WO2011078292A1 - Molding material, molded article and process for production thereof, and housing for electric/electronic device - Google Patents

Molding material, molded article and process for production thereof, and housing for electric/electronic device Download PDF

Info

Publication number
WO2011078292A1
WO2011078292A1 PCT/JP2010/073247 JP2010073247W WO2011078292A1 WO 2011078292 A1 WO2011078292 A1 WO 2011078292A1 JP 2010073247 W JP2010073247 W JP 2010073247W WO 2011078292 A1 WO2011078292 A1 WO 2011078292A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
molding material
cellulose
material according
rubber
Prior art date
Application number
PCT/JP2010/073247
Other languages
French (fr)
Japanese (ja)
Inventor
俊英 芳谷
上平 茂生
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011078292A1 publication Critical patent/WO2011078292A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the present invention relates to a molding material, a molded body, a manufacturing method thereof, and a casing for electrical and electronic equipment.
  • PC Polycarbonate
  • ABS Acrylonitrile-butadiene-styrene resin
  • PC / ABS etc.
  • These resins are produced by reacting compounds obtained from petroleum as a raw material.
  • fossil resources such as oil, coal, and natural gas are mainly composed of carbon that has been fixed in the ground for many years.
  • hydroxypropylmethylacetylcellulose is described in Patent Document 3 and Patent Document 4.
  • Patent Document 3 and Patent Document 4 describe that this hydroxypropylmethylacetylcellulose is useful as an additive for reducing the vapor pressure of an organic solvent that easily volatilizes.
  • the substitution degree of each substituent in hydroxypropylmethylacetylcellulose described in Patent Document 3 and Patent Document 4 is, for example, a molar substitution degree (MS) of hydroxypropyl group in a range of about 2 to 8, a substitution degree of methyl group Is in the range of about 0.1 to 1 and the degree of substitution of the acetyl group is in the range of about 0.8 to 2.5.
  • MS molar substitution degree
  • Patent Document 5 hydroxypropylmethylpropylcellulose, hydroxypropylmethylbutylcellulose and the like
  • Patent Document 6 hydroxypropylmethylserose phthalate and the like
  • Patent Document 7 describes a resin composition containing a cellulose ester and further describes that an ABS resin may be contained.
  • Japanese Unexamined Patent Publication No. 56-55425 Japanese Unexamined Patent Publication No. 2008-24919 US Pat. No. 3,979,179 U.S. Pat. No. 3,940,384 International Publication No. 09/010837 Japanese Patent No. 3017412 specification Japanese Unexamined Patent Publication No. 2006-111858
  • the inventors of the present invention focused on using cellulose as a carbon neutral resin.
  • cellulose since cellulose generally does not have thermoplasticity, it is difficult to mold by heating or the like, and thus is not suitable for molding. Further, even if thermoplasticity can be imparted, there is a problem that strength such as impact resistance is greatly reduced.
  • the cellulose derivatives described in Patent Documents 3, 4, and 6 are water-soluble or swellable and lack strength, which is not preferable as a molding material.
  • the cellulose derivative described in Patent Document 5 is described as being poorly water-soluble, but only described in the text, and its synthesis method and usage form are specifically disclosed in Examples and the like. Absent.
  • the resin composition containing cellulose ester and acrylonitrile-styrene resin described in Patent Document 7 has room for improvement from the viewpoint of impact resistance.
  • the present inventors pay attention to the molecular structure of cellulose.
  • the cellulose is a cellulose derivative having a specific structure having an ether structure and an ester structure, and the acrylonitrile-styrene copolymer having the cellulose structure having the specific structure and a rubber component as a dispersed phase.
  • the present inventors have found that a molding material containing a polymer can provide a molding material and a molded body excellent in impact resistance without lowering performance such as rigidity, bending strength, heat distortion temperature, and molding processability.
  • the invention has been completed. That is, the said subject can be achieved by the following means.
  • R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms.
  • n represents an integer of 1 or more.
  • [4] The molding material according to any one of [1] to [3], wherein R A is an alkyl group having 1 to 4 carbon atoms.
  • [5] The molding material according to any one of [1] to [4], wherein R A is a methyl group or an ethyl group.
  • R B and R C1 are each independently an alkyl group or an aryl group.
  • the rubber component dispersed in the acrylonitrile-styrene copolymer is selected from the group consisting of polybutadiene rubber, acrylic rubber, and ethylene-propylene-diene rubber.
  • the molding material according to any one of [1] to [11] which is at least one.
  • the molding material of the present invention has excellent thermoplasticity, it can be molded by heat molding or the like. Further, the molding material and the molding of the present invention are excellent in performance such as rigidity, bending strength, heat distortion temperature, and molding processability and have good impact resistance. It can be suitably used as a component part such as equipment, a machine part, a house / building material, or the like. Moreover, since the molding material of this invention uses the cellulose derivative obtained from the cellulose which is plant-derived resin, it can substitute for the conventional petroleum-derived resin as a raw material which can contribute to global warming prevention.
  • the hydrogen atom of the hydroxyl group contained in cellulose is A cellulose derivative (hereinafter also referred to as “cellulose derivative”) comprising at least one group substituted with A) below and at least one group substituted with B) below;
  • the present invention relates to a molding material containing an acrylonitrile-styrene copolymer having a rubber component as a dispersed phase.
  • R B represents a hydrocarbon group.
  • Cellulose derivative contained in the molding material of the present invention has a hydrogen atom of a hydroxyl group contained in cellulose.
  • a cellulose derivative comprising at least one group substituted with A) below and at least one group substituted with B) below.
  • R 2 , R 3 and R 6 are each independently a hydrogen atom, A) hydrocarbon group: —R A , B) acyl group: —CO—R B (R B is carbon Represents a hydrogen group) or other substituents. However, at least a part of R 2 , R 3 , and R 6 represents A) a hydrocarbon group, and at least a part of R 2 , R 3 , and R 6 represents B) an acyl group.
  • the cellulose derivative in the present invention has thermoplasticity because at least part of the hydroxyl group of the ⁇ -glucose ring is etherified and esterified with A) a hydrocarbon group and B) an acyl group. It can be expressed and is suitable for molding. Furthermore, since cellulose is a completely plant-derived component, it is carbon neutral and can greatly reduce the burden on the environment.
  • the “cellulose” referred to in the present invention is a polymer compound in which a large number of glucoses are bonded by ⁇ -1,4-glycosidic bonds, and the carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose. Means that the hydroxyl group bonded to is unsubstituted. Further, “hydroxyl group contained in cellulose” refers to a hydroxyl group bonded to carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose.
  • the cellulose derivative only needs to contain the A) hydrocarbon group and B) acyl group in any part of the whole, and may be composed of the same repeating unit, or a plurality of types. It may consist of repeating units.
  • the cellulose derivative does not need to contain all of the A) hydrocarbon group and B) acyl group in one repeating unit. More specific embodiments include the following embodiments, for example. (1) At least one of R 2 , R 3 and R 6 is A) a repeating unit substituted with a hydrocarbon group, and at least one of R 2 , R 3 and R 6 is substituted with B) an acyl group A cellulose derivative composed of repeating units.
  • At least one of R 2 , R 3 and R 6 of one repeating unit is substituted with A) a hydrocarbon group, and at least one of the other is substituted with B) an acyl group ( That is, a cellulose derivative composed of the same type of repeating units having the substituents A) and B) in one repeating unit.
  • the cellulose derivative may contain an unsubstituted repeating unit (that is, a repeating unit in which R 2 , R 3 and R 6 are all hydrogen atoms in the general formula (A)).
  • the cellulose derivative may have other substituents other than a hydrogen atom, A) a hydrocarbon group, and B) an acyl group.
  • R A may be an aliphatic group or an aromatic group.
  • R A When R A is an aliphatic group, it may be linear, branched, or cyclic, and may have an unsaturated bond. Examples of the aliphatic group include an alkyl group, a cycloalkyl group, an alkenyl group, and an alkynyl group.
  • R A When R A is an aromatic group, it may be either a single ring or a condensed ring. In the case where R A is an aromatic group, the preferred carbon number is 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10.
  • the aromatic group examples include a phenyl group, a naphthyl group, a phenanthryl group, and an anthryl group.
  • the hydrocarbon group is preferably an aliphatic group because the resulting molding material (hereinafter sometimes referred to as “cellulose resin composition” or “resin composition”) has excellent impact resistance. From the viewpoint of excellent moldability such as melt flow rate, an alkyl group is more preferable, and an alkyl group having 1 to 4 carbon atoms (lower alkyl group) is more preferable.
  • Specific examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, tert-butyl group, isoheptyl group, and the like.
  • a group or an ethyl group is particularly preferred.
  • R B represents a hydrocarbon group.
  • R B is an aliphatic group, and may be any aromatic group. If R B is an aliphatic group, straight chain, branched, and may be any of circular, it may have an unsaturated bond. Examples of the aliphatic group include an alkyl group, a cycloalkyl group, an alkenyl group, and an alkynyl group. If R B is an aromatic group may be either monocyclic and condensed. Examples of the aromatic group include a phenyl group, a naphthyl group, a phenanthryl group, and an anthryl group. R B is preferably an alkyl group or an aryl group.
  • R B is more preferably an alkyl group having 1 to 12 carbon atoms or an aryl group, still more preferably an alkyl group having 1 to 12 carbon atoms, and particularly preferably an alkyl group having 1 to 4 carbon atoms (preferably a methyl group).
  • R B it is also preferably a hydrocarbon group having a branched structure having 3 to 10 carbon atoms, more preferably an alkyl group having a branched structure having 3 to 10 carbon atoms, having 7-9 carbon atoms More preferably, it is an alkyl group having a branched structure.
  • the R B specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group, a heptyl group, 3-heptyl, 2-ethylhexyl group, tert- butyl Group, isoheptyl group, and the like.
  • R B is a methyl group, an ethyl group, a propyl group, a 3-heptyl group, or a 2-ethylhexyl group, and more preferably a methyl group, an ethyl group, a 3-heptyl group, or a 2-ethylhexyl group.
  • the cellulose derivative in the molding material of the present invention is a cellulose derivative in which the hydrogen atom of the hydroxyl group contained in cellulose contains at least one group substituted with A) and at least one group substituted with B).
  • it is preferable from the viewpoint of impact resistance that it further contains at least one group in which the hydrogen atom of the hydroxyl group contained in cellulose is substituted by the following C).
  • C) a group containing an alkyleneoxy group: —R C2 —O— and an acyl group: —CO—R C1 (R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms. )
  • R C1 represents a hydrocarbon group.
  • R C1 the same groups as those described above for R B can be applied.
  • the preferred range of R C1 is the same as R B.
  • R C2 represents an alkylene group having 2 to 4 carbon atoms.
  • R C2 may be linear, branched or cyclic, but is preferably linear or branched, and more preferably branched.
  • the alkyleneoxy group (—R C2 —O—) is preferably an alkyleneoxy group having 2 or 3 carbon atoms. Specific examples of the alkyleneoxy group preferably include the following structures.
  • a group represented by the following formula (1) or (2) in which —R C2 —O— is branched is preferable because the obtained resin composition has excellent bending elastic modulus.
  • the group of C) may contain a plurality of alkyleneoxy groups or may contain only one.
  • the group of C) can be represented by the following general formula (3).
  • R C1 represents a hydrocarbon group
  • R C2 represents an alkylene group having 2 to 4 carbon atoms.
  • the preferred ranges of R C1 and R C2 are the same as those described above.
  • n is an integer of 1 or more.
  • the upper limit of n is not particularly limited, and varies depending on the amount of alkyleneoxy group introduced, but is about 10, for example.
  • n is preferably 1 to 5, more preferably 1 to 3, and still more preferably 1.
  • R C2 When a plurality of R C2 are present, they may be the same or different, but are preferably the same.
  • the cellulose derivative in the present invention is a group of C) containing only one alkyleneoxy group (a group in which n is 1 in the general formula (3)) and C) containing two or more alkyleneoxy groups. And a group (a group in which n is 2 or more in the above general formula (3)).
  • the bonding direction of the alkyleneoxy group to the cellulose derivative in the group C) is not particularly limited, but it is preferable that the alkylene group part (R C2 ) of the alkyleneoxy group is bonded to the ⁇ -glucose ring structure side.
  • R A in A), R B in B ), R C1 and R C2 in C) may have a further substituent or may be unsubstituted, but are preferably unsubstituted.
  • R A in the A), R B in the B), in the case where the where R C1 and R C2 in the C) has a further substituent examples of the further substituent include a halogen atom (e.g. fluorine atom, chlorine atom, bromine Atoms, iodine atoms), hydroxy groups, alkoxy groups (the alkyl group preferably has 1 to 5 carbon atoms), alkenyl groups, and the like.
  • R C2 has 2 or 3 carbon atoms. Note that when R A , R B , and R C1 are other than an alkyl group, they may have an alkyl group (preferably having a carbon number of 1 to 5) as a substituent.
  • R B and R C1 have a further substituent, it is preferable that they substantially have no carboxyl group, sulfonic acid group, and salts thereof.
  • the molding material of the present invention can be made water-insoluble and the moldability can be further improved.
  • the cellulose derivative has a carboxyl group, a sulfonic acid group, and a salt thereof, it is known that the compound stability is deteriorated, and in particular, thermal decomposition may be promoted. It is preferable.
  • substantially free of carboxyl groups, sulfonic acid groups, and salts thereof means only when the cellulose derivative in the present invention has no carboxyl groups, sulfonic acid groups, and salts thereof.
  • the case where the cellulose derivative in the present invention has a trace amount of carboxyl groups, sulfonic acid groups, and salts thereof in a range insoluble in water is included.
  • the cellulose as a raw material may contain a carboxyl group
  • the cellulose derivative using the above-described substituents A) to C) introduced therein may contain a carboxyl group.
  • a sulfonic acid group, and a cellulose derivative substantially free of salts thereof may contain 1% by mass or less, more preferably 0.5% by mass or less, based on the cellulose derivative.
  • the cellulose derivative in the present invention is preferably insoluble in water.
  • “being insoluble in water” means that the solubility in 100 parts by mass of water at 25 ° C. is 5 parts by mass or less.
  • cellulose derivative in the present invention examples include acetyl methyl cellulose, acetyl ethyl cellulose, acetyl propyl cellulose, acetyl butyl cellulose, acetyl pentyl cellulose, acetyl hexyl cellulose, acetyl cyclohexyl cellulose, acetyl phenyl cellulose, acetyl naphthyl cellulose, propionyl methyl cellulose, and propionyl ethyl cellulose.
  • the molding material of the present invention may contain only one kind of the specific cellulose derivative or two or more kinds.
  • substitution degree are not particularly limited.
  • a hydrocarbon group the degree of substitution DS A of —R A (the number of RA for the hydroxyl groups at the 2nd, 3rd and 6th positions of the ⁇ -glucose ring in the repeating unit) is 1.0 ⁇ DS A It is preferable that 1.0 ⁇ DS A ⁇ 2.5. Further, DS A is preferably 1.1 or more.
  • the number of unsubstituted hydroxyl groups present in the cellulose derivative is not particularly limited.
  • the degree of substitution DS H of hydrogen atoms (ratio in which the hydroxyl groups at the 2nd, 3rd and 6th positions in the repeating unit are unsubstituted) can be in the range of 0 to 1.5, preferably 0 to 0.6. And it is sufficient. By the DS H and 0.6 or less, or to improve the fluidity of the molding material, the foaming and the like due to water absorption of the molding material during acceleration and molding of the pyrolysis can or is suppressed.
  • the cellulose derivative in the present invention may have a substituent other than A) a hydrocarbon group, B) an acyl group, and C) a group containing an alkyleneoxy group and an acyl group.
  • substituents examples include a hydroxyethyl group, a hydroxypropyl group, a hydroxyethoxyethyl group, a hydroxypropoxypropyl group, a hydroxyethoxyethoxyethyl group, and a hydroxypropoxypropoxypropyl group. Therefore, the sum of the degree of substitution of all the substituents of the cellulose derivative is 3, but (DS A + DS B + DS C + DS H ) is 3 or less.
  • the amount of alkyleneoxy group introduced in the group C) is expressed in terms of molar substitution (MS: number of moles of substituent introduced per glucose residue) (edited by Cellulose Society, Cellulose Dictionary P142).
  • the molar substitution degree MS of the alkyleneoxy group is preferably 0 ⁇ MS, more preferably 0 ⁇ MS ⁇ 1.5, and still more preferably 0 ⁇ MS ⁇ 1.0. When MS is 1.5 or less (MS ⁇ 1.5), heat resistance, moldability and the like can be improved, and a cellulose derivative suitable for a molding material can be obtained.
  • the cellulose derivative in the molding material of the present invention is a cellulose derivative in which the hydrogen atom of the hydroxyl group contained in cellulose contains at least one group substituted with A) and at least one group substituted with B).
  • a hydrogen atom of a hydroxyl group contained in cellulose is substituted, from the viewpoint of moldability, it is substituted only by A) and B) or A), B), and C.
  • the hydrogen atom of the hydroxyl group contained in the cellulose is not substituted with a group other than the above A), B), and C).
  • the molecular weight of the cellulose derivative in the present invention is preferably such that the number average molecular weight (Mn) is in the range of 5 ⁇ 10 3 to 1000 ⁇ 10 3 , more preferably in the range of 10 ⁇ 10 3 to 500 ⁇ 10 3 , and 10 ⁇ 10 3 to A range of 200 ⁇ 10 3 is most preferred.
  • the mass average molecular weight (Mw) is preferably in the range of 7 ⁇ 10 3 to 10000 ⁇ 10 3 , more preferably in the range of 15 ⁇ 10 3 to 5000 ⁇ 10 3 , and in the range of 100 ⁇ 10 3 to 3000 ⁇ 10 3 . Is most preferred.
  • the molecular weight distribution is preferably in the range of 1.1 to 10.0, and more preferably in the range of 1.5 to 8.0. By setting the molecular weight distribution within this range, moldability and the like can be improved.
  • the number average molecular weight (Mn), mass average molecular weight (Mw) and molecular weight distribution (MWD) can be measured using gel permeation chromatography (GPC).
  • N-methylpyrrolidone is used as a solvent
  • a polystyrene gel is used, and the molecular weight can be determined using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve.
  • the method for producing a cellulose derivative in the present invention is not particularly limited, and the cellulose derivative in the present invention can be produced by using cellulose as a raw material and etherifying and esterifying cellulose.
  • the raw material for cellulose is not limited, and examples thereof include cotton, linter, and pulp.
  • a preferred embodiment of a method for producing a cellulose derivative having the above A) hydrocarbon group: —R A and B) acyl group: —CO—R B includes cellulose ether, base It includes a step of esterification by reacting acid chloride or acid anhydride in the presence.
  • R B represents a hydrocarbon group
  • the cellulose ether for example, those in which at least a part of the hydrogen atoms of the hydroxyl groups at the 2nd, 3rd and 6th positions of the ⁇ -glucose ring contained in cellulose are substituted with hydrocarbon groups can be used. Specific examples include methyl cellulose, ethyl cellulose, propyl cellulose, butyl cellulose, allyl cellulose, and benzyl cellulose.
  • a preferred embodiment of a method for producing a cellulose derivative having a group containing —CO—R C1 (R C1 represents a hydrocarbon group and R C2 represents an alkylene group having 2 to 4 carbon atoms) is a hydrocarbon group.
  • hydroxyethyl cellulose ether having a hydroxyethyl group or hydroxypropyl cellulose ether having a hydroxypropyl group are reacted by an acid chloride or an acid anhydride to react with the esterification (acylation). is there.
  • alkyl chloride such as methyl chloride or ethyl chloride / alkylene oxide having 3 carbon atoms or the like is allowed to act on cellulose.
  • a method including a step of esterification by reacting an acid chloride or an acid anhydride is also included.
  • a method for reacting acid chloride for example, the method described in Cellulose 10; 283-296, 2003 can be used.
  • the cellulose ether having a hydrocarbon group and a hydroxyethyl group include hydroxyethyl methyl cellulose, hydroxyethyl ethyl cellulose, hydroxyethyl propyl cellulose, hydroxyethyl allyl cellulose, and hydroxyethyl benzyl cellulose. Preferred are hydroxyethyl methyl cellulose and hydroxyethyl ethyl cellulose.
  • Specific examples of the cellulose ether having a hydrocarbon group and a hydroxypropyl group include hydroxypropylmethylcellulose, hydroxypropylethylcellulose, hydroxypropylpropylcellulose, hydroxypropylallylcellulose, hydroxypropylbenzylcellulose, and the like. Preferred are hydroxypropylmethylcellulose and hydroxypropylethylcellulose.
  • acyl group and carboxylic acid chloride corresponding to the acyl group contained in C) can be used.
  • carboxylic acid chloride include acetyl chloride, propionyl chloride, butyryl chloride, isobutyryl chloride, pentanoyl chloride, 2-methylbutanoyl chloride, 3-methylbutanoyl chloride, pivaloyl chloride, hexanoyl chloride, 2-methylpentanoyl chloride, 3-methylpentanoyl chloride, 4-methylpentanoyl chloride, 2,2-dimethylbutanoyl chloride, 2,3-dimethylbutanoyl chloride, 3,3-dimethylbutanoyl chloride, 2- Ethylbutanoyl chloride, heptanoyl chloride, 2-methylhexanoyl chloride, 3-methylhexanoyl chloride, 4-methylhexanoyl chloride, 5-methylhex
  • carboxylic acid anhydrides corresponding to the acyl group contained in the above B) acyl group and C
  • carboxylic anhydrides include acetic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, hexanoic anhydride, heptanoic anhydride, octanoic anhydride, 2-ethylhexanoic acid.
  • An anhydride, nonanoic acid anhydride, etc. are mentioned.
  • the cellulose derivative in the present invention preferably has no carboxylic acid as a substituent, for example, a dicarboxylic acid such as phthalic anhydride, maleic anhydride, or the like, and a compound that generates a carboxyl group by reacting with cellulose. It is preferable not to use.
  • a dicarboxylic acid such as phthalic anhydride, maleic anhydride, or the like
  • a compound that generates a carboxyl group by reacting with cellulose It is preferable not to use.
  • the molding material of the present invention contains an acrylonitrile-styrene copolymer (hereinafter also referred to as rubber-dispersed AS resin) having a rubber component as a dispersed phase.
  • the rubber-dispersed AS resin absorbs an impact, so that the impact resistance is improved by mixing with the specific cellulose derivative in the present invention, compared with the case where the specific cellulose derivative is used alone. be able to.
  • the specific cellulose derivative in the present invention since the specific cellulose derivative in the present invention includes an ether structure and an ester structure, it has a higher affinity for a highly polar structure such as acrylonitrile than the conventional cellulose ester, and has an affinity for a rubber-dispersed AS resin. Excellent in properties. Therefore, the rubber-dispersed AS resin is excellent in dispersibility with respect to the specific cellulose derivative in the present invention, and both are well mixed. Therefore, the rigidity, bending strength, and heat distortion temperature are compared with the case where the specific cellulose derivative is used alone. And performance such as moldability is not lowered.
  • the rubber component of the rubber-dispersed AS resin in the present invention includes a rubbery polymer.
  • the rubber-like polymer include natural rubber, polybutadiene rubber, polyisoprene rubber, polychloroprene rubber, chlorinated polyethylene rubber, styrene-butadiene random copolymer rubber (styrene content is preferably 5 to 60% by mass), and styrene-isoprene.
  • Random copolymer rubber acrylonitrile-butadiene random copolymer rubber, isobutylene-isoprene random copolymer rubber (butyl rubber), styrene-butadiene block copolymer rubber, styrene-isoprene block copolymer rubber, styrene-isoprene-styrene block copolymer rubber, etc.
  • polybutadiene rubber, acrylic rubber, and ethylene-propylene-diene rubber (EPDM) are preferable from the viewpoint of dispersibility with respect to AS resin, that is, development of impact resistance.
  • rubbery polymers can be used alone or in combination of two or more. Further, these preferred rubbery polymers will be described in detail.
  • Examples of the ⁇ -olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, -Dodecene and the like.
  • propylene, 1-butene and 1-octene Preferred are propylene, 1-butene and 1-octene, more preferred are propylene and 1-butene, and particularly preferred is propylene.
  • These ⁇ -olefins can be used alone or in combination of two or more.
  • the ⁇ -olefin has 3 to 20 carbon atoms, preferably 3 to 12 and more preferably 3 to 8.
  • the ratio of ethylene to ⁇ -olefin (ethylene / ⁇ -olefin) is preferably 5 to 95/95 to 5, more preferably 50 to 90/50 to 10, particularly preferably 40 to 85/60 to 15.
  • Non-conjugated diene compounds that may be used in combination include alkenyl norbornenes, cyclic dienes, aliphatic dienes, and the like, preferably dicyclopentadiene and 5-ethylidene-2-norbornene. These non-conjugated dienes can be used alone or in combination of two or more.
  • the content of non-conjugated diene in the ethylene- ⁇ -olefin copolymer rubber is 0 to 30% by mass, preferably 0 to 15% by mass.
  • either homogeneous or heterogeneous catalysts may be used.
  • the homogeneous catalyst include a metallocene catalyst.
  • the heterogeneous catalyst include a vanadium catalyst in which a vanadium compound and an organoaluminum compound are combined.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the ethylene- ⁇ -olefin copolymer rubber is preferably 60 or less, more preferably 50 or less, and particularly preferably 20 to 40.
  • the glass transition temperature of the ethylene- ⁇ -olefin copolymer rubber is preferably ⁇ 110 to ⁇ 40 ° C., more preferably ⁇ 70 to ⁇ 45 ° C.
  • acrylic rubber a polymer of alkyl acrylate ester having 2 to 8 carbon atoms in the alkyl group or a copolymer thereof is preferable.
  • the acrylate ester include ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, and the like. These can be used alone or in combination of two or more.
  • Preferred acrylic acid esters are n-butyl acrylate, isobutyl acrylate, and 2-ethylhexyl acrylate.
  • a part of the acrylic acid ester used in this acrylic rubber can be replaced with another copolymerizable monomer.
  • examples of such other monomers include aromatic vinyl compounds, methacrylic acid ester compounds, conjugated diene compounds, and the like. Preferred are aromatic vinyl compounds, and among these, styrene is preferred.
  • butadiene is used as the conjugated diene compound, it is desirable to use it in a range of 40% by mass or less of the total rubber amount in consideration of weather resistance. However, when using more than this, a polybutadiene layer is formed by taking a layered structure. Should be the core part.
  • the acrylic rubber is preferably copolymerized with a crosslinkable monomer as appropriate.
  • the amount of the crosslinkable monomer used in the acrylic rubber is preferably 0 to 10% by mass, more preferably 0.01 to 10% by mass, and still more preferably 0.1 to 5% by mass.
  • Suitable cross-linkable monomers include mono- or polyethylene glycol diacrylates such as ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate; ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene Mono- or polyethylene glycol dimethacrylates such as glycol dimethacrylate, tetraethylene glycol dimethacrylate; polyvinyl aromatic compounds such as divinylbenzene; polyallyl compounds such as diallyl phthalate, diallyl maleate, diallyl succinate, triallyl triazine; allyl methacrylate -Allyl (meth) acrylates such as allyl acrylate; - butadiene, and the like conjugated diene compound such as isoprene.
  • the acrylic rubber is produced by a known polymerization method, and an emulsion polymerization method and a suspension polymerization method are preferable.
  • the average particle size of the rubber component of the rubber-dispersed AS resin in the present invention is preferably 0.1 to 5.0 ⁇ m, more preferably 0.2 to 3.0 ⁇ m.
  • the rubber particle size distribution can be either a single distribution or a multimodal distribution, and even if the rubber particles form a single phase in the morphology, the rubber It may have a salami structure by containing an occluded phase around the particles, but preferably has a high proportion of rubber particles forming a single phase.
  • the rubber component content of the rubber-dispersed AS resin in the present invention is preferably in the range of 5 to 80% by mass, more preferably 5 to 50% by mass, and further preferably 7 to 30% by mass. By setting it within this range, mechanical properties such as impact strength and rigidity can be improved.
  • the rubber content of the rubber-containing styrene resin can be measured by using an infrared spectrometer.
  • the copolymerization ratio of acrylonitrile / styrene in the rubber-dispersed AS resin in the present invention is preferably in the range of 5/95 to 80/20, more preferably in the range of 10/90 to 50/50.
  • the mass average molecular weight of the acetone-soluble component of the rubber-dispersed AS resin is preferably in the range of 50,000 to 600,000, more preferably 70,000 to 400,000, still more preferably 100,000 to It is in the range of 250,000. By being in these ranges, impact strength and molding processability can be improved.
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • AS resin acrylonitrile-styrene-acrylic rubber copolymer
  • AES resin acrylonitrile-ethylenepropylene rubber-styrene copolymer
  • the ABS resin is a mixture of a thermoplastic graft copolymer obtained by graft polymerization of a vinyl cyanide compound and an aromatic vinyl compound to a diene rubber component, and a copolymer of a vinyl cyanide compound and an aromatic vinyl compound.
  • a diene rubber component forming the ABS resin for example, a rubber having a glass transition point of 10 ° C. or less such as polybutadiene, polyisoprene and styrene-butadiene copolymer is used, and the ratio thereof is 100% by mass in the ABS resin component.
  • the content is preferably 5 to 80% by mass, particularly preferably 10 to 50% by mass.
  • Examples of the vinyl cyanide compound grafted onto the diene rubber component include those described above, and acrylonitrile is particularly preferably used.
  • the aromatic vinyl compound grafted onto the diene rubber component those described above can be used as well, and styrene and ⁇ -methylstyrene are particularly preferably used.
  • the ratio of the component grafted to the diene rubber component is preferably 95 to 20% by mass, particularly preferably 50 to 90% by mass, in 100% by mass of the ABS resin component. Further, it is preferable that the vinyl cyanide compound is 5 to 50% by mass and the aromatic vinyl compound is 95 to 50% by mass with respect to 100% by mass of the total amount of the vinyl cyanide compound and the aromatic vinyl compound.
  • methyl (meth) acrylate, ethyl acrylate, maleic anhydride, N-substituted maleimide and the like can be mixed and used for a part of the components grafted to the diene rubber component, and the content ratio thereof is in the ABS resin component. What is 15 mass% or less is preferable.
  • conventionally well-known various things can be used for the initiator, serial transfer agent, emulsifier, etc. which are used by reaction as needed.
  • Commercially available products may be used as the ABS resin, and examples thereof include “UMG-ABS-AM” (manufactured by UMG).
  • ASA resin is a thermoplastic graft copolymer obtained by graft polymerization of a vinyl cyanide compound and an aromatic vinyl compound to an acrylic rubber component, or a copolymer of the thermoplastic graft copolymer, a vinyl cyanide compound and an aromatic vinyl compound.
  • the acrylic rubber referred to in the present invention contains an alkyl acrylate unit having 2 to 10 carbon atoms, and further contains styrene, methyl methacrylate, butadiene as other copolymerizable components as necessary. Also good.
  • Preferred examples of the alkyl acrylate having 2 to 10 carbon atoms include 2-ethylhexyl acrylate and n-butyl acrylate.
  • Such alkyl acrylate is preferably contained at 50% by mass or more in 100% by mass of acrylate rubber.
  • acrylate rubbers are at least partially crosslinked, and examples of such crosslinking agents include ethylene glycol diacrylate, butylene glycol diacrylate, ethylene glycol dimethacrylate, allyl methacrylate, polypropylene glycol diacrylate, and the like.
  • the crosslinking agent is preferably used in an amount of 0.01 to 3% by mass based on the acrylate rubber.
  • the ratio of the vinyl cyanide compound and the aromatic vinyl compound is 5 to 50% by mass of the vinyl cyanide compound and 95 to 50% by mass of the aromatic vinyl compound with respect to the total amount of 100% by mass.
  • the vinyl compound is preferably 15 to 35% by mass and the aromatic vinyl compound is 85 to 65% by mass.
  • Commercially available products can also be used as the ASA resin, and examples thereof include “Dialac S510” (manufactured by UMG).
  • AES resin is a thermoplastic graft copolymer obtained by graft-polymerizing a vinyl cyanide compound and an aromatic vinyl compound to an ethylene-propylene rubber component or an ethylene-propylene-diene rubber component, or the thermoplastic graft copolymer and vinyl cyanide. It is a mixture of a compound and a copolymer of an aromatic vinyl compound.
  • Commercially available products can also be used as the AES resin, and examples thereof include “Dialac SK30” (manufactured by UMG).
  • ABS, ASA and AES resins contain a vinyl cyanide compound and an aromatic vinyl compound which are not grafted to a diene rubber component.
  • ABS, ASA and AES resins of the present invention too. It may contain a free polymer component generated during such polymerization.
  • the molecular weight of the copolymer comprising such free vinyl cyanide compound and aromatic vinyl compound is 10,000 to 500,000, preferably 50,000 to 200,000 in terms of mass average molecular weight (Mw) calculated by GPC measurement. 000.
  • Mw mass average molecular weight
  • the mass mean molecular weight shown here is calculated by GPC measurement using the calibration curve by standard polystyrene resin.
  • ABS, ASA, and AES resin may be produced by any of bulk polymerization, suspension polymerization, and emulsion polymerization, and the copolymerization method may be one-stage copolymerization or multi-stage copolymerization. .
  • the vinyl compound polymer obtained by copolymerizing an aromatic vinyl compound and a vinyl cyanide component separately to the ABS resin obtained by this manufacturing method can also be used preferably.
  • the vinyl compound polymer obtained by separately copolymerizing such an aromatic vinyl compound and a vinyl cyanide component has a mass average molecular weight (Mw) of 10,000 to 500,000, preferably 50,000 to 200,000. It is what is.
  • the molding material of the present invention contains the cellulose derivative described above and a rubber-dispersed AS resin, and may contain other additives as necessary.
  • the content rate of the component contained in the molding material of this invention is not specifically limited.
  • the content ratio of the cellulose derivative contained in the molding material of the present invention is not particularly limited.
  • the cellulose derivative is contained in an amount of 35% by mass or more, more preferably 45% by mass or more and 99% by mass, and still more preferably 60% by mass or more and 95% by mass with respect to the total solid content.
  • the content ratio of the rubber-dispersed AS resin contained in the molding material of the present invention is not particularly limited.
  • the rubber-dispersed AS resin is contained in an amount of 1 to 70% by mass, more preferably 5 to 50% by mass, based on the total solid content.
  • the content ratio of the cellulose derivative and the rubber-dispersed AS resin is the mass composition ratio of cellulose derivative / rubber-dispersed AS resin from the viewpoint of impact resistance, molding processability, and heat resistance. It is preferably 20/80 to 95/5, more preferably 40/60 to 90/10, still more preferably 60/40 to 90/10.
  • the molding material of the present invention may contain various additives such as a compatibilizing agent, a filler (reinforcing material), and a flame retardant as required, in addition to the cellulose derivative and the rubber-dispersed AS resin.
  • the molding material of the present invention preferably contains a compatibilizing agent.
  • the compatibilizing agent is used for compatibilizing the cellulose derivative and the rubber-dispersed AS resin in the present invention.
  • a compatibilizing agent is added to the molding material of the present invention, the dispersibility of the rubber-dispersed AS resin with respect to the cellulose derivative in the present invention is further improved, and the properties such as fluidity (molding processability) and impact resistance of the molding material are improved. More improved.
  • the compatibilizer having a reactive group is preferable, and a compatibilizer having at least one selected from a carboxylic acid anhydride, an epoxy group, an isocyanate group, and an oxazoline group is more preferable.
  • Preferred compatibilizers include polymers modified with carboxylic acid anhydrides, epoxy groups, isocyanate groups, and oxazoline groups, block copolymers, graft polymers, random copolymers, and various nonionic surfactants. Agents, coupling agents, and crosslinking agents.
  • the compatibilizing agent is not particularly limited as long as it satisfies the above conditions, and specifically, Nippon Oil & Fats Modiper Series, Sumitomo Chemical Co., Ltd., Bond First, Bondine Series, Nippon Oil Commercially available such as Lexpearl series manufactured by Co., Ltd., Reseda series manufactured by Toagosei Co., Ltd., Alfon series, Epocross series manufactured by Nippon Shokubai Co., Ltd., Duranate series manufactured by Asahi Kasei Chemicals Co., Ltd. The product is preferably used.
  • the compatibilizer is not limited to these, and the compatibilizer described in “Plastic compatibilizer development / evaluation / recycling” (CMC Publishing Co., Ltd.) can also be suitably used.
  • the content of the compatibilizing agent in the molding material of the present invention is preferably 0.1 to 30 parts by mass, more preferably 0.00 parts to 100 parts by mass of the total amount of the cellulose derivative and rubber-dispersed AS resin in the present invention. 5 parts by mass to 20 parts by mass. By setting it within this range, a sufficient compatibility improvement effect can be obtained, and problems such as an increase in the viscosity of the molding material are unlikely to occur.
  • the molding material of the present invention may contain a filler (reinforcing material). By containing the filler, the mechanical properties of the molded body formed of the molding material can be enhanced. A well-known thing can be used as a filler.
  • the shape of the filler may be any of fibrous, plate-like, granular, powdery and the like. Further, it may be inorganic or organic.
  • the inorganic filler glass fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, slag fiber, zonolite, Elastadite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, and other inorganic fillers; glass flakes, non-swellable mica, carbon black, graphite, metal foil , Ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, fine silicate, feldspar, potassium titanate, shirasu balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide Beam, aluminum oxide, titanium oxide, magnesium oxide, aluminum silicate, silicon oxide, aluminum hydroxide, magnesium hydroxide, gy
  • Organic fillers include synthetic fibers such as polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, and acetate fiber, and natural fibers such as kenaf, ramie, cotton, jute, hemp, sisal, Manila hemp, flax, linen, silk, and wool. Examples thereof include fibrous organic fillers obtained from microcrystalline cellulose, sugar cane, wood pulp, paper waste, waste paper and the like, and granular organic fillers such as organic pigments.
  • the content is not limited, but is usually 30 parts by mass or less, preferably 5 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative.
  • the molding material of the present invention may contain a flame retardant.
  • the flame retardant is not particularly limited, and a conventional flame retardant can be used.
  • a conventional flame retardant can be used.
  • brominated flame retardants, chlorine-based flame retardants, phosphorus-containing flame retardants, silicon-containing flame retardants, nitrogen compound-based flame retardants, inorganic flame retardants and the like can be mentioned.
  • hydrogen halides are not generated by thermal decomposition during resin compounding or molding, and do not corrode processing machines or molds or deteriorate the working environment.
  • Phosphorus-containing flame retardants and silicon-containing flame retardants are preferred because they are less likely to adversely affect the environment through the generation of harmful substances such as dioxins when they are diffused or decomposed.
  • the phosphorus-containing flame retardant is not particularly limited, and a commonly used one can be used. Examples thereof include organic phosphorus compounds such as phosphate esters, phosphate condensation esters, and polyphosphates.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) Phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl Acid phosphate, 2-methacryloyloxyethyl acid phosphate, diphenyl -2-acryloyloxye
  • Examples of the phosphoric acid condensed ester include resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate, and condensates thereof. Aromatic phosphoric acid condensed ester and the like.
  • polyphosphates composed of salts of phosphoric acid, polyphosphoric acid and metals of Groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines can also be mentioned.
  • lithium salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts and the like as metal salts, methylamine salts as aliphatic amine salts examples include ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts, and examples of aromatic amine salts include pyridine salts and triazines.
  • halogen-containing phosphate esters such as trischloroethyl phosphate, trisdichloropropyl phosphate, tris ( ⁇ -chloropropyl) phosphate), and structures in which a phosphorus atom and a nitrogen atom are connected by a double bond Phosphazene compounds having phosphoric acid and phosphoric ester amides.
  • phosphorus-containing flame retardants may be used singly or in combination of two or more.
  • silicon-containing flame retardant examples include an organic silicon compound having a two-dimensional or three-dimensional structure, polydimethylsiloxane, or a methyl group at a side chain or a terminal of polydimethylsiloxane, a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, Examples thereof include those substituted or modified with an aromatic hydrocarbon group, so-called silicone oils, or modified silicone oils.
  • Examples of the substituted or unsubstituted aliphatic hydrocarbon group and aromatic hydrocarbon group include an alkyl group, a cycloalkyl group, a phenyl group, a benzyl group, an amino group, an epoxy group, a polyether group, a carboxyl group, a mercapto group, Examples include a chloroalkyl group, an alkyl higher alcohol ester group, an alcohol group, an aralkyl group, a vinyl group, or a trifluoromethyl group.
  • These silicon-containing flame retardants may be used alone or in combination of two or more.
  • Examples of the flame retardant other than the phosphorus-containing flame retardant or the silicon-containing flame retardant include, for example, magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, sodium antimonate, zinc hydroxystannate, zinc stannate, Metastannic acid, tin oxide, tin oxide salt, zinc sulfate, zinc oxide, ferrous oxide, ferric oxide, stannous oxide, stannic oxide, zinc borate, ammonium borate, ammonium octamolybdate, tungsten Inorganic flame retardants such as acid metal salts, complex oxides of tungsten and metalloid, ammonium sulfamate, ammonium bromide, zirconium compounds, guanidine compounds, fluorine compounds, graphite, and swellable graphite can be used. . These other flame retardants may be used alone or in combination of two or more.
  • the molding material of the present invention contains a flame retardant
  • its content is not limited, but is usually 30 parts by mass or less, preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative. By setting it as this range, impact resistance, brittleness, etc. can be improved, or generation
  • the molding material of the present invention may contain other components other than those described above for the purpose of further improving various properties such as moldability and flame retardancy within the range not impairing the object of the present invention.
  • Other components include, for example, polymers other than the cellulose derivative and the rubber-dispersed AS resin, plasticizers, stabilizers (antioxidants, ultraviolet absorbers, etc.), release agents (fatty acids, fatty acid metal salts, oxyfatty acids, Fatty acid ester, aliphatic partially saponified ester, paraffin, low molecular weight polyolefin, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid polyglycol ester, modified silicone), antistatic agent , Flame retardant aids, processing aids, anti-drip agents, antibacterial agents, antifungal agents and the like.
  • a coloring agent containing a dye or a pigment can be added.
  • the molding material of the present invention contains an antioxidant
  • its content is not limited, but it is usually 30% by mass or less, preferably 0.01 to 10% by mass in the molding material. By setting it within this range, the resin can obtain a sufficient stability improving effect against heating in the kneading or molding process, which is preferable.
  • the antioxidant include phenol-based antioxidants, amine-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and the like, and phenol-based antioxidants are preferable.
  • the phenolic antioxidant Irganox 1010, Irganox 1076, Irganox 3114 manufactured by Ciba Specialty Chemicals Co., Ltd. can be suitably used.
  • any of a thermoplastic polymer and a thermosetting polymer can be used, but a thermoplastic polymer is preferable from the viewpoint of moldability.
  • polymers other than cellulose derivatives include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, ethylene-butene- 1 copolymer, polypropylene homopolymer, polypropylene copolymer (such as ethylene-propylene block copolymer), polyolefins such as polybutene-1 and poly-4-methylpentene-1, polybutylene terephthalate, polyethylene terephthalate and other aromatic polyesters, etc.
  • Polyamide such as polyester, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 6T, nylon 12, etc., polystyrene, high impact polystyrene, polyacetate (Including homopolymers and copolymers), polyurethanes, aromatic and aliphatic polyketones, polyphenylene sulfide, polyether ether ketone, thermoplastic starch resins, polymethyl methacrylate and methacrylate-acrylate copolymers Acrylic resin, AS resin (acrylonitrile-styrene copolymer), ACS resin (chlorinated polyethylene reinforced AS resin), polyvinyl chloride, polyvinylidene chloride, vinyl ester resin, maleic anhydride-styrene copolymer, MS Resin (methyl methacrylate-styrene copolymer), polycarbonate, polyarylate, polysulfone, polyethersulfone, phenoxy resin, polyphenylene ether, modified polyphenylene
  • Various acrylic rubbers ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers and alkali metal salts thereof (so-called ionomers), ethylene-acrylic acid alkyl ester copolymers (for example, ethylene-ethyl acrylate copolymer) Copolymer, ethylene-butyl acrylate copolymer), diene rubber (for example, 1,4-polybutadiene, 1,2-polybutadiene, polyisoprene, polychloroprene), copolymer of diene and vinyl monomer (for example, Styrene-butadiene random copolymer, styrene-butadiene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene random copolymer, styrene-isoprene block copolymer, sty
  • a multi-layer structure polymer called a so-called core-shell rubber which is composed of one or more shell layers to be covered and whose adjacent layers are composed of different types of polymers, can also be used, and further a core-shell rubber containing a silicone compound Can also be used.
  • These polymers may be used alone or in combination of two or more.
  • the content is preferably 30 parts by mass or less, more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative. .
  • the molding material of the present invention may contain a plasticizer.
  • a plasticizer those commonly used for polymer molding can be used. Examples thereof include polyester plasticizers, glycerin plasticizers, polycarboxylic acid ester plasticizers, polyalkylene glycol plasticizers, and epoxy plasticizers.
  • polyester plasticizer examples include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4 -Polyesters composed of diol components such as butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acids such as polycaprolactone. These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
  • acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4
  • glycerin plasticizer examples include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate.
  • polycarboxylic acid plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, and trimellitic acid.
  • Trimellitic acid esters such as tributyl, trioctyl trimellitic acid, trihexyl trimellitic acid, diisodecyl adipate, n-octyl-n-decyl adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, adipic acid
  • Adipic acid esters such as benzylbutyl diglycol, citrate esters such as triethyl acetylcitrate and tributyl acetylcitrate, azelaic acid esters such as di-2-ethylhexyl azelate, sebashi Dibutyl, and include di-2-ethylhexyl sebacate and the like.
  • polyalkylene glycol plasticizer examples include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, and bisphenols.
  • a polyalkylene glycol such as a propylene oxide addition polymer, a tetrahydrofuran addition polymer of bisphenol, or a terminal epoxy-modified compound thereof, a terminal ester-modified compound, a terminal ether-modified compound, and the like.
  • the epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but there are also so-called epoxy resins mainly made of bisphenol A and epichlorohydrin. Can be used.
  • plasticizers include benzoate esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, fatty acid amides such as stearamide, oleic acid
  • aliphatic carboxylic acid esters such as butyl, oxy acid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritol, and various sorbitols.
  • the content thereof is usually 30 parts by mass or less, preferably 0.005 to 20 parts by mass with respect to 100 parts by mass in total of the cellulose derivative and the rubber-dispersed AS resin. More preferably, it is 0.01 to 10 parts by mass.
  • the molded body of the present invention can be obtained by molding a molding material containing the cellulose derivative and the rubber-dispersed AS resin. More specifically, the cellulose derivative or the cellulose derivative and, if necessary, a molding material containing various additives and the like are heated and obtained by a production method including a step of molding by various molding methods.
  • the method for producing a molded body of the present invention includes a step of heating and molding the molding material. Examples of the molding method include injection molding, extrusion molding, blow molding and the like.
  • the heating temperature is usually 160 to 300 ° C, preferably 180 to 260 ° C.
  • the use of the molded product of the present invention is not particularly limited.
  • interior or exterior parts of electrical and electronic equipment home appliances, OA / media related equipment, optical equipment, communication equipment, etc.
  • automobiles mechanical parts, etc.
  • materials for housing and construction for example, from the viewpoint of having excellent heat resistance and impact resistance and low environmental load, for example, exterior parts for electric and electronic devices such as copiers, printers, personal computers, televisions (especially casings) ) Can be suitably used.
  • reaction solution was returned to room temperature and quenched by adding 200 mL of methanol under ice cooling.
  • methanol methanol
  • a white solid was precipitated.
  • the white solid was filtered off by suction filtration and washed 3 times with a large amount of methanol solvent.
  • the resulting white solid was vacuum-dried at 100 ° C. for 6 hours to obtain methylcellulose-2-ethylhexanoate (C-5).
  • the solubility of this cellulose derivative (C-5) in water at 25 ° C. was less than 0.1% by mass (insoluble).
  • the degree of substitution of the hydrocarbon group is the number of moles of the hydrocarbon group substituted on the glucose ring unit, and takes a value of 0 or more and less than 3.
  • the molar substitution degree of the alkyleneoxy group is the number of moles of the alkyleneoxy group substituted on the glucose ring unit, and takes a value of 0 or more.
  • the degree of acylation indicates the degree of substitution with an acyl group by esterifying a hydroxyl group present in the glucose ring or ether substituent of cellulose, and is represented by 0 or more and 100 or less. Further, a colloid titration method is performed, and the degree of substitution of carboxyl groups or sulfonic acid groups in the cellulose derivatives (C-1) to (C-7) is less than 0.02 (that is, the content of carboxyl groups or sulfonic acid groups is It was confirmed that it was less than 0.5% by mass with respect to the cellulose derivative.
  • Examples 1 to 15 and Comparative Examples 1 to 4 [Production of molded body] Cellulose derivatives (C-1 to C-7, H-1), rubber-dispersed AS resin, compatibilizing agent, and antioxidant are mixed at a blending ratio (mass%) shown in Table 3 to obtain a cellulose resin composition (molding material). ) was produced.
  • This resin composition was supplied to a twin-screw kneading extruder (manufactured by Technobel Co., Ltd., Ultranano) to produce pellets, and then the obtained pellets were injected into an injection molding machine (FANUC Corporation Robot S-2000i, automatic injection molding). Machine), 4 ⁇ 10 ⁇ 80 mm multi-purpose test pieces were molded.
  • the rubber-dispersed AS resin, the compatibilizer and the antioxidant are as follows.
  • ABS resin butadiene-dispersed AS resin
  • UMG-ABS-AM UMG AAS (ASA) resin
  • ASA acrylic rubber-dispersed AS resin
  • Dialac S510 UMG AES resin
  • UMG AES resin ethylene-propylene-diene rubber dispersed AS resin
  • Dialac SK30 UMG compatibilizer: Modiper A4400, Nippon Oil & Fats Co., Ltd.
  • Antioxidant Phenolic antioxidant Irganox 1010, Ciba Specialty Chemicals Co., Ltd.
  • HDT Heat deformation temperature
  • ISO75 a constant bending load (1.8 MPa) is applied to the center of the test piece (in the flatwise direction), the temperature is increased at a constant speed, and the temperature when the strain at the center reaches 0.34 mm ( ° C).
  • HDT tester 6M-2 manufactured by Toyo Seiki Seisakusho Co., Ltd. was used. The measurement is an average of three measurements.
  • the moldability evaluation shows the moldability in an injection molding machine, and the meterability and the injection property were evaluated by the viscosity at a low shear rate (10 s ⁇ 1 ) and a high shear rate (660 s ⁇ 1 ), respectively. Viscosity measurement was performed using a rotary rheometer (Rheostress RS600: Thermo HAAKE). As shown in Table 2 below, the evaluation criteria were divided into four stages.
  • Examples 1 to 15 were excellent in flexural modulus, flexural strength, Charpy impact strength, heat resistance (HDT), and moldability.
  • the comparative example 1 which does not contain a rubber-dispersed AS resin has inferior Charpy impact strength to the sample of the example.
  • the comparative examples 2 and 4 which do not contain the cellulose derivative in this invention had low Charpy impact strength. Since Comparative Example 3 did not contain a cellulose derivative, it was not carbon neutral and had lower heat resistance than the Examples.
  • the molding material of the present invention has excellent thermoplasticity, it can be molded by heat molding or the like. Further, the molding material and the molding of the present invention are excellent in performance such as rigidity, bending strength, heat distortion temperature, and molding processability and have good impact resistance. It can be suitably used as a component part such as equipment, a machine part, a house / building material, or the like. Moreover, since the molding material of this invention uses the cellulose derivative obtained from the cellulose which is plant-derived resin, it can substitute for the conventional petroleum-derived resin as a raw material which can contribute to global warming prevention.

