defined in the 3GPP standard does not implement such functionality.
  • FIG. 4 illustrates a PDP context recovery method according to one embodiment of the invention. This method comprises the following steps.
  • step E1 When migrating an HNB coverage to a Macro coverage with an active PDP context, since the LAI / RAI broadcast is different, the UE issues, in step E1, an update request (GMM ROUTING AREA UPDATE REQ ⁇ EST) to the SGSN2 server (represented by "SGSN Target” in FIG. 4) of the CN core network.
  • This request mentions in particular the LAI / RAI-air parameters broadcast within the HNB zone in which the UE was registered.
  • the SGSN2 server can not recognize this LAI / RAI-air: it therefore executes, in step E2, a DNS lookup procedure, as described above with reference to FIG. 2. This interrogation provides him with the address 1P of the SGSN-proxy.
  • step E3 the SGSN2 server sends to the proxy SGSN via the interface Gp an interrogation request ("Context REQ" message in FIG. 4) by means of the GTP protocol, in order to recover the old PDP context.
  • this request mentions the P-TMSI of the UE and the LAI / RAI-air that the SGSN2 server has drawn from the update request it has received from TUE.
  • the SGSN-proxy executes, at step E4, a translation between the LAI / RAI-air and the corresponding LAI / RAI-land (as known from the HNB Gateway).
  • the SGSN-proxy sends, in step E5, this LAI / RAI-land to the SGSN2 ("Context REQ" message in FIG. 4).
  • step E6 the SGSN2 sends to the proxy SGSN a context GTP request PDP ("Context RESP" message in FIG. 4), with the LAI / RAI-land as a parameter.
  • step E7 the SGSN2 receives from the representative SGSN (message "Context RESP" in FIG. 4) the context PDP (still active) of the UE, and confirms this receipt to the SGSN-proxy, and confirms this receipt to the SGSN-proxy (message "Context ACK” in Figure 4).
  • step E8 the SGSN2 server obtains the update of the PDP context in the GGSN ("GTP Update” steps in FIG. 4), as well as the update of the GPRS location in the HLR (steps " MAP Update "in Figure 4).
  • the implementation of the invention within the nodes of the telecommunications network can be achieved by means of software and / or hardware components.
  • the software components can be integrated into a typical network node management computer program. Therefore, as indicated above, the present invention also relates to a computer system.
  • This computer system conventionally comprises a central processing unit controlling signals by a memory, as well as an input unit and an output unit.
  • this computer system can be used to execute a computer program comprising instructions for implementing the roaming management method according to the invention.
  • the invention also relates to a downloadable computer program from a telecommunications network comprising instructions for executing the steps of a roaming management method according to the invention, when it is executed on a computer .
  • This computer program may be stored on a computer readable medium and may be executable by a microprocessor.
  • This program can use any programming language, and be in the form of source code, object code, or intermediate code between source code and object code, such as in a partially compiled form, or in any another desirable form.
  • the invention also relates to a computer-readable information medium, comprising instructions of a computer program as mentioned above.
  • the information carrier may be any entity or device capable of storing the program.
  • the medium may comprise storage means, such as a ROM, for example a CD ROM or a microelectronic circuit ROM, or a magnetic recording medium, for example a floppy disk ("floppy dise"). ) or a hard disk.
  • the information medium may be a transmissible medium such as an electrical or optical signal, which may be conveyed via an electrical or optical cable, by radio or by other means.
  • the computer program according to the invention can in particular be downloaded to an Internet type network.
  • the information carrier may be an integrated circuit in which the program is incorporated, the circuit being adapted to execute or to be used in the execution of the roaming management method according to the invention.

Abstract

L'invention concerne un procédé de gestion d'itinérance en mode paquet dans un réseau de radiocommunication cellulaire, comprenant, lors de la migration d'un équipement d'utilisateur (UE) d'une première cellule (1) gérée par un premier serveur SGSN (SGSN1) vers une seconde cellule (2) gérée par un second serveur SGSN (SGSN2), ledit équipement d'utilisateur (UE) ayant préalablement établi un contexte PDP dans ladite première cellule (1), une étape au cours de laquelle l'équipement d'utilisateur (UE) émet, à destination dudit second serveur (SGSN2), une requête de mise à jour de zone de routage (RAU) paramétrée par l'identifiant de zone de la première cellule (1) au niveau du réseau d'accès (LAI/RAI-air), caractérisé en ce qu'il comprend ensuite les étapes suivantes : a) le second serveur (SGSN2) obtient l'adresse IP d'un serveur, dit "SGSN-mandataire", qui est relié à une passerelle HNB Gateway et qui est déclaré en tant que SGSN coopératif vis-à-vis des SGSN du réseau cœur (CN); b) le second serveur (SGSN2) envoie audit serveur SGSN-mandataire une requête d'interrogation paramétrée par un identifiant (P-TMSI) de l'équipement d'utilisateur (UE), et par ledit identifiant de zone de la première cellule (1 ) au niveau du réseau d'accès (LAI/RAI-air); c) le serveur SGSN-mandataire exécute une traduction entre l'identifiant de zone de la première cellule (1) au niveau du réseau d'accès (LAI/RAI-air) et l'identifiant de zone de la première cellule (1) au niveau du cœur de réseau (LAI/RAI-land); d) le SGSN-mandataire envoie au second serveur (SGSN2) ledit l'identifiant de zone (LAI/RAI-land) au niveau du cœur de réseau; e) le second serveur (SGSN2) envoie au SGSN-mandataire une requête de contexte PDP paramétrée par l'identifiant de zone (LAI/RAI-land) au niveau du cœur de réseau; et f) le second serveur (SGSN2) reçoit de la part du SGSN-mandataire ledit contexte PDP de l'équipement d'utilisateur (UE).

