WO2011079367A1 - Sensor diédrico para avaliar tensão, potencial e atividade de líquidos - Google Patents

Sensor diédrico para avaliar tensão, potencial e atividade de líquidos Download PDF

Info

Publication number
WO2011079367A1
WO2011079367A1 PCT/BR2011/000001 BR2011000001W WO2011079367A1 WO 2011079367 A1 WO2011079367 A1 WO 2011079367A1 BR 2011000001 W BR2011000001 W BR 2011000001W WO 2011079367 A1 WO2011079367 A1 WO 2011079367A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
sensor
potential
dihedral
activity
Prior art date
Application number
PCT/BR2011/000001
Other languages
English (en)
French (fr)
Other versions
WO2011079367A8 (pt
Inventor
Adonai Gimenez Calbo
Original Assignee
Embrapa-Empresa Brasileira De Pesquisa Agropecuária Embrapa Ed. Sede-Pqeb
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Embrapa-Empresa Brasileira De Pesquisa Agropecuária Embrapa Ed. Sede-Pqeb filed Critical Embrapa-Empresa Brasileira De Pesquisa Agropecuária Embrapa Ed. Sede-Pqeb
Priority to EP11728523.9A priority Critical patent/EP2522214B1/en
Priority to CN201180012425.9A priority patent/CN102905515B/zh
Priority to AU2011203425A priority patent/AU2011203425B2/en
Priority to US13/520,316 priority patent/US9588030B2/en
Publication of WO2011079367A1 publication Critical patent/WO2011079367A1/pt
Publication of WO2011079367A8 publication Critical patent/WO2011079367A8/pt

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/167Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content

