WO2011079663A1 - 光纤直流磁光探测系统和方法 - Google Patents

光纤直流磁光探测系统和方法 Download PDF

Info

Publication number
WO2011079663A1
WO2011079663A1 PCT/CN2010/078968 CN2010078968W WO2011079663A1 WO 2011079663 A1 WO2011079663 A1 WO 2011079663A1 CN 2010078968 W CN2010078968 W CN 2010078968W WO 2011079663 A1 WO2011079663 A1 WO 2011079663A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
magneto
magnetic field
laser
Prior art date
Application number
PCT/CN2010/078968
Other languages
English (en)
French (fr)
Inventor
袁海骏
Original Assignee
上海舜宇海逸光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海舜宇海逸光电技术有限公司 filed Critical 上海舜宇海逸光电技术有限公司
Priority to US13/519,967 priority Critical patent/US8773119B2/en
Publication of WO2011079663A1 publication Critical patent/WO2011079663A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0322Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Faraday or Voigt effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/165Auxiliary devices for rotating the plane of polarisation
    • H01P1/175Auxiliary devices for rotating the plane of polarisation using Faraday rotators

Definitions

  • the present invention relates to the field of optical applications, and in particular to a fiber-optic DC magneto-optical detection system and method.
  • BACKGROUND OF THE INVENTION Due to the advantages of large capacity, high transmission efficiency, and low electromagnetic radiation, direct current transmission has begun to be valued in the modern generation of energy transmission. Since it is a direct current transmission, the current on the transmission line cannot be measured by an electromagnetic induction transformer. How to measure the direct current becomes a technical problem. Some people use the Hall effect to measure DC current, but their sensitivity is low, equipment costs are high, and high voltage insulation is difficult.
  • magneto-optical effects such as the Faraday effect are widely used in the measurement of current and magnetic fields.
  • the Faraday effect can be achieved by materials such as magneto-optical glass, magneto-optical crystals, or optical fibers. Since the carrier light intensity of the usual magneto-optical effect is a constant current signal, it is difficult to ensure that it remains unchanged for several years or even ten years. If the magneto-optical effect is used to measure the DC magnetic field or current, the problem that the current signal and the light intensity signal cannot be separated will be encountered. As shown in Fig. 1, it is a fiber optic magneto-optical measurement system of the related art, which system is composed of a power supply and signal processing module 400, a magneto-optical probe 100, and a conductive fiber optic device 200.
  • the laser light emitted by the power source and signal processing module 400 is conducted to the magneto-optical probe 100 through the fiber optic device 200.
  • the magneto-optical probe is designed to sense the magnetic field of the environment in which the magneto-optical probe 100 is located according to certain optical principles, such as the Faraday magneto-optical effect.
  • the magnetic field signal is converted into an optical signal, and the optical signal is transmitted to the power supply and signal processing module 400 through the optical fiber device 200.
  • the power supply and signal processing module 400 performs data processing according to the received optical signal to obtain a measurement point. Information about magnetic fields.
  • the measurement process of the system shown in Figure 1 can be described by: (1):
  • / / 0 (l + Cl H) (1)
  • / represents the optical signal detected by the photodetector in the power supply and signal processing module 400, /. It is a parameter related to laser light intensity, transmittance, etc.
  • c is a magneto-optical parameter, which is related to the magneto-optical material and the polarization detecting mechanism of the magneto-optical probe 100, and J is the measured magnetic field. usually, /. And c will suffer The impact of environmental factors. If the measured magnetic field H is AC, the DC component can be /. And the AC component e J is measured separately and divided to obtain c J . If c does not change with temperature, the measurement results will reflect the measured magnetic field well.
  • the influence of environmental factors on c needs to be removed. If the measured magnetic field H is a DC signal, the above method will not remove /. , which in turn leads to inaccurate measurement results.
  • the inventors found in the process of implementing the invention that: the application of various materials for magneto-optical measurement is affected by environmental factors such as temperature and stress or the strength of the measured magnetic field, and these effects will lead to inaccurate measurement.
  • materials such as garnet magneto-optical crystals, under the action of a certain intensity of direct current or alternating external magnetic field, may cause irregular disturbances in the microscopic magnetic domains, thereby affecting the optical characteristics and making the measurement uncertain. Moreover, no reasonable solution has been proposed for these problems.
  • an embodiment of the present invention provides a fiber-optic DC magneto-optical detection system, the system comprising: a power supply and a signal processing module, a fiber optic device, a reference device, and a magneto-optical probe; wherein, the power source and the signal processing module And transmitting the laser light to the magneto-optical probe through the optical fiber device; and receiving the optical signals carried by the laser light 7 from the magneto-optical probe in two ways, and respectively converting the two optical signals into two paths
  • An electrical signal which is processed according to a reference magnetic field pulse signal sent by the reference device to obtain self-magnetic field information and/or current information of the measurement point; a fiber optic device, configured to be used from the power source and The laser of the signal processing module is divided into two paths
  • a reference device for generating a reference magnetic field pulse signal having a known amplitude and shape at the measurement point; a magneto-optical probe for detecting the measurement a magnetic field signal of the point, the magnetic field signal being converted into an optical signal, wherein the magnetic field signal is a signal superposed by the reference magnetic field pulse signal and the self magnetic field signal generated by the measuring point; and is further configured to receive the two lasers And transmitting the converted optical signals on the two lasers respectively.
  • an embodiment of the present invention provides a method for detecting a DC magneto-optical fiber, the method comprising: a power source and a signal processing module transmitting a laser; and a fiber optic device dividing the laser into two paths, respectively
  • the two lasers are sent to both ends of the magneto-optical probe;
  • the magneto-optical probe receives the two lasers, and detects a magnetic field signal of the measuring point, and converts the magnetic field signal into an optical signal, and the converted
  • the optical signals are respectively transmitted on the two lasers;
  • the magnetic field signals are signals superposed by a reference magnetic field pulse signal and a self magnetic field signal generated by the measurement point; wherein the reference magnetic field pulse signal is a reference device at a measurement point Generating a signal of known magnitude and shape;