Abstract

Disclosed are: a molding material having high stiffness (bending elastic modulus), good bending strength, high heat resistance (a high thermal deformation temperature) and excellent moldability and also having good impact resistance (Charpy impact strength); and a molded article. The molding material comprises: a cellulose derivative which contains at least one group that is produced by substituting a hydrogen atom in a hydroxy group contained in a cellulose by a group (A) and at least one group that is produced by substituting a hydrogen atom in a hydroxy group contained in the cellulose by a group (B); and a acrylonitrile-styrene copolymer which contains a rubbery component as a dispersed phase. (A) A hydrocarbon group: -RA. (B) An acyl group: -CO-RB (wherein RB represents a hydrocarbon group).

Description

成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体MOLDING MATERIAL, MOLDED BODY, ITS MANUFACTURING METHOD, AND ELECTRIC ELECTRONIC DEVICE CASE
 本発明は、成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体に関する。 The present invention relates to a molding material, a molded body, a manufacturing method thereof, and a casing for electrical and electronic equipment.
 コピー機、プリンター等の電気電子機器を構成する部材には、その部材に求められる特性、機能等を考慮して、各種の素材が使用されている。例えば、電気電子機器の駆動機等を収納し、当該駆動機を保護する役割を果たす部材(筐体)にはPC(Polycarbonate)、ABS(Acrylonitrile-butadiene-styrene)樹脂、PC/ABS等が一般的に多量に使用されている(特許文献1)。これらの樹脂は、石油を原料として得られる化合物を反応させて製造されている。
 ところで、石油、石炭、天然ガス等の化石資源は、長年月の間、地中に固定されてきた炭素を主成分とするものである。このような化石資源、又は化石資源を原料とする製品を燃焼させて、二酸化炭素が大気中に放出された場合には、本来、大気中に存在せずに地中深くに固定されていた炭素を二酸化炭素として急激に放出することになり、大気中の二酸化炭素が大きく増加し、これが地球温暖化の原因となっている。したがって、化石資源である石油を原料とするABS、PC等のポリマーは、電気電子機器用部材の素材としては、優れた特性を有するものであるものの、化石資源である石油を原料とするものであるため、地球温暖化の防止の観点からは、その使用量の低減が望ましい。
 一方、植物由来の樹脂は、元々、植物が大気中の二酸化炭素と水とを原料として光合成反応によって生成したものである。そのため、植物由来の樹脂を焼却して二酸化炭素が発生しても、その二酸化炭素は元々、大気中にあった二酸化炭素に相当するものであるから、大気中の二酸化炭素の収支はプラスマイナスゼロとなり、結局、大気中のCOの総量を増加させない、という考え方がある。このような考えから、植物由来の樹脂は、いわゆる「カーボンニュートラル」な材料と称されている。石油由来の樹脂に代わって、カーボンニュートラルな材料を用いることは、近年の地球温暖化を防止する上で急務となっている。
 このため、PCポリマーにおいて、石油由来の原料の一部としてデンプン等の植物由来資源を使用することにより石油由来資源を低減する方法が提案されている(特許文献2)。
 しかし、より完全なカーボンニュートラルな材料を目指す観点から、さらなる改良が求められている。
Various materials are used for members constituting electric and electronic devices such as copiers and printers in consideration of characteristics and functions required for the members. For example, PC (Polycarbonate), ABS (Acrylonitrile-butadiene-styrene) resin, PC / ABS, etc. are generally used as a member (housing) that stores a drive machine for electrical and electronic equipment and protects the drive machine. In large amounts (Patent Document 1). These resins are produced by reacting compounds obtained from petroleum as a raw material.
By the way, fossil resources such as oil, coal, and natural gas are mainly composed of carbon that has been fixed in the ground for many years. When such fossil resources or products made from fossil resources are burned and carbon dioxide is released into the atmosphere, carbon that was originally not deep in the atmosphere but fixed deep in the ground Is rapidly released as carbon dioxide, and carbon dioxide in the atmosphere greatly increases, which causes global warming. Therefore, polymers such as ABS and PC made from petroleum, which is a fossil resource, have excellent characteristics as materials for electrical and electronic equipment, but are made from petroleum, which is a fossil resource. Therefore, it is desirable to reduce the amount used from the viewpoint of preventing global warming.
On the other hand, a plant-derived resin is originally produced by a photosynthesis reaction using carbon dioxide and water in the atmosphere as raw materials. Therefore, even if plant-derived resin is incinerated to generate carbon dioxide, the carbon dioxide is equivalent to carbon dioxide originally in the atmosphere, so the balance of carbon dioxide in the atmosphere is plus or minus zero After all, there is an idea that the total amount of CO 2 in the atmosphere is not increased. Based on this idea, plant-derived resins are referred to as so-called “carbon neutral” materials. The use of carbon-neutral materials in place of petroleum-derived resins is an urgent need to prevent global warming in recent years.
For this reason, in PC polymer, the method of reducing petroleum origin resources is proposed by using plant origin resources, such as starch, as some raw materials derived from petroleum (patent documents 2).
However, further improvements are required from the perspective of aiming for a more complete carbon neutral material.
 公知のセルロース誘導体として、ヒドロキシプロピルメチルアセチルセルロースが特許文献3及び特許文献4に記載されている。特許文献3及び特許文献4では、このヒドロキシプロピルメチルアセチルセルロースは、揮発しやすい有機溶剤の蒸気圧を低減するための添加剤として有用であることが記載されている。また、特許文献3及び特許文献4に記載のヒドロキシプロピルメチルアセチルセルロースにおける各置換基の置換度は、例えばヒドロキシプロピル基のモル置換度(MS)が約2から8の範囲、メチル基の置換度が約0.1から1の範囲、アセチル基の置換度は約0.8から2.5の範囲であることが記載されている。
 また、薬剤のコーティング等用途として、ヒドロキシプロピルメチルプロピルセルロース、ヒドロキシプロピルメチルブチルセルロース等(特許文献5)、ヒドロキシプロピルメチルセロースフタレート等(特許文献6)が開示されている。
As known cellulose derivatives, hydroxypropylmethylacetylcellulose is described in Patent Document 3 and Patent Document 4. Patent Document 3 and Patent Document 4 describe that this hydroxypropylmethylacetylcellulose is useful as an additive for reducing the vapor pressure of an organic solvent that easily volatilizes. In addition, the substitution degree of each substituent in hydroxypropylmethylacetylcellulose described in Patent Document 3 and Patent Document 4 is, for example, a molar substitution degree (MS) of hydroxypropyl group in a range of about 2 to 8, a substitution degree of methyl group Is in the range of about 0.1 to 1 and the degree of substitution of the acetyl group is in the range of about 0.8 to 2.5.
Further, hydroxypropylmethylpropylcellulose, hydroxypropylmethylbutylcellulose and the like (Patent Document 5), hydroxypropylmethylserose phthalate and the like (Patent Document 6) are disclosed as uses such as drug coating.
 また、特許文献7にはセルロースエステルを含む樹脂組成物について記載され、更にABS樹脂を含んでもよいことが記載されている。 Patent Document 7 describes a resin composition containing a cellulose ester and further describes that an ABS resin may be contained.
日本国特開昭56-55425号公報Japanese Unexamined Patent Publication No. 56-55425 日本国特開2008-24919号公報Japanese Unexamined Patent Publication No. 2008-24919 米国特許第3979179号明細書US Pat. No. 3,979,179 米国特許第3940384号明細書U.S. Pat. No. 3,940,384 国際公開第09/010837号International Publication No. 09/010837 日本国特許第3017412号明細書Japanese Patent No. 3017412 specification 日本国特開2006-111858号公報Japanese Unexamined Patent Publication No. 2006-111858
 本発明者らは、カーボンニュートラルな樹脂として、セルロースを使用することに着目した。しかし、セルロースは一般的に熱可塑性を持たないため、加熱等により成形することが困難であるため、成形加工に適さない。また、たとえ熱可塑性を付与できたとしても、耐衝撃性等の強度が大きく衰える問題がある。
 例えば、上記特許文献3、4、及び6に記載のセルロース誘導体は水可溶性又は膨潤性であり、強度が不足しており成形材料として好ましくない。また、特許文献5に記載のセルロース誘導体は水難溶性であることが記載されているが、本文中に記載があるのみでその合成方法及び使用形態等については実施例等で具体的に開示されていない。
 また、特許文献7に記載されたセルロースエステルとアクリロニトリル-スチレン樹脂とを含有する樹脂組成物は、耐衝撃性の観点で改善の余地がある。
The inventors of the present invention focused on using cellulose as a carbon neutral resin. However, since cellulose generally does not have thermoplasticity, it is difficult to mold by heating or the like, and thus is not suitable for molding. Further, even if thermoplasticity can be imparted, there is a problem that strength such as impact resistance is greatly reduced.
For example, the cellulose derivatives described in Patent Documents 3, 4, and 6 are water-soluble or swellable and lack strength, which is not preferable as a molding material. In addition, the cellulose derivative described in Patent Document 5 is described as being poorly water-soluble, but only described in the text, and its synthesis method and usage form are specifically disclosed in Examples and the like. Absent.
Further, the resin composition containing cellulose ester and acrylonitrile-styrene resin described in Patent Document 7 has room for improvement from the viewpoint of impact resistance.
 本発明の目的は、高い剛性(曲げ弾性率)、良好な曲げ強度、高い耐熱性(熱変形温度)、及び優れた成形加工性といった性能と、更に良好な耐衝撃性(シャルピー衝撃強度)を有する成形材料及び成形体を提供することである。また、本発明の別の目的は、該成形材料を成形して得られる成形体、該成形体の製造方法、及び該成形体から構成される電気電子機器用筐体を提供することである。 The object of the present invention is to provide performance such as high rigidity (flexural modulus), good bending strength, high heat resistance (thermal deformation temperature), and excellent moldability, and even better impact resistance (Charpy impact strength). It is providing the molding material and molded object which have. Another object of the present invention is to provide a molded body obtained by molding the molding material, a method for producing the molded body, and a housing for electric and electronic equipment composed of the molded body.
 本発明者らは、セルロースの分子構造に着目し、セルロースをエーテル構造とエステル構造を有する特定構造のセルロース誘導体とし、該特定構造のセルロース誘導体と、更にゴム成分を分散相として有するアクリロニトリル-スチレン共重合体とを含有する成形材料により、剛性、曲げ強度、熱変形温度、及び成形加工性といった性能を下げずに、耐衝撃性に優れた成形材料及び成形体を提供しうることを見出し、本発明を完成するに至った。
 すなわち、上記課題は以下の手段により達成することができる。
The present inventors pay attention to the molecular structure of cellulose. The cellulose is a cellulose derivative having a specific structure having an ether structure and an ester structure, and the acrylonitrile-styrene copolymer having the cellulose structure having the specific structure and a rubber component as a dispersed phase. The present inventors have found that a molding material containing a polymer can provide a molding material and a molded body excellent in impact resistance without lowering performance such as rigidity, bending strength, heat distortion temperature, and molding processability. The invention has been completed.
That is, the said subject can be achieved by the following means.
[1]
 セルロースに含まれる水酸基の水素原子が、
 下記A)で置換された基を少なくとも1つ、及び
 下記B)で置換された基を少なくとも1つ含むセルロース誘導体と、
 ゴム成分を分散相として有するアクリロニトリル-スチレン共重合体とを含有する成形材料。
 A)炭化水素基:-R
 B)アシル基:-CO-R(Rは炭化水素基を表す。)
[2]
 前記セルロース誘導体が、更に、セルロースに含まれる水酸基の水素原子が下記C)で置換された基を少なくとも1つ含む、[1]に記載の成形材料。
 C)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。)
[3]
 前記C)アルキレンオキシ基とアシル基とを含む基が、下記一般式(3)で表される構造を含む基である、[2]に記載の成形材料。
[1]
The hydrogen atom of the hydroxyl group contained in cellulose
A cellulose derivative comprising at least one group substituted in A) below and at least one group substituted in B) below;
A molding material containing an acrylonitrile-styrene copolymer having a rubber component as a dispersed phase.
A) Hydrocarbon group: —R A
B) Acyl group: —CO—R B (R B represents a hydrocarbon group.)
[2]
The molding material according to [1], wherein the cellulose derivative further contains at least one group in which a hydrogen atom of a hydroxyl group contained in cellulose is substituted by the following C).
C) a group containing an alkyleneoxy group: —R C2 —O— and an acyl group: —CO—R C1 (R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms. )
[3]
[Claim 2] The molding material according to [2], wherein the group containing C) an alkyleneoxy group and an acyl group is a group containing a structure represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。
nは1以上の整数を表す。)
[4]
 前記Rが炭素数1~4のアルキル基である、[1]~[3]のいずれか一項に記載の成形材料。
[5]
 前記Rがメチル基又はエチル基である、[1]~[4]のいずれか一項に記載の成形材料。
[6]
 前記R及びRC1が、それぞれ独立に、アルキル基又はアリール基である、[2]~[5]のいずれか一項に記載の成形材料。
[7]
 前記R及びRC1が、それぞれ独立に、メチル基、エチル基、又はプロピル基である、[2]~[6]のいずれか一項に記載の成形材料。
[8]
 前記Rが、炭素数3~10の分岐構造を有する炭化水素基である、[1]~[6]のいずれかに一項記載の成形材料。
[9]
 前記アルキレンオキシ基が下記式(1)又は(2)で表される基である、[2]~[8]のいずれか一項に記載の成形材料。
(Wherein R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms.
n represents an integer of 1 or more. )
[4]
The molding material according to any one of [1] to [3], wherein R A is an alkyl group having 1 to 4 carbon atoms.
[5]
The molding material according to any one of [1] to [4], wherein R A is a methyl group or an ethyl group.
[6]
The molding material according to any one of [2] to [5], wherein R B and R C1 are each independently an alkyl group or an aryl group.
[7]
The molding material according to any one of [2] to [6], wherein R B and R C1 are each independently a methyl group, an ethyl group, or a propyl group.
[8]
The molding material according to any one of [1] to [6], wherein R B is a hydrocarbon group having a branched structure having 3 to 10 carbon atoms.
[9]
The molding material according to any one of [2] to [8], wherein the alkyleneoxy group is a group represented by the following formula (1) or (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[10]
 前記セルロース誘導体が、カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さない、[1]~[9]のいずれか一項に記載の成形材料。
[11]
 前記セルロース誘導体が水に不溶である、[1]~[10]のいずれか一項に記載の成形材料。
[12]
 前記ゴム成分を分散相として有するアクリロニトリル-スチレン共重合体において、アクリロニトリル-スチレン共重合体に分散するゴム成分が、ポリブタジエンゴム、アクリル系ゴム、及びエチレンープロピレンージエン系ゴムからなる群から選ばれる少なくとも1つである、[1]~[11]のいずれか一項に記載の成形材料。
[13]
 更に、相溶化剤を含有する、[1]~[12]のいずれか一項に記載の成形材料。
[14]
 前記相溶化剤が、カルボン酸無水物、又は、エポキシ基、イソシアネート基、及びオキサゾリン基から選ばれる少なくとも1つを有する、[13]に記載の成形材料。
[15]
 [1]~[14]のいずれか一項に記載の成形材料を加熱成形して得られる成形体。
[16]
 [1]~[14]のいずれか一項に記載の成形材料を加熱し、成形する工程を含む、成形体の製造方法。
[17]
 [15]に記載の成形体から構成される電気電子機器用筐体。
[10]
The molding material according to any one of [1] to [9], wherein the cellulose derivative is substantially free of carboxyl groups, sulfonic acid groups, and salts thereof.
[11]
The molding material according to any one of [1] to [10], wherein the cellulose derivative is insoluble in water.
[12]
In the acrylonitrile-styrene copolymer having the rubber component as a dispersed phase, the rubber component dispersed in the acrylonitrile-styrene copolymer is selected from the group consisting of polybutadiene rubber, acrylic rubber, and ethylene-propylene-diene rubber. The molding material according to any one of [1] to [11], which is at least one.
[13]
The molding material according to any one of [1] to [12], further comprising a compatibilizer.
[14]
The molding material according to [13], wherein the compatibilizing agent has at least one selected from a carboxylic acid anhydride, an epoxy group, an isocyanate group, and an oxazoline group.
[15]
[1] A molded product obtained by thermoforming the molding material according to any one of [14].
[16]
[1] A method for producing a molded body, comprising a step of heating and molding the molding material according to any one of [14].
[17]
[15] A casing for an electric and electronic device comprising the molded article according to [15].
 本発明の成形材料は、優れた熱可塑性を有するため、加熱成形などにより成形することができる。また、本発明の成形材料、及び成形体は、剛性、曲げ強度、熱変形温度、及び成形加工性といった性能に優れ、かつ良好な耐衝撃性を有しており、例えば自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。また、本発明の成形材料は、植物由来の樹脂であるセルロースから得られるセルロース誘導体を使用しているため、温暖化防止に貢献できる素材として、従来の石油由来の樹脂に代替できる。 Since the molding material of the present invention has excellent thermoplasticity, it can be molded by heat molding or the like. Further, the molding material and the molding of the present invention are excellent in performance such as rigidity, bending strength, heat distortion temperature, and molding processability and have good impact resistance. It can be suitably used as a component part such as equipment, a machine part, a house / building material, or the like. Moreover, since the molding material of this invention uses the cellulose derivative obtained from the cellulose which is plant-derived resin, it can substitute for the conventional petroleum-derived resin as a raw material which can contribute to global warming prevention.
 本発明は、セルロースに含まれる水酸基の水素原子が、
 下記A)で置換された基を少なくとも1つ、及び
 下記B)で置換された基を少なくとも1つ含むセルロース誘導体(以下、「セルロース誘導体」ともいう)と、
 ゴム成分を分散相として有するアクリロニトリル-スチレン共重合体とを含有する成形材料に関する。
 A)炭化水素基:-R
 B)アシル基:-CO-R(Rは炭化水素基を表す。)
 以下、本発明について詳細に説明する。
In the present invention, the hydrogen atom of the hydroxyl group contained in cellulose is
A cellulose derivative (hereinafter also referred to as “cellulose derivative”) comprising at least one group substituted with A) below and at least one group substituted with B) below;
The present invention relates to a molding material containing an acrylonitrile-styrene copolymer having a rubber component as a dispersed phase.
A) Hydrocarbon group: —R A
B) Acyl group: —CO—R B (R B represents a hydrocarbon group.)
Hereinafter, the present invention will be described in detail.
1.セルロース誘導体
 本発明の成形材料に含まれるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が、
 下記A)で置換された基を少なくとも1つ、及び
 下記B)で置換された基を少なくとも1つ含むセルロース誘導体である。
 A)炭化水素基:-R
 B)アシル基:-CO-R(Rは炭化水素基を表す。)
 すなわち、本発明におけるセルロース誘導体は、セルロースエーテルエステルであり、セルロース{(C10}に含まれる水酸基の水素原子の少なくとも一部が、A)炭化水素基:-R、B)アシル基:-CO-R(Rは炭化水素基を表す。)により置換されている。
 より詳細には、本発明におけるセルロース誘導体は、下記一般式(A)で表される繰り返し単位を有する。
1. Cellulose derivative The cellulose derivative contained in the molding material of the present invention has a hydrogen atom of a hydroxyl group contained in cellulose.
A cellulose derivative comprising at least one group substituted with A) below and at least one group substituted with B) below.
A) Hydrocarbon group: —R A
B) Acyl group: —CO—R B (R B represents a hydrocarbon group.)
That is, the cellulose derivative in the present invention is a cellulose ether ester, and at least a part of the hydrogen atoms of the hydroxyl group contained in cellulose {(C 6 H 10 O 5 ) n } is A) a hydrocarbon group: —R A , B) Substituted by an acyl group: —CO—R B (R B represents a hydrocarbon group).
More specifically, the cellulose derivative in the present invention has a repeating unit represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(A)において、R、R及びRは、それぞれ独立に、水素原子、A)炭化水素基:-R、B)アシル基:-CO-R(Rは炭化水素基を表す。)、又はその他の置換基を表す。ただし、R、R、及びRの少なくとも一部がA)炭化水素基を表し、かつR、R、及びRの少なくとも一部がB)アシル基を表す。 In the general formula (A), R 2 , R 3 and R 6 are each independently a hydrogen atom, A) hydrocarbon group: —R A , B) acyl group: —CO—R B (R B is carbon Represents a hydrogen group) or other substituents. However, at least a part of R 2 , R 3 , and R 6 represents A) a hydrocarbon group, and at least a part of R 2 , R 3 , and R 6 represents B) an acyl group.
 本発明におけるセルロース誘導体は、上記のようにβ-グルコース環の水酸基の少なくとも一部がA)炭化水素基、及びB)アシル基によって、エーテル化、及びエステル化されていることにより、熱可塑性を発現することができ、成形加工に適したものとなる。
 更には、セルロースは完全な植物由来成分であるため、カーボンニュートラルであり、環境に対する負荷を大幅に低減することができる。
As described above, the cellulose derivative in the present invention has thermoplasticity because at least part of the hydroxyl group of the β-glucose ring is etherified and esterified with A) a hydrocarbon group and B) an acyl group. It can be expressed and is suitable for molding.
Furthermore, since cellulose is a completely plant-derived component, it is carbon neutral and can greatly reduce the burden on the environment.
 なお、本発明にいう「セルロース」とは、多数のグルコースがβ-1,4-グリコシド結合によって結合した高分子化合物であって、セルロースのグルコース環における2位、3位、6位の炭素原子に結合している水酸基が無置換であるものを意味する。また、「セルロースに含まれる水酸基」とは、セルロースのグルコース環における2位、3位、6位の炭素原子に結合している水酸基を指す。 The “cellulose” referred to in the present invention is a polymer compound in which a large number of glucoses are bonded by β-1,4-glycosidic bonds, and the carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose. Means that the hydroxyl group bonded to is unsubstituted. Further, “hydroxyl group contained in cellulose” refers to a hydroxyl group bonded to carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose.
 前記セルロース誘導体は、その全体のいずれかの部分に前記A)炭化水素基、及びB)アシル基とを含んでいればよく、同一の繰り返し単位からなるものであってもよいし、複数の種類の繰り返し単位からなるものであってもよい。また、前記セルロース誘導体は、ひとつの繰り返し単位において前記A)炭化水素基、及びB)アシル基をすべて含有する必要はない。
 より具体的な態様としては、例えば以下の態様が挙げられる。
(1)R、R及びRの少なくとも1つが、A)炭化水素基で置換されている繰り返し単位と、R、R及びRの少なくとも1つが、B)アシル基で置換されている繰り返し単位と、から構成されるセルロース誘導体。
(2)ひとつの繰り返し単位のR、R及びRのいずれか少なくとも1つがA)炭化水素基で置換され、それとは別の少なくともいずれか1つがB)アシル基で置換されている(すなわち、ひとつの繰り返し単位中に前記A)及びB)の置換基を有する)同種の繰り返し単位から構成されるセルロース誘導体。
(3)置換位置や置換基の種類が異なる繰り返し単位が、ランダムに結合しているセルロース誘導体。
 また、セルロース誘導体には、無置換の繰り返し単位(すなわち、前記一般式(A)において、R、R及びRすべてが水素原子である繰り返し単位)を含んでいてもよい。
 また、セルロース誘導体は、水素原子、A)炭化水素基、及びB)アシル基以外のその他の置換基を有していても良い。
The cellulose derivative only needs to contain the A) hydrocarbon group and B) acyl group in any part of the whole, and may be composed of the same repeating unit, or a plurality of types. It may consist of repeating units. The cellulose derivative does not need to contain all of the A) hydrocarbon group and B) acyl group in one repeating unit.
More specific embodiments include the following embodiments, for example.
(1) At least one of R 2 , R 3 and R 6 is A) a repeating unit substituted with a hydrocarbon group, and at least one of R 2 , R 3 and R 6 is substituted with B) an acyl group A cellulose derivative composed of repeating units.
(2) At least one of R 2 , R 3 and R 6 of one repeating unit is substituted with A) a hydrocarbon group, and at least one of the other is substituted with B) an acyl group ( That is, a cellulose derivative composed of the same type of repeating units having the substituents A) and B) in one repeating unit.
(3) A cellulose derivative in which repeating units having different substitution positions and different types of substituents are bonded at random.
The cellulose derivative may contain an unsubstituted repeating unit (that is, a repeating unit in which R 2 , R 3 and R 6 are all hydrogen atoms in the general formula (A)).
Moreover, the cellulose derivative may have other substituents other than a hydrogen atom, A) a hydrocarbon group, and B) an acyl group.
 A)炭化水素基:-Rは、脂肪族基、及び芳香族基のいずれでもよい。
 Rが脂肪族基である場合は、直鎖、分岐、及び環状のいずれでもよく、不飽和結合を持っていてもよい。脂肪族基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基等が挙げられる。
 Rが芳香族基である場合は、単環、及び縮環のいずれでもよい。Rが芳香族基である場合の好ましい炭素数は6~18であり、より好ましくは6~14、更に好ましくは6~10である。芳香族基としては、例えば、フェニル基、ナフチル基、フェナントリル基、アントリル基等が挙げられる。
 A)炭化水素基は、得られる成形材料(以下「セルロース樹脂組成物」又は「樹脂組成物」と称する場合がある。)の耐衝撃性が優れることから、脂肪族基であることが好ましく、メルトフローレート等の成形加工性が優れることから、より好ましくはアルキル基であり、更に好ましくは炭素数1~4のアルキル基(低級アルキル基)である。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、2-エチルヘキシル基、tert-ブチル基、イソヘプチル基等が挙げられ、メチル基又はエチル基が特に好ましい。
A) Hydrocarbon group: —R A may be an aliphatic group or an aromatic group.
When R A is an aliphatic group, it may be linear, branched, or cyclic, and may have an unsaturated bond. Examples of the aliphatic group include an alkyl group, a cycloalkyl group, an alkenyl group, and an alkynyl group.
When R A is an aromatic group, it may be either a single ring or a condensed ring. In the case where R A is an aromatic group, the preferred carbon number is 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10. Examples of the aromatic group include a phenyl group, a naphthyl group, a phenanthryl group, and an anthryl group.
A) The hydrocarbon group is preferably an aliphatic group because the resulting molding material (hereinafter sometimes referred to as “cellulose resin composition” or “resin composition”) has excellent impact resistance. From the viewpoint of excellent moldability such as melt flow rate, an alkyl group is more preferable, and an alkyl group having 1 to 4 carbon atoms (lower alkyl group) is more preferable. Specific examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, tert-butyl group, isoheptyl group, and the like. A group or an ethyl group is particularly preferred.
 B)アシル基:-CO-Rにおいて、Rは炭化水素基を表す。Rは、脂肪族基、及び芳香族基のいずれでもよい。
 Rが脂肪族基である場合は、直鎖、分岐、及び環状のいずれでもよく、不飽和結合を持っていてもよい。脂肪族基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基等が挙げられる。
 Rが芳香族基である場合は、単環、及び縮環のいずれでもよい。芳香族基としては、フェニル基、ナフチル基、フェナントリル基、アントリル基等が挙げられる。
 Rは、好ましくはアルキル基又はアリール基である。Rは、より好ましくは炭素数1~12のアルキル基又はアリール基であり、更に好ましくは炭素数1~12のアルキル基であり、特に好ましくは炭素数1~4のアルキル基(好ましくはメチル基、エチル基、プロピル基)であり、最も好ましくは炭素数1又は2のアルキル基(すなわち、メチル基又はエチル基)である。
 また、Rは、炭素数3~10の分岐構造を有する炭化水素基であることも好ましく、炭素数3~10の分岐構造を有するアルキル基であることがより好ましく、炭素数7~9の分岐構造を有するアルキル基であることが更に好ましい。
 Rとしては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、3-ヘプチル基、2-エチルヘキシル基、tert-ブチル基、及びイソヘプチル基等が挙げられる。好ましくは、Rはメチル基、エチル基、プロピル基、3-ヘプチル基、又は2-エチルヘキシル基であり、より好ましくはメチル基、エチル基、3-ヘプチル基、又は2-エチルヘキシル基である。
B) Acyl group: In —CO—R B , R B represents a hydrocarbon group. R B is an aliphatic group, and may be any aromatic group.
If R B is an aliphatic group, straight chain, branched, and may be any of circular, it may have an unsaturated bond. Examples of the aliphatic group include an alkyl group, a cycloalkyl group, an alkenyl group, and an alkynyl group.
If R B is an aromatic group may be either monocyclic and condensed. Examples of the aromatic group include a phenyl group, a naphthyl group, a phenanthryl group, and an anthryl group.
R B is preferably an alkyl group or an aryl group. R B is more preferably an alkyl group having 1 to 12 carbon atoms or an aryl group, still more preferably an alkyl group having 1 to 12 carbon atoms, and particularly preferably an alkyl group having 1 to 4 carbon atoms (preferably a methyl group). Group, ethyl group, propyl group), and most preferably an alkyl group having 1 or 2 carbon atoms (that is, a methyl group or an ethyl group).