Definitions

  • the present invention relates to a dihydric sENSOR FOR VALVING TENSION, POTENTIAL AND ACTIVITY OF LIQUIDS.
  • Dihedral sensor to measure water tension and water potential according to the accumulation of liquid between two plates fixed as dihedral.
  • the system can be used for water and other liquids.
  • the system facilitates the thermal equilibrium that is required to balance the vapor pressure.
  • the temperature control is much less critical.
  • the system should preferably be operated with the mediation of a porous element that filters and facilitates the conduction of water between the soil and the dihedral sensor.
  • Measurements of water potential and water stresses of up to about 3.0 MPa in the plant are made under a microscope with a micrometer eyepiece. Measurements of water tension between zero and 0.3 MPa on the ground are made visually, with ruler or caliper.
  • the qualitative and quantitative applications of the dihedral sensor system cover applications in irrigation management in the field and vessels, as well as in physiological studies, and can be applied to whole or segmented organs.
  • is the water potential (Pa)
  • R is the gas constant (8.3145 j K “1 mol “ 1 )
  • T is the temperature in Kelvin
  • v w (1.8 10 ⁇ 5 m 3 ) is the volume partial molal of water
  • w is water activity, which can be taken as the hundredth part of equilibrium relative humidity with a sample.
  • the assessment of water activity is very important, for example, in food technology and grain storage. For a large number of these products, the shelf life and storage life depend on water activity, which is used as a control parameter.
  • the water potential was defined as the relation between the chemical potential and the partial molal volume of the water. Consequently the water potential can be treated simply as force per unit area, ie as a pressure.
  • the potential of the water thus defined is a sum of pressure components.
  • the osmotic component
  • H gravitational potential
  • Ps pressure of turgescence
  • PA water tension in the xylem and apoplasma
  • Tensiometer is the denomination that can be used for the instruments to measure the component of tension of the water, in the soil or in the plant.
  • tensiometers find applications in branches such as plant physiology, irrigation management and geology.
  • Instruments for measuring water activity, equilibrium relative humidity and water potential (Eq. 1) on the other hand could be preliminarily termed hygrometers and have applications ranging from purely practical to more sophisticated and science-oriented applications in areas such as plant physiology and food technology.
  • the common tensiometer (Soil Science, v. 53, pp. 241-248, 1942), used for irrigation management, consists of a porous capsule with a cavity filled with water tightly connected to a vacuum gauge. Its working range is between zero and barometric pressure, but in practice it is mainly used between zero and 70 kPa.
  • the greatest use of the common tensiometer is as a reference instrument in irrigation management.
  • the great limitation of the common tensiometer is the occurrence of embolism, that is, accumulation of air in the water contained in the cavity of the porous capsule. This gradual accumulation of air causes the tensiometer to lose response speed and suffer a related reduction in the maximum working voltage, while the accumulated air volume increases in the sensor cavity.
  • a system for measuring water stress which does not have the stroke limitation is that described in BR PI 0004264-1.
  • porous capsules with the air filled cavity and without water are subjected to air pressure to have the water pressure measured by difference between the parameter pB (bubbling pressure) and the air pressure (p) necessary to force the permeation of the gas through the wall of the porous element.
  • Porous elements with properties suitable for different agricultural applications and different instruments of system use are available commercially.
  • Water activity or equilibrium relative humidity is the main variable related to food conservation (Boi. SBCTA, v.30, p.91-96, 1996). Methods for determining water activity in foods are varied and include:
  • An isopytic procedure involves filter paper strips embedded in different saturated salt solutions of reference. These strips are weighed and placed in the product chambers for 24-48 hours. Each strip can gain or lose mass depending on whether its water activity is greater or less than the water activity of the sample, so using graphic interpolation, the sample water activity is estimated, in which a strip soaked with solution salt would not suffer mass variation. It is a method of quality and low cost, but it is a procedure that involves "attempts", and is considered a slow method.
  • the reference absorbance material balance method made of cellulose or casein, for example, involves the preliminary establishment of a calibration curve relating the sensor mass and the water activity of standard salt solutions. Then the absorbent material sensor is placed together with the sample and after a period of 24 to 48 hours its final equilibrium mass is determined, taking care to avoid any loss of water until weighing. The water activity is then calculated according to the mass of the sensor, using the calibration curve.
  • This is a technique that works for desserts and could be used for vegetable organs with water activity between 0.8 and 0.99. It is a low cost, interesting and accurate method of the order of 0.002 units of water activity. It is also a slow method, whose stability of response depends on the absorbent material. An important limitation of this technology is that it is not suitable for water potential close to zero.
  • Resistive electronic hygrometers which are generally made of a sheet of inert material coated with a hygroscopic layer of lithium chloride, for example.
  • the electric conductance varies as a function of the relative humidity of the air.
  • the accuracy of this type of device is in the order of 0.005 units of a w .
  • Bonne and others in 1996 developed a stabilized rapid response microsensor for absolute moisture and dew point temperature measurements based on the hygroscopicity of lithium chloride as described in US 05533393.
  • a second category of electronic hygrometers are those of capacitance that make use of the high dielectric constant of water vapor compared to air.
  • capacitance make use of the high dielectric constant of water vapor compared to air.
  • One of these complex aggregation systems for improving accuracy is described in US 5922939. In general these are rapidly responsive, absolute humidity sensors requiring thermal corrections for relative humidity measurement. Additionally, they tend to be less sensitive in relative humidity measurements close to saturation. Capacitive sensors, as well as resistive sensors, often require frequent calibration.
  • Dew point temperature method for measuring the water activity generally requires temperature measurement on a thermocouple surface or a cooled mirror, for example. Dew point systems can also produce erroneous estimates of water activity if the cooled surface is contaminated by impurities and also in the presence of volatile substances. In general, instruments based on dew point temperature are more stable and less subject to interference than electric resistance hygrometers and those of capacitance.
  • thermometer In the psychrometric method the temperature of a thermometer with the wet bulb and the temperature of the reference dry bulb thermometer are used to estimate the water activity. Usually the moist bulb is moistened by the previous condensation of water on a surface cooled by electric current (Peltier effect).
  • the temperature of the wet bulb formed after the water condensation and the reference dry bulb temperature are used to estimate the water activity.
  • Other devices using the dew point method use a mirror as in the Zlochin device (2005) described in US 6926439, in which a mirror always free of impurities brought by air is used for the application of the dew point method .
  • Zlochin argues that one of the major problems of the dew point method is the accumulation of impurities carried by the air. The removal of these impurities is a difficulty, since there is a demand for frequent cleaning of the cooled surface so that the quality of the measurements is not impaired.
  • the water stress in the plant has also been measured by inserting a capillary into the xylem vessels (Plant Physiology, v. 61, pp. 158-163, 1978.).
  • This method called the pressure probe method, however, is extremely difficult, laboratorial and has not made possible tensile measurements higher than 800 kPa in the plant.
  • the results have not always been equivalent, within the error margins.
  • the system of this invention is not subject to problems of embolism, a typical problem of the tensiometer; to measure water potential, the system can exhibit rapid thermal equilibrium using a contact micro-chamber.
  • the water potential can be measured under a microscope between zero and 3.0 MPa.
  • the measured water pressure, the sensor against the sample being pressed against the sample is the same as the water potential measurement.
  • the dihedral plate system of this invention enables linear measurements of the water stress when the transport between the dihedral and the sample occurs through the liquid phase and also linear measurements of water potential in this system are carried out using water transport between the sample and the dihedral sensor by means of the gas phase.
  • To measure water potential the dihedral edge is positioned a few micrometers away from the sample. In the dihedral the angle is such that an evaporation of few picoliters can be detected, such as the movement of the meniscus. In this way the water balance with the sample is usually detected in a few minutes.
  • the volumes of water exchanged by the dihedral are much larger, on the order of microliters, to allow visual evaluations with a caliper.
  • the plates are fixed onto suitable porous elements.
  • the porous member may be of surface or insert at defined depth.
  • the outer face of one of the plates can be painted black to make it easier to distinguish the meniscus that separates the darker strip of water next to the edge and the lighter strip full of air away from the edge.
  • the distance L taken between the left and the meniscus multiplied by the tangent of the dihedral angle (a) is equal to the spacing a between the plates.
  • the dihedral contains pure water, then the water tension ( ⁇ ) and the water potential (T) are the same, (a), where ⁇ is the surface tension of water in Nrrf 1 .
  • water voltages of zero to 0.3 MPa are measured, while in the microscope readings water voltages and water potentials are measured from zero to 3.0 MPa.
  • Figure 1 Illustration of the dihedral sensor of hydrophilic glass plates to measure water tension according to the distance between the apex and the meniscus. A - front view. B - top view.
  • Figure 2 Dihedral sensor of transparent glass hydrophilic plates to measure the water tension of soil containing porous elements encapsulated by permeable cement.
  • A porous disk element for surface measurement.
  • B - elongate porous element, for insertion in the soil.
  • Figure 3 Microscope microscope dihedral sensor for water vapor pressure equilibration to facilitate the positioning and rapid balancing of water vapor pressure required in measurements of water potential and water activity.
  • Figure 4 Dihedral sensor with movable plates to enable cleaning.
  • Figure 5 Dihedral sensor whose sides are sealed to measure the water tension by applying air pressure between the plates.
  • Figure 6 Dihedral sensor inside a hygroscopic equilibrium chamber during measurements of fluid water potential as homo- genates of fruits and jellies.
  • Figure 7 System for application of known volumes of solution to the dihedral sensor.
  • Figure 8 System with orifice and hydrophilic substances in solid medium to measure measurements of water activity and relative humidity with the dihedral sensor.
  • Figure 9 Curve between water tension adjusted in Richards chamber of negative pressure and reading in the dihedral sensor.
  • Figure 10 Curve of reference water activity and water activity calculated with the dihedral sensor, measured with the aid of solutions of NaCl.
  • Figure 1 1 Water potential equilibrium response to a micro-chamber dihedral sensor of 20 ⁇ at the edge pressed against the surface of a carrot root.
  • Figure 12 Carrot root mass and water potential measured with the dihedral sensor.
  • a die-cast, hydrophilic flat glass and finely porous material system (Fig. 1; 1 and 2) is used to measure water stress and other components of the water potential of soil, plant and food products.
  • This dihedral sensor shown in its simplest form (Fig. 1), allows measurements of water stress, water potential and water activity according to the position of the meniscus (4), in equilibrium condition.
  • the material of the plates, the reading accessories, the measuring range, possibility of external hydrophobic coating and the dimensioning of the dihedral sensor are defined according to the purpose of use.
  • the top plate (1) should preferably be transparent to facilitate visualization of the water (7) and the position of the meniscus (4) of the dihedral plates (1, 2).
  • the lower plate (2) may be transparent, black, mirrored or micro-porous.
  • the water stress measurement in the soil must be made with the dihedral system fixed on porous elements (9), as shown in Figure 2.
  • the dihedral sensor is fixed on the porous element (9) with cement (8). If it is fixed on a porous element disc (9), the dihedral sensor is ideal for measuring the water tension of the soil surface of vessels (Fig. 2A).
  • the dihedral sensor in order to measure the water stress at specified depths, the dihedral sensor must be secured to elongated porous member 9 as shown in Figure 2B, the side walls of which can be waterproofed to the desired reading depth.
  • the porous element must have porosity and bubbling, or critical working voltage appropriate to the operating range for the sensor.
  • the dihedral sensor For voltage measurements and water potential in plants the dihedral sensor should be used with the aid of a microscope (13) (Fig. 3A).
  • the dihedron is supported on a block (15) for handling.
  • the product on a parallelepiped (19) and the light source (20) on a flat base are moved by sliding on the slide base (18).
  • the "edge" of the dihedral sensor is pressed against plant samples of high hydraulic conductivity, roots, for example, so that the water tension in the plant governs the water tension in the dihedral sensor by means of transporting water directly in phase.
  • the dihedral sensor enables measurements of water stress in the plant not yet performed by previous systems.
  • the potential reading of the water requires a slightly different procedure, in which the edge is approximated to a few micrometers, without, however, touching the sample.
  • the water exchange through the edge between sample and sensor occurs through the gas phase.
  • This exchange of water in the gas phase must occur through a very thin layer of stagnant air, of a few micrometers, in which conditions of thermal and hygroscopic equilibrium are obtained quickly.
  • the use of a die-cut glass-shaped sensor, which forms a micro-chamber (12) (Fig. 3B) pressed against the plant organ (11) is very useful.
  • the micro-chamber is formed by the joining of glass plates with frontal lapidation, which facilitates the temperature balance and water vapor pressure required to measure water activity.
  • the edge (3) where the water exchange occurs in the gas phase, is in a favorable condition for the rapid thermal and water balance even without the use of sophisticated thermal control.
  • the stoned plate also facilitates the application of hydrophobic coating on the sides of the dihedral sensor by friction, for example. This hydrophobic application is valuable, for example, to prevent water from leaking through the surface of the glass, which tends to delay the response of the system.
  • the auxiliary manipulating attachment of the illustration may have a polyacetal body with a slide base (18), a vertical support (17) and a top support or a stage (16).
  • the biological sample root, for example
  • the parallelepiped 19 is preferably made of plastics such as polyacetal to facilitate smooth gliding on the base 18, even without the use of lubricant.
  • a polyacetal block (15) is moved to a suitable height and the position is then secured by screw tightening.
  • the light source 20 is slidably positioned below the dihedral so that the water / air meniscus 4 is observed by transparency under the microscope 13.
  • the microscope (13), on the other hand, is moved vertically, in thread or rack, for focusing.
  • the horizontal movement of the microscope to facilitate the viewing and measurement of the distance L between the meniscus 4 and the edge 3 occurs according to a micrometric assembly 22 which moves the microscope holder 14 over the stage 16).
  • the microscope eyepiece for these measurements should preferably be micrometric.
  • Figure 1 shows the dihedral plates fixed with glue (6).
  • the back spacer 5 of known thickness is placed on the plate 2, tiny portions of glue are applied with the tip of a needle, the plate 1 is positioned and ultraviolet radiation is applied to harden the glue.
  • the dihedral plates and a porous element (9) are joined by porous cement (8) with the following procedure:
  • the plates 1 and 2 are fixed to the rear spacer (5), of along the length, using adhesive tape.
  • the assembly is then seated with a mass of cement and water on the porous element (9), previously moistened.
  • the porous cement layer (8) between the glass plates and the porous element (9) must be very thin. The healing of occurs in a tray with a layer of water in the background for a period of a few days.
  • the preliminary fixing strip of the glass plates is removed, and the outer surface of the dihedral sensor is carefully washed, to remove adhered particles of cement and the adhesive tape from the glass.
  • the system can be assembled as shown in Figure 4.
  • the glass plates (1, 2) of the dihedral are glued onto plates of greater flexibility ( 23, 24), for example of "rigid" PVC.
  • plates of greater flexibility 23, 24
  • the upper flexible plate 24 receives a hole for the free passage of the guide screw 25 near the upper glass plate 1.
  • the upper flexible plate 24 at the rear receives a threaded hole in which the drive screw 27 of the glass plates rotates.
  • the rear spacer (5) also serves to position the screws that make up the height limiter (26).
  • the system assembly may be of the type shown in Figure 5.
  • the glass plates have their sides glued together , with high viscosity resin, which do not penetrate between plates 1 and 2 during curing.
  • a perforation in the glass plate 2 is used as the inlet for the air pressure adjusting tube 28, which is also connected to a manometer 29.
  • the water stress in this case is given by equation 2:
  • Tr is the air pressure to adjust the meniscus at the reference position, when the edge is exposed to free water
  • p is the air pressure required for the measurement
  • T is the estimated water stress of the sample.
  • dihedral sensor assembly Another way of preparing dihedral is under a glass lid as shown in Figure 6.
  • This type of dihedral sensor assembly is valuable for measuring water activity in biological fluids, sweets and homogenates of plant and animal tissues. Measurement with this type of system, in the However, it is slower and requires a good isothermal bath.
  • the voltage T with which water is retained between the plates of the dihedral sensor can be calculated with the expression:
  • this sensor also makes it possible to measure larger water voltages, however, for this, the use of a magnifying glass is necessary.
  • the spacer (5) could be of smaller thickness, for example, ⁇ ⁇ ⁇ .
  • the spacing a between the plates would increase by only 0.2 ⁇ .
  • the dihedral plate system is suitable for measuring water stresses five times larger than the previous one, that is, it allows water pressure measurements between 14.6 kPa and 145.6 kPa, while the distance L of the meniscus during the drying is reduced from 50 mm to 5 mm, according to equations 1 and 4.
  • Dihedral sensors coupled to porous elements (9) such as those in Figure 2, as well as common tensiometers, require height correction, taking into account the hydraulic communication between the dihedral sensor in which the porous conduction element (9) hydraulics opens for contact with the ground. This need becomes more important when the stresses that must be maintained on the substrates are small, as occurs, for example, in irrigation management of potted plants.
  • the dihedral can be fixed to the porous element 9 by means of porous cement 8.
  • the porous element (9) filters the water while the porous cement (8) is the hydraulic coupling.
  • the porous element may be a ceramic disk, when the sensor is prepared to rest on the substrate, in a plant pot, for example, or to be a cylindrical rod, when this dihedral sensor needs to be inserted in soil for the evaluation of the water tension in a greater depth.
  • Plant pots in general, are of small depth and therefore must be filled with substrates of thick texture. In thick-textured substrates, after watering, the larger pores remain filled with air, unlike fine-textured substrates which in pots are completely filled by water.
  • the air between the substrate particles, or ground, is critical for oxygen to continue to feed the cells with oxygen so the roots breathe.
  • the critical stress at which irrigation is to be applied is low, usually below 10 kPa. If the substrate is expected to dry more than this, then, on these large particle substrates, the plants will not have sufficient amounts of water to absorb. In applications of this type, therefore, the dihedral sensor, in the specifica- tion considered, will indicate that irrigation should be applied as soon as the dark range corresponding to the distance L becomes less than 14 mm.
  • the elongated rod-like porous element (9) For the measurement of the specified depth water tension, for example 20 cm, the elongated rod-like porous element (9) must be coated with paint or insulation tape up to said depth to ensure that the exchange of water with the soil occurs in the depth, or in the depth range of interest.
  • the total variation of the volume of water involved in a measurement is the variation of the water contained in the dihedral sensor, added by the variation of the amount of water contained in the porous element (9).
  • the variation of the volume of water in the porous element is given by the product of the compressibility of the water by the variation of the water tension. This approximation is valuable for quickly obtaining half-time time estimates for the system. From a practical point of view, however, water stress measurements in irrigation management with a dihedral sensor are greatly facilitated by the fact that response times of the order of hours are sufficient and easily obtained.
  • the dihedral sensor can function as if it were a porous element for measuring water tension to the molds of the document BR PI 0004264-1, however, for this the plate of Figure 5 should receive another hole, in the case one (10) placed at a distance L from the edge.
  • the dihedral system of the present invention differs from BR PI 0004264-1 in that the critical strain Tr or pB can simply be defined by locating the air exhaust port 10.
  • More sophisticated location of the meniscus position with the use of optical interference may also be valuable in measurements of high water stresses in which the spacing a is of the order of a visible wavelength of light (400 a 700 nm).
  • the calibration can be done in common Richards chamber, i.e. Richards chamber of positive pressure.
  • a water rebound error may occur as soon as the pressure applied to the Richards chamber returns to zero. This problem can be reduced by using a thicker soil layer so that there is no significant rebound in the period between the opening of the Richards chamber and the reading of the balanced dihedral sensor on the soil surface therein.
  • the operation of the dihedral sensor depends on the surface tension of the water ( ⁇ ) while gdiminui linearly as a function of temperature.
  • surface tension of the water
  • gdiminui linearly as a function of temperature.
  • the surface tension of the water is additionally influenced by surfactants such as detergents, urea and some pollutants, which can cause read errors for this instrument in applications on polluted soils and substrates.
  • surfactants such as detergents, urea and some pollutants, which can cause read errors for this instrument in applications on polluted soils and substrates.
  • Salts used as fertilizer have almost negligible effect on the surface tension of the water and are not important causes of errors.
  • the solution applicator of Figure (7) enables collection of known small volumes of solutions to the dihedral sensor.
  • the solution applicator works as follows: the tip of the applicator (32) is placed in the solution (33); the capillary filling of the applicator fixed in a stopper 31 is spontaneous, i.e. by capillarity. The solution is then applied at the designated location by pressing the plunger (30).
  • the volume of collected solution can be directly applied to the edge, in the case of use of lapped plates (12) (Fig. 3B), which preferably must have its outer surface covered by hydrophobic substance.
  • the plates may contain orifice, or angle cut near the edge to facilitate penetration of the solution. Also if it is interesting to use the dihedral opening system shown in Figure 4, in which the plates are separated for application of the solution.
  • V is the volume of water contained between the plates en is the number of molecules dissolved in water in moles and C 0 is the molar concentration of the added solution.
  • the volume of water V contained in the dihedron, per cm of width, on the other hand can be expressed by:
  • V 0.005 L 2 tg ⁇ [6]
  • Equation 8 represents the water activity as a function of the length of the water blade (L) contained between the plates.
  • C is the concentration of the solution between the plates at any given time.
  • the total equilibrium time in the water potential measurement depends to a great extent on the thermal equilibrium between the edge and the sample, but as mentioned above it may also depend on the adsorption of water on the external surfaces of the sensor.
  • dynamic thermal equilibria with temperature differences between the sample surface and the edge of the diode sensor with a difference of the order of (OD, 001 ° C) can be obtained in minutes if the distance between the sample and the dihedral sensor is less than 30 ⁇ , within the indicative geometry shown in Figure 3.
  • the calibration assembly therefore, is a box 36 with a lid 37 containing a known hydrophilic substrate having known water activity 34 and a hole 35 in which the edge of the dihedral 3 is accommodated to enable hygroscopic balance required to gauge water activity, or water potential.
  • This is a durable and robust gauge type for calibration.
  • the flexibility of this sealer stems from the range of substances available to obtain atmospheres with reference water activity (Windyon & Hates, Ecology, v. 41, pp. 232-237, 1960).
  • Using saline (as NaCl) as described (Eq. 8 and Eq. 10) measurements can be made over a wide range of water activity, as shown in Figure 10. This type of measurement is important for use in processed foods such as sweets, for example.
  • Imperfections in the dihedral sensor plates are a problem and at the same time a necessity for water to flow and the instrument to work. If the plates were perfect, as the dihedral name analogy suggests, the dihedral sensor would simply not work, because the edge would be perfectly impervious to the passage of liquids or gases. In this way, the roughness and flatness of the plates used should be adequate to the applications that are in view. Thus, common glass plates and crimped stress porous element plates greater than 2.0 MPa are suitable for most water stress applications in soils. Higher perfection and flatness materials, however, are required for water potential measurements and higher water stresses up to the order of 3.0 MPa when surface imperfections should already be lower. at 100 nm.
  • the hydrophilic surface is a deposition site of molecular water layers, which can delay the equilibrium in water potential measurements, in the same way as occurs in other systems; Second, since the outer surfaces are hydrophilic these can be drains, or outlets, into the water or the solution contained in the dihedron. This is a problem in the particular case of solutions in the dihedral, since the substance placed, for example, to monitor the activity of the water in the air, can migrate to the outer surfaces of the sensor. Consequently, for specific applications where these phenomena can not occur, the outer faces of the dihedral require coating with hydrophobic molecules, which prevent adsorption and surface leakage of polar solutes.
  • the system of the present invention is little prone to impregnation of its surfaces by air impurities. This occurs because the air enters the dihedral mainly by diffusion, which reduces the speed of contamination with impurities. This problem is particularly minor in dihedral sensors with hermetic side closure. In all configurations, however, contamination may occur through the movement of contaminated water and volatile organic impurities.
  • a second aspect is that the temperature of the surface of the edge can be adjusted by Peltier effect and measured with the use of thermocouples, to the molds than is used in tunneling microscopy. These improvements can be obtained by depositing the appropriate metals on the surface of the glass. Thus the ability to measure lower water activities or simply produce initial water condensation for the operation of the system in monitoring water activity is added to the qualities of the present technique.
  • the method becomes isopytic equilibrium, i.e. constant weight, in the sense that at equilibrium the mass of water contained in the dihedral remains unchanged during measurements.
  • the isopytic condition makes it possible to monitor water potential more quickly and to influence the water potential of small biological samples more sensitive to variations in the absolute amount of water.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Soil Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