  • the fiber optic device transmits the optical signal from the magneto-optical probe to the power source and signal processing module in two ways;
  • the power source and signal processing module are received in two ways An optical signal of the magneto-optical probe
  • FIG. 1 is a block diagram showing the structure of a fiber-optic magneto-optical detection system in the related art
  • FIG. 2 is a block diagram showing the structure of a fiber-optic DC magneto-optical detection system according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram showing the composition and relationship of the components in the signal detected by the photodetector provided in Embodiment 2 of the present invention
  • FIG. 1 is a block diagram showing the structure of a fiber-optic DC magneto-optical detection system in the related art
  • FIG. 2 is a block diagram showing the structure of a fiber-optic DC magneto-optical detection system according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram showing the composition and relationship of the components in the signal detected by the photo
  • FIG. 5 is a structural block diagram of a fiber-optic DC magneto-optical detection system according to Embodiment 3 of the present invention
  • FIG. 6 is a flow chart showing a method for detecting a DC magneto-optical fiber according to Embodiment 4 of the present invention.
  • this embodiment provides a fiber-optic DC magneto-optical detection system, which includes: a magneto-optical probe 100, a fiber optic device 200, a reference device 300, and a power and signal processing module 400, wherein The optical probe 100 and the reference device 300 are around the measurement point, the position of the measurement point may be a high potential, and the power supply and signal processing module 400 is placed at a safe near-Earth potential, and the electrically insulated conductive fiber device 200 is passed between them.
  • a power supply and signal processing module 400 for transmitting laser light to the magneto-optical probe 100 through the optical fiber device 200; and receiving optical signals from the magneto-optical probe 100 and carried on the laser light in two ways, and respectively respectively
  • the signal is converted into two electrical signals, and the two electrical signals are processed according to the reference magnetic pulse signal sent by the reference device 300 to obtain the magnetic field information and/or current information of the measuring point; the optical fiber device 200 is configured to receive the power and the signal.
  • the laser of the processing module 400 is divided into two paths, and two lasers are respectively sent to both ends of the magneto-optical probe 100, and the magneto-optical probe 100 is received.
  • the optical signal carried on the laser is sent to the power supply and signal processing module 400 in two ways;
  • the reference device 300 is configured to generate a reference magnetic field pulse signal having a known amplitude and shape at the measurement point;
  • the magneto-optical probe 100 is used for Detecting the magnetic field signal of the measuring point, converting the magnetic field signal into an optical signal, the magnetic field signal is a signal superimposed by the reference magnetic field pulse signal and the self magnetic field signal generated by the measuring point; and is also used for receiving two lasers, respectively, and converting the converted optical signals respectively
  • the carrier is sent on two lasers.
  • the method for measuring the DC magnetic field or current of the fiber of the Faraday magneto-optical effect is used, and the measurement result can be calibrated in real time, thereby solving the measurement problem of high sensitivity and large-range DC current.
  • the system provided by the embodiment corrects the measured signal by using the reference magnetic field pulse signal generated by the reference device to remove the influence of environmental factors on the measurement, thereby obtaining accurate measurement data; Due to the use of optical methods in this system, the signal propagation paths are all insulated with insulators, thus achieving safe isolation in the high-voltage power grid.
  • Embodiment 2 Referring to FIG.
  • this embodiment provides a fiber-optic DC magneto-optical detection system, which includes: a magneto-optical probe 100, a fiber optic device 200, a reference device 300, and a power and signal processing module 400, wherein the magneto-optical probe 100 and the reference device 300 are around the measurement point, the position of the measurement point may be a high potential, and the power supply and signal processing module 400 is placed at a safe near-Earth potential, which are connected by an electrically insulated conductive fiber device 200;
  • the power supply and signal processing module 400 includes at least a laser 41, photodetectors 42a and 42b, a control and signal processing module 44, and a laser 41 for transmitting laser light to the magneto-optical probe 100 through the optical fiber device 200; two photodetectors 42a And 42b, for respectively receiving the optical signals from the magneto-optical probe 100 and carried on the laser, respectively converting the optical signals into electrical signals, and transmitting; the control and signal processing module 44, for receiving the two photodetectors 42a And the electrical
  • the optical fiber device 200 includes a connected optical fiber and a splitter 21, and two circuit breakers 22a and 22b.
  • the laser 41 emits laser light through the splitter 21 and is divided into two paths, which are respectively passed through the loopers 22a and 22b from the magneto-optical probe. Both ends of 100 enter and pass through the magnetic sensitive material in the magneto-optical probe 100 in the opposite direction, and are emitted through the other end, and then photoelectrically converted to the photodetectors 42a and 42b through the loopers 22b and 22a, respectively.
  • the function of the reference device 300 is to generate a reference magnetic field pulse signal whose amplitude and shape are known and which are not affected by environmental factors.
  • the reference magnetic field pulse signal is linearly superimposed with the measured DC magnetic field signal and is sensed by the magneto-optical probe 100.
  • the signals detected on the photodetectors 42a and 42b can be expressed by equations (2) and (3):
  • I b I b0 [l - Cl (H + H r ) (3)
  • ⁇ and / 6 are the signals detected by photodetectors 42a and 42b, I a . And / 6 .
  • c is a magneto-optical sensitivity parameter with the magneto-optical probe 100 at a certain time
  • J is the measured magnetic field
  • And c may be affected by environmental factors.
  • the DC term in the signal S is represented by ⁇ :, for the pulse, they can also be separated from each other, and further dividing can obtain the ratio of the measured magnetic field to the reference magnetic field:
  • the measured r can be obtained. Measure the value of the DC magnetic field. Since the control and signal processing module 44 in the system provided by the embodiment performs data processing, the parameter ⁇ affected by environmental factors is removed. , / 6 . And c, so the measurement result is completely determined by the accuracy of the reference magnetic field pulse signal. According to the reference magnetic field pulse signal, the measured magnetic field signal can be determined, and the measurement accuracy is improved.
  • Embodiment 3 Referring to FIG.