Description

GESTION D'ITINERANCE EN MODE PAQUET
DANS UN RESEAU DE RADIOCOMMUNICATION
L'invention concerne, de manière générale, le domaine des télécommunications et se rapporte plus particulièrement à un procédé de gestion d'itinérance en mode paquet dans un réseau de radiocommunication cellulaire.
L'invention s'applique notamment aux réseaux cellulaires utilisant la technologie GPRS ou la technologie UMTS, telles que définies notamment dans les normes 23.002, 23.003 et 29.060 du projet 3GPP {"Third-Generation Partnership Project). Elle s'applique en particulier aux architectures dites "Femto NodeB" (également appelées "Femto 3G") telles que définies dans le document TR 25.820 V8.2.0 (2008-09) du 3GPP, dans lesquelles des mini-stations de base permettent de déployer un réseau mobile domestique à faible coût en utilisant l'infrastructure haut-débit déjà présente chez l'abonné.
Le GPRS {"General Packet Radio Service") est une norme pour la téléphonie mobile dérivée du GSM ("Global System for Mobile Communications") et permettant un débit de données plus élevé. Cette norme est définie dans la version 97 et les versions ultérieures de la norme GSM. On le qualifie souvent de "2,5G" : ie "G" est l'abréviation de génération, et le "2,5" indique que c'est une technologie à mi-chemin entre le GSM (2e génération) et l'UMTS (3e génération). Le GPRS est une extension du protocole GSM : il ajoute, par rapport au mode de transmission "CS" (initiales des mots anglais "circuit-switched' signifiant "commutation par circuit"), qui comprend tous ies services liés à la téléphonie, le mode de transmission "PS" (initiales des mots anglais "packet-switched', signifiant "commutation par paquets"). Plus précisément, dans le mode CS, les ressources requises sont allouées pour toute la durée de la connexion, qu'il y ait des données à transmettre ou pas ; en revanche, le GPRS permet de fournir à une station mobile une connectivité IP ("Internet Protocol') disponible en permanence, mais dans laquelle les ressources radio sont allouées uniquement quand des données doivent être transférées. Les utilisateurs bénéficient ainsi d'un accès bon marché au réseau, et les opérateurs réseau économisent de la ressource radio. De plus, aucun délai de numérotation n'est nécessaire.
Le GPRS utilise un protocole de signalisation appelé "GMM" (initiales des mots anglais "GPRS Mobility Management' signifiant "Gestion de la Mobilité GPRS") pour gérer les questions relatives à la mobilité telles que l'itinérance, l'authentification, et le choix d'un algorithme de chiffrement.
La norme UMTS ("Universal Mobile Télécommunications System") spécifie un nouveau support de transmission de données en mode paquet, qui permet notamment d'offrir aux abonnés d'un opérateur mobile un accès à des services utilisant le protocole IP (tels que la messagerie électronique, le téléchargement de fichiers, la consultation de sites Web ou WAP). L'UMTS utilise la technologie W-CDMA, normalisée par le 3GPP, et constitue la mise en œuvre européenne des spécifications IMT- 2000 de l'UlT ("Union Internationale des Communications") pour les systèmes radio cellulaires 3G. Grâce à l'UMTS, des données contenues dans des paquets IP peuvent être échangées entre, d'une part, des serveurs appartenant à un réseau extérieur au réseau UMTS tel que le réseau Internet, et d'autre part un réseau GSM.
En termes d'architecture, le réseau UMTS est subdivisé en deux sous-réseaux, le réseau d'accès radio dit "terrestre" UTRAN ("UMTS Terrestrial Radio Access Network?' en anglais), et le réseau cœur CN ("Core Network' en anglais), tels que représentés sur la figure 1.
Le réseau UTRAN comprend une pluralité de stations radio de base, appelées "NodeB", qui sont destinées à communiquer avec des dispositifs d'abonnés UE ("User Equtpmenf) au moyen de ressources radio allouées par un RNC (initiales des mots anglais "Radio Network Controllet" signifiant "Contrôleur des Ressources Radio"). Le RNC joue dans les réseaux UMTS un rôle équivalent à celui joué par les BSC. (initiales des mots anglais "Base Station Controllet" signifiant "Contrôleur de Stations de Base) dans les réseaux GSM : le RNC contrôle les NodeB en leur allouant les ressources UTRAN et CN disponibles, et en leur fournissant des informations à diffuser au sein de leurs cellules. Le RNC sert d'intermédiaire entre les NodeB et le CN ; il communique avec le CN, pour le trafic de données et la signalisation CS et PS, à travers des interfaces appelées "lu" (respectivement, "lu-CS" et "lu-PS").
Dans le cas particulier des réseaux Femto NodeB, en outre, des HNB ("Home NodeB") situés dans des réseaux privés (par exemple des réseaux domestiques) combinent chacun les fonctions de NodeB et de RNC. Chaque HNB est relié à une passerelle ("HNB Gateway) située à l'extérieur du réseau privé dans le réseau d'accès radio de l'opérateur ; la HNB Gateway gère le HNB et le trafic des abonnés, et sert d'intermédiaire avec le réseau cœur CN via des interfaces lu-CS et lu-PS. On notera que les réseaux GSM comprennent eux aussi des passerelles HNB Gateway dotées de fonctionnalités analogues.
Le réseau UTRAN doit être capable de répartir l'intégralité de ses ressources (à savoir les ressources radio, les ressources de transport et la capacité de traitement) entre les différents utilisateurs du système, à partir des paramètres de priorité envoyés par le réseau cœur CN.
Le réseau cœur CN des architectures GSM et UMTS héberge un serveur HLR (initiales des mots anglais "Home Location Registef' signifiant "Registre de Localisation Nominal"), qui est une base de données commune aux domaines CS et PS et dans laquelle sont stockées les informations relatives à chaque abonné de l'opérateur du réseau, telles que le numéro d'appel de l'abonné, l'identité du mobile et des informations relatives à l'abonnement. Le HLR contient également des informations de qualité de service liées aux abonnés et aux services. C'est donc à partir de cette base de données que s'effectue la gestion des abonnés mobiles au sein du réseau.
Le réseau cœur CN des architectures GSM et UMTS héberge également des commutateurs de circuits SC (initiales des mots anglais "Mobile Switching Centei" signifiant "Centre de Commutation Mobile") et des commutateurs de paquets SGSN (initiales des mots anglais "Serving GPRS Support Node" signifiant "Nœud de Service pour le Support du GPRS"). Ces nœuds de service du réseau cœur assurent la gestion du lien de communication avec le réseau d'accès. Ils stockent le profil de l'abonné issu du HLR après l'enregistrement de l'équipement UE de l'abonné auprès du réseau, et effectuent un contrôle des ressources réseaux demandées par l'abonné.
Concernant le domaine circuit, ie MSC est associé à un autre nœud de service, à savoir le GMSC ("Gateway Mobile Switching Centef) (non représenté sur la figure 1), qui sert de passerelle vers des réseaux fixes tels que le RTC (Réseau Téléphonique Commuté) ou le RNIS (Réseau Numérique à Intégration de Services).