No sistema de sensor diédrico, duas placas planas são fixadas em diedro de modo que a distância entre a aresta e o menisco (L) e o afastamento entre placas (a), sobre o menisco, sejam funçao da tangente do diedro (α). Assim, para água pura a tensão (Ψ) é igual ao potencial (T) e dado por T = -2 σ / [L tg(α)], onde σ é a tensão superficial da água. Para medir tensão de água no solo, o sistema é acoplado a elementos porosos, enquanto que a aresta do sensor é pressionada diretamente contra raízes e outros órgãos vegetais. O potencial de água, diferentemente, é medido com a aresta posicionada a alguns mícrômetros da amostra e a resposta ocorre após a troca de alguns picolitros de água, quando a condição de equilíbrio de temperatura e pressão de vapor é aproximada. Visualmente, com paquímetro, mede-se tensões de água entre zero e 0,3 MPa, enquanto que com auxílio de microscópio a leitura estende-se até cerca de 3,0 MPa. A atividade de água correspondente a potenciais de água menores que -3,0 MPa, também pode ser medida adicionando-se um número conhecido de moléculas de solutos adequados à agua mantida no sensor.

Description

Relatório Descritivo de Patente de Invenção: "SENSOR DIÉDRICO PARA A- VAL1AR TENSÃO, POTENCIAL E ATIVIDADE DE LÍQUIDOS".
CAMPO DA INVENÇÃO
Sensor diédrico para medir tensão de água e potencial de água de acordo com o acúmulo de líquido entre duas placas fixadas como diedro. Em princípio o sistema pode ser empregado para água e outros líquidos. Ao medir atividade da água ou potencial de água o sistema facilita o equilíbrio térmico que é necessário ao equilíbrio de pressão de vapor. Nas medições de tensão de água, diferentemente, o movimento de água entre amostra e o sensor diédrico ocorre por continuidade da fase líquida, através da aresta do sensor pressionado contra a amostra, razão pela qual, neste caso, o controle de temperatura é muito menos crítico. Em solos o sistema, preferencialmente, deve ser operado com a mediação de um elemento poroso que filtra e facilita a condução de água entre o solo e sensor diédrico. Medições de po- tencial de água e de tensões de água de até cerca de 3,0 MPa, na planta, são feitas sob microscópio, com ocular micrométrica. Medições de tensão de água entre zero e 0,3 MPa, no solo, são feitas visualmente, com régua ou paquímetro. As aplicações qualitativas e quantitativas do sistema de sensor diédrico abrangem aplicações em manejo de irrigação no campo e vasos, bem como em estudos fisiológicos, e pode se aplicar a órgãos inteiros ou segmentados.
FUNDAMENTOS DA INVENÇÃO
A atividade da água e o potencial de água estão relacionados entre si pela equação 1 :
Ψ = (RT/vw) Ln (aw) [1]
Onde Ψ é o potencial da água (Pa), R é a constante dos gases (8,3145 j K"1 mol"1), T é a temperatura em Kelvin, vw (1.8 10~5 m3) é o volume parcial molal da água e aw é a atividade da água, que pode ser tomada como a centésima parte da umidade relativa de equilíbrio com uma amostra.
A avaliação da atividade da água é muito importante, por exemplo, em tecnologia de alimentos e no armazenamento de grãos. Para um grande número destes produtos a vida útil de armazenamento e a própria qualidade dependem da atividade da água, que é utilizada como um parâmetro de controle.
Para fisiologia vegetal e para manejo de água no solo, no entanto, a noção de potencial de água com suas subdivisões em componentes, em geral é mais utilizada do que as noções de umidade relativa e de atividade da água. O potencial de água foi definido como a relação entre o potencial químico e volume parcial molal da água. Consequentemente o potencial da água pode ser tratado simplesmente como força por unidade de área, isto é como uma pressão. O potencial da água assim definido é uma soma de componentes de pressão. Dentre estes, na planta, são importantes: o componente osmótico (Ψε), com o qual mediante o acúmulo de solutos a célula succiona a água para o seu interior; o potencial gravitacional (H), uma altura a ser vencida para que a água se movimente entre a raiz no solo e as folhas e outros órgãos aéreos; a pressão de turgescência (Ps) no interior das célu- las, uma decorrência do potencial osmótico e das membranas e paredes celulares; e a tensão da água no xilema e no apoplasma (PA) em cuja matriz as diferenças de pressão, moduladas pelo crescimento e a transpiração, governam a velocidade do transporte deste fluido entre o solo e cada órgão da planta.
Tensiômetro é a denominação que se pode utilizar para os instrumentos para medir o componente de tensão da água, no solo ou na planta. Variados tipos de tensiômetros encontram aplicações em ramos como a fisiologia vegetal, o manejo de irrigação e a geologia. Instrumentos para medir a atividade da água, umidade relativa de equilíbrio e potencial da água (eq. 1 ) por outro lado poderiam ser denominados preliminarmente de higrómetros e têm aplicações que variam entre aquelas puramente práticas a outras mais sofisticadas e dirigidas a ciências em áreas como a fisiologia vegetal e a tecnologia de alimentos.
Grande parte da tecnologia clássica sobre construção e usos de tensiômetros e higrómetros para estudos de ecofisioiogia de plantas foram revisados por Slavick (Methods of studying plant water relations, Springer, New York, Springer, 1974. ISBN 0-387-06686-1 ) e no que tange à atividade da água em alimentos, vários dos métodos frequentemente utilizados são brevemente descritos por Zapata et al. (Bol.SBCTA, v30, n. 1 , p 91-96, 1996).
O tensiômetro comum (Soil Science, v. 53, p. 241-248, 1942), usado para manejo de irrigação, é constituído por uma cápsula porosa com cavidade cheia de água ligada hermeticamente a um vacuômetro. Sua faixa de trabalho é entre zero e a pressão barométrica, porém na prática é usado principalmente entre zero e 70 kPa. O maior uso do tensiômetro comum é como um instrumento de referência em manejo de irrigação. A grande limita- ção do tensiômetro comum, por sua vez, é a ocorrência de embolia, isto é, acumulação de ar na água contida na cavidade da cápsula porosa. Este gradativo acúmulo de ar faz com que o tensiômetro perca velocidade de resposta e sofra uma relacionada redução na tensão máxima de trabalho, enquanto o volume de ar acumulado aumenta na cavidade do sensor. A manu- tenção necessária para o tensiômetro voltar a funcionar é abrir a tampa, adicionar água, fechá-lo e esperar uma nova resposta de equilíbrio dinâmico. Parece uma manutenção fácil, porém este trabalho tem sido o grande empecilho para que o tensiômetro comum seja utilizado em automação, face à demanda por sensores que operem com baixa ou nenhuma manutenção.
Tensões de água de módulo maior que pressão barométrica e que se estendam até 1500 kPa, ou mais, podem ser mensuradas pelo tensiômetro desenvolvido por Ridley & Burland 1993 (Géotechnique, v.43, p. 321- 324, 1993). O principio deste tensiômetro de alto desempenho é similar ao do tensiômetro comum, do qual difere por possuir uma cavidade de volume reduzido sobre um elemento poroso de elevada pressão de borbulhamento, um transdutor de pressão eletrônico e por ser pré-hidratado a mais de 4000 kPa por pelo menos 24 h, em câmara hiperbárica, para dissolver as bolhas de ar. É um instrumento de alto desempenho no sentido das elevadas tensões de água que mede, no entanto, trata-se de um instrumento instável, cuja operação é sempre interrompida por ocorrência de embolia, após, no máximo, algumas horas de operação. A embolia neste instrumento possui efeito muito mais devastador e instantâneo do que se experimenta em um tensiômetro comum, quando as tensões de água medidas são muito maiores do que o módulo da pressão barométrica. Apesar desta limitação, trata-se de um sistema valioso para geofísicos e engenheiros que precisam medir propriedades mecânicas de solos em uma ampla faixa de tensões de água.
Um sistema de medir tensão de água que não possui a limitação de embolia é o descrito no documento BR PI 0004264-1. Neste sistema, cápsulas porosas com a cavidade cheia de ar e sem água são submetidas à pressão de ar para ter a tensão da água medida por diferença entre o parâmetro pB (pressão de borbulhamento) e a pressão de ar (p) necessária para forçar a permeação do gás através da parede do elemento poroso. Elementos porosos com propriedades adequadas para diferentes aplicações agrícolas e diferentes instrumentos de uso do sistema estão disponíveis comercialmente.
A maioria dos instrumentos para medir tensão de água no solo é aferida em câmara de pressão com membrana ou disco poroso, a denominada câmara de Richards (Soil Science, v. 51 , p.377-386, 1941). Nesta câmara de pressão a água é forçada para fora do equipamento através da membrana porosa sobre a qual repousa a amostra sob estudo, usualmente solo. O tempo de equilíbrio de tensão de água depende de fatores, dentre os quais são importantes a espessura da camada do solo e a pressão de borbulhamento da membrana. A tensão da água no equilíbrio é igual à pressão de ar aplicada. Este instrumento tem sido utilizado principalmente para estabelecer curvas entre a umidade e a tensão da água no solo, as denominadas curvas de retenção ou curvas de pressão volume. Trata-se, no entanto, de um dispositivo de aferição e não de um sensor de tensão de água propriamente dito. Como limitação, o ajuste de tensões elevadas é demasiadamente lento, porque a condutividade hidráulica do solo diminui exponencialmente com a tensão da água.
Para a conservação de grãos e produtos alimentares diversos a manutenção da atividade de água que corresponde a potenciais matriciais e de potenciais hídricos totais muito maiores que 3,0 MPa (aw>0.98) são indispensáveis. Por exemplo, grãos em equilíbrio higroscópico com uma umidade relativa de 50%, teriam aw=0,50 e potencial de água de 96 MPa. Para a aferição destes instrumentos, que medem atividade da água, são utilizadas técnicas de equilíbrio higroscópico com soluções salinas e instrumentos de preparo de umidade relativa de referência. Um sistema simples que faz uso de sais higroscópicos para ajuste de umidade relativa em câmara sob temperatura controlada foi inventado por Greaves em 1991 e é descrito no documento GB 2255190. Outros sistemas internacionalmente aceitos para a aferição de higrómetros são: 1) misturas gasosas de ar proveniente de duas pressões, uma de saturação e outra de medição, ambas em ambiente isotérmico; 2) misturas de ar provenientes de duas temperaturas, uma de saturação mais reduzida e uma de medição mais elevada; 3) e o sistema gravimétrico em que uma massa conhecida de água é vaporizada no interior de um recipiente de volume conhecido e temperatura finamente ajustada (PI BR 0104475-3).
A atividade da água ou umidade relativa de equilíbrio é a principal variável relacionada à conservação de alimentos (Boi. SBCTA, v.30, p.91-96, 1996). Os métodos para a determinação da atividade da água em alimentos são variados e incluem:
a) Métodos gravi métricos, que são baseados na determinação da curva de secagem (dessorção) ou de umedecimento (sorção ou adsor- ção) de um alimento ou solo durante o equilíbrio com soluções salinas saturadas de referência em condição isotérmica. Trata-se de um método cuja velocidade diminui rapidamente em função do aumento das dimensões dos órgãos, ou unidades de amostra, e dependendo do material pode demorar semanas ou até meses. É um método que precisa ser aplicado sob temperatura rigorosamente controlada para evitar a condensação de água. Adicionalmente, de preferência as soluções saturadas empregadas devem ajustar a atividade da água de modo praticamente independente da temperatura, isto é, com um diminuto coeficiente térmico. Por envolver uma espera longa este é um método que somente pode ser usado para alimentos pouco perecíveis, como o são diversas sementes.
b) Um procedimento isopiéstico envolve tiras de papel de filtro embebidas em diferentes soluções salinas saturadas, de referência. Estas tiras são pesadas e colocadas nas câmaras com o produto por 24 a 48 horas. Cada tira pode ganhar ou perder massa dependendo da sua atividade de água ser maior ou menor do que a atividade da água da amostra, assim utilizando-se de interpolação gráfica estima-se a atividade da água da amostra, na qual uma tira embebida com solução adequada salina não sofreria variação de massa. É um método de qualidade e baixo custo, porém trata-se de um procedimento que envolve "tentativas", e é considerado um método lento.
c) O método do equilíbrio com sensor de material absorvente de referência, feito de celulose ou caseína, por exemplo, envolve o estabelecimento preliminar de uma curva de calibração que relaciona a massa do sensor e a atividade da água de soluções salinas padronizadas. A seguir o sensor de material absorvente é colocado juntamente com a amostra e após um período de 24 a 48 horas sua massa final de equilíbrio é determinada, to- mando-se o cuidado de evitar qualquer perda de água até a pesagem. A atividade da água é então calculada de acordo com a massa do sensor, utilizando-se a curva de calibração. Esta é uma técnica que funciona para sobremesas e poderia ser utilizada para órgãos vegetais com atividade de á- gua entre 0,8 e 0,99. É um método de baixo custo, interessante e com precisão da ordem de 0,002 unidades de atividade de água. Também se trata de um método lento, cuja estabilidade de resposta depende do material absorvente. Uma limitação importante desta tecnologia é que ela não é adequada para potenciais de água próximos a zero.