  • this embodiment provides a fiber-optic DC magneto-optical detection system, which includes: two magneto-optical probes 100a and 100b, a fiber optic device 200, a reference device 300, and a power and signal processing module 400, wherein The magneto-optical probes 100a and 100b, the reference device 300 are around a measurement point (eg, a current-carrying conductor) 800, the position of the measurement point 800 can be a high potential, and the power supply and signal processing module 400 is placed at a safe near-ground potential.
  • a measurement point eg, a current-carrying conductor
  • the power supply and signal processing module 400 in this embodiment comprises: two lasers 41a and 41b; a reference laser 43; photodetectors 42a, 42b, 42c and 42d; Control and Signal Processing Module 44;
  • the reference laser 43 can emit a reference laser of a specified intensity and shape at a specified time in accordance with instructions from the control and signal processing module 44.
  • the specified intensity is a pre-specified light intensity that enables the reference device 300 to produce a highly accurate, highly reproducible magnetic field signal.
  • the optical fiber device 200 includes an optical fiber, two splitters 21a and 21b, and four circuit breakers 22a, 22b, 22c and 22d, and their connection relationship is as follows.
  • Figure 5 wherein, the optical fiber, the splitter 21a, the loopers 22a, 22b are a set of transmission modules, the optical fiber, the splitter 21b, the loopers 22c and 22d are another set of transmission modules; the laser light emitted by the laser 41a is Introduced into the splitter 21a, the splitter 21a divides the laser into two beams, passes through the loopers 22a and 22b, respectively enters from both ends of the magneto-optical probe 100a, and passes through the magneto-optical probe 100a in the opposite direction.
  • the magnetically sensitive material exits through the other end and is then transmitted through the loopers 22c and 22d to photodetectors 42a and 42b for photoelectric conversion.
  • the laser light from the laser 41b is introduced into the splitter 21b, and the splitter 21b divides the laser equally.
  • the loopers 22c and 22d After passing through the loopers 22c and 22d, they enter from the two ends of the magneto-optical probe 100b, respectively, and pass through the magnetic sensitive material in the magneto-optical probe 100b in the opposite direction, exit through the other end, and then pass through the looper 22c, respectively.
  • photoelectric conversion is performed on the photodetectors 42c and 42d.
  • the reference device 300 includes: a conductive fiber 31, a photoelectric conversion module 32, a wire 33, turns 34a and 34b, and a temperature compensation device 35 (optional); the conductive fiber 31 transmits a reference laser signal transmitted from the reference laser 43 to the photoelectric conversion module 32; the photoelectric conversion module 32 converts the reference laser signal into a reference current signal; the turns 34a, 34b and the temperature compensating device 35 are connected in series through the wire 33, and connected in parallel to the current output end of the photoelectric conversion module 32; the turns 34a and 34b respectively Nested on the outside of the magneto-optical probes 100a and 100b; the photocurrent generated by the reference laser signal generates a known constant reference magnetic field pulse signal through the turns 34a and 34b; the reference magnetic field pulse signal and the measured magnetic field are linearly superimposed and then the magneto-optical probe 100a And 100b detection; the role of the temperature compensation device 35 is to compensate for the change in the photodiode resistance of the turns 34a and 34b due to temperature changes, thereby
  • H. J may be similar but equal; H r , J ⁇ are the same photocurrent Generated reference magnetic field pulse signal, They may not be exactly equal due to the structure of the turns, but they are each a certain value. According to the signal processing method described in the embodiment, the signals returned from the two magneto-optical probes are respectively processed, and the ratio of the measured magnetic field to the reference magnetic field can be obtained:
  • the magnetic field of the measuring point 800 includes the magnetic field generated by the current in the measuring point 800 and the external magnetic field, that is:
  • an embodiment of the present invention provides a method for detecting a DC magneto-optical fiber.
  • the method is described by using the system provided in Embodiment 1 as an example.
  • the method includes: Step 4: 501, power supply and
  • the signal processing module 400 transmits a laser; step 502, the optical fiber device 200 divides the laser into two paths, and respectively sends two lasers to both ends of the magneto-optical probe 100; Step 503, the magneto-optical probe 100 receives two lasers, and detects the measurement points.
  • the magnetic field signal converts the magnetic field signal into an optical signal, and the converted optical signal is respectively carried on two lasers; the magnetic field signal is a signal superposed by the reference magnetic field pulse signal and the self magnetic field signal generated by the measuring point; wherein the reference magnetic field
  • the pulse signal is a signal whose reference amplitude and shape are generated by the reference device 300 at the measurement point.
  • the optical fiber device 200 transmits the optical signal from the magneto-optical probe 100 to the power supply and signal processing module 400 in two ways; step 505;
  • the power and signal processing module 400 receives the optical signals from the magneto-optical probe 100 in two ways, and converts the two optical signals into two electrical signals respectively.
  • the method for measuring the DC magnetic field or current of the optical fiber effect of the Faraday magneto-optical effect can be used to calibrate the measurement result in real time according to the reference magnetic field pulse signal, thereby solving the measurement problem of high sensitivity and large-scale DC current, and capable of More accurate measurement results are obtained.
  • the system uses optical methods, and all the signal propagation paths use insulators, thus achieving safe isolation in the high-voltage power grid.
  • the material for sensing the magnetic field in the magneto-optical probe 100 in the above embodiment may be magneto-optical glass, It can be a magneto-optical crystal or it can be the fiber itself.
  • the number of magneto-optical probes 100 in the measurement may be one or more.
  • the power source and signal processing module 400 can be provided with a set of photodetectors or multiple sets for detecting whether light or electric signals are transmitted.
  • the photodetector can apply various technologies such as differential. All of these variables do not hinder the implementation of the system provided by this embodiment. Although described in the above embodiments with a magneto-optical crystal measuring system, it does not hinder the coverage of various applications in which the essence of the present invention is applied.
  • the above-mentioned embodiments of the present invention achieve the following technical effects: ⁇
  • the method of measuring the DC magnetic field or current of the fiber using the magneto-optical effect can perform real-time calibration of the measurement result and solve the high Sensitivity, large-scale DC current measurement problems, and can get more accurate measurement results;
  • the system uses the optical method, the signal propagation path uses all insulators, and thus achieves safe isolation in the high-voltage power grid.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measuring Magnetic Variables (AREA)