Concernant le domaine paquet, le SGSN gère l'itinérance, l'authentification et le chiffrement. Il est associé à un autre nœud de service, le GGSN (" Gateway GPRS Support Node") (non représenté sur la figure 1), qui sert de passerelle vers les réseaux à commutation de paquets extérieurs, notamment le réseau Internet. Le réseau cœur UMTS, en ce qui concerne ie domaine paquet, est donc connecté avec l'extérieur via le GGSN, qui contient les informations de routage permettant au mobile de communiquer avec un réseau externe. Le SGSN et le GGSN intègrent des fonctions de routeur IP. Lorsque le SGSN et le GGSN sont situés dans des réseaux différents, ils sont habituellement interconnectés via une interface appelée "Gp", qui assure des fonctions de sécurité.
Chaque abonné est identifié par une identité temporaire appelée TIMSI (initiales des mots anglais "Temporary Mobile Subscriber Ideniity signifiant "Identité Temporaire de Mobile d'Abonné") qui lui est attribuée par le MSC auquel est rattaché l'abonné. De même, chaque abonné est identifié par une identité temporaire appelée P-TIMSI qui lui est attribuée par le SGSN auquel est rattaché l'abonné.
Lorsqu'un abonné souhaite accéder à un service PS, son UE doit tout d'abord s'attacher au réseau. Dans la norme GPRS, la procédure correspondante, qui fait partie du protocole de signalisation GMM mentionné ci-dessus, est appelée "GPRS Attach". Elle permet d'établir un lien logique entre l'UE et le serveur SGSN. Selon cette procédure :
- l'UE envoie au réseau une requête d'attachement, qui contient le P- TMSI précédemment attribué à l'UE au sein de ce réseau ;
- cette requête d'attachement est transmise au SGSN ;
- le SGSN vérifie l'authenticité de l'UE en envoyant une requête d'authentification au HLR ;
- si l'authentification est positive, le profil de l'abonné est transféré du HLR au SGSN, ce profil contenant en particulier l'adresse du GGSN qui sert de passerelle avec le réseau PDN (initiales des mots anglais "Packet Data Network" signifiant "Réseau de Données en Paquets") de l'opérateur de télécommunications ; et
- le SGSN confirme à l'UE que ce dernier est dorénavant attaché au réseau.
Pour pouvoir accéder au réseau PDN, l'UE doit ensuite demander au SGSN d'ouvrir un "contexte" de protocole en mode paquet PDP (pour "Packet Data Protocol') ; ce contexte permettra à l'UE de réserver des ressources dans le réseau cœur pour l'exécution du service souhaité par l'abonné. Le SGSN s'adresse alors au GGSN afin d'obtenir une adresse 1P de la part du PDN, et établit ensuite une connexion IP entre l'UE et (e PDN au moyen d'un protocole de tunnel GTP (pour "GPRS Tunneling Protocol') entre le SGSN et le GGSN. Le contexte PDP contient le login et le mot de passe de l'abonné, ainsi que des informations de niveau de QoS (initiales des mots anglais "Quafity of Service" signifiant "Qualité de Service"). Lors de l'activation d'un contexte PDP, les différents nœuds du réseau UMTS reçoivent les informations de QoS liées au contexte PDP demandé et à la souscription de l'abonné.
Concernant le domaine circuit, la localisation d'un UE est effectuée sur la base d'une information de localisation LAI (initiales des mots anglais "Location Area identifier11 signifiant "Identifiant de Zone de Localisation"), telle que définie dans les documents 3GPP TS 23.002 et TS 23.003. Cette information est composée d'un code de pays MCC (pour "Mobile Country Code" en anglais) et d'un code de réseau mobile MNC (pour "Mobile Network Code" en anglais), ainsi que d'un code de zone de localisation LAC (pour "Location Area Code" en anglais) attribué à une cellule ou à un groupe de cellules au sein du réseau identifié. Les identifiants MCC et MNC forment un identifiant de réseau PLMN (pour "Public Land Mobile Network'), qui identifie le réseau mobile d'un opérateur pour un pays.
Une zone de localisation LA (initiales des mots anglais "Location Area" signifiant "Zone de Localisation") peut donc correspondre à une zone géographique couverte par plusieurs cellules, et sert à gérer la mobilité d'un UE. Dans un réseau de type UMTS, le paramètre LAI peut être également utilisé pour le contrôle d'accès, notamment dans le contexte d'itinérance (ou "roaming" en anglais), de façon à interdire certains changements de réseau, par exemple interdire le passage d'un réseau 2G à un réseau 3G.
Concernant le domaine paquet, on utilise une information de localisation analogue, appelée "RAI" (initiales des mots anglais "Routing Area Identifier1' signifiant "Identifiant de Zone de Routage"). Cette information est diffusée par le réseau dans la zone de routage RA (initiales des mots anglais " Routing Area" signifiant "Zone de Routage"), à l'attention des UE. Lorsqu'un UE change de zone de routage, il doit en aviser le réseau.
On notera qu'il est très complexe d'offrir un service de localisation efficace dans un réseau "hybride" qui offre à la fois une couverture radio dans des cellules radio classiques (qui sont appelées de manière générale des cellules "Macro" dans le cadre de la présente invention) d'un réseau de type GSM ou Macro NodeB UMTS, et une couverture radio dans des cellules radio (qui sont appelées de manière générale des cellules "privées" dans le cadre de la présente invention) de type Home NodeB UMTS, ou Wi-Fi selon la norme IEEE (pour "Institute of Eiectrical and Electronics Engineers" en anglais) 802.1 1 , ou encore de type Bluetooth.
En effet, dans le réseau GSM ou dans le réseau Macro NodeB UMTS, la localisation d'un terminal d'un abonné peut être correctement gérée au moyen du serveur HLR. Les réseaux radio de type GSM ou Macro NodeB UMTS sont des réseaux dont le déploiement, et donc la position géographique des différents équipements du réseau, ont été soigneusement planifiés par un opérateur de télécommunications ; une telle planification concerne notamment l'allocation préalable de valeurs à des paramètres de localisation, tels que les LAI/RAI (selon qu'on considère, respectivement, un réseau de type UMTS ou de type GSM) mentionnés ci-dessus. En revanche, lorsque le terminal entre dans une zone de couverture radio de type Home NodeB, Wi-Fi ou Bluetooth, sa localisation est perdue puisque l'architecture réseau de type UMTS ou GSM n'est pas adaptée pour localiser un terminal situé dans une telle zone dans la mesure où les points d'accès de type Home NodeB ou Wi-Fi ne peuvent être localisés comme peuvent l'être les stations de base de type GSM ou Macro NodeB UMTS. Pour des raisons similaires, il est très complexe de mettre en place un service de contrôle d'accès dans une zone de couverture radio de type Home NodeB ou Wi-Fi.
En outre, dans le cas des réseaux de type Home NodeB, on constate le problème suivant : comme deux points d'accès (en anglais "Access Points" ou AP) voisins doivent posséder des LAI/RAI différents, il faut prévoir un grand nombre de zones de localisation/routage ; mais au niveau du cœur de réseau CN, les serveurs MSC et SGSN ne peuvent traiter qu'un nombre assez limité de LAI/RAI.