Also, R B, it is also preferably a hydrocarbon group having a branched structure having 3 to 10 carbon atoms, more preferably an alkyl group having a branched structure having 3 to 10 carbon atoms, having 7-9 carbon atoms More preferably, it is an alkyl group having a branched structure.
The R B, specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group, a heptyl group, 3-heptyl, 2-ethylhexyl group, tert- butyl Group, isoheptyl group, and the like. Preferably, R B is a methyl group, an ethyl group, a propyl group, a 3-heptyl group, or a 2-ethylhexyl group, and more preferably a methyl group, an ethyl group, a 3-heptyl group, or a 2-ethylhexyl group.
 本発明の成形材料におけるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が、前記A)で置換された基を少なくとも1つ、及び前記B)で置換された基を少なくとも1つ含むセルロース誘導体であるが、更に、セルロースに含まれる水酸基の水素原子が下記C)で置換された基を少なくとも1つ含むことが耐衝撃性の観点から好ましい。
 C)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。)
The cellulose derivative in the molding material of the present invention is a cellulose derivative in which the hydrogen atom of the hydroxyl group contained in cellulose contains at least one group substituted with A) and at least one group substituted with B). However, it is preferable from the viewpoint of impact resistance that it further contains at least one group in which the hydrogen atom of the hydroxyl group contained in cellulose is substituted by the following C).
C) a group containing an alkyleneoxy group: —R C2 —O— and an acyl group: —CO—R C1 (R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms. )
 前記C)に含まれるアシル基(-CO-RC1)において、RC1は炭化水素基を表す。RC1が表す炭化水素基としては、前記Rで挙げたものと同様のものを適用することができる。RC1の好ましい範囲も前記Rと同様である。 In the acyl group (—CO—R C1 ) contained in C), R C1 represents a hydrocarbon group. As the hydrocarbon group represented by R C1, the same groups as those described above for R B can be applied. The preferred range of R C1 is the same as R B.
 前記C)に含まれるアルキレンオキシ基(-RC2-O-)において、RC2は炭素数が2~4のアルキレン基を表す。RC2は、直鎖状、分岐状、又は環状のいずれでもよいが、直鎖状、又は分岐状が好ましく、分岐状がより好ましい。
 アルキレンオキシ基(-RC2-O-)としては、炭素数2又は3のアルキレンオキシ基が好ましい。アルキレンオキシ基としては具体的には下記構造が好ましく挙げられる。
In the alkyleneoxy group (—R C2 —O—) contained in C), R C2 represents an alkylene group having 2 to 4 carbon atoms. R C2 may be linear, branched or cyclic, but is preferably linear or branched, and more preferably branched.
The alkyleneoxy group (—R C2 —O—) is preferably an alkyleneoxy group having 2 or 3 carbon atoms. Specific examples of the alkyleneoxy group preferably include the following structures.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記の中でも、得られる樹脂組成物の曲げ弾性率が優れることから、-RC2-O-が分岐状である下記式(1)又は(2)で表される基が好ましい。 Among them, a group represented by the following formula (1) or (2) in which —R C2 —O— is branched is preferable because the obtained resin composition has excellent bending elastic modulus.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 前記C)の基は、アルキレンオキシ基を複数含んでいてもよいし、1つだけ含むものであってもよい。好ましくは、前記C)の基は、下記一般式(3)で表すことができる。 The group of C) may contain a plurality of alkyleneoxy groups or may contain only one. Preferably, the group of C) can be represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記一般式(3)中、RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。RC1及びRC2の好ましい範囲は、前記したものと同様である。nは1以上の整数である。nの上限は特に限定されず、アルキレンオキシ基の導入量等により変わるが、例えば10程度である。nは好ましくは1~5であり、より好ましくは1~3であり、更に好ましくは1である。RC2は複数存在する場合は各々同じでも異なってもよいが、同じであることが好ましい。
 また、本発明におけるセルロース誘導体は、アルキレンオキシ基を1つだけ含む前記C)の基(上記一般式(3)においてnが1である基)と、アルキレンオキシ基を2以上含む前記C)の基(上記一般式(3)においてnが2以上である基)とを含んでいてもよい。
In the general formula (3), R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms. The preferred ranges of R C1 and R C2 are the same as those described above. n is an integer of 1 or more. The upper limit of n is not particularly limited, and varies depending on the amount of alkyleneoxy group introduced, but is about 10, for example. n is preferably 1 to 5, more preferably 1 to 3, and still more preferably 1. When a plurality of R C2 are present, they may be the same or different, but are preferably the same.
In addition, the cellulose derivative in the present invention is a group of C) containing only one alkyleneoxy group (a group in which n is 1 in the general formula (3)) and C) containing two or more alkyleneoxy groups. And a group (a group in which n is 2 or more in the above general formula (3)).
 また、前記C)の基におけるアルキレンオキシ基のセルロース誘導体に対する結合向きは特に限定されないが、アルキレンオキシ基のアルキレン基部分(RC2)がβ-グルコース環構造側に結合していることが好ましい。 Further, the bonding direction of the alkyleneoxy group to the cellulose derivative in the group C) is not particularly limited, but it is preferable that the alkylene group part (R C2 ) of the alkyleneoxy group is bonded to the β-glucose ring structure side.
 前記A)におけるR、前記B)におけるR、前記C)におけるRC1及びRC2は、さらなる置換基を有していてもよいし無置換でもよいが、無置換であることが好ましい。 R A in A), R B in B ), R C1 and R C2 in C) may have a further substituent or may be unsubstituted, but are preferably unsubstituted.
 前記A)におけるR、前記B)におけるR、前記C)におけるRC1及びRC2がさらなる置換基を有する場合、さらなる置換基としては、例えば、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、ヒドロキシ基、アルコキシ基(アルキル基部分の炭素数は好ましくは1~5)、アルケニル基等が挙げられる。ただし、置換基を含む場合でもRC2の炭素数は2又は3である。なお、R、R、及びRC1がアルキル基以外である場合は、アルキル基(好ましくは炭素数1~5)を置換基として有することもできる。 R A in the A), R B in the B), in the case where the where R C1 and R C2 in the C) has a further substituent, examples of the further substituent include a halogen atom (e.g. fluorine atom, chlorine atom, bromine Atoms, iodine atoms), hydroxy groups, alkoxy groups (the alkyl group preferably has 1 to 5 carbon atoms), alkenyl groups, and the like. However, even when a substituent is included, R C2 has 2 or 3 carbon atoms. Note that when R A , R B , and R C1 are other than an alkyl group, they may have an alkyl group (preferably having a carbon number of 1 to 5) as a substituent.
 特に、R及びRC1がさらなる置換基を有する場合、カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さないことが好ましい。セルロース誘導体がカルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さないことにより、本発明の成形材料を水不溶性とすることができ、成形性を更に向上させることができる。また、セルロース誘導体がカルボキシル基、スルホン酸基、及びこれらの塩を有する場合、化合物安定性を悪化させることが知られており、特に熱分解を促進することがあるため、これらの基を含まないことが好ましい。
 なお、「カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さない」とは、本発明におけるセルロース誘導体が全くカルボキシル基、スルホン酸基、及びこれらの塩を有さない場合のみならず、本発明におけるセルロース誘導体が水に不溶な範囲で微量のカルボキシル基、スルホン酸基、及びこれらの塩を有する場合を包含するものとする。例えば、原料であるセルロースにカルボキシル基が含まれる場合があり、これを用いて前記A)~C)の置換基を導入したセルロース誘導体はカルボキシル基が含まれる場合があるが、これは「カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さないセルロース誘導体」に含まれるものとする。
 この場合、カルボキシル基、スルホン酸基、及びこれらの塩の好ましい含有量としては、セルロース誘導体に対して1質量%以下、より好ましくは0.5質量%以下である。
In particular, when R B and R C1 have a further substituent, it is preferable that they substantially have no carboxyl group, sulfonic acid group, and salts thereof. When the cellulose derivative is substantially free of carboxyl groups, sulfonic acid groups, and salts thereof, the molding material of the present invention can be made water-insoluble and the moldability can be further improved. In addition, when the cellulose derivative has a carboxyl group, a sulfonic acid group, and a salt thereof, it is known that the compound stability is deteriorated, and in particular, thermal decomposition may be promoted. It is preferable.
Note that “substantially free of carboxyl groups, sulfonic acid groups, and salts thereof” means only when the cellulose derivative in the present invention has no carboxyl groups, sulfonic acid groups, and salts thereof. In addition, the case where the cellulose derivative in the present invention has a trace amount of carboxyl groups, sulfonic acid groups, and salts thereof in a range insoluble in water is included. For example, the cellulose as a raw material may contain a carboxyl group, and the cellulose derivative using the above-described substituents A) to C) introduced therein may contain a carboxyl group. , A sulfonic acid group, and a cellulose derivative substantially free of salts thereof.
In this case, the preferred content of the carboxyl group, sulfonic acid group, and salts thereof is 1% by mass or less, more preferably 0.5% by mass or less, based on the cellulose derivative.
 また、本発明におけるセルロース誘導体は、水に不溶であることが好ましい。ここで、「水に不溶である」とは、25℃の水100質量部への溶解度が5質量部以下であることとする。 In addition, the cellulose derivative in the present invention is preferably insoluble in water. Here, “being insoluble in water” means that the solubility in 100 parts by mass of water at 25 ° C. is 5 parts by mass or less.
 本発明におけるセルロース誘導体の具体例としては、アセチルメチルセルロース、アセチルエチルセルロース、アセチルプロピルセルロース、アセチルブチルセルロース、アセチルペンチルセルロース、アセチルヘキシルセルロース、アセチルシクロヘキシルセルロース、アセチルフェニルセルロース、アセチルナフチルセルロース、プロピオニルメチルセルロース、プロピオニルエチルセルロース、プロピオニルプロピルセルロース、プロピオニルブチルセルロース、プロピオニルペンチルセルロース、プロピオニルヘキシルセルロース、プロピオニルシクロヘキシルセルロース、プロピオニルフェニルセルロース、プロピオニルナフチルセルロース、ブチリルメチルセルロース、ブチリルエチルセルロース、ブチリルプロピルセルロース、ブチリルブチルセルロース、ブチリルペンチルセルロース、ブチリルヘキシルセルロース、ブチリルシクロヘキシルセルロース、ブチリルフェニルセルロース、ブチリルナフチルセルロース、メチルセルロース-2-エチルヘキサノエート、エチルセルロース-2-エチルヘキサノエート、プロピルセルロース-2-エチルヘキサノエート、ブチルセルロース-2-エチルヘキサノエート、ペンチルセルロース-2-エチルヘキサノエート、ヘキシルセルロース-2-エチルヘキサノエート、シクロヘキシルセルロース-2-エチルヘキサノエート、フェニルセルロース-2-エチルヘキサノエート、ナフチルセルロース-2-エチルヘキサノエート、アセトキシエチルメチルアセチルセルロース、アセトキシエチルエチルアセチルセルロース、アセトキシエチルプロピルアセチルセルロース、アセトキシエチルブチルアセチルセルロース、アセトキシエチルペンチルアセチルセルロース、アセトキシエチルヘキシルアセチルセルロース、アセトキシエチルシクロヘキシルアセチルセルロース、アセトキシエチルフェニルアセチルセルロース、アセトキシエチルナフチルアセチルセルロース、アセトキシエチルメチルプロピオニルセルロース、アセトキシエチルエチルプロピオニルセルロース、アセトキシエチルプロピルプロピオニルセルロース、アセトキシエチルブチルプロピオニルセルロース、アセトキシエチルペンチルプロピオニルセルロース、アセトキシエチルヘキシルプロピオニルセルロース、アセトキシエチルシクロヘキシルプロピオニルセルロース、アセトキシエチルフェニルプロピオニルセルロース、アセトキシエチルナフチルプロピオニルセルロース、アセトキシエチルメチルセルロース-2-エチルヘキサノエート、アセトキシエチルエチルセルロース-2-エチルヘキサノエート、アセトキシエチルプロピルセルロース-2-エチルヘキサノエート、アセトキシエチルブチルセルロース-2-エチルヘキサノエート、アセトキシエチルペンチルセルロース-2-エチルヘキサノエート、アセトキシエチルヘキシルセルロース-2-エチルヘキサノエート、アセトキシエチルシクロヘキシルセルロース-2-エチルヘキサノエート、アセトキシエチルフェニルセルロース-2-エチルヘキサノエート、アセトキシエチルナフチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルメチルアセチルセルロース、プロピオニルオキシエチルエチルアセチルセルロース、プロピオニルオキシエチルプロピルアセチルセルロース、プロピオニルオキシエチルブチルアセチルセルロース、プロピオニルオキシエチルペンチルアセチルセルロース、プロピオニルオキシエチルヘキシルアセチルセルロース、プロピオニルオキシエチルシクロヘキシルアセチルセルロース、プロピオニルオキシエチルフェニルアセチルセルロース、プロピオニルオキシエチルナフチルアセチルセルロース、プロピオニルオキシエチルメチルプロピオニルセルロース、プロピオニルオキシエチルエチルプロピオニルセルロース、プロピオニルオキシエチルプロピルプロピオニルセルロース、プロピオニルオキシエチルブチルプロピオニルセルロース、プロピオニルオキシエチルペンチルプロピオニルセルロース、プロピオニルオキシエチルヘキシルプロピオニルセルロース、プロピオニルオキシエチルシクロヘキシルプロピオニルセルロース、プロピオニルオキシエチルフェニルプロピオニルセルロース、プロピオニルオキシエチルナフチルプロピオニルセルロース、プロピオニルオキシエチルメチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルエチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルプロピルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルブチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルペンチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルヘキシルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルシクロヘキシルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルフェニルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルナフチルセルロース-2-エチルヘキサノエート、アセトキシプロピルメチルアセチルセルロース、アセトキシプロピルエチルアセチルセルロース、アセトキシプロピルプロピルアセチルセルロース、アセトキシプロピルブチルアセチルセルロース、アセトキシプロピルペンチルアセチルセルロース、アセトキシプロピルヘキシルアセチルセルロース、アセトキシプロピルシクロヘキシルアセチルセルロース、アセトキシプロピルフェニルアセチルセルロース、アセトキシプロピルナフチルアセチルセルロース、プロピオニルオキシプロピルメチルアセチルセルロース、プロピオニルオキシプロピルエチルアセチルセルロース、プロピオニルオキシプロピルプロピルアセチルセルロース、プロピオニルオキシプロピルブチルアセチルセルロース、プロピオニルオキシプロピルペンチルアセチルセルロース、プロピオニルオキシプロピルヘキシルアセチルセルロース、プロピオニルオキシプロピルシクロヘキシルアセチルセルロース、プロピオニルオキシプロピルフェニルアセチルセルロース、プロピオニルオキシプロピルナフチルアセチルセルロース、バレロキシプロピルメチルバレロイルセルロース、バレロキシブチルメチルバレロイルセルロースなどが挙げられる。 Specific examples of the cellulose derivative in the present invention include acetyl methyl cellulose, acetyl ethyl cellulose, acetyl propyl cellulose, acetyl butyl cellulose, acetyl pentyl cellulose, acetyl hexyl cellulose, acetyl cyclohexyl cellulose, acetyl phenyl cellulose, acetyl naphthyl cellulose, propionyl methyl cellulose, and propionyl ethyl cellulose. , Propionylpropylcellulose, propionylbutylcellulose, propionylpentylcellulose, propionylhexylcellulose, propionylcyclohexylcellulose, propionylphenylcellulose, propionylnaphthylcellulose, butyrylmethylcellulose, butyrylethylcellulose, butyrylpropylcellulose , Butyrylbutylcellulose, butyrylpentylcellulose, butyrylhexylcellulose, butyrylcyclohexylcellulose, butyrylphenylcellulose, butyrylnaphthylcellulose, methylcellulose-2-ethylhexanoate, ethylcellulose-2-ethylhexanoate, propylcellulose -2-ethylhexanoate, butylcellulose-2-ethylhexanoate, pentylcellulose-2-ethylhexanoate, hexylcellulose-2-ethylhexanoate, cyclohexylcellulose-2-ethylhexanoate, phenylcellulose -2-ethylhexanoate, naphthylcellulose-2-ethylhexanoate, acetoxyethylmethylacetylcellulose, acetoxyethylethylacetyl cell Acetoxyethylpropylacetylcellulose, acetoxyethylbutylacetylcellulose, acetoxyethylpentylacetylcellulose, acetoxyethylhexylacetylcellulose, acetoxyethylcyclohexylacetylcellulose, acetoxyethylphenylacetylcellulose, acetoxyethylnaphthylacetylcellulose, acetoxyethylmethylpropionylcellulose, Acetoxyethyl ethyl propionyl cellulose, Acetoxy ethyl propyl propionyl cellulose, Acetoxy ethyl butyl propionyl cellulose, Acetoxy ethyl pentyl propionyl cellulose, Acetoxy ethyl hexyl propionyl cellulose, Acetoxy ethyl cyclohexyl propionyl cellulose, Acetoxy Tylphenylpropionylcellulose, acetoxyethylnaphthylpropionylcellulose, acetoxyethylmethylcellulose-2-ethylhexanoate, acetoxyethylethylcellulose-2-ethylhexanoate, acetoxyethylpropylcellulose-2-ethylhexanoate, acetoxyethylbutylcellulose 2-ethylhexanoate, acetoxyethylpentylcellulose-2-ethylhexanoate, acetoxyethylhexylcellulose-2-ethylhexanoate, acetoxyethylcyclohexylcellulose-2-ethylhexanoate, acetoxyethylphenylcellulose-2-ethyl Hexanoate, acetoxyethyl naphthylcellulose-2-ethylhexanoate, propionyloxyethyl Acetylacetylcellulose, propionyloxyethylethylacetylcellulose, propionyloxyethylpropylacetylcellulose, propionyloxyethylbutylacetylcellulose, propionyloxyethylpentylacetylcellulose, propionyloxyethylhexylacetylcellulose, propionyloxyethylcyclohexylacetylcellulose, propionyloxyethylphenylacetyl Cellulose, propionyloxyethyl naphthylacetyl cellulose, propionyloxyethylmethylpropionylcellulose, propionyloxyethylethylpropionylcellulose, propionyloxyethylpropylpropionylcellulose, propionyloxyethylbutylpropionylcellulose, pro Onyloxyethylpentylpropionylcellulose, propionyloxyethylhexylpropionylcellulose, propionyloxyethylcyclohexylpropionylcellulose, propionyloxyethylphenylpropionylcellulose, propionyloxyethylnaphthylpropionylcellulose, propionyloxyethylmethylcellulose-2-ethylhexanoate, propionyloxyethyl Ethylcellulose-2-ethylhexanoate, propionyloxyethylpropylcellulose-2-ethylhexanoate, propionyloxyethylbutylcellulose-2-ethylhexanoate, propionyloxyethylpentylcellulose-2-ethylhexanoate, propionyloxy Ethyl hexyl cellulose -2-ethylhexanoate, propionyloxyethylcyclohexyl cellulose-2-ethylhexanoate, propionyloxyethylphenylcellulose-2-ethylhexanoate, propionyloxyethylnaphthylcellulose-2-ethylhexanoate, acetoxypropylmethyl Acetylcellulose, acetoxypropylethylacetylcellulose, acetoxypropylpropylacetylcellulose, acetoxypropylbutylacetylcellulose, acetoxypropylpentylacetylcellulose, acetoxypropylhexylacetylcellulose, acetoxypropylcyclohexylacetylcellulose, acetoxypropylphenylacetylcellulose, acetoxypropylnaphthylacetylcellulose , Propio Luoxypropylmethylacetylcellulose, propionyloxypropylethylacetylcellulose, propionyloxypropylpropylacetylcellulose, propionyloxypropylbutylacetylcellulose, propionyloxypropylpentylacetylcellulose, propionyloxypropylhexylacetylcellulose, propionyloxypropylcyclohexylacetylcellulose, propionyl Examples thereof include oxypropylphenylacetylcellulose, propionyloxypropylnaphthylacetylcellulose, valeroxypropylmethylvaleroylcellulose, valeroxybutylmethylvaleroylcellulose, and the like.
 本発明の成形材料は、前記特定のセルロース誘導体を1種のみ含んでもよいし、2種以上を含んでもよい。 The molding material of the present invention may contain only one kind of the specific cellulose derivative or two or more kinds.
 本発明におけるセルロース誘導体中のA)炭化水素基:-R、B)アシル基:-CO-R、及びC)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基の置換位置、並びにβ-グルコース環単位当たりの各置換基の数(置換度)は特に限定されない。 In the cellulose derivative of the present invention, A) hydrocarbon group: —R A , B) acyl group: —CO—R B , and C) alkyleneoxy group: —R C2 —O— and acyl group: —CO—R C1 And the number of substitution groups per each β-glucose ring unit (substitution degree) are not particularly limited.
 例えば、A)炭化水素基:-Rの置換度DS(繰り返し単位中、β-グルコース環の2位、3位及び6位の水酸基に対するRの数)は、1.0<DSであることが好ましく、1.0<DS<2.5がより好ましい。また、DSは1.1以上であることが好ましい。
 B)アシル基(-CO-R)の置換度DS(繰り返し単位中、β-グルコース環のセルロース構造の2位、3位及び6位の水酸基に対する-CO-Rの数)は、0.1<DSであることが好ましく、0.1<DS<2.0であることがより好ましい。
 C)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基の置換度DS(繰り返し単位中、β-グルコース環のセルロース構造の2位、3位及び6位の水酸基に対するC)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基の数)は、0<DSであることが好ましく、0<DS<1.0であることがより好ましい。0<DSであることにより、セルロース誘導体の溶融開始温度を低くできるので、熱成形をより容易に行うことができる。
 上記のような範囲の置換度とすることにより、機械強度及び成形性等を向上させることができる。
For example, A) hydrocarbon group: the degree of substitution DS A of —R A (the number of RA for the hydroxyl groups at the 2nd, 3rd and 6th positions of the β-glucose ring in the repeating unit) is 1.0 <DS A It is preferable that 1.0 <DS A <2.5. Further, DS A is preferably 1.1 or more.
B) Degree of substitution DS B of acyl group (—CO—R B ) (the number of —CO—R B with respect to hydroxyl groups at the 2nd, 3rd and 6th positions of the cellulose structure of the β-glucose ring in the repeating unit) 0.1 <DS B is preferable, and 0.1 <DS B <2.0 is more preferable.
C) Degree of substitution DS C of a group containing an alkyleneoxy group: —R C2 —O— and an acyl group: —CO—R C1 (in the repeating unit, the 2nd, 3rd and 6th positions of the cellulose structure of the β-glucose ring) position of C to the hydroxyl group) alkyleneoxy group: -R C2 -O- acyl group: the number of groups containing a -CO-R C1) is preferably 0 <DS C, 0 <DS C <1 0.0 is more preferable. 0 <By a DS C, it is possible to lower the melting initiation temperature of the cellulose derivative can be performed thermoforming easier.
By setting the degree of substitution within the above range, mechanical strength, moldability, and the like can be improved.
 また、セルロース誘導体中に存在する無置換の水酸基の数も特に限定されない。水素原子の置換度DS(繰り返し単位中、2位、3位及び6位の水酸基が無置換である割合)は0~1.5の範囲とすることができ、好ましくは0~0.6とすればよい。DSを0.6以下とすることにより、成形材料の流動性を向上させたり、熱分解の加速・成形時の成形材料の吸水による発泡等を抑制させたりできる。 Further, the number of unsubstituted hydroxyl groups present in the cellulose derivative is not particularly limited. The degree of substitution DS H of hydrogen atoms (ratio in which the hydroxyl groups at the 2nd, 3rd and 6th positions in the repeating unit are unsubstituted) can be in the range of 0 to 1.5, preferably 0 to 0.6. And it is sufficient. By the DS H and 0.6 or less, or to improve the fluidity of the molding material, the foaming and the like due to water absorption of the molding material during acceleration and molding of the pyrolysis can or is suppressed.
 また、本発明におけるセルロース誘導体は、A)炭化水素基、B)アシル基、及びC)アルキレンオキシ基とアシル基とを含む基以外の置換基を有しても良い。有してもよい置換基の例としては、例えばヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシエトキシエチル基、ヒドロキシプロポキシプロピル基、ヒドロキシエトキシエトキシエチル基、ヒドロキシプロポキシプロポキシプロピル基が挙げられる。よって、セルロース誘導体が有するすべての置換基の各置換度の総和は3であるが、(DS+DS+DS+DS)は3以下である。 In addition, the cellulose derivative in the present invention may have a substituent other than A) a hydrocarbon group, B) an acyl group, and C) a group containing an alkyleneoxy group and an acyl group. Examples of the substituent that may be included include a hydroxyethyl group, a hydroxypropyl group, a hydroxyethoxyethyl group, a hydroxypropoxypropyl group, a hydroxyethoxyethoxyethyl group, and a hydroxypropoxypropoxypropyl group. Therefore, the sum of the degree of substitution of all the substituents of the cellulose derivative is 3, but (DS A + DS B + DS C + DS H ) is 3 or less.
 また、前記C)の基におけるアルキレンオキシ基の導入量はモル置換度(MS:グルコース残基あたりの置換基の導入モル数)で表される(セルロース学会編集、セルロース辞典P142)。アルキレンオキシ基のモル置換度MSは、0<MSであることが好ましく、0<MS≦1.5であることがより好ましく、0<MS<1.0であることが更に好ましい。MSが1.5以下(MS≦1.5)であることにより、耐熱性・成形性等を向上させることができ、成形材料に好適なセルロース誘導体が得られる。 The amount of alkyleneoxy group introduced in the group C) is expressed in terms of molar substitution (MS: number of moles of substituent introduced per glucose residue) (edited by Cellulose Society, Cellulose Dictionary P142). The molar substitution degree MS of the alkyleneoxy group is preferably 0 <MS, more preferably 0 <MS ≦ 1.5, and still more preferably 0 <MS <1.0. When MS is 1.5 or less (MS ≦ 1.5), heat resistance, moldability and the like can be improved, and a cellulose derivative suitable for a molding material can be obtained.
 本発明の成形材料におけるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が、前記A)で置換された基を少なくとも1つ、及び前記B)で置換された基を少なくとも1つ含むセルロース誘導体であるが、セルロースに含まれる水酸基の水素原子が置換される場合は、成形性の観点から、前記A)及び前記B)のみで置換されているか、又は前記A)、前記B)、及び前記C)のみで置換されている場合が好ましい。すなわち本発明におけるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が前記A)、前記B)、及び前記C)以外の基により置換されていないことが好ましい。 The cellulose derivative in the molding material of the present invention is a cellulose derivative in which the hydrogen atom of the hydroxyl group contained in cellulose contains at least one group substituted with A) and at least one group substituted with B). However, when a hydrogen atom of a hydroxyl group contained in cellulose is substituted, from the viewpoint of moldability, it is substituted only by A) and B) or A), B), and C. ) Is preferred. That is, in the cellulose derivative in the present invention, it is preferable that the hydrogen atom of the hydroxyl group contained in the cellulose is not substituted with a group other than the above A), B), and C).
 本発明におけるセルロース誘導体の分子量は、数平均分子量(Mn)が5×10~1000×10の範囲が好ましく、10×10~500×10の範囲が更に好ましく、10×10~200×10の範囲が最も好ましい。また、質量平均分子量(Mw)は、7×10~10000×10の範囲が好ましく、15×10~5000×10の範囲が更に好ましく、100×10~3000×10の範囲が最も好ましい。この範囲の平均分子量とすることにより、成形体の成形性、力学強度等を向上させることができる。
 分子量分布(MWD)は1.1~10.0の範囲が好ましく、1.5~8.0の範囲が更に好ましい。この範囲の分子量分布とすることにより、成形性等を向上させることができる。
 本発明における、数平均分子量(Mn)、質量平均分子量(Mw)及び分子量分布(MWD)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて行うことができる。具体的には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めることができる。
The molecular weight of the cellulose derivative in the present invention is preferably such that the number average molecular weight (Mn) is in the range of 5 × 10 3 to 1000 × 10 3 , more preferably in the range of 10 × 10 3 to 500 × 10 3 , and 10 × 10 3 to A range of 200 × 10 3 is most preferred. The mass average molecular weight (Mw) is preferably in the range of 7 × 10 3 to 10000 × 10 3 , more preferably in the range of 15 × 10 3 to 5000 × 10 3 , and in the range of 100 × 10 3 to 3000 × 10 3 . Is most preferred. By setting the average molecular weight within this range, it is possible to improve the moldability and mechanical strength of the molded body.
The molecular weight distribution (MWD) is preferably in the range of 1.1 to 10.0, and more preferably in the range of 1.5 to 8.0. By setting the molecular weight distribution within this range, moldability and the like can be improved.
In the present invention, the number average molecular weight (Mn), mass average molecular weight (Mw) and molecular weight distribution (MWD) can be measured using gel permeation chromatography (GPC). Specifically, N-methylpyrrolidone is used as a solvent, a polystyrene gel is used, and the molecular weight can be determined using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve.
2.セルロース誘導体の製造方法
 本発明におけるセルロース誘導体の製造方法は特に限定されず、セルロースを原料とし、セルロースに対しエーテル化及びエステル化することにより本発明におけるセルロース誘導体を製造することができる。セルロースの原料としては限定的でなく、例えば、綿、リンター、パルプ等が挙げられる。
2. Method for Producing Cellulose Derivative The method for producing a cellulose derivative in the present invention is not particularly limited, and the cellulose derivative in the present invention can be produced by using cellulose as a raw material and etherifying and esterifying cellulose. The raw material for cellulose is not limited, and examples thereof include cotton, linter, and pulp.
 前記A)炭化水素基:-R、及びB)アシル基:-CO-R(Rは炭化水素基を表す。)を有するセルロース誘導体の好ましい製造方法の態様は、セルロースエーテルに、塩基存在下、酸クロリド又は酸無水物等を反応させることにより、エステル化する工程を含むものである。
 前記セルロースエーテルとしては、例えば、セルロースに含まれるβ-グルコース環の2位、3位、及び6位の水酸基の水素原子の少なくとも一部が、炭化水素基に置換されたものを用いることができ、具体的には、メチルセルロース、エチルセルロース、プロピルセルロース、ブチルセルロース、アリルセルロース、ベンジルセルロース等が挙げられる。
A preferred embodiment of a method for producing a cellulose derivative having the above A) hydrocarbon group: —R A and B) acyl group: —CO—R B (R B represents a hydrocarbon group) includes cellulose ether, base It includes a step of esterification by reacting acid chloride or acid anhydride in the presence.
As the cellulose ether, for example, those in which at least a part of the hydrogen atoms of the hydroxyl groups at the 2nd, 3rd and 6th positions of the β-glucose ring contained in cellulose are substituted with hydrocarbon groups can be used. Specific examples include methyl cellulose, ethyl cellulose, propyl cellulose, butyl cellulose, allyl cellulose, and benzyl cellulose.