Description

光纤直流磁光探测系统和方法 技术领域 本发明涉及光学应用领域, 具体而言, 涉及光纤直流磁光探测系统和方 法。 背景技术 由于直流输电具有大容量、 高传输效率、 低电磁辐射等优点, 在现代新 一代能源传输中开始被重视。 由于是直流输电, 传输线上的电流无法通过釆 用电磁感应的互感器来测量, 如何测量直流电流成为技术难题。 有人通过霍 尔效应来测量直流电流, 但其灵敏度较低, 设备成本较高且很难进行高压绝 缘。 目前, 法拉第效应等磁光效应广泛应用于电流和磁场的测量。 法拉第效 应可由磁光玻璃、 磁光晶体、 或光纤等材料来实现。 由于通常磁光效应的载 体光强是一直流信号 ,且很难保证在几年甚至十几年的使用寿命内保持不变。 如果用磁光效应来测量直流磁场或电流, 就会碰到电流信号和光强信号无法 分开的难题。 如图 1所示, 为相关技术中的光纤磁光测量系统, 该系统由电源和信号 处理模块 400、 磁光探头 100和传导的光纤装置 200构成。 电源和信号处理 模块 400发出的激光通过光纤装置 200传导到磁光探头 100中, 磁光探头根 据一定的光学原理, 如法拉第磁光效应, 设计来感知磁光探头 100所处环境 的磁场, 并 4巴磁场信号转变成光信号, 光信号载在上述激光中通过光纤装置 200传回电源和信号处理模块 400, 电源和信号处理模块 400根据收到的光 信号, 经过数据处理, 得到测量点的有关磁场信息。 图 1所示系统的测量过程可由下式 ( 1 ) 描述:
/ = /0(l + ClH) (1) 其中 /表示电源和信号处理模块 400中光电探测器测到的光信号, /。是 与激光发光光强、 透过率等相关的参数; c 是磁光参数, 与磁光材料及磁光 探头 100的偏振检测机构有关, J是被测磁场。 通常情况下, /。和 c 都会受 环境因素的影响。 如果被测的磁场 H是交流的, 可以对直流成分 /。和交流成 分 e J分别测量, 并相除从而得到 c J。 如果 c 不随温度变化, 测量 结果将能很好地反映被测磁场, 否则, 需要去除环境因素对 c 的影响。 如果 被测的磁场 H是直流信号, 上述方法将不能去除 /。, 进而导致测量的结果不 准确。 同时,发明人在实现本发明的过程中发现: 应用各种材料进行磁光测量, 都会受到温度、 应力等环境因素或被测磁场的强度影响, 这些影响将会导致 测量不准确。 特别是, 发明人发现石榴石磁光晶体等材料, 在一定强度的直 流或交变外磁场作用下, 其微观磁畴会产生不规律的扰动, 进而影响光学特 性, 使测量出现不确定性。 并且, 针对这些问题目前尚未提出合理的解决方 案。 发明内容 本发明旨在提供一种光纤直流磁光探测系统和方法, 能够通过实时校正 的方法来去除环境因素的影响而得到准确的测量数据等。 根据本发明的一个方面, 本发明实施例提供了一种光纤直流磁光探测系 统, 所述系统包括: 电源和信号处理模块、 光纤装置、 参考装置和磁光探头; 其中, 电源和信号处理模块, 用于通过所述光纤装置向所述磁光探头发送激 光; 以及分两路接收来自所述磁光探头的由所述激光 7 载的光信号, 并分别 将两路光信号转变为两路电信号, 根据所述参考装置发送的参考磁场脉冲信 号对所述两路电信号进行处理,得到所述测量点的自身磁场信息和 /或电流信 息; 光纤装置, 用于将来自所述电源和信号处理模块的激光分成两路, 分别 将所述两路激光发送至所述磁光探头的两端, 以及将来自所述磁光探头的光 信号分两路发送至所述电源和信号处理模块; 参考装置,用于在测量点产生一个幅值和形状已知的参考磁场脉冲信号; 磁光探头, 用于检测所述测量点的磁场信号, 将所述磁场信号转变为光 信号, 所述磁场信号为所述参考磁场脉冲信号和所述测量点产生的自身磁场 信号叠加后的信号; 还用于接收所述两路激光, 将转变后的光信号分别承载 在所述两路激光上发送。 才艮据本发明的另一个方面, 本发明实施例提供了一种光纤直流磁光探测 方法, 所述方法包括: 电源和信号处理模块发送激光; 光纤装置将所述激光分成两路, 分别将所述两路激光发送至所述磁光探 头的两端; 磁光探头接收所述两路激光, 并检测所述测量点的磁场信号, 将所述磁 场信号转变为光信号, 将转变后的光信号分别承载在所述两路激光上发送; 所述磁场信号为参考磁场脉冲信号和所述测量点产生的自身磁场信号叠加后 的信号; 其中所述参考磁场脉冲信号是参考装置在测量点产生的幅值和形状 已知的信号; 所述光纤装置将来自所述磁光探头的光信号分两路发送至所述电源和信 号处理模块; 所述电源和信号处理模块分两路接收来自所述磁光探头的光信号, 并分 别将两路光信号转变为两路电信号, -据所述参考磁场脉冲信号对所述两路 电信号进行处理, 得到所述测量点的自身磁场信息和 /或电流信息。 釆用参考装置产生的参考磁场脉冲信号校正测量到的信号, 来去除环境 因素对测量的影响, 进而得到准确的测量数据, 提高了系统的测量精度。 解 决了高灵敏度、 大量程直流电流的测量难题。 附图说明 附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发明的 示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在 附图中: 图 1示出了相关技术中光纤磁光探测系统的结构框图; 图 2示出了本发明实施例 1提供的光纤直流磁光探测系统的结构框图; 图 3示出了本发明实施例 2提供的光纤直流磁光探测系统的结构框图; 图 4示出了本发明实施例 2提供的光电探测器中探测到的信号中成分组 成和关系的示意图; 图 5示出了本发明实施例 3提供的光纤直流磁光探测系统的结构框图; 图 6示出了本发明实施例 4提供的光纤直流磁光探测方法的流程图。 具体实施方式 下面将参考附图并结合实施例, 来详细说明本发明。 