Pour résoudre ce problème, il a été proposé un mécanisme de traduction entre un paramètre "LAl/RAI-land" au niveau CN et un paramètre "LAI/RAI-air" au niveau réseau d'accès. Ce mécanisme est similaire au mécanisme "NAT" (initiales des mots anglais "Network Address Translatof signifiant "Traducteur d'Adresse Réseau") utilisé pour les adresses IP privées et publiques.
Par ailleurs, la demande de brevet internationale WO 02/34000 au nom de Ericsson divulgue un procédé dans lequel chacun des SC/SGSN est apte à affecter aux terminaux mobiles un TMSI/P-TMSI dans tout l'ensemble disponible de TIMSI/P-T!MS1. Selon ce procédé, la détermination du TMSI/P-TMSI pour un terminal mobile donné rattaché à un MSC/SGSN est effectuée au sein d'un sous-ensemble de TIMS1/P- TIMSI prédéterminé associé à la LA/RA où se trouve le terminal mobile. Ainsi, lorsqu'un terminal mobile migre d'une première cellule gérée par un premier serveur SGSN vers une seconde cellule gérée par un second serveur SGSN, ce second serveur SGSN peut, sur la base des anciens RAI et P-TIMSI, identifier le premier serveur SGSN afin de lui demander des informations concernant l'abonné.
Toutefois, les auteurs de la présente invention ont réalisé que, dans le cas où un terminal mobile migre d'une zone privée vers une zone Macro et émet en conséquence une requête de mise à jour de zone de routage RAU (pour "Routing Area Update") dans la cellule Macro, les serveurs MSC et SGSN selon l'état de l'art se comportent de la manière suivante :
- le serveur MSC considère {à tort) qu'il s'agit d'un transfert d'un MSC à un autre MSC, et émet une requête de numéro IMSI (l'IMSI, initiales des mots anglais "International Mobile Subscriber ideniit , est un identifiant privé utilisé par le réseau pour identifier un terminal) ; et
- le serveur SGSN rejette la requête de mise à jour de zone de routage, de sorte que, au cas où il existe un contexte PDP actif pour le terminal, ce contexte est perdu.
Ce comportement du serveur SGSN peut avoir des conséquences graves, vu que la perte de connexion en mode PS peut entraîner, par exemple, le défaut de réception d'appels ou d'emails entrants, et ce, jusqu'à l'établissement d'un nouveau contexte PDP dans la cellule Macro.
La présente invention concerne donc un procédé de gestion d'itinérance en mode paquet dans un réseau de radiocommunication cellulaire, comprenant, lors de la migration d'un équipement d'utilisateur d'une première cellule gérée par un premier serveur SGSN vers une seconde cellule gérée par un second serveur SGSN, ledit équipement d'utilisateur ayant préalablement établi un contexte PDP dans ladite première cellule, une étape au cours de laquelle l'équipement d'utilisateur émet, à destination dudit second serveur, une requête de mise à jour de zone de routage paramétrée par l'identifiant de zone de la première cellule au niveau du réseau d'accès. Ledit procédé est remarquable en ce qu'il comprend ensuite les étapes suivantes :
a) le second serveur obtient l'adresse IP d'un serveur, dit "SGSN- mandataire", qui est relié à une passerelle HNB Gateway et qui est déclaré en tant que SGSN coopératif vis-à-vis des SGSN du réseau cœur ; b) le second serveur envoie audit serveur SGSN-mandataire une requête d'interrogation paramétrée par un identifiant de l'équipement d'utilisateur, et par ledit identifiant de zone de la première cellule au niveau du réseau d'accès ;
c) le serveur SGSN-mandataire exécute une traduction entre l'identifiant de zone de la première cellule au niveau du réseau d'accès et l'identifiant de zone de la première cellule au niveau du cœur de réseau ; d) le SGSN-mandataire envoie au second serveur ledit l'identifiant de zone au niveau du cœur de réseau ;
e) le second serveur envoie au SGSN-mandataire une requête de contexte PDP paramétrée par l'identifiant de zone au niveau du cœur de réseau ; et
f) le second serveur reçoit de la part du SGSN-mandataire ledit contexte PDP de l'équipement d'utilisateur.
On notera que dans le présent document, l'expression "équipement d'utilisateur" est utilisée pour désigner uniformément tout type de dispositif informatique, par exemple un ordinateur personnel ou un serveur.
Grâce à ces dispositions, lorsqu'un équipement d'utilisateur a établi un contexte PDP pour une connexion en mode paquet, on peut maintenir ce contexte PDP actif lors d'une procédure de migration de cet équipement d'utilisateur.
Selon des caractéristiques particulières, l'étape a) ci-dessus comprend les sous-étapes suivantes :
- le second serveur envoie à un serveur DNS une requête de consultation DNS paramétrée par des informations de zone de routage relatives auxdites première cellule et seconde cellule ; et
- ledit serveur DNS envoie au second serveur l'adresse IP dudit serveur SGSN-mandataire. Grâce à ces dispositions, on peut déclarer tous les LAI/RAI-air sur chaque SGSN du réseau cœur, et leur faire correspondre l'adresse IP du serveur SGSN-mandataire.
Comme expliqué ci-dessus, les procédés selon l'invention sont particulièrement bien adaptés aux cas où ledit réseau de radiocommunication cellulaire est soit un réseau GSM, soit un réseau UMTS.
L'invention concerne aussi, corrélativement, un dispositif, dit "serveur SGSN-mandataire", pour la gestion d'itinérance en mode paquet dans un réseau de radiocommunication cellulaire. Ledit dispositif est remarquable en ce qu'il est relié à une passerelle HNB Gateway, en ce qu'il est déclaré en tant que SGSN coopératif vis-à-vis des SGSN du réseau cœur, et en ce qu'il comprend des moyens pour, lors de la migration d'un équipement d'utilisateur d'une première cellule gérée par un premier serveur SGSN vers une seconde cellule gérée par un second serveur SGSN, ledit équipement d'utilisateur ayant préalablement établi un contexte PDP dans ladite première cellule :
- recevoir, de la part dudit second serveur, une requête d'interrogation paramétrée par un identifiant de l'équipement d'utilisateur, et par l'identifiant de zone de la première cellule au niveau du réseau d'accès ;
- exécuter une traduction entre l'identifiant de zone de la première cellule au niveau du réseau d'accès et l'identifiant de zone de la première cellule au niveau du cœur de réseau ;
- envoyer au second serveur ledit l'identifiant de zone au niveau du cœur de réseau ;
- recevoir, de la part dudit second serveur, une requête de contexte PDP paramétrée par l'identifiant de zone au niveau du cœur de réseau ; et - envoyer au second serveur ledit contexte PDP de l'équipement d'utilisateur.
Les avantages offerts par ce dispositif de gestion d'itinérance sont essentiellement les mêmes que ceux offerts par le procédé corrélatif succinctement exposé ci-dessus. En outre, ce dispositif est particulièrement bien adapté aux cas où ledit réseau de radiocommunication cellulaire est soit un réseau GSM, soit un réseau UMTS.