 前記A)炭化水素基:-R、B)アシル基:-CO-R(Rは炭化水素基を表す。)、及びC)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。)を有するセルロース誘導体の好ましい製造方法の態様は、炭化水素基と、ヒドロキシエチル基を有するヒドロキシエチルセルロースエーテル又はヒドロキシプロピル基とを有するヒドロキシプロピルセルロースエーテルに酸クロライド又は酸無水物等を反応させることにより、エステル化(アシル化)する工程を含む方法によって行うものである。
 また、別の態様として、例えばメチルセルロース、エチルセルロース等のセルロースエーテルにプロピレンオキサイド等によりエーテル化するか、又はセルロースにメチルクロライド、エチルクロライド等のアルキルクロライド/炭素数3のアルキレンオキサイド等を作用させた後、更に酸クロライド又は酸無水物等を反応させることにより、エステル化する工程を含む方法も挙げられる。
 酸クロライドを反応させる方法としては、例えばCellulose 10;283-296,2003に記載の方法を用いることができる。
 炭化水素基とヒドロキシエチル基を有するセルロースエーテルとしては、具体的には、ヒドロキシエチルメチルセルロース、ヒドロキシエチルエチルセルロース、ヒドロキシエチルプロピルセルロース、ヒドロキシエチルアリルセルロース、ヒドロキシエチルベンジルセルロース等が挙げられる。好ましくは、ヒドロキシエチルメチルセルロース、ヒドロキシエチルエチルセルロースである。
 炭化水素基とヒドロキシプロピル基を有するセルロースエーテルとしては、具体的には、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース、ヒドロキシプロピルプロピルセルロース、ヒドロキシプロピルアリルセルロース、ヒドロキシプロピルベンジルセルロース等が挙げられる。好ましくは、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロースである。
A) hydrocarbon group: —R A , B) acyl group: —CO—R B (R B represents a hydrocarbon group), and C) alkyleneoxy group: —R C2 —O— and an acyl group: A preferred embodiment of a method for producing a cellulose derivative having a group containing —CO—R C1 (R C1 represents a hydrocarbon group and R C2 represents an alkylene group having 2 to 4 carbon atoms) is a hydrocarbon group. And hydroxyethyl cellulose ether having a hydroxyethyl group or hydroxypropyl cellulose ether having a hydroxypropyl group are reacted by an acid chloride or an acid anhydride to react with the esterification (acylation). is there.
Further, as another embodiment, for example, after etherification with cellulose ether such as methyl cellulose or ethyl cellulose with propylene oxide or the like, alkyl chloride such as methyl chloride or ethyl chloride / alkylene oxide having 3 carbon atoms or the like is allowed to act on cellulose. Furthermore, a method including a step of esterification by reacting an acid chloride or an acid anhydride is also included.
As a method for reacting acid chloride, for example, the method described in Cellulose 10; 283-296, 2003 can be used.
Specific examples of the cellulose ether having a hydrocarbon group and a hydroxyethyl group include hydroxyethyl methyl cellulose, hydroxyethyl ethyl cellulose, hydroxyethyl propyl cellulose, hydroxyethyl allyl cellulose, and hydroxyethyl benzyl cellulose. Preferred are hydroxyethyl methyl cellulose and hydroxyethyl ethyl cellulose.
Specific examples of the cellulose ether having a hydrocarbon group and a hydroxypropyl group include hydroxypropylmethylcellulose, hydroxypropylethylcellulose, hydroxypropylpropylcellulose, hydroxypropylallylcellulose, hydroxypropylbenzylcellulose, and the like. Preferred are hydroxypropylmethylcellulose and hydroxypropylethylcellulose.
 酸クロリドとしては、前記B)アシル基、及びC)に含まれるアシル基に対応したカルボン酸クロライドを使用することができる。カルボン酸クロリドとしては、例えば、アセチルクロライド、プロピオニルクロライド、ブチリルクロリド、イソブチリルクロリド、ペンタノイルクロリド、2-メチルブタノイルクロリド、3-メチルブタノイルクロリド、ピバロイルクロリド、ヘキサノイルクロリド、2-メチルペンタノイルクロリド、3-メチルペンタノイルクロリド、4-メチルペンタノイルクロリド、2,2-ジメチルブタノイルクロリド、2,3-ジメチルブタノイルクロリド、3,3-ジメチルブタノイルクロリド、2-エチルブタノイルクロリド、ヘプタノイルクロリド、2-メチルヘキサノイルクロリド、3-メチルヘキサノイルクロリド、4-メチルヘキサノイルクロリド、5-メチルヘキサノイルクロリド、2,2-ジメチルペンタノイルクロリド、2,3-ジメチルペンタノイルクロリド、3,3-ジメチルペンタノイルクロリド、2-エチルペンタノイルクロリド、シクロヘキサノイルクロリド、オクタノイルクロリド、2-メチルヘプタノイルクロリド、3-メチルヘプタノイルクロリド、4-メチルヘプタノイルクロリド、5-メチルヘプタノイルクロリド、6-メチルヘプタノイルクロリド、2,2-ジメチルヘキサノイルクロリド、2,3-ジメチルヘキサノイルクロリド、3,3-ジメチルヘキサノイルクロリド、2-エチルヘキサノイルクロリド、2-プロピルペンタノイルクロリド、ノナノイルクロリド、2-メチルオクタノイルクロリド、3-メチルオクタノイルクロリド、4-メチルオクタノイルクロリド、5-メチルオクタノイルクロリド、6-メチルオクタノイルクロリド、2,2-ジメチルヘプタノイルクロリド、2,3-ジメチルヘプタノイルクロリド、3,3-ジメチルヘプタノイルクロリド、2-エチルヘプタノイルクロリド、2-プロピルヘキサノイルクロリド、2-ブチルペンタノイルクロリド、デカノイルクロリド、2-メチルノナノイルクロリド、3-メチルノナノイルクロリド、4-メチルノナノイルクロリド、5-メチルノナノイルクロリド、6-メチルノナノイルクロリド、7-メチルノナノイルクロリド、2,2-ジメチルオクタノイルクロリド、2,3-ジメチルオクタノイルクロリド、3,3-ジメチルオクタノイルクロリド、2-エチルオクタノイルクロリド、2-プロピルヘプタノイルクロリド、2-ブチルヘキサノイルクロリド等が挙げられる。 As the acid chloride, B) acyl group and carboxylic acid chloride corresponding to the acyl group contained in C) can be used. Examples of the carboxylic acid chloride include acetyl chloride, propionyl chloride, butyryl chloride, isobutyryl chloride, pentanoyl chloride, 2-methylbutanoyl chloride, 3-methylbutanoyl chloride, pivaloyl chloride, hexanoyl chloride, 2-methylpentanoyl chloride, 3-methylpentanoyl chloride, 4-methylpentanoyl chloride, 2,2-dimethylbutanoyl chloride, 2,3-dimethylbutanoyl chloride, 3,3-dimethylbutanoyl chloride, 2- Ethylbutanoyl chloride, heptanoyl chloride, 2-methylhexanoyl chloride, 3-methylhexanoyl chloride, 4-methylhexanoyl chloride, 5-methylhexanoyl chloride, 2,2-dimethylpentanoyl chloride, , 3-dimethylpentanoyl chloride, 3,3-dimethylpentanoyl chloride, 2-ethylpentanoyl chloride, cyclohexanoyl chloride, octanoyl chloride, 2-methylheptanoyl chloride, 3-methylheptanoyl chloride, 4-methyl Heptanoyl chloride, 5-methylheptanoyl chloride, 6-methylheptanoyl chloride, 2,2-dimethylhexanoyl chloride, 2,3-dimethylhexanoyl chloride, 3,3-dimethylhexanoyl chloride, 2-ethylhexanoyl Chloride, 2-propylpentanoyl chloride, nonanoyl chloride, 2-methyloctanoyl chloride, 3-methyloctanoyl chloride, 4-methyloctanoyl chloride, 5-methyloctanoyl chloride, 6-methyloctanoy Chloride, 2,2-dimethylheptanoyl chloride, 2,3-dimethylheptanoyl chloride, 3,3-dimethylheptanoyl chloride, 2-ethylheptanoyl chloride, 2-propylhexanoyl chloride, 2-butylpentanoyl chloride, Decanoyl chloride, 2-methylnonanoyl chloride, 3-methylnonanoyl chloride, 4-methylnonanoyl chloride, 5-methylnonanoyl chloride, 6-methylnonanoyl chloride, 7-methylnonanoyl chloride, 2,2- Examples thereof include dimethyloctanoyl chloride, 2,3-dimethyloctanoyl chloride, 3,3-dimethyloctanoyl chloride, 2-ethyloctanoyl chloride, 2-propylheptanoyl chloride, 2-butylhexanoyl chloride and the like.
 酸無水物としては、例えば前記B)アシル基、及びC)に含まれるアシル基に対応したカルボン酸無水物を使用することができる。このようなカルボン酸無水物としては、例えば、酢酸無水物、プロピオン酸無水物、酪酸無水物、吉草酸無水物、ヘキサン酸無水物、ヘプタン酸無水物、オクタン酸無水物、2-エチルヘキサン酸無水物、ノナン酸無水物等が挙げられる。
 なお、前述したとおり、本発明におけるセルロース誘導体は置換基としてカルボン酸を有さないことが好ましいため、例えば無水フタル酸、無水マレイン酸等のジカルボン酸等、セルロースと反応させてカルボキシル基が生じる化合物を用いないことが好ましい。
As the acid anhydride, for example, carboxylic acid anhydrides corresponding to the acyl group contained in the above B) acyl group and C) can be used. Examples of such carboxylic anhydrides include acetic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, hexanoic anhydride, heptanoic anhydride, octanoic anhydride, 2-ethylhexanoic acid. An anhydride, nonanoic acid anhydride, etc. are mentioned.
As described above, since the cellulose derivative in the present invention preferably has no carboxylic acid as a substituent, for example, a dicarboxylic acid such as phthalic anhydride, maleic anhydride, or the like, and a compound that generates a carboxyl group by reacting with cellulose. It is preferable not to use.
 そのほかの具体的な製造条件等は、常法に従うことができる。例えば、「セルロースの事典」131頁~164頁(朝倉書店、2000年)等に記載の方法を参考にすることができる。 Other specific manufacturing conditions can follow the usual method. For example, the method described in “Encyclopedia of Cellulose” pages 131 to 164 (Asakura Shoten, 2000) can be referred to.
3.ゴム成分を分散相として有するアクリロニトリル-スチレン共重合体
 本発明の成形材料はゴム成分を分散相として有するアクリロニトリル-スチレン共重合体(以下、ゴム分散AS樹脂ともいう)を含有する。
 ゴム分散AS樹脂は、分散しているゴム成分が衝撃を吸収するため、本発明における特定のセルロース誘導体と混ぜることで、特定のセルロース誘導体を単独で用いた場合よりも、耐衝撃性を向上させることができる。更に、本発明における特定のセルロース誘導体は、エーテル構造とエステル構造を含むため、従来のセルロースエステルなどよりも、アクリロニトリルなどの極性が高い構造に対して親和性が高く、ゴム分散AS樹脂との親和性に優れる。そのため、ゴム分散AS樹脂は、本発明における特定のセルロース誘導体に対する分散性に優れ、両者は良好に混ざり合うため、特定のセルロース誘導体を単独で用いた場合に対して剛性、曲げ強度、熱変形温度、及び成形加工性といった性能を下げない。
3. Acrylonitrile-styrene copolymer having rubber component as dispersed phase The molding material of the present invention contains an acrylonitrile-styrene copolymer (hereinafter also referred to as rubber-dispersed AS resin) having a rubber component as a dispersed phase.
The rubber-dispersed AS resin absorbs an impact, so that the impact resistance is improved by mixing with the specific cellulose derivative in the present invention, compared with the case where the specific cellulose derivative is used alone. be able to. Furthermore, since the specific cellulose derivative in the present invention includes an ether structure and an ester structure, it has a higher affinity for a highly polar structure such as acrylonitrile than the conventional cellulose ester, and has an affinity for a rubber-dispersed AS resin. Excellent in properties. Therefore, the rubber-dispersed AS resin is excellent in dispersibility with respect to the specific cellulose derivative in the present invention, and both are well mixed. Therefore, the rigidity, bending strength, and heat distortion temperature are compared with the case where the specific cellulose derivative is used alone. And performance such as moldability is not lowered.
 本発明におけるゴム分散AS樹脂のゴム成分としては、ゴム状重合体が挙げられる。ゴム状重合体としては、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、ポリクロロプレンゴム、塩素化ポリエチレン系ゴム、スチレン-ブタジエンランダム共重合ゴム(スチレン含量は好ましくは5~60質量%)、スチレン-イソプレンランダム共重合ゴム、アクリロニトリル-ブタジエンランダム共重合ゴム、イソブチレン-イソプレンランダム共重合ゴム(ブチルゴム)、スチレン-ブタジエンブロック共重合ゴム、スチレン-イソプレンブロック共重合ゴム、スチレン-イソプレン-スチレンブロック共重合ゴムなどのジエン系ゴム;SEBSなどの上記ジエン系ゴムの水素添加ゴム;エチレン-α-オレフィン系共重合ゴム、エチレン-α-オレフィン-非共役ジエン化合物共重合ゴムなどのエチレン-α-オレフィン系共重合ゴム(好ましくはエチレンープロピレンージエン系ゴム);アクリル酸エステルゴム、アクリル酸エステル-芳香族ビニル共重合ゴム、アクリル酸エステル-共役ジエン化合物共重合ゴム、アクリル酸エステル化合物-共役ジエン化合物-芳香族ビニル化合物共重合ゴムなどのアクリル系ゴムなどが挙げられる。 The rubber component of the rubber-dispersed AS resin in the present invention includes a rubbery polymer. Examples of the rubber-like polymer include natural rubber, polybutadiene rubber, polyisoprene rubber, polychloroprene rubber, chlorinated polyethylene rubber, styrene-butadiene random copolymer rubber (styrene content is preferably 5 to 60% by mass), and styrene-isoprene. Random copolymer rubber, acrylonitrile-butadiene random copolymer rubber, isobutylene-isoprene random copolymer rubber (butyl rubber), styrene-butadiene block copolymer rubber, styrene-isoprene block copolymer rubber, styrene-isoprene-styrene block copolymer rubber, etc. Diene rubbers of the above; Hydrogenated rubbers of the above diene rubbers such as SEBS; Ethylene-α-olefin copolymers such as ethylene-α-olefin copolymer rubber and ethylene-α-olefin-nonconjugated diene compound copolymer rubber Compound rubber (preferably ethylene-propylene-diene rubber); acrylic ester rubber, acrylic ester-aromatic vinyl copolymer rubber, acrylic ester-conjugated diene compound copolymer rubber, acrylic ester compound-conjugated diene compound- Examples thereof include acrylic rubbers such as aromatic vinyl compound copolymer rubbers.
 これらのゴム成分のうち、ポリブタジエンゴム、アクリル系ゴム、及びエチレン-プロピレンージエン系ゴム(EPDM)が、AS樹脂に対する分散性、すなわち耐衝撃性の発現という観点で好ましい。 Among these rubber components, polybutadiene rubber, acrylic rubber, and ethylene-propylene-diene rubber (EPDM) are preferable from the viewpoint of dispersibility with respect to AS resin, that is, development of impact resistance.
 これらのゴム状重合体は、1種単独又は2種以上をブレンドして組み合わせて使用できる。更にこれらの好ましいゴム状重合体に関して詳細に述べる。 These rubbery polymers can be used alone or in combination of two or more. Further, these preferred rubbery polymers will be described in detail.
 エチレン-α-オレフィン系共重合ゴムとしては、例えばエチレン/炭素数3~20のα-オレフィン/非共役ジエン=5~95/95~5/0~30質量%の混合比からなる単量体を共重合して得られる共重合ゴムが挙げられる。ここで言う炭素数3~20のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセンなどが挙げられる。好ましくはプロピレン、1-ブテン、1-オクテン、更に好ましくはプロピレンと1-ブテンであり、特に好ましくはプロピレンである。これらのα-オレフィンは1種単独で、又は2種以上で併用することもできる。α-オレフィンの炭素数は3~20であるが、好ましくは3~12、更に好ましくは3~8である。エチレンとα-オレフィンの比率(エチレン/α-オレフィン)は、好ましくは5~95/95~5、更に好ましくは50~90/50~10、特に好ましくは40~85/60~15である。 Examples of the ethylene-α-olefin copolymer rubber include a monomer having a mixing ratio of ethylene / α-olefin having 3 to 20 carbon atoms / non-conjugated diene = 5 to 95/95 to 5/0 to 30% by mass. And a copolymer rubber obtained by copolymerization. Examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, -Dodecene and the like. Preferred are propylene, 1-butene and 1-octene, more preferred are propylene and 1-butene, and particularly preferred is propylene. These α-olefins can be used alone or in combination of two or more. The α-olefin has 3 to 20 carbon atoms, preferably 3 to 12 and more preferably 3 to 8. The ratio of ethylene to α-olefin (ethylene / α-olefin) is preferably 5 to 95/95 to 5, more preferably 50 to 90/50 to 10, particularly preferably 40 to 85/60 to 15.
 また、併用されることがある非共役ジエン化合物は、アルケニルノルボルネン類、環状ジエン類、脂肪族ジエン類などが挙げられ、好ましくはジシクロペンタジエン及び5-エチリデン-2-ノルボルネンである。これらの非共役ジエンは1種又は2種以上を併用することができる。エチレン-α-オレフィン系共重合ゴム中の非共役ジエンの含有量は、0~30質量%であり、好ましくは0~15質量%である。
 これらエチレン-α-オレフィン系共重合ゴムを得るには、均一系、不均一系いずれの触媒を用いても良い。均一系触媒としてはメタロセン系触媒を挙げることができる。不均一系触媒としては、例えばバナジウム化合物と有機アルミニウム化合物を組み合わせたバナジウム系触媒を挙げることができる。
Non-conjugated diene compounds that may be used in combination include alkenyl norbornenes, cyclic dienes, aliphatic dienes, and the like, preferably dicyclopentadiene and 5-ethylidene-2-norbornene. These non-conjugated dienes can be used alone or in combination of two or more. The content of non-conjugated diene in the ethylene-α-olefin copolymer rubber is 0 to 30% by mass, preferably 0 to 15% by mass.
In order to obtain these ethylene-α-olefin copolymer rubbers, either homogeneous or heterogeneous catalysts may be used. Examples of the homogeneous catalyst include a metallocene catalyst. Examples of the heterogeneous catalyst include a vanadium catalyst in which a vanadium compound and an organoaluminum compound are combined.
 なお、エチレン-α-オレフィン系共重合ゴムのムーニー粘度(ML1+4,100℃)は好ましくは60以下、更に好ましくは50以下であり、特に好ましくは20~40である。エチレン-α-オレフィン系共重合ゴムのガラス転移温度は好ましくは-110~-40℃、更に好ましくは-70~-45℃である。 The Mooney viscosity (ML 1 + 4 , 100 ° C.) of the ethylene-α-olefin copolymer rubber is preferably 60 or less, more preferably 50 or less, and particularly preferably 20 to 40. The glass transition temperature of the ethylene-α-olefin copolymer rubber is preferably −110 to −40 ° C., more preferably −70 to −45 ° C.
 アクリル系ゴムとしては、アルキル基の炭素数が2~8のアクリル酸アルキルエステルの重合体又はこれらの共重合体が好ましい。
 アクリル酸エステルの具体例としては、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸へキシル、アクリル酸n-オクチル、アクリル酸2-エチルへキシルなどが挙げられる。これらは1種又は2種以上を併用することができる。好ましいアクリル酸エステルとしては、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸2-エチルへキシルである。
As the acrylic rubber, a polymer of alkyl acrylate ester having 2 to 8 carbon atoms in the alkyl group or a copolymer thereof is preferable.
Specific examples of the acrylate ester include ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, and the like. These can be used alone or in combination of two or more. Preferred acrylic acid esters are n-butyl acrylate, isobutyl acrylate, and 2-ethylhexyl acrylate.
 このアクリル系ゴムに使用されるアクリル酸エステルのうち一部を共重合可能な他のモノマーに置き換えることができる。かかる他のモノマーとしては、芳香族ビニル化合物、メタクリル酸エステル化合物、共役ジエン系化合物などが挙げられるが、好ましくは芳香族ビニル化合物であり、その中でもスチレンが好ましい。また、共役ジエン系化合物としてブタジエンを用いる場合、耐候性を考慮すると全ゴム量の40質量%以下の範囲で用いることが望ましいが、これ以上多く使用する場合は、層状構造をとらせてポリブタジエン層がコア部となるようすればよい。 A part of the acrylic acid ester used in this acrylic rubber can be replaced with another copolymerizable monomer. Examples of such other monomers include aromatic vinyl compounds, methacrylic acid ester compounds, conjugated diene compounds, and the like. Preferred are aromatic vinyl compounds, and among these, styrene is preferred. Further, when butadiene is used as the conjugated diene compound, it is desirable to use it in a range of 40% by mass or less of the total rubber amount in consideration of weather resistance. However, when using more than this, a polybutadiene layer is formed by taking a layered structure. Should be the core part.
 上記アクリル系ゴムは、そのガラス転移温度が-10℃以下になるように単量体の種類と量を選ぶことが好ましい。また、アクリル系ゴムは、適宜、架橋性単量体と共重合させることが好ましい。架橋性単量体の使用量はアクリル系ゴム中に、好ましくは0~10質量%、より好ましくは0.01~10質量%、更に好ましくは0.1~5質量%である。
好適な架橋性単量体としては、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレートなどのモノ又はポリエチレングリコールジアクリレート;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレートなどのモノ又はポリエチレングリコールジメタクリレート;ジビニルベンゼンなどのポリビニル芳香族化合物;、ジアリルフタレート、ジアリルマレエート、ジアリルサクシネート、トリアリルトリアジンなどのポリアリル化合物;アリルメタクリレ-ト、アリルアクリレートなどのアリル(メタ)アクリレート;1,3-ブタジエン、イソプレンなどの共役ジエン化合物などが挙げられる。上記アクリル系ゴムは公知の重合法で製造されるが、乳化重合法、懸濁重合法が好ましい。
It is preferable to select the type and amount of the monomer so that the glass transition temperature of the acrylic rubber is -10 ° C or lower. The acrylic rubber is preferably copolymerized with a crosslinkable monomer as appropriate. The amount of the crosslinkable monomer used in the acrylic rubber is preferably 0 to 10% by mass, more preferably 0.01 to 10% by mass, and still more preferably 0.1 to 5% by mass.
Suitable cross-linkable monomers include mono- or polyethylene glycol diacrylates such as ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate; ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene Mono- or polyethylene glycol dimethacrylates such as glycol dimethacrylate, tetraethylene glycol dimethacrylate; polyvinyl aromatic compounds such as divinylbenzene; polyallyl compounds such as diallyl phthalate, diallyl maleate, diallyl succinate, triallyl triazine; allyl methacrylate -Allyl (meth) acrylates such as allyl acrylate; - butadiene, and the like conjugated diene compound such as isoprene. The acrylic rubber is produced by a known polymerization method, and an emulsion polymerization method and a suspension polymerization method are preferable.
 本発明におけるゴム分散AS樹脂のゴム成分の平均粒子径は0.1~5.0μmが好ましく、より好ましくは0.2~3.0μmである。かかるゴム粒子径の分布は単一の分布であるもの及び多峰分布であるもののいずれもが使用可能であり、更にそのモルフォロジーにおいてもゴム粒子が単一の相をなすものであっても、ゴム粒子の周りにオクルード相を含有することによりサラミ構造を有するものであってもよいが、好ましくは単一相をなすゴム粒子の割合が多いものである。 The average particle size of the rubber component of the rubber-dispersed AS resin in the present invention is preferably 0.1 to 5.0 μm, more preferably 0.2 to 3.0 μm. The rubber particle size distribution can be either a single distribution or a multimodal distribution, and even if the rubber particles form a single phase in the morphology, the rubber It may have a salami structure by containing an occluded phase around the particles, but preferably has a high proportion of rubber particles forming a single phase.
 本発明におけるゴム分散AS樹脂のゴム成分の含有量は、好ましくは5~80質量%、より好ましくは5~50質量%、更に好ましくは7~30質量%の範囲である。この範囲とすることで、衝撃強度と剛性などの機械的特性を向上させることができる。なお、ゴム含有スチレン系樹脂のゴム含有量は、赤外分光測定装置を使用することにより測定することができる。 The rubber component content of the rubber-dispersed AS resin in the present invention is preferably in the range of 5 to 80% by mass, more preferably 5 to 50% by mass, and further preferably 7 to 30% by mass. By setting it within this range, mechanical properties such as impact strength and rigidity can be improved. The rubber content of the rubber-containing styrene resin can be measured by using an infrared spectrometer.
 本発明におけるゴム分散AS樹脂における、アクリロニトリル/スチレンの共重合比としては、5/95~80/20の範囲が好ましく、10/90~50/50の範囲がより好ましい。 The copolymerization ratio of acrylonitrile / styrene in the rubber-dispersed AS resin in the present invention is preferably in the range of 5/95 to 80/20, more preferably in the range of 10/90 to 50/50.
 また、本発明におけるゴム分散AS樹脂のアセトン可溶分の質量平均分子量は、50,000~600,000の範囲が好ましく、より好ましくは70,000~400,000、更に好ましくは100,000~250,000の範囲である。これらの範囲内であることで、衝撃強度と成形加工性を向上させることができる。 In the present invention, the mass average molecular weight of the acetone-soluble component of the rubber-dispersed AS resin is preferably in the range of 50,000 to 600,000, more preferably 70,000 to 400,000, still more preferably 100,000 to It is in the range of 250,000. By being in these ranges, impact strength and molding processability can be improved.
 本発明におけるゴム分散AS樹脂としては、アクリロニトリル-ブタジエン-スチレン共重合体(以下、「ABS樹脂」と略する。)、アクリロニトリル-スチレン-アクリルゴム共重合体(以下、「ASA樹脂」又は「AAS樹脂」と略する。)、及びアクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(以下、「AES樹脂」と略する。)からなる群より選択される1種又は2種以上を混合して使用することが好ましい。 As the rubber-dispersed AS resin in the present invention, acrylonitrile-butadiene-styrene copolymer (hereinafter abbreviated as “ABS resin”), acrylonitrile-styrene-acrylic rubber copolymer (hereinafter referred to as “ASA resin” or “AAS”). And a mixture of one or more selected from the group consisting of acrylonitrile-ethylenepropylene rubber-styrene copolymer (hereinafter abbreviated as “AES resin”). It is preferable to do.
 ABS樹脂は、ジエン系ゴム成分にシアン化ビニル化合物と芳香族ビニル化合物をグラフト重合した熱可塑性グラフト共重合体とシアン化ビニル化合物と芳香族ビニル化合物の共重合体の混合物である。このABS樹脂を形成するジエン系ゴム成分としては、例えばポリブタジエン、ポリイソプレン及びスチレン-ブタジエン共重合体等のガラス転移点が10℃以下のゴムが用いられ、その割合はABS樹脂成分100質量%中5~80質量%であるのが好ましく、特に好ましくは10~50質量%である。ジエン系ゴム成分にグラフトされるシアン化ビニル化合物としては、前記記載のものをあげることができ、特にアクリロニトリルが好ましく使用できる。またジエン系ゴム成分にグラフトされる芳香族ビニル化合物としては、同様に前記記載のものを使用できるが、特にスチレン及びα-メチルスチレンが好ましく使用できる。かかるジエン系ゴム成分にグラフトされる成分の割合は、ABS樹脂成分100質量%中95~20質量%が好ましく、特に好ましくは50~90質量%である。更にかかるシアン化ビニル化合物及び芳香族ビニル化合物の合計量100質量%に対して、シアン化ビニル化合物が5~50質量%、芳香族ビニル化合物が95~50質量%であることが好ましい。更に上記のジエン系ゴム成分にグラフトされる成分の一部についてメチル(メタ)アクリレート、エチルアクリレート、無水マレイン酸、N置換マレイミド等を混合使用することもでき、これらの含有割合はABS樹脂成分中15質量%以下であるものが好ましい。更に反応で使用する開始剤、連載移動剤、乳化剤等は必要に応じて、従来公知の各種のものが使用可能である。ABS樹脂として市販品を用いることもでき、例えば「UMG-ABS-AM」(UMG社製)などが挙げられる。 The ABS resin is a mixture of a thermoplastic graft copolymer obtained by graft polymerization of a vinyl cyanide compound and an aromatic vinyl compound to a diene rubber component, and a copolymer of a vinyl cyanide compound and an aromatic vinyl compound. As the diene rubber component forming the ABS resin, for example, a rubber having a glass transition point of 10 ° C. or less such as polybutadiene, polyisoprene and styrene-butadiene copolymer is used, and the ratio thereof is 100% by mass in the ABS resin component. The content is preferably 5 to 80% by mass, particularly preferably 10 to 50% by mass. Examples of the vinyl cyanide compound grafted onto the diene rubber component include those described above, and acrylonitrile is particularly preferably used. As the aromatic vinyl compound grafted onto the diene rubber component, those described above can be used as well, and styrene and α-methylstyrene are particularly preferably used. The ratio of the component grafted to the diene rubber component is preferably 95 to 20% by mass, particularly preferably 50 to 90% by mass, in 100% by mass of the ABS resin component. Further, it is preferable that the vinyl cyanide compound is 5 to 50% by mass and the aromatic vinyl compound is 95 to 50% by mass with respect to 100% by mass of the total amount of the vinyl cyanide compound and the aromatic vinyl compound. Further, methyl (meth) acrylate, ethyl acrylate, maleic anhydride, N-substituted maleimide and the like can be mixed and used for a part of the components grafted to the diene rubber component, and the content ratio thereof is in the ABS resin component. What is 15 mass% or less is preferable. Furthermore, conventionally well-known various things can be used for the initiator, serial transfer agent, emulsifier, etc. which are used by reaction as needed. Commercially available products may be used as the ABS resin, and examples thereof include “UMG-ABS-AM” (manufactured by UMG).
 ASA樹脂は、アクリルゴム成分にシアン化ビニル化合物と芳香族ビニル化合物をグラフト重合した熱可塑性グラフト共重合体、又は該熱可塑性グラフト共重合体と、シアン化ビニル化合物と芳香族ビニル化合物の共重合体との混合物をいう。本発明でいうアクリルゴムとは、炭素数が2~10のアルキルアクリレート単位を含有するものであり、更に必要に応じてその他の共重合可能な成分として、スチレン、メチルメタクリレート、ブタジエンを含有してもよい。炭素数が2~10のアルキルアクリレートとして好ましくは2-エチルヘキシルアクリレート、n-ブチルアクリレートが挙げられ、かかるアルキルアクリレートはアクリレートゴム100質量%中50質量%以上含まれるものが好ましい。更にかかるアクリレートゴムは少なくとも部分的に架橋されており、かかる架橋剤としては、エチレングリコールジアクリレート、ブチレングリコールジアクリレート、エチレングリコールジメタクリレート、アリルメタクリレート、ポリプロピレングリコールジアクリレート等を挙げることができ、かかる架橋剤はアクリレートゴムに対して0.01~3質量%使用されることが好ましい。またシアン化ビニル化合物及び芳香族ビニル化合物の割合はかかる合計量100質量%に対して、シアン化ビニル化合物が5~50質量%、芳香族ビニル化合物が95~50質量%であり、特にシアン化ビニル化合物が15~35質量%、芳香族ビニル化合物が85~65質量%のものが好ましい。ASA樹脂として市販品を用いることもでき、例えば「ダイヤラックS510」(UMG社製)などが挙げられる。 ASA resin is a thermoplastic graft copolymer obtained by graft polymerization of a vinyl cyanide compound and an aromatic vinyl compound to an acrylic rubber component, or a copolymer of the thermoplastic graft copolymer, a vinyl cyanide compound and an aromatic vinyl compound. A mixture with coalescence. The acrylic rubber referred to in the present invention contains an alkyl acrylate unit having 2 to 10 carbon atoms, and further contains styrene, methyl methacrylate, butadiene as other copolymerizable components as necessary. Also good. Preferred examples of the alkyl acrylate having 2 to 10 carbon atoms include 2-ethylhexyl acrylate and n-butyl acrylate. Such alkyl acrylate is preferably contained at 50% by mass or more in 100% by mass of acrylate rubber. Furthermore, such acrylate rubbers are at least partially crosslinked, and examples of such crosslinking agents include ethylene glycol diacrylate, butylene glycol diacrylate, ethylene glycol dimethacrylate, allyl methacrylate, polypropylene glycol diacrylate, and the like. The crosslinking agent is preferably used in an amount of 0.01 to 3% by mass based on the acrylate rubber. The ratio of the vinyl cyanide compound and the aromatic vinyl compound is 5 to 50% by mass of the vinyl cyanide compound and 95 to 50% by mass of the aromatic vinyl compound with respect to the total amount of 100% by mass. The vinyl compound is preferably 15 to 35% by mass and the aromatic vinyl compound is 85 to 65% by mass. Commercially available products can also be used as the ASA resin, and examples thereof include “Dialac S510” (manufactured by UMG).