实施例 1 如图 2所示,本实施例提供了一种光纤直流磁光探测系统,该系统包括: 磁光探头 100、 光纤装置 200、 参考装置 300和电源和信号处理模块 400 , 其 中, 磁光探头 100和参考装置 300被至于测量点周围, 测量点的位置可以是 高电势, 电源和信号处理模块 400置在安全的近地氏电势的地方, 它们之间 通过电绝缘的传导光纤装置 200连接; 电源和信号处理模块 400, 用于通过光纤装置 200向磁光探头 100发送 激光; 以及分两路接收来自磁光探头 100的并承载在上述激光上的光信号, 并分别将两路光信号转变为两路电信号, 根据参考装置 300发送的参考磁场 脉冲信号对两路电信号进行处理, 得到测量点的自身磁场信息和 /或电流信 息; 光纤装置 200 , 用于将来自电源和信号处理模块 400的激光分成两路, 分别将两路激光发送至磁光探头 100的两端, 以及将来自磁光探头 100的并 承载在上述激光上的光信号分两路发送至电源和信号处理模块 400; 参考装置 300 ,用于在测量点产生幅值和形状已知的参考磁场脉冲信号; 磁光探头 100 , 用于检测测量点的磁场信号, 将磁场信号转变为光信号, 磁场信号为参考磁场脉冲信号和测量点产生的自身磁场信号叠加后的信号; 还用于接收两路激光, 将转变后的光信号分别承载在两路激光上发送。 本实施例釆用的是法拉第磁光效应的光纤直流磁场或电流的测量方法, 能够对测量的结果进行实时校准, 解决了高灵敏度、 大量程直流电流的测量 难题。 本实施例提供的系统釆用参考装置产生的参考磁场脉冲信号校正测量到 的信号, 来去除环境因素对测量的影响, 进而得到准确的测量数据; 同时, 本系统由于釆用了光学方法, 信号传播路径全部釆用绝缘体, 进而实现了的 高压电网中的安全隔离。 实施例 2 参见图 3 , 本实施例提供了一种光纤直流磁光探测系统, 该系统包括: 磁光探头 100、 光纤装置 200、 参考装置 300和电源和信号处理模块 400, 其 中, 磁光探头 100和参考装置 300被至于测量点周围, 测量点的位置可以是 高电势, 电源和信号处理模块 400置在安全的近地氏电势的地方, 它们之间 通过电绝缘的传导光纤装置 200连接; 其中, 电源和信号处理模块 400至少包括激光器 41、 光电探测器 42a和 42b , 控制和信号处理模块 44; 激光器 41 , 用于通过光纤装置 200向磁光探头 100发送激光; 两个光电探测器 42a和 42b , 用于分别接收来自磁光探头 100的并承载 在上述激光上的光信号, 分别将光信号转变为电信号后发送; 控制和信号处理模块 44,用于接收两个光电探测器 42a和 42b发送的电 信号, 根据参考装置 300发送的参考磁场脉冲信号对电信号进行处理, 得到 测量点的自身磁场信息和 /或电流信息。 光纤装置 200 包括连接的光纤若千和一个分路器 21、 以及两个回路器 22a和 22b , 激光器 41发出激光经过分路器 21被分成两路, 分别经过回路 器 22a和 22b从磁光探头 100的两端进入,并以相反的方向通过磁光探头 100 中的磁敏材料, 经由另一端发出去, 然后分别通过回路器 22b和 22a , 到光 电探测器 42a和 42b上进行光电转换。 参考装置 300的作用是在测量点上产 生幅值和形状已知, 且不受环境因素变化的参考磁场脉冲信号, 该参考磁场 脉冲信号与被测直流磁场信号线性叠加后被磁光探头 100感知。 这样, 由于 两路光经过磁光探头 100的光路完全一样而方向相反, 使得光电探测器 42a 和 42b上检测的信号可由公式 ( 2 ) 和 ( 3 )表示:
Ia = Ia0[l + c, (H + Hr) ] (2)
Ib = Ib0[l - Cl (H + Hr) (3) 式中 Λ和/ 6是光电探测器 42a和 42b检测到的信号, Ia。和/ 6。是与两光 路透过率、 分路器 21分光比及探测器灵敏度等相关的参数, c是与磁光探 头 100 在某时刻环境条件下的磁光灵敏参数, J是被测磁场, 是参考脉 冲磁场。 参数 Λ。、 /6。及 c 都可能受环境因素影响。 如图 4所示, 为光电探测器 42a和 42b上信号元素之间的关系, 由图 4 可以看出, 参考脉冲磁场信号的幅值 和 可以在信号中分离, 即
Figure imgf000008_0001
从而可 幅值比例:
Figure imgf000008_0002
这样, 通过下式进行数据处理就可得到与环境因素直流项无关的信号: S=Ia -Ib -rab =IM Cl (H+^ (7)
如下式所示, 信号 S中的直流项用^:表示, 脉冲用 , 它们还可以相互 分开, 进一步进行相除就可得到被测磁场与参考磁场的比例:
^I^H (8) Sr =Ia0cl r (9) r = U (10)
由于, 参考磁场的脉冲幅值是一不变量, 通过测得的 r , 就可以得到被 测直流磁场的值。 由于本实施例提供的系统中的控制和信号处理模块 44 进 行数据处理后, 去除了受环境因素影响的参数 Λ。、 /6。及 c 所以测量结果 完全由参考磁场脉冲信号的精度来决定, 根据参考磁场脉冲信号可以确定被 测的磁场信号, 提高了测量的准确度。 实施例 3 参见图 5 , 本实施例提供了一种光纤直流磁光探测系统, 该系统包括: 两个磁光探头 100a和 100b、 光纤装置 200、 参考装置 300和电源和信号处 理模块 400, 其中, 磁光探头 100a和 100b、 参考装置 300被至于测量点(例 如: 载流导体) 800周围, 测量点 800的位置可以是高电势, 电源和信号处 理模块 400置在安全的近地氏电势的地方, 它们之间通过电绝缘的传导光纤 装置 200连接; 本实施例中的电源和信号处理模块 400包括: 两个激光器 41a和 41b; 参考激光器 43; 光电探测器 42a、 42b、 42c和 42d; 控制和信号处理模块 44; 参考激光器 43可根据控制和信号处理模块 44的指令在指定的时刻发出指定 强度和形状的参考激光。 指定强度是一个预先指定的光强度, 能使参考装置 300产生高精度、 高重复性的磁场信号。 其中, 激光器 41a、 光电探测器 42a、 42b为一组光处理子模块, 激光器 41b , 光电探测器 42c和 42d为另一组光 处理子模块; 本实施例的磁光探头 100由磁光探头 100a和 100b组成, 它们对称地放 置在测量点 800的两侧,用来感应测量点 800中电¾¾产生的磁场。测量点 800 中的直流电流方向是与示意的纸面垂直, 向内或外; *可以。 