L'invention vise également une passerelle HNB Gateway comprenant un dispositif de gestion d'itinérance tel que décrit succinctement ci-dessus, ledit dispositif étant physiquement intégré dans ladite passerelle HNB Gateway.
Les avantages offerts par cette passerelle HNB Gateway sont essentiellement les mêmes que ceux offerts par le dispositif associé.
On notera qu'il est possible de réaliser ce dispositif de gestion d'itinérance dans le contexte d'instructions logicielles et/ou dans le contexte de circuits électroniques.
Enfin, l'invention vise également un programme d'ordinateur téléchargeable depuis un réseau de télécommunications et/ou stocké sur un support lisible par ordinateur et/ou exécutable par un microprocesseur.
Ce programme d'ordinateur est remarquable en ce qu'il comprend des instructions pour l'exécution des étapes de l'un quelconque des procédés de gestion d'itinérance succinctement exposés ci-dessus, lorsqu'il est exécuté sur un ordinateur.
Les avantages offerts par ce programme d'ordinateur sont essentiellement les mêmes que ceux offerts par lesdits procédés.
D'autres aspects et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-dessous de modes de réalisation particuliers, donnés à titre d'exemples non limitatifs. La description se réfère aux figures qui l'accompagnent, dans lesquelles : - la figure 1 , déjà décrite, représente schématiquement une architecture classique de réseau UMTS comprenant un Home NodeB,
- la figure 2 représente une procédure classique de consultation DNS lors de la migration d'un équipement d'utilisateur d'une première cellule vers une seconde cellule,
- la figure 3 représente schématiquement une architecture de réseau UMTS comprenant un Home NodeB, selon un mode de réalisation de l'invention, et
- la figure 4 représente une procédure de récupération de contexte PDP selon un mode de réalisation de l'invention.
On va tout d'abord expliquer en détail en quoi consiste le problème technique visé par la présente invention.
Selon les normes 3GPP précitées, les UE communiquent avec le CN au sein d'une couche logique appelée "NAS" (initiales des mots anglais "Non-Access Stratum") pour la distinguer de la "Couche d'Accès". La signalisation pour la gestion d'itinérance des UE est décrite dans la section "MAP" (pour "Mobile Application Part') des normes 3GPP.
Pour la signalisation de contrôle radio entre le CN et le réseau UTRAN, l'UMTS utilise un protocole appelé "RANAP" (initiales des mots anglais "Radio Access Network Application Part' signifiant "Partie Applicative du Réseau d'Accès Radio"). Ce protocole RANAP est mis en œuvre sur les interfaces lu mentionnées ci-dessus. Il est notamment mis en œuvre dans les situations d'itinérance, et dans le transport de la signalisation NAS entre TUE et le CN. Il utilise un paramètre de localisation appelé "RANAP RAI".
Selon l'état de l'art, un équipement d'utilisateur UE qui se trouve dans une cellule de paramètres RAI-land (au niveau du cœur de réseau) et RAl-air (au niveau du réseau d'accès) se comporte de la manière suivante : 1) l'UE émet périodiquement, dans sa cellule, une requête de RAU (mise à jour de zone de routage) sur la base des informations diffusées par le point d'accès de la cellule ;
2) ce point d'accès transmet alors cette requête de RAU après avoir remplacé, pour le paramètre RANAP RAI, la valeur "RAI-air" par la valeur
"RAI-land" ; et
3) l'UE met à jour son attachement à la cellule, avec comme paramètres son P-TMSI, et "RAI-land" aux niveaux NAS RAI et RANAP.
Lorsqu'à présent l'UE migre d'une cellule privée vers une cellule Macro, on observe les étapes suivantes :
1) l'UE émet une nouvelle requête de RAU dans laquelle il sélectionne la cellule Macro, avec comme paramètres son P-TMSI, et le NAS RAI avec la valeur "RAI-air" (de la cellule privée) ;
2) le SGSN toutefois ne reconnaît pas le NAS RAI "RAI-air" comme étant l'un de ses RAI locaux ou coopératifs, et rejette en conséquence la nouvelle requête de RAU (sans exécuter de vérification de P-TMSI) ;
3) l'UE émet donc une requête GPRS-Attach (avec, comme le prévoit la norme, la valeur par défaut "FFFE" pour le NAS RAI) ;
4) le SGSN traite cette requête GPRS-Attach ; et
5) le HLR est mis à jour en conséquence.
Ainsi, le rejet par le SGSN, à l'étape 2) ci-dessus, de la tentative de mise à jour de zone de routage a pour conséquence que l'UE reste pendant un certain temps (Le., entre le moment où l'UE quitte la cellule privée et le moment où le HLR est mis à jour) sans contexte PDP, et donc injoignable par d'autres abonnés.
On va maintenant illustrer le fonctionnement et les avantages de la présente invention au moyen d'un mode de réalisation.
Le premier problème à résoudre est celui de pouvoir déclarer sur chaque SGSN du cœur de réseau tous les LAI-air déployés dans une architecture Femto. Il peut en théorie y avoir jusqu'à 65535 LAl/RAl-air par HNB Gateway dans l'architecture Femto, auxquels correspondent un nombre plus réduit de LAI/RAI-land (la HNB Gateway dispose d'une table de correspondance et de traduction telle que chaque LAI-land englobe un certain ensemble de LAl/RAI-air). En raison de sa complexité, ce problème ne peut pas être résolu par des opérations de maintenance ou de planification de réseau, et n'est, par ailleurs, pas pris en compte par les fournisseurs d'équipements SGSN.
Ce premier problème peut être par exemple résolu de manière classique au moyen d'une procédure de consultation DNS (initiales des mots anglais "Domain Name Service" signifiant "Service de Noms de Domaines").
On va rappeler à présent, en référence à la figure 2, le fonctionnement d'une telle procédure de consultation DNS dans le cadre de la migration d'un UE à partir d'une première cellule 1 , gérée par un serveur SGSN désigné par "SGSN1 ", vers une seconde cellule 2, gérée par un serveur SGSN désigné par "SGSN2".
Comme expliqué ci-dessus, l'UE émet, de manière classique, une requête de RAU mentionnant des données de routage diffusées par les points d'accès des cellules 1 et 2. Pour prendre un exemple numérique, cette requête mentionnera par exemple les éléments :
NAS RAI : 208-01 -8100-0 /P-TMSl/ RANAP RAI : 208-01 -601 -10 lorsque,
- pour les cellules 1 et 2 : code MCC = 208, code MNC = 01 ,
- pour la cellule 1 : code LAC = 8100, et code RAC = 0
(le code "RAC", initiales des mots anglais "Routing Area Code" signifiant "code de zone de routage", est une portion du RAI), et
- pour la cellule 2 : code LAC = 601 , et code RAC = 10.
La procédure de consultation DNS comprend alors les étapes suivantes : 1) le serveur SGSN2 transforme une partie au moins des informations de zone de routage ci-dessus en un nom logique (dans l'exemple considéré, le serveur SGSN2 pourra créer le nom logique RAC0010.LAC0601.MCC208. NC01.GPRS) ;
2) le serveur SGSN2 envoie à un serveur DNS une requête de consultation mentionnant ce nom logique ; et
3) ledit serveur DNS envoie au serveur SGSN2 l'adresse IP du serveur SGSN1.
On notera que les serveurs DNS peuvent être internes ou externes aux SGSN ; si les serveurs DNS sont externes, on peut n'utiliser qu'un seul serveur DNS partagé par tous les SGSN.