 AES樹脂は、エチレン-プロピレンゴム成分又はエチレン-プロピレン-ジエンゴム成分にシアン化ビニル化合物と芳香族ビニル化合物をグラフト重合した熱可塑性グラフト共重合体、又は該熱可塑性グラフト共重合体と、シアン化ビニル化合物と芳香族ビニル化合物の共重合体との混合物である。AES樹脂として市販品を用いることもでき、例えば「ダイヤラックSK30」(UMG社製)などが挙げられる。 AES resin is a thermoplastic graft copolymer obtained by graft-polymerizing a vinyl cyanide compound and an aromatic vinyl compound to an ethylene-propylene rubber component or an ethylene-propylene-diene rubber component, or the thermoplastic graft copolymer and vinyl cyanide. It is a mixture of a compound and a copolymer of an aromatic vinyl compound. Commercially available products can also be used as the AES resin, and examples thereof include “Dialac SK30” (manufactured by UMG).
 またABS、ASA、AES樹脂がジエン系ゴム成分にグラフトされないシアン化ビニル化合物及び芳香族ビニル化合物を含有することは従来からよく知られているところであり、本発明のABS、ASA、AES樹脂においてもかかる重合の際に発生するフリーの重合体成分を含有するものであってもよい。かかるフリーのシアン化ビニル化合物及び芳香族ビニル化合物からなる共重合体の分子量は、GPC測定により算出された質量平均分子量(Mw)で10,000~500,000、好ましくは50,000~200,000であるものである。なお、ここで示す質量平均分子量は、標準ポリスチレン樹脂による較正曲線を使用したGPC測定により算出されたものである。 Further, it is well known that ABS, ASA and AES resins contain a vinyl cyanide compound and an aromatic vinyl compound which are not grafted to a diene rubber component. In the ABS, ASA and AES resins of the present invention, too. It may contain a free polymer component generated during such polymerization. The molecular weight of the copolymer comprising such free vinyl cyanide compound and aromatic vinyl compound is 10,000 to 500,000, preferably 50,000 to 200,000 in terms of mass average molecular weight (Mw) calculated by GPC measurement. 000. In addition, the mass mean molecular weight shown here is calculated by GPC measurement using the calibration curve by standard polystyrene resin.
 ABS、ASA、AES樹脂は塊状重合、懸濁重合、乳化重合のいずれの方法で製造されたものでもよく、また共重合の方法も一段で共重合しても、多段で共重合してもよい。また、かかる製造法により得られたABS樹脂に芳香族ビニル化合物とシアン化ビニル成分とを別途共重合して得られるビニル化合物重合体をブレンドしたものも好ましく使用できる。かかる芳香族ビニル化合物とシアン化ビニル成分とを別途共重合して得られるビニル化合物重合体の質量平均分子量(Mw)は10,000~500,000であり、好ましくは50,000~200,000であるものである。 ABS, ASA, and AES resin may be produced by any of bulk polymerization, suspension polymerization, and emulsion polymerization, and the copolymerization method may be one-stage copolymerization or multi-stage copolymerization. . Moreover, what blended the vinyl compound polymer obtained by copolymerizing an aromatic vinyl compound and a vinyl cyanide component separately to the ABS resin obtained by this manufacturing method can also be used preferably. The vinyl compound polymer obtained by separately copolymerizing such an aromatic vinyl compound and a vinyl cyanide component has a mass average molecular weight (Mw) of 10,000 to 500,000, preferably 50,000 to 200,000. It is what is.
4.成形材料、及び成形体
 本発明の成形材料は、上記で説明したセルロース誘導体とゴム分散AS樹脂とを含有しており、必要に応じてその他の添加剤を含有することができる。
 本発明の成形材料に含まれる成分の含有割合は、特に限定されない。
 本発明の成形材料に含まれるセルロース誘導体の含有割合は、特に限定されない。好ましくはセルロース誘導体を全固形分に対して、35質量%以上、より好ましくは45質量%以上99質量%、更に好ましくは60質量%以上95質量%含有する。
 本発明の成形材料に含まれるゴム分散AS樹脂の含有割合は特に限定されない。好ましくはゴム分散AS樹脂を全固形分に対して1質量%以上70質量%以下、より好ましくは5質量%以上50質量%以下含有する。
 また、本発明の成形材料中、前記セルロース誘導体と前記ゴム分散AS樹脂の含有比は、耐衝撃性、成形加工性、及び耐熱性の観点から、セルロース誘導体/ゴム分散AS樹脂の質量組成比が20/80~95/5であることが好ましく、より好ましくは40/60~90/10、更に好ましくは60/40~90/10である。
4). Molding Material and Molded Body The molding material of the present invention contains the cellulose derivative described above and a rubber-dispersed AS resin, and may contain other additives as necessary.
The content rate of the component contained in the molding material of this invention is not specifically limited.
The content ratio of the cellulose derivative contained in the molding material of the present invention is not particularly limited. Preferably, the cellulose derivative is contained in an amount of 35% by mass or more, more preferably 45% by mass or more and 99% by mass, and still more preferably 60% by mass or more and 95% by mass with respect to the total solid content.
The content ratio of the rubber-dispersed AS resin contained in the molding material of the present invention is not particularly limited. Preferably, the rubber-dispersed AS resin is contained in an amount of 1 to 70% by mass, more preferably 5 to 50% by mass, based on the total solid content.
In the molding material of the present invention, the content ratio of the cellulose derivative and the rubber-dispersed AS resin is the mass composition ratio of cellulose derivative / rubber-dispersed AS resin from the viewpoint of impact resistance, molding processability, and heat resistance. It is preferably 20/80 to 95/5, more preferably 40/60 to 90/10, still more preferably 60/40 to 90/10.
 本発明の成形材料は、セルロース誘導体、及びゴム分散AS樹脂のほか、必要に応じて、相溶化剤、フィラー(強化材)、難燃剤等の種々の添加剤を含有していてもよい。 The molding material of the present invention may contain various additives such as a compatibilizing agent, a filler (reinforcing material), and a flame retardant as required, in addition to the cellulose derivative and the rubber-dispersed AS resin.
 本発明の成形材料は相溶化剤を含有することが好ましい。相溶化剤とは、本発明におけるセルロース誘導体とゴム分散AS樹脂とを相溶化させるものである。本発明の成形材料に相溶化剤を配合すると、本発明におけるセルロース誘導体に対するゴム分散AS樹脂の分散性が更に向上し、成形材料の流動性(成形加工性)、及び耐衝撃性などの性能がより向上する。 The molding material of the present invention preferably contains a compatibilizing agent. The compatibilizing agent is used for compatibilizing the cellulose derivative and the rubber-dispersed AS resin in the present invention. When a compatibilizing agent is added to the molding material of the present invention, the dispersibility of the rubber-dispersed AS resin with respect to the cellulose derivative in the present invention is further improved, and the properties such as fluidity (molding processability) and impact resistance of the molding material are improved. More improved.
 本発明において、相溶化剤としては、反応性基を有するものが好ましく、カルボン酸無水物、エポキシ基、イソシアネート基、及びオキサゾリン基から選ばれる少なくともいずれかを有する相溶化剤がより好ましい。
 好ましい相溶化剤としては、カルボン酸無水物、エポキシ基、イソシアネート基、及びオキサゾリン基で変性された重合体、ブロック共重合体、グラフト重合体、並びにランダム共重合体、更に種々のノニオン系界面活性剤、カップリング剤、架橋剤を挙げることができる。
 相溶化剤は、上記の条件を満たす材料であれば特に限定されないが、具体的には、日本油脂(株)製モディパーシリーズ、住友化学(株)製、ボンドファースト、ボンダインシリーズ、日本石油(株)社製レクスパールシリーズ、東亞合成(株)社製レゼダシリーズ、アルフォンシリーズ、日本触媒(株)製エポクロスシリーズ、旭化成ケミカルズ(株)社製デュラネートシリーズ(いずれも商品名)などの市販品が好適に用いられる。また相溶化剤はこれらに限定されることはなく、「プラスチック相溶化剤 開発・評価・リサイクル」(シーエムシー出版)に記載の相溶化剤なども好適に用いることができる。
In the present invention, the compatibilizer having a reactive group is preferable, and a compatibilizer having at least one selected from a carboxylic acid anhydride, an epoxy group, an isocyanate group, and an oxazoline group is more preferable.
Preferred compatibilizers include polymers modified with carboxylic acid anhydrides, epoxy groups, isocyanate groups, and oxazoline groups, block copolymers, graft polymers, random copolymers, and various nonionic surfactants. Agents, coupling agents, and crosslinking agents.
The compatibilizing agent is not particularly limited as long as it satisfies the above conditions, and specifically, Nippon Oil & Fats Modiper Series, Sumitomo Chemical Co., Ltd., Bond First, Bondine Series, Nippon Oil Commercially available such as Lexpearl series manufactured by Co., Ltd., Reseda series manufactured by Toagosei Co., Ltd., Alfon series, Epocross series manufactured by Nippon Shokubai Co., Ltd., Duranate series manufactured by Asahi Kasei Chemicals Co., Ltd. The product is preferably used. In addition, the compatibilizer is not limited to these, and the compatibilizer described in “Plastic compatibilizer development / evaluation / recycling” (CMC Publishing Co., Ltd.) can also be suitably used.
 本発明の成形材料における相溶化剤の含有量は、本発明におけるセルロース誘導体とゴム分散AS樹脂の合計量100質量部に対し、0.1質量部~30質量部が好ましく、より好ましくは0.5質量部~20質量部である。この範囲とすることにより、十分な相溶性向上効果を得ることができ、また、成形材料の粘度増加などの不具合が生じ難い。 The content of the compatibilizing agent in the molding material of the present invention is preferably 0.1 to 30 parts by mass, more preferably 0.00 parts to 100 parts by mass of the total amount of the cellulose derivative and rubber-dispersed AS resin in the present invention. 5 parts by mass to 20 parts by mass. By setting it within this range, a sufficient compatibility improvement effect can be obtained, and problems such as an increase in the viscosity of the molding material are unlikely to occur.
 本発明の成形材料は、フィラー(強化材)を含有してもよい。フィラーを含有することにより、成形材料によって形成される成形体の機械的特性を強化することができる。
 フィラーとしては、公知のものを使用できる。フィラーの形状は、繊維状、板状、粒状、粉末状等いずれでもよい。また、無機物でも有機物でもよい。
 具体的には、無機フィラーとしては、ガラス繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラステナイト、セピオライト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維及び硼素繊維等の繊維状の無機フィラーや;ガラスフレーク、非膨潤性雲母、カーボンブラック、グラファイト、金属箔、セラミックビーズ、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、酸化マグネシウム、ケイ酸アルミニウム、酸化ケイ素、水酸化アルミニウム、水酸化マグネシウム、石膏、ノバキュライト、ドーソナイト、白土等の板状や粒状の無機フィラーが挙げられる。
The molding material of the present invention may contain a filler (reinforcing material). By containing the filler, the mechanical properties of the molded body formed of the molding material can be enhanced.
A well-known thing can be used as a filler. The shape of the filler may be any of fibrous, plate-like, granular, powdery and the like. Further, it may be inorganic or organic.
Specifically, as the inorganic filler, glass fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, slag fiber, zonolite, Elastadite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, and other inorganic fillers; glass flakes, non-swellable mica, carbon black, graphite, metal foil , Ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, fine silicate, feldspar, potassium titanate, shirasu balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide Beam, aluminum oxide, titanium oxide, magnesium oxide, aluminum silicate, silicon oxide, aluminum hydroxide, magnesium hydroxide, gypsum, novaculite, dawsonite, and a plate-like or granular inorganic fillers of clay or the like.
 有機フィラーとしては、ポリエステル繊維、ナイロン繊維、アクリル繊維、再生セルロース繊維、アセテート繊維等の合成繊維、ケナフ、ラミー、木綿、ジュート、麻、サイザル、マニラ麻、亜麻、リネン、絹、ウール等の天然繊維、微結晶セルロース、さとうきび、木材パルプ、紙屑、古紙等から得られる繊維状の有機フィラーや、有機顔料等の粒状の有機フィラーが挙げられる。 Organic fillers include synthetic fibers such as polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, and acetate fiber, and natural fibers such as kenaf, ramie, cotton, jute, hemp, sisal, Manila hemp, flax, linen, silk, and wool. Examples thereof include fibrous organic fillers obtained from microcrystalline cellulose, sugar cane, wood pulp, paper waste, waste paper and the like, and granular organic fillers such as organic pigments.
 成形材料がフィラーを含有する場合、その含有量は限定的でないが、セルロース誘導体100質量部に対して、通常30質量部以下、好ましくは5~10質量部とすればよい。 When the molding material contains a filler, the content is not limited, but is usually 30 parts by mass or less, preferably 5 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative.
 本発明の成形材料は、難燃剤を含有してもよい。これによって、その燃焼速度の低下又は抑制といった難燃効果を向上させることができる。
 難燃剤は、特に限定されず、常用のものを用いることができる。例えば、臭素系難燃剤、塩素系難燃剤、リン含有難燃剤、ケイ素含有難燃剤、窒素化合物系難燃剤、無機系難燃剤等が挙げられる。これらの中でも、樹脂との複合時や成形加工時に熱分解してハロゲン化水素が発生して加工機械や金型を腐食させたり、作業環境を悪化させたりすることがなく、また、焼却廃棄時にハロゲンが気散したり、分解してダイオキシン類等の有害物質の発生等によって環境に悪影響を与える可能性が少ないことから、リン含有難燃剤及びケイ素含有難燃剤が好ましい。
The molding material of the present invention may contain a flame retardant. Thereby, the flame retarding effect such as reduction or suppression of the burning rate can be improved.
The flame retardant is not particularly limited, and a conventional flame retardant can be used. For example, brominated flame retardants, chlorine-based flame retardants, phosphorus-containing flame retardants, silicon-containing flame retardants, nitrogen compound-based flame retardants, inorganic flame retardants and the like can be mentioned. Among these, hydrogen halides are not generated by thermal decomposition during resin compounding or molding, and do not corrode processing machines or molds or deteriorate the working environment. Phosphorus-containing flame retardants and silicon-containing flame retardants are preferred because they are less likely to adversely affect the environment through the generation of harmful substances such as dioxins when they are diffused or decomposed.
 リン含有難燃剤としては、特に限定されることはなく、常用のものを用いることができる。例えば、リン酸エステル、リン酸縮合エステル、ポリリン酸塩などの有機リン系化合物が挙げられる。 The phosphorus-containing flame retardant is not particularly limited, and a commonly used one can be used. Examples thereof include organic phosphorus compounds such as phosphate esters, phosphate condensation esters, and polyphosphates.
 リン酸エステルの具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(フェニルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、メラミンピロホスフェート、トリフェニルホスフィンオキサイド、トリクレジルホスフィンオキサイド、メタンホスホン酸ジフェニル、フェニルホスホン酸ジエチルなどを挙げることができる。 Specific examples of phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) Phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl Acid phosphate, 2-methacryloyloxyethyl acid phosphate, diphenyl -2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, melamine phosphate, dimelamine phosphate, melamine pyrophosphate, triphenylphosphine oxide, tricresylphosphine oxide, diphenyl methanephosphonate, diethyl phenylphosphonate Can be mentioned.
 リン酸縮合エステルとしては、例えば、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート、ビスフェノールAポリクレジルホスフェート、ハイドロキノンポリ(2,6-キシリル)ホスフェート並びにこれらの縮合物などの芳香族リン酸縮合エステル等を挙げることができる。 Examples of the phosphoric acid condensed ester include resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate, and condensates thereof. Aromatic phosphoric acid condensed ester and the like.
 また、リン酸、ポリリン酸と周期律表1族~14族の金属、アンモニア、脂肪族アミン、芳香族アミンとの塩からなるポリリン酸塩を挙げることもできる。ポリリン酸塩の代表的な塩として、金属塩としてリチウム塩、ナトリウム塩、カルシウム塩、バリウム塩、鉄(II)塩、鉄(III)塩、アルミニウム塩など、脂肪族アミン塩としてメチルアミン塩、エチルアミン塩、ジエチルアミン塩、トリエチルアミン塩、エチレンジアミン塩、ピペラジン塩などがあり、芳香族アミン塩としてはピリジン塩、トリアジン等が挙げられる。 In addition, polyphosphates composed of salts of phosphoric acid, polyphosphoric acid and metals of Groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines can also be mentioned. As typical salts of polyphosphates, lithium salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts and the like as metal salts, methylamine salts as aliphatic amine salts, Examples include ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts, and examples of aromatic amine salts include pyridine salts and triazines.
 また、前記以外にも、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリス(β-クロロプロピル)ホスフェート)などの含ハロゲンリン酸エステル、また、リン原子と窒素原子が二重結合で結ばれた構造を有するホスファゼン化合物、リン酸エステルアミドを挙げることができる。
 これらのリン含有難燃剤は、1種単独でも2種以上を組み合わせて用いてもよい。
In addition to the above, halogen-containing phosphate esters such as trischloroethyl phosphate, trisdichloropropyl phosphate, tris (β-chloropropyl) phosphate), and structures in which a phosphorus atom and a nitrogen atom are connected by a double bond Phosphazene compounds having phosphoric acid and phosphoric ester amides.
These phosphorus-containing flame retardants may be used singly or in combination of two or more.
 ケイ素含有難燃剤としては、二次元又は三次元構造の有機ケイ素化合物、ポリジメチルシロキサン、又はポリジメチルシロキサンの側鎖又は末端のメチル基が、水素原子、置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基で置換又は修飾されたもの、いわゆるシリコーンオイル、又は変性シリコーンオイルが挙げられる。 Examples of the silicon-containing flame retardant include an organic silicon compound having a two-dimensional or three-dimensional structure, polydimethylsiloxane, or a methyl group at a side chain or a terminal of polydimethylsiloxane, a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, Examples thereof include those substituted or modified with an aromatic hydrocarbon group, so-called silicone oils, or modified silicone oils.
 置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基としては、例えば、アルキル基、シクロアルキル基、フェニル基、ベンジル基、アミノ基、エポキシ基、ポリエーテル基、カルボキシル基、メルカプト基、クロロアルキル基、アルキル高級アルコールエステル基、アルコール基、アラルキル基、ビニル基、又はトリフロロメチル基等が挙げられる。
 これらのケイ素含有難燃剤は1種単独でも2種以上を組み合わせて用いてもよい。
Examples of the substituted or unsubstituted aliphatic hydrocarbon group and aromatic hydrocarbon group include an alkyl group, a cycloalkyl group, a phenyl group, a benzyl group, an amino group, an epoxy group, a polyether group, a carboxyl group, a mercapto group, Examples include a chloroalkyl group, an alkyl higher alcohol ester group, an alcohol group, an aralkyl group, a vinyl group, or a trifluoromethyl group.
These silicon-containing flame retardants may be used alone or in combination of two or more.
 また、前記リン含有難燃剤又はケイ素含有難燃剤以外の難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム、三酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ、ヒドロキシスズ酸亜鉛、スズ酸亜鉛、メタスズ酸、酸化スズ、酸化スズ塩、硫酸亜鉛、酸化亜鉛、酸化第一鉄、酸化第二鉄、酸化第一錫、酸化第二スズ、ホウ酸亜鉛、ホウ酸アンモニウム、オクタモリブデン酸アンモニウム、タングステン酸の金属塩、タングステンとメタロイドとの複合酸化物、スルファミン酸アンモニウム、臭化アンモニウム、ジルコニウム系化合物、グアニジン系化合物、フッ素系化合物、黒鉛、膨潤性黒鉛等の無機系難燃剤を用いることができる。これらの他の難燃剤は、1種単独で用いても、2種以上を併用して用いてもよい。 Examples of the flame retardant other than the phosphorus-containing flame retardant or the silicon-containing flame retardant include, for example, magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, sodium antimonate, zinc hydroxystannate, zinc stannate, Metastannic acid, tin oxide, tin oxide salt, zinc sulfate, zinc oxide, ferrous oxide, ferric oxide, stannous oxide, stannic oxide, zinc borate, ammonium borate, ammonium octamolybdate, tungsten Inorganic flame retardants such as acid metal salts, complex oxides of tungsten and metalloid, ammonium sulfamate, ammonium bromide, zirconium compounds, guanidine compounds, fluorine compounds, graphite, and swellable graphite can be used. . These other flame retardants may be used alone or in combination of two or more.
 本発明の成形材料が難燃剤を含有する場合、その含有量は限定的でないが、セルロース誘導体100質量部に対して、通常30質量部以下、好ましくは2~10質量部とすればよい。この範囲とすることにより、耐衝撃性・脆性等を改良させたり、ペレットブロッキングの発生を抑制できる。 When the molding material of the present invention contains a flame retardant, its content is not limited, but is usually 30 parts by mass or less, preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative. By setting it as this range, impact resistance, brittleness, etc. can be improved, or generation | occurrence | production of pellet blocking can be suppressed.
 本発明の成形材料は、前記したもの以外にも、本発明の目的を阻害しない範囲で、成形性・難燃性等の各種特性をより一層改善する目的で他の成分を含んでいてもよい。
 他の成分としては、例えば、前記セルロース誘導体及び前記ゴム分散AS樹脂以外のポリマー、可塑剤、安定剤(酸化防止剤、紫外線吸収剤など)、離型剤(脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪族部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、変成シリコーン)、帯電防止剤、難燃助剤、加工助剤、ドリップ防止剤、抗菌剤、防カビ剤等が挙げられる。更に、染料や顔料を含む着色剤などを添加することもできる。
The molding material of the present invention may contain other components other than those described above for the purpose of further improving various properties such as moldability and flame retardancy within the range not impairing the object of the present invention. .
Other components include, for example, polymers other than the cellulose derivative and the rubber-dispersed AS resin, plasticizers, stabilizers (antioxidants, ultraviolet absorbers, etc.), release agents (fatty acids, fatty acid metal salts, oxyfatty acids, Fatty acid ester, aliphatic partially saponified ester, paraffin, low molecular weight polyolefin, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid polyglycol ester, modified silicone), antistatic agent , Flame retardant aids, processing aids, anti-drip agents, antibacterial agents, antifungal agents and the like. Further, a coloring agent containing a dye or a pigment can be added.
 本発明の成形材料が酸化防止剤を含有する場合、その含有量は限定的でないが、成形材料中、通常30質量%以下、好ましくは0.01~10質量%とすればよい。この範囲とすることにより、混練や成型プロセスでの加熱に対して樹脂が十分な安定性の向上効果を得ることができ好ましい。
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤等が挙げられ、好ましくは、フェノール系酸化防止剤である。フェノール系酸化防止剤としては、チバ・スペシャルティ・ケミカルズ(株)製のイルガノックス1010、イルガノックス1076、イルガノックス3114等を好適に使用できる。
When the molding material of the present invention contains an antioxidant, its content is not limited, but it is usually 30% by mass or less, preferably 0.01 to 10% by mass in the molding material. By setting it within this range, the resin can obtain a sufficient stability improving effect against heating in the kneading or molding process, which is preferable.
Examples of the antioxidant include phenol-based antioxidants, amine-based antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants, and the like, and phenol-based antioxidants are preferable. As the phenolic antioxidant, Irganox 1010, Irganox 1076, Irganox 3114 manufactured by Ciba Specialty Chemicals Co., Ltd. can be suitably used.
 前記セルロース誘導体及び前記ゴム分散AS樹脂以外のポリマーとしては、熱可塑性ポリマー、熱硬化性ポリマーのいずれも用い得るが、成形性の点から熱可塑性ポリマーが好ましい。セルロース誘導体以外のポリマーの具体例としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-プロピレン-非共役ジエン共重合体、エチレン-ブテン-1共重合体、ポリプロピレンホモポリマー、ポリプロピレンコポリマー(エチレン-プロピレンブロックコポリマーなど)、ポリブテン-1及びポリ-4-メチルペンテン-1等のポリオレフィン、ポリブチレンテレフタレート、ポリエチレンテレフタレート及びその他の芳香族ポリエステル等のポリエステル、ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン6T、ナイロン12等のポリアミド、ポリスチレン、ハイインパクトポリスチレン、ポリアセタール(ホモポリマー及び共重合体を含む)、ポリウレタン、芳香族及び脂肪族ポリケトン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、熱可塑性澱粉樹脂、ポリメタクリル酸メチルやメタクリル酸エステル-アクリル酸エステル共重合体などのアクリル樹脂、AS樹脂(アクリロニトリル-スチレン共重合体)、ACS樹脂(塩素化ポリエチレン強化AS樹脂)、ポリ塩化ビニル、ポリ塩化ビニリデン、ビニルエステル系樹脂、無水マレイン酸-スチレン共重合体、MS樹脂(メタクリル酸メチル-スチレン共重合体)、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、フェノキシ樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリエーテルイミド等の熱可塑性ポリイミド、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体などのフッ素系ポリマー、酢酸セルロース、ポリビニルアルコール、不飽和ポリエステル、メラミン樹脂、フェノール樹脂、尿素樹脂、ポリイミドなどを挙げることができる。
 また、各種アクリルゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体及びそのアルカリ金属塩(いわゆるアイオノマー)、エチレン-アクリル酸アルキルエステル共重合体(例えば、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体)、ジエン系ゴム(例えば、1,4-ポリブタジエン、1,2-ポリブタジエン、ポリイソプレン、ポリクロロプレン)、ジエンとビニル単量体との共重合体(例えば、スチレン-ブタジエンランダム共重合体、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレンランダム共重合体、スチレン-イソプレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、ポリブタジエンにスチレンをグラフト共重合させたもの、ブタジエン-アクリロニトリル共重合体)、ポリイソブチレン、イソブチレンとブタジエン又はイソプレンとの共重合体、ブチルゴム、天然ゴム、チオコールゴム、多硫化ゴム、アクリルゴム、ニトリルゴム、ポリエーテルゴム、エピクロロヒドリンゴム、フッ素ゴム、シリコーンゴム、その他ポリウレタン系やポリエステル系、ポリアミド系などの熱可塑性エラストマー等が挙げられる。
As the polymer other than the cellulose derivative and the rubber-dispersed AS resin, any of a thermoplastic polymer and a thermosetting polymer can be used, but a thermoplastic polymer is preferable from the viewpoint of moldability. Specific examples of polymers other than cellulose derivatives include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, ethylene-butene- 1 copolymer, polypropylene homopolymer, polypropylene copolymer (such as ethylene-propylene block copolymer), polyolefins such as polybutene-1 and poly-4-methylpentene-1, polybutylene terephthalate, polyethylene terephthalate and other aromatic polyesters, etc. Polyamide such as polyester, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 6T, nylon 12, etc., polystyrene, high impact polystyrene, polyacetate (Including homopolymers and copolymers), polyurethanes, aromatic and aliphatic polyketones, polyphenylene sulfide, polyether ether ketone, thermoplastic starch resins, polymethyl methacrylate and methacrylate-acrylate copolymers Acrylic resin, AS resin (acrylonitrile-styrene copolymer), ACS resin (chlorinated polyethylene reinforced AS resin), polyvinyl chloride, polyvinylidene chloride, vinyl ester resin, maleic anhydride-styrene copolymer, MS Resin (methyl methacrylate-styrene copolymer), polycarbonate, polyarylate, polysulfone, polyethersulfone, phenoxy resin, polyphenylene ether, modified polyphenylene ether, thermoplastic polyimide such as polyetherimide, Ritetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene -Fluoropolymers such as hexafluoropropylene-perfluoroalkyl vinyl ether copolymer, cellulose acetate, polyvinyl alcohol, unsaturated polyester, melamine resin, phenol resin, urea resin, polyimide and the like.
Various acrylic rubbers, ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers and alkali metal salts thereof (so-called ionomers), ethylene-acrylic acid alkyl ester copolymers (for example, ethylene-ethyl acrylate copolymer) Copolymer, ethylene-butyl acrylate copolymer), diene rubber (for example, 1,4-polybutadiene, 1,2-polybutadiene, polyisoprene, polychloroprene), copolymer of diene and vinyl monomer (for example, Styrene-butadiene random copolymer, styrene-butadiene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene random copolymer, styrene-isoprene block copolymer, styrene-isoprene-styrene block copolymer Polymer, polybutadiene Styrene-grafted styrene, butadiene-acrylonitrile copolymer), polyisobutylene, copolymer of isobutylene and butadiene or isoprene, butyl rubber, natural rubber, thiocol rubber, polysulfide rubber, acrylic rubber, nitrile rubber, poly Examples include ether rubber, epichlorohydrin rubber, fluoro rubber, silicone rubber, and other thermoplastic elastomers such as polyurethane, polyester, and polyamide.