光纤装置 200至少包括光纤、分路器和回路器,本实施例中光纤装置 200 包括光纤、 两个分路器 21a和 21b , 四个回路器 22a、 22b、 22c和 22d , 他 们的连接关系如图 5所示; 其中, 光纤、 分路器 21a , 回路器 22a、 22b为一 组传输模块, 光纤、 分路器 21b、 回路器 22c和 22d为另一组传输模块; 激光器 41a发出的激光被引入分路器 21a中, 分路器 21a将该激光均分 成两束, 经过回路器 22a和 22b后, 分别从磁光探头 100a的两端进入, 并 以相反的方向通过磁光探头 100a 中的磁敏材料, 经由另一端出去, 然后分 别通过回路器 22c和 22d , 传输到光电探测器 42a和 42b上进行光电转换。 同样, 激光器 41b发的激光被引入分路器 21b中, 分路器 21b将该激光均分 成两束, 经过回路器 22c和 22d后, 分别从磁光探头 100b的两端进入, 并 以相反的方向通过磁光探头 100b 中的磁敏材料, 经由另一端出去, 然后分 别通过回路器 22c和 22d , 到光电探测器 42c和 42d上进行光电转换。 参考装置 300包括: 传导光纤 31、 光电转换模块 32、 导线 33、 线圏 34a 和 34b、 温度补偿器件 35 (可选的); 传导光纤 31将参考激光器 43发送的 参考激光信号传输到光电转换模块 32中; 光电转换模块 32将参考激光信号 转变成参考电流信号; 线圏 34a、 34b及温度补偿器件 35通过导线 33 串接, 并联到光电转换模块 32的电流输出端; 线圏 34a和 34b分别套在磁光探头 100a和 100b的外面; 参考激光信号产生的光电流经过线圏 34a和 34b产生 已知恒定的参考磁场脉冲信号; 参考磁场脉冲信号和被测磁场线性叠加后被 磁光探头 100a和 100b检测; 温度补偿器件 35的作用是补偿由于温度变化 造成线圏 34a和 34b光电管电阻变化, 进而造成参考电流的漂移。 才艮据上述系统, 本实施例光电探测:, 42a、 42b、 42c和 42d上探测到的 信号将可由下列的式子来描述:
[l+Cl(H1 +Hrt) (11)
[1— Cl(H1 +Hrt) (12)
[l+c2(H2 -Hr2) (13)
[l-c2(H2 -Hr2) (14)
上歹'】式中 / Λ、 lb、 Ia . /6分另 'J表示四个光电探;;则器 42a、 42b、 42c和 42d 检测到的信号; Ia 0、 Ib 0、 Ic 0、 是与四光路透过率、 分路器分光比及探测 器灵敏度等相关的参数; c 、 c是与磁光探头在某时刻环境条件下的磁光 灵敏参数; J 是被测直流电流在两磁光探头处产生的磁场, 由于磁光 探头 100a和 100b分别放置在测量点 800对称的两侧, 所以 H . J 可能相 近, 但并一定相等; H r 、 J ^是相同的光电流产生的参考磁场脉冲信号, 可能由于线圏的结构造成它们不完全相等, 但它们各自是一个确定值。 根据本实施例中描述的信号处理方法, 分别处理从两个磁光探头中返回 来的信号, 可以得到被测磁场和参考磁场的比值:
ri = (15)
Figure imgf000011_0001
从而得到不受环境因素影响的与测量点 800 中直流电流相对应的测量
(17)
Η2 =-ΐ2Η, (18) 如果进一步考虑测量点 800的外磁场千扰, 测量点 800的磁场包括测量 点 800中电流产生的磁场和外磁场千 4尤, 即:
+¾ (19)
+¾ (20) 式中 /表示测量点 800 中的电流; H^是千扰磁场; ^是确定的参 数。 对测到的信号进行差分就可去除千 4尤磁场;
Ι =Η-Η2 = ΛΛ (21) 上式中 和 为测量所得到, 《 a H r ]、 是已知量或确定量, 所以才艮据 和 r2就可准确地得到所需测的直流电流值。 在实际操作中, α ί、 ^和 J > 并不需要去测定, 由于式 (21 ) 确定, 可以用其它标准设备 的测量值对设备进行标定。 釆用法拉第磁光效应的光纤直流磁场或电流的测量方法, -据参考磁场 脉冲信号能够对测量的结果进行实时校准, 解决了高灵敏度、 大量程直流电 流的测量难题, 并且能够得到较为准确的测量结果; 同时, 本系统由于釆用 了光学方法, 信号传播路径全部釆用绝缘体, 进而实现了的高压电网中的安 全隔离。 实施例 4 参见图 6 , 本发明实施例提供了一种光纤直流磁光探测方法, 该方法以 在实施例 1提供的系统上实现为例进行说明, 该方法包括: 步 4聚 501 , 电源和信号处理模块 400发送激光; 步骤 502 , 光纤装置 200将激光分成两路, 分别将两路激光发送至磁光 探头 100的两端; 步骤 503 , 磁光探头 100接收两路激光, 并检测测量点的磁场信号, 将 磁场信号转变为光信号, 将转变后的光信号分别承载在两路激光上发送; 磁 场信号为参考磁场脉冲信号和测量点产生的自身磁场信号叠加后的信号; 其 中参考磁场脉冲信号是参考装置 300 在测量点产生的幅值和形状已知的信 号, 步骤 504 , 光纤装置 200将来自磁光探头 100的光信号分两路发送至电 源和信号处理模块 400; 步骤 505 , 电源和信号处理模块 400分两路接收来自磁光探头 100的光 信号, 并分别将两路光信号转变为两路电信号, 根据参考磁场脉冲信号对两 路电信号进行处理, 得到测量点的磁场信息和 /或电流信息。 本实施例釆用法拉第磁光效应的光纤直流磁场或电流的测量方法, 才艮据 参考磁场脉冲信号能够对测量的结果进行实时校准, 解决了高灵敏度、 大量 程直流电流的测量难题, 并且能够得到较为准确的测量结果; 同时, 本系统 由于釆用了光学方法, 信号传播路径全部釆用绝缘体, 进而实现了的高压电 网中的安全隔离。 以上实施例中的磁光探头 100中感知磁场的材料, 可以是磁光玻璃, 也 可以是磁光晶体, 也可以是光纤本身。 磁光探头 100在测量中的数量可以是 一个也可以是多个。 电源和信号处理模块 400中可以设置一套光电探测器, 也可以是多套, 用于检测是否有光或电信号传输过来, 该光电探测器可以应 用差分等各种技术。 所有这些变项, 都不妨碍本实施例提供的系统的实施。 尽管在上述实施例中釆用磁光晶体测量系统进行描述, 但并不妨碍对釆用本 发明精髓的各种应用的涵盖。 从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果: 釆用法拉第磁光效应的光纤直流磁场或电流的测量方法, 能够对测量的 结果进行实时校准, 解决了高灵敏度、 大量程直流电流的测量难题, 并且能 够得到较为准确的测量结果; 同时, 本系统由于釆用了光学方法, 信号传播 路径全部釆用绝缘体, 进而实现了的高压电网中的安全隔离。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而可以将它们存储在存储装置中由计算装置来执行, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种光纤直流磁光探测系统, 其特征在于, 所述系统包括: 电源和信 号处理模块、 光纤装置、 参考装置和磁光探头; 其中,