d) São simples e práticos os higrómetros de fibra para a medição de umidade relativa, como descrito no documento GB 344341 de 1931. Estes instrumentos, no entanto, requerem calibrações frequentes tendo-se em vista que fibras como as de fio de cabelo desengordurado, por exemplo, perdem a elasticidade com o tempo. Adicionalmente, são instrumentos que não têm sido construídos especificamente para medir a atividade da água em alimentos.
e) Higrómetros eletrônicos resistivos que em geral são feitos de uma lâmina de material inerte revestida por uma camada higroscópica de cloreto de lítio, por exemplo. Nestes sistemas a condutância elétrica varia em função da umidade relativa do ar. A precisão deste tipo de dispositivo é da ordem de 0,005 unidades de aw. Bonne e outros em 1996 desenvolveram um microsensor de resposta rápida estabilizado para medidas de umidade absoluta e de temperatura de ponto de orvalho baseado na higroscopicidade do cloreto de lítio conforme descrição no documento US 05533393. O atual grau de sofisticação destes dispositivos de resistência pode ser elevado, como se pode observar no sensor resistivo com elemento poroso e aqueci- mento descrito no documento de Speldrich WO 2005/121781 , no qual o a- quecimento eletrônico do elemento poroso vaporiza gotículas de água condensada e possibilita, inclusive, a determinação de umidades relativas superiores a 100%. A resposta dos dispositivos de resistência elétrica, no entanto, tende a se deteriorar, por exemplo, pela diluição ou pelo acúmulo de íons sobre a matriz inerte.
f) Uma segunda categoria de higrómetros eletrônicos são os de capacitância que fazem uso da elevada constante dielétrica do vapor de água, em comparação com o ar. Um destes sistemas com agregação de complexidade para melhoria da precisão é descrito no documento US 5922939. De uma maneira geral estes são sensores de umidade absoluta que respondem rapidamente e que requerem de correções térmicas para a medição de umidade relativa. Adicionalmente, tendem a ser pouco sensíveis em medições de umidade relativa próximo à saturação. Sensores capacitivos, assim como os sensores resistivos, em geral, requerem calibração frequente.
g) Método da temperatura do ponto de orvalho para medir a ati- vidade da água, em geral requer medida de temperatura sobre uma superfície de termopar ou de um espelho resfriado, por exemplo. Os sistemas de ponto de orvalho também podem produzir estimativas erróneas da atividade da água, caso a superfície resfriada esteja contaminada por impurezas, e também no caso da presença de substâncias voláteis. Em geral, os instrumentos baseados em temperatura do ponto de orvalho são mais estáveis e menos sujeitos a interferência do que os higrómetros de resistência elétrica e os de capacitância.
h) No método psicrométrico a temperatura de um termómetro com o bulbo úmido e a temperatura do termómetro de bulbo seco, de referência, são utilizados para estimar a atividade da água. Usualmente o bulbo úmido é umedecido graças à prévia condensação de água sobre uma super- - fície resfriada por aplicação de corrente elétrica (efeito Peltier).
Dentre os instrumentos para medir atividade da água aqueles que têm sido considerados melhores são os que utilizam o método do ponto de orvalho, de acordo com a temperatura em que é iniciada a condensação de água em uma superfície plana limpa e hidrofílica. Campbell em 1974 desenvolveu um higrómetro baseado em termopares e efeito Peltier para a medição de osmolaridade, atividade da água, ou potencial hídrico de soluções e amostras de plantas. O dispositivo, a eletrônica e a metodologia para uso do instrumento no modo ponto de orvalho e no modo psicrómetro de bulbo úmido estão descritos no documento US 3797312. Uma das qualidades do equipamento descrito é a portabilidade e o fato de não requerer sofisticado sistema de banho térmico para medições de atividade de água em amostras diminutas de planta e de solução. No modo psicrométrico a temperatura do bulbo úmido formado após a condensação de água e a temperatu- ra do bulbo seco de referência são utilizados para estimar a atividade da á- gua. Outros dispositivos que usam o método do ponto de orvalho fazem uso de espelho como no dispositivo de Zlochin (2005) descrito no documento US 6926439, no qual um espelho sempre livre de impurezas trazidas pelo ar é utilizado para a aplicação do método do ponto de orvalho. Zlochin argumenta que um dos grandes problemas do método do ponto de orvalho é a acumulação de impurezas carreadas pelo ar. A remoção destas impurezas é uma dificuldade, visto que há uma demanda de limpeza frequente da superfície resfriada para que a qualidade das medições não seja prejudicada.
Segundo Campbell & Lewis (1998), no sistema de medição de atividade de água pelo método de ponto de orvalho do documento US 5816704, e em outros dispositivos que fazem uso deste princípio, o erro na estimativa da temperatura do ponto de orvalho é dado pela equação: Er- ro2 = 2 r a w / s onde r é a resistência da camada laminar (s m~1), a é a inclinação entre a pressão de vapor de saturação e a temperatura, w é a taxa de condensação em g m"2 s"' e s é a concentração de vapor de saturação em g m"3. Desta equação fica evidente que métodos que diminuem a camada laminar e as quantidades de água condensadas para a medição também diminuem o erro na estimativa da temperatura do ponto de orvalho e aumentam a velocidade de resposta do instrumento.
Diferentemente do caso de solos, considerado inicialmente, o desenvolvimento de dispositivos para medir a tensão de água em plantas tem sido mais raro, apesar de ser uma variável fundamental para explicar a ascensão de seiva. No estado da arte o método mais utilizado para medir tensão de água em plantas tem sido a câmara de pressão de Scholander (Proceedings National Academy of Sciences USA, v. 52, p.119-125, 1964). Para uso, uma folha, por exemplo, é fixada ao orifício da borracha de veda- ção, para que o pecíolo possa atravessar a tampa que fecha a câmara hermeticamente. Na medição, aumenta-se a pressão de gás na câmara, lentamente, até que a primeira gota de seiva escoe através do pecíolo. A pressão de gás aplicada, nesta condição, é então tomada como estimativa da tensão da água na folha. Na literatura corrente, no entanto, há posições controver- sas sobre a validade deste método, cujo ponto fraco é não possuir uma forma de aferição. Apesar disto, e mesmo envolvendo amostragens destrutivas, a câmara de pressão de Scholander é o instrumento mais utilizado para estudar relações hídricas em plantas.
A tensão da água na planta também tem sido medida inserindo- se um capilar no interior dos vasos do xilema (Plant Physiology, v. 61 , p. 158-163, 1978.). Este método denominado método da sonda de pressão, no entanto, é extremamente difícil, laboratorial e não tem possibilitado medições de tensões superiores a 800 kPa, na planta. Nas medições comparativas de tensão de água em plantas fazendo uso da sonda de pressão e da câmara de pressão de Scholander, adicionalmente, os resultados nem sempre têm sido equivalentes, dentro das margens de erro.
Na presente invenção descreve-se um sistema simples para medir potencial de água, tensão de água e atividade de água que pode ser aferido por calibração por diferentes procedimentos. Nas medições de tensão de água o sistema desta invenção não é sujeito a problemas de embolia, problema típico do tensiômetro; para medir potencial de água o sistema po- de apresentar rápido equilíbrio térmico, utilizando uma micro-câmara de con- tato. Em medições de tensão de água no solo, possibilita leituras com simples uso de paquímetro na faixa de 0 a 0,3 MPa. O potencial de água pode ser mensurado com microscópio entre zero e 3,0 MPa. Em plantas, adicionalmente, sob microscópio, a tensão de água medida, encostando-se o sen- sor contra a amostra, por aplainamento, é da mesma ordem que a medição de potencial de água.
SUMÁRIO DA INVENÇÃO
O sistema de placas em diedro desta invenção possibilita medidas lineares da tensão de água, quando o transporte entre o diedro e a a- mostra ocorre através da fase líquida e medidas também lineares de potencial de água neste sistema são efetuadas utilizando-se transporte de água entre a amostra e o sensor diédrico por meio da fase gasosa. Para medir potencial de água a aresta do diedro é posicionada a alguns micrômetros de distância da amostra. No diedro o ângulo é tal que uma evaporação de pou- cos picolitros possa ser detectada, como movimentação do menisco. Desta forma o equilíbrio hídrico com a amostra, em geral é detectado em alguns minutos. Nas medidas de tensão de água no solo os volumes de água trocados pelo diedro são muito maiores, da ordem de microlitros, para possibilitar avaliações visuais com paquímetro. Para solos, as placas são fixadas sobre elementos porosos apropriados. O elemento poroso pode ser de superfície ou de inserção em profundidade definida. A face externa de uma das placas pode ser pintada de preto para facilitar a distinção do menisco que separa a faixa mais escura cheia de água ao lado da aresta e a faixa mais clara cheia de ar e afastada da aresta. Nas medições, a distância L tomada entre a a- resta e o menisco multiplicada pela tangente do ângulo de diedro (a) é igual ao afastamento a entre as placas. Deste modo, caso o diedro contenha água pura, então a tensão da água (Ψ) e o potencial de água (T) são iguais e da- dos pela expressão: Ψ = T = -2 σ / [L tg(a)], onde σ é a tensão superficial da água em Nrrf1. Nas leituras com paquímetro, mede-se tensões de água de zero a 0,3 MPa, enquanto que nas leituras em microscópio são medidas tensões de água e de potenciais de água de zero a 3,0 MPa.
BREVE DESCRIÇÃO DAS FIGURAS
Figura 1 : Ilustração do sensor diédrico de placas hidrofílicas de vidro para medida de tensão de água de acordo com a distância entre o vértice e o menisco. A - vista frontal. B - vista de topo.
Figura 2: Sensor diédrico de placas hidrofílicas de vidro transpa- rente para medir a tensão de água de solo contendo elementos porosos a- coplados por cimento permeável. A - elemento poroso em disco para medição superficial. B - elemento poroso alongado, para a inserção no solo.
Figura 3: Sensor diédrico em microscópio com micro-câmara para equilíbrio de pressão de vapor de água para facilitar o posicionamento e equilíbrio rápido de pressão de vapor de água necessário em medições de potencial de água e atividade de água.
Figura 4: Sensor diédrico com placas móveis para possibilitar limpeza.
Figura 5: Sensor diédrico cujas laterais são vedadas para medir a tensão da água por aplicação de pressão de ar entre as placas.
Figura 6: Sensor diédrico no interior de uma câmara de equilíbrio higroscópico durante medidas do potencial de água de fluidos como homo- genatos de frutas e geléias.
Figura 7: Sistema para aplicação de volumes conhecidos de so- lução ao sensor diédrico.
Figura 8: Sistema com orifício e substâncias hidrofílicas em meio sólido para aferição de medições de atividade de água e umidade relativa com o sensor diédrico.
Figura 9: Curva entre tensão de água ajustada em câmara de Richards de pressão negativa e leitura no sensor diédrico.
Figura 10: Curva de atividade de água de referência e atividade de água calculada com o sensor diédrico, medida efetuada com auxílio de soluções de NaCI.
Figura 1 1 : Resposta de equilíbrio de potencial de água para um sensor diédrico com micro câmara de 20 μηι na aresta pressionada contra a superfície de uma raiz de cenoura.
Figura 12: Massa da raiz de cenoura e potencial de água medido com o sensor diédrico.
DESCRIÇÃO DETALHADA DA INVENÇÃO
Na presente invenção um sistema de placas planas e hidrofíli- cas, de vidro ou de material finamente poroso, fixadas (Fig. 1 ; 1 e 2) em die- dro é usado para medir tensão de água e outros componentes do potencial de água de solo, planta e produtos alimentares. Este sensor diédrico ilustrado em sua forma mais simples (Fig. 1 ) possibilita medidas de tensão de á- gua, de potencial de água e atividade de água de acordo com a posição do menisco (4), em condição de equilíbrio. O material das placas, os acessórios de leitura, a faixa de medição, possibilidade de revestimento hidrofóbico externo e o dimensionamento do sensor diédrico são definidos de acordo com a finalidade de uso.
Conforme a Figura 1 , das placas em diedro (1 , 2), pelo menos, a placa superior (1 ), preferencialmente, deve ser transparente para facilitar a visualização da água (7) e da posição do menisco (4). Para atender a diferentes usos a placa inferior (2), por outro lado, pode ser transparente, negra, espelhada ou micro-porosa.
A medição de tensão de água no solo, preferencialmente, deve ser feita com o sistema de diedro fixado sobre elementos porosos (9), como é ilustrado na Figura 2. Neste caso, o sensor diédrico é fixado sobre o elemento poroso (9) com cimento poroso (8). Caso seja fixado sobre um disco de elemento poroso (9) o sensor diédrico é ideal para medir a tensão de á- gua da superfície do solo de vasos (Fig. 2A). Por outro lado, para medir a tensão de água em profundidades especificadas o sensor diédrico precisa ser fixado sobre elemento poroso alongado (9) como se ilustra na Figura 2B, cujas paredes laterais podem ser impermeabilizadas até a profundidade desejada de leitura. O elemento poroso deve possuir porosidade e pressão de borbulhamento, ou tensão crítica de trabalho adequada à faixa de operação que se tenha em vista para o sensor.