 更に、各種の架橋度を有するものや、各種のミクロ構造、例えばシス構造、トランス構造等を有するもの、ビニル基などを有するもの、あるいは各種の平均粒径を有するものや、コア層とそれを覆う1以上のシェル層から構成され、また隣接し合った層が異種の重合体から構成されるいわゆるコアシェルゴムと呼ばれる多層構造重合体なども使用することができ、更にシリコーン化合物を含有したコアシェルゴムも使用することができる。
 これらのポリマーは、1種単独で用いても、2種以上を併用してもよい。
Furthermore, those having various degrees of crosslinking, those having various microstructures such as cis structure and trans structure, those having vinyl groups, those having various average particle diameters, core layers and the like A multi-layer structure polymer called a so-called core-shell rubber, which is composed of one or more shell layers to be covered and whose adjacent layers are composed of different types of polymers, can also be used, and further a core-shell rubber containing a silicone compound Can also be used.
These polymers may be used alone or in combination of two or more.
 本発明の成形材料がセルロース誘導体及び前記ゴム分散AS樹脂以外のポリマーを含有する場合、その含有量は、セルロース誘導体100質量部に対して30質量部以下が好ましく、2~10質量部がより好ましい。 When the molding material of the present invention contains a polymer other than the cellulose derivative and the rubber-dispersed AS resin, the content is preferably 30 parts by mass or less, more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative. .
 本発明の成形材料は、可塑剤を含有してもよい。これにより、難燃性及び成形性をより一層向上させることができる。可塑剤としては、ポリマーの成形に常用されるものを用いることができる。例えば、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びエポキシ系可塑剤等が挙げられる。 The molding material of the present invention may contain a plasticizer. Thereby, a flame retardance and a moldability can be improved further. As the plasticizer, those commonly used for polymer molding can be used. Examples thereof include polyester plasticizers, glycerin plasticizers, polycarboxylic acid ester plasticizers, polyalkylene glycol plasticizers, and epoxy plasticizers.
 ポリエステル系可塑剤の具体例としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ロジンなどの酸成分と、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポリエステルや、ポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステル等が挙げられる。これらのポリエステルは単官能カルボン酸若しくは単官能アルコールで末端封鎖されていてもよく、またエポキシ化合物などで末端封鎖されていてもよい。 Specific examples of the polyester plasticizer include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4 -Polyesters composed of diol components such as butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acids such as polycaprolactone. These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
 グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレート及びグリセリンモノアセトモノモンタネート等が挙げられる。 Specific examples of the glycerin plasticizer include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate.
 多価カルボン酸系可塑剤の具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシルなどのトリメリット酸エステル、アジピン酸ジイソデシル、アジピン酸n-オクチル-n-デシル、アジピン酸メチルジグリコールブチルジグリコール、アジピン酸ベンジルメチルジグリコール、アジピン酸ベンジルブチルジグリコールなどのアジピン酸エステル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチルなどのクエン酸エステル、アゼライン酸ジ-2-エチルヘキシルなどのアゼライン酸エステル、セバシン酸ジブチル、及びセバシン酸ジ-2-エチルヘキシル等が挙げられる。 Specific examples of polycarboxylic acid plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, and trimellitic acid. Trimellitic acid esters such as tributyl, trioctyl trimellitic acid, trihexyl trimellitic acid, diisodecyl adipate, n-octyl-n-decyl adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, adipic acid Adipic acid esters such as benzylbutyl diglycol, citrate esters such as triethyl acetylcitrate and tributyl acetylcitrate, azelaic acid esters such as di-2-ethylhexyl azelate, sebashi Dibutyl, and include di-2-ethylhexyl sebacate and the like.
 ポリアルキレングリコール系可塑剤の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロック及び/又はランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物、及び末端エーテル変性化合物等が挙げられる。 Specific examples of the polyalkylene glycol plasticizer include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, and bisphenols. And a polyalkylene glycol such as a propylene oxide addition polymer, a tetrahydrofuran addition polymer of bisphenol, or a terminal epoxy-modified compound thereof, a terminal ester-modified compound, a terminal ether-modified compound, and the like.
 エポキシ系可塑剤とは、一般にはエポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリドなどを指すが、その他にも、主にビスフェノールAとエピクロロヒドリンを原料とするような、いわゆるエポキシ樹脂も使用することができる。 The epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but there are also so-called epoxy resins mainly made of bisphenol A and epichlorohydrin. Can be used.
 その他の可塑剤の具体例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ-2-エチルブチレートなどの脂肪族ポリオールの安息香酸エステル、ステアリン酸アミドなどの脂肪酸アミド、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチルなどのオキシ酸エステル、ペンタエリスリトール、各種ソルビトール等が挙げられる。 Specific examples of other plasticizers include benzoate esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, fatty acid amides such as stearamide, oleic acid Examples thereof include aliphatic carboxylic acid esters such as butyl, oxy acid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritol, and various sorbitols.
 本発明の成形材料が可塑剤を含有する場合、その含有量は、セルロース誘導体とゴム分散AS樹脂の合計100質量部に対して通常30質量部以下であり、0.005~20質量部が好ましく、より好ましくは0.01~10質量部である。 When the molding material of the present invention contains a plasticizer, the content thereof is usually 30 parts by mass or less, preferably 0.005 to 20 parts by mass with respect to 100 parts by mass in total of the cellulose derivative and the rubber-dispersed AS resin. More preferably, it is 0.01 to 10 parts by mass.
 本発明の成形体は、前記セルロース誘導体と前記ゴム分散AS樹脂を含む成形材料を成形することにより得られる。より具体的には、前記セルロース誘導体、又は、前記セルロース誘導体及び必要に応じて各種添加剤等を含む成形材料を加熱し、各種の成形方法により成形する工程を含む製造方法によって得られる。
 本発明の成形体の製造方法は、前記成形材料を加熱し、成形する工程を含む。
 成形方法としては、例えば、射出成形、押し出し成形、ブロー成形等が挙げられる。
 加熱温度は、通常160~300℃であり、好ましくは180~260℃である。
The molded body of the present invention can be obtained by molding a molding material containing the cellulose derivative and the rubber-dispersed AS resin. More specifically, the cellulose derivative or the cellulose derivative and, if necessary, a molding material containing various additives and the like are heated and obtained by a production method including a step of molding by various molding methods.
The method for producing a molded body of the present invention includes a step of heating and molding the molding material.
Examples of the molding method include injection molding, extrusion molding, blow molding and the like.
The heating temperature is usually 160 to 300 ° C, preferably 180 to 260 ° C.
 本発明の成形体の用途は、とくに限定されるものではないが、例えば、電気電子機器(家電、OA・メディア関連機器、光学用機器及び通信機器等)の内装又は外装部品、自動車、機械部品、住宅・建築用材料等が挙げられる。これらの中でも、優れた耐熱性及び耐衝撃性を有しており、環境への負荷が小さい観点から、例えば、コピー機、プリンター、パソコン、テレビ等といった電気電子機器用の外装部品(特に筐体)として好適に使用することができる。 The use of the molded product of the present invention is not particularly limited. For example, interior or exterior parts of electrical and electronic equipment (home appliances, OA / media related equipment, optical equipment, communication equipment, etc.), automobiles, mechanical parts, etc. And materials for housing and construction. Among these, from the viewpoint of having excellent heat resistance and impact resistance and low environmental load, for example, exterior parts for electric and electronic devices such as copiers, printers, personal computers, televisions (especially casings) ) Can be suitably used.
 以下に実施例及び比較例を挙げて本発明を具体的に説明するが、本発明の範囲は以下に示す実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the scope of the present invention is not limited to the examples shown below.
<合成例1:アセトキシプロピルメチルアセチルセルロース(C-1)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた5Lの三ツ口フラスコにヒドロキシプロピルメチルセルロース(商品名メトローズ90SH-100:信越化学製)60g、N,N-ジメチルアセトアミド2100mLを量り取り、室温で攪拌した。反応系が透明になり完溶したことを確認した後、アセチルクロライド101mLをゆっくりと滴下し、系の温度を80℃~90℃に昇温した。このまま3時間攪拌した後、反応系の温度を室温まで冷却した。反応溶液を水10Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量の水で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより目的のセルロース誘導体(C-1)(アセトキシプロピルメチルアセチルセルロース)を白色粉体として得た。このセルロース誘導体(C-1)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
<Synthesis Example 1: Synthesis of acetoxypropylmethylacetylcellulose (C-1)>
In a 5 L three-necked flask equipped with a mechanical stirrer, thermometer, condenser, and dropping funnel, weigh 60 g of hydroxypropylmethylcellulose (trade name Metroze 90SH-100: Shin-Etsu Chemical Co., Ltd.) and 2100 mL of N, N-dimethylacetamide and stir at room temperature. did. After confirming that the reaction system became transparent and completely dissolved, 101 mL of acetyl chloride was slowly added dropwise to raise the temperature of the system to 80 ° C. to 90 ° C. After stirring for 3 hours, the temperature of the reaction system was cooled to room temperature. When the reaction solution was added to 10 L of water with vigorous stirring, a white solid was precipitated. The white solid was filtered off by suction filtration and washed with a large amount of water three times. The obtained white solid was vacuum-dried at 100 ° C. for 6 hours to obtain the objective cellulose derivative (C-1) (acetoxypropylmethylacetylcellulose) as a white powder. The solubility of this cellulose derivative (C-1) in water at 25 ° C. was less than 0.1% by mass (insoluble).
<合成例2、3、4:アセトキシエチルメチルアセチルセルロース(C-2)、メチルアセチルセルロース(C-3)、エチルアセチルセルロース(C-4)の合成>
 合成例1におけるヒドロキシプロピルメチルセルロース(商品名メトローズ90SH-100:信越化学製)をヒドロキシエチルメチルセルロース(商品名マーポローズME-250T:松本油脂製)、メチルセルロース(商品名マーポローズM-4000:松本油脂製株式会社製)、エチルセルロース(商品名エトセル300CP:ダウケミカル製)に変更した以外は合成例1と同様にしてアセトキシエチルメチルアセチルセルロース(C-2)、メチルアセチルセルロース(C-3)、エチルアセチルセルロース(C-4)を得た。これらのセルロース誘導体(C-2)、(C-3)、(C-4)の25℃での水への溶解度はいずれも0.1質量%未満であった(不溶)。
<Synthesis Examples 2, 3, and 4: Synthesis of acetoxyethyl methyl acetyl cellulose (C-2), methyl acetyl cellulose (C-3), and ethyl acetyl cellulose (C-4)>
Hydroxypropyl methylcellulose (trade name Metrolose 90SH-100: manufactured by Shin-Etsu Chemical Co., Ltd.) in Synthesis Example 1 was replaced by hydroxyethyl methylcellulose (trade name Marporose ME-250T: manufactured by Matsumoto Yushi), methylcellulose (trade name Marporose M-4000: manufactured by Matsumoto Yushi Co., Ltd.) And acetoxyethyl methyl acetyl cellulose (C-2), methyl acetyl cellulose (C-3), ethyl acetyl cellulose (C-3) in the same manner as in Synthesis Example 1 except that it was changed to ethyl cellulose (trade name Etcel 300CP: manufactured by Dow Chemical). C-4) was obtained. The solubility of these cellulose derivatives (C-2), (C-3), and (C-4) in water at 25 ° C. was less than 0.1% by mass (insoluble).
<合成例5:メチルセルロース-2-エチルヘキサノエート(C-5)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた3Lの三ツ口フラスコにメチルセルロース(和光純薬製:メチル置換度1.8)80g、ピリジン1500mLを量り取り、室温で攪拌した。ここに水冷下、2-エチルヘキサノイルクロリド173mLをゆっくりと滴下し、更に60℃で6時間攪拌した。反応後、室温に戻し、氷冷下、メタノール200mLを加えてクエンチした。反応溶液を水12Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量のメタノール溶媒で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することによりメチルセルロース-2-エチルヘキサノエート(C-5)を得た。このセルロース誘導体(C-5)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
<Synthesis Example 5: Synthesis of methylcellulose-2-ethylhexanoate (C-5)>
In a 3 L three-necked flask equipped with a mechanical stirrer, thermometer, condenser, and dropping funnel, 80 g of methylcellulose (manufactured by Wako Pure Chemical Industries, Ltd .: methyl substitution degree 1.8) and 1500 mL of pyridine were weighed and stirred at room temperature. Under water cooling, 173 mL of 2-ethylhexanoyl chloride was slowly added dropwise thereto, and the mixture was further stirred at 60 ° C. for 6 hours. After the reaction, the reaction solution was returned to room temperature and quenched by adding 200 mL of methanol under ice cooling. When the reaction solution was added to 12 L of water with vigorous stirring, a white solid was precipitated. The white solid was filtered off by suction filtration and washed 3 times with a large amount of methanol solvent. The resulting white solid was vacuum-dried at 100 ° C. for 6 hours to obtain methylcellulose-2-ethylhexanoate (C-5). The solubility of this cellulose derivative (C-5) in water at 25 ° C. was less than 0.1% by mass (insoluble).
<合成例6:バレロキシプロピルメチルバレロイルセルロース(C-6)の合成>
 合成例5におけるメチルセルロース(和光純薬製:メチル置換度1.8)に変えて、ヒドロキシプロピルメチルセルロース(商品名メトローズ90SH-100:信越化学製)、及び2-エチルヘキサノイルクロリドに変えてバレロイルクロライドを用いた以外、合成例5と同様にして、バレロキシプロピルメチルバレロイルセルロース(C-6)を得た。このセルロース誘導体(C-6)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
<Synthesis Example 6: Synthesis of valeroxypropyl methyl valeroyl cellulose (C-6)>
Instead of methyl cellulose in Synthesis Example 5 (manufactured by Wako Pure Chemical Industries, Ltd .: methyl substitution degree 1.8), hydroxypropylmethyl cellulose (trade name Metroze 90SH-100: manufactured by Shin-Etsu Chemical Co., Ltd.) and valeroyl in place of 2-ethylhexanoyl chloride Valeroxypropylmethylvaleroylcellulose (C-6) was obtained in the same manner as in Synthesis Example 5 except that chloride was used. The solubility of this cellulose derivative (C-6) in water at 25 ° C. was less than 0.1% by mass (insoluble).
<合成例7:バレロキシブチルメチルバレロイルセルロース(C-7)の合成>
 合成例6におけるヒドロキシプロピルメチルセルロース(商品名メトローズ90SH-100:信越化学製)に変えてヒドロキシブチルメチルセルロースを用いた以外、合成例6と同様にしてバレロキシブチルメチルバレロイルセルロース(C-7)を得た。このセルロース誘導体(C-7)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
<Synthesis Example 7: Synthesis of valeroxybutyl methyl valeroyl cellulose (C-7)>
Valeroxybutylmethyl valeroyl cellulose (C-7) was synthesized in the same manner as in Synthesis Example 6 except that hydroxybutylmethylcellulose was used instead of hydroxypropylmethylcellulose (trade name Metroze 90SH-100: manufactured by Shin-Etsu Chemical) in Synthesis Example 6. Obtained. The solubility of this cellulose derivative (C-7) in water at 25 ° C. was less than 0.1% by mass (insoluble).
 なお、以上で得られたセルロース誘導体が有する炭化水素基の種類及び置換度、アルキレンオキシ基の種類及びモル置換度、アシル基の種類及びアシル化度は、Cellulose Communication 6,73-79(1999)に記載の方法を利用して、H-NMRにより、観測及び決定した。なお、炭化水素基の置換度とはグルコース環ユニットに置換した炭化水素基のモル数であり、0以上3未満の値をとる。アルキレンオキシ基のモル置換度とは、グルコース環ユニットに置換したアルキレンオキシ基のモル数であり、0以上の値をとる。また、アシル化度とは、セルロースのグルコース環又はエーテル置換基に存在する水酸基をエステル化することによりアシル基で置換した程度を示し、0以上100以下で示す。
 また、コロイド滴定法を行い、上記セルロース誘導体(C-1)~(C-7)におけるカルボキシル基又はスルホン酸基の置換度が0.02未満(すなわち、カルボキシル基又はスルホン酸基の含有量がセルロース誘導体に対して0.5質量%未満)であることを確認した。
Note that the types and substitution degrees of hydrocarbon groups, the types and molar substitutions of alkyleneoxy groups, the types of acyl groups, and the degrees of acylation of the cellulose derivatives obtained above are described in Cellulose Communication 6, 73-79 (1999). Was observed and determined by 1 H-NMR using the method described in 1 ). The degree of substitution of the hydrocarbon group is the number of moles of the hydrocarbon group substituted on the glucose ring unit, and takes a value of 0 or more and less than 3. The molar substitution degree of the alkyleneoxy group is the number of moles of the alkyleneoxy group substituted on the glucose ring unit, and takes a value of 0 or more. The degree of acylation indicates the degree of substitution with an acyl group by esterifying a hydroxyl group present in the glucose ring or ether substituent of cellulose, and is represented by 0 or more and 100 or less.
Further, a colloid titration method is performed, and the degree of substitution of carboxyl groups or sulfonic acid groups in the cellulose derivatives (C-1) to (C-7) is less than 0.02 (that is, the content of carboxyl groups or sulfonic acid groups is It was confirmed that it was less than 0.5% by mass with respect to the cellulose derivative.
<セルロース誘導体の分子量測定>
 得られたセルロース誘導体について、数平均分子量(Mn)、質量平均分子量(Mw)、を測定した。これらの測定方法は以下の通りである。
[分子量及び分子量分布]
 数平均分子量(Mn)、質量平均分子量(Mw)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いた。具体的には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めた。GPC装置は、HLC-8220GPC(東ソー社製)を使用した。
<Measurement of molecular weight of cellulose derivative>
About the obtained cellulose derivative, the number average molecular weight (Mn) and the mass average molecular weight (Mw) were measured. These measuring methods are as follows.
[Molecular weight and molecular weight distribution]
For the measurement of the number average molecular weight (Mn) and the mass average molecular weight (Mw), gel permeation chromatography (GPC) was used. Specifically, N-methylpyrrolidone was used as a solvent, a polystyrene gel was used, and a molecular weight calibration curve obtained in advance from a constituent curve of standard monodisperse polystyrene was used. As the GPC apparatus, HLC-8220 GPC (manufactured by Tosoh Corporation) was used.
 得られたセルロース誘導体が有する炭化水素基の種類及び置換度、アルキレンオキシ基の種類及びモル置換度、アシル基の種類及びアシル化度、数平均分子量(Mn)、並びに質量平均分子量(Mw)をまとめて表1に示す。なお、表1には比較例で使用したセルロース誘導体(H-1)についても記載した。 The type and degree of substitution of hydrocarbon groups, the type and molar substitution of alkyleneoxy groups, the type and degree of acylation of acyl groups, the number average molecular weight (Mn), and the mass average molecular weight (Mw) of the obtained cellulose derivative These are summarized in Table 1. Table 1 also shows the cellulose derivative (H-1) used in the comparative example.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<実施例1~15、比較例1~4>
[成形体の作製]
 セルロース誘導体(C-1~C-7、H-1)、ゴム分散AS樹脂、相溶化剤、酸化防止剤を表3に示す配合割合(質量%)で混合し、セルロース樹脂組成物(成形材料)を作製した。この樹脂組成物を二軸混練押出機(テクノベル(株)製、Ultranano)に供給しペレットを作製し、ついで得られたペレットを、射出成形機(ファナック(株)Roboshot S-2000i、自動射出成形機)に供給して、4×10×80mmの多目的試験片を成形した。
<Examples 1 to 15 and Comparative Examples 1 to 4>
[Production of molded body]
Cellulose derivatives (C-1 to C-7, H-1), rubber-dispersed AS resin, compatibilizing agent, and antioxidant are mixed at a blending ratio (mass%) shown in Table 3 to obtain a cellulose resin composition (molding material). ) Was produced. This resin composition was supplied to a twin-screw kneading extruder (manufactured by Technobel Co., Ltd., Ultranano) to produce pellets, and then the obtained pellets were injected into an injection molding machine (FANUC Corporation Robot S-2000i, automatic injection molding). Machine), 4 × 10 × 80 mm multi-purpose test pieces were molded.
 なお、表3において、ゴム分散AS樹脂、相溶化剤、酸化防止剤は以下のものを示す。
 ABS樹脂(ブタジエン分散AS樹脂):UMG-ABS-AM、UMG社
 AAS(ASA)樹脂(アクリルゴム分散AS樹脂):ダイヤラックS510、UMG社
 AES樹脂(エチレン-プロピレン-ジエン系ゴム分散AS樹脂):ダイヤラックSK30、UMG社
 相溶化剤:モディパーA4400、日本油脂(株)(エチレン-グリシジルメタクリレート-graft-アクリロニトリル-スチレン樹脂)
 酸化防止剤:フェノール系酸化防止剤イルガノックス1010、チバ・スペシャルティ・ケミカルズ(株)
In Table 3, the rubber-dispersed AS resin, the compatibilizer and the antioxidant are as follows.
ABS resin (butadiene-dispersed AS resin): UMG-ABS-AM, UMG AAS (ASA) resin (acrylic rubber-dispersed AS resin): Dialac S510, UMG AES resin (ethylene-propylene-diene rubber dispersed AS resin) : Dialac SK30, UMG compatibilizer: Modiper A4400, Nippon Oil & Fats Co., Ltd. (ethylene-glycidyl methacrylate-graft-acrylonitrile-styrene resin)
Antioxidant: Phenolic antioxidant Irganox 1010, Ciba Specialty Chemicals Co., Ltd.
[評価]
 得られた多目的試験片を用いて、以下の項目について評価した。評価結果は表3に示した。
[Evaluation]
The following items were evaluated using the obtained multipurpose test piece. The evaluation results are shown in Table 3.
(曲げ弾性率)
 ISO178に準拠して、射出成形にて成形した試験片を23℃±2℃、50%±5%RHで48時間以上調整した後、インストロン(東洋精機製、ストログラフV50)によって支点間距離64mm、試験速度2mm/minで曲げ弾性率を測定した。測定は3回測定の平均値である。
(Flexural modulus)
In accordance with ISO178, after adjusting the test piece molded by injection molding for 48 hours or more at 23 ° C ± 2 ° C, 50% ± 5% RH, the distance between fulcrums by Instron (Toyo Seiki, Strograph V50) The flexural modulus was measured at 64 mm and a test speed of 2 mm / min. The measurement is an average of three measurements.
(曲げ強度)
 ISO178に準拠して、射出成形にて成形した試験片を23℃±2℃、50%±5%RHで48時間以上調整した後、インストロン(東洋精機製、ストログラフV50)によって支点間距離64mm、試験速度2mm/minで曲げ試験を行い、試験中の最大応力を曲げ強度とした。測定は3回測定の平均値である。
(Bending strength)
In accordance with ISO178, after adjusting the test piece molded by injection molding for 48 hours or more at 23 ° C ± 2 ° C, 50% ± 5% RH, the distance between fulcrums by Instron (Toyo Seiki, Strograph V50) A bending test was performed at 64 mm and a test speed of 2 mm / min, and the maximum stress during the test was defined as the bending strength. The measurement is an average of three measurements.
(熱変形温度(HDT))
 ISO75に準拠して、試験片の中央に一定の曲げ荷重(1.8MPa)を加え(フラットワイズ方向)、等速度で昇温させ、中央部のひずみが0.34mmに達したときの温度(℃)を測定した。熱変形温度測定装置は、(株)東洋精機製作所製 HDTテスタ6M-2を用いた。測定は3回測定の平均値である。
(Heat deformation temperature (HDT))
In accordance with ISO75, a constant bending load (1.8 MPa) is applied to the center of the test piece (in the flatwise direction), the temperature is increased at a constant speed, and the temperature when the strain at the center reaches 0.34 mm ( ° C). As a thermal deformation temperature measuring device, HDT tester 6M-2 manufactured by Toyo Seiki Seisakusho Co., Ltd. was used. The measurement is an average of three measurements.
(シャルピー衝撃強度)
 ISO179に準拠して、射出成形にて成形した試験片に入射角45±0.5°、先端0.25±0.05mmのノッチを形成し、23℃±2℃、50%±5%RHで48時間以上静置した後、シャルピー衝撃試験機((株)東洋精機製作所製)によってエッジワイズにて衝撃強度を測定した。測定は3回測定の平均値である。
(Charpy impact strength)
In accordance with ISO 179, a notch having an incident angle of 45 ± 0.5 ° and a tip of 0.25 ± 0.05 mm is formed on a test piece molded by injection molding, 23 ° C. ± 2 ° C., 50% ± 5% RH Then, the impact strength was measured edgewise with a Charpy impact tester (manufactured by Toyo Seiki Seisakusho). The measurement is an average of three measurements.
(分散性評価)
 分散性の指標として、光学顕微鏡(ニコン LV100)を用いて評価をした。ミクロトームで2μmに薄切し1000倍で観察したときに下記基準で評価した。
 ○:凝集物が観察されない場合
 △:凝集物がわずかに観察される場合
 ×:凝集物が多数観察される場合
(Dispersibility evaluation)
Evaluation was made using an optical microscope (Nikon LV100) as an index of dispersibility. When a microtome was sliced to 2 μm and observed at 1000 times, the evaluation was made according to the following criteria.
○: When aggregates are not observed Δ: When aggregates are slightly observed ×: When many aggregates are observed
(成形性の評価)
 成形性評価は、射出成形機での成形適性を示しており、計量性及び射出性をそれぞれ低せん断速度(10s-1)、及び高せん断速度(660s-1)での粘度で評価した。粘度測定は、回転式レオメーター(レオストレス RS600:Thermo HAAKE)を用いて行った。評価基準は以下の表2に示すように4段階とした。
(Evaluation of formability)
The moldability evaluation shows the moldability in an injection molding machine, and the meterability and the injection property were evaluated by the viscosity at a low shear rate (10 s −1 ) and a high shear rate (660 s −1 ), respectively. Viscosity measurement was performed using a rotary rheometer (Rheostress RS600: Thermo HAAKE). As shown in Table 2 below, the evaluation criteria were divided into four stages.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 実施例1~15は曲げ弾性率、曲げ強度、シャルピー衝撃強度、耐熱性(HDT)、成形性に優れていた。ゴム分散AS樹脂を含まない比較例1はシャルピー衝撃強度が実施例の試料よりも劣っていた。また、本発明におけるセルロース誘導体を含まない比較例2及び4はシャルピー衝撃強度が低かった。比較例3はセルロース誘導体を含まないためカーボンニュートラルなものではなく、実施例に比べて耐熱性も低かった。 Examples 1 to 15 were excellent in flexural modulus, flexural strength, Charpy impact strength, heat resistance (HDT), and moldability. The comparative example 1 which does not contain a rubber-dispersed AS resin has inferior Charpy impact strength to the sample of the example. Moreover, the comparative examples 2 and 4 which do not contain the cellulose derivative in this invention had low Charpy impact strength. Since Comparative Example 3 did not contain a cellulose derivative, it was not carbon neutral and had lower heat resistance than the Examples.
 本発明の成形材料は、優れた熱可塑性を有するため、加熱成形などにより成形することができる。また、本発明の成形材料、及び成形体は、剛性、曲げ強度、熱変形温度、及び成形加工性といった性能に優れ、かつ良好な耐衝撃性を有しており、例えば自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。また、本発明の成形材料は、植物由来の樹脂であるセルロースから得られるセルロース誘導体を使用しているため、温暖化防止に貢献できる素材として、従来の石油由来の樹脂に代替できる。 Since the molding material of the present invention has excellent thermoplasticity, it can be molded by heat molding or the like. Further, the molding material and the molding of the present invention are excellent in performance such as rigidity, bending strength, heat distortion temperature, and molding processability and have good impact resistance. It can be suitably used as a component part such as equipment, a machine part, a house / building material, or the like. Moreover, since the molding material of this invention uses the cellulose derivative obtained from the cellulose which is plant-derived resin, it can substitute for the conventional petroleum-derived resin as a raw material which can contribute to global warming prevention.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年12月25日出願の日本特許出願(特願2009-295102)、に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2009-295102) filed on Dec. 25, 2009, the contents of which are incorporated herein by reference.