电源和信号处理模块, 用于通过所述光纤装置向所述磁光探头发送 激光; 以及分两路接收来自所述磁光探头的由所述激光承载的光信号, 并分别将两路光信号转变为两路电信号, 根据所述参考装置发送的参考 磁场脉冲信号对所述两路电信号进行处理, 得到测量点的自身磁场信息 和 /或电流信息;
光纤装置, 用于将来自所述电源和信号处理模块的激光分成两路, 分别将所述两路激光发送至所述磁光探头的两端, 以及将来自所述磁光 探头的光信号分两路发送至所述电源和信号处理模块;
参考装置, 用于在测量点产生一个幅值和形状已知的参考磁场脉冲 信号;
磁光探头, 用于检测所述测量点的磁场信号, 将所述磁场信号转变 为光信号, 所述磁场信号为所述参考磁场脉冲信号和所述测量点产生的 自身磁场信号叠加后的信号; 还用于接收所述两路激光, 将转变后的光 信号分别承载在所述两路激光上发送。
2. 根据权利要求 1所述的系统, 其特征在于, 所述电源和信号处理模块 包括:
激光器, 用于通过所述光纤装置向所述磁光探头发送激光; 两个光电探测器, 用于分别接收来自所述磁光探头的由所述激光承 载的光信号, 分别将所述光信号转变为电信号后发送;
控制和信号处理模块,用于接收所述两个光电探测器发送的电信号, 根据所述参考装置发送的参考磁场脉冲信号对所述电信号进行处理, 得 到所述测量点的磁场信息和 /或电流信息。
3. 根据权利要求 1所述的系统, 其特征在于, 所述光纤装置包括:
分路器, 用于将来自所述电源和信号处理模块的激光分成两路; 第一回路器和第二回路器, 用于分别将所述分路器发出的两路激光 发送至所述磁光探头的两端, 以及分别接收来自所述磁光探头发送的由 所述激光承载的光信号, 并分别将所述光信号发送至所述电源和信号处 理模块。
4. 根据权利要求 1所述的系统, 其特征在于, 所述电源和信号处理模块 包括: 两组光处理子模块、 控制和信号处理模块和参考激光器, 其中, 所述两组光处理子模块都包括:
激光器, 用于通过所述光纤装置向一个磁光探头发送激光; 两个光电探测器, 用于分别接收来自所述磁光探头的由所述激光承 载的光信号, 分别将所述光信号转变为电信号后发送;
控制和信号处理模块, 用于接收所述两组光处理子模块发送的电信 号, 根据所述参考装置发送的参考激光信号对所述电信号进行处理, 得 到所述测量点的磁场信息和 /或电流信息;
参考激光器, 用于在指定时间通过所述光纤装置向所述参考装置发 送指定强度的参考激光信号;
相应地, 所述参考装置, 用于根据所述参考激光信号在测量点产生 幅值和形状已知的参考磁场脉冲信号;
相应地, 所述光纤装置包括两组传输模块, 所述两组传输模块都包 括:
分路器, 用于将来自一组光处理子模块的激光分成两路; 两个回路器, 用于分别将所述分路器发出的两路激光发送至一个磁 光探头的两端, 以及分别接收来自所述磁光探头发送的由所述激光 7 载 的光信号, 并分别将所述光信号发送至所述电源和信号处理模块;
相应地, 所述磁光探头为两个, 分别对称地置于所述测量点的两侧。
5. 根据权利要求 4所述的系统, 其特征在于,
所述参考装置包括:
光电转换模块,用于通过传导光纤接收来自所述电源和信号处理模块 的参考激光信号, 将所述参考激光信号转变为电流信号输出; 以及 套在一个磁光探头外面的第一线圏和套在另一个磁光探头外面的第 二线圏, 所述第一线圏和所述第二线圏通过导线并联到所述光电转换模 块的电流输出端以接收所述电流信号, 用以产生幅值和形状已知的参考 磁场脉冲信号。 根据权利要求 5所述的系统, 其特征在于,
所述第一线圏和所述第二线圏之间串接有温度补偿器, 用于补偿由 于温度变化造成所述第一线圏和所述第二线圏的电阻变化。 根据权利要求 1-6 中任一项权利要求所述的系统, 其特征在于, 所述 磁光探头中感知磁场的材料是磁光玻璃、 磁光晶体或光纤。 一种光纤直流磁光探测方法, 其特征在于, 所述方法包括:
电源和信号处理模块发送激光;
光纤装置将所述激光分成两路, 分别将所述两路激光发送至所述磁 光探头的两端;
磁光探头接收所述两路激光, 并检测测量点的磁场信号, 将所述磁 场信号转变为光信号, 将转变后的光信号分别承载在所述两路激光上发 送; 所述磁场信号为参考磁场脉冲信号和所述测量点产生的自身磁场信 号叠加后的信号; 其中所述参考磁场脉冲信号是参考装置在测量点产生 的幅值和形状已知的信号;
所述光纤装置将来自所述磁光探头的光信号分两路发送至所述电源 和信号处理模块;
所述电源和信号处理模块分两路接收来自所述磁光探头的光信号, 并分别将两路光信号转变为两路电信号, 根据所述参考磁场脉冲信号对 所述两路电信号进行处理, 得到所述测量点的自身磁场信息和 /或电流信 息。
PCT/CN2010/078968 2009-12-31 2010-11-22 光纤直流磁光探测系统和方法 WO2011079663A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/519,967 US8773119B2 (en) 2009-12-31 2010-11-22 System for fiber DC magneto-optic detection and method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910202166.0 2009-12-31
CN 200910202166 CN101769999B (zh) 2009-12-31 2009-12-31 光纤直流磁光探测系统和方法