Para medições de tensão e potencial de água em plantas o sensor diédrico deve ser utilizado com auxílio de microscópio (13) (Fig. 3A). Pa- ra este uso o diedro é apoiado em um bloco (15) para manipulação. No arranjo simples da ilustração o produto sobre um paralelepípedo (19) e a fonte de luz (20) sobre uma base plana são movimentados por deslizamento sobre a base de deslizamento (18). Para medição de tensão de água a "aresta" do sensor diédrico é pressionada contra amostras vegetais de elevada conduti- vidade hidráulica, raízes, por exemplo, para que a tensão da água na planta governe a tensão da água no sensor diédrico mediante o transporte de água diretamente em fase. Nesta aplicação o sensor diédrico possibilita medições de tensão de água na planta de modo ainda não efetuado por sistemas anteriores. A leitura de potencial da água requer procedimento ligeiramente dife- renciado, no qual a aresta é aproximada até poucos micrômetros, sem, no entanto, encostar-se à amostra. Neste sistema a troca de água através da aresta entre amostra e sensor ocorre através da fase gasosa. Esta troca de água na fase gasosa deve ocorrer através de uma finíssima camada de ar estagnado, de alguns micrômetros, na qual condições de equilíbrio térmico e higroscópico são obtidas rapidamente. Nas medições de potencial de água, o uso de sensor diédrico de vidro lapidado, que forma uma micro-câmara (12) (Fig. 3B) pressionada contra o órgão vegetal (1 1) é de grande utilidade. A micro-câmara é formada pela junção de placas de vidro com lapidação frontal, o que facilita o equilíbrio de temperatura e pressão de vapor de água necessários para medir a atividade de água. Nesta micro-câmara, a aresta (3), por onde ocorre a troca de água, em fase gasosa, se encontra em uma condição favorável para o rápido equilíbrio térmico e hídrico mesmo sem o recurso de sofisticado controle térmico. A placa lapidada também facilita a aplicação de revestimento hidrofóbico nas laterais do sensor diédrico, por fricção, por exemplo. Esta aplicação hidrofóbica é valiosa, por exemplo, para evitar fuga de água pela superfície do vidro, o que tende a atrasar a resposta do sistema. Manipulação e microscopia
O acessório de manipulação auxiliar da ilustração (Fig. 3) pode possuir corpo em poliacetal com base de deslizamento (18), suporte vertical (17) e suporte superior ou estágio (16). Para a manipulação a amostra bioló- gica (raiz, por exemplo) é colocada sobre paralelepípedos de altura adequada (19), com auxílio de uma massa plástica (21 ). O paralelepípedo (19) é preferencialmente constituído de plásticos como o poliacetal para facilitar o deslizamento suave sobre a base (18), mesmo sem uso de lubrificante. Na vertical, um bloco (15) em poliacetal é movimentado até a altura adequada e a posição é a seguir fixada por aperto em parafuso.
A fonte de luz (20) é posicionada por deslizamento em baixo do diedro para que o menisco água/ar (4) seja observado por transparência ao microscópio (13). O microscópio (13), por outro lado, é movimentado verticalmente, em rosca ou cremalheira, para a focalização. A movimentação horizontal do microscópio para facilitar a visualização e a medida da distância L entre o menisco (4) e a aresta (3) ocorre de acordo com um conjunto micrométrico (22) que movimenta o suporte do microscópio (14) sobre o estágio (16). A ocular do microscópio para estas medições, preferencialmente, deve ser micrométrica.
Fixação das placas
Na Figura 1 ilustra-se as placas em diedro fixadas com cola (6). Para esta montagem o espaçador traseiro (5) de espessura conhecida é colocado sobre a placa 2, aplicam-se minúsculas porções de cola com a ponta de uma agulha, posiciona-se a placa 1 e aplica-se radiação ultravioleta para endurecimento da cola.
Nos usos em solos e substratos (Fig. 2) as placas do diedro e um elemento poroso (9) são unidas por cimento poroso (8) com o seguinte procedimento: As placas 1 e 2 são fixadas ao espaçador traseiro (5), de maneira preliminar ao longo do comprimento, com auxílio de fita adesiva. O conjunto é então assentado com massa de cimento e água sobre o elemento poroso (9), previamente umedecido. A camada de cimento poroso (8) entre as placas de vidro e o elemento poroso (9) deve ser finíssima. A cura do ci- mento ocorre em uma bandeja, com uma camada de água ao fundo, durante um período de alguns dias. Após a cura, a fita de fixação preliminar das placas de vidro é removida, e a superfície externa do sensor diédrico é cuidadosamente lavada, para remover do vidro partículas aderidas de cimento e da fita adesiva.
Em usos nos quais é importante a possibilidade de limpeza das faces internas do sensor diédrico, o sistema pode ser montado conforme ilustrado na Figura 4. Neste caso, as placas de vidro (1 , 2) do diedro são coladas em placas de maior flexibilidade (23, 24), por exemplo, de PVC "rígi- do". Na placa 23 fixa-se um parafuso guia (25), cuja haste eleva-se de um orifício próximo à placa de vidro (2). A placa flexível superior (24) recebe um orifício para a passagem, livre, do parafuso guia (25), próximo à placa de vidro superior (1). Adicionalmente, a placa flexível superior (24), na traseira, recebe um orifício com rosca, no qual o parafuso de movimentação (27) das placas de vidro gira. Neste sistema o espaçador traseiro (5), serve, também, para posicionar os parafusos que compõem o limitador de altura (26).
Para avaliações de calibração direta do sistema com ar comprimido e também para que o sensor diédrico possa funcionar no modo tensi- ometria a montagem do sistema pode ser do tipo ilustrado na Figura 5. Nes- te formato, as placas de vidro têm suas laterais coladas, com resina de alta viscosidade, que não penetram entre as placas 1 e 2 durante a cura. Uma perfuração na placa de vidro (2) é usada como entrada para o tubo de ajuste de pressão de ar (28), que é também conectado a um manómetro (29). A tensão da água neste caso é dada pela equação 2:
T = Tr - p [2]
Onde Tr é a pressão de ar para ajustar o menisco na posição de referência, quando a aresta está exposta à água livre, p é a pressão de ar necessária para a medição e T é a tensão de água estimada da amostra.
Outra forma de preparar diedro é sob uma tampa de vidro como está ilustrado na Figura 6. Este tipo de montagem do sensor diédrico é valioso para medir a atividade da água em fluidos biológicos, doces e homogena- tos de tecidos de plantas e animais. A medição com este tipo de sistema, no entanto é mais lenta e requer bom banho isotérmico.
Tensão da água
A tensão T com que a água é retida entre as placas do sensor diédrico pode ser calculada com a expressão:
T = -2 σ / a [ 3]
Onde σ é a tensão superficial da água na temperatura do ensaio e a é o afastamento entre as placas (1 , 2) na linha do menisco (4), expressa em metros. Quando o ângulo de molhamento (□) sobre a placa for maior do que zero, então, a equação 3 deve ser corrigida multiplicando-se o T obtido, na equação 3, por [cos□]. Nas aplicações aqui consideradas para placas de vidro e cerâmicas altamente hidrofílicas o valor de [cos□] será considerado igual a 1 ,00. Adicionalmente, para as aplicações em manejo de irrigação sob baixas tensões de água uma correção para altura de ascensão capilar no elemento poroso (9) pode também tornar-se necessária.
A equação 3 pode ser modificada para representar o afastamento a em função da distância da linha do menisco à aresta L (em metros), sa- bendo-se que a = L (tg a). Substituindo-se este valor de a na equação 3 se obtém.
T = -2 σ / [L (tg a)] [4] Em um sistema com placas de 60 mm de comprimento por 30 mm de largura, encostadas na aresta e separadas de 50 μιτι no espaçador traseiro (5) fixado a 50 mm da aresta (3), calcula-se que a cada milímetro de distância L o afastamento a entre as placas aumenta de 1 μιτι. Caso L seja de 30 mm e considerando que a tensão superficial da água (σ) a 20 °C é 0,0728 N nrf1 , então, a tensão da água no solo equilibrado com o sensor, calculado com a relação T = -2 σ/a, é de 4853 Pa, ou 4,85 kPa. O sistema de placas em diedro configurado como na Figura 2 é adequado para uso com substratos e possibilita medições de tensões de água entre 2,91 kPa e 29,1 kPa, enquanto a posição do menisco muda de uma distância
Figure imgf000018_0001
mm em substrato de vaso com tensão de água de 2,91 kPa para L2=5 mm em substrato, mais seco, no qual a tensão de água já atingiu 29,1 kPa. Evidentemente, este sensor também possibilita medir tensões de água maiores, porém, para isto, o uso de lente de aumento é necessário.
Para estudos de campo, nos quais há interesse de medir tensões de água maiores, o espaçador (5) poderia ser de espessura menor, por exemplo, de Ι Ο μιτι. Deste modo, a cada milímetro de distância horizontal (Fig. 1) o afastamento a, entre as placas, aumentaria de apenas 0,2 μιη. Com esta especificação o sistema de placas em diedro se presta para medir tensões de água cinco vezes maiores que o anterior, isto é, possibilita medidas de tensão de água entre 14,6 kPa e 145,6 kPa, enquanto a distância L do menisco durante a secagem é reduzida de 50 mm para 5 mm, segundo as equações 1 e 4.
Sensores diédricos acoplados a elementos porosos (9) como os da Figura 2, assim como os tensiômetros comuns, requerem correção de altura, tendo-se em vista a comunicação hidráulica que há entre o sensor diédrico em que o elemento poroso (9) de condução hidráulica se abre para o contato com o solo. Esta necessidade torna-se mais importante quando as tensões que devem ser mantidas nos substratos são diminutas, como ocorre, por exemplo, no manejo de irrigação de plantas em vaso.
Sensor sobre elemento poroso
O contato direto do sensor diédrico com o solo ou a planta pode introduzir partículas, cuja acumulação entre as placas prejudica a resposta. Para reduzir este problema e para assegurar um efetivo acoplamento hidráulico entre o solo e o sensor diédrico, o diedro pode ser fixado ao elemento poroso (9) por meio de cimento poroso (8). O elemento poroso (9) filtra a água enquanto o cimento poroso (8) é o acoplamento hidráulico. Sob o pon- to de vista geométrico o elemento poroso pode ser um disco cerâmico, quando o sensor é preparado para repousar sobre o substrato, em um vaso de plantas, por exemplo, ou ser uma haste cilíndrica, quando este sensor diédrico precisar ser inserido no solo para a avaliação da tensão da água em uma profundidade maior.
Os vasos de plantas, em geral, são de pequena profundidade e por isto devem ser cheios com substratos de textura grossa. Em substratos de textura grossa, após a rega, os poros maiores permanecem cheios de ar, diferentemente dos substratos de textura fina que em vasos são completamente preenchidos por água. O ar entre as partículas do substrato, ou solo, é fundamental para que o oxigénio continue alimentando as células com oxigénio, para que as raízes respirem. Assim, nos substratos de vasos e em solos arenosos, que retêm a água fracamente a tensão crítica na qual a irrigação deve ser aplicada é baixa, usualmente inferior a 10 kPa. Caso se espere o substrato secar mais do que isto, então, nestes substratos de partículas grandes, as plantas não terão mais quantidades suficientes de água para absorver. Em aplicações deste tipo, portanto, o sensor diédrico, na especifi- cação considerada, indicará que a irrigação deve ser aplicada logo que a faixa escura, que corresponde à distância L, se tornar menor que 14 mm.
Para a medição da tensão de água em profundidade especificada, por exemplo, 20 cm, o elemento poroso (9) em forma de haste alongada deve ser revestido com tinta ou fita isolante, até a mencionada profundidade, para assegurar que a troca de água com o solo ocorra na profundidade, ou na faixa de profundidade de interesse.
Com o elemento poroso (9), a variação total do volume de água envolvida em uma medida é a variação da água contida no sensor diédrico, adicionada da variação da quantidade de água contida no elemento poroso (9). Para tensões de água elevadas, em casos nos quais a condutividade hidráulica no elemento poroso independe da tensão de água, a variação do volume de água no elemento poroso é dada pelo produto da compressibilidade da água pela variação da tensão de água. Esta aproximação é valiosa para a obtenção rápida de estimativas de tempo de meia resposta para o sistema. Do ponto de vista prático, no entanto, as medições de tensão de água em manejo de irrigação com sensor diédrico são muito facilitadas pelo fato de que tempos de resposta da ordem de horas são suficientes e facilmente obtidos.
Leituras alternativas
Com a introdução de um tubo de ar (28), através da placa (2) e um fechamento lateral hermético do sensor diédrico (Fig. 5) pode-se medir tensão de água com o uso da equação 2. O uso da relação T = Tr - p (Eq. 2) para o sensor diédrico, no entanto, é diferente daquele descrito no documento BR PI 0004264-1 , visto que no sensor diédrico a medição é feita sem passagem de ar, enquanto que no documento BR PI 0004264-1 a medição é feita mediante a permeação de um elemento poroso com ar. Outro aspecto interessante relativo a este sistema com fechamento lateral hermético (Fig. 5) é o seu potencial para uso como instrumento para medir a tensão superficial não só da água como também de qualquer outro fluido.
Adicionalmente, o sensor diédrico pode funcionar como se fosse um elemento poroso para medição de tensão de água aos moldes do docu- mento BR PI 0004264-1 , no entanto, para isto a placa da Figura 5 deve receber mais um orifício, no caso um orifício de escape de ar (10) colocado a uma distância L da aresta. Ainda nesta aplicação o sistema em diedro da presente invenção difere da BR PI 0004264-1 pelo fato de se poder definir a tensão crítica Tr ou pB, simplesmente, mediante a localização do orifício de escape de ar (10).
Forma mais sofisticada de localização da posição do menisco com o uso de interferência óptica, por exemplo, também poderá se mostrar valiosa em medições de tensões de água elevadas no qual o afastamento a é da ordem de um comprimento de onda de luz visível (400 a 700 nm).
