WO2011078175A1 - Planographic printing original plate, and method for producing planographic printing plate - Google Patents

Planographic printing original plate, and method for producing planographic printing plate Download PDF

Info

Publication number
WO2011078175A1
WO2011078175A1 PCT/JP2010/073018 JP2010073018W WO2011078175A1 WO 2011078175 A1 WO2011078175 A1 WO 2011078175A1 JP 2010073018 W JP2010073018 W JP 2010073018W WO 2011078175 A1 WO2011078175 A1 WO 2011078175A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving layer
printing plate
lithographic printing
image
image receiving
Prior art date
Application number
PCT/JP2010/073018
Other languages
French (fr)
Japanese (ja)
Inventor
孝教 武井
由人 大橋
正雄 内海
幸雄 徳永
秀人 木山
勝 長濱
雄一朗 小西
Original Assignee
三菱製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010221452A external-priority patent/JP2011194876A/en
Priority claimed from JP2010230157A external-priority patent/JP2012081664A/en
Application filed by 三菱製紙株式会社 filed Critical 三菱製紙株式会社
Publication of WO2011078175A1 publication Critical patent/WO2011078175A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1066Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by spraying with powders, by using a nozzle, e.g. an ink jet system, by fusing a previously coated powder, e.g. with a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/12Printing plates or foils; Materials therefor non-metallic other than stone, e.g. printing plates or foils comprising inorganic materials in an organic matrix
    • B41N1/14Lithographic printing foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5218Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5245Macromolecular coatings characterised by the use of polymers containing cationic or anionic groups, e.g. mordants

Definitions

  • the present invention relates to a lithographic printing plate precursor for making a plate directly from digital information and a plate making method thereof.
  • the lithographic printing plate precursors currently used in the printing field include (1) a direct drawing type in which an image receiving layer is provided on a water-resistant support, and (2) a photoconductive layer on the water-resistant support.
  • An electrophotographic type provided, (3) a silver salt photographic type provided with a silver halide emulsion layer on a water-resistant support, and (4) a PS plate provided with a photosensitive resin on a support such as metal.
  • the lithographic printing plate precursor (1) described above can be directly made by forming an oleophilic image on the image-receiving layer, so that the other lithographic printing methods (2), (3) and (4) above are used. Compared to the original plate, the plate can be easily produced.
  • the lithographic printing plate produced in this way is surface-treated with a desensitizing liquid (etching liquid) to desensitize non-image areas and then used for printing.
  • a laser beam printer may be used as a method for converting electronically edited information into a digital electric signal and writing image information directly on the image receiving layer.
  • electronically edited information can be easily enlarged / reduced, negative / positive converted, shaded, etc., so that many functions can be provided.
  • Laser beam printers need to increase the resolution in order to improve the quality of printed images required in recent years. However, since such laser beam printers generally have finer toner particles, the toner scatters around the development area. The toner that is easily scattered in the non-image area causes printing stains called toner fog.
  • the ink used for the ink jet system is mainly one using water as a solvent, and additionally contains dyes or pigments, alcohols, various additives and the like.
  • the printed part (image part) contains only a very small amount of oleophilic components, so the difference between the oleophilic property of the image part and the hydrophilicity of the non-image part is not sufficient, and sufficient printing durability and stain resistance.
  • the present situation is that a lithographic printing plate having properties cannot be obtained.
  • Patent Document 1 JP-A-5-204138 discloses a lithographic printing plate precursor provided with an image receiving layer containing a linear organic polymer
  • Patent Document 2 JP-A 2000-108537
  • Patent Document 3 discloses a diene structure.
  • a lithographic printing plate precursor provided with an image-receiving layer containing a polymer pendant with a group having s is disclosed.
  • JP-A 2006-264093 discloses a lithographic printing plate precursor provided with an image receiving layer containing a hydrophilic polymer crosslinked with a crosslinking agent having a carbodiimide group and a surfactant.
  • a lithographic printing plate precursor having a porous image-receiving layer by mainly containing inorganic fine particles, etc., in contrast to the above-described polymer-type lithographic printing plate precursor, is also known.
  • the layer for example, in Japanese Patent Laid-Open No. 8-324145 (Patent Document 5), an image receiving layer composed of non-greasy metal powder such as zinc oxide and alumina is disclosed in Japanese Patent Laid-Open No. 9-29926 (Patent Document 5).
  • Document 6 describes an image receiving layer having a porous or particulate form for taking up ink-jet ink, and Japanese Patent Application Laid-Open No.
  • Patent Document 7 discloses a polymer binder, clay, silica
  • Patent Document 8 discloses an image receiving layer containing a pigment that becomes hydrophilic with an etching solution such as alumina, and a pigment for forming irregularities on the surface.
  • An image receiving layer having a three-dimensional network structure formed from inorganic fine particles having a uniform primary particle size of 100 nm or less and a water-soluble resin is disclosed in JP-A-2000-44884 (Patent Document 9) coated with an inorganic gel dispersion.
  • An image receiving layer having an inorganic xerogel obtained in this manner is disclosed.
  • Patent Document 10 JP-A-10-296945 (Patent Document 10) and JP-A-10-315645 are disclosed.
  • Patent Document 11 discloses an image receiving layer containing inorganic fine particles having an average particle diameter of 1 to 6 ⁇ m and colloidal silica having an average primary particle diameter of 10 to 50 nm.
  • JP 2003-231374 A Patent Document 12
  • JP 2004-42531 A Patent Document 13
  • JP-A-2008-183846 Patent Document 14 discloses a solvent absorption containing an inorganic pigment and a resin.
  • a lithographic printing plate precursor in which a layer and an image receiving layer containing colloidal silica are laminated is disclosed, and JP 2007-190804 A (Patent Document 15) discloses an inorganic pigment / binder of an image receiving layer close to a support.
  • Patent Document 15 discloses an inorganic pigment / binder of an image receiving layer close to a support.
  • a lithographic printing plate precursor in which the ratio is smaller than the ratio of the image receiving layer farther from the support is disclosed.
  • polymer type lithographic printing plate precursors as described in Patent Documents 1 to 4 do not provide satisfactory image quality, and printing durability and stain resistance are not sufficiently satisfactory.
  • a planographic printing plate precursor having a porous image-receiving layer mainly containing inorganic fine particles as described in Patent Documents 5 to 9 is likely to be stained when printed.
  • a lithographic printing plate precursor having a plurality of porous layers on the side having a plurality of image receiving layers as described in Patent Documents 12 to 15 has both sufficient printing durability and stain resistance. It is difficult.
  • An object of the present invention is to provide a lithographic printing plate precursor capable of direct plate making by an ink jet method, having excellent image quality, and capable of achieving both good printing durability and stain resistance, and a lithographic printing plate It is to provide a plate making method.
  • a lithographic printing plate precursor comprising an image-receiving layer B mainly containing colloidal silica and containing a cationic compound.
  • the image receiving layer B is a layer mainly containing a cationic colloidal silica having an average primary particle diameter of 30 nm or more, or a layer mainly containing a non-spherical cationic colloidal silica.
  • the non-spherical cationic colloidal silica has an average primary particle size of 25 to 60 nm and a ratio of the average secondary particle size to the average primary particle size of 1.4 to 3.1.
  • (4) The lithographic printing plate precursor as described in (2) above, wherein the image receiving layer B is a layer mainly containing cationic colloidal silica having an average primary particle diameter of 30 nm or more.
  • a method for making a lithographic printing plate comprising printing an aqueous pigment ink on the lithographic printing plate precursor according to any one of (1) to (8) above by an inkjet method.
  • (11) The method for making a lithographic printing plate as described in (9) or (10) above, comprising desensitization treatment after printing the aqueous pigment ink on the lithographic printing plate precursor and before starting printing.
  • a lithographic printing plate precursor capable of direct plate making by an ink jet method, having excellent image quality, and having both good printing durability and stain resistance, and a lithographic printing plate making method Can be provided.
  • the lithographic printing plate precursor according to this embodiment comprises an image-receiving layer A mainly containing inorganic fine particles on a water-resistant support, and a cationic property on the side farther from the water-resistant support than the image-receiving layer A.
  • a lithographic printing plate precursor comprising an image receiving layer B mainly containing colloidal silica or containing colloidal silica as a main component and containing a cationic compound. According to such a lithographic printing plate precursor, direct plate making by an ink jet method is possible, it has excellent image quality, and it is possible to achieve both good printing durability and stain resistance.
  • the image receiving layer B provided on the side farther from the support than the image receiving layer A of the present invention mainly contains cationic colloidal silica, or mainly contains colloidal silica and contains a cationic compound. It is an image receiving layer.
  • “mainly contained” means that the mass ratio of the cationic colloidal silica to the total solid mass of the image receiving layer B or the mass ratio of the colloidal silica is 50% by mass or more, Preferably it is 70 mass% or more, More preferably, it is 85 mass% or more.
  • the image-receiving layer B mainly contains cationic colloidal silica having an average primary particle diameter of 30 nm or more, or is a layer mainly containing non-spherical cationic colloidal silica. It is preferable from the viewpoint of obtaining a lithographic printing plate precursor having good printing durability and stain resistance.
  • the non-spherical cationic colloidal silica has an average primary particle diameter of 25 to 60 nm and an average with respect to the average primary particle diameter.
  • the secondary particle size ratio is preferably 1.4 to 3.1.
  • ratio of average secondary particle size to average primary particle size is 1.4 to 3.1 in non-spherical cationic colloidal silica means that secondary particles are It means a state in which 2 to 3 primary particles of colloidal silica are connected, and a state in which 5 or more primary particles are connected is not included.
  • the average primary particle size of colloidal silica is the average particle size of 100 particles existing within a certain area from an electron micrograph of particles dispersed until the primary particle size can be determined.
  • the ratio of the average secondary particle diameter to the average primary particle diameter of the colloidal silica is determined as the number median diameter using a laser scattering type particle size distribution meter (for example, LA910, manufactured by Horiba, Ltd.), It is the value which computed the ratio with respect to the average primary particle diameter calculated
  • colloidal silica As a method for obtaining such colloidal silica, a method of modifying the surface of colloidal silica with a cationic polymer or a water-soluble polyvalent metal compound, which will be described later, or a method of modifying the surface of colloidal silica with the following cationic silane coupling agent or the like. And a method of introducing a cationic group to the particle surface during the production process of colloidal silica.
  • the colloidal silica used for modifying the surface of the colloidal silica include a trade name Quarton PL series manufactured by Fuso Chemical Industry Co., Ltd., and Cataloid SI-50 manufactured by JGC Catalysts & Chemicals Co., Ltd. Among these, a method of modifying the surface of colloidal silica using a water-soluble polyvalent metal compound is more preferable.
  • silane coupling agent examples include N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl). ) - ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, and the like.
  • the solid content mixing ratio of the cationic polymer or water-soluble polyvalent metal compound for modifying the cationic colloidal silica (parts by weight of colloidal silica / mass by weight of the cationic polymer or water-soluble polyvalent metal compound) is 100/2 to 100/20. Is preferable, and 100/5 to 100/15 is more preferable.
  • the solid content mixing ratio of the cationic silane coupling agent (parts by weight of colloidal silica / parts by weight of the cationic silane coupling agent) is 100 / 0.01 to 100. / 20 is preferable, and 100 / 0.05 to 100/10 is more preferable.
  • the image receiving layer B mainly contains cationic colloidal silica having an average primary particle size of 30 nm or more from the viewpoint of obtaining good printing durability and stain resistance.
  • the layer B mainly contains cationic colloidal silica having an average primary particle diameter of 50 nm or more, the stain resistance is further improved.
  • cationic colloidal silica having an average primary particle diameter of 30 nm or more refers to cationic colloidal silica having colloidal particles of spherical primary particles having an average primary particle diameter of 30 nm or more.
  • the average primary particle diameter of the cationic colloidal silica is desirably 300 nm or less from the viewpoint of obtaining good printing durability.
  • the cationic colloidal silica used in the present invention is, for example, a product name of Silica LGT from Lion Corporation, a product name of Fine Cataroid from JGC Catalysts Chemical Co., Ltd., or ST- from Nissan Chemical Industries, Ltd. These are commercially available under trade names such as AK-L, ST-UP-AK, ST-PS-M-AK, ST-AK-YL, and these can be obtained and used.
  • the colloidal silica used together with the cationic compound contained in the image receiving layer B is described in detail. It is an anionic colloidal silica, and a preferable average primary particle diameter is the same as that of the cationic colloidal silica described above.
  • anionic colloidal silica include Snowtex ST-20, ST-30, ST-C, ST-OL40, ST-OZL and the like commercially available from Nissan Chemical Industries, Ltd., and Fuso Chemical Industries, Ltd. Commercially available PL-3L, PL-5, PL-7, etc. can be obtained and used.
  • the cationic compound used together with the colloidal silica contained in the image receiving layer B is a cationic polymer.
  • a water-soluble polyvalent metal compound is mentioned.
  • These cationic polymers or water-soluble polyvalent metal compounds can also be used to modify the surface of colloidal silica when producing non-spherical cationic colloidal silica.
  • Examples of the cationic polymer include polyethyleneimine; polydiallylamine; polyallylamine; alkylamine polymer; JP 59-20696, JP 59-33176, JP 59-33177, JP JP 59-1555088, JP 60-11389, JP 60-49990, JP 60-83882, JP 60-109894, JP 62-198493 JP, JP 63-49478, JP 63-115780, JP 63-280681, JP 1-40371, JP 6-234268, JP 7-125411. No. 1 and tertiary amino groups and quaternary ammonium bases described in JP-A-10-193976 Over is preferably used.
  • the molecular weight of these cationic polymers is preferably about 1,000 to 100,000.
  • the water-soluble polyvalent metal compound includes, as a water-soluble polyvalent metal salt, a metal selected from calcium, barium, manganese, copper, cobalt, nickel, aluminum, iron, zinc, zirconium, chromium, magnesium, tungsten, and molybdenum.
  • a water-soluble salt is mentioned.
  • water-soluble refers to dissolving 1% by mass or more in water at normal temperature and pressure.
  • a water-soluble metal salt made of zirconium or aluminum is preferable.
  • ZA-30 is commercially available from Daiichi Rare Element Chemical Co., Ltd.
  • a water-soluble metal made of aluminum for example, water treatment agent under the name of polyaluminum chloride (PAC) from Taki Chemical Co., Ltd., under the name of polyaluminum hydroxide (Paho) from Asada Chemical Co., Ltd. It is sold under the name Purachem WT by Riken Green, Inc., and it is also sold by other manufacturers for the same purpose, and various grades are readily available.
  • PAC polyaluminum chloride
  • Paho polyaluminum hydroxide
  • the image receiving layer B can contain a binder.
  • the binder content in the image receiving layer B is preferably 10% by mass or less, more preferably 6% by mass or less of the solid content coating amount of the image receiving layer B. Thereby, both excellent printing durability and stain resistance can be achieved.
  • the binder to be used include those similar to the hydrophilic binder contained in the image receiving layer A to be described later. Among them, polyvinyl alcohol and cellulose derivatives, in particular, polyvinyl alcohol and hydroxyethyl cellulose are used in combination. It is possible to improve the stain resistance without deteriorating the property.
  • the ratio (mass ratio) when polyvinyl alcohol and cellulose derivative are used in combination is preferably in the range of 7: 3 to 3: 7.
  • the solid content coating amount of the image receiving layer B is preferably 0.01 to 8.0 g / m 2 , more preferably 0.05 to 2.0 g / m 2 , and still more preferably 0.05 to 1.5 g / m 2 . Thereby, particularly good image quality can be obtained.
  • the image receiving layer A of the present invention mainly contains inorganic fine particles.
  • “mainly containing inorganic fine particles” means that the inorganic fine particles are contained in an amount of 50% by mass or more, more preferably 60% by mass or more, based on the solid content coating amount of the image receiving layer A. That is.
  • the content of the inorganic fine particles in the image receiving layer A of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, particularly 65 to 90% by mass with respect to the total solid content of the image receiving layer A. The range of is preferable.
  • the image receiving layer having a high content of inorganic fine particles becomes a porous image receiving layer having a high porosity.
  • Examples of the inorganic fine particles contained in the image receiving layer A include various known fine particles such as amorphous synthetic silica, alumina, alumina hydrate, calcium carbonate, magnesium carbonate, titanium dioxide, and good productivity can be obtained.
  • amorphous synthetic silica, alumina, or alumina hydrate is preferable.
  • amorphous synthetic silica, particularly gas phase method silica described later is particularly preferably used.
  • the average secondary particle size of the inorganic fine particles contained in the image receiving layer A of the present invention is preferably less than 1.0 ⁇ m.
  • Amorphous synthetic silica can be roughly classified into wet method silica, gas phase method silica, and others depending on the production method.
  • the wet process silica is further classified into precipitation process silica, gel process silica, and sol process silica according to the production method.
  • Precipitated silica is produced by reacting sodium silicate and sulfuric acid under alkaline conditions, and the silica particles that have grown are agglomerated and settled, and are then commercialized through the steps of filtration, washing, drying, pulverization and classification.
  • Precipitated silica is commercially available, for example, from Tosoh Silica Co., Ltd. under the trade name of nipseal and from Tokuyama Co., Ltd.
  • Gel silica is produced by reacting sodium silicate and sulfuric acid under acidic conditions. During aging, the microparticles dissolve and reprecipitate so as to bind the other primary particles, so that the distinct primary particles disappear and form relatively hard aggregated particles having an internal void structure.
  • the gel method silica for example, it is commercially available from Tosoh Silica Co., Ltd. under the trade name of Nipgel, and from Grace Japan Co., Ltd. under the trade names of Cyloid and Silojet.
  • the sol method silica is also called colloidal silica, and is obtained by heating and aging a silica sol obtained through metathesis of sodium silicate acid or the like through an ion exchange resin layer.
  • Sol silica is commercially available from Nissan Chemical Industries, Ltd. under the name Snowtex.
  • Vapor phase silica is also called dry silica compared to wet silica, and is generally made by flame hydrolysis. Specifically, a method of making silicon tetrachloride by burning with hydrogen and oxygen is generally known, but silanes such as methyltrichlorosilane and trichlorosilane can be used alone or in silicon tetrachloride instead of silicon tetrachloride. Can be used in a mixed state. Vapor phase method silica is commercially available from Nippon Aerosil Co., Ltd. under the trade name Aerosil and from Tokuyama Co., Ltd. under the QS type trade name.
  • the inorganic fine particles in the present invention are preferably inorganic fine particles having a specific surface area of more than 150 m 2 / g as measured by the BET method because the stain resistance is improved.
  • vapor phase method silica having a specific surface area by BET method exceeding 300 m 2 / g can be preferably used.
  • the BET method referred to in the present invention is a method for measuring the surface area of a powder by a vapor phase adsorption method, and is a method for determining the total surface area, that is, the specific surface area of a 1 g sample from an adsorption isotherm.
  • the adsorbed gas a large amount of nitrogen gas is used, and the method of measuring the amount of adsorption from the change in pressure or volume of the gas to be adsorbed is most often used.
  • the most prominent expression for expressing the isotherm of multimolecular adsorption is the Brunauer, Emmett, and Teller formula, called the BET formula, which is widely used for determining the surface area.
  • the adsorption amount is obtained based on the BET formula, and the specific surface area is obtained by multiplying the area occupied by one adsorbed molecule on the surface.
  • the gas phase method silica in the present invention is preferably dispersed in the presence of a cationic compound.
  • the average secondary particle diameter of the dispersed vapor phase process silica is preferably less than 1.0 ⁇ m.
  • gas phase method silica and a dispersion medium are premixed by ordinary propeller stirring, turbine type stirring, homomixer type stirring, etc., and then a media mill such as a ball mill, a bead mill, a sand grinder, a high pressure homogenizer, an ultrahigh pressure It is preferable to perform dispersion using a pressure disperser such as a homogenizer, an ultrasonic disperser, a thin film swirl disperser, or the like.
  • the average secondary particle diameter of the inorganic fine particles referred to in the present invention can be measured as a number median diameter using a laser scattering type particle size distribution meter (for example, LA910 manufactured by Horiba, Ltd.).
  • wet process silica pulverized to an average secondary particle size of less than 1.0 ⁇ m can also be preferably used.
  • precipitation method silica or gel method silica is preferable, and precipitation method silica is particularly preferable.
  • wet-process silica produced by a normal method has an average aggregate particle diameter of 1.0 ⁇ m or more, it is used after being finely pulverized.
  • a pulverization method a wet dispersion method in which silica dispersed in an aqueous medium is mechanically pulverized can be preferably used. At this time, increase in the initial viscosity of the dispersion is suppressed, high concentration dispersion is possible, and pulverization / dispersion efficiency is increased so that it can be further pulverized into fine particles. It is preferable to do.
  • the productivity of the lithographic printing plate precursor is also improved.
  • wet process silica particles having an average aggregated particle diameter of 5 to 50 ⁇ m are preferable, and wet process silica fine particles obtained by pulverizing them in the presence of a cationic compound can be used.
  • silica particles and a cationic compound are mixed in a dispersion medium mainly composed of water, and at least one dispersion device such as a sawtooth blade type dispersion machine, a propeller blade type dispersion machine, or a rotor stator type dispersion machine is used. Used to obtain a preliminary dispersion. If necessary, an appropriate low boiling point solvent or the like may be added to the aqueous dispersion medium.
  • the silica pre-dispersion preferably has a higher solid content, but if the concentration is too high, the dispersion becomes impossible.
  • the preferred range is 15 to 40% by mass, and more preferably 20 to 35% by mass.
  • the silica particles are pulverized by applying the silica pre-dispersion to mechanical means having a stronger shearing force to obtain a wet process silica fine particle dispersion having an average secondary particle size of less than 1.0 ⁇ m.
  • mechanical means a known method can be adopted, for example, a media mill such as a ball mill, a bead mill, a sand grinder, a high pressure homogenizer, a pressure disperser such as an ultra high pressure homogenizer, an ultrasonic disperser, a thin film swirl disperser, etc. Can be used.
  • a cationic polymer can be preferably used as the cationic compound used for dispersion or pulverization of the vapor phase silica and the wet method silica.
  • the cationic compound and the cationic polymer are synonymous with the cationic compound and the cationic polymer used together with the colloidal silica in the image receiving layer B.
  • a diallylamine derivative is preferably used as the cationic polymer.
  • the molecular weight of these cationic polymers is preferably about 2000 to 100,000, and more preferably about 2000 to 30,000.
  • alumina or alumina hydrate is also preferably used as the inorganic fine particles used for the image receiving layer A.
  • Alumina or alumina hydrate is aluminum oxide or its hydrate, which may be crystalline or amorphous, and has an amorphous shape, a spherical shape, a plate shape, or the like. Any of these may be used or used in combination.
  • ⁇ -alumina which is a ⁇ -type crystal of aluminum oxide
  • ⁇ group crystal is particularly preferable.
  • ⁇ -alumina can make primary particles as small as about 10 nm.
  • secondary particles of several thousand to several tens of thousands nm are averaged by ultrasonic, high-pressure homogenizer, counter collision type jet crusher, etc. Those having a secondary particle size of less than 1.0 ⁇ m can be used.
  • the hydrated aluminum oxide can be obtained by a known production method such as hydrolysis of aluminum alkoxide such as aluminum isopropoxide, neutralization of aluminum salt with alkali, hydrolysis of aluminate, and the like.
  • the average secondary particle size of the alumina hydrate used in the present invention is preferably less than 1.0 ⁇ m.
  • Alumina and alumina hydrate used in the present invention are preferably those in which the average secondary particle size is dispersed to less than 1.0 ⁇ m by a known dispersant such as acetic acid, lactic acid, formic acid, methanesulfonic acid, hydrochloric acid, nitric acid and the like. Used.
  • Two or more kinds of inorganic fine particles can be used in combination from the above-mentioned inorganic fine particles.
  • combined use of finely pulverized wet method silica and vapor phase method silica combined use of finely divided wet method silica and alumina or alumina hydrate, and combined use of vapor phase method silica and alumina or alumina hydrate. It is done.
  • the ratio (mass ratio) in the case of this combined use is preferably in the range of 7: 3 to 3: 7 in any aspect.
  • a binder together with the inorganic fine particles constituting the image receiving layer A.
  • a hydrophilic binder having high transparency and higher ink permeability is preferably used.
  • polyvinyl alcohol including modified products thereof
  • gelatin polyethylene oxide
  • polyvinyl pyrrolidone polyacrylic acid
  • polyacrylamide polyurethane
  • dextran dextrin
  • carrageenan agar
  • pullulan water-soluble polyvinyl butyral
  • hydroxyethyl cellulose hydroxypropyl cellulose
  • various cellulose derivatives such as carboxymethylcellulose.
  • Two or more of these hydrophilic binders can be used in combination.
  • hydrophilic binder When using a hydrophilic binder, it is important that the hydrophilic binder does not swell during the initial penetration of the ink and block the voids. From this point of view, a hydrophilic binder having a relatively low swellability around room temperature is preferable. Used.
  • a preferred hydrophilic binder is polyvinyl alcohol, and particularly, completely or partially saponified polyvinyl alcohol or cationically modified polyvinyl alcohol is preferred.
  • polyvinyl alcohols are those having a saponification degree of 80% or more or those having been completely saponified. Those having an average degree of polymerization of 200 to 5000 are preferred.
  • Examples of the cation-modified polyvinyl alcohol include polyvinyl alcohol having primary to tertiary amino groups or quaternary ammonium groups in the main chain or side chain of polyvinyl alcohol as described in JP-A-61-10383. It is alcohol.
  • a hardening agent can be used together with the hydrophilic binder constituting the image receiving layer A.
  • the hardener include aldehyde compounds such as formaldehyde and glutaraldehyde, ketone compounds such as diacetyl and chloropentanedione, bis (2-chloroethyl) urea, 2-hydroxy-4,6-dichloro-1 , 3,5-triazine, a compound having a reactive halogen as described in US Pat. No. 3,288,775, divinyl sulfone, a compound having a reactive olefin as described in US Pat. No. 3,635,718, N-methylol compounds as described in US Pat. No.
  • borax When using a partially saponified polyvinyl alcohol having a saponification degree of 80% or more as the hydrophilic binder, borax, boric acid and borates are preferred as the hardener, and boric acid is particularly preferred.
  • a hydrophilic binder having a keto group can also be used as the hydrophilic binder constituting the image receiving layer A.
  • the hydrophilic binder having a keto group can be synthesized by a method of copolymerizing a monomer having a keto group and another monomer.
  • Specific examples of the monomer having a keto group include acrolein, diacetone acrylamide, diacetone methacrylate, acetoacetoxyethyl methacrylate, 4-vinylacetoacetanilide, acetoacetyl allylamide, and the like.
  • a keto group may be introduced by a polymer reaction.
  • an acetoacetyl group can be introduced by a reaction of a hydroxy group or an amino group with a diketene.
  • the hydrophilic binder having a keto group include acetoacetyl-modified polyvinyl alcohol, acetoacetyl-modified cellulose derivatives, acetoacetyl-modified starch, diacetone acrylamide-modified polyvinyl alcohol, and hydrophilic binders described in JP-A-10-157283. Etc.
  • modified polyvinyl alcohol having a keto group is particularly preferable.
  • the modified polyvinyl alcohol having a keto group include acetoacetyl-modified polyvinyl alcohol and diacetone acrylamide-modified polyvinyl alcohol.
  • the acetoacetyl-modified polyvinyl alcohol can be produced by a known method such as a reaction between polyvinyl alcohol and diketene.
  • the degree of acetoacetylation is preferably 0.1 to 20 mol%, more preferably 1 to 15 mol%.
  • the saponification degree is preferably 80 mol% or more, more preferably 85 mol% or more.
  • the polymerization degree is preferably 500 to 5000, and more preferably 2000 to 4500.
  • Diacetone acrylamide-modified polyvinyl alcohol can be produced by a known method such as saponification of diacetone acrylamide-vinyl acetate copolymer.
  • the content of diacetone acrylamide units is preferably in the range of 0.1 to 15 mol%, more preferably in the range of 0.5 to 10 mol%.
  • the saponification degree is preferably 85 mol% or more, and the polymerization degree is preferably 500 to 5000.
  • the hydrophilic binder having a keto group contained in the image receiving layer A is preferably crosslinked with a crosslinking agent.
  • the crosslinking agent include the following compounds.
  • Polyamines Aliphatic polyamines; ⁇ Alkylene diamine (for example, ethylene diamine, propylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, etc.) -Polyalkylene polyamines (eg, diethylenetriamine, iminobis (propylamine), bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc.) ⁇ Substituents of these alkyl or hydroxyalkyl (for example, aminoethylethanolamine, methyliminobis (propylamine), etc.) Aliphatic or heterocyclic-containing aliphatic polyamines (for example, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, etc.) ⁇ Aromatic ring-containing aliphatic amines (for example, xylylened
  • C4-C15 alicyclic polyamines For example, 1,3-diaminocyclohexane, isophorone diamine, menthane diamine, 4,4'-methylene dicyclohexane diamine (hydrogenated methylene dianiline) and the like.
  • a C4-C15 heterocyclic polyamine For example, piperazine, N-aminoethylpiperazine, 1,4-diaminopiperazine and the like.
  • Aromatic polyamines having a nucleus-substituted alkyl group (eg C1-C4 alkyl group) (eg 2,4- and 2,6-tolylenediamine, crude tolylenediamine, diethyltolylenediamine, 4,4'- Diamino-3,3'-dimethyldiphenyl group (eg 1,2-, 1,3- and 1,4-phenylenediamine, 2,4'- and 4,4'-diphenylmethanediamine, polyphenylpolymethylenepolyamine, diaminodiphenylsulfone, benzidine Thiodianiline, bis (3,4-diaminophenyl) sulfone, 2,6-diaminopyridine, m-aminobenzylamine, triphenylmethane-4,4 ′, 4 ′′ -triamine, naphthylenediamine, etc.)
  • Polyamide polyamines For example, low molecular weight (for example, molecular weight 200-5000) polyamide obtained by condensation of dicarboxylic acid (dimer acid, etc.) and excess (more than 2 moles per mole of acid) polyamines (the above-mentioned alkylene diamine, polyalkylene polyamine, etc.) Polyamines and the like.
  • low molecular weight for example, molecular weight 200-5000
  • polyamide obtained by condensation of dicarboxylic acid (dimer acid, etc.) and excess (more than 2 moles per mole of acid) polyamines (the above-mentioned alkylene diamine, polyalkylene polyamine, etc.) Polyamines and the like.
  • Polyether polyamines For example, a hydride of a cyanoethylated polyether polyol (polyalkylene glycol, etc.) having a molecular weight of 100 to 5000.
  • Dicyandiamide derivative Dicyandiamide, dicyandiamide / formalin polycondensate, dicyandiamide / diethylenetriamine polycondensate, etc.
  • a hydrazine compound (3) a hydrazine compound; Inorganic salts of hydrazine, monoalkylhydrazine, hydrazine (for example, inorganic salts of hydrochloric acid, sulfuric acid, nitric acid, nitrous acid, phosphoric acid, thiocyanic acid, carbonic acid, etc.), organic salts of hydrazine (for example, organic salts of formic acid, oxalic acid, etc.) ).
  • Inorganic salts of hydrazine, monoalkylhydrazine, hydrazine for example, inorganic salts of hydrochloric acid, sulfuric acid, nitric acid, nitrous acid, phosphoric acid, thiocyanic acid, carbonic acid, etc.
  • organic salts of hydrazine for example, organic salts of formic acid, oxalic acid, etc.
  • polyhydrazide compounds (dihydrazide, trihydrazide); Carbohydrazide, succinic acid dihydrazide, adipic acid dihydrazide, citric acid trihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide and the like.
  • Aldehydes Monoaldehyde such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, crotonaldehyde, benzaldehyde, glyoxal, malondialdehyde, succindialdehyde, glutardialdehyde, maleindialdehyde, 1,8-octane dial, phthalaldehyde, isophthalaldehyde , Terephthalaldehyde, dialdehydes such as aldehyde-terminated PVA, side chain aldehyde-containing copolymer obtained by saponifying arylidene acetate vinyl diacetate copolymer, dialdehyde starch, polyacrolein and the like.
  • Monoaldehyde such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, crotonaldehyde,
  • epoxy compound epoxy compound; Epichlorohydrin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin di or triglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidyl aniline, diglycidyl amine, polyepoxy compounds, etc. .
  • Isocyanate compounds Tolylene diisocyanate, hydrogenated tolylene diisocyanate, trimethylolpropane-tolylene diisocyanate adduct, triphenylmethane triisocyanate, methylenebis-4-phenylmethane triisocyanate, isophorone diisocyanate, and their ketoxime block or phenol block, poly Isocyanate and the like.
  • a polyvalent metal salt a polyvalent metal salt
  • Zirconium salt zirconium nitrate, basic zirconium carbonate, zirconium acetate, zirconium sulfate, zirconium oxychloride, zirconium chloride, hydroxy zirconium chloride, zirconium carbonate, zirconium carbonate / ammonium, zirconium carbonate / potassium, zirconium fluoride compound, etc.
  • Titanium salts titanium tetrachloride, titanium lactate, tetraisopropyl titanate, etc.
  • Aluminum salts aluminum chloride, aluminum sulfate, aluminum lactate, etc.
  • Calcium salts calcium chloride, calcium sulfate, calcium acetate, calcium propionate, etc.
  • Magnesium salts magnesium sulfate, etc.
  • Zinc salts zinc s
  • polyhydrazide compounds and polyvalent metal salts are preferable.
  • polyhydrazide compounds dihydrazide compounds are particularly preferable, and adipic acid dihydrazide and succinic acid dihydrazide are more preferable.
  • polyvalent metal salt a zirconium salt is particularly preferable, and zirconium oxychloride and zirconium nitrate are more preferable.
  • the addition amount of the crosslinking agent is suitably in the range of 1 to 40% by weight, preferably in the range of 2 to 30% by weight, particularly preferably in the range of 3 to 20% by weight, based on the hydrophilic binder having a keto group.
  • a hardener can be used in combination. It is particularly preferable to use borax, boric acid, or borate in combination.
  • a fully or partially saponified polyvinyl alcohol a cation-modified polyvinyl alcohol, and a hydrophilic binder having a keto group.
  • a hardening agent or a crosslinking agent may be used in combination. You can also.
  • hydrophilic binders may be used in combination.
  • cellulose derivatives such as carboxymethyl cellulose and hydroxypropyl cellulose, starch and various modified starches, gelatin and various modified gelatins, chitosan derivatives, carrageenan, casein, soy protein, polyvinyl alcohol and various modified polyvinyl alcohols, polyvinylpyrrolidone, polyacrylamide, etc. It can be used together as necessary.
  • various latexes may be used in combination as a binder.
  • the content of the binder in the image receiving layer A is preferably in the range of 5 to 40% by mass, particularly preferably 10 to 30% by mass with respect to the inorganic fine particles mainly contained in the image receiving layer A. Thereby, a fine space
  • gap can be formed in an image receiving layer and a porous layer can be formed.
  • the dry coating amount of the image receiving layer A is preferably in the range of 10 to 50 g / m 2 in terms of inorganic fine particles, more preferably in the range of 12 to 40 g / m 2 , and particularly preferably in the range of 15 to 35 g / m 2.
  • the image receiving layer A further includes a cationic polymer, an antiseptic, a surfactant, a coloring dye, a coloring pigment, an ultraviolet absorber, an antioxidant, a pigment dispersant, an antifoaming agent, a leveling agent, a fluorescent whitening agent, Viscosity stabilizers, pH adjusters and the like can also be added.
  • the image receiving layer A and the image receiving layer B of the present invention may each be a single layer or a plurality of layers, and an intermediate layer may be provided between the image receiving layer A and the image receiving layer B.
  • the water-resistant support used in the present invention includes polyester resins such as polyethylene terephthalate, diacetate resins, triacetate resins, acrylic resins, polycarbonate resins, polyvinyl chloride, polyimide resins, cellophane, celluloid, and other plastic resin films, and paper. And a polyolefin resin-coated paper in which a polyolefin resin layer is coated on both sides of a base paper. These water-resistant supports have a thickness of 50 to 350 ⁇ m, preferably 80 to 300 ⁇ m.
  • polyolefin resin-coated paper (hereinafter referred to as polyolefin resin-coated paper) as a water-resistant support will be described in detail.
  • the water content of the polyolefin resin-coated paper used in the present invention is not particularly limited, but is preferably in the range of 5 to 9%, more preferably in the range of 6 to 9%. Thereby, the curl resulting from moisture absorption and moisture release can be suppressed small.
  • the moisture content of the polyolefin resin-coated paper can be measured using any moisture measuring method. For example, an infrared moisture meter, an absolute dry weight method, a dielectric constant method, a Karl Fischer method, or the like can be used.
  • the base paper constituting the polyolefin resin-coated paper is not particularly limited, and commonly used paper can be used. More preferably, for example, smooth base paper used for a photographic support can be used.
  • pulp constituting the base paper natural pulp, regenerated pulp, synthetic pulp or the like is used alone or in combination.
  • This base paper is blended with additives such as sizing agent, paper strength enhancer, filler, antistatic agent, fluorescent whitening agent, and dye generally used in papermaking.
  • a surface sizing agent, a surface paper strength agent, a fluorescent brightening agent, an antistatic agent, a dye, an anchor agent, and the like may be applied on the surface.
  • the thickness of the base paper there is no particular limitation on the thickness of the base paper, but a paper having good surface smoothness such as a paper that is compressed during or after paper making by applying pressure with a calender or the like is preferable, and its basis weight is 30 to 250 g / m. 2 is preferred.
  • polyolefin resin for coating the base paper examples include homopolymers of olefins such as low-density polyethylene, high-density polyethylene, polypropylene, polybutene, and polypentene, or copolymers composed of two or more olefins such as ethylene-propylene copolymer, and the like.
  • olefins such as low-density polyethylene, high-density polyethylene, polypropylene, polybutene, and polypentene
  • copolymers composed of two or more olefins such as ethylene-propylene copolymer, and the like.
  • melt index melt viscosity indices
  • white pigments such as titanium oxide, zinc oxide, talc and calcium carbonate, fatty acid amides such as stearic acid amide and arachidic acid amide, zinc stearate, calcium stearate, aluminum stearate, stearic acid Fatty acid metal salts such as magnesium, blue pigments and dyes such as cobalt blue, ultramarine blue, triolian blue and phthalocyanine blue, magenta pigments and dyes such as cobalt violet, fast violet and manganese purple, fluorescent brighteners, ultraviolet absorbers, etc. These various additives are preferably added in appropriate combination.
  • polyolefin resin-coated paper As a main production method of polyolefin resin-coated paper, it is produced by a so-called extrusion coating method in which a polyolefin resin is cast on a traveling base paper in a heated and melted state, and both surfaces of the base paper are covered with the resin. Further, before the resin is coated on the base paper, the base paper is preferably subjected to activation treatment such as corona discharge treatment and flame treatment.
  • the thickness of the resin coating layer is suitably 5 to 50 ⁇ m.
  • An undercoat layer is preferably provided on the side of the water-resistant support on which the image receiving layer is provided. This undercoat layer is applied and dried in advance on the surface of the water-resistant support before the image-receiving layer is applied.
  • This undercoat layer mainly contains a water-soluble polymer or polymer latex that can form a film.
  • Preferred are water-soluble polymers such as gelatin, polyvinyl alcohol, polyvinyl pyrrolidone and water-soluble cellulose, and particularly preferred is gelatin.
  • Adhesion amount of the water-soluble polymer is preferably 10 ⁇ 500mg / m 2, more preferably 20 ⁇ 300mg / m 2.
  • the undercoat layer contains a surfactant and a hardener.
  • the lithographic printing plate precursor according to this embodiment can be produced by providing the image receiving layer A and the image receiving layer B on a water-resistant support.
  • the coating method when providing the image receiving layer A and the image receiving layer B is not particularly limited, but a slide bead coater, curtain coater, extrusion coater, air knife coater, rod coater, blade coater, gravure coater, etc.
  • the applicator can be used alone or in combination.
  • a slide bead coater or a curtain coater coating device can be used.
  • simultaneous application means that the respective layers are applied almost simultaneously.
  • “Sequential coating” refers to coating the uppermost coating liquid after the voids of the image receiving layer are formed after the decreasing rate drying step.
  • the lithographic printing plate making method according to the present embodiment is a lithographic printing plate making method characterized in that an aqueous pigment ink is printed on the lithographic printing plate precursor according to the first embodiment by an inkjet method. According to such a lithographic printing plate making method, direct plate making by an ink jet method is possible, it has excellent image quality, and it is possible to achieve both good printing durability and stain resistance.
  • the planographic printing plate precursor in the present embodiment basically has the same configuration and operational effects as those of the first embodiment, and therefore the description of the same contents as those of the first embodiment will be omitted as appropriate.
  • Examples of the ink used for printing image information on the image receiving layer of the lithographic printing plate precursor according to the present invention by an ink jet method include various inks such as water-based ink, solid ink, UV ink, and oil-based ink.
  • solid ink and UV ink have high ink viscosity at the time of ejection, it is difficult to eject fine ink droplets that enable high-resolution plate-making images.
  • Oil-based inks are not suitable for office use because of the generation of vapors of non-aqueous solvents, and print images tend to bleed and it is difficult to obtain high-resolution plate-making images.
  • water-based ink is preferable as the ink for printing on the lithographic printing plate precursor according to the invention.
  • an aqueous ink an aqueous pigment ink is particularly preferable. This makes it possible to obtain a high-resolution plate-making image and is suitable for office use.
  • an aqueous pigment ink containing a pigment and a styrene-acrylic copolymer resin or a styrene-methacrylic copolymer resin is preferably used.
  • the pigment examples include furnace black, lamp black, acetylene black, channel black, phthalocyanine pigment, quinacridone pigment, condensed azo pigment, isoindolinone pigment, quinophthalone pigment, anthraquinone pigment, benzimidazolone pigment, and perylene pigment. These pigments are preferably anionic pigments. Thereby, since the image receiving layer B of the present invention is cationic, it is firmly adhered to the surface of the image receiving layer by electrostatic interaction, and the printing durability is improved.
  • the amount of pigment added is preferably 0.5 to 30% by mass in the aqueous ink.
  • the water-based pigment ink contains a styrene-acrylic copolymer resin or a styrene-methacrylic copolymer resin
  • a resin may be water-soluble, or the resin may be a water-insoluble dispersion (emulsion).
  • the amount of the resin added is preferably in the range of 0.1 to 20% by mass in the aqueous ink.
  • styrene As monomers that can be incorporated into styrene-acrylic copolymer resins or styrene-methacrylic copolymer resins, styrene, 4-methylstyrene, 4-hydroxystyrene, 4-acetoxystyrene, 4-carboxystyrene, 4-aminostyrene Styrene derivatives such as chloromethylstyrene and 4-methoxystyrene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, dodecyl methacrylate, octadodecyl methacrylate, etc.
  • Methacrylic acid alkyl esters phenyl methacrylate, methacrylic acid aryl esters such as benzyl methacrylate, or alkyl aryl esters, 2-hydroxyethyl methacrylate, Methacrylic acid esters having an alkyleneoxy group such as 2-hydroxypropyl crylate, methoxydiethylene glycol monoester methacrylate, methoxypolyethylene glycol monoester methacrylate, polypropylene glycol monoester methacrylate, 2-dimethylaminoethyl methacrylate, methacrylic acid
  • amino group-containing methacrylic acid esters such as 2-diethylaminoethyl, and acrylic acid esters are the same as the corresponding methacrylic acid esters.
  • Styrene-acrylic copolymer resins or styrene-methacrylic copolymer resins include phosphoric acid group-containing monomers such as vinylphosphonic acid, amino group-containing monomers such as allylamine and diallylamine, vinyl sulfonic acid and Monomers having sulfonic acid groups such as salts thereof, allylsulfonic acid and salts thereof, methallylsulfonic acid and salts thereof, styrenesulfonic acid and salts thereof, 2-acrylamido-2-methylpropanesulfonic acid and salts thereof, or 4 Monomers having nitrogen-containing heterocycles such as -vinylpyridine, 2-vinylpyridine, N-vinylimidazole, N-vinylcarbazole, etc., or 4-vinylbenzyltrimethylammonium chloride, acryloyl as a monomer having a quaternary ammonium base Oxyethyltrimethylammonium chloride,
  • Water-based of the water-based ink used when printing image information by the ink jet method means that the ink contains 50% by mass or more, more preferably 65% by mass or more of water.
  • a penetrant is added to the ink for the purpose of enhancing the penetrability into the image receiving layer.
  • a moisturizing agent and a dissolution aid are provided for the purpose of ensuring the standing stability and achieving stable ejection from the ink ejection head.
  • Various additives such as a penetrating agent, a viscosity adjusting agent, a pH adjusting agent, an antioxidant, an antifungal agent, a corrosion inhibitor and a chelating agent can be added.
  • Examples of commercially available water-based inks containing the above copolymer resins include ICC59, ICM59, ICY59, ICBK59, ICC33, ICBL33, ICM33, ICY33, ICBK33, ICR33, ICC23, ICGY23, ICLC23, ICLM23, ICM23, ICY23, ICMB23, ICBK23 (manufactured by Seiko Epson Corporation), PFI-101C, PFI-101M, PFI-101Y, PFI-101R, PFI-101G, PFI-101B, PFI-101PC, PFI-101PM (manufactured by Canon Inc.) .
  • a desensitization process on a non-image portion after printing image information on a planographic printing plate precursor by an ink jet method and before starting printing.
  • the treatment liquid used for such desensitization treatment is described in, for example, JP-A-5-289341, JP-A-7-56349, JP-B 45-29001, JP-B 61-28987, and the like.
  • a treatment liquid containing colloidal fine particles and a hygroscopic polyol described in JP-B-56-41992.
  • treatment liquids to the plate surface is a method of hand etching in which absorbent cotton or the like is impregnated with the treatment solution and applied all over the plate surface, a method of applying a certain amount of the treatment solution with a bar coater, For example, a method using an etching converter that is immersed in a stored liquid bath and squeezes excess treatment liquid with a roll pair can be applied.
  • Example 1 ⁇ Production of water-resistant support> A 1: 1 mixture of hardwood bleached kraft pulp (LBKP) and hardwood bleached sulfite pulp (LBSP) was beaten to 300 ml with Canadian Standard Freeness to prepare a pulp slurry. The sizing agent and alkyl ketene dimer were 0.5% by mass of pulp, 1% by mass of polyacrylamide as a strengthening agent, 1% by mass of cationized starch, 2% by mass of pulp, and polyamide epichlorohydrin resin by 0.1% of pulp. 5% by mass was added and diluted with water to give a 0.2% by mass slurry.
  • LLKP hardwood bleached kraft pulp
  • LBSP hardwood bleached sulfite pulp
  • This slurry was made with a long paper machine to a basis weight of 170 g / m 2 , dried and conditioned to obtain a base paper for the support.
  • the resin coating layer on the image receiving layer coating surface side was provided while cooling with a cooling roll that was extruded to a thickness of 30 ⁇ m per minute and processed with a finely roughened surface. On the opposite side to melt at similarly 320 ° C.
  • the undercoat layer having the following composition was coated and dried so that the gelatin content was 50 mg / m 2 .
  • the image-receiving layer A coating solution 1 having the following composition is coated on the water-resistant support with a slide bead coating device so that the solid content is 25 g / m 2 , cooled at 5 ° C. for 30 seconds, and then at 40 ° C. and 10% RH. After drying to the end of drying, the image-receiving layer B coating solution 1 having the following composition was sequentially applied with a gravure coating device so that the solid content of colloidal silica was 0.1 g / m 2 and dried at 50 ° C.
  • ⁇ Gas phase silica dispersion 1> After adding 3 parts of dimethyldiallyl aluminum chloride homopolymer (molecular weight: 9000) and 100 parts of gas phase method silica (average primary particle diameter 7 nm, specific surface area 300 m 2 / g) to water to prepare a preliminary dispersion, using a high-pressure homogenizer The gas phase method silica dispersion 1 having a solid content concentration of 20% by mass was prepared.
  • the average secondary particle diameter of the vapor phase method silica measured by a laser diffraction / scattering type particle size distribution analyzer was 80 nm.
  • ⁇ Image receiving layer B coating solution 1> Add 100 parts of Quartron PL-3L (Colloidal Silica manufactured by Fuso Chemical Industry Co., Ltd.) to water to prepare a 5% by mass solid content solution, and then stir 10 parts Takibine # 1500 (Taki) over about 10 minutes with stirring. Polyaluminum chloride aqueous solution manufactured by Kagaku Co., Ltd .; solid content concentration 23.5% by mass) was added to obtain cationic colloidal silica. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass.
  • the zeta potential of the prepared image-receiving layer B coating solution 1 As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 1 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +45 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 35 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 1.5.
  • Example 2 A lithographic printing plate precursor of Example 2 was produced in the same manner as in Example 1 except that the image-receiving layer A coating liquid 1 of Example 1 was changed to the image-receiving layer A coating liquid 2.
  • Example 3 A lithographic printing plate precursor of Example 3 was produced in the same manner as in Example 1 except that the image-receiving layer A coating solution 1 in Example 1 was changed to the image-receiving layer A coating solution 3.
  • the average secondary particle diameter of the alumina hydrate as measured with a laser diffraction / scattering particle size distribution analyzer was 160 nm.
  • Example 4 A lithographic printing plate precursor of Example 4 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 2.
  • ⁇ Image receiving layer B coating solution 2> Add 100 parts Quortron PL-5 (colloidal silica manufactured by Fuso Chemical Co., Ltd.) to water to prepare a 5% by mass solid content solution, and then stir 10 parts Takibine # 1500 (Taki) over about 10 minutes with stirring. A polyaluminum chloride aqueous solution manufactured by Chemical Co., Ltd .; solid content concentration 23.5% by mass) was added. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass.
  • the zeta potential of the prepared image-receiving layer B coating solution 2 As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 2 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +47 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 52 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 2.2.
  • Example 5 A lithographic printing plate precursor of Example 5 was prepared in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 3.
  • ⁇ Image receiving layer B coating solution 3> Add 100 parts of Quartron PL-3L (colloidal silica manufactured by Fuso Chemical Industry Co., Ltd.) to water to prepare a 5% by mass solid content solution, and then stir 10 parts of ZA-30 (1st over about 10 minutes with stirring). Zirconyl acetate manufactured by Rare Elemental Chemical Co., Ltd .; solid content concentration of 30% by mass) was added. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass.
  • Quartron PL-3L colloidal silica manufactured by Fuso Chemical Industry Co., Ltd.
  • the zeta potential of the prepared image-receiving layer B coating solution 3 As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 3 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +43 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 35 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 1.5.
  • Example 6 A lithographic printing plate precursor of Example 6 was prepared in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 4.
  • ⁇ Image receiving layer B coating solution 4> An apparatus equipped with a stirrer, a thermometer, a reflux condenser, and a dropping funnel was charged with 100 parts of Quattron PL-3L (colloidal silica manufactured by Fuso Chemical Co., Ltd .: solid content concentration: 20% by mass) and heated to 75 ° C. . Next, while maintaining at 75 ° C. with stirring, 5 parts of N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane was added dropwise over 15 minutes, and the reaction was carried out by keeping the temperature at the same temperature for 30 minutes or more.
  • Quattron PL-3L colloidal silica manufactured by Fuso Chemical Co., Ltd .: solid content concentration: 20% by mass
  • Example 7 A lithographic printing plate precursor of Example 7 was prepared in the same manner as in Example 1 except that the amount of the colloidal silica solid content in the image-receiving layer B coating solution 1 of Example 1 was changed to 0.3 g / m 2 .
  • Example 8 A lithographic printing plate precursor of Example 8 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 5.
  • Example 9 A lithographic printing plate precursor of Example 9 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 6.
  • ⁇ Image receiving layer B coating solution 6> Add 100 parts of Quartron PL-7 (colloidal silica manufactured by Fuso Chemical Industry Co., Ltd.) to water to prepare a 5% by mass solid content solution, and then stir and stir 10 parts Takibine # 1500 (Taki) over about 10 minutes. A polyaluminum chloride aqueous solution manufactured by Chemical Co., Ltd .; solid content concentration 23.5% by mass) was added. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass.
  • Quartron PL-7 colloidal silica manufactured by Fuso Chemical Industry Co., Ltd.
  • the zeta potential of the prepared image-receiving layer B coating solution 6 As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 6 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +38 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 70 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 1.7.
  • Example 10 A lithographic printing plate precursor of Example 10 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 7.
  • ⁇ Image receiving layer B coating solution 7> Add 100 parts of Quartron PL-1 (colloidal silica manufactured by Fuso Chemical Co., Ltd.) to water to prepare a 5% by mass solid content solution, and then stir and stir 10 parts of tachyvine # 1500 (Taki) over about 10 minutes. A polyaluminum chloride aqueous solution manufactured by Chemical Co., Ltd .; solid content concentration 23.5% by mass) was added. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass.
  • Quartron PL-1 colloidal silica manufactured by Fuso Chemical Co., Ltd.
  • Example 11 A lithographic printing plate precursor of Example 11 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 8.
  • ⁇ Image receiving layer B coating solution 8> Add 100 parts of Snowtex ST-PS-M (Nissan Chemical Co., Ltd. colloidal silica) to the water to prepare a 5% by weight solid content solution, and then stir 10 parts of tachyvine # 1500 over about 10 minutes with stirring. (A polyaluminum chloride aqueous solution manufactured by Taki Chemical Co., Ltd .; solid content concentration 23.5% by mass) was added. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass.
  • the zeta potential of the prepared image-receiving layer B coating solution 8 As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 8 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +38 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 35 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 4.0.
  • Example 12 A lithographic printing plate precursor of Example 12 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the image-receiving layer B coating solution 9 described below.
  • ⁇ Image receiving layer B coating solution 9 100 parts of fine cataloid C-125 (colloidal silica manufactured by JGC Catalysts and Chemicals Co., Ltd.) was added to water, and the solid content concentration was adjusted to 0.6% by mass.
  • zeta potential of the prepared image-receiving layer B coating solution 9 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +45 mV.
  • the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 20 nm, and secondary particles were not recognized.
  • Example 13 A lithographic printing plate precursor of Example 13 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 10. When observed with an electron microscope, secondary particles were not observed in the colloidal silica in the image-receiving layer B coating solution 10.
  • Example 14 A lithographic printing plate precursor of Example 14 was produced in the same manner as in Example 1 except that the image-receiving layer A coating liquid 1 of Example 1 was changed to the following image-receiving layer A coating liquid 4.
  • Example 15 On the undercoat layer of the water-resistant support produced in Example 1, the image-receiving layer A coating solution 1 obtained in Example 1 and the image-receiving layer B coating solution 11 described below were used using a slide bead coating device.
  • the image receiving layer A was applied in multiple layers so that the solid content of the image receiving layer A was 25 g / m 2 and the solid content of the image receiving layer B was 1.0 g / m 2 , and then cooled at 5 ° C. for 30 seconds and then at 40 ° C. and 10% RH. Dried to the end of drying.
  • Example 16 A lithographic printing plate precursor of Example 16 was produced in the same manner as in Example 15 except that the image receiving layer B coating solution 11 used in Example 15 was changed to the following image receiving layer B coating solution 12.
  • Example 17 The following image receiving layer A coating solution 5 and image receiving layer B coating solution 11 prepared in Example 15 are applied to the undercoat layer of the water-resistant support prepared in Example 1 using a slide bead coating device.
  • the image receiving layer A has a solid content of 25 g / m 2 and the image receiving layer B has a solid content of 1.0 g / m 2, and after cooling at 5 ° C. for 30 seconds, 40 ° C. and 10% RH And dried to the end of drying.
  • ⁇ Gas phase method silica dispersion 2> After adding 4 parts of dimethyldiallyl aluminum chloride homopolymer (molecular weight: 9000) and 100 parts of gas phase method silica (average primary particle diameter of 7 nm, specific surface area of 400 m 2 / g) to water to prepare a preliminary dispersion, a high-pressure homogenizer was used. The gas phase method silica dispersion 2 having a solid content concentration of 20% by mass was prepared. In addition, the average secondary particle diameter of the vapor phase method silica measured by a laser diffraction / scattering type particle size distribution analyzer was 80 nm.
  • Example 18 On the undercoat layer of the water-resistant support prepared in Example 1, the image receiving layer A coating solution 6 described below and the image receiving layer B coating solution 11 prepared in Example 15 were used using a slide bead coating apparatus.
  • the image receiving layer A has a solid content of 25 g / m 2 and the image receiving layer B has a solid content of 1.0 g / m 2, and after cooling at 5 ° C. for 30 seconds, 40 ° C. and 10% RH And dried to the end of drying.
  • ⁇ Gas phase method silica dispersion 3> After adding 3 parts of dimethyldiallyl aluminum chloride homopolymer (molecular weight: 9000) and 100 parts of gas phase method silica (average primary particle diameter 12 nm, specific surface area 200 m 2 / g) to water to prepare a preliminary dispersion, using a high-pressure homogenizer The gas phase method silica dispersion 3 having a solid content concentration of 20% by mass was prepared.
  • the average secondary particle diameter of the vapor phase method silica measured by a laser diffraction / scattering type particle size distribution analyzer was 80 nm.
  • Comparative Example 1 A lithographic printing plate precursor of Comparative Example 1 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was not applied.
  • Comparative Example 2 A planographic printing plate precursor of Comparative Example 2 was prepared in the same manner as in Example 2 except that the image receiving layer B coating solution 1 of Example 2 was not applied.
  • Comparative Example 3 A lithographic printing plate precursor of Comparative Example 3 was produced in the same manner as in Example 3 except that the image-receiving layer B coating solution 1 of Example 3 was not applied.
  • Comparative Example 4 A lithographic printing plate precursor of Comparative Example 4 was produced in the same manner as Comparative Example 1, except that the image receiving layer A coating liquid 1 of Comparative Example 1 was changed to the image receiving layer A coating liquid 7.
  • Comparative Example 5 A lithographic printing plate precursor of Comparative Example 5 was prepared in the same manner as Comparative Example 1 except that the image receiving layer A coating liquid 1 of Comparative Example 1 was changed to the following image receiving layer A coating liquid 8.
  • ⁇ Image receiving layer A coating solution 8> Vapor phase silica (average primary particle diameter 7 nm, specific surface area 300 m 2 / g) 50 g was dispersed in 500 g of ion exchange water with a stirrer, and 10% by mass of polyvinyl alcohol (saponification degree 88%, average polymerization degree 3500). 80 g of an aqueous solution was mixed. Furthermore, 250 g of colloidal silica (Snowtex-O manufactured by Nissan Chemical Industries, Ltd .; solid content concentration 20% by mass) having an average primary particle size of 10 to 20 nm and spherical primary particles being colloidal particles, and 21 with respect to the polyvinyl alcohol. After mixing mass% boric acid, the mixture was uniformly dispersed in a homomixer at 10,000 rpm for 10 minutes to obtain an image receiving layer A coating solution 8.
  • colloidal silica Snowtex-O manufactured by Nissan Chemical Industries, Ltd .; solid content concentration 20% by mass
  • Comparative Example 6 A lithographic printing plate precursor of Comparative Example 6 was prepared in the same manner as in Example 1 except that the image receiving layer B coating solution 1 of Example 1 was changed to the following image receiving layer B coating solution 13.
  • ⁇ Image receiving layer B coating solution 13> Add 100 parts of Quartron PL-3L (colloidal silica manufactured by Fuso Chemical Industries; average primary particle diameter of 35 nm, colloidal particles are non-spherical particles) to water and dilute to a solid content concentration of 5% by mass. An image receiving layer B coating solution 13 was obtained.
  • Quartron PL-3L colloidal silica manufactured by Fuso Chemical Industries; average primary particle diameter of 35 nm, colloidal particles are non-spherical particles
  • Comparative Example 7 A lithographic printing plate precursor of Comparative Example 7 was prepared in the same manner as in Example 1 except that the image receiving layer B coating solution 1 of Example 1 was changed to the following image receiving layer B coating solution 14.
  • Image receiving layer B coating solution 14 Add 100 parts of Cataloid SI-50 (Colloidal Silica manufactured by JGC Catalysts &Chemicals; average primary particle diameter of 25 nm and spherical primary particles are colloidal particles) to water and dilute to a solid content concentration of 5% by mass. Thus, an image receiving layer B coating solution 14 was obtained.
  • Cataloid SI-50 Cold Silica manufactured by JGC Catalysts &Chemicals; average primary particle diameter of 25 nm and spherical primary particles are colloidal particles
  • Comparative Example 8 A lithographic printing plate precursor of Comparative Example 8 was produced in the same manner as in Example 15 except that the image receiving layer B coating solution 11 of Example 15 was changed to the following image receiving layer B coating solution 15.
  • ⁇ Print durability> A printing test was performed using the planographic printing plate on which an image was recorded as described above.
  • the printing machine uses HAMADA DU34II (offset printing machine manufactured by Hamada Printing Machinery Co., Ltd.), the ink is New Champion F gloss ink 85N (manufactured by DIC Corporation), and the dampening liquid is SLM-OD (humidity supplied by Mitsubishi Paper Industries Co., Ltd.).
  • SLM-OD30 Mitsubishi Paper Industries Co., Ltd., moisturizing liquid: containing colloidal silica and butyltriglycol
  • Example 19 A lithographic printing plate precursor of Example 19 was produced in the same manner as in Example 16 except that the image-receiving layer B coating solution 12 used in Example 16 was replaced with the image-receiving layer B coating solution 16 described below.
  • Example 20 A lithographic printing plate precursor of Example 20 was produced in the same manner as in Example 16 except that the image-receiving layer B coating solution 12 used in Example 16 was changed to the image-receiving layer B coating solution 17 described below.
  • Example 21 A lithographic printing plate precursor of Example 21 was produced in the same manner as in Example 16 except that the image receiving layer B coating solution 12 used in Example 16 was changed to the image receiving layer B coating solution 18 described below.
  • Example 22 A lithographic printing plate precursor of Example 22 was produced in the same manner as in Example 16 except that the image receiving layer B coating solution 12 used in Example 16 was changed to the image receiving layer B coating solution 19 shown below.
  • Example 23 A lithographic printing plate precursor of Example 23 was produced in the same manner as in Example 13 except that the image-receiving layer B coating solution 10 of Example 13 was changed to the image-receiving layer B coating solution 20 shown below. When observed with an electron microscope, secondary particles were not observed in the colloidal silica in the image-receiving layer B coating solution 20.
  • Example 24 A lithographic printing plate precursor of Example 24 was produced in the same manner as in Example 13 except that the image-receiving layer B coating solution 10 of Example 13 was changed to the following image-receiving layer B coating solution 21. When observed with an electron microscope, secondary particles were not observed in the colloidal silica in the image-receiving layer B coating solution 21.
  • Example 25 A lithographic printing plate precursor of Example 25 was produced in the same manner as in Example 13 except that the image receiving layer B coating solution 10 of Example 13 was changed to the following image receiving layer B coating solution 22. When observed with an electron microscope, secondary particles were not observed in the colloidal silica in the image-receiving layer B coating solution 22.
  • the lithographic printing plate precursor of Example 16 was prepared as a lithographic printing plate precursor (A), and the lithographic printing plate precursor of Comparative Example 1 was prepared as a lithographic printing plate precursor (C). Further, the following lithographic printing plate precursor (B), lithographic printing plate precursor (D), and lithographic printing plate precursor (E) were prepared.
  • lithographic printing plate precursor (D) On the undercoat layer of the water-resistant support produced in Example 1, the image receiving layer A coating solution 1 of Example 1 and the image receiving layer B coating solution 13 of Comparative Example 6 were used using a slide bead coating device.
  • the image receiving layer A was applied in multiple layers so that the solid content of the image receiving layer A was 25 g / m 2 and the solid content of the colloidal silica of the image receiving layer B was 1 g / m 2 , and then cooled at 5 ° C. for 30 seconds and then at 40 ° C. and 10% RH.
  • a lithographic printing plate precursor (D) was prepared by drying to the end of drying.
  • lithographic printing plate precursor (E) On the undercoat layer of the water-resistant support prepared in Example 1, the following polymer type image receiving layer coating solution was applied with a slide bead coating device so that the solid content was 2 g / m 2 , and at 140 ° C. for 10 minutes.
  • the lithographic printing plate precursor (E) was prepared by drying.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

Provided is a planographic printing original plate which can be produced by means of direct plate making using the inkjet method, has excellent image quality, and can exert superior printing durability and stain resistance. Also provided is a method for producing a planographic printing plate. Provided is a planographic printing original plate which is characterized by having image-receiving layer (A) which is disposed on a water-resistant support body, and which mainly contains inorganic microparticles, and image-receiving layer (B) which is disposed on the side which is farther away from the water-resistant support body than image-receiving layer (A), and which mainly contains a cationic colloidal silica, or contains mainly a colloidal silica along with a cationic compound.

Description

平版印刷版原版および平版印刷版の製版方法Planographic printing plate precursor and lithographic printing plate making method
 本発明は、デジタル情報からダイレクトに製版するための平版印刷版原版およびその製版方法に関する。 The present invention relates to a lithographic printing plate precursor for making a plate directly from digital information and a plate making method thereof.
 現在、印刷分野で使用されている平版印刷版原版としては、(1)耐水性支持体上に画像受理層を設けた直描型のもの、(2)耐水性支持体上に光導電層を設けた電子写真型のもの、(3)耐水性支持体上にハロゲン化銀乳剤層を設けた銀塩写真型のもの、(4)金属等の支持体上に感光性樹脂を設けたPS版等が挙げられる。中でも上記の(1)の平版印刷版原版は、画像受理層上に親油性の画像を形成することにより製版が直接行えるので、他の上記(2)、(3)、(4)の平版印刷版原版に比較して簡単に版を作製することができる。このようにして作製された平版印刷版は不感脂化液(エッチング液)で表面処理して非画像部を不感脂化した後、印刷に使用される。 The lithographic printing plate precursors currently used in the printing field include (1) a direct drawing type in which an image receiving layer is provided on a water-resistant support, and (2) a photoconductive layer on the water-resistant support. An electrophotographic type provided, (3) a silver salt photographic type provided with a silver halide emulsion layer on a water-resistant support, and (4) a PS plate provided with a photosensitive resin on a support such as metal. Etc. Among them, the lithographic printing plate precursor (1) described above can be directly made by forming an oleophilic image on the image-receiving layer, so that the other lithographic printing methods (2), (3) and (4) above are used. Compared to the original plate, the plate can be easily produced. The lithographic printing plate produced in this way is surface-treated with a desensitizing liquid (etching liquid) to desensitize non-image areas and then used for printing.
 電子編集された情報をデジタル電気信号に変換して、直接画像受理層上に画像情報を書き込む方法としては例えばレーザービームプリンターが挙げられる。この方法を利用した場合、電子編集された情報を簡単に拡大縮小、ネガポジ変換、網掛け等ができるため、多くの機能を持たせることができる。近年求められる印刷画像の高画質化のためにはレーザービームプリンターは解像度を上げる必要があるが、このようなレーザービームプリンターは一般にトナーの粒子が細かくされるため、現像部周辺にトナーが飛散しやすく、非画像部に飛散したトナーはトナーカブリと呼ばれる印刷汚れを招く。 For example, a laser beam printer may be used as a method for converting electronically edited information into a digital electric signal and writing image information directly on the image receiving layer. When this method is used, electronically edited information can be easily enlarged / reduced, negative / positive converted, shaded, etc., so that many functions can be provided. Laser beam printers need to increase the resolution in order to improve the quality of printed images required in recent years. However, since such laser beam printers generally have finer toner particles, the toner scatters around the development area. The toner that is easily scattered in the non-image area causes printing stains called toner fog.
 一方、インクジェット方式により画像受理層上に画像情報を直接印字した場合、上記したトナーカブリは著しく改善される。しかしインクジェット方式に用いるインクは、溶媒として主に水を用いたものであり、他に染料あるいは顔料、アルコール類、各種添加剤等を含んでいる。このため印字部(画像部)は親油性の成分を含んでいないかごく少量のため、画像部の親油性と非画像部の親水性の差が十分でなく、十分な耐刷性および耐汚れ性を有する平版印刷版が得られないのが現状である。 On the other hand, when image information is directly printed on the image receiving layer by the ink jet method, the above-described toner fog is remarkably improved. However, the ink used for the ink jet system is mainly one using water as a solvent, and additionally contains dyes or pigments, alcohols, various additives and the like. For this reason, the printed part (image part) contains only a very small amount of oleophilic components, so the difference between the oleophilic property of the image part and the hydrophilicity of the non-image part is not sufficient, and sufficient printing durability and stain resistance. The present situation is that a lithographic printing plate having properties cannot be obtained.
 インクジェット方式により画像受理層上に画像情報を直接印字し、その後印刷に用いる平版印刷版原版としては、耐水性支持体上にポリマータイプの画像受理層を設けた平版印刷版原版が知られている。例えば、特開平5-204138号公報(特許文献1)には線状有機ポリマーを含有する画像受理層を設けた平版印刷版原版が開示され、特開2000-108537号公報(特許文献2)には酸基を有する構成成分とオニウム基を有する構成成分からなるポリマーを含有する画像受理層を設けた平版印刷版原版が開示され、特開2000-233581号公報(特許文献3)にはジエン構造を有する基をペンダントしたポリマーを含有する画像受理層を設けた平版印刷版原版が開示される。また特開2006-264093号公報(特許文献4)にはカルボジイミド基を有する架橋剤で架橋した親水性ポリマーと界面活性剤を含有する画像受理層を設けた平版印刷版原版が開示される。 As a lithographic printing plate precursor that directly prints image information on an image receiving layer by an inkjet method and then uses for printing, a lithographic printing plate precursor provided with a polymer type image receiving layer on a water-resistant support is known. . For example, JP-A-5-204138 (Patent Document 1) discloses a lithographic printing plate precursor provided with an image receiving layer containing a linear organic polymer, and JP-A 2000-108537 (Patent Document 2). Discloses a lithographic printing plate precursor provided with an image receiving layer containing a polymer having a component having an acid group and a component having an onium group. Japanese Patent Laid-Open No. 2000-233581 (Patent Document 3) discloses a diene structure. A lithographic printing plate precursor provided with an image-receiving layer containing a polymer pendant with a group having s is disclosed. JP-A 2006-264093 (Patent Document 4) discloses a lithographic printing plate precursor provided with an image receiving layer containing a hydrophilic polymer crosslinked with a crosslinking agent having a carbodiimide group and a surfactant.
 一方、上記したポリマータイプの平版印刷版原版に対して、無機微粒子等を主体に含有することで多孔質な画像受理層を有する平版印刷版原版も知られており、このようなタイプの画像受理層としては、例えば、特開平8-324145号公報(特許文献5)には、酸化亜鉛やアルミナ等の不感脂性の金属粉末で構成される画像受理層が、特開平9-29926号公報(特許文献6)にはインクジェットインクを取り込むための多孔質、あるいは粒子状形態を備えた画像受理層が、特開平9-58144号公報(特許文献7)には、高分子バインダーと、クレー、シリカ、アルミナ等のエッチング液で親水化する顔料、および表面に凹凸を形成させるための顔料を含有する画像受理層が、特開平9-99662号公報(特許文献8)には、平均一次粒子径が100nm以下の無機微粒子と水溶性樹脂から形成される3次元網目構造を有する画像受理層が、また特開2000-44884号公報(特許文献9)には無機ゲル分散液をコーティングして得られる無機キセロゲルを有する画像受理層等がそれぞれ開示される。 On the other hand, a lithographic printing plate precursor having a porous image-receiving layer by mainly containing inorganic fine particles, etc., in contrast to the above-described polymer-type lithographic printing plate precursor, is also known. As the layer, for example, in Japanese Patent Laid-Open No. 8-324145 (Patent Document 5), an image receiving layer composed of non-greasy metal powder such as zinc oxide and alumina is disclosed in Japanese Patent Laid-Open No. 9-29926 (Patent Document 5). Document 6) describes an image receiving layer having a porous or particulate form for taking up ink-jet ink, and Japanese Patent Application Laid-Open No. 9-58144 (Patent Document 7) discloses a polymer binder, clay, silica, JP-A-9-99662 (Patent Document 8) discloses an image receiving layer containing a pigment that becomes hydrophilic with an etching solution such as alumina, and a pigment for forming irregularities on the surface. An image receiving layer having a three-dimensional network structure formed from inorganic fine particles having a uniform primary particle size of 100 nm or less and a water-soluble resin is disclosed in JP-A-2000-44884 (Patent Document 9) coated with an inorganic gel dispersion. An image receiving layer having an inorganic xerogel obtained in this manner is disclosed.
 空隙タイプの画像受理層にコロイダルシリカを用いることも従来から知られており、例えば前述の特許文献8の他に、特開平10-296945号公報(特許文献10)、特開平10-315645号公報(特許文献11)には、平均粒子径が1~6μmの無機微粒子と、平均一次粒子径が10~50nmのコロイダルシリカを含有する画像受理層が開示される。 The use of colloidal silica in the void-type image receiving layer is also known conventionally. For example, in addition to the above-mentioned Patent Document 8, JP-A-10-296945 (Patent Document 10) and JP-A-10-315645 are disclosed. (Patent Document 11) discloses an image receiving layer containing inorganic fine particles having an average particle diameter of 1 to 6 μm and colloidal silica having an average primary particle diameter of 10 to 50 nm.
 更に複数の画像受理層を有する側に多孔質な層を複数設けることも知られており、例えば特開2003-231374号公報(特許文献12)、特開2004-42531号公報(特許文献13)には、コロイダルシリカを主体に含有する下塗り層と親水性層を設けた平版印刷版原版が開示され、特開2008-183846号公報(特許文献14)には無機顔料と樹脂を含有する溶媒吸収層と、コロイダルシリカを含有する画像受理層とが積層された平版印刷版原版が開示され、特開2007-190804号公報(特許文献15)には支持体に近い画像受理層の無機顔料/バインダー比が支持体より遠い画像受理層の比よりも小さくした平版印刷版原版が開示される。 Furthermore, it is also known to provide a plurality of porous layers on the side having a plurality of image receiving layers. For example, JP 2003-231374 A (Patent Document 12), JP 2004-42531 A (Patent Document 13). Discloses a lithographic printing plate precursor provided with an undercoat layer mainly containing colloidal silica and a hydrophilic layer. JP-A-2008-183846 (Patent Document 14) discloses a solvent absorption containing an inorganic pigment and a resin. A lithographic printing plate precursor in which a layer and an image receiving layer containing colloidal silica are laminated is disclosed, and JP 2007-190804 A (Patent Document 15) discloses an inorganic pigment / binder of an image receiving layer close to a support. A lithographic printing plate precursor in which the ratio is smaller than the ratio of the image receiving layer farther from the support is disclosed.
特開平5-204138号公報Japanese Patent Laid-Open No. 5-204138 特開2000-108537号公報JP 2000-108537 A 特開2000-233581号公報JP 2000-233581 A 特開2006-264093号公報JP 2006-264093 A 特開平8-324145号公報JP-A-8-324145 特開平9-29926号公報Japanese Patent Laid-Open No. 9-29926 特開平9-58144号公報JP-A-9-58144 特開平9-99662号公報Japanese Patent Laid-Open No. 9-99662 特開2000-44884号公報JP 2000-44884 A 特開平10-296945号公報JP-A-10-296945 特開平10-315645号公報JP-A-10-315645 特開2003-231374号公報JP 2003-231374 A 特開2004-42531号公報JP 2004-42531 A 特開2008-183846号公報JP 2008-183846 A 特開2007-190804号公報JP 2007-190804 A
 しかしながら、上記特許文献1~4に記載のようなポリマータイプの平版印刷版原版は、良好な画像品質が得られず、耐刷性および耐汚れ性も十分満足できるものではない。また、上記特許文献5~9に記載のような無機微粒子等を主体に含有することで多孔質な画像受理層を有する平版印刷版原版は、印刷した際に汚れが生じやすい。また、上記特許文献10及び11に記載のような空隙タイプの画像受理層にコロイダルシリカを用いる平版印刷版原版は、十分な耐刷性と耐汚れ性を両立させることは困難である。また、上記特許文献12~15に記載のような複数の画像受理層を有する側に多孔質な層を複数設けている平版印刷版原版は、十分な耐刷性と耐汚れ性を両立させることは困難である。 However, polymer type lithographic printing plate precursors as described in Patent Documents 1 to 4 do not provide satisfactory image quality, and printing durability and stain resistance are not sufficiently satisfactory. In addition, a planographic printing plate precursor having a porous image-receiving layer mainly containing inorganic fine particles as described in Patent Documents 5 to 9 is likely to be stained when printed. Moreover, it is difficult for a lithographic printing plate precursor using colloidal silica for the void-type image receiving layer as described in Patent Documents 10 and 11 to achieve both sufficient printing durability and stain resistance. In addition, a lithographic printing plate precursor having a plurality of porous layers on the side having a plurality of image receiving layers as described in Patent Documents 12 to 15 has both sufficient printing durability and stain resistance. It is difficult.
 本発明の目的は、インクジェット方式によるダイレクト製版が可能であり、優れた画像品質を有し、良好な耐刷性と耐汚れ性を両立させることが可能な平版印刷版原版、および平版印刷版の製版方法を提供することにある。 An object of the present invention is to provide a lithographic printing plate precursor capable of direct plate making by an ink jet method, having excellent image quality, and capable of achieving both good printing durability and stain resistance, and a lithographic printing plate It is to provide a plate making method.
 上記課題は以下の発明により達成される。
(1)耐水性支持体上に無機微粒子を主体に含有する画像受理層Aと、当該画像受理層Aよりも当該耐水性支持体から離れた側に、カチオン性コロイダルシリカを主体に含有するか、あるいはコロイダルシリカを主体に含有しかつカチオン性化合物を含有する画像受理層Bを有することを特徴とする平版印刷版原版。
(2)上記画像受理層Bが、平均一次粒子径が30nm以上のカチオン性コロイダルシリカを主体に含有するか、あるいは非球状のカチオン性コロイダルシリカを主体に含有する層である、上記(1)に記載の平版印刷版原版。
(3)上記非球状のカチオン性コロイダルシリカが、平均一次粒子径が25~60nmであり、かつ平均一次粒子径に対する平均二次粒子径の比が1.4~3.1である、上記(2)に記載の平版印刷版原版。
(4)上記画像受理層Bが、平均一次粒子径が30nm以上のカチオン性コロイダルシリカを主体に含有する層である、上記(2)に記載の平版印刷版原版。
(5)上記画像受理層Bが、平均一次粒子径が50nm以上のカチオン性コロイダルシリカを主体に含有する層である、上記(4)に記載の平版印刷版原版。
(6)上記画像受理層Bが、ポリビニルアルコールおよびセルロース誘導体を含有する、上記(1)に記載の平版印刷版原版。
(7)上記画像受理層Aが含有する無機微粒子が、BET法による比表面積が150m/gを超える無機微粒子である、上記(1)~(6)の何れかに記載の平版印刷版原版。
(8)上記画像受理層Aが含有する無機微粒子が、BET法による比表面積が300m/gを超える気相法シリカである、上記(7)に記載の平版印刷版原版。
(9)上記(1)~(8)の何れかに記載の平版印刷版原版に、インクジェット方式により水性顔料インクを印字することを特徴とする平版印刷版の製版方法。
(10)上記水性顔料インクが、顔料とスチレン-アクリル共重合体樹脂またはスチレン-メタアクリル共重合体樹脂とを含有する水性顔料インクである、上記(9)記載の平版印刷版の製版方法。
(11)上記平版印刷版原版に上記水性顔料インクを印字後、印刷開始前に、不感脂化処理することを含む、上記(9)または(10)記載の平版印刷版の製版方法。
The above-mentioned subject is achieved by the following invention.
(1) An image receiving layer A mainly containing inorganic fine particles on a water-resistant support, and whether cationic colloidal silica is mainly contained on the side farther from the water-resistant support than the image receiving layer A Or a lithographic printing plate precursor comprising an image-receiving layer B mainly containing colloidal silica and containing a cationic compound.
(2) The image receiving layer B is a layer mainly containing a cationic colloidal silica having an average primary particle diameter of 30 nm or more, or a layer mainly containing a non-spherical cationic colloidal silica. The lithographic printing plate precursor described in 1.
(3) The non-spherical cationic colloidal silica has an average primary particle size of 25 to 60 nm and a ratio of the average secondary particle size to the average primary particle size of 1.4 to 3.1. The lithographic printing plate precursor as described in 2).
(4) The lithographic printing plate precursor as described in (2) above, wherein the image receiving layer B is a layer mainly containing cationic colloidal silica having an average primary particle diameter of 30 nm or more.
(5) The lithographic printing plate precursor as described in (4) above, wherein the image receiving layer B is a layer mainly containing cationic colloidal silica having an average primary particle diameter of 50 nm or more.
(6) The lithographic printing plate precursor as described in (1) above, wherein the image receiving layer B contains polyvinyl alcohol and a cellulose derivative.
(7) The lithographic printing plate precursor as described in any one of (1) to (6) above, wherein the inorganic fine particles contained in the image receiving layer A are inorganic fine particles having a specific surface area of more than 150 m 2 / g by BET method. .
(8) The lithographic printing plate precursor as described in (7) above, wherein the inorganic fine particles contained in the image receiving layer A are gas phase method silica having a specific surface area by the BET method exceeding 300 m 2 / g.
(9) A method for making a lithographic printing plate, comprising printing an aqueous pigment ink on the lithographic printing plate precursor according to any one of (1) to (8) above by an inkjet method.
(10) The method for making a lithographic printing plate as described in (9) above, wherein the aqueous pigment ink is an aqueous pigment ink containing a pigment and a styrene-acrylic copolymer resin or a styrene-methacrylic copolymer resin.
(11) The method for making a lithographic printing plate as described in (9) or (10) above, comprising desensitization treatment after printing the aqueous pigment ink on the lithographic printing plate precursor and before starting printing.
 本発明により、インクジェット方式によるダイレクト製版が可能であり、優れた画像品質を有し、良好な耐刷性と耐汚れ性を両立させることが可能な平版印刷版原版、および平版印刷版の製版方法を提供することができる。 According to the present invention, a lithographic printing plate precursor capable of direct plate making by an ink jet method, having excellent image quality, and having both good printing durability and stain resistance, and a lithographic printing plate making method Can be provided.
 以下に本発明を詳細に説明する。 The present invention will be described in detail below.
 [実施形態1:平版印刷版原版]
 本実施形態に係る平版印刷版原版は、耐水性支持体上に無機微粒子を主体に含有する画像受理層Aと、当該画像受理層Aよりも当該耐水性支持体から離れた側に、カチオン性コロイダルシリカを主体に含有するか、あるいはコロイダルシリカを主体に含有しかつカチオン性化合物を含有する画像受理層Bを有することを特徴とする平版印刷版原版である。かかる平版印刷版原版によれば、インクジェット方式によるダイレクト製版が可能であり、優れた画像品質を有し、良好な耐刷性と耐汚れ性を両立させることが可能である。
[Embodiment 1: Planographic printing plate precursor]
The lithographic printing plate precursor according to this embodiment comprises an image-receiving layer A mainly containing inorganic fine particles on a water-resistant support, and a cationic property on the side farther from the water-resistant support than the image-receiving layer A. A lithographic printing plate precursor comprising an image receiving layer B mainly containing colloidal silica or containing colloidal silica as a main component and containing a cationic compound. According to such a lithographic printing plate precursor, direct plate making by an ink jet method is possible, it has excellent image quality, and it is possible to achieve both good printing durability and stain resistance.
 (画像形成層B)
 本発明の画像受理層Aよりも支持体から離れた側に設けられる画像受理層Bは、カチオン性コロイダルシリカを主体に含有するか、あるいはコロイダルシリカを主体に含有しかつカチオン性化合物を含有する画像受理層である。ここで、「主体に含有する」とは、画像受理層Bの全固形分質量に対するカチオン性のコロイダルシリカの質量比、またはコロイダルシリカの質量比が、50質量%以上であることを意味し、好ましくは70質量%以上、より好ましくは85質量%以上である。また、本発明において、画像受理層Bが平均一次粒子径が30nm以上のカチオン性コロイダルシリカを主体に含有するか、あるいは非球状のカチオン性コロイダルシリカを主体に含有する層であることが、より良好な耐刷性および耐汚れ性を有する平版印刷版原版が得られる観点から好ましい。
(Image forming layer B)
The image receiving layer B provided on the side farther from the support than the image receiving layer A of the present invention mainly contains cationic colloidal silica, or mainly contains colloidal silica and contains a cationic compound. It is an image receiving layer. Here, “mainly contained” means that the mass ratio of the cationic colloidal silica to the total solid mass of the image receiving layer B or the mass ratio of the colloidal silica is 50% by mass or more, Preferably it is 70 mass% or more, More preferably, it is 85 mass% or more. In the present invention, the image-receiving layer B mainly contains cationic colloidal silica having an average primary particle diameter of 30 nm or more, or is a layer mainly containing non-spherical cationic colloidal silica. It is preferable from the viewpoint of obtaining a lithographic printing plate precursor having good printing durability and stain resistance.
 画像受理層Bが非球状のカチオン性コロイダルシリカを主体に含有する層である場合、当該非球状のカチオン性コロイダルシリカは、平均一次粒子径が25~60nmであり、かつ平均一次粒子径に対する平均二次粒子径の比が1.4~3.1であることが好ましい。これにより、より優れた耐刷性と耐汚れ性を有する平版印刷版原版が得られる。 When the image receiving layer B is a layer mainly containing non-spherical cationic colloidal silica, the non-spherical cationic colloidal silica has an average primary particle diameter of 25 to 60 nm and an average with respect to the average primary particle diameter. The secondary particle size ratio is preferably 1.4 to 3.1. As a result, a lithographic printing plate precursor having more excellent printing durability and stain resistance can be obtained.
 本明細書中で使用される場合、非球状のカチオン性コロイダルシリカにおける「平均一次粒子径に対する平均二次粒子径の比が1.4~3.1である」とは、二次粒子が、コロイダルシリカの一次粒子が2~3個連なった状態のものであり、5個以上連なったものは含まない状態を意味する。なお、「コロイダルシリカの平均一次粒子径が25~60nmであり、かつ平均一次粒子径に対する平均二次粒子径の比が1.4~3.1である」との要件を満たす限り、異なる2種以上のコロイダルシリカを用いることもできる。コロイダルシリカの平均一次粒子径とは、一次粒子径が判別できるまで分散された粒子の電子顕微鏡写真より一定面積内に存在する100個の粒子の平均粒子径のことである。コロイダルシリカの平均一次粒子径に対する平均二次粒子径の比とは、連なったコロイダルシリカの直径をレーザー散乱式の粒度分布計(例えば、堀場製作所製、LA910)を用いて個数メジアン径として求め、上記で求めた平均一次粒子径に対する比を算出した値である。 As used herein, “ratio of average secondary particle size to average primary particle size is 1.4 to 3.1” in non-spherical cationic colloidal silica means that secondary particles are It means a state in which 2 to 3 primary particles of colloidal silica are connected, and a state in which 5 or more primary particles are connected is not included. As long as the requirement that the average primary particle diameter of colloidal silica is 25 to 60 nm and the ratio of the average secondary particle diameter to the average primary particle diameter is 1.4 to 3.1 is different, 2 More than one type of colloidal silica can also be used. The average primary particle size of colloidal silica is the average particle size of 100 particles existing within a certain area from an electron micrograph of particles dispersed until the primary particle size can be determined. The ratio of the average secondary particle diameter to the average primary particle diameter of the colloidal silica is determined as the number median diameter using a laser scattering type particle size distribution meter (for example, LA910, manufactured by Horiba, Ltd.), It is the value which computed the ratio with respect to the average primary particle diameter calculated | required above.
 このようなコロイダルシリカを得る方法としては、後述するカチオン性ポリマーまたは水溶性多価金属化合物でコロイダルシリカの表面を修飾する方法や、下記カチオン性シランカップリング剤等によりコロイダルシリカの表面を修飾する方法、あるいはコロイダルシリカの製造過程で粒子表面にカチオン性基を導入する方法等を挙げることができる。コロイダルシリカの表面を修飾する場合に用いるコロイダルシリカとしては、例えば扶桑化学工業株式会社製の商品名クォートロンPLシリーズ、日揮触媒化成株式会社製のカタロイドSI-50等を挙げることができる。中でも、水溶性多価金属化合物を用いてコロイダルシリカの表面を修飾する方法がより好ましい。 As a method for obtaining such colloidal silica, a method of modifying the surface of colloidal silica with a cationic polymer or a water-soluble polyvalent metal compound, which will be described later, or a method of modifying the surface of colloidal silica with the following cationic silane coupling agent or the like. And a method of introducing a cationic group to the particle surface during the production process of colloidal silica. Examples of the colloidal silica used for modifying the surface of the colloidal silica include a trade name Quarton PL series manufactured by Fuso Chemical Industry Co., Ltd., and Cataloid SI-50 manufactured by JGC Catalysts & Chemicals Co., Ltd. Among these, a method of modifying the surface of colloidal silica using a water-soluble polyvalent metal compound is more preferable.
 上記カチオン性シランカップリング剤としては、アミノ基含有シランカップリング剤を利用することが好ましい。このシランカップリング剤としては、例えばN-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等が挙げられる。 It is preferable to use an amino group-containing silane coupling agent as the cationic silane coupling agent. Examples of the silane coupling agent include N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl). ) -Γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, and the like.
 カチオン性コロイダルシリカを修飾するカチオン性ポリマーまたは水溶性多価金属化合物の固形分混合比(コロイダルシリカ質量部/カチオン性ポリマーまたは水溶性多価金属化合物質量部)は、100/2~100/20が好ましく、100/5~100/15がより好ましい。またコロイダルシリカをカチオン性シランカップリング剤で処理する場合のカチオン性シランカップリング剤の固形分混合比(コロイダルシリカ質量部/カチオン性シランカップリング剤質量部)は、100/0.01~100/20が好ましく、100/0.05~100/10がより好ましい。 The solid content mixing ratio of the cationic polymer or water-soluble polyvalent metal compound for modifying the cationic colloidal silica (parts by weight of colloidal silica / mass by weight of the cationic polymer or water-soluble polyvalent metal compound) is 100/2 to 100/20. Is preferable, and 100/5 to 100/15 is more preferable. When the colloidal silica is treated with the cationic silane coupling agent, the solid content mixing ratio of the cationic silane coupling agent (parts by weight of colloidal silica / parts by weight of the cationic silane coupling agent) is 100 / 0.01 to 100. / 20 is preferable, and 100 / 0.05 to 100/10 is more preferable.
 本発明において、画像受理層Bが平均一次粒子径が30nm以上のカチオン性コロイダルシリカを主体に含有することが、良好な耐刷性および耐汚れ性が得られる観点から最も好ましく、とりわけ、画像受理層Bが平均一次粒子径が50nm以上のカチオン性コロイダルシリカを主体に含有する場合、耐汚れ性がさらに良化する。本明細書中で使用される場合、「平均一次粒子径が30nm以上のカチオン性コロイダルシリカ」とは、平均一次粒子径が30nm以上の、球状の一次粒子をコロイド粒子とするカチオン性コロイダルシリカをいう。なお、該カチオン性コロイダルシリカの平均一次粒子径は、良好な耐刷性が得られる観点から、300nm以下であることが望ましい。 In the present invention, it is most preferable that the image receiving layer B mainly contains cationic colloidal silica having an average primary particle size of 30 nm or more from the viewpoint of obtaining good printing durability and stain resistance. When the layer B mainly contains cationic colloidal silica having an average primary particle diameter of 50 nm or more, the stain resistance is further improved. As used herein, "cationic colloidal silica having an average primary particle diameter of 30 nm or more" refers to cationic colloidal silica having colloidal particles of spherical primary particles having an average primary particle diameter of 30 nm or more. Say. The average primary particle diameter of the cationic colloidal silica is desirably 300 nm or less from the viewpoint of obtaining good printing durability.
 本発明に用いるカチオン性コロイダルシリカとしては、例えば、ライオン株式会社からはシリカLGTの商品名で、日揮触媒化成株式会社からはファインカタロイドの商品名で、または日産化学工業株式会社からはST-AK-L、ST-UP-AK、ST-PS-M-AK、ST-AK-YL等の商品名で市販されており、これらを入手し利用することができる。 The cationic colloidal silica used in the present invention is, for example, a product name of Silica LGT from Lion Corporation, a product name of Fine Cataroid from JGC Catalysts Chemical Co., Ltd., or ST- from Nissan Chemical Industries, Ltd. These are commercially available under trade names such as AK-L, ST-UP-AK, ST-PS-M-AK, ST-AK-YL, and these can be obtained and used.
 本実施形態において、画像受理層Bがコロイダルシリカを主体に含有しかつカチオン性化合物を含有する層である場合、画像受理層Bが含有する、カチオン性化合物と共に用いるコロイダルシリカとは、詳細にはアニオン性のコロイダルシリカであり、好ましい平均一次粒子径は上述したカチオン性のコロイダルシリカと同様である。かかるアニオン性のコロイダルシリカとしては、例えば日産化学工業株式会社から市販されているスノーテックスST-20、ST-30、ST-C、ST-OL40、ST-OZL等、ならびに扶桑化学工業株式会社から市販されているPL-3L、PL-5、PL-7等を入手し利用することができる。 In this embodiment, when the image receiving layer B is a layer mainly containing colloidal silica and containing a cationic compound, the colloidal silica used together with the cationic compound contained in the image receiving layer B is described in detail. It is an anionic colloidal silica, and a preferable average primary particle diameter is the same as that of the cationic colloidal silica described above. Examples of such anionic colloidal silica include Snowtex ST-20, ST-30, ST-C, ST-OL40, ST-OZL and the like commercially available from Nissan Chemical Industries, Ltd., and Fuso Chemical Industries, Ltd. Commercially available PL-3L, PL-5, PL-7, etc. can be obtained and used.
 本実施形態において、画像受理層Bがコロイダルシリカを主体に含有しかつカチオン性化合物を含有する層である場合、画像受理層Bが含有するコロイダルシリカと共に用いられるカチオン性化合物としては、カチオン性ポリマーまたは水溶性多価金属化合物が挙げられる。なおこれらカチオン性ポリマーまたは水溶性多価金属化合物は、非球状のカチオン性コロイダルシリカを作製する際の、コロイダルシリカ表面の修飾にも用いることができる。 In this embodiment, when the image receiving layer B is a layer mainly containing colloidal silica and containing a cationic compound, the cationic compound used together with the colloidal silica contained in the image receiving layer B is a cationic polymer. Or a water-soluble polyvalent metal compound is mentioned. These cationic polymers or water-soluble polyvalent metal compounds can also be used to modify the surface of colloidal silica when producing non-spherical cationic colloidal silica.
 上記カチオン性ポリマーとしては、ポリエチレンイミン;ポリジアリルアミン;ポリアリルアミン;アルキルアミン重合物;特開昭59-20696号公報、特開昭59-33176号公報、特開昭59-33177号公報、特開昭59-155088号公報、特開昭60-11389号公報、特開昭60-49990号公報、特開昭60-83882号公報、特開昭60-109894号公報、特開昭62-198493号公報、特開昭63-49478号公報、特開昭63-115780号公報、特開昭63-280681号公報、特開平1-40371号公報、特開平6-234268号公報、特開平7-125411号公報、特開平10-193776号公報等に記載された1~3級アミノ基、4級アンモニウム塩基を有するポリマーが好ましく用いられる。これらのカチオンポリマーの分子量は、1000~10万程度が好ましい。 Examples of the cationic polymer include polyethyleneimine; polydiallylamine; polyallylamine; alkylamine polymer; JP 59-20696, JP 59-33176, JP 59-33177, JP JP 59-1555088, JP 60-11389, JP 60-49990, JP 60-83882, JP 60-109894, JP 62-198493 JP, JP 63-49478, JP 63-115780, JP 63-280681, JP 1-40371, JP 6-234268, JP 7-125411. No. 1 and tertiary amino groups and quaternary ammonium bases described in JP-A-10-193976 Over is preferably used. The molecular weight of these cationic polymers is preferably about 1,000 to 100,000.
 上記水溶性多価金属化合物としては、水溶性多価金属塩として、カルシウム、バリウム、マンガン、銅、コバルト、ニッケル、アルミニウム、鉄、亜鉛、ジルコニウム、クロム、マグネシウム、タングステン、モリブデンから選ばれる金属の水溶性塩が挙げられる。具体的には例えば、酢酸カルシウム、塩化カルシウム、蟻酸カルシウム、硫酸カルシウム、酢酸バリウム、リン酸バリウム、塩化マンガン、酢酸マンガン、蟻酸マンガン二水和物、硫酸マンガンアンモニウム六水和物、塩化第二銅、塩化アンモニウム銅(II)二水和物、硫酸銅、塩化コバルト、チオシアン酸コバルト、硫酸コバルト、硫酸ニッケル六水和物、塩化ニッケル六水和物、酢酸ニッケル四水和物、硫酸ニッケルアンモニウム六水和物、アミド硫酸ニッケル四水和物、フェノールスルフォン酸ニッケル、硫酸アルミニウム、亜硫酸アルミニウム、チオ硫酸アルミニウム、ポリ塩化アルミニウム、塩基性ポリ水酸化アルミニウム、硫酸アルミニウム九水和物、塩化アルミニウム六水和物、臭化第一鉄、塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、臭化亜鉛、塩化亜鉛、硝酸亜鉛六水和物、硫酸亜鉛、フェノールスルフォン酸亜鉛、酢酸ジルコニウム、塩化ジルコニウム、塩化酸化ジルコニウム八水和物、ヒドロキシ塩化ジルコニウム、酢酸クロム、硫酸マグネシウム、塩化マグネシウム六水和物、クエン酸マグネシウム九水和物、リンタングステン酸ナトリウム、クエン酸ナトリウムタングステン、12タングストリン酸n水和物等が挙げられる。これらの中にはpHが不適当に低いものもあり、その場合は適宜pHを調節して用いることも可能である。本明細書において使用される場合、「水溶性」とは、常温常圧下で水に1質量%以上溶解することを目安とする。本実施形態では、ジルコニウムまたはアルミニウムからなる水溶性金属塩が好ましい。ジルコニウムからなる水溶性金属塩としては、例えば、第一希元素化学工業株式会社からZA-30が市販されている。アルミニウムからなる水溶性金属としては、例えば、多木化学株式会社よりポリ塩化アルミニウム(PAC)の名で水処理剤として、浅田化学株式会社よりポリ水酸化アルミニウム(Paho)の名で、また、株式会社理研グリーンよりピュラケムWTの名で、また他のメーカーからも同様の目的を持って販売されており、各種グレードのものが容易に入手できる。 The water-soluble polyvalent metal compound includes, as a water-soluble polyvalent metal salt, a metal selected from calcium, barium, manganese, copper, cobalt, nickel, aluminum, iron, zinc, zirconium, chromium, magnesium, tungsten, and molybdenum. A water-soluble salt is mentioned. Specifically, for example, calcium acetate, calcium chloride, calcium formate, calcium sulfate, barium acetate, barium phosphate, manganese chloride, manganese acetate, manganese formate dihydrate, manganese ammonium sulfate hexahydrate, cupric chloride , Ammonium copper (II) chloride dihydrate, copper sulfate, cobalt chloride, cobalt thiocyanate, cobalt sulfate, nickel sulfate hexahydrate, nickel chloride hexahydrate, nickel acetate tetrahydrate, nickel ammonium sulfate hexa Hydrate, nickel amidosulfate tetrahydrate, nickel phenolsulfonate, aluminum sulfate, aluminum sulfite, aluminum thiosulfate, polyaluminum chloride, basic polyaluminum hydroxide, aluminum sulfate nonahydrate, aluminum chloride hexahydrate , Ferrous bromide, ferrous chloride, ferric chloride, sulfuric acid Iron, ferric sulfate, zinc bromide, zinc chloride, zinc nitrate hexahydrate, zinc sulfate, zinc phenolsulfonate, zirconium acetate, zirconium chloride, zirconium chloride octahydrate, zirconium hydroxychloride, chromium acetate, Examples include magnesium sulfate, magnesium chloride hexahydrate, magnesium citrate nonahydrate, sodium phosphotungstate, sodium tungsten citrate, 12 tungstophosphoric acid n-hydrate, and the like. Some of them have an inappropriately low pH, and in that case, the pH can be appropriately adjusted and used. As used herein, the term “water-soluble” refers to dissolving 1% by mass or more in water at normal temperature and pressure. In the present embodiment, a water-soluble metal salt made of zirconium or aluminum is preferable. As a water-soluble metal salt composed of zirconium, for example, ZA-30 is commercially available from Daiichi Rare Element Chemical Co., Ltd. As a water-soluble metal made of aluminum, for example, water treatment agent under the name of polyaluminum chloride (PAC) from Taki Chemical Co., Ltd., under the name of polyaluminum hydroxide (Paho) from Asada Chemical Co., Ltd. It is sold under the name Purachem WT by Riken Green, Inc., and it is also sold by other manufacturers for the same purpose, and various grades are readily available.
 画像受理層Bはバインダーを含有することができる。画像受理層Bにおけるバインダー含有量は、画像受理層Bの固形分塗布量の10質量%以下であることが好ましく、更に6質量%以下であることが好ましい。これにより優れた耐刷性と耐汚れ性を両立することができる。用いるバインダーとしては、後述する画像受理層Aが含有する親水性バインダーと同様のものが挙げられるが、中でもポリビニルアルコールおよびセルロース誘導体、特にポリビニルアルコールとヒドロキシエチルセルロースとを併用して用いることで、耐刷性を低下させずに耐汚れ性を向上させることが可能となる。ポリビニルアルコールとセルロース誘導体を併用する際の比率(質量比)としては、7:3~3:7の範囲が好ましい。 The image receiving layer B can contain a binder. The binder content in the image receiving layer B is preferably 10% by mass or less, more preferably 6% by mass or less of the solid content coating amount of the image receiving layer B. Thereby, both excellent printing durability and stain resistance can be achieved. Examples of the binder to be used include those similar to the hydrophilic binder contained in the image receiving layer A to be described later. Among them, polyvinyl alcohol and cellulose derivatives, in particular, polyvinyl alcohol and hydroxyethyl cellulose are used in combination. It is possible to improve the stain resistance without deteriorating the property. The ratio (mass ratio) when polyvinyl alcohol and cellulose derivative are used in combination is preferably in the range of 7: 3 to 3: 7.
 画像受理層Bの固形分塗布量は、0.01~8.0g/mであることが好ましく、より好ましくは0.05~2.0g/mであり、更に好ましくは0.05~1.5g/mである。これにより、とりわけ良好な画像品質が得られる。 The solid content coating amount of the image receiving layer B is preferably 0.01 to 8.0 g / m 2 , more preferably 0.05 to 2.0 g / m 2 , and still more preferably 0.05 to 1.5 g / m 2 . Thereby, particularly good image quality can be obtained.
 (画像形成層A)
 次に画像受理層Aについて説明する。本発明の画像受理層Aは無機微粒子を主体に含有する。ここで「無機微粒子を主体に含有する」とは、画像受理層Aの固形分塗布量に対して、無機微粒子を50質量%以上含有することであり、より好ましくは60質量%以上、含有することである。本発明の画像受理層Aにおける無機微粒子の含有量は、画像受理層Aの全固形分に対して50質量%以上であるのが好ましく、60質量%以上がより好ましく、特に65~90質量%の範囲が好ましい。このように無機微粒子の含有比率が高い画像受理層は、空隙率の高い多孔質な画像受理層となる。
(Image forming layer A)
Next, the image receiving layer A will be described. The image receiving layer A of the present invention mainly contains inorganic fine particles. Here, “mainly containing inorganic fine particles” means that the inorganic fine particles are contained in an amount of 50% by mass or more, more preferably 60% by mass or more, based on the solid content coating amount of the image receiving layer A. That is. The content of the inorganic fine particles in the image receiving layer A of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, particularly 65 to 90% by mass with respect to the total solid content of the image receiving layer A. The range of is preferable. Thus, the image receiving layer having a high content of inorganic fine particles becomes a porous image receiving layer having a high porosity.
 画像受理層Aが含有する無機微粒子としては、非晶質合成シリカ、アルミナ、アルミナ水和物、炭酸カルシウム、炭酸マグネシウム、二酸化チタン等公知の各種微粒子が挙げられるが、良好な生産性が得られる点で、非晶質合成シリカ、アルミナまたはアルミナ水和物が好ましい。更に、良好なインク吸収性が得られる観点から、非晶質合成シリカ、中でも後述する気相法シリカが特に好ましく用いられる。また本発明の画像受理層Aが含有する無機微粒子の平均二次粒子径は1.0μm未満であることが好ましい。 Examples of the inorganic fine particles contained in the image receiving layer A include various known fine particles such as amorphous synthetic silica, alumina, alumina hydrate, calcium carbonate, magnesium carbonate, titanium dioxide, and good productivity can be obtained. In this respect, amorphous synthetic silica, alumina, or alumina hydrate is preferable. Furthermore, from the viewpoint of obtaining good ink absorptivity, amorphous synthetic silica, particularly gas phase method silica described later, is particularly preferably used. The average secondary particle size of the inorganic fine particles contained in the image receiving layer A of the present invention is preferably less than 1.0 μm.
 非晶質合成シリカは、製造法によって湿式法シリカ、気相法シリカ、およびその他に大別することができる。湿式法シリカは、更に製造方法によって沈降法シリカ、ゲル法シリカ、およびゾル法シリカに分類される。沈降法シリカは、珪酸ソーダと硫酸をアルカリ条件で反応させて製造され、粒子成長したシリカ粒子が凝集・沈降し、その後濾過、水洗、乾燥、粉砕・分級の行程を経て製品化される。沈降法シリカとしては、例えば東ソー・シリカ株式会社からニップシールの商品名で、株式会社トクヤマからトクシールの商品名で市販されている。ゲル法シリカは、珪酸ソーダと硫酸を酸性条件下で反応させて製造する。熟成中に微小粒子は溶解し、他の一次粒子どうしを結合するように再析出するため、明確な一次粒子は消失し、内部空隙構造を有する比較的硬い凝集粒子を形成する。ゲル法シリカとしては、例えば、東ソーシリカ株式会社からニップゲルの商品名で、グレースジャパン株式会社からサイロイド、サイロジェットの商品名で市販されている。ゾル法シリカは、コロイダルシリカとも呼ばれ、珪酸ソーダの酸等による複分解やイオン交換樹脂層を通して得られるシリカゾルを加熱熟成して得られる。ゾル法シリカとしては、例えば日産化学工業株式会社からスノーテックスの商品名で市販されている。 Amorphous synthetic silica can be roughly classified into wet method silica, gas phase method silica, and others depending on the production method. The wet process silica is further classified into precipitation process silica, gel process silica, and sol process silica according to the production method. Precipitated silica is produced by reacting sodium silicate and sulfuric acid under alkaline conditions, and the silica particles that have grown are agglomerated and settled, and are then commercialized through the steps of filtration, washing, drying, pulverization and classification. Precipitated silica is commercially available, for example, from Tosoh Silica Co., Ltd. under the trade name of nipseal and from Tokuyama Co., Ltd. under the trade name of Tokuseal. Gel silica is produced by reacting sodium silicate and sulfuric acid under acidic conditions. During aging, the microparticles dissolve and reprecipitate so as to bind the other primary particles, so that the distinct primary particles disappear and form relatively hard aggregated particles having an internal void structure. As the gel method silica, for example, it is commercially available from Tosoh Silica Co., Ltd. under the trade name of Nipgel, and from Grace Japan Co., Ltd. under the trade names of Cyloid and Silojet. The sol method silica is also called colloidal silica, and is obtained by heating and aging a silica sol obtained through metathesis of sodium silicate acid or the like through an ion exchange resin layer. Sol silica is commercially available from Nissan Chemical Industries, Ltd. under the name Snowtex.
 気相法シリカは、湿式法シリカに対して乾式法シリカとも呼ばれ、一般的には火炎加水分解法によって作られる。具体的には四塩化ケイ素を水素および酸素と共に燃焼して作る方法が一般的に知られているが、四塩化ケイ素の代わりにメチルトリクロロシランやトリクロロシラン等のシラン類も、単独または四塩化ケイ素と混合した状態で使用することができる。気相法シリカは、日本アエロジル株式会社からアエロジルの商品名で、株式会社トクヤマからQSタイプの商品名で市販されている。 Vapor phase silica is also called dry silica compared to wet silica, and is generally made by flame hydrolysis. Specifically, a method of making silicon tetrachloride by burning with hydrogen and oxygen is generally known, but silanes such as methyltrichlorosilane and trichlorosilane can be used alone or in silicon tetrachloride instead of silicon tetrachloride. Can be used in a mixed state. Vapor phase method silica is commercially available from Nippon Aerosil Co., Ltd. under the trade name Aerosil and from Tokuyama Co., Ltd. under the QS type trade name.
 本発明における上記無機微粒子は、BET法による比表面積が150m/gを超える無機微粒子であることが、耐汚れ性が良化するため、好ましい。 The inorganic fine particles in the present invention are preferably inorganic fine particles having a specific surface area of more than 150 m 2 / g as measured by the BET method because the stain resistance is improved.
 更に、無機微粒子の中でも、BET法による比表面積が300m/gを超える気相法シリカが好ましく使用できる。これにより、耐汚れ性が良化する。なお、本発明でいうBET法とは、気相吸着法による粉体の表面積測定法の一つであり、吸着等温線から1gの試料の持つ総表面積、即ち比表面積を求める方法である。通常吸着気体としては、窒素ガスが多く用いられ吸着量を被吸着気体の圧、または容積の変化から測定する方法が最も多く用いられている。多分子吸着の等温線を表すのに最も著名なものは、Brunauer、Emmett、Tellerの式であってBET式と呼ばれ表面積決定に広く用いられている。BET式に基づいて吸着量を求め、吸着分子1個が表面で占める面積を掛けて、比表面積が得られる。 Further, among inorganic fine particles, vapor phase method silica having a specific surface area by BET method exceeding 300 m 2 / g can be preferably used. Thereby, dirt resistance improves. The BET method referred to in the present invention is a method for measuring the surface area of a powder by a vapor phase adsorption method, and is a method for determining the total surface area, that is, the specific surface area of a 1 g sample from an adsorption isotherm. Usually, as the adsorbed gas, a large amount of nitrogen gas is used, and the method of measuring the amount of adsorption from the change in pressure or volume of the gas to be adsorbed is most often used. The most prominent expression for expressing the isotherm of multimolecular adsorption is the Brunauer, Emmett, and Teller formula, called the BET formula, which is widely used for determining the surface area. The adsorption amount is obtained based on the BET formula, and the specific surface area is obtained by multiplying the area occupied by one adsorbed molecule on the surface.
 本発明における気相法シリカは、カチオン性化合物の存在下で分散するのが好ましい。分散された気相法シリカの平均二次粒子径は1.0μm未満であることが好ましい。分散方法としては、通常のプロペラ撹拌、タービン型撹拌、ホモミキサー型撹拌等で気相法シリカと分散媒を予備混合し、次にボールミル、ビーズミル、サンドグラインダー等のメディアミル、高圧ホモジナイザー、超高圧ホモジナイザー等の圧力式分散機、超音波分散機、および薄膜旋回型分散機等を使用して分散を行うことが好ましい。なお、本発明でいう無機微粒子の平均二次粒子径は、レーザー散乱式の粒度分布計(例えば、堀場製作所製、LA910)を用いて、個数メジアン径として測定することができる。 The gas phase method silica in the present invention is preferably dispersed in the presence of a cationic compound. The average secondary particle diameter of the dispersed vapor phase process silica is preferably less than 1.0 μm. As a dispersion method, gas phase method silica and a dispersion medium are premixed by ordinary propeller stirring, turbine type stirring, homomixer type stirring, etc., and then a media mill such as a ball mill, a bead mill, a sand grinder, a high pressure homogenizer, an ultrahigh pressure It is preferable to perform dispersion using a pressure disperser such as a homogenizer, an ultrasonic disperser, a thin film swirl disperser, or the like. The average secondary particle diameter of the inorganic fine particles referred to in the present invention can be measured as a number median diameter using a laser scattering type particle size distribution meter (for example, LA910 manufactured by Horiba, Ltd.).
 本発明では、平均二次粒子径1.0μm未満に粉砕した湿式法シリカも好ましく使用できる。ここで用いられる湿式法シリカとしては沈降法シリカまたはゲル法シリカが好ましく、特に沈降法シリカが好ましい。 In the present invention, wet process silica pulverized to an average secondary particle size of less than 1.0 μm can also be preferably used. As the wet method silica used here, precipitation method silica or gel method silica is preferable, and precipitation method silica is particularly preferable.
 通常の方法で製造された湿式法シリカは、1.0μm以上の平均凝集粒子径を有するため、これを微粉砕して使用する。粉砕方法としては、水性媒体中に分散したシリカを機械的に粉砕する湿式分散法が好ましく使用できる。この際、分散液の初期粘度上昇が抑制され、高濃度分散が可能となり、粉砕・分散効率が上昇してより微粒子に粉砕することができることから、平均凝集粒子径5μm以上の湿式法シリカを使用することが好ましい。高濃度分散液を使用することによって、平版印刷版原版の生産性も向上する。本発明における湿式法シリカとしては平均凝集粒子径が5~50μmである湿式法シリカ粒子が好ましく、これをカチオン性化合物の存在下微粉砕した湿式法シリカ微粒子を使用することができる。 Since wet-process silica produced by a normal method has an average aggregate particle diameter of 1.0 μm or more, it is used after being finely pulverized. As a pulverization method, a wet dispersion method in which silica dispersed in an aqueous medium is mechanically pulverized can be preferably used. At this time, increase in the initial viscosity of the dispersion is suppressed, high concentration dispersion is possible, and pulverization / dispersion efficiency is increased so that it can be further pulverized into fine particles. It is preferable to do. By using a high concentration dispersion, the productivity of the lithographic printing plate precursor is also improved. As the wet process silica in the present invention, wet process silica particles having an average aggregated particle diameter of 5 to 50 μm are preferable, and wet process silica fine particles obtained by pulverizing them in the presence of a cationic compound can be used.
 本発明における平均二次粒子径が1.0μm未満の湿式法シリカ微粒子を得る具体的な方法について説明する。まず、水を主体とする分散媒中にシリカ粒子とカチオン性化合物を混合し、のこぎり歯状ブレード型分散機、プロペラ羽根型分散機、またはローターステーター型分散機等の分散装置の少なくとも一つを用いて予備分散液を得る。必要であれば水分散媒中に適度の低沸点溶剤等を添加してもよい。シリカ予備分散液の固形分濃度は高い方が好ましいが、あまり高濃度になると分散不可能となるため、好ましい範囲としては15~40質量%、より好ましくは20~35質量%である。次に、シリカ予備分散液をより強い剪断力を持つ機械的手段にかけてシリカ粒子を粉砕し、平均二次粒子径が1.0μm未満の湿式法シリカ微粒子分散液が得られる。機械的手段としては公知の方法が採用でき、例えば、ボールミル、ビーズミル、サンドグラインダー等のメディアミル、高圧ホモジナイザー、超高圧ホモジナイザー等の圧力式分散機、超音波分散機および薄膜旋回型分散機等を使用することができる。 A specific method for obtaining wet method silica fine particles having an average secondary particle diameter of less than 1.0 μm in the present invention will be described. First, silica particles and a cationic compound are mixed in a dispersion medium mainly composed of water, and at least one dispersion device such as a sawtooth blade type dispersion machine, a propeller blade type dispersion machine, or a rotor stator type dispersion machine is used. Used to obtain a preliminary dispersion. If necessary, an appropriate low boiling point solvent or the like may be added to the aqueous dispersion medium. The silica pre-dispersion preferably has a higher solid content, but if the concentration is too high, the dispersion becomes impossible. Therefore, the preferred range is 15 to 40% by mass, and more preferably 20 to 35% by mass. Next, the silica particles are pulverized by applying the silica pre-dispersion to mechanical means having a stronger shearing force to obtain a wet process silica fine particle dispersion having an average secondary particle size of less than 1.0 μm. As a mechanical means, a known method can be adopted, for example, a media mill such as a ball mill, a bead mill, a sand grinder, a high pressure homogenizer, a pressure disperser such as an ultra high pressure homogenizer, an ultrasonic disperser, a thin film swirl disperser, etc. Can be used.
 上記気相法シリカおよび湿式法シリカの分散あるいは粉砕に使用するカチオン性化合物としては、カチオン性ポリマーを好ましく使用できる。かかるカチオン性化合物およびカチオン性ポリマーとしては、画像受理層Bにコロイダルシリカと共に用いるカチオン性化合物およびカチオン性ポリマーと同義であるが、特に、カチオン性ポリマーとしてジアリルアミン誘導体が好ましく用いられる。分散性および分散液粘度の面で、これらのカチオンポリマーの分子量は、2000~10万程度が好ましく、特に2000~3万程度が好ましい。 As the cationic compound used for dispersion or pulverization of the vapor phase silica and the wet method silica, a cationic polymer can be preferably used. The cationic compound and the cationic polymer are synonymous with the cationic compound and the cationic polymer used together with the colloidal silica in the image receiving layer B. In particular, a diallylamine derivative is preferably used as the cationic polymer. In terms of dispersibility and dispersion viscosity, the molecular weight of these cationic polymers is preferably about 2000 to 100,000, and more preferably about 2000 to 30,000.
 また画像受理層Aに使用する無機微粒子としてアルミナまたはアルミナ水和物も好適に用いられる。アルミナまたはアルミナ水和物は、酸化アルミニウムやその含水物であり、結晶質でも非晶質でもよく、不定形や、球状、板状等の形態を有しているものが使用される。これらの何れかを使用してもよいし、併用してもよい。 Further, alumina or alumina hydrate is also preferably used as the inorganic fine particles used for the image receiving layer A. Alumina or alumina hydrate is aluminum oxide or its hydrate, which may be crystalline or amorphous, and has an amorphous shape, a spherical shape, a plate shape, or the like. Any of these may be used or used in combination.
 本発明に用いることのできる酸化アルミナとしては酸化アルミニウムのγ型結晶であるγ-アルミナが好ましく、中でもδグループ結晶が好ましい。γ-アルミナは一次粒子を10nm程度まで小さくすることが可能であるが、通常は、数千から数万nmの二次粒子結晶を超音波や高圧ホモジナイザー、対向衝突型ジェット粉砕機等で平均二次粒子径が1.0μm未満まで分散したものが使用できる。 As the alumina oxide that can be used in the present invention, γ-alumina, which is a γ-type crystal of aluminum oxide, is preferable, and δ group crystal is particularly preferable. γ-alumina can make primary particles as small as about 10 nm. Usually, secondary particles of several thousand to several tens of thousands nm are averaged by ultrasonic, high-pressure homogenizer, counter collision type jet crusher, etc. Those having a secondary particle size of less than 1.0 μm can be used.
 本発明に用いることのできるアルミナ水和物はAl・nHO(n=1~3)の構成式で表される。酸化アルミニウム含水物は、アルミニウムイソプロポキシド等のアルミニウムアルコキシドの加水分解、アルミニウム塩のアルカリによる中和、アルミン酸塩の加水分解等の公知の製造方法により得られる。本発明に使用されるアルミナ水和物の平均二次粒子径は1.0μm未満であることが好ましい。 The alumina hydrate that can be used in the present invention is represented by a constitutional formula of Al 2 O 3 .nH 2 O (n = 1 to 3). The hydrated aluminum oxide can be obtained by a known production method such as hydrolysis of aluminum alkoxide such as aluminum isopropoxide, neutralization of aluminum salt with alkali, hydrolysis of aluminate, and the like. The average secondary particle size of the alumina hydrate used in the present invention is preferably less than 1.0 μm.
 本発明に用いられるアルミナおよびアルミナ水和物は、酢酸、乳酸、蟻酸、メタンスルホン酸、塩酸、硝酸等の公知の分散剤によって平均二次粒子径が1.0μm未満まで分散されたものが好ましく用いられる。 Alumina and alumina hydrate used in the present invention are preferably those in which the average secondary particle size is dispersed to less than 1.0 μm by a known dispersant such as acetic acid, lactic acid, formic acid, methanesulfonic acid, hydrochloric acid, nitric acid and the like. Used.
 上記した無機微粒子の中から2種以上の無機微粒子を併用することもできる。例えば、微粉砕した湿式法シリカと気相法シリカとの併用、微粉砕した湿式法シリカとアルミナまたはアルミナ水和物との併用、気相法シリカとアルミナまたはアルミナ水和物との併用が挙げられる。この併用の場合の比率(質量比)は、何れの様態も7:3~3:7の範囲が好ましい。 Two or more kinds of inorganic fine particles can be used in combination from the above-mentioned inorganic fine particles. For example, combined use of finely pulverized wet method silica and vapor phase method silica, combined use of finely divided wet method silica and alumina or alumina hydrate, and combined use of vapor phase method silica and alumina or alumina hydrate. It is done. The ratio (mass ratio) in the case of this combined use is preferably in the range of 7: 3 to 3: 7 in any aspect.
 本発明において、画像受理層Aを構成する無機微粒子と共にバインダーを用いることが好ましい。かかるバインダーとしては、透明性が高くインクのより高い浸透性が得られる親水性バインダーが好ましく用いられる。例えば、ポリビニルアルコール(その変性物を含む)、ゼラチン、ポリエチレンオキサイド、ポリビニルピロリドン、ポリアクリル酸、ポリアクリルアミド、ポリウレタン、デキストラン、デキストリン、カラギーナン、寒天、プルラン、水溶性ポリビニルブチラール、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシルメチルセルロース等の各種セルロース誘導体が挙げられる。これら親水性バインダーは2種類以上併用することも可能である。親水性バインダーの使用に当たっては、親水性バインダーがインクの初期の浸透時に膨潤して空隙を塞いでしまわないことが重要であり、この観点から比較的室温付近で膨潤性の低い親水性バインダーが好ましく用いられる。好ましい親水性バインダーは、ポリビニルアルコールであり、特に、完全または部分ケン化のポリビニルアルコールや、カチオン変成ポリビニルアルコールが好ましい。 In the present invention, it is preferable to use a binder together with the inorganic fine particles constituting the image receiving layer A. As such a binder, a hydrophilic binder having high transparency and higher ink permeability is preferably used. For example, polyvinyl alcohol (including modified products thereof), gelatin, polyethylene oxide, polyvinyl pyrrolidone, polyacrylic acid, polyacrylamide, polyurethane, dextran, dextrin, carrageenan, agar, pullulan, water-soluble polyvinyl butyral, hydroxyethyl cellulose, hydroxypropyl cellulose And various cellulose derivatives such as carboxymethylcellulose. Two or more of these hydrophilic binders can be used in combination. When using a hydrophilic binder, it is important that the hydrophilic binder does not swell during the initial penetration of the ink and block the voids. From this point of view, a hydrophilic binder having a relatively low swellability around room temperature is preferable. Used. A preferred hydrophilic binder is polyvinyl alcohol, and particularly, completely or partially saponified polyvinyl alcohol or cationically modified polyvinyl alcohol is preferred.
 ポリビニルアルコールの中でも特に好ましいのは、ケン化度が80%以上の部分または完全ケン化したものである。平均重合度200~5000のものが好ましい。 Particularly preferred among polyvinyl alcohols are those having a saponification degree of 80% or more or those having been completely saponified. Those having an average degree of polymerization of 200 to 5000 are preferred.
 カチオン変性ポリビニルアルコールとしては、例えば特開昭61-10483号公報に記載されているような、第1~3級アミノ基や第4級アンモニウム基をポリビニルアルコールの主鎖あるいは側鎖中に有するポリビニルアルコールである。 Examples of the cation-modified polyvinyl alcohol include polyvinyl alcohol having primary to tertiary amino groups or quaternary ammonium groups in the main chain or side chain of polyvinyl alcohol as described in JP-A-61-10383. It is alcohol.
 本発明は、画像受理層Aを構成する上記親水性バインダーと共に必要に応じ硬膜剤を用いることもできる。硬膜剤の具体的な例としては、ホルムアルデヒド、グルタルアルデヒドの如きアルデヒド系化合物、ジアセチル、クロルペンタンジオンの如きケトン化合物、ビス(2-クロロエチル)尿素、2-ヒドロキシ-4,6-ジクロロ-1,3,5-トリアジン、米国特許第3,288,775号記載の如き反応性のハロゲンを有する化合物、ジビニルスルホン、米国特許第3,635,718号記載の如き反応性のオレフィンを持つ化合物、米国特許第2,732,316号記載の如きN-メチロール化合物、米国特許第3,103,437号記載の如きイソシアナート類、米国特許第3,017,280号、米国特許第2,983,611号記載の如きアジリジン化合物類、米国特許第3,100,704号記載の如きカルボジイミド系化合物類、米国特許第3,091,537号記載の如きエポキシ化合物、ムコクロル酸の如きハロゲンカルボキシアルデヒド類、ジヒドロキシジオキサンの如きジオキサン誘導体、クロム明ばん、硫酸ジルコニウム、ホウ砂、ホウ酸、ホウ酸塩類の如き無機架橋剤等があり、これらを1種または2種以上組み合わせて用いることができる。 In the present invention, if necessary, a hardening agent can be used together with the hydrophilic binder constituting the image receiving layer A. Specific examples of the hardener include aldehyde compounds such as formaldehyde and glutaraldehyde, ketone compounds such as diacetyl and chloropentanedione, bis (2-chloroethyl) urea, 2-hydroxy-4,6-dichloro-1 , 3,5-triazine, a compound having a reactive halogen as described in US Pat. No. 3,288,775, divinyl sulfone, a compound having a reactive olefin as described in US Pat. No. 3,635,718, N-methylol compounds as described in US Pat. No. 2,732,316, isocyanates as described in US Pat. No. 3,103,437, US Pat. No. 3,017,280, US Pat. No. 2,983 Aziridine compounds as described in US Pat. No. 611, carbodiimide compounds as described in US Pat. No. 3,100,704 , Epoxy compounds as described in US Pat. No. 3,091,537, halogen carboxaldehydes such as mucochloric acid, dioxane derivatives such as dihydroxydioxane, chromium alum, zirconium sulfate, borax, boric acid, borates There exist inorganic crosslinking agents etc., and these can be used 1 type or in combination of 2 or more types.
 親水性バインダーとしてケン化度が80%以上の部分または完全ケン化したポリビニルアルコールを用いる場合には、硬膜剤としてはホウ砂、ホウ酸、ホウ酸塩類が好ましく、ホウ酸が特に好ましい。 When using a partially saponified polyvinyl alcohol having a saponification degree of 80% or more as the hydrophilic binder, borax, boric acid and borates are preferred as the hardener, and boric acid is particularly preferred.
 また、画像受理層Aを構成する親水性のバインダーとしてケト基を有する親水性バインダーを用いることもできる。ケト基を有する親水性バインダーは、ケト基を有するモノマーと他のモノマーを共重合する方法等によって合成することができる。ケト基を有するモノマーの具体例としては、アクロレイン、ジアセトンアクリルアミド、ジアセトンメタクリレート、アセトアセトキシエチルメタクレート、4-ビニルアセトアセトアニリド、アセトアセチルアリルアミド等が挙げられる。また、ポリマー反応でケト基を導入してもよく、例えばヒドロキシ基やアミノ基とジケテンとの反応等によってアセトアセチル基を導入することができる。ケト基を有する親水性バインダーの具体例としては、アセトアセチル変性ポリビニルアルコール、アセトアセチル変性セルロース誘導体、アセトアセチル変性澱粉、ジアセトンアクリルアミド変性ポリビニルアルコール、特開平10-157283号公報に記載の親水性バインダー等が挙げられる。本発明では、特にケト基を有する変性ポリビニルアルコールが好ましい。ケト基を有する変性ポリビニルアルコールとしては、アセトアセチル変性ポリビニルアルコール、ジアセトンアクリルアミド変性ポリビニルアルコール等が挙げられる。 Further, a hydrophilic binder having a keto group can also be used as the hydrophilic binder constituting the image receiving layer A. The hydrophilic binder having a keto group can be synthesized by a method of copolymerizing a monomer having a keto group and another monomer. Specific examples of the monomer having a keto group include acrolein, diacetone acrylamide, diacetone methacrylate, acetoacetoxyethyl methacrylate, 4-vinylacetoacetanilide, acetoacetyl allylamide, and the like. Further, a keto group may be introduced by a polymer reaction. For example, an acetoacetyl group can be introduced by a reaction of a hydroxy group or an amino group with a diketene. Specific examples of the hydrophilic binder having a keto group include acetoacetyl-modified polyvinyl alcohol, acetoacetyl-modified cellulose derivatives, acetoacetyl-modified starch, diacetone acrylamide-modified polyvinyl alcohol, and hydrophilic binders described in JP-A-10-157283. Etc. In the present invention, modified polyvinyl alcohol having a keto group is particularly preferable. Examples of the modified polyvinyl alcohol having a keto group include acetoacetyl-modified polyvinyl alcohol and diacetone acrylamide-modified polyvinyl alcohol.
 アセトアセチル変性ポリビニルアルコールは、ポリビニルアルコールとジケテンの反応等の公知の方法によって製造することができる。アセトアセチル化度は0.1~20モル%が好ましく、更に1~15モル%が好ましい。ケン化度は80モル%以上が好ましく、更に85モル%以上が好ましい。重合度としては500~5000のものが好ましく、特に2000~4500のものが更に好ましい。 The acetoacetyl-modified polyvinyl alcohol can be produced by a known method such as a reaction between polyvinyl alcohol and diketene. The degree of acetoacetylation is preferably 0.1 to 20 mol%, more preferably 1 to 15 mol%. The saponification degree is preferably 80 mol% or more, more preferably 85 mol% or more. The polymerization degree is preferably 500 to 5000, and more preferably 2000 to 4500.
 ジアセトンアクリルアミド変性ポリビニルアルコールは、ジアセトンアクリルアミド-酢酸ビニル共重合体をケン化する等公知の方法によって製造することができる。ジアセトンアクリルアミド単位の含有量としては、0.1~15モル%の範囲が好ましく、更に0.5~10モル%の範囲が好ましい。ケン化度としては85モル%以上、重合度としては500~5000のものが好ましい。 Diacetone acrylamide-modified polyvinyl alcohol can be produced by a known method such as saponification of diacetone acrylamide-vinyl acetate copolymer. The content of diacetone acrylamide units is preferably in the range of 0.1 to 15 mol%, more preferably in the range of 0.5 to 10 mol%. The saponification degree is preferably 85 mol% or more, and the polymerization degree is preferably 500 to 5000.
 本発明において、画像受理層Aに含有するケト基を有する親水性バインダーは、架橋剤で架橋されることが好ましい。かかる架橋剤としては以下の化合物が挙げられる。 In the present invention, the hydrophilic binder having a keto group contained in the image receiving layer A is preferably crosslinked with a crosslinking agent. Examples of the crosslinking agent include the following compounds.
(1)ポリアミン類
 脂肪族ポリアミン類;
・アルキレンジアミン(例えば、エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン等)
・ポリアルキレンポリアミン(例えば、ジエチレントリアミン、イミノビス(プロピルアミン)、ビス(ヘキサメチレン)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等)
・これらのアルキルまたはヒドロキシアルキル置換体(例えば、アミノエチルエタノールアミン、メチルイミノビス(プロピルアミン)等)
・脂環または複素環含有脂肪族ポリアミン(例えば、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン等)
・芳香環含有脂肪族アミン類(例えば、キシリレンジアミン、テトラクロル-p-キシリレンジアミン等)
(1) Polyamines Aliphatic polyamines;
・ Alkylene diamine (for example, ethylene diamine, propylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, etc.)
-Polyalkylene polyamines (eg, diethylenetriamine, iminobis (propylamine), bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc.)
・ Substituents of these alkyl or hydroxyalkyl (for example, aminoethylethanolamine, methyliminobis (propylamine), etc.)
Aliphatic or heterocyclic-containing aliphatic polyamines (for example, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, etc.)
・ Aromatic ring-containing aliphatic amines (for example, xylylenediamine, tetrachloro-p-xylylenediamine, etc.)
 C4~C15の脂環式ポリアミン;
 例えば、1,3-ジアミノシクロヘキサン、イソホロンジアミン、メンタンジアミン、4,4′-メチレンジシクロヘキサンジアミン(水添メチレンジアニリン)等。
C4-C15 alicyclic polyamines;
For example, 1,3-diaminocyclohexane, isophorone diamine, menthane diamine, 4,4'-methylene dicyclohexane diamine (hydrogenated methylene dianiline) and the like.
 C4~C15の複素環式ポリアミン;
 例えば、ピペラジン、N-アミノエチルピペラジン、1,4-ジアミノピペラジン等。
A C4-C15 heterocyclic polyamine;
For example, piperazine, N-aminoethylpiperazine, 1,4-diaminopiperazine and the like.
 C6~C20の芳香族ポリアミン類;
・非置換芳香族ポリアミン(例えば1,2-、1,3-および1,4-フェニレンジアミン、2,4′-および4,4′-ジフェニルメタンジアミン、ポリフェニルポリメチレンポリアミン、ジアミノジフェニルスルホン、ベンジジン、チオジアニリン、ビス(3,4-ジアミノフェニル)スルホン、2,6-ジアミノピリジン、m-アミノベンジルアミン、トリフェニルメタン-4,4′,4″-トリアミン、ナフチレンジアミン等)
・核置換アルキル基(例えばC1~C4のアルキル基)を有する芳香族ポリアミン(例えば、2,4-および2,6-トリレンジアミン、クルードトリレンジアミン、ジエチルトリレンジアミン、4,4′-ジアミノ-3,3′-ジメチルジフェニルメタン、4,4′-ビス(o-トルイジン)、ジアニシジン、ジアミノジトリルスルホン、1,3-ジメチル-2,4-ジアミノベンゼン、1,3-ジエチル-2,4-ジアミノベンゼン、1,3-ジメチル-2,6-ジアミノベンゼン、1,4-ジエチル-2,5-ジアミノベンゼン、1,4-ジイソプロピル-2,5-ジアミノベンゼン、1,4-ジブチル-2,5-ジアミノベンゼン、2,4-ジアミノメシチレン、1,3,5-トリエチル-2,4-ジアミノベンゼン、1,3,5-トリイソプロピル-2,4-ジアミノベンゼン、1-メチル-3,5-ジエチル-2,4-ジアミノベンゼン、1-メチル-3,5-ジエチル-2,6-ジアミノベンゼン、2,3-ジメチル-1,4-ジアミノナフタレン、2,6-ジメチル-1,5-ジアミノナフタレン、2,6-ジイソプロピル-1,5-ジアミノナフタレン、2,6-ジブチル-1,5-ジアミノナフタレン、3,3′,5,5′-テトラメチルベンジジン、3,3′,5,5′-テトライソプロピルベンジジン、3,3′,5,5′-テトラメチル-4,4′-ジアミノジフェニルメタン、3,3′,5,5′-テトラエチル-4,4′-ジアミノジフェニルメタン、3,3′,5,5′-テトライソプロピル-4,4′-ジアミノジフェニルメタン、3,3′,5,5′-テトラブチル-4,4′-ジアミノジフェニルメタン、3,5-ジエチル-3′-メチル-2′,4-ジアミノジフェニルメタン、3,5-ジイソプロピル-3′-メチル-2′,4-ジアミノジフェニルメタン、3,3′-ジエチル-2,2′-ジアミノジフェニルメタン、4,4′-ジアミノ-3,3′-ジメチルジフェニルメタン、3,3′,5,5′-テトラエチル-4,4′-ジアミノベンゾフェノン、3,3′,5,5′-テトライソプロピル-4,4′-ジアミノベンゾフェノン、3,3′,5,5′-テトラエチル-4,4′-ジアミノジフェニルエーテル、3,3′,5,5′-テトライソプロピル-4,4′-ジアミノジフェニルスルホン等)
C6-C20 aromatic polyamines;
Unsubstituted aromatic polyamines (eg 1,2-, 1,3- and 1,4-phenylenediamine, 2,4'- and 4,4'-diphenylmethanediamine, polyphenylpolymethylenepolyamine, diaminodiphenylsulfone, benzidine Thiodianiline, bis (3,4-diaminophenyl) sulfone, 2,6-diaminopyridine, m-aminobenzylamine, triphenylmethane-4,4 ′, 4 ″ -triamine, naphthylenediamine, etc.)
Aromatic polyamines having a nucleus-substituted alkyl group (eg C1-C4 alkyl group) (eg 2,4- and 2,6-tolylenediamine, crude tolylenediamine, diethyltolylenediamine, 4,4'- Diamino-3,3'-dimethyldiphenylmethane, 4,4'-bis (o-toluidine), dianisidine, diaminoditolyl sulfone, 1,3-dimethyl-2,4-diaminobenzene, 1,3-diethyl-2, 4-diaminobenzene, 1,3-dimethyl-2,6-diaminobenzene, 1,4-diethyl-2,5-diaminobenzene, 1,4-diisopropyl-2,5-diaminobenzene, 1,4-dibutyl- 2,5-diaminobenzene, 2,4-diaminomesitylene, 1,3,5-triethyl-2,4-diaminobenzene, 1,3,5- Riisopropyl-2,4-diaminobenzene, 1-methyl-3,5-diethyl-2,4-diaminobenzene, 1-methyl-3,5-diethyl-2,6-diaminobenzene, 2,3-dimethyl- 1,4-diaminonaphthalene, 2,6-dimethyl-1,5-diaminonaphthalene, 2,6-diisopropyl-1,5-diaminonaphthalene, 2,6-dibutyl-1,5-diaminonaphthalene, 3,3 ′ , 5,5'-tetramethylbenzidine, 3,3 ', 5,5'-tetraisopropylbenzidine, 3,3', 5,5'-tetramethyl-4,4'-diaminodiphenylmethane, 3,3 ', 5,5′-tetraethyl-4,4′-diaminodiphenylmethane, 3,3 ′, 5,5′-tetraisopropyl-4,4′-diaminodiphenylmethane, 3,3 ′, , 5'-Tetrabutyl-4,4'-diaminodiphenylmethane, 3,5-diethyl-3'-methyl-2 ', 4-diaminodiphenylmethane, 3,5-diisopropyl-3'-methyl-2', 4-diamino Diphenylmethane, 3,3'-diethyl-2,2'-diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 3,3 ', 5,5'-tetraethyl-4,4'-diamino Benzophenone, 3,3 ', 5,5'-tetraisopropyl-4,4'-diaminobenzophenone, 3,3', 5,5'-tetraethyl-4,4'-diaminodiphenyl ether, 3,3 ', 5 5'-tetraisopropyl-4,4'-diaminodiphenyl sulfone, etc.)
 ポリアミドポリアミン;
 例えば、ジカルボン酸(ダイマー酸等)と過剰の(酸1モル当たり2モル以上の)ポリアミン類(上記アルキレンジアミン、ポリアルキレンポリアミン等)との縮合により得られる低分子量(例えば分子量200~5000)ポリアミドポリアミン等。
Polyamide polyamines;
For example, low molecular weight (for example, molecular weight 200-5000) polyamide obtained by condensation of dicarboxylic acid (dimer acid, etc.) and excess (more than 2 moles per mole of acid) polyamines (the above-mentioned alkylene diamine, polyalkylene polyamine, etc.) Polyamines and the like.
 ポリエーテルポリアミン;
 例えば、分子量100~5000のポリエーテルポリオール(ポリアルキレングリコール等)のシアノエチル化物の水素化物等。
Polyether polyamines;
For example, a hydride of a cyanoethylated polyether polyol (polyalkylene glycol, etc.) having a molecular weight of 100 to 5000.
(2)ジシアンジアミド誘導体;
 ジシアンジアミド、ジシアンジアミド・ホルマリン重縮合物、ジシアンジアミド・ジエチレントリアミン重縮合物等。
(2) Dicyandiamide derivative;
Dicyandiamide, dicyandiamide / formalin polycondensate, dicyandiamide / diethylenetriamine polycondensate, etc.
(3)ヒドラジン化合物;
 ヒドラジン、モノアルキルヒドラジン、ヒドラジンの無機塩類(例えば、塩酸、硫酸、硝酸、亜硝酸、リン酸、チオシアン酸、炭酸等の無機塩類)、ヒドラジンの有機塩類(例えば、蟻酸、シュウ酸等の有機塩類)。
(3) a hydrazine compound;
Inorganic salts of hydrazine, monoalkylhydrazine, hydrazine (for example, inorganic salts of hydrochloric acid, sulfuric acid, nitric acid, nitrous acid, phosphoric acid, thiocyanic acid, carbonic acid, etc.), organic salts of hydrazine (for example, organic salts of formic acid, oxalic acid, etc.) ).
(4)ポリヒドラジド化合物(ジヒドラジド、トリヒドラジド);
 カルボヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、クエン酸トリヒドラジド、セバチン酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド等。
(4) polyhydrazide compounds (dihydrazide, trihydrazide);
Carbohydrazide, succinic acid dihydrazide, adipic acid dihydrazide, citric acid trihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide and the like.
(5)アルデヒド類;
 ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、クロトンアルデヒド、ベンズアルデヒド等のモノアルデヒド、グリオキザール、マロンジアルデヒド、スクシンジアルデヒド、グルタルジアルデヒド、マレインジアルデヒド、1,8-オクタンジアール、フタルアルデヒド、イソフタルアルデヒド、テレフタルアルデヒド、両末端アルデヒド化PVA等のジアルデヒド類、アリリデン酢酸ビニルジアセテート共重合体をケン化して得られる側鎖アルデヒド含有共重合体、ジアルデヒド澱粉、ポリアクロレイン等。
(5) Aldehydes;
Monoaldehyde such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, crotonaldehyde, benzaldehyde, glyoxal, malondialdehyde, succindialdehyde, glutardialdehyde, maleindialdehyde, 1,8-octane dial, phthalaldehyde, isophthalaldehyde , Terephthalaldehyde, dialdehydes such as aldehyde-terminated PVA, side chain aldehyde-containing copolymer obtained by saponifying arylidene acetate vinyl diacetate copolymer, dialdehyde starch, polyacrolein and the like.
(6)メチロール化合物;
 メチロールホスフィン、ジメチロール尿素、ジメチロールメラミン、トリメチロールメラミン、尿素樹脂初期重合物、メラミン樹脂初期重合物等。
(6) methylol compounds;
Methylolphosphine, dimethylolurea, dimethylolmelamine, trimethylolmelamine, urea resin initial polymer, melamine resin initial polymer, and the like.
(7)活性化ビニル化合物;
 ジビニルスルホン系化合物、β-ヒドロキシエチルスルホン系化合物等。
(7) an activated vinyl compound;
Divinyl sulfone compounds, β-hydroxyethyl sulfone compounds, etc.
(8)エポキシ化合物;
 エピクロルヒドリン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジまたはトリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミン、ポリエポキシ化合物等。
(8) epoxy compound;
Epichlorohydrin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerin di or triglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidyl aniline, diglycidyl amine, polyepoxy compounds, etc. .
(9)イソシアネート系化合物;
 トリレンジイソシアネート、水素化トリレンジイソシアネート、トリメチロールプロパン-トリレンジイソシアネートアダクト、トリフェニルメタントリイソシアネート、メチレンビス-4-フェニルメタントリイソシアネート、イソホロンジイソシアネート、およびこれらのケトオキシムブロック物またはフェノールブロック物、ポリイソシアネート等。
(9) Isocyanate compounds;
Tolylene diisocyanate, hydrogenated tolylene diisocyanate, trimethylolpropane-tolylene diisocyanate adduct, triphenylmethane triisocyanate, methylenebis-4-phenylmethane triisocyanate, isophorone diisocyanate, and their ketoxime block or phenol block, poly Isocyanate and the like.
(10)フェノール系化合物;
 フェノール系樹脂初期縮合物、レゾルシノール系樹脂等。
(10) phenolic compounds;
Phenol resin initial condensate, resorcinol resin, etc.
(11)多価金属塩;
・ジルコニウム塩(硝酸ジルコニウム、塩基性炭酸ジルコニウム、酢酸ジルコニウム、硫酸ジルコニウム、オキシ塩化ジルコニウム、塩化ジルコニウム、ヒドロキシ塩化ジルコニウム、炭酸ジルコニウム、炭酸ジルコニウム・アンモニウム、炭酸ジルコニウム・カリウム、フッ化ジルコニウム化合物等)
・チタン塩(4塩化チタン、乳酸チタン、テトライソプロピルチタネート等)
・アルミニウム塩(塩化アルミニウム、硫酸アルミニウム、乳酸アルミニウム等)
・カルシウム塩(塩化カルシウム、硫酸カルシウム、酢酸カルシウム、プロピオン酸カルシウム等)
・マグネシウム塩(塩化マグネシウム、硫酸マグネシウム等)
・亜鉛塩(塩化亜鉛、硫酸亜鉛、酢酸亜鉛等)
(11) a polyvalent metal salt;
・ Zirconium salt (zirconium nitrate, basic zirconium carbonate, zirconium acetate, zirconium sulfate, zirconium oxychloride, zirconium chloride, hydroxy zirconium chloride, zirconium carbonate, zirconium carbonate / ammonium, zirconium carbonate / potassium, zirconium fluoride compound, etc.)
・ Titanium salts (titanium tetrachloride, titanium lactate, tetraisopropyl titanate, etc.)
・ Aluminum salts (aluminum chloride, aluminum sulfate, aluminum lactate, etc.)
・ Calcium salts (calcium chloride, calcium sulfate, calcium acetate, calcium propionate, etc.)
・ Magnesium salts (magnesium chloride, magnesium sulfate, etc.)
・ Zinc salts (zinc chloride, zinc sulfate, zinc acetate, etc.)
 上記した架橋剤の中でも、ポリヒドラジド化合物、および多価金属塩が好ましい。ポリヒドラジド化合物の中でも特にジヒドラジド化合物が好ましく、更にアジピン酸ジヒドラジド、コハク酸ジヒドラジドが好ましい。多価金属塩としては、特にジルコニウム塩が好ましく、更に、オキシ塩化ジルコニウム、硝酸ジルコニウムが好ましい。架橋剤の添加量は、ケト基を有する親水性バインダーに対して1~40質量%の範囲が適当であり、2~30質量%の範囲が好ましく、特に3~20質量%の範囲が好ましい。また、アセトアセチル変性、ジアセトンアクリルアミド変性された部位以外は、通常のポリビニルアルコールと同様の構造を持つため、硬膜剤を併用することができる。特にホウ砂あるいはホウ酸、ホウ酸塩を併用することが好ましい。 Among the above-mentioned crosslinking agents, polyhydrazide compounds and polyvalent metal salts are preferable. Among the polyhydrazide compounds, dihydrazide compounds are particularly preferable, and adipic acid dihydrazide and succinic acid dihydrazide are more preferable. As the polyvalent metal salt, a zirconium salt is particularly preferable, and zirconium oxychloride and zirconium nitrate are more preferable. The addition amount of the crosslinking agent is suitably in the range of 1 to 40% by weight, preferably in the range of 2 to 30% by weight, particularly preferably in the range of 3 to 20% by weight, based on the hydrophilic binder having a keto group. Moreover, since it has the same structure as ordinary polyvinyl alcohol except for the portion modified with acetoacetyl or diacetone acrylamide, a hardener can be used in combination. It is particularly preferable to use borax, boric acid, or borate in combination.
 本発明では完全または部分ケン化のポリビニルアルコールや、カチオン変成ポリビニルアルコールと、ケト基を有する親水性バインダーを併用することも可能であり、その場合には、硬膜剤あるいは架橋剤を併用することもできる。 In the present invention, it is also possible to use a fully or partially saponified polyvinyl alcohol, a cation-modified polyvinyl alcohol, and a hydrophilic binder having a keto group. In that case, a hardening agent or a crosslinking agent may be used in combination. You can also.
 本発明では、更に他の公知の親水性バインダーを併用してもよい。例えば、カルボキシメチルセルロース、ヒドロキシプロピルセルロース等のセルロース誘導体、澱粉や各種変性澱粉、ゼラチンや各種変性ゼラチン、キトサン誘導体、カラギーナン、カゼイン、大豆蛋白、ポリビニルアルコールや各種変性ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド等を必要に応じて併用することができる。更に、バインダーとして各種ラテックスを併用してもよい。 In the present invention, other known hydrophilic binders may be used in combination. For example, cellulose derivatives such as carboxymethyl cellulose and hydroxypropyl cellulose, starch and various modified starches, gelatin and various modified gelatins, chitosan derivatives, carrageenan, casein, soy protein, polyvinyl alcohol and various modified polyvinyl alcohols, polyvinylpyrrolidone, polyacrylamide, etc. It can be used together as necessary. Furthermore, various latexes may be used in combination as a binder.
 画像受理層Aにおけるバインダーの含有量は、画像受理層Aが主体に含有する無機微粒子に対して5~40質量%の範囲が好ましく、特に10~30質量%が好ましい。これにより、画像受理層内に微細な空隙を形成し、多孔質な層を形成することができる。 The content of the binder in the image receiving layer A is preferably in the range of 5 to 40% by mass, particularly preferably 10 to 30% by mass with respect to the inorganic fine particles mainly contained in the image receiving layer A. Thereby, a fine space | gap can be formed in an image receiving layer and a porous layer can be formed.
 画像受理層Aの乾燥塗布量は、無機微粒子に換算して10~50g/mの範囲が好ましく、12~40g/mの範囲がより好ましく、特に15~35g/mの範囲が好ましい。画像受理層Aには更に、カチオン性ポリマー、防腐剤、界面活性剤、着色染料、着色顔料、紫外線吸収剤、酸化防止剤、顔料の分散剤、消泡剤、レベリング剤、蛍光増白剤、粘度安定剤、pH調節剤等を添加することもできる。 The dry coating amount of the image receiving layer A is preferably in the range of 10 to 50 g / m 2 in terms of inorganic fine particles, more preferably in the range of 12 to 40 g / m 2 , and particularly preferably in the range of 15 to 35 g / m 2. . The image receiving layer A further includes a cationic polymer, an antiseptic, a surfactant, a coloring dye, a coloring pigment, an ultraviolet absorber, an antioxidant, a pigment dispersant, an antifoaming agent, a leveling agent, a fluorescent whitening agent, Viscosity stabilizers, pH adjusters and the like can also be added.
 本発明の画像受理層Aおよび画像受理層Bは、それぞれ単層であっても複数層でもよく、画像受理層Aと画像受理層Bの間には中間層を設けてもよい。 The image receiving layer A and the image receiving layer B of the present invention may each be a single layer or a plurality of layers, and an intermediate layer may be provided between the image receiving layer A and the image receiving layer B.
 (耐水性支持体)
 本発明で使用される耐水性支持体は、ポリエチレンテレフタレート等のポリエステル樹脂、ジアセテート樹脂、トリアセテート樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリ塩化ビニル、ポリイミド樹脂、セロハン、セルロイド等のプラスチック樹脂フィルム、および紙と上記樹脂フィルムとを貼り合わせたもの、基紙の両面にポリオレフィン樹脂層を被覆したポリオレフィン樹脂被覆紙等である。これらの耐水性支持体の厚みは50~350μm、好ましくは80~300μmのものが用いられる。
(Water resistant support)
The water-resistant support used in the present invention includes polyester resins such as polyethylene terephthalate, diacetate resins, triacetate resins, acrylic resins, polycarbonate resins, polyvinyl chloride, polyimide resins, cellophane, celluloid, and other plastic resin films, and paper. And a polyolefin resin-coated paper in which a polyolefin resin layer is coated on both sides of a base paper. These water-resistant supports have a thickness of 50 to 350 μm, preferably 80 to 300 μm.
 以下に、耐水性支持体としてのポリオレフィン樹脂被覆紙(以降、ポリオレフィン樹脂被覆紙と称す)について詳細に説明する。本発明に用いられるポリオレフィン樹脂被覆紙は、その含水率は特に限定しないが、好ましくは5~9%の範囲であり、より好ましくは6~9%の範囲である。これにより、吸湿・放湿に起因するカールを小さく抑えることができる。ポリオレフィン樹脂被覆紙の含水率は、任意の水分測定法を用いて測定することができる。例えば、赤外線水分計、絶乾重量法、誘電率法、カールフィッシャー法等を用いることができる。 Hereinafter, polyolefin resin-coated paper (hereinafter referred to as polyolefin resin-coated paper) as a water-resistant support will be described in detail. The water content of the polyolefin resin-coated paper used in the present invention is not particularly limited, but is preferably in the range of 5 to 9%, more preferably in the range of 6 to 9%. Thereby, the curl resulting from moisture absorption and moisture release can be suppressed small. The moisture content of the polyolefin resin-coated paper can be measured using any moisture measuring method. For example, an infrared moisture meter, an absolute dry weight method, a dielectric constant method, a Karl Fischer method, or the like can be used.
 ポリオレフィン樹脂被覆紙を構成する基紙は特に制限はなく、一般に用いられている紙が使用できるが、より好ましくは、例えば、写真用支持体に用いられているような平滑な原紙が使用できる。基紙を構成するパルプとしては天然パルプ、再生パルプ、合成パルプ等を1種もしくは2種以上混合して用いられる。この基紙には一般に製紙で用いられているサイズ剤、紙力増強剤、填料、帯電防止剤、蛍光増白剤、染料等の添加剤が配合される。更に、表面サイズ剤、表面紙力剤、蛍光増白剤、帯電防止剤、染料、アンカー剤等が表面塗布されていてもよい。 The base paper constituting the polyolefin resin-coated paper is not particularly limited, and commonly used paper can be used. More preferably, for example, smooth base paper used for a photographic support can be used. As the pulp constituting the base paper, natural pulp, regenerated pulp, synthetic pulp or the like is used alone or in combination. This base paper is blended with additives such as sizing agent, paper strength enhancer, filler, antistatic agent, fluorescent whitening agent, and dye generally used in papermaking. Further, a surface sizing agent, a surface paper strength agent, a fluorescent brightening agent, an antistatic agent, a dye, an anchor agent, and the like may be applied on the surface.
 基紙の厚みに関しては特に制限はないが、紙を抄造中または抄造後カレンダー等にて圧力を印加して圧縮するなどした表面平滑性のよいものが好ましく、その坪量は30~250g/mが好ましい。 There is no particular limitation on the thickness of the base paper, but a paper having good surface smoothness such as a paper that is compressed during or after paper making by applying pressure with a calender or the like is preferable, and its basis weight is 30 to 250 g / m. 2 is preferred.
 基紙を被覆するポリオレフィン樹脂としては、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン等のオレフィンのホモポリマーまたはエチレン-プロピレン共重合体等のオレフィンの2つ以上からなる共重合体およびこれらの混合物であり、各種の密度、溶融粘度指数(メルトインデックス)のものを単独にあるいはそれらを混合して使用できる。 Examples of the polyolefin resin for coating the base paper include homopolymers of olefins such as low-density polyethylene, high-density polyethylene, polypropylene, polybutene, and polypentene, or copolymers composed of two or more olefins such as ethylene-propylene copolymer, and the like. Of various densities and melt viscosity indices (melt index) can be used alone or as a mixture thereof.
 ポリオレフィン樹脂被覆紙の樹脂中には、酸化チタン、酸化亜鉛、タルク、炭酸カルシウム等の白色顔料、ステアリン酸アミド、アラキジン酸アミド等の脂肪酸アミド、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム等の脂肪酸金属塩、コバルトブルー、群青、セシリアンブルー、フタロシアニンブルー等のブルーの顔料や染料、コバルトバイオレット、ファストバイオレット、マンガン紫等のマゼンタの顔料や染料、蛍光増白剤、紫外線吸収剤等の各種の添加剤を適宜組み合わせて加えるのが好ましい。 In the resin of polyolefin resin-coated paper, white pigments such as titanium oxide, zinc oxide, talc and calcium carbonate, fatty acid amides such as stearic acid amide and arachidic acid amide, zinc stearate, calcium stearate, aluminum stearate, stearic acid Fatty acid metal salts such as magnesium, blue pigments and dyes such as cobalt blue, ultramarine blue, cecilian blue and phthalocyanine blue, magenta pigments and dyes such as cobalt violet, fast violet and manganese purple, fluorescent brighteners, ultraviolet absorbers, etc. These various additives are preferably added in appropriate combination.
 ポリオレフィン樹脂被覆紙の主な製造方法としては、走行する基紙上にポリオレフィン樹脂を加熱溶融した状態で流延する、いわゆる押出コーティング法により製造され、基紙の両面が樹脂により被覆される。また、樹脂を基紙に被覆する前に、基紙にコロナ放電処理、火炎処理等の活性化処理を施すことが好ましい。樹脂被覆層の厚みとしては、5~50μmが適当である。 As a main production method of polyolefin resin-coated paper, it is produced by a so-called extrusion coating method in which a polyolefin resin is cast on a traveling base paper in a heated and melted state, and both surfaces of the base paper are covered with the resin. Further, before the resin is coated on the base paper, the base paper is preferably subjected to activation treatment such as corona discharge treatment and flame treatment. The thickness of the resin coating layer is suitably 5 to 50 μm.
 (下塗り層)
 耐水性支持体の画像受理層が塗設される側には、下塗り層を設けるのが好ましい。この下塗り層は、画像受理層が塗設される前に、予め耐水性支持体の表面に塗布乾燥されたものである。この下塗り層は、皮膜形成可能な水溶性ポリマーやポリマーラテックス等を主体に含有する。好ましくは、ゼラチン、ポリビニルアルコール、ポリビニルピロリドン、水溶性セルロース等の水溶性ポリマーであり、特に好ましくはゼラチンである。これらの水溶性ポリマーの付着量は、10~500mg/mが好ましく、20~300mg/mがより好ましい。更に、下塗り層には、他に界面活性剤や硬膜剤を含有するのが好ましい。支持体に下塗り層を設けることによって、画像受理層塗布時のひび割れ防止に有効に働き、均一な塗布面が得られる。
(Undercoat layer)
An undercoat layer is preferably provided on the side of the water-resistant support on which the image receiving layer is provided. This undercoat layer is applied and dried in advance on the surface of the water-resistant support before the image-receiving layer is applied. This undercoat layer mainly contains a water-soluble polymer or polymer latex that can form a film. Preferred are water-soluble polymers such as gelatin, polyvinyl alcohol, polyvinyl pyrrolidone and water-soluble cellulose, and particularly preferred is gelatin. Adhesion amount of the water-soluble polymer is preferably 10 ~ 500mg / m 2, more preferably 20 ~ 300mg / m 2. Furthermore, it is preferable that the undercoat layer contains a surfactant and a hardener. By providing the undercoat layer on the support, it effectively works to prevent cracking when the image receiving layer is applied, and a uniform coated surface is obtained.
 (平版印刷版原版の製造方法)
 本実施形態に係る平版印刷版原版は、耐水性支持体上に画像受理層Aおよび画像受理層Bを設けることにより製造することができる。本発明において、画像受理層Aおよび画像受理層Bを設ける際の塗布方法は特に限定されないが、スライドビードコーター、カーテンコーター、エクストルージョンコーター、エアーナイフコーター、ロッドコーター、ブレードコーター、グラビアコーター等の塗布装置を単独および組み合わせて使用できる。画像受理層Aと画像受理層Bを同時塗布する場合は、スライドビードコーター、カーテンコーターの塗布装置が使用できる。画像受理層Aを塗布後、画像受理層Bを逐次塗布する場合は、上記塗布装置を適宜組み合わせて使用することができる。本発明で同時塗布とは各層をほぼ同時に塗布することである。逐次塗布するとは、減率乾燥工程以降において画像受理層の空隙が形成された後、最上層の塗布液を塗布することである。
(Method for producing planographic printing plate precursor)
The lithographic printing plate precursor according to this embodiment can be produced by providing the image receiving layer A and the image receiving layer B on a water-resistant support. In the present invention, the coating method when providing the image receiving layer A and the image receiving layer B is not particularly limited, but a slide bead coater, curtain coater, extrusion coater, air knife coater, rod coater, blade coater, gravure coater, etc. The applicator can be used alone or in combination. When the image receiving layer A and the image receiving layer B are applied simultaneously, a slide bead coater or a curtain coater coating device can be used. In the case where the image receiving layer B is sequentially applied after the image receiving layer A is applied, the above application apparatuses can be used in appropriate combination. In the present invention, simultaneous application means that the respective layers are applied almost simultaneously. “Sequential coating” refers to coating the uppermost coating liquid after the voids of the image receiving layer are formed after the decreasing rate drying step.
 [実施形態2:平版印刷版の製版方法]
 本実施形態に係る平版印刷版の製版方法は、上記実施形態1に係る平版印刷版原版に、インクジェット方式により水性顔料インクを印字することを特徴とする平版印刷版の製版方法である。かかる平版印刷版の製版方法によれば、インクジェット方式によるダイレクト製版が可能であり、優れた画像品質を有し、良好な耐刷性と耐汚れ性を両立させることが可能である。なお、本実施形態における平版印刷版原版は、基本的には上記の実施形態1と同様の構成および作用効果を有するため、実施形態1と同様の内容については、適宜説明を省略する。
[Embodiment 2: Planographic printing plate making method]
The lithographic printing plate making method according to the present embodiment is a lithographic printing plate making method characterized in that an aqueous pigment ink is printed on the lithographic printing plate precursor according to the first embodiment by an inkjet method. According to such a lithographic printing plate making method, direct plate making by an ink jet method is possible, it has excellent image quality, and it is possible to achieve both good printing durability and stain resistance. Note that the planographic printing plate precursor in the present embodiment basically has the same configuration and operational effects as those of the first embodiment, and therefore the description of the same contents as those of the first embodiment will be omitted as appropriate.
 本発明の平版印刷版原版の画像受理層に対し、インクジェット方式により画像情報を印字する際に用いるインクとしては、水性インク、ソリッドインク、UVインク、油性インク等の各種インクが挙げられる。しかしながらソリッドインクやUVインクは吐出時のインク粘度が高いため高解像度の製版画像を可能とする微小インク滴を吐出させることが難しい。また、油性インクは、非水系溶剤の蒸気が発生するためオフィスでの用途には不向きであり、印字画像がにじみやすく高解像度の製版画像を得ることが難しい。従って本発明の平版印刷版原版に印字するインクとしては水性インクが好ましい。かかる水性インクとしては水性顔料インクが特に好ましい。これにより、高解像度の製版画像を得ることが可能であり、また、オフィス用途にも適している。 Examples of the ink used for printing image information on the image receiving layer of the lithographic printing plate precursor according to the present invention by an ink jet method include various inks such as water-based ink, solid ink, UV ink, and oil-based ink. However, since solid ink and UV ink have high ink viscosity at the time of ejection, it is difficult to eject fine ink droplets that enable high-resolution plate-making images. Oil-based inks are not suitable for office use because of the generation of vapors of non-aqueous solvents, and print images tend to bleed and it is difficult to obtain high-resolution plate-making images. Accordingly, water-based ink is preferable as the ink for printing on the lithographic printing plate precursor according to the invention. As such an aqueous ink, an aqueous pigment ink is particularly preferable. This makes it possible to obtain a high-resolution plate-making image and is suitable for office use.
 水性顔料インクとしては、顔料とスチレン-アクリル共重合体樹脂またはスチレン-メタアクリル共重合体樹脂とを含む水性顔料インクが好ましく用いられる。 As the aqueous pigment ink, an aqueous pigment ink containing a pigment and a styrene-acrylic copolymer resin or a styrene-methacrylic copolymer resin is preferably used.
 顔料としては、ファーネストブラック、ランプブラック、アセチレンブラック、チャネルブラック、フタロシアニン顔料、キナクリドン顔料、縮合アゾ顔料、イソインドリノン顔料、キノフタロン顔料、アントラキノン顔料、ベンズイミダゾロン顔料、ペリレン顔料等が挙げられ、これらの顔料はアニオン性の顔料であることが好ましい。これにより、本発明の画像受理層Bがカチオン性であることにより静電相互作用で画像受理層表面に強固に接着され耐刷性が向上する。また、顔料の添加量は水性インク中に0.5~30質量%とすることが好ましい。 Examples of the pigment include furnace black, lamp black, acetylene black, channel black, phthalocyanine pigment, quinacridone pigment, condensed azo pigment, isoindolinone pigment, quinophthalone pigment, anthraquinone pigment, benzimidazolone pigment, and perylene pigment. These pigments are preferably anionic pigments. Thereby, since the image receiving layer B of the present invention is cationic, it is firmly adhered to the surface of the image receiving layer by electrostatic interaction, and the printing durability is improved. The amount of pigment added is preferably 0.5 to 30% by mass in the aqueous ink.
 水性顔料インクがスチレン-アクリル共重合体樹脂またはスチレン-メタアクリル共重合体樹脂を含有する場合、画像部と印刷時に使用されるインキとの親和性が向上し、インキに対する着肉性が向上する。かかる樹脂は水溶性であっても、あるいは該樹脂が水不溶性の分散物(エマルジョン)であってもよい。該樹脂の添加量は、水性インク中に0.1~20質量%の範囲とすることが好ましい。 When the water-based pigment ink contains a styrene-acrylic copolymer resin or a styrene-methacrylic copolymer resin, the affinity between the image area and the ink used during printing is improved, and the inking property to the ink is improved. . Such a resin may be water-soluble, or the resin may be a water-insoluble dispersion (emulsion). The amount of the resin added is preferably in the range of 0.1 to 20% by mass in the aqueous ink.
 スチレン-アクリル共重合体樹脂またはスチレン-メタアクリル共重合体樹脂に組み込むことができるモノマーとして、スチレン、4-メチルスチレン、4-ヒドロキシスチレン、4-アセトキシスチレン、4-カルボキシスチレン、4-アミノスチレン、クロロメチルスチレン、4-メトキシスチレン等のスチレン誘導体、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ドデシル、メタクリル酸オクタドデシル等のメタクリル酸アルキルエステル類、メタクリル酸フェニル、メタクリル酸ベンジル等のメタクリル酸アリールエステルあるいはアルキルアリールエステル類、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸メトキシジエチレングリコールモノエステル、メタクリル酸メトキシポリエチレングリコールモノエステル、メタクリル酸ポリプロピレングリコールモノエステル等のアルキレンオキシ基を有するメタクリル酸エステル類、メタクリル酸2-ジメチルアミノエチル、メタクリル酸2-ジエチルアミノエチル等のアミノ基含有メタクリル酸エステル類、あるいはアクリル酸エステルとしてこれら対応するメタクリル酸エステルと同様の例が挙げられる。 As monomers that can be incorporated into styrene-acrylic copolymer resins or styrene-methacrylic copolymer resins, styrene, 4-methylstyrene, 4-hydroxystyrene, 4-acetoxystyrene, 4-carboxystyrene, 4-aminostyrene Styrene derivatives such as chloromethylstyrene and 4-methoxystyrene, methyl methacrylate, ethyl methacrylate, butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, dodecyl methacrylate, octadodecyl methacrylate, etc. Methacrylic acid alkyl esters, phenyl methacrylate, methacrylic acid aryl esters such as benzyl methacrylate, or alkyl aryl esters, 2-hydroxyethyl methacrylate, Methacrylic acid esters having an alkyleneoxy group such as 2-hydroxypropyl crylate, methoxydiethylene glycol monoester methacrylate, methoxypolyethylene glycol monoester methacrylate, polypropylene glycol monoester methacrylate, 2-dimethylaminoethyl methacrylate, methacrylic acid Examples of amino group-containing methacrylic acid esters such as 2-diethylaminoethyl, and acrylic acid esters are the same as the corresponding methacrylic acid esters.
 スチレン-アクリル共重合体樹脂またはスチレン-メタアクリル共重合体樹脂には、リン酸基を有するモノマーとしてビニルホスホン酸等、あるいは、アリルアミン、ジアリルアミン等のアミノ基含有モノマー類、あるいは、ビニルスルホン酸およびその塩、アリルスルホン酸およびその塩、メタリルスルホン酸およびその塩、スチレンスルホン酸およびその塩、2-アクリルアミド-2-メチルプロパンスルホン酸およびその塩等のスルホン酸基を有するモノマー類、あるいは4-ビニルピリジン、2-ビニルピリジン、N-ビニルイミダゾール、N-ビニルカルバゾール等の含窒素複素環を有するモノマー類、あるいは4級アンモニウム塩基を有するモノマーとして4-ビニルベンジルトリメチルアンモニウムクロライド、アクリロイルオキシエチルトリメチルアンモニウムクロライド、メタクリロイルオキシエチルトリメチルアンモニウムクロライド、ジメチルアミノプロピルアクリルアミドのメチルクロライドによる4級化物、N-ビニルイミダゾールのメチルクロライドによる4級化物、4-ビニルベンジルピリジニウムクロライド等、あるいはアクリロニトリル、メタクリロニトリル、またアクリルアミド、メタクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、N-イソプロピルアクリルアミド、ジアセトンアクリルアミド、N-メチロールアクリルアミド、N-メトキシエチルアクリルアミド、4-ヒドロキシフェニルアクリルアミド等のアクリルアミドもしくはメタクリルアミド誘導体、更にはアクリロニトリル、メタクリロニトリル、フェニルマレイミド、ヒドロキシフェニルマレイミド、酢酸ビニル、クロロ酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ステアリン酸ビニル、安息香酸ビニル等のビニルエステル類、またメチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類、その他、N-ビニルピロリドン、アクリロイルモルホリン、テトラヒドロフルフリルメタクリレート、塩化ビニル、塩化ビニリデン、アリルアルコール、ビニルトリメトキシシラン、グリシジルメタクリレート等各種モノマーを適宜共重合モノマーとして使用することができる。 Styrene-acrylic copolymer resins or styrene-methacrylic copolymer resins include phosphoric acid group-containing monomers such as vinylphosphonic acid, amino group-containing monomers such as allylamine and diallylamine, vinyl sulfonic acid and Monomers having sulfonic acid groups such as salts thereof, allylsulfonic acid and salts thereof, methallylsulfonic acid and salts thereof, styrenesulfonic acid and salts thereof, 2-acrylamido-2-methylpropanesulfonic acid and salts thereof, or 4 Monomers having nitrogen-containing heterocycles such as -vinylpyridine, 2-vinylpyridine, N-vinylimidazole, N-vinylcarbazole, etc., or 4-vinylbenzyltrimethylammonium chloride, acryloyl as a monomer having a quaternary ammonium base Oxyethyltrimethylammonium chloride, methacryloyloxyethyltrimethylammonium chloride, quaternized product of dimethylaminopropylacrylamide with methyl chloride, quaternized product of N-vinylimidazole with methyl chloride, 4-vinylbenzylpyridinium chloride, or acrylonitrile, methacrylo Nitrile, acrylamide or methacrylamide derivatives such as acrylamide, methacrylamide, dimethylacrylamide, diethylacrylamide, N-isopropylacrylamide, diacetoneacrylamide, N-methylolacrylamide, N-methoxyethylacrylamide, 4-hydroxyphenylacrylamide, and acrylonitrile , Methacrylonitrile, Lumaleimide, hydroxyphenylmaleimide, vinyl acetate, vinyl chloroacetate, vinyl propionate, vinyl butyrate, vinyl stearate, vinyl benzoate and other vinyl esters, methyl vinyl ether, vinyl ethers such as butyl vinyl ether, and others, N-vinyl pyrrolidone Various monomers such as acryloylmorpholine, tetrahydrofurfuryl methacrylate, vinyl chloride, vinylidene chloride, allyl alcohol, vinyltrimethoxysilane, and glycidyl methacrylate can be appropriately used as a copolymerization monomer.
 インクジェット方式により画像情報を印字する際に用いる水性インクの「水性」とは、該インク中に水を50質量%以上、より好ましくは65質量%以上含有することを意味する。また該インクは画像受理層への浸透性を高める目的で浸透剤を添加する場合があり、更にその放置安定性の確保、インク吐出ヘッドからの安定吐出達成等の目的で保湿剤、溶解助剤、浸透剤、粘度調整剤、pH調整剤、酸化防止剤、防黴剤、腐食防止剤、キレート剤等種々の添加剤を添加することができる。 “Water-based” of the water-based ink used when printing image information by the ink jet method means that the ink contains 50% by mass or more, more preferably 65% by mass or more of water. In some cases, a penetrant is added to the ink for the purpose of enhancing the penetrability into the image receiving layer. Further, a moisturizing agent and a dissolution aid are provided for the purpose of ensuring the standing stability and achieving stable ejection from the ink ejection head. Various additives such as a penetrating agent, a viscosity adjusting agent, a pH adjusting agent, an antioxidant, an antifungal agent, a corrosion inhibitor and a chelating agent can be added.
 上記した共重合体樹脂を含有する市販の水性インクとしては、ICC59、ICM59、ICY59、ICBK59、ICC33、ICBL33、ICM33、ICY33、ICBK33、ICR33、ICC23、ICGY23、ICLC23、ICLM23、ICM23、ICY23、ICMB23、ICBK23(セイコーエプソン株式会社製)、PFI-101C、PFI-101M、PFI-101Y、PFI-101R、PFI-101G、PFI-101B、PFI-101PC、PFI-101PM(キヤノン株式会社製)などが挙げられる。 Examples of commercially available water-based inks containing the above copolymer resins include ICC59, ICM59, ICY59, ICBK59, ICC33, ICBL33, ICM33, ICY33, ICBK33, ICR33, ICC23, ICGY23, ICLC23, ICLM23, ICM23, ICY23, ICMB23, ICBK23 (manufactured by Seiko Epson Corporation), PFI-101C, PFI-101M, PFI-101Y, PFI-101R, PFI-101G, PFI-101B, PFI-101PC, PFI-101PM (manufactured by Canon Inc.) .
 本実施形態においては、平版印刷版原版にインクジェット方式により画像情報を印字した後、印刷開始前に、非画像部の不感脂化処理を行うことが好ましい。これにより、より良好な印刷適性、耐汚れ性、インキ着肉性を得ることができる。このような不感脂化処理に用いる処理液としては、例えば特開平5-289341号公報、特開平7-56349号公報、特公昭45-29001号公報、特公昭61-28987号公報等に記載される無機微粒子を含有する処理液や、特公昭56-41992号公報に記載されるコロイド状微粒子と吸湿性ポリオールを含有する処理液等が挙げられる。これら処理液の版面への付与は、脱脂綿等に該処理液を含浸させて版面にくまなく与えるハンドエッチングを行う方法、一定量の該処理液をバーコーターにて塗布する方法、該処理液を貯留させた液浴に浸漬させてロール対により余剰の処理液を絞液するようなエッチングコンバーターを用いる方法等が適用できる。 In this embodiment, it is preferable to perform a desensitization process on a non-image portion after printing image information on a planographic printing plate precursor by an ink jet method and before starting printing. Thereby, more favorable printability, stain resistance, and ink landing property can be obtained. The treatment liquid used for such desensitization treatment is described in, for example, JP-A-5-289341, JP-A-7-56349, JP-B 45-29001, JP-B 61-28987, and the like. And a treatment liquid containing colloidal fine particles and a hygroscopic polyol described in JP-B-56-41992. Application of these treatment liquids to the plate surface is a method of hand etching in which absorbent cotton or the like is impregnated with the treatment solution and applied all over the plate surface, a method of applying a certain amount of the treatment solution with a bar coater, For example, a method using an etching converter that is immersed in a stored liquid bath and squeezes excess treatment liquid with a roll pair can be applied.
 以下、実施例により本発明を詳しく説明するが、本発明の内容は実施例に限られるものではない。なお、部とは固形分あるいは実質成分の質量部を表す。 Hereinafter, the present invention will be described in detail with reference to examples, but the content of the present invention is not limited to the examples. In addition, a part represents the mass part of solid content or a substantial component.
[平版印刷版原版の作製1]
 (実施例1)
 <耐水性支持体の作製>
 広葉樹晒クラフトパルプ(LBKP)と広葉樹晒サルファイトパルプ(LBSP)の1:1混合物をカナディアンスタンダードフリーネスで300mlになるまで叩解し、パルプスラリーを調製した。これにサイズ剤とアルキルケテンダイマーを対パルプ0.5質量%、強度剤としてポリアクリルアミドを対パルプ1質量%、カチオン化澱粉を対パルプ2質量%、ポリアミドエピクロロヒドリン樹脂を対パルプ0.5質量%添加し、水で希釈して0.2質量%スラリーとした。このスラリーを長網抄紙機で坪量170g/mになるように抄造し、乾燥調湿して支持体の基紙とした。抄造した基紙の印字面側に密度0.918g/cmの低密度ポリエチレン樹脂に対して、10質量%のアナターゼ型二酸化チタンを均一に分散したポリエチレン樹脂組成物を320℃で溶融し、200m/分で厚さ30μmになるように押出し、微粗面加工されたクーリングロールで冷却しながら、画像受理層塗布面側の樹脂被覆層を設けた。反対面側には密度0.962g/cmの高密度ポリエチレン樹脂70部と密度0.918g/cmの低密度ポリエチレン樹脂30部のブレンド樹脂組成物を同様に320℃で溶融し、厚さ25μmになるようにクーリングロールで冷却しながら樹脂被覆層を設けた。
[Preparation of lithographic printing plate precursor 1]
Example 1
<Production of water-resistant support>
A 1: 1 mixture of hardwood bleached kraft pulp (LBKP) and hardwood bleached sulfite pulp (LBSP) was beaten to 300 ml with Canadian Standard Freeness to prepare a pulp slurry. The sizing agent and alkyl ketene dimer were 0.5% by mass of pulp, 1% by mass of polyacrylamide as a strengthening agent, 1% by mass of cationized starch, 2% by mass of pulp, and polyamide epichlorohydrin resin by 0.1% of pulp. 5% by mass was added and diluted with water to give a 0.2% by mass slurry. This slurry was made with a long paper machine to a basis weight of 170 g / m 2 , dried and conditioned to obtain a base paper for the support. A polyethylene resin composition in which 10% by mass of anatase-type titanium dioxide is uniformly dispersed with respect to a low density polyethylene resin having a density of 0.918 g / cm 3 is melted at 320 ° C. on the printed surface side of the base paper produced at a temperature of 200 m. The resin coating layer on the image receiving layer coating surface side was provided while cooling with a cooling roll that was extruded to a thickness of 30 μm per minute and processed with a finely roughened surface. On the opposite side to melt at similarly 320 ° C. The blend resin composition of the low density polyethylene resin 30 parts of a density 0.962 g / cm 70 parts high density polyethylene resin of 3 and a density 0.918 g / cm 3, a thickness A resin coating layer was provided while cooling with a cooling roll to 25 μm.
 上記耐水性支持体の画像受理層塗布面側に高周波コロナ放電処理を施した後、下記組成の下引き層をゼラチンが50mg/mとなるように塗布乾燥した。 After the high-frequency corona discharge treatment was performed on the image-receiving layer-coated surface side of the water-resistant support, the undercoat layer having the following composition was coated and dried so that the gelatin content was 50 mg / m 2 .
 <下引き層>
Figure JPOXMLDOC01-appb-I000001
<Underlayer>
Figure JPOXMLDOC01-appb-I000001
 上記耐水性支持体に下記組成の画像受理層A塗布液1を固形分量が25g/mになるようにスライドビード塗布装置で塗布し、5℃で30秒間冷却後、40℃10%RHで乾燥終了点まで乾燥し、下記組成の画像受理層B塗布液1をコロイダルシリカ固形分量が0.1g/mになるようにグラビア塗布装置で逐次塗布し、50℃で乾燥した。 The image-receiving layer A coating solution 1 having the following composition is coated on the water-resistant support with a slide bead coating device so that the solid content is 25 g / m 2 , cooled at 5 ° C. for 30 seconds, and then at 40 ° C. and 10% RH. After drying to the end of drying, the image-receiving layer B coating solution 1 having the following composition was sequentially applied with a gravure coating device so that the solid content of colloidal silica was 0.1 g / m 2 and dried at 50 ° C.
 <気相法シリカ分散液1>
 水にジメチルジアリルアルミニウムクロライドホモポリマー(分子量:9000)3部と気相法シリカ(平均一次粒子径7nm、比表面積300m/g)100部を添加し予備分散液を作製した後、高圧ホモジナイザーで処理して、固形分濃度20質量%の気相法シリカ分散液1を作製した。なお、レーザー回折/散乱式粒度分布測定装置での測定による気相法シリカの平均二次粒子径は80nmであった。
<Gas phase silica dispersion 1>
After adding 3 parts of dimethyldiallyl aluminum chloride homopolymer (molecular weight: 9000) and 100 parts of gas phase method silica (average primary particle diameter 7 nm, specific surface area 300 m 2 / g) to water to prepare a preliminary dispersion, using a high-pressure homogenizer The gas phase method silica dispersion 1 having a solid content concentration of 20% by mass was prepared. In addition, the average secondary particle diameter of the vapor phase method silica measured by a laser diffraction / scattering type particle size distribution analyzer was 80 nm.
 <画像受理層A塗布液1>
Figure JPOXMLDOC01-appb-I000002
<Image receiving layer A coating solution 1>
Figure JPOXMLDOC01-appb-I000002
 <画像受理層B塗布液1>
 水にクォートロンPL-3L(扶桑化学工業株式会社製コロイダルシリカ)を100部加え、固形分濃度5質量%液を調製後、撹拌しながら、約10分間かけて10部のタキバイン#1500(多木化学株式会社製ポリ塩化アルミニウム水溶液;固形分濃度23.5質量%)を添加し、カチオン性コロイダルシリカを得た。添加終了後、温度80℃で1時間撹拌した後、室温にまで冷却し、固形分濃度が0.6質量%になるよう水で調整した。作製した画像受理層B塗布液1をゼータ電位測定装置(ベックマン・コールター社製DELSA 440SX)でゼータ電位を測定した結果、+45mVであった。また、電子顕微鏡観察によるカチオン性コロイダルシリカの平均一次粒子径は35nm、平均一次粒子径に対する平均二次粒子径の比は1.5であった。
<Image receiving layer B coating solution 1>
Add 100 parts of Quartron PL-3L (Colloidal Silica manufactured by Fuso Chemical Industry Co., Ltd.) to water to prepare a 5% by mass solid content solution, and then stir 10 parts Takibine # 1500 (Taki) over about 10 minutes with stirring. Polyaluminum chloride aqueous solution manufactured by Kagaku Co., Ltd .; solid content concentration 23.5% by mass) was added to obtain cationic colloidal silica. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass. As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 1 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +45 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 35 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 1.5.
 (実施例2)
 実施例1の画像受理層A塗布液1を画像受理層A塗布液2に変更した以外は、実施例1と同様にして実施例2の平版印刷版原版を作製した。
(Example 2)
A lithographic printing plate precursor of Example 2 was produced in the same manner as in Example 1 except that the image-receiving layer A coating liquid 1 of Example 1 was changed to the image-receiving layer A coating liquid 2.
 <湿式法シリカ分散液1>
 水にジメチルジアリルアンモニウムクロライドホモポリマー(分子量9000、4部)と沈降法シリカ(ニップシールVN3、比表面積210m/g、平均二次粒子径23μm、100部)を添加し、のこぎり歯状ブレード型分散機(ブレード周速30m/秒)を使用して予備分散液を作製した。次に得られた予備分散物をビーズミルに、直径0.3mmのジルコニアビーズ、充填率80容量%、円盤周速10m/秒の条件で1回通過させて、固形分濃度30質量%の湿式法シリカ分散液1を得た。なお、レーザー回折/散乱式粒度分布測定装置での測定による湿式法シリカの平均二次粒子径は200nmであった。
<Wet process silica dispersion 1>
Dimethyldiallylammonium chloride homopolymer (molecular weight 9000, 4 parts) and precipitated silica (nip seal VN3, specific surface area 210 m 2 / g, average secondary particle size 23 μm, 100 parts) are added to water, and sawtooth blade type dispersion A preliminary dispersion was prepared using a machine (blade peripheral speed 30 m / sec). Next, the obtained preliminary dispersion was passed through a bead mill once under the conditions of 0.3 mm diameter zirconia beads, a filling rate of 80% by volume, and a disk peripheral speed of 10 m / second, and a wet method with a solid content concentration of 30% by mass. Silica dispersion 1 was obtained. In addition, the average secondary particle diameter of the wet method silica measured by a laser diffraction / scattering type particle size distribution analyzer was 200 nm.
 <画像受理層A塗布液2>
Figure JPOXMLDOC01-appb-I000003
<Image receiving layer A coating solution 2>
Figure JPOXMLDOC01-appb-I000003
 (実施例3)
 実施例1の画像受理層A塗布液1を画像受理層A塗布液3に変更した以外は、実施例1と同様にして実施例3の平版印刷版原版を作製した。なお、レーザー回折/散乱式粒度分布測定装置での測定によるアルミナ水和物の平均二次粒子径は160nmであった。
(Example 3)
A lithographic printing plate precursor of Example 3 was produced in the same manner as in Example 1 except that the image-receiving layer A coating solution 1 in Example 1 was changed to the image-receiving layer A coating solution 3. The average secondary particle diameter of the alumina hydrate as measured with a laser diffraction / scattering particle size distribution analyzer was 160 nm.
 <画像受理層A塗布液3>
Figure JPOXMLDOC01-appb-I000004
<Image receiving layer A coating solution 3>
Figure JPOXMLDOC01-appb-I000004
 (実施例4)
 実施例1の画像受理層B塗布液1を下記画像受理層B塗布液2に変更した以外は、実施例1と同様にして実施例4の平版印刷版原版を作製した。
Example 4
A lithographic printing plate precursor of Example 4 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 2.
 <画像受理層B塗布液2>
 水にクォートロンPL-5(扶桑化学工業株式会社製コロイダルシリカ)を100部加え、固形分濃度5質量%液を調製後、撹拌しながら、約10分間かけて10部のタキバイン#1500(多木化学株式会社製ポリ塩化アルミニウム水溶液;固形分濃度23.5質量%)を添加した。添加終了後、温度80℃で1時間撹拌した後、室温にまで冷却し、固形分濃度が0.6質量%になるよう水で調整した。作製した画像受理層B塗布液2をゼータ電位測定装置(ベックマン・コールター社製DELSA 440SX)でゼータ電位を測定した結果、+47mVであった。また、電子顕微鏡観察によるカチオン性コロイダルシリカの平均一次粒子径は52nm、平均一次粒子径に対する平均二次粒子径の比は2.2であった。
<Image receiving layer B coating solution 2>
Add 100 parts Quortron PL-5 (colloidal silica manufactured by Fuso Chemical Co., Ltd.) to water to prepare a 5% by mass solid content solution, and then stir 10 parts Takibine # 1500 (Taki) over about 10 minutes with stirring. A polyaluminum chloride aqueous solution manufactured by Chemical Co., Ltd .; solid content concentration 23.5% by mass) was added. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass. As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 2 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +47 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 52 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 2.2.
 (実施例5)
 実施例1の画像受理層B塗布液1を下記画像受理層B塗布液3に変更した以外は、実施例1と同様にして実施例5の平版印刷版原版を作製した。
(Example 5)
A lithographic printing plate precursor of Example 5 was prepared in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 3.
 <画像受理層B塗布液3>
 水にクォートロンPL-3L(扶桑化学工業株式会社製コロイダルシリカ)を100部加え、固形分濃度5質量%液を調製後、撹拌しながら、約10分間かけて10部のZA-30(第一希元素化学工業株式会社製酢酸ジルコニル;固形分濃度30質量%)を添加した。添加終了後、温度80℃で1時間撹拌した後、室温にまで冷却し、固形分濃度が0.6質量%になるよう水で調整した。作製した画像受理層B塗布液3をゼータ電位測定装置(ベックマン・コールター社製DELSA 440SX)でゼータ電位を測定した結果、+43mVであった。また、電子顕微鏡観察によるカチオン性コロイダルシリカの平均一次粒子径は35nm、平均一次粒子径に対する平均二次粒子径の比は1.5であった。
<Image receiving layer B coating solution 3>
Add 100 parts of Quartron PL-3L (colloidal silica manufactured by Fuso Chemical Industry Co., Ltd.) to water to prepare a 5% by mass solid content solution, and then stir 10 parts of ZA-30 (1st over about 10 minutes with stirring). Zirconyl acetate manufactured by Rare Elemental Chemical Co., Ltd .; solid content concentration of 30% by mass) was added. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass. As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 3 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +43 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 35 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 1.5.
 (実施例6)
 実施例1の画像受理層B塗布液1を下記画像受理層B塗布液4に変更した以外は、実施例1と同様にして実施例6の平版印刷版原版を作製した。
(Example 6)
A lithographic printing plate precursor of Example 6 was prepared in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 4.
 <画像受理層B塗布液4>
 攪拌機、温度計、還流冷却器、および滴下ロートを備えた装置に、クォートロンPL-3L(扶桑化学工業株式会社製コロイダルシリカ:固形分濃度20質量%)を100部仕込み、75℃まで加温した。次いで、撹拌下で75℃に維持しながら、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン5部を15分間かけて滴下し、同温度で30分間以上保温して反応させ、これを冷却してカップリング剤で処理したカチオン性コロイダルシリカを作製し、固形分濃度が0.6質量%になるよう水で調整した。作製した画像受理層B塗布液4をゼータ電位測定装置(ベックマン・コールター社製DELSA 440SX)でゼータ電位を測定した結果、+42mVであった。また、電子顕微鏡観察によるカチオン性コロイダルシリカの平均一次粒子径は35nm、平均一次粒子径に対する平均二次粒子径の比は1.5であった。
<Image receiving layer B coating solution 4>
An apparatus equipped with a stirrer, a thermometer, a reflux condenser, and a dropping funnel was charged with 100 parts of Quattron PL-3L (colloidal silica manufactured by Fuso Chemical Co., Ltd .: solid content concentration: 20% by mass) and heated to 75 ° C. . Next, while maintaining at 75 ° C. with stirring, 5 parts of N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane was added dropwise over 15 minutes, and the reaction was carried out by keeping the temperature at the same temperature for 30 minutes or more. This was cooled and a cationic colloidal silica treated with a coupling agent was prepared and adjusted with water so that the solid content concentration was 0.6% by mass. As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 4 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +42 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 35 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 1.5.
 (実施例7)
 実施例1の画像受理層B塗布液1のコロイダルシリカ固形分量0.3g/mに変更した以外は、実施例1と同様にして実施例7の平版印刷版原版を作製した。
(Example 7)
A lithographic printing plate precursor of Example 7 was prepared in the same manner as in Example 1 except that the amount of the colloidal silica solid content in the image-receiving layer B coating solution 1 of Example 1 was changed to 0.3 g / m 2 .
 (実施例8)
 実施例1の画像受理層B塗布液1を下記画像受理層B塗布液5に変更した以外は、実施例1と同様にして実施例8の平版印刷版原版を作製した。
(Example 8)
A lithographic printing plate precursor of Example 8 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 5.
<画像受理層B塗布液5>
 水にカタロイドSI-50(日揮触媒化成株式会社製コロイダルシリカ)を100部加え、固形分濃度5質量%液を調製後、撹拌しながら、約10分間かけて10部のタキバイン#1500(多木化学株式会社製ポリ塩化アルミニウム水溶液;固形分濃度23.5質量%)を添加した。添加終了後、温度80℃で1時間撹拌した後、室温にまで冷却し、固形分濃度が0.6質量%になるよう水で調整した。作製した画像受理層B塗布液5をゼータ電位測定装置(ベックマン・コールター社製DELSA 440SX)でゼータ電位を測定した結果、+42mVであった。また、電子顕微鏡観察によるカチオン性コロイダルシリカの平均一次粒子径は25nm、平均一次粒子径に対する平均二次粒子径の比は1.2であった。
<Image receiving layer B coating solution 5>
100 parts of Cataloid SI-50 (JGC Catalysts & Chemicals Co., Ltd. colloidal silica) was added to water to prepare a 5% by mass solid content solution, and then stirred with 10 parts of tachyvine # 1500 (Taki) over about 10 minutes. A polyaluminum chloride aqueous solution manufactured by Chemical Co., Ltd .; solid content concentration 23.5% by mass) was added. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass. As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 5 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +42 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 25 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 1.2.
 (実施例9)
 実施例1の画像受理層B塗布液1を下記画像受理層B塗布液6に変更した以外は、実施例1と同様にして実施例9の平版印刷版原版を作製した。
Example 9
A lithographic printing plate precursor of Example 9 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 6.
<画像受理層B塗布液6>
 水にクォートロンPL-7(扶桑化学工業株式会社製コロイダルシリカ)を100部加え、固形分濃度5質量%液を調製後、撹拌しながら、約10分間かけて10部のタキバイン#1500(多木化学株式会社製ポリ塩化アルミニウム水溶液;固形分濃度23.5質量%)を添加した。添加終了後、温度80℃で1時間撹拌した後、室温にまで冷却し、固形分濃度が0.6質量%になるよう水で調整した。作製した画像受理層B塗布液6をゼータ電位測定装置(ベックマン・コールター社製DELSA 440SX)でゼータ電位を測定した結果、+38mVであった。また、電子顕微鏡観察によるカチオン性コロイダルシリカの平均一次粒子径は70nm、平均一次粒子径に対する平均二次粒子径の比は1.7であった。
<Image receiving layer B coating solution 6>
Add 100 parts of Quartron PL-7 (colloidal silica manufactured by Fuso Chemical Industry Co., Ltd.) to water to prepare a 5% by mass solid content solution, and then stir and stir 10 parts Takibine # 1500 (Taki) over about 10 minutes. A polyaluminum chloride aqueous solution manufactured by Chemical Co., Ltd .; solid content concentration 23.5% by mass) was added. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass. As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 6 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +38 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 70 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 1.7.
 (実施例10)
 実施例1の画像受理層B塗布液1を下記画像受理層B塗布液7に変更した以外は、実施例1と同様にして実施例10の平版印刷版原版を作製した。
(Example 10)
A lithographic printing plate precursor of Example 10 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 7.
<画像受理層B塗布液7>
 水にクォートロンPL-1(扶桑化学工業株式会社製コロイダルシリカ)を100部加え、固形分濃度5質量%液を調製後、撹拌しながら、約10分間かけて10部のタキバイン#1500(多木化学株式会社製ポリ塩化アルミニウム水溶液;固形分濃度23.5質量%)を添加した。添加終了後、温度80℃で1時間撹拌した後、室温にまで冷却し、固形分濃度が0.6質量%になるよう水で調整した。作製した画像受理層B塗布液7をゼータ電位測定装置(ベックマン・コールター社製DELSA 440SX)でゼータ電位を測定した結果、+38mVであった。また、電子顕微鏡観察によるカチオン性コロイダルシリカの平均一次粒子径は15nm、平均一次粒子径に対する平均二次粒子径の比は2.7であった。
<Image receiving layer B coating solution 7>
Add 100 parts of Quartron PL-1 (colloidal silica manufactured by Fuso Chemical Co., Ltd.) to water to prepare a 5% by mass solid content solution, and then stir and stir 10 parts of tachyvine # 1500 (Taki) over about 10 minutes. A polyaluminum chloride aqueous solution manufactured by Chemical Co., Ltd .; solid content concentration 23.5% by mass) was added. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass. As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 7 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +38 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 15 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 2.7.
 (実施例11)
 実施例1の画像受理層B塗布液1を下記画像受理層B塗布液8に変更した以外は、実施例1と同様にして実施例11の平版印刷版原版を作製した。
(Example 11)
A lithographic printing plate precursor of Example 11 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 8.
<画像受理層B塗布液8>
 水にスノーテックスST-PS-M(日産化学工業株式会社製コロイダルシリカ)を100部加え、固形分濃度5質量%液を調製後、撹拌しながら、約10分間かけて10部のタキバイン#1500(多木化学株式会社製ポリ塩化アルミニウム水溶液;固形分濃度23.5質量%)を添加した。添加終了後、温度80℃で1時間撹拌した後、室温にまで冷却し、固形分濃度が0.6質量%になるよう水で調整した。作製した画像受理層B塗布液8をゼータ電位測定装置(ベックマン・コールター社製DELSA 440SX)でゼータ電位を測定した結果、+38mVであった。また、電子顕微鏡観察によるカチオン性コロイダルシリカの平均一次粒子径は35nm、平均一次粒子径に対する平均二次粒子径の比は4.0であった。
<Image receiving layer B coating solution 8>
Add 100 parts of Snowtex ST-PS-M (Nissan Chemical Co., Ltd. colloidal silica) to the water to prepare a 5% by weight solid content solution, and then stir 10 parts of tachyvine # 1500 over about 10 minutes with stirring. (A polyaluminum chloride aqueous solution manufactured by Taki Chemical Co., Ltd .; solid content concentration 23.5% by mass) was added. After completion of the addition, the mixture was stirred at a temperature of 80 ° C. for 1 hour, cooled to room temperature, and adjusted with water so that the solid content concentration became 0.6% by mass. As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 8 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +38 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 35 nm, and the ratio of the average secondary particle diameter to the average primary particle diameter was 4.0.
 (実施例12)
 実施例1の画像受理層B塗布液1を下記画像受理層B塗布液9に変更した以外は、実施例1と同様にして実施例12の平版印刷版原版を作製した。
(Example 12)
A lithographic printing plate precursor of Example 12 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the image-receiving layer B coating solution 9 described below.
 <画像受理層B塗布液9>
 水にファインカタロイドC-125(日揮触媒化成株式会社製コロイダルシリカ)を100部加え、固形分濃度が0.6質量%になるよう水で調整した。作製した画像受理層B塗布液9をゼータ電位測定装置(ベックマン・コールター社製DELSA 440SX)でゼータ電位を測定した結果、+45mVであった。また、電子顕微鏡観察によるカチオン性コロイダルシリカの平均一次粒子径は20nmであり、二次粒子は認められなかった。
<Image receiving layer B coating solution 9>
100 parts of fine cataloid C-125 (colloidal silica manufactured by JGC Catalysts and Chemicals Co., Ltd.) was added to water, and the solid content concentration was adjusted to 0.6% by mass. As a result of measuring the zeta potential of the prepared image-receiving layer B coating solution 9 with a zeta potential measuring device (DELSA 440SX manufactured by Beckman Coulter, Inc.), it was +45 mV. Moreover, the average primary particle diameter of the cationic colloidal silica by electron microscope observation was 20 nm, and secondary particles were not recognized.
 (実施例13)
 実施例1の画像受理層B塗布液1を下記画像受理層B塗布液10に変更した以外は、実施例1と同様にして実施例13の平版印刷版原版を作製した。なお電子顕微鏡で観察したところ、画像受理層B塗布液10中のコロイダルシリカに二次粒子は認められなかった。
(Example 13)
A lithographic printing plate precursor of Example 13 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was changed to the following image-receiving layer B coating solution 10. When observed with an electron microscope, secondary particles were not observed in the colloidal silica in the image-receiving layer B coating solution 10.
 <画像受理層B塗布液10>
Figure JPOXMLDOC01-appb-I000005
<Image receiving layer B coating solution 10>
Figure JPOXMLDOC01-appb-I000005
 (実施例14)
 実施例1の画像受理層A塗布液1を下記画像受理層A塗布液4に変更した以外は、実施例1と同様にして実施例14の平版印刷版原版を作製した。
(Example 14)
A lithographic printing plate precursor of Example 14 was produced in the same manner as in Example 1 except that the image-receiving layer A coating liquid 1 of Example 1 was changed to the following image-receiving layer A coating liquid 4.
 <湿式法シリカ分散液2>
 水にジメチルジアリルアンモニウムクロライドホモポリマー(分子量9000、4部)と沈降法シリカ(ニップシールVN3、比表面積210m/g、平均二次粒子径23μm、100部)を添加し、のこぎり歯状ブレード型分散機(ブレード周速30m/秒)を使用して予備分散液を作製した。次に得られた予備分散物をビーズミルに、直径0.3mmのジルコニアビーズ、充填率70容量%、円盤周速8.0m/秒の条件で1回通過させて、固形分濃度30質量%の湿式法シリカ分散液2を得た。なお、レーザー回折/散乱式粒度分布測定装置での測定による湿式法シリカの平均二次粒子径は800nmであった。
<Wet method silica dispersion 2>
Dimethyldiallylammonium chloride homopolymer (molecular weight 9000, 4 parts) and precipitated silica (nip seal VN3, specific surface area 210 m 2 / g, average secondary particle size 23 μm, 100 parts) are added to water, and sawtooth blade type dispersion A preliminary dispersion was prepared using a machine (blade peripheral speed 30 m / sec). Next, the obtained pre-dispersion was passed through a bead mill once under the conditions of a zirconia bead having a diameter of 0.3 mm, a filling rate of 70% by volume, and a disk peripheral speed of 8.0 m / sec. Wet process silica dispersion 2 was obtained. In addition, the average secondary particle diameter of the wet method silica as measured with a laser diffraction / scattering particle size distribution analyzer was 800 nm.
 <画像受理層A塗布液4>
Figure JPOXMLDOC01-appb-I000006
<Image receiving layer A coating solution 4>
Figure JPOXMLDOC01-appb-I000006
 (実施例15)
 実施例1にて作製した耐水性支持体の下引き層上に、実施例1で得た画像受理層A塗布液1と下記画像受理層B塗布液11とをスライドビード塗布装置を用いて、画像受理層Aの固形分量が25g/m、画像受理層Bの固形分量が1.0g/mになるよう重層塗布し、その後、5℃で30秒間冷却後、40℃10%RHで乾燥終了点まで乾燥した。
(Example 15)
On the undercoat layer of the water-resistant support produced in Example 1, the image-receiving layer A coating solution 1 obtained in Example 1 and the image-receiving layer B coating solution 11 described below were used using a slide bead coating device. The image receiving layer A was applied in multiple layers so that the solid content of the image receiving layer A was 25 g / m 2 and the solid content of the image receiving layer B was 1.0 g / m 2 , and then cooled at 5 ° C. for 30 seconds and then at 40 ° C. and 10% RH. Dried to the end of drying.
 <画像受理層B塗布液11>
Figure JPOXMLDOC01-appb-I000007
<Image receiving layer B coating solution 11>
Figure JPOXMLDOC01-appb-I000007
 (実施例16)
 実施例15で用いた画像受理層B塗布液11を下記画像受理層B塗布液12に変更した以外は実施例15と同様にして、実施例16の平板印刷版原版を作製した。
(Example 16)
A lithographic printing plate precursor of Example 16 was produced in the same manner as in Example 15 except that the image receiving layer B coating solution 11 used in Example 15 was changed to the following image receiving layer B coating solution 12.
 <画像受理層B塗布液12>
Figure JPOXMLDOC01-appb-I000008
<Image receiving layer B coating solution 12>
Figure JPOXMLDOC01-appb-I000008
 (実施例17)
 実施例1にて作製した耐水性支持体の下引き層上に、下記画像受理層A塗布液5と、実施例15で作製した画像受理層B塗布液11とをスライドビード塗布装置を用いて、画像受理層Aの固形分量が25g/m、画像受理層Bの固形分量が1.0g/mになるよう重層塗布し、その後、5℃で30秒間冷却後、40℃10%RHで乾燥終了点まで乾燥した。
(Example 17)
The following image receiving layer A coating solution 5 and image receiving layer B coating solution 11 prepared in Example 15 are applied to the undercoat layer of the water-resistant support prepared in Example 1 using a slide bead coating device. The image receiving layer A has a solid content of 25 g / m 2 and the image receiving layer B has a solid content of 1.0 g / m 2, and after cooling at 5 ° C. for 30 seconds, 40 ° C. and 10% RH And dried to the end of drying.
 <気相法シリカ分散液2>
 水にジメチルジアリルアルミニウムクロライドホモポリマー(分子量:9000)4部と気相法シリカ(平均一次粒子径7nm、比表面積400m/g)100部を添加し予備分散液を作製した後、高圧ホモジナイザーで処理して、固形分濃度20質量%の気相法シリカ分散液2を作製した。なお、レーザー回折/散乱式粒度分布測定装置での測定による気相法シリカの平均二次粒子径は80nmであった。
<Gas phase method silica dispersion 2>
After adding 4 parts of dimethyldiallyl aluminum chloride homopolymer (molecular weight: 9000) and 100 parts of gas phase method silica (average primary particle diameter of 7 nm, specific surface area of 400 m 2 / g) to water to prepare a preliminary dispersion, a high-pressure homogenizer was used. The gas phase method silica dispersion 2 having a solid content concentration of 20% by mass was prepared. In addition, the average secondary particle diameter of the vapor phase method silica measured by a laser diffraction / scattering type particle size distribution analyzer was 80 nm.
 <画像受理層A塗布液5>
Figure JPOXMLDOC01-appb-I000009
<Image receiving layer A coating solution 5>
Figure JPOXMLDOC01-appb-I000009
 (実施例18)
 実施例1にて作製した耐水性支持体の下引き層上に、下記画像受理層A塗布液6と、実施例15で作製した画像受理層B塗布液11とをスライドビード塗布装置を用いて、画像受理層Aの固形分量が25g/m、画像受理層Bの固形分量が1.0g/mになるよう重層塗布し、その後、5℃で30秒間冷却後、40℃10%RHで乾燥終了点まで乾燥した。
(Example 18)
On the undercoat layer of the water-resistant support prepared in Example 1, the image receiving layer A coating solution 6 described below and the image receiving layer B coating solution 11 prepared in Example 15 were used using a slide bead coating apparatus. The image receiving layer A has a solid content of 25 g / m 2 and the image receiving layer B has a solid content of 1.0 g / m 2, and after cooling at 5 ° C. for 30 seconds, 40 ° C. and 10% RH And dried to the end of drying.
 <気相法シリカ分散液3>
 水にジメチルジアリルアルミニウムクロライドホモポリマー(分子量:9000)3部と気相法シリカ(平均一次粒子径12nm、比表面積200m/g)100部を添加し予備分散液を作製した後、高圧ホモジナイザーで処理して、固形分濃度20質量%の気相法シリカ分散液3を作製した。なお、レーザー回折/散乱式粒度分布測定装置での測定による気相法シリカの平均二次粒子径は80nmであった。
<Gas phase method silica dispersion 3>
After adding 3 parts of dimethyldiallyl aluminum chloride homopolymer (molecular weight: 9000) and 100 parts of gas phase method silica (average primary particle diameter 12 nm, specific surface area 200 m 2 / g) to water to prepare a preliminary dispersion, using a high-pressure homogenizer The gas phase method silica dispersion 3 having a solid content concentration of 20% by mass was prepared. In addition, the average secondary particle diameter of the vapor phase method silica measured by a laser diffraction / scattering type particle size distribution analyzer was 80 nm.
 <画像受理層A塗布液6>
Figure JPOXMLDOC01-appb-I000010
<Image receiving layer A coating solution 6>
Figure JPOXMLDOC01-appb-I000010
 (比較例1)
 実施例1の画像受理層B塗布液1を塗布しなかった以外は実施例1と同様にして比較例1の平版印刷版原版を作製した。
(Comparative Example 1)
A lithographic printing plate precursor of Comparative Example 1 was produced in the same manner as in Example 1 except that the image-receiving layer B coating solution 1 of Example 1 was not applied.
 (比較例2)
 実施例2の画像受理層B塗布液1を塗布しなかった以外は実施例2と同様にして比較例2の平版印刷版原版を作製した。
(Comparative Example 2)
A planographic printing plate precursor of Comparative Example 2 was prepared in the same manner as in Example 2 except that the image receiving layer B coating solution 1 of Example 2 was not applied.
 (比較例3)
 実施例3の画像受理層B塗布液1を塗布しなかった以外は実施例3と同様にして比較例3の平版印刷版原版を作製した。
(Comparative Example 3)
A lithographic printing plate precursor of Comparative Example 3 was produced in the same manner as in Example 3 except that the image-receiving layer B coating solution 1 of Example 3 was not applied.
 (比較例4)
 比較例1の画像受理層A塗布液1を画像受理層A塗布液7に変更した以外は、比較例1と同様にして比較例4の平版印刷版原版を作製した。
(Comparative Example 4)
A lithographic printing plate precursor of Comparative Example 4 was produced in the same manner as Comparative Example 1, except that the image receiving layer A coating liquid 1 of Comparative Example 1 was changed to the image receiving layer A coating liquid 7.
 <画像受理層A塗布液7>
Figure JPOXMLDOC01-appb-I000011
<Image receiving layer A coating solution 7>
Figure JPOXMLDOC01-appb-I000011
 (比較例5)
 比較例1の画像受理層A塗布液1を下記画像受理層A塗布液8に変更した以外は、比較例1と同様にして比較例5の平版印刷版原版を作製した。
(Comparative Example 5)
A lithographic printing plate precursor of Comparative Example 5 was prepared in the same manner as Comparative Example 1 except that the image receiving layer A coating liquid 1 of Comparative Example 1 was changed to the following image receiving layer A coating liquid 8.
 <画像受理層A塗布液8>
 気相法シリカ(平均一次粒子径7nm、比表面積300m/g)50gを500gのイオン交換水中に攪拌機にて分散し、10質量%のポリビニルアルコール(ケン化度88%、平均重合度3500)水溶液80gを混合した。更に平均一次粒子径が10~20nmで、球状一次粒子がコロイド粒子であるコロイダルシリカ(日産化学工業株式会社製スノーテックス-O;固形分濃度20質量%)250g、および該ポリビニルアルコールに対して21質量%のホウ酸を混合後、ホモミキサーに1万rpmで10分間かけ、均一分散し、画像受理層A塗布液8を得た。
<Image receiving layer A coating solution 8>
Vapor phase silica (average primary particle diameter 7 nm, specific surface area 300 m 2 / g) 50 g was dispersed in 500 g of ion exchange water with a stirrer, and 10% by mass of polyvinyl alcohol (saponification degree 88%, average polymerization degree 3500). 80 g of an aqueous solution was mixed. Furthermore, 250 g of colloidal silica (Snowtex-O manufactured by Nissan Chemical Industries, Ltd .; solid content concentration 20% by mass) having an average primary particle size of 10 to 20 nm and spherical primary particles being colloidal particles, and 21 with respect to the polyvinyl alcohol. After mixing mass% boric acid, the mixture was uniformly dispersed in a homomixer at 10,000 rpm for 10 minutes to obtain an image receiving layer A coating solution 8.
 (比較例6)
 実施例1の画像受理層B塗布液1を下記画像受理層B塗布液13に変更した以外は、実施例1と同様にして比較例6の平版印刷版原版を作製した。
(Comparative Example 6)
A lithographic printing plate precursor of Comparative Example 6 was prepared in the same manner as in Example 1 except that the image receiving layer B coating solution 1 of Example 1 was changed to the following image receiving layer B coating solution 13.
 <画像受理層B塗布液13>
 水にクォートロンPL-3L(扶桑化学工業株式会社製コロイダルシリカ;平均一次粒子径35nmで、コロイド粒子は非球状粒子である。)を100部加え、固形分濃度が5質量%となるよう希釈し、画像受理層B塗布液13を得た。
<Image receiving layer B coating solution 13>
Add 100 parts of Quartron PL-3L (colloidal silica manufactured by Fuso Chemical Industries; average primary particle diameter of 35 nm, colloidal particles are non-spherical particles) to water and dilute to a solid content concentration of 5% by mass. An image receiving layer B coating solution 13 was obtained.
 (比較例7)
 実施例1の画像受理層B塗布液1を下記画像受理層B塗布液14に変更した以外は、実施例1と同様にして比較例7の平版印刷版原版を作製した。
(Comparative Example 7)
A lithographic printing plate precursor of Comparative Example 7 was prepared in the same manner as in Example 1 except that the image receiving layer B coating solution 1 of Example 1 was changed to the following image receiving layer B coating solution 14.
 <画像受理層B塗布液14>
 水にカタロイドSI-50(日揮触媒化成株式会社製コロイダルシリカ;平均一次粒子径25nmで、球状一次粒子がコロイド粒子である。)を100部加え、固形分濃度が5質量%となるよう希釈し、画像受理層B塗布液14を得た。
<Image receiving layer B coating solution 14>
Add 100 parts of Cataloid SI-50 (Colloidal Silica manufactured by JGC Catalysts &Chemicals; average primary particle diameter of 25 nm and spherical primary particles are colloidal particles) to water and dilute to a solid content concentration of 5% by mass. Thus, an image receiving layer B coating solution 14 was obtained.
 (比較例8)
 実施例15の画像受理層B塗布液11を下記画像受理層B塗布液15に変更した以外は、実施例15と同様にして比較例8の平版印刷版原版を作製した。
(Comparative Example 8)
A lithographic printing plate precursor of Comparative Example 8 was produced in the same manner as in Example 15 except that the image receiving layer B coating solution 11 of Example 15 was changed to the following image receiving layer B coating solution 15.
 <画像受理層B塗布液15>
Figure JPOXMLDOC01-appb-I000012
<Image receiving layer B coating solution 15>
Figure JPOXMLDOC01-appb-I000012
[平版印刷版の製版1]
 上記のようにして作製した平版印刷版原版それぞれについて、水性顔料インクを用いたインクジェットプリンター(セイコーエプソン株式会社製PX-1001)を用いて、画像を記録し(シアンインク)、平版印刷版を作製した。
[Plate printing plate making 1]
For each lithographic printing plate precursor produced as described above, an image is recorded (cyan ink) using an ink jet printer (PX-1001 manufactured by Seiko Epson Corporation) using an aqueous pigment ink, and a lithographic printing plate is produced. did.
[評価方法1]
 <画像品質>
 記録画像の画像境界の鮮鋭性を目視で観察した。下記の基準で評価した。この結果を表1に示す。
 ○:非常に鮮鋭で、境界にじみが見られない。
 △:わずかににじみが見られるが問題とならないレベル。
 ×:境界にじみが顕著であり、インク吸収性が劣る。
[Evaluation Method 1]
<Image quality>
The sharpness of the image boundary of the recorded image was visually observed. Evaluation was made according to the following criteria. The results are shown in Table 1.
○: Very sharp and no blurring at the boundary.
Δ: Level at which slight blur is observed but does not cause a problem.
X: The blur at the boundary is remarkable and the ink absorbability is inferior.
 <耐刷性>
 上記のようにして画像を記録した平版印刷版を用いて印刷試験を行った。印刷機はHAMADA DU34II(ハマダ印刷機械株式会社製オフセット印刷機)を使用し、インクはニューチャンピオンFグロス墨85N(DIC株式会社製)、給湿液はSLM-OD(三菱製紙株式会社製給湿液)の3質量%水溶液を使用し、印刷開始前にSLM-OD30(三菱製紙株式会社製給湿液:コロイダルシリカとブチルトリグリコール含有)の25質量%水溶液を使用し版面をくまなく拭き与え不感脂化処理した後、印刷を開始し、印刷物の画像に欠落を生じ印刷できなくなった枚数を下記評価基準で評価した。この結果を表1に示す。
 ◎◎:7,000枚以上
 ◎:5,000以上7,000枚未満
 ○:3,000以上5,000枚未満
 △:1,000以上3,000枚未満
 ×:1,000枚未満
<Print durability>
A printing test was performed using the planographic printing plate on which an image was recorded as described above. The printing machine uses HAMADA DU34II (offset printing machine manufactured by Hamada Printing Machinery Co., Ltd.), the ink is New Champion F gloss ink 85N (manufactured by DIC Corporation), and the dampening liquid is SLM-OD (humidity supplied by Mitsubishi Paper Industries Co., Ltd.). Use a 25% by weight aqueous solution of SLM-OD30 (Mitsubishi Paper Co., Ltd., moisturizing liquid: containing colloidal silica and butyltriglycol) before commencing printing. After the desensitization treatment, printing was started, and the number of prints that could not be printed due to missing images was evaluated according to the following evaluation criteria. The results are shown in Table 1.
◎: 7,000 or more ◎: 5,000 or more and less than 7,000 ○: 3,000 or more and less than 5,000 △: 1,000 or more and less than 3,000 ×: less than 1,000
 <耐汚れ性>
 上記のようにして画像を記録した平版印刷版を用いて、給湿液をトーホーH(東邦精機株式会社)の0.5質量%水溶液に代えた以外は耐刷性を評価した時と同様の印刷条件にて印刷試験を行い、印刷物の非画像部に汚れ(地汚れ)が発生した枚数を下記評価基準で評価した。この結果を表1に示す。
 ◎◎:3,000枚以上
 ◎:2,000以上3,000枚未満
 ○:1,500以上2,000枚未満
 △:1,000以上1,500枚未満
 ×:1,000枚未満
<Stain resistance>
Using the lithographic printing plate on which the image was recorded as described above, the same as when the printing durability was evaluated except that the dampening solution was replaced with a 0.5% by mass aqueous solution of Toho H (Toho Seiki Co., Ltd.) A printing test was performed under the printing conditions, and the number of stains (background stains) generated on the non-image portion of the printed material was evaluated according to the following evaluation criteria. The results are shown in Table 1.
◎: 3,000 or more ◎: 2,000 or more and less than 3,000 sheets ○: 1,500 or more and less than 2,000 sheets △: 1,000 or more and less than 1,500 sheets ×: Less than 1,000 sheets
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
[平板印刷版原版の作製2]
 (実施例19)
 実施例16で用いた画像受理層B塗布液12を、下記画像受理層B塗布液16に代えた以外は実施例16と同様にして、実施例19の平板印刷版原版を作製した。
[Preparation of lithographic printing plate precursor 2]
(Example 19)
A lithographic printing plate precursor of Example 19 was produced in the same manner as in Example 16 except that the image-receiving layer B coating solution 12 used in Example 16 was replaced with the image-receiving layer B coating solution 16 described below.
 <画像受理層B塗布液16>
Figure JPOXMLDOC01-appb-I000014
<Image receiving layer B coating solution 16>
Figure JPOXMLDOC01-appb-I000014
 (実施例20)
 実施例16で用いた画像受理層B塗布液12を、下記画像受理層B塗布液17に変更した以外は実施例16と同様にして、実施例20の平板印刷版原版を作製した。
(Example 20)
A lithographic printing plate precursor of Example 20 was produced in the same manner as in Example 16 except that the image-receiving layer B coating solution 12 used in Example 16 was changed to the image-receiving layer B coating solution 17 described below.
 <画像受理層B塗布液17>
Figure JPOXMLDOC01-appb-I000015
<Image receiving layer B coating solution 17>
Figure JPOXMLDOC01-appb-I000015
 (実施例21)
実施例16で用いた画像受理層B塗布液12を、下記画像受理層B塗布液18に変更した以外は実施例16と同様にして、実施例21の平板印刷版原版を作製した。
(Example 21)
A lithographic printing plate precursor of Example 21 was produced in the same manner as in Example 16 except that the image receiving layer B coating solution 12 used in Example 16 was changed to the image receiving layer B coating solution 18 described below.
 <画像受理層B塗布液18>
Figure JPOXMLDOC01-appb-I000016
<Image receiving layer B coating solution 18>
Figure JPOXMLDOC01-appb-I000016
 (実施例22)
実施例16で用いた画像受理層B塗布液12を、下記画像受理層B塗布液19に変更した以外は実施例16と同様にして、実施例22の平板印刷版原版を作製した。
(Example 22)
A lithographic printing plate precursor of Example 22 was produced in the same manner as in Example 16 except that the image receiving layer B coating solution 12 used in Example 16 was changed to the image receiving layer B coating solution 19 shown below.
 <画像受理層B塗布液19>
Figure JPOXMLDOC01-appb-I000017
<Image receiving layer B coating solution 19>
Figure JPOXMLDOC01-appb-I000017
(実施例23)
 実施例13の画像受理層B塗布液10を下記画像受理層B塗布液20に変更した以外は、実施例13と同様にして実施例23の平版印刷版原版を作製した。なお電子顕微鏡で観察したところ、画像受理層B塗布液20中のコロイダルシリカに二次粒子は認められなかった。
(Example 23)
A lithographic printing plate precursor of Example 23 was produced in the same manner as in Example 13 except that the image-receiving layer B coating solution 10 of Example 13 was changed to the image-receiving layer B coating solution 20 shown below. When observed with an electron microscope, secondary particles were not observed in the colloidal silica in the image-receiving layer B coating solution 20.
 <画像受理層B塗布液20>
Figure JPOXMLDOC01-appb-I000018
<Image receiving layer B coating solution 20>
Figure JPOXMLDOC01-appb-I000018
(実施例24)
 実施例13の画像受理層B塗布液10を下記画像受理層B塗布液21に変更した以外は、実施例13と同様にして実施例24の平版印刷版原版を作製した。なお電子顕微鏡で観察したところ、画像受理層B塗布液21中のコロイダルシリカに二次粒子は認められなかった。
(Example 24)
A lithographic printing plate precursor of Example 24 was produced in the same manner as in Example 13 except that the image-receiving layer B coating solution 10 of Example 13 was changed to the following image-receiving layer B coating solution 21. When observed with an electron microscope, secondary particles were not observed in the colloidal silica in the image-receiving layer B coating solution 21.
 <画像受理層B塗布液21>
Figure JPOXMLDOC01-appb-I000019
<Image receiving layer B coating solution 21>
Figure JPOXMLDOC01-appb-I000019
(実施例25)
 実施例13の画像受理層B塗布液10を下記画像受理層B塗布液22に変更した以外は、実施例13と同様にして実施例25の平版印刷版原版を作製した。なお電子顕微鏡で観察したところ、画像受理層B塗布液22中のコロイダルシリカに二次粒子は認められなかった。
(Example 25)
A lithographic printing plate precursor of Example 25 was produced in the same manner as in Example 13 except that the image receiving layer B coating solution 10 of Example 13 was changed to the following image receiving layer B coating solution 22. When observed with an electron microscope, secondary particles were not observed in the colloidal silica in the image-receiving layer B coating solution 22.
 <画像受理層B塗布液22>
Figure JPOXMLDOC01-appb-I000020
<Image receiving layer B coating liquid 22>
Figure JPOXMLDOC01-appb-I000020
[平版印刷版の製版2]
 上記のようにして作製した実施例19~25の平版印刷版原版それぞれについて、水性顔料インクを用いたインクジェットプリンター(セイコーエプソン株式会社製PX-1001)を用いて、画像を記録し(シアンインク)、平版印刷版を作製した。
[Plate printing plate making 2]
For each of the lithographic printing plate precursors of Examples 19 to 25 produced as described above, an image was recorded using an ink jet printer (PX-1001 manufactured by Seiko Epson Corporation) using an aqueous pigment ink (cyan ink). A lithographic printing plate was prepared.
[評価方法2]
 <画像品質>
 上記評価方法1<画像品質>と同様の評価基準にて記録画像の画像境界の鮮鋭性を目視で観察した。この結果を表2に示す。
[Evaluation Method 2]
<Image quality>
The sharpness of the image boundary of the recorded image was visually observed according to the same evaluation criteria as in the evaluation method 1 <image quality>. The results are shown in Table 2.
<耐刷性>
 上記評価方法1<耐刷性>と同様にして印刷を開始し、印刷物の画像に欠落を生じ印刷できなくなった枚数を同様の評価基準にて評価した。この結果を表2に示す。
<Print durability>
Printing was started in the same manner as in the evaluation method 1 <printing durability>, and the number of prints that could not be printed due to missing images was evaluated according to the same evaluation criteria. The results are shown in Table 2.
 <耐汚れ性>
 上記評価方法1<耐汚れ性>と同様にして印刷を開始し、印刷物の非画像部に汚れ(地汚れ)が発生した枚数を下記評価基準で評価した。この結果を表2に示す。
 ◎◎◎:4000枚以上
 ◎◎:3,000枚以上4000枚未満
 ◎:2,000以上3,000枚未満
 ○:1,500以上2,000枚未満
 △:1,000以上1,500枚未満
 ×:1,000枚未満
<Stain resistance>
Printing was started in the same manner as in the above evaluation method 1 <stain resistance>, and the number of stains (background stains) on the non-image area of the printed material was evaluated according to the following evaluation criteria. The results are shown in Table 2.
◎◎◎: 4,000 or more ◎◎: 3,000 or more and less than 4000 ◎: 2,000 or more and less than 3,000 ○: 1,500 or more and less than 2,000 △: 1,000 or more, 1,500 Less than ×: Less than 1,000 sheets
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000021
[平版印刷版原版の作製3]
 実施例16の平版印刷版原版を平版印刷版原版(A)として、比較例1の平版印刷版原版を平版印刷版原版(C)として準備した。また下記に示す平版印刷版原版(B)、平版印刷版原版(D)、および平版印刷版原版(E)を作製した。
[Preparation of planographic printing plate precursor 3]
The lithographic printing plate precursor of Example 16 was prepared as a lithographic printing plate precursor (A), and the lithographic printing plate precursor of Comparative Example 1 was prepared as a lithographic printing plate precursor (C). Further, the following lithographic printing plate precursor (B), lithographic printing plate precursor (D), and lithographic printing plate precursor (E) were prepared.
<平版印刷版原版(B)の作製>
 実施例1で作製した耐水性支持体の下引き層上に、実施例1の画像受理層A塗布液1と、実施例13の画像受理層B塗布液10とをスライドビード塗布装置を用いて、画像受理層Aの固形分量が25g/m、画像受理層Bのコロイダルシリカ固形分量が1g/mになるよう重層塗布し、その後、5℃で30秒間冷却後、40℃10%RHで乾燥終了点まで乾燥して平版印刷版原版(B)を作製した。
<Preparation of lithographic printing plate precursor (B)>
On the undercoat layer of the water-resistant support produced in Example 1, the image receiving layer A coating liquid 1 of Example 1 and the image receiving layer B coating liquid 10 of Example 13 were used using a slide bead coating apparatus. The solid layer of the image receiving layer A is 25 g / m 2 and the colloidal silica solid content of the image receiving layer B is 1 g / m 2, and after cooling at 5 ° C. for 30 seconds, 40 ° C. and 10% RH And dried to the end point of drying to prepare a lithographic printing plate precursor (B).
<平版印刷版原版(D)の作製>
 実施例1で作製した耐水性支持体の下引き層上に、実施例1の画像受理層A塗布液1と比較例6の画像受理層B塗布液13とをスライドビード塗布装置を用いて、画像受理層Aの固形分量が25g/m、画像受理層Bのコロイダルシリカ固形分量が1g/mになるよう重層塗布し、その後、5℃で30秒間冷却後、40℃10%RHで乾燥終了点まで乾燥して平版印刷版原版(D)を作製した。
<Preparation of lithographic printing plate precursor (D)>
On the undercoat layer of the water-resistant support produced in Example 1, the image receiving layer A coating solution 1 of Example 1 and the image receiving layer B coating solution 13 of Comparative Example 6 were used using a slide bead coating device. The image receiving layer A was applied in multiple layers so that the solid content of the image receiving layer A was 25 g / m 2 and the solid content of the colloidal silica of the image receiving layer B was 1 g / m 2 , and then cooled at 5 ° C. for 30 seconds and then at 40 ° C. and 10% RH. A lithographic printing plate precursor (D) was prepared by drying to the end of drying.
<平版印刷版原版(E)の作製>
 実施例1で作製した耐水性支持体の下引き層上に、下記ポリマータイプ画像受理層塗布液を固形分量が2g/mになるようにスライドビード塗布装置で塗布し、140℃で10分間乾燥して平版印刷版原版(E)を作製した。
<Preparation of lithographic printing plate precursor (E)>
On the undercoat layer of the water-resistant support prepared in Example 1, the following polymer type image receiving layer coating solution was applied with a slide bead coating device so that the solid content was 2 g / m 2 , and at 140 ° C. for 10 minutes. The lithographic printing plate precursor (E) was prepared by drying.
 <ポリマータイプ画像受理層塗布液>
Figure JPOXMLDOC01-appb