Publications (1)

Publication Number Publication Date
WO2011079663A1 true WO2011079663A1 (zh) 2011-07-07

Family

ID=42502980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078968 WO2011079663A1 (zh) 2009-12-31 2010-11-22 光纤直流磁光探测系统和方法

Country Status (3)

Country Link
US (1) US8773119B2 (zh)
CN (1) CN101769999B (zh)
WO (1) WO2011079663A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769999B (zh) 2009-12-31 2013-02-13 上海舜宇海逸光电技术有限公司 光纤直流磁光探测系统和方法
CN101762795B (zh) 2009-12-31 2013-01-23 上海舜宇海逸光电技术有限公司 光纤磁光探测系统和方法
CN102062807B (zh) * 2010-12-09 2013-03-27 上海舜宇海逸光电技术有限公司 电流测量装置及电流测量方法
CN103134971B (zh) * 2011-11-29 2015-10-21 思源电气股份有限公司 导体电流测量装置
CN105548664B (zh) * 2016-02-25 2019-09-13 江苏思源赫兹互感器有限公司 一种光学电流测量装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619367A (en) * 1991-06-04 1997-04-08 Tdk Corporation Apparatus and method for measuring magnetic fields employing magneto-optic element
JP2004077196A (ja) * 2002-08-12 2004-03-11 Nippon Telegr & Teleph Corp <Ntt> 電磁界センサおよび電磁界測定方法
CN1963539A (zh) * 2005-11-09 2007-05-16 郭志忠 光学电流互感器及其测定电流的方法
CN101074983A (zh) * 2006-05-17 2007-11-21 袁海骏 一种光纤磁光探头装置及其应用系统
RU2321000C2 (ru) * 2005-09-07 2008-03-27 Сергей Александрович Вицинский Волоконно-оптический трансформатор тока
CN101403768A (zh) * 2008-03-27 2009-04-08 董小鹏 基于光纤磁光效应的光纤电流传感测量系统
CN101458312A (zh) * 2009-01-04 2009-06-17 上海舜宇海逸光电技术有限公司 光纤磁光探测装置
CN101769999A (zh) * 2009-12-31 2010-07-07 上海舜宇海逸光电技术有限公司 光纤直流磁光探测系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919875A (ja) * 1982-07-27 1984-02-01 Toshiba Corp 磁界測定装置
JPH0668508B2 (ja) * 1988-03-03 1994-08-31 日本碍子株式会社 光電流・磁界計測方法及び装置
CN2350772Y (zh) * 1998-11-26 1999-11-24 西安同维科技发展有限责任公司 磁光电流互感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619367A (en) * 1991-06-04 1997-04-08 Tdk Corporation Apparatus and method for measuring magnetic fields employing magneto-optic element
JP2004077196A (ja) * 2002-08-12 2004-03-11 Nippon Telegr & Teleph Corp <Ntt> 電磁界センサおよび電磁界測定方法
RU2321000C2 (ru) * 2005-09-07 2008-03-27 Сергей Александрович Вицинский Волоконно-оптический трансформатор тока
CN1963539A (zh) * 2005-11-09 2007-05-16 郭志忠 光学电流互感器及其测定电流的方法
CN101074983A (zh) * 2006-05-17 2007-11-21 袁海骏 一种光纤磁光探头装置及其应用系统
CN101403768A (zh) * 2008-03-27 2009-04-08 董小鹏 基于光纤磁光效应的光纤电流传感测量系统
CN101458312A (zh) * 2009-01-04 2009-06-17 上海舜宇海逸光电技术有限公司 光纤磁光探测装置
CN101769999A (zh) * 2009-12-31 2010-07-07 上海舜宇海逸光电技术有限公司 光纤直流磁光探测系统和方法

Also Published As

Publication number Publication date
CN101769999B (zh) 2013-02-13
US20120274321A1 (en) 2012-11-01
CN101769999A (zh) 2010-07-07
US8773119B2 (en) 2014-07-08

Similar Documents

Publication Publication Date Title
WO2011079664A1 (zh) 光纤磁光探测系统和方法
CN102721847B (zh) 混合式光栅在线测温型全光纤电流互感器及其电流检测方法
CN104569544B (zh) 法拉第电流传感器和法拉第温度传感器
CN101521104B (zh) 一种采用双闭环控制的全光纤电流互感器
CN108918940B (zh) 带有温度补偿的全光纤电流互感系统及方法
US20210285987A1 (en) Reflective current and magnetic sensors based on optical sensing with integrated temperature sensing
JPH0224349B2 (zh)
WO2011079663A1 (zh) 光纤直流磁光探测系统和方法
CN104597304B (zh) 一种环形腔式全光纤电流传感器
CA2972935C (en) Optoelectric measuring device and method for measuring an electrical current
CN113945744B (zh) 一种全光纤直流电流互感器温度补偿系统及方法
CN114577245B (zh) 一种同时测量电流和振动的光纤传感系统
CN108845174B (zh) 一种差分式全光纤电流互感器
CN112230038B (zh) 一种新型全光型电流传感器及电流测量方法
CN107422166B (zh) 一种光纤电流互感器用抑制光功率波动调制解调方法
CN106706991B (zh) 一种光学电流互感器
US4814930A (en) Optical zero-phase current and zero phase voltage sensing arrangement
CN106706992B (zh) 采用偏振检测法的闭环反馈式全光纤电路互感器
CN202661524U (zh) 混合式光栅在线测温型全光纤电流互感器
CN1271413C (zh) 一种光电电流互感器
CN204205613U (zh) 一种statcom静止无功补偿装置
CN211123023U (zh) 一种基于耦合器网络的光学电流互感器
CN111198290B (zh) 一种光纤式电流互感器
Jiang et al. Optical Current Sensing Based on Bias-Added Measurement and Main-Component Reconstruction
CN116773890A (zh) 一种全光纤电流互感器及其温度补偿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13519967

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10840452

Country of ref document: EP

Kind code of ref document: A1