Calibrações de tensão de água
As respostas esperadas a 20 °C para tensão de água, volumes de água e distância L de um sensor diédrico com
Figure imgf000021_0001
estão ilustrados na tabela 1. Estas respostas em solos e substratos podem ser comparadas, aferidas, com auxílio de uma câmara de Richards de pressão negativa. Neste método, ajusta-se a tensão de água em uma fina camada de solo e afere-se a leitura obtida no sensor diédrico contra este método de referência conforme se ilustra na Figura 9. Tabela 1 : Afastamento entre placas (a), tensão de água T, distância do menisco à aresta L, volume de água contido entre as placas considerando que o ângulo de diedro tem tg(a) igual a 0,001 e atividade de água de equilíbrio. Para ensaio a 20 °C no qual σ = 0,0728 N m '.
a T em metros de T L Volume em nanolitros aw pm coluna de água Pa mm por cm de comprimento
2000 0,0074 72,8 2000 20000000 0,9999994
200 0,074 728 200 200000 0,9999946
20 0,742 7280 20,0 2000 0,9999462
18 0,825 8089 18,0 1620 0,9999402
16 0,928 9100 16,0 1280 0,9999328
14 1,061 10400 14,0 980 0,9999231
12 1,238 12133 12,0 720 0,9999104
10 1.485 14560 10.0 50 0,9998925
8 1,856 18200 8,0 320 0.9998656
6 2,48 24267 6,0 180 0,9998208
4 3,71 36400 4,00 80 0,9997312
2 7,43 72800 2,00 20,0 0,9994625
1 14,9 145600 1.00 5,0 0,9989252
.8 18,6 182000 0,80 3,2 0,9986568
.6 24,8 242667 0,60 1.80 0,9982095
.40 37,1 364000 0,40 0,80 0,9973154
.20 74,3 728000 0.20 0.20 0,9946380
.10 148,5 1456000 0,10 0,050 0,9893048
.05 297 2912000 0,05 0,0125 0,9787239
.03 495 4853334 0,03 0,0045 0,964792
.02 742 7280000 0,02 0,0020 0,9476556
.01 1485 14560000 0,01 0,00050 0.8980511
Para tensões de água maiores que o módulo da pressão barométrica local a aferição pode ser feita em câmara de Richards comum, isto é câmara de Richards de pressão positiva. Neste caso, dependendo da membrana utilizada, pode ocorrer um erro de retorno de água ("rebound"), logo que a pressão aplicada na câmara de Richards retorna a zero. Este problema pode ser diminuído utilizando-se uma camada de solo mais espessa, de modo que não haja significativo "rebound", no período entre a abertura da câmara de Richards e a leitura do sensor diédrico equilibrada sobre a superfície do solo em seu interior.
Limitações em medições de tensão de água
O funcionamento do sensor diédrico (Eq. 3 e 4) depende da tensão superficial da água (σ) enquanto que gdiminui de maneira linear em função da temperatura. Assim, sabendo-se que a tensão superficial da água é de 0,0756 N m"1 a 0 °C e que diminui para 0,0696 N m"1 a 40 °C, então, po- de-se calcular o valor da mesma em qualquer temperatura até que a tensão superficial se torna nula. A pequena variação da tensão superficial da água na faixa de 0 a 40 °C é um aspecto favorável, visto que para aplicações de menor precisão pode-se, em geral, considerar o ambiente como isotérmico, ainda que ocorram variações de temperatura da ordem de 5 ou 10 °C.
A tensão superficial da água, adicionalmente, é influenciada por agentes tensoativos como o são os detergentes, uréia e alguns poluentes, que podem causar erros de leitura para este instrumento em aplicações so- bre solos e substratos poluídos. Sais utilizados como adubo, por outro lado, possuem efeito quase negligível sobre a tensão superficial da água e não são importantes causas de erros.
Em manejo de irrigação, as variações na tensão superficial da água, do ponto de vista de curva de retenção de água, são automaticamente corrigidas, visto que os efeitos de agentes tensioativos, da temperatura e da tensão superficial da água são sempre proporcionais aos efeitos destes fato- res sobre a capacidade de retenção da água do solo ou do substrato. Assim, a eventual adição de fertilizantes, espalhantes adesivos e outras substâncias com ação tensioativa que diminuam a força de retenção da água no solo ou no substrato também terão efeito proporcional na leitura do sensor diédrico. Consequentemente, o parâmetro L é um índice mais robusto do que a própria tensão da água para representar adequadamente a quantidade de água retida no solo. Do ponto de vista da restauração da resposta do instrumento, por outro lado, sabe-se que uma simples limpeza restaura, ainda que transi- entemente, a resposta de tensão de água correta, nestes sistemas poluídos. Soluções e atividade da água
O aplicador de solução da Figura (7) possibilita a coleta de minúsculos volumes conhecidos de soluções ao sensor diédrico. O aplicador de solução funciona da seguinte forma: coloca-se a ponta do aplicador (32) na solução (33); o enchimento do capilar do aplicador fixado em uma rolha (31) é espontâneo, isto é por capilaridade. A aplicação da solução é feita a seguir, no local designado, pressionando-se o êmbolo (30).
O volume de solução coletado pode ser diretamente aplicado sobre a aresta, no caso de uso de placas lapidadas (12) (Fig. 3B), que prefe- rencialmente devem possuir sua superfície externa coberta por substância hidrofóbica. Alternativamente, as placas podem conter orifício, ou corte em ângulo próximo à aresta para facilitar a penetração da solução. Também po- de ser interessante o uso do sistema de abertura do diedro ilustrado na Figura 4, no qual as placas sejam separadas para a aplicação da solução.
Tendo-se introduzido um volume de solução, sabe-se também que o potencial osmótico (Ψβ) é dado por:
Ψδ = -n R T / V= RTC0[5]
Onde V é o volume de água contido entre as placas e n é o número de moléculas dissolvidas na água em moles e C0 é a concentração molar da solução adicionada. O volume de água V contido no diedro, por cm de largura, por outro lado pode ser expresso por:
V = 0,005 L2 tg α [6]
Onde L é a distância do menisco à aresta e α é o ângulo entre as placas do diedro, ou simplesmente diedro. Caso a componente de tensão da água possa ser desprezada como diminuta no sensor diédrico, então o potencial de água total Ψ passa a depender apenas do potencial osmótico (eq. 5). Assim, dividindo-se a expressão que representa Ψ pela expressão que representa Ψ0, de acordo com as equações 1 e 5 tem-se:
Figure imgf000024_0001
Substituindo-se, a seguir, V da equação 6 na equação 7 tem-se a equação 8 que representa a atividade da água em função do comprimento da lâmina de água (L) contida entre as placas.
aw = aw0 (Lo/L)2[8]
Similarmente, substituindo-se V da equação 6 na equação 5 tem-se:
s = -n R Tf (0,005 L2 tg a) [9]
Deste modo, caso o potencial osmótico varie entre Ψβο e Ψβ então de acordo com a equação 7 tem-se:
Ψε = Ψ5ο (U/L)2 = Ψδ0 (C0/C)2 [10]
Onde C é a concentração da solução entre as placas em um dado momento.
O potencial de água total, considerando-se também a tensão com que a água é retida entre as placas, pode ser obtido a seguir, somando- se a equação 4 à equação 10. Ψνν = Ψεο (Co/C)2 - 2 σ / [L tg(a)] [1 1]
O tempo de equilíbrio total na medição de potencial de água (Fig. 11) depende em grande parte do equilíbrio térmico entre a aresta e a amostra, porém como mencionado anteriormente pode também depender da adsorção de água nas superfícies externas do sensor. Idealmente, sem ad- sorção nas superfícies externas equilíbrios térmicos dinâmicos com diferenças de temperatura entre a superfície da amostra e da aresta do sensor dié- drico com diferença da ordem de (DO, 001 °C) podem ser obtidos em minutos, caso a distância entre a amostra e o sensor diédrico seja menor que 30 μηι, dentro da geometria indicativa ilustrada na Figura 3.
Um aspecto importante que se deve ter em mente ao se utilizar as equações 10 e 1 1 para medidas de Ψνν e ts é que a maior parte do volume da solução adicionada ao sensor é evaporada em poucos segundos após a aplicação. Deste modo, o valor de LO deve ser estimado de acordo com diedro (a) como é ilustrado na tabela 1.
Em tese as equações 10 e 11 consideradas para medir atividade da água poderiam também ser utilizadas para medir a atividade de outras substâncias voláteis, que como o etanol, por exemplo, tenham afinidade, e molhem as placas internas do sensor.
Resposta e aferições em atividade e potencial de água
Na Figura 8 ilustra-se um sistema com orifício (35) e substrato hidrofílicos de partículas sólidas (34) impregnadas por substância higroscó- pica de atividade de água conhecida com a qual se faz aferições das medidas de atividade de água e umidade relativa efetuadas com o sensor diédri- co. O conjunto de calibração, portanto, é uma caixa (36) com tampa (37), contendo um substrato hidrofílico com atividade de água conhecida (34) e um orifício (35) no qual a aresta do diedro (3) é acomodada para possibilitar equilíbrio higroscópico necessário à aferição da atividade da água, ou do potencial de água. Este é um tipo de calibrador durável e robusto para aferi- ções. A flexibilidade deste aferidor decorre da gama de substâncias disponíveis para obtenção de atmosferas com atividade de água de referência (Windyon & Hates, Ecology, v. 41 , p. 232-237, 1960). Utilizando-se de solução salina (como de NaCI) conforme descrito (eq. 8 e eq. 10) pode-se efetuar medições em uma ampla faixa de ativida- de de água, como se ilustra na Figura 10. Este tipo de medição é importante para uso em alimentos processados como doces, por exemplo.
Nas medições de atividade e potencial da água com o sensor diédrico, com ou sem o uso de solução entre as placas, um aspecto importante é o tempo de equilíbrio. Em ensaios de determinação de potencial de água em matérias vegetais como raízes de cenoura a resposta típica do sensor no tempo é do tipo ilustrado na Figura 1 . Estes tempos de resposta são proporcionais aos volumes de água trocados, por unidade de comprimento do sensor e proporcionais ao quadrado da distância entre a aresta (3) do sensor diédrico e a superfície do órgão vegetal (1 1 ). A condutividade hidráulica e gradientes internos de potencial de água existentes no produto ao início da medição podem ser causa de demora adicional nas medições de potencial de água ou atividade da água.
Em estudos de potencial de água, que podem ser efetuados sem o uso de solução salina entre as placas do diedro, resultados esperados de potencial de água medido em função de perda de água para produtos como raízes de cenoura são do tipo ilustrado na Figura 12.
Limitações e potencialidades adicionais
Imperfeições nas placas do sensor diédrico são um problema e ao mesmo tempo uma necessidade para que a água flua e o instrumento funcione. Se as placas fossem perfeitas, como a analogia do nome diedro sugere, o sensor diédrico simplesmente não funcionaria, pelo fato de que a aresta seria perfeitamente impermeável à passagem de líquidos ou gases. Deste modo, rugosidade e planura das placas utilizadas devem ser adequadas às aplicações que se tenha em vista. Assim, placas de vidro comuns e placas de elementos porosos de tensão crítica maior que 2,0 MPa aplainadas são adequadas para a maioria das aplicações de tensão de água em solos. Materiais de maior perfeição e planura, no entanto, são requeridos para medições de potencial de água e tensões de água mais elevadas até a ordem de 3,0 MPa, quando as imperfeições de superfície já devem ser infe- riores a 100 nm.
Sensor diédrico com superfície externa hidrofílica pode se constituir em eventual problema por pelo menos duas razões: Primeiro a superfície hidrofílica é um local de deposição de camadas moleculares de água, o que pode atrasar o equilíbrio em medições de potencial de água, da mesma forma que ocorre em outros sistemas; Segundo, sendo as superfícies externas hidrofílicas estas podem ser drenos, ou vias de saída, para a água ou a solução contida no diedro. Isto é um problema no caso particular de haver soluções no diedro, visto que a substância colocada, por exemplo, para mo- nitorar a atividade da água no ar, pode migrar para as superfícies externas do sensor. Consequentemente, para aplicações específicas em que estes fenómenos não podem ocorrer, as faces externas do diedro requerem revestimento com moléculas hidrofóbicas, que impeçam adsorção e fuga superficial de solutos polares.
Diferentemente dos sistemas de higrometria de ponto de orvalho por resfriamento de superfícies, o sistema da presente invenção é pouco propenso à impregnação de suas superfícies por impurezas do ar. Isto ocorre porque o ar entra no diedro principalmente por difusão, o que reduz a velocidade de contaminação com impurezas. Este problema é particularmente menor nos sensores diédricos com fechamento hermético das laterais. Em todas as configurações, no entanto, podem ocorrer contaminações mediante movimentos de água contaminada e por impurezas orgânicas voláteis.
Um segundo aspecto é que a temperatura da superfície da aresta pode ser ajustada por efeito Peltier e medida com uso de termopares, aos moldes do que se usa em microscopia de tunelamento. Estas melhorias podem ser obtidas por deposição dos metais adequados sobre a superfície do vidro. Assim adiciona-se às qualidades da presente técnica a possibilidade de medir atividades de água mais baixas ou simplesmente produzir condensação de água inicial para a operação do sistema em monitoração da ativi- dade da água.
Caso o sistema seja hermético e a posição do menisco seja mantida em uma posição de referência graças à aplicação de pressão de gás, então o método passa a ser de equilíbrio isopiéstico, isto é a peso constante, no sentido de que no equilíbrio a massa de água contida no diedro se mantém inalterada durante as medições. A condição isopiéstica possibilita o monitoramento do potencial de água com maior rapidez e influenciando me- nos o potencial de água de pequenas amostras biológicas mais sensíveis às variações da quantidade absoluta de água.