Claims (17)

  1.  セルロースに含まれる水酸基の水素原子が、
     下記A)で置換された基を少なくとも1つ、及び
     下記B)で置換された基を少なくとも1つ含むセルロース誘導体と、
     ゴム成分を分散相として有するアクリロニトリル-スチレン共重合体とを含有する成形材料。
     A)炭化水素基:-R
     B)アシル基:-CO-R(Rは炭化水素基を表す。)
    The hydrogen atom of the hydroxyl group contained in cellulose
    A cellulose derivative comprising at least one group substituted in A) below and at least one group substituted in B) below;
    A molding material containing an acrylonitrile-styrene copolymer having a rubber component as a dispersed phase.
    A) Hydrocarbon group: —R A
    B) Acyl group: —CO—R B (R B represents a hydrocarbon group.)
  2.  前記セルロース誘導体が、更に、セルロースに含まれる水酸基の水素原子が下記C)で置換された基を少なくとも1つ含む、請求項1に記載の成形材料。
     C)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。)
    The molding material according to claim 1, wherein the cellulose derivative further comprises at least one group in which a hydrogen atom of a hydroxyl group contained in cellulose is substituted by the following C).
    C) a group containing an alkyleneoxy group: —R C2 —O— and an acyl group: —CO—R C1 (R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms. )
  3.  前記C)アルキレンオキシ基とアシル基とを含む基が、下記一般式(3)で表される構造を含む基である、請求項2に記載の成形材料。
    Figure JPOXMLDOC01-appb-C000001
    (式中、RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。nは1以上の整数を表す。)
    The molding material according to claim 2, wherein the C) group containing an alkyleneoxy group and an acyl group is a group containing a structure represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R C1 represents a hydrocarbon group, R C2 represents an alkylene group having 2 to 4 carbon atoms, and n represents an integer of 1 or more.)
  4.  前記Rが炭素数1~4のアルキル基である、請求項1~3のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 3, wherein R A is an alkyl group having 1 to 4 carbon atoms.
  5.  前記Rがメチル基又はエチル基である、請求項1~4のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 4, wherein R A is a methyl group or an ethyl group.
  6.  前記R及びRC1が、それぞれ独立に、アルキル基又はアリール基である、請求項2~5のいずれか一項に記載の成形材料。 The molding material according to any one of claims 2 to 5, wherein R B and R C1 are each independently an alkyl group or an aryl group.
  7.  前記R及びRC1が、それぞれ独立に、メチル基、エチル基、又はプロピル基である、請求項2~6のいずれか一項に記載の成形材料。 The molding material according to any one of claims 2 to 6, wherein R B and R C1 are each independently a methyl group, an ethyl group, or a propyl group.
  8.  前記Rが、炭素数3~10の分岐構造を有する炭化水素基である、請求項1~6のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 6, wherein R B is a hydrocarbon group having a branched structure having 3 to 10 carbon atoms.
  9.  前記アルキレンオキシ基が下記式(1)又は(2)で表される基である、請求項2~8のいずれか一項に記載の成形材料。
    Figure JPOXMLDOC01-appb-C000002
    The molding material according to any one of claims 2 to 8, wherein the alkyleneoxy group is a group represented by the following formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000002
  10.  前記セルロース誘導体が、カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さない、請求項1~9のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 9, wherein the cellulose derivative has substantially no carboxyl group, sulfonic acid group, or salt thereof.
  11.  前記セルロース誘導体が水に不溶である、請求項1~10のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 10, wherein the cellulose derivative is insoluble in water.
  12.  前記ゴム成分を分散相として有するアクリロニトリル-スチレン共重合体において、アクリロニトリル-スチレン共重合体に分散するゴム成分が、ポリブタジエンゴム、アクリル系ゴム、及びエチレンープロピレンージエン系ゴムからなる群から選ばれる少なくとも1つかである、請求項1~11のいずれか一項に記載の成形材料。 In the acrylonitrile-styrene copolymer having the rubber component as a dispersed phase, the rubber component dispersed in the acrylonitrile-styrene copolymer is selected from the group consisting of polybutadiene rubber, acrylic rubber, and ethylene-propylene-diene rubber. The molding material according to any one of claims 1 to 11, wherein there is at least one.
  13.  更に、相溶化剤を含有する、請求項1~12のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 12, further comprising a compatibilizing agent.
  14.  前記相溶化剤が、カルボン酸無水物、又は、エポキシ基、イソシアネート基、及びオキサゾリン基から選ばれる少なくとも1つを有する、請求項13に記載の成形材料。 The molding material according to claim 13, wherein the compatibilizing agent has at least one selected from a carboxylic acid anhydride, an epoxy group, an isocyanate group, and an oxazoline group.
  15.  請求項1~14のいずれか一項に記載の成形材料を加熱成形して得られる成形体。 A molded body obtained by thermoforming the molding material according to any one of claims 1 to 14.
  16.  請求項1~14のいずれか一項に記載の成形材料を加熱し、成形する工程を含む、成形体の製造方法。 A method for producing a molded body, comprising a step of heating and molding the molding material according to any one of claims 1 to 14.
  17.  請求項15に記載の成形体から構成される電気電子機器用筐体。 A housing for electrical and electronic equipment comprising the molded body according to claim 15.
PCT/JP2010/073247 2009-12-25 2010-12-22 Molding material, molded article and process for production thereof, and housing for electric/electronic device WO2011078292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-295102 2009-12-25
JP2009295102A JP5486919B2 (en) 2009-12-25 2009-12-25 MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE

Publications (1)

Publication Number Publication Date
WO2011078292A1 true WO2011078292A1 (en) 2011-06-30

Family

ID=44195818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073247 WO2011078292A1 (en) 2009-12-25 2010-12-22 Molding material, molded article and process for production thereof, and housing for electric/electronic device

Country Status (2)

Country Link
JP (1) JP5486919B2 (en)
WO (1) WO2011078292A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217504A1 (en) * 2016-06-17 2017-12-21 日本電気株式会社 Cellulose-based resin composition, moulded article, and product using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998470B2 (en) * 2010-12-24 2016-09-28 富士ゼロックス株式会社 Resin composition and resin molded body
JP6569200B2 (en) * 2014-09-26 2019-09-04 富士ゼロックス株式会社 Resin composition and resin molded body
US9605086B2 (en) * 2015-03-26 2017-03-28 Fuji Xerox Co., Ltd. Resin composition and resin molded article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119296A (en) * 2001-10-11 2003-04-23 Fuji Photo Film Co Ltd Cellulose ester film
JP2004051897A (en) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd Anisotropic light-scattering sheet
JP2005154550A (en) * 2003-11-25 2005-06-16 Fuji Photo Film Co Ltd Cellulose film, optical film using the film, image display device and silver halide photographic sensitized material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4399305B2 (en) * 2004-03-30 2010-01-13 ダイセル化学工業株式会社 Cellulose ether acetate optical film
JP5233063B2 (en) * 2004-09-17 2013-07-10 東レ株式会社 Resin composition and molded article comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119296A (en) * 2001-10-11 2003-04-23 Fuji Photo Film Co Ltd Cellulose ester film
JP2004051897A (en) * 2002-07-23 2004-02-19 Daicel Chem Ind Ltd Anisotropic light-scattering sheet
JP2005154550A (en) * 2003-11-25 2005-06-16 Fuji Photo Film Co Ltd Cellulose film, optical film using the film, image display device and silver halide photographic sensitized material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217504A1 (en) * 2016-06-17 2017-12-21 日本電気株式会社 Cellulose-based resin composition, moulded article, and product using same
US10941282B2 (en) 2016-06-17 2021-03-09 Nec Corporation Cellulose resin composition, molded body and product using same

Also Published As

Publication number Publication date
JP5486919B2 (en) 2014-05-07
JP2011132464A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
WO2011078272A1 (en) Molding material, molded body, manufacturing method thereof, and casing for electrical or electronic equipment
JP5486919B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
WO2011078275A1 (en) Molding material, molded body, manufacturing method thereof, and casing for electrical or electronic equipment
JP2011132448A (en) Molding material, molded article, manufacturing method therefor, vessel, and film
JP5639863B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP5486918B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP5470031B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP2011132459A (en) Molding material, molded article, and method for producing the same, and housing for electric electronic equipment
WO2011078273A1 (en) Molding material, molded body, manufacturing method thereof, and casing for electrical or electronic equipment
JP5470030B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP5486917B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
WO2011078278A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078271A1 (en) Molding material, molded body, manufacturing method thereof, and casing for electrical or electronic equipment
WO2011078283A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
JP5364567B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP5481183B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
WO2011078284A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078282A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078276A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
JP2011132462A (en) Molding material, molded article, and method for producing the same, and housing for electric electronic equipment
WO2011078281A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
JP2011132456A (en) Molding material, molded body and manufacturing method therefor, and housing for electrical and electronic equipment
JP2011132435A (en) Molding material, molded article, manufacturing method therefor, and housing for electric/electronic equipment
JP2011132432A (en) Molding material, molded body and method for producing the same, and housing for electrical and electronic equipment
JP2012116901A (en) Molding material, molded article, method for producing the same, and electric and electronic instrument housing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839522

Country of ref document: EP

Kind code of ref document: A1