Le serveur DNS doit être instruit de toutes les déclarations LAI/RAI- air indiquant une fonction de SGSN par défaut, afin d'établir une correspondance entre les LAi/RAI diffusés dans les réseaux d'accès radio, et les LAI/RAI utilisés dans le réseau cœur. La procédure d'interrogation DNS permet ainsi à l'opérateur de ne pas avoir à déclarer tous les LAl/RAI-air sur ses serveurs SGSN.
Selon un mode de réalisation de l'invention, on met en œuvre une interrogation DNS lors d'une tentative de récupération de contexte PDP afin de pointer vers le bon SGSN, c'est-à-dire le SGSN sur lequel TUE était enregistré avant sa migration. Cette récupération de contexte PDP met en œuvre l'architecture de réseau UMTS illustrée schématiquement sur la figure 3.
La figure 3 montre, dans le réseau d'accès radio de l'opérateur, un nœud intermédiaire, appelé "SGSN-mandataire" ("Proxy SGSN" en anglais) dans le cadre de la présente invention. Ce SGSN-mandataire : • est relié à une HNB Gateway permettant, au moyen d'une procédure d'interrogation, une mise en correspondance entre un LAl/RAI-air et une adresse de SGSN, afin de maintenir un lien entre le LAI/RAI-air diffusé par le HNB et le LAI/RAI-land utilisé dans le réseau cœur UMTS,
• possède une interface Gp avec le réseau cœur UMTS classique, et
• est déclaré en tant que SGSN coopératif vis-à-vis des SGSN du réseau cœur UMTS, de manière à pouvoir assurer l'interface, lors de la migration d'un UE à partir d'une première cellule 1 vers une seconde cellule 2, entre les serveurs SGSN1 et SGSN2 au moyen du protocole GTP mentionné ci-dessus.
On notera que le SGSN-mandataire pourra optionnellement être physiquement intégré dans la HNB Gateway. Quel que soit le cas, on désigne le SGSN-mandataire sous le nom de "serveur SGSN-mandataire" dans le présent document.
La HNB Gateway conserve, et exécute conformément au protocole RANAP sur l'interface lu, la correspondance entre les LAI/RAI-air diffusés et les LAI/RAI-land utilisés dans le réseau cœur UMTS. Grâce à l'invention, on peut donc associer à un LAI/RAI-air l'adresse du SGSN approprié. On notera que la HNB Gateway telle que définie dans la norme 3GPP ne met pas en œuvre une telle fonctionnalité.
La figure 4 illustre un procédé de récupération de contexte PDP selon un mode de réalisation de l'invention. Ce procédé comprend les étapes suivantes.
Lors de la migration d'une couverture HNB à une couverture Macro avec un contexte PDP actif, puisque le LAI/RAI diffusé est différent, l'UE émet, à l'étape E1 , une requête de mise à jour (GMM ROUTING AREA UPDATE REQÙEST) à destination du serveur SGSN2 (représenté par "Target SGSN" sur la figure 4) du réseau cœur CN. Cette requête mentionne notamment les paramètres LAI/RAI-air diffusés au sein de la zone HNB dans laquelle l'UE était enregistré.
Le serveur SGSN2 ne peut pas reconnaître ce LAI/RAI-air : il exécute donc, à l'étape E2, une procédure de consultation de DNS, comme décrit ci-dessus en référence à ia figure 2. Cette interrogation lui fournit l'adresse 1P du SGSN-mandataire.
A l'étape E3, le serveur SGSN2 envoie au SGSN-mandataire via l'interface Gp une requête d'interrogation (message "Context REQ" sur la figure 4) au moyen du protocole GTP, afin de récupérer l'ancien contexte PDP. Entre autres paramètresi cette requête mentionne le P-TMSI de l'UE et le LAI/RAI-air que ie serveur SGSN2 a tiré de la requête de mise à jour qu'il a reçue de TUE.
Le SGSN-mandataire exécute, à l'étape E4, une traduction entre le LAI/RAI-air et le LAI/RAI-land correspondant (tels que connus de la HNB Gateway).
Le SGSN-mandataire envoie, à l'étape E5, ce LAI/RAI-land au SGSN2 (message "Context REQ" sur la figure 4).
A l'étape E6, le SGSN2 envoie au SGSN-mandataire une requête GTP de contexte PDP (message "Context RESP" sur ia figure 4), avec le LAI/RAI-land comme paramètre.
A l'étape E7, le SGSN2 reçoit de la part du SGSN-mandataire (message "Context RESP" sur la figure 4) le contexte PDP (toujours actif) de l'UE, et confirme cette réception au SGSN-mandataire, et confirme cette réception au SGSN-mandataire (message "Context ACK" sur la figure 4).
Enfin, à l'étape E8, le serveur SGSN2 obtient la mise à jour du contexte PDP dans le GGSN (étapes "GTP Update" sur la figure 4), ainsi que la mise à jour de la localisation GPRS dans le HLR (étapes "MAP Update" sur la figure 4).
La mise en œuvre de l'invention au sein des nœuds du réseau de télécommunications (plus précisément, les serveurs DNS et SGSN- mandataire dans le mode de réalisation décrit ci-dessus) peut être réalisée au moyen de composants logiciels et/ou matériels. Les composants logiciels pourront être intégrés à un programme d'ordinateur classique de gestion de n ud de réseau. C'est pourquoi, comme indiqué ci-dessus, la présente invention concerne également un système informatique. Ce système informatique comporte de manière classique une unité centrale de traitement commandant par des signaux une mémoire, ainsi qu'une unité d'entrée et une unité de sortie. De plus, ce système informatique peut être utilisé pour exécuter un programme d'ordinateur comportant des instructions pour la mise en œuvre du procédé de gestion d'itinérance selon l'invention.
En effet, l'invention vise aussi un programme d'ordinateur téléchargeable depuis un réseau de télécommunications comprenant des instructions pour l'exécution des étapes d'un procédé de gestion d'itinérance selon l'invention, lorsqu'il est exécuté sur un ordinateur. Ce programme d'ordinateur peut être stocké sur un support lisible par ordinateur et peut être exécutable par un microprocesseur.
Ce programme peut utiliser n'importe quel langage de programmation, et se présenter sous la forme de code source, code objet, ou de code intermédiaire entre code source et code objet, tel que dans une forme partiellement compilée, ou dans n'importe quelle autre forme souhaitable.
L'invention vise aussi un support d'informations lisible par un ordinateur, et comportant des instructions d'un programme d'ordinateur tel que mentionné ci-dessus.
Le support d'informations peut être n'importe quelle entité ou dispositif capable de stocker le programme. Par exemple, le support peut comporter un moyen de stockage, tel qu'une ROM, par exemple un CD ROM ou une ROM de circuit microélectronique, ou encore un moyen d'enregistrement magnétique, par exemple une disquette ("floppy dise" en anglais) ou un disque dur. D'autre part, le support d'informations peut être un support transmissible tel qu'un signal électrique ou optique, qui peut être acheminé via un câble électrique ou optique, par radio ou par d'autres moyens. Le programme d'ordinateur selon l'invention peut être en particulier téléchargé sur un réseau de type Internet.
En variante, le support d'informations peut être un circuit intégré dans lequel le programme est incorporé, le circuit étant adapté pour exécuter ou pour être utilisé dans l'exécution du procédé de gestion d'itinérance selon l'invention.