Claims

REIVINDICAÇÕES
1 ) Sensor para avaliar tensão, potencial e atividade de líquidos caracterizado por ser constituído de duas placas, uma superior (2), por meio da qual se faz a leitura da posição (L) do menisco (4), e uma inferior (1 ), fi- xadas em diedro de ângulo a, cuja aresta (3) representa uma junção entre tais placas, proporcionando a constituição de uma abertura delgada de con- tato com a amostra.
2) Sensor para avaliar tensão, potencial e atividade de líquidos, de acordo com a reivindicação 1 , caracterizado por apresentar-se acoplado, notadamente por meio de sua aresta, a elemento poroso de contato direto com a amostra.
3) Sensor para avaliar tensão, potencial e atividade de líquidos, de acordo com a reivindicação 2, caracterizado por apresentar elemento poroso de contato direto com a amostra alongado dotado de parede lateral im- permeabilizada em sua região apical e permeável em sua porção distai.
4) Sensor para avaliar tensão, potencial e atividade de líquidos, de acordo com a reivindicação 1 , caracterizado por apresentar pelo menos um orifício (10), em uma das placas do diedro, em posição que corresponda a tensões críticas específicas para medições discretas de tensões de líquido mediante teste de passagem de fluxo de ar ou gás.
5) Sensor para avaliar tensão, potencial e atividade de líquidos caracterizado por ser constituído de duas placas fixadas em diedro de ângulo a, cuja aresta (3) representa uma junção entre tais placas, proporcionando a constituição de uma abertura delgada de contato com a amostra, bem co- mo apresentar as laterais fechadas hermeticamente, e apresentar uma abertura na região oposta à extremidade da aresta, por meio da qual o interior do sensor se comunica a um modulador de pressão dotado de manómetro.
6) Sensor para avaliar tensão, potencial e atividade de líquidos caracterizado por apresentar pelo menos uma das placas chanfradas na in- terface de formação da aresta (3) de modo a possibilitar a formação de uma micro-câmara côncava (12) frontal no sensor diédrico.
7) Processo de medição de tensão, potencial e atividade de lí- quidos caracterizado pelas seguintes etapas: (i) estabelecimento de contato, direto ou indireto, entre a aresta (3) do sensor diédrico e a amostra; (ii) leitura da posição do menisco (4) a uma distância ortogonal L da aresta (3), após o atingimento do equilíbrio; e (iii) cálculo, com base em L, da incógnita dese- jada.
8) Processo de medição de tensão, potencial e atividade de líquidos, de acordo com a reivindicação 7, caracterizado por possibilitar, com a aplicação de volume conhecido de solução de concentração conhecida, de substâncias como o NaCI, a medição de atividade de água mais reduzida do que se consegue medir empregando água pura entre as placas do sensor, isto mediante as variações da distância ortogonal L.
9) Processo de medição de tensão, potencial e atividade de líquidos, de acordo com a reivindicação 7, caracterizado por possibilitar a medição da tensão superficial em líquidos com afinidade pelas superfícies in- temas das placas do sensor diédrico.
10) Processo de medição de tensão, potencial e atividade de líquidos, de acordo com a reivindicação 7, caracterizado por possibilitar a medição da atividade de líquidos voláteis que tenham afinidade pelas superfícies internas das placas do sensor diédrico.
1 1) Processo de medição de tensão, potencial e atividade de líquidos, de acordo com a reivindicação 7, caracterizado por possibilitar operação isopiéstica, isto é mantendo-se fixa a posição do menisco (4) por meio de variação pneumática da pressão interna do diedro, mediante impermeabilização das laterais, exceto na aresta, para medições de tensão de água e de potencial de água a volume constante no diedro e também em calibrações de distância ortogonal L versus pressão aplicada.
PCT/BR2011/000001 2010-01-04 2011-01-03 Sensor diédrico para avaliar tensão, potencial e atividade de líquidos WO2011079367A1 (pt)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11728523.9A EP2522214B1 (en) 2010-01-04 2011-01-03 Dihedral sensor for determining tension, potential and activity of liquids
CN201180012425.9A CN102905515B (zh) 2010-01-04 2011-01-03 用于估计液体的张力、势和活度的二面体传感器
AU2011203425A AU2011203425B2 (en) 2010-01-04 2011-01-03 Dihedral sensor for determining tension, potential and activity of liquids
US13/520,316 US9588030B2 (en) 2010-01-04 2011-01-03 Dihedral sensor for evaluating tension, potential and activity of liquids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1000060-7A BRPI1000060B1 (pt) 2010-01-04 2010-01-04 Density sensor to assess voltage, potential and activity of liquids
BRPI1000060-7 2010-01-04