Claims

R E V E N D I C A T I O N S
1. Procédé de gestion d'itinérance en mode paquet dans un réseau de radiocommunication cellulaire, comprenant, lors de la migration d'un équipement d'utilisateur (UE) d'une première cellule (1) gérée par un premier serveur SGSN (SGSN1) vers une seconde cellule (2) gérée par un second serveur SGSN (SGSN2), ledit équipement d'utilisateur (UE) ayant préalablement établi un contexte PDP dans ladite première cellule (1), une étape au cours de laquelle l'équipement d'utilisateur (UE) émet, à destination dudit second serveur (SGSN2), une requête de mise à jour de zone de routage (RAU) paramétrée par l'identifiant de zone de la première cellule (1) au niveau du réseau d'accès (LAI/RAI-air), caractérisé en ce qu'il comprend ensuite les étapes suivantes :
a) le second serveur (SGSN2) obtient l'adresse IP d'un serveur, dit "SGSN-mandataire", qui est relié à une passerelle HNB Gateway et qui est déclaré en tant que SGSN coopératif vis-à-vis des SGSN du réseau cœur (CN) ;
b) le second serveur (SGSN2) envoie audit serveur SGSN- mandataire une requête d'interrogation paramétrée par un identifiant (P- TMSI) de l'équipement d'utilisateur (UE), et par ledit identifiant de zone de la première cellule (1) au niveau du réseau d'accès (LAI/RAI-air) ;
c) le serveur SGSN-mandataire exécute une traduction entre l'identifiant de zone de la première cellule (1) au niveau du réseau d'accès (LAI/RAI-air) et l'identifiant de zone de la première cellule (1) au niveau du cœur de réseau (LAI/RAI-land) ;
d) le SGSN-mandataire envoie au second serveur (SGSN2) ledit l'identifiant de zone (LAI/RAI-land) au niveau du cœur de réseau ;
e) le second serveur (SGSN2) envoie au SGSN-mandataire une requête de contexte PDP paramétrée par l'identifiant de zone (LAI/RAI- land) au niveau du cœur de réseau ; et f) le second serveur (SGSN2) reçoit de la part du SGSN-mandataire ledit contexte PDP de l'équipement d'utilisateur (UE).
2. Procédé de gestion d'itinérance selon la revendication 1 , caractérisé en ce que ladite étape a) comprend les sous-étapes suivantes ;
- le second serveur (SGSN2) envoie à un serveur DNS une requête de consultation DNS paramétrée par des informations de zone de routage relatives auxdites première cellule (1) et seconde cellule (2) ; et
- ledit serveur DNS envoie au second serveur (SGSN2) l'adresse IP dudit serveur SGSN-mandataire.
3. Procédé de gestion d'itinérance selon la revendication 1 ou la revendication 2, caractérisé en ce que ledit réseau de radiocommunication cellulaire est un réseau GSM.
4. Procédé de gestion d'itinérance selon la revendication 1 ou la revendication 2, caractérisé en ce que ledit réseau de radiocommunication cellulaire est un réseau UMTS.
5. Dispositif, dit "serveur SGSN-mandataire", pour la gestion d'itinérance en mode paquet dans un réseau de radiocommunication cellulaire, caractérisé en ce qu'il est relié à une passerelle HNB Gateway, en ce qu'il est déclaré en tant que SGSN coopératif vis-à-vis des SGSN du réseau cœur (CN), et en ce qu'il comprend des moyens pour, lors de la migration d'un équipement d'utilisateur (UE) d'une première cellule (1) gérée par un premier serveur SGSN (SGSN1) vers une seconde cellule (2) gérée par un second serveur SGSN (SGSN2), ledit équipement d'utilisateur (UE) ayant préalablement établi un contexte PDP dans ladite première cellule (1) :
- recevoir, de la part dudit second serveur (SGSN2), une requête d'interrogation paramétrée par un identifiant (P-TMSI) de l'équipement d'utilisateur (UE), et par l'identifiant de zone de la première cellule (1) au niveau du réseau d'accès (LAI/RAI-air) ;
- exécuter une traduction entre l'identifiant de zone de la première cellule (1) au niveau du réseau d'accès (LAI/RAI-air) et l'identifiant de zone de la première cellule (1) au niveau du cœur de réseau (LAI/RAI- land) ;
- envoyer au second serveur (SGSN2) ledit l'identifiant de zone (LAI/RAI-land) au niveau du cœur de réseau ;
- recevoir, de la part dudit second serveur (SGSN2), une requête de contexte PDP paramétrée par l'identifiant de zone (LAI/RAI-land) au niveau du cœur de réseau ; et
- envoyer au second serveur (SGSN2) ledit contexte PDP de l'équipement d'utilisateur (UE).
6. Dispositif de gestion d'itinérance selon la revendication 5, caractérisé en ce que ledit réseau de radiocommunication cellulaire est un réseau GSM.
7. Dispositif de gestion d'itinérance selon la revendication 5, caractérisé en ce que ledit réseau de radiocommunication cellulaire est un réseau UMTS.
8. Passerelle HNB Gateway, caractérisée en ce qu'elle comprend un dispositif de gestion d'itinérance selon l'une quelconque des revendications 5 à 7, ledit dispositif étant physiquement intégré dans ladite passerelle HNB Gateway.
9. Moyen de stockage de données inamovible, ou partiellement ou totalement amovible, comportant des instructions de code de programme informatique pour l'exécution des étapes d'un procédé de gestion d'itinérance selon l'une quelconque des revendications 1 à 4.
10. Programme d'ordinateur téléchargeable depuis un réseau de communication et/ou exécutable par un microprocesseur, caractérisé en ce qu'il comprend des instructions pour l'exécution des étapes d'un procédé de gestion d'itinérance selon l'une quelconque des revendications 1 à 4, lorsqu'il est exécuté sur un ordinateur.
PCT/FR2010/052690 2009-12-16 2010-12-13 Gestion d'itinerance en mode paquet dans un reseau de radiocommunication WO2011080446A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959056A FR2954038A1 (fr) 2009-12-16 2009-12-16 Gestion d'itinerance en mode paquet dans un reseau de radiocommunication
FR0959056 2009-12-16

Publications (1)

Publication Number Publication Date
WO2011080446A1 true WO2011080446A1 (fr) 2011-07-07

Family

ID=42537579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052690 WO2011080446A1 (fr) 2009-12-16 2010-12-13 Gestion d'itinerance en mode paquet dans un reseau de radiocommunication

Country Status (2)

Country Link
FR (1) FR2954038A1 (fr)
WO (1) WO2011080446A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR25820A (tr) 1991-02-08 1993-09-01 Santa Barbara Res Center Menzil ici duyarliligi önleyen iyilestirilmis hedef algilayicisi
WO2002034000A2 (fr) 2000-10-16 2002-04-25 Telefonaktiebolaget L M Ericsson (Publ) Dispositif et procede d'identification de msc/sgsn dans un reseau mobile organise de maniere non hierarchique
US20070105568A1 (en) * 2005-10-04 2007-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Paging for a radio access network having pico base stations
EP2079258A1 (fr) * 2008-01-11 2009-07-15 Lucent Technologies Inc. Affectation automatique de codes régionaux pour le déploiement femtocell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR25820A (tr) 1991-02-08 1993-09-01 Santa Barbara Res Center Menzil ici duyarliligi önleyen iyilestirilmis hedef algilayicisi
WO2002034000A2 (fr) 2000-10-16 2002-04-25 Telefonaktiebolaget L M Ericsson (Publ) Dispositif et procede d'identification de msc/sgsn dans un reseau mobile organise de maniere non hierarchique
US20070105568A1 (en) * 2005-10-04 2007-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Paging for a radio access network having pico base stations
EP2079258A1 (fr) * 2008-01-11 2009-07-15 Lucent Technologies Inc. Affectation automatique de codes régionaux pour le déploiement femtocell

Also Published As

Publication number Publication date
FR2954038A1 (fr) 2011-06-17

Similar Documents

Publication Publication Date Title
EP1367776B1 (fr) Procédé et dispositif de contrôle d'accès à un réseau local de communication sans fil
EP2084927B1 (fr) Procede et systeme de mobilite personnalisee par l'utilisateur dans un systeme de communication mobile
EP3479644A1 (fr) Procédé de connexion d'un terminal utilisateur à une tranche de réseau
EP1560368A1 (fr) Procédé d'établissement d'une session multimédia entre un équipement appelant et un équipement appelé d'un réseau du type à sous domaine multimédia et système de communication mettant en oeuvre ce procédé
EP2090056B1 (fr) Systeme de controle d'acces a un service, procede, dispositif de controle et programme d'ordinateur correspondants
FR2904914A1 (fr) Procede de gestion d'interfonctionnement pour le transfert de sessions de service d'un reseau local sans fil vers un reseau mobile, et noeuds sgsn correspondants
WO2008047039A1 (fr) Procede de configuration d'une borne d'acces a un service, controleur, reseau d'acces, borne d'acces et programme d'ordinateur associes
FR3029728A1 (fr) Procede de provisionnement d'un profil de souscripteur pour un module securise
EP2078412A1 (fr) Procédé d'accès à un service, via un réseau hétérogène où plusieurs types d'accès sont disponibles, à parti r d'un terminal d'un utilisateur
FR2893212A1 (fr) Procede de gestion d'un interfonctionnement entre au moins u un reseau local sans fil et un reseau mobile, station mobile noeud sgsn et passerelle ttg correspondants
CA2813686C (fr) Procede d'identification d'un reseau hote d'un terminal utilisateur parmi au moins deux reseaux formant une infrastructure de radiocommunications
CA2812436C (fr) Procede d'attachement et d'authentification d'un terminal utilisateur aupres d'un reseau visite
FR2970829A1 (fr) Procede d'attachement d'un terminal utilisateur a un reseau de paquets
WO2016207519A1 (fr) Terminal et procede d'activation d'une pile protocolaire
WO2010139780A1 (fr) Procédé de calcul d'un premier identifiant d'un élément sécurisé d'un terminal mobile à partir d'un second identifiant de cet élément sécurisé
FR3042088A1 (fr) Procede de gestion des identites dans un reseau mobile collaboratif et systeme mettant en oeuvre le procede
CA3077313A1 (fr) Procede d'aide a un basculement de terminal mobile entre reseaux locaux sans-fil communautaires
EP3526993A1 (fr) Sécurisation du choix du réseau visité en itinérance
FR3010607A1 (fr) Systeme de reseaux cellulaires avec carte sim virtuelle et equipement de support
WO2011080446A1 (fr) Gestion d'itinerance en mode paquet dans un reseau de radiocommunication
EP1998515B1 (fr) Procédés de gestion d'interfonctionnement entre un réseau 3GPP visité disposant de réseaux d'accès 3GPP et WLAN et un réseau 3GPP de domicile pour une station mobile itinérante, et noeud SGSN et passerelle TTG correspondants
FR3022722A1 (fr) Procede d'acces simultane a des reseaux de communication par paquets par un terminal utilisateur
WO2015086975A1 (fr) Procédé de test de qualité de service, module d'identité de souscripteur, terminal mobile et système correspondants
WO2023118024A1 (fr) Gestion de demandes de découverte dans un réseau
WO2010061118A1 (fr) Localisation et controle d'acces d'un terminal dans un reseau

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10805473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10805473

Country of ref document: EP

Kind code of ref document: A1