Publications (2)

Publication Number Publication Date
WO2011079367A1 true WO2011079367A1 (pt) 2011-07-07
WO2011079367A8 WO2011079367A8 (pt) 2012-08-30

Family

ID=44226066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2011/000001 WO2011079367A1 (pt) 2010-01-04 2011-01-03 Sensor diédrico para avaliar tensão, potencial e atividade de líquidos

Country Status (6)

Country Link
US (1) US9588030B2 (pt)
EP (1) EP2522214B1 (pt)
CN (1) CN102905515B (pt)
AU (1) AU2011203425B2 (pt)
BR (1) BRPI1000060B1 (pt)
WO (1) WO2011079367A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014172765A1 (pt) * 2013-04-22 2014-10-30 Empresa Brasileira De Pesquisa Agropecuária - Embrapa Sensor de tensão de água, sistema para caracterização e medições contínuas de água no solo, sistema de indicação de tensão crítica no solo e haste de irrigação
EP3882626A1 (en) * 2020-03-16 2021-09-22 Meter Group, Inc. Fast water activity measurement system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097699A1 (en) 2013-12-23 2015-07-02 Saturas Ltd Device for measuring water potential in plant tissue
RU2585514C1 (ru) * 2014-12-10 2016-05-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ определения поверхностного натяжения двухкомпонентной наночастицы, находящейся в матрице
CN105165560A (zh) * 2015-10-12 2015-12-23 江苏鑫泰丰农业装备有限公司 一种能够根据土壤湿度实现智能喷灌的绞盘喷灌机
US10795315B2 (en) 2016-05-11 2020-10-06 The Regents Of The University Of California Method and system for pixel super-resolution of multiplexed holographic color images
IL253540A0 (en) * 2017-07-18 2017-09-28 I Dripper Ltd humidity sensor
BR112021006738A2 (pt) * 2018-10-19 2021-07-13 Hortau Inc. dispositivo de medição de parâmetro de meio poroso
CN110208139B (zh) * 2019-06-26 2021-11-05 北京农业智能装备技术研究中心 一种基质水分吸持特性曲线测量装置及其使用方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB344341A (en) 1929-10-29 1931-03-02 Schneider Jaquet & Cie Sa Device for regulating the temperature and the degree of humidity of a current of air
GB733602A (en) * 1956-04-03 1955-07-13 Andre Pelissier Robert Pochan Instrument for measuring surface tensions and viscosities
US3797312A (en) 1973-02-14 1974-03-19 Wescor Inc Thermocouple hygrometer and method
GB2255190A (en) 1991-03-19 1992-10-28 Peter Greaves Calibration of humidity sensors
US5533393A (en) 1995-01-13 1996-07-09 Honeywell Inc. Determination of dew point or absolute humidity
US5816704A (en) 1996-06-04 1998-10-06 Decagon Devices, Inc. Water activity and dew point temperature measuring apparatus and method
US5922939A (en) 1997-03-07 1999-07-13 Veris Industries, Inc. Humidity sensor
CA2404136A1 (en) * 2000-03-21 2001-09-27 Cenes Limited Improved interface patch clamping
EP1186880A1 (fr) * 2000-09-09 2002-03-13 Societe Des Produits Nestle S.A. Viscosimètre et procédé pour déterminer la viscosité de substances
BR0004264A (pt) 2000-08-30 2002-04-02 Embrapa Pesquisa Agropecuaria Sistema de controle gasoso de irrigação baseado na determinação da umidade do solo por meio de cápsulas porosas
BR0104475A (pt) 2001-08-31 2004-02-17 Embrapa Pesquisa Agropecuaria PorÈmetro de pós-colheita
US6926439B2 (en) 1998-10-30 2005-08-09 Optiguide Ltd. Dew point hygrometers and dew sensors
WO2005121781A1 (en) 2004-06-02 2005-12-22 Honeywell International Inc. Relative humidity sensor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1160216B (de) * 1959-12-30 1963-12-27 Dr Walter Tepe Geraet zum Bestimmen des in der Zeiteinheit aus einem Boden von den Pflanzen aufnehmbaren Bodenwassers
US3569722A (en) * 1968-06-05 1971-03-09 Gen Electric Apparatus for measuring the thickness of a liquid draining from a vertically disposed surface
US4523456A (en) * 1982-05-28 1985-06-18 University Of Waterloo Determination of surface and interfacial tension
DE3814662C1 (en) * 1988-04-29 1989-12-28 Texas Instruments Deutschland Gmbh, 8050 Freising, De Method for the measurement of contact angle
US5792941A (en) * 1996-10-08 1998-08-11 Sandia Corporation Measurement of surface tension and viscosity by open capillary techniques
US6368664B1 (en) * 1999-05-03 2002-04-09 Guardian Industries Corp. Method of ion beam milling substrate prior to depositing diamond like carbon layer thereon
US6867854B1 (en) * 2002-01-02 2005-03-15 The United States Of America As Represented By The Secretary Of The Air Force Liquid to solid angle of contact measurement
US6982787B1 (en) * 2002-01-02 2006-01-03 The United States Of America As Represented By The Secretary Of The Air Force Modification of the degree of liquid contact with a solid by control of surface and micro-channel capillary geometry
US8679233B1 (en) * 2002-01-02 2014-03-25 The United States Of America As Represented By The Secretary Of The Air Force Modification of the degree of liquid contact with a solid by control of surface and micro-channel capillary geometry
US6581438B1 (en) * 2002-01-31 2003-06-24 Sandia Corporation Capillary test specimen, system, and methods for in-situ visualization of capillary flow and fillet formation
AU2002953346A0 (en) * 2002-12-16 2003-01-09 Sentek Pty Ltd Soil matric potential and salinity measurement apparatus and method of use
EP1889051A1 (de) * 2005-06-07 2008-02-20 Plantcare AG Vorrichtung zur verwendung mit einem sensor zur verbesserung der genauigkeit, sowie sensor mit verbesserter genauigkeit
BRPI0705830B1 (pt) * 2007-07-16 2018-04-03 Embrapa - Empresa Brasileira De Pesquisa Agropecuária Sistema de aplanação para avaliar a firmeza dependente da pressão celular em folhas e segmentos de face plana de órgãos macios
US8114221B2 (en) * 2008-09-30 2012-02-14 Princeton Trade & Technology, Inc. Method and composition for cleaning tubular systems employing moving three-phase contact lines

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB344341A (en) 1929-10-29 1931-03-02 Schneider Jaquet & Cie Sa Device for regulating the temperature and the degree of humidity of a current of air
GB733602A (en) * 1956-04-03 1955-07-13 Andre Pelissier Robert Pochan Instrument for measuring surface tensions and viscosities
US3797312A (en) 1973-02-14 1974-03-19 Wescor Inc Thermocouple hygrometer and method
GB2255190A (en) 1991-03-19 1992-10-28 Peter Greaves Calibration of humidity sensors
US5533393A (en) 1995-01-13 1996-07-09 Honeywell Inc. Determination of dew point or absolute humidity
US5816704A (en) 1996-06-04 1998-10-06 Decagon Devices, Inc. Water activity and dew point temperature measuring apparatus and method
US5922939A (en) 1997-03-07 1999-07-13 Veris Industries, Inc. Humidity sensor
US6926439B2 (en) 1998-10-30 2005-08-09 Optiguide Ltd. Dew point hygrometers and dew sensors
CA2404136A1 (en) * 2000-03-21 2001-09-27 Cenes Limited Improved interface patch clamping
BR0004264A (pt) 2000-08-30 2002-04-02 Embrapa Pesquisa Agropecuaria Sistema de controle gasoso de irrigação baseado na determinação da umidade do solo por meio de cápsulas porosas
EP1186880A1 (fr) * 2000-09-09 2002-03-13 Societe Des Produits Nestle S.A. Viscosimètre et procédé pour déterminer la viscosité de substances
BR0104475A (pt) 2001-08-31 2004-02-17 Embrapa Pesquisa Agropecuaria PorÈmetro de pós-colheita
WO2005121781A1 (en) 2004-06-02 2005-12-22 Honeywell International Inc. Relative humidity sensor

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BOL. SBCTA, vol. 30, 1996, pages 91 - 96
PLANT PHYSIOLOGY, vol. 61, 1978, pages 158 - 163
PROCEEDINGS NATIONAL ACADEMY OF SCIENCES USA, vol. 52, 1964, pages 119 - 125
RIDLEY; BURLAND, GEOTECHNIQUE, vol. 43, 1993, pages 321 - 324
See also references of EP2522214A4 *
SLAVICK: "Methods of studying plant water relations", 1974, SPRINGER
SOIL SCIENCE, vol. 51, 1941, pages 377 - 386
SOIL SCIENCE, vol. 53, 1942, pages 241 - 148
ZAPATA ET AL., BOL. SBCTA, vol. 30, no. 1, 1996, pages 91 - 96

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014172765A1 (pt) * 2013-04-22 2014-10-30 Empresa Brasileira De Pesquisa Agropecuária - Embrapa Sensor de tensão de água, sistema para caracterização e medições contínuas de água no solo, sistema de indicação de tensão crítica no solo e haste de irrigação
US10365196B2 (en) 2013-04-22 2019-07-30 Empresa Brasileira De Pesquisa Agropecuária—Embrapa Water tension sensor, system for characterising and continuously measuring soil water, system for indicating critical soil water tension and irrigation rod
EP3882626A1 (en) * 2020-03-16 2021-09-22 Meter Group, Inc. Fast water activity measurement system
US11579133B2 (en) 2020-03-16 2023-02-14 METER Group, Inc. USA Fast water activity measurement system

Also Published As

Publication number Publication date
CN102905515A (zh) 2013-01-30
US20130145829A1 (en) 2013-06-13
AU2011203425B2 (en) 2015-05-14
WO2011079367A8 (pt) 2012-08-30
EP2522214B1 (en) 2016-03-30
EP2522214A1 (en) 2012-11-14
CN102905515B (zh) 2015-09-30
US9588030B2 (en) 2017-03-07
AU2011203425A1 (en) 2012-08-23
BRPI1000060B1 (pt) 2017-12-26
EP2522214A4 (en) 2013-10-23
BRPI1000060A2 (pt) 2012-07-24

Similar Documents

Publication Publication Date Title
WO2011079367A1 (pt) Sensor diédrico para avaliar tensão, potencial e atividade de líquidos
Whalley et al. Measurement of the matric potential of soil water in the rhizosphere
US8695407B2 (en) Microtensiometer sensor, probe and method of use
Campbell et al. Water potential: miscellaneous methods
Beardsell et al. A null-balance diffusion porometer suitable for use with leaves of many shapes
Campbell Soil water potential measurement: An overview
Richards Physical condition of water in soil
Peck et al. Design and performance of an osmotic tensiometer for measuring capillary potential
Pan et al. Direct and indirect measurement of soil suction in the laboratory
US20180003608A1 (en) Mems microtensiometer
Shackel Direct measurement of turgor and osmotic potential in individual epidermal cells: independent confirmation of leaf water potential as determined by in situ psychrometry
Durner et al. 73: Soil water potential measurement
Mullins Matric potential
Bulut et al. Comparison of total suction values from psychrometer and filter paper methods
US6684685B2 (en) Liquid extrusion porosimeter and method
Monteith et al. A diffusive resistance porometer for field use. II. Theory, calibration and performance
Vaz et al. Principles and applications of a new class of soil water matric potential sensors: the dihedral tensiometer
Squire et al. Physical measurements in crop physiology II. Water relations
Slatyer et al. Measurements of internal water status and transpiration
Weatherley A new micro-osmometer
Ebrahimi-Birang et al. Hysteresis of the soil water characteristic curve in the high suction range
Mabirizi et al. A comparison of total suction measurements with thermocouple psychrometer, filter paper technique, and chilled-mirror device
Moreshet et al. A condensation type porometer for field use
Campbell Measuring water potential in soils and plants
Schurer Water and plants

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012425.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11728523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011728523

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011203425

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2011203425

Country of ref document: AU

Date of ref document: 20110103

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13520316

Country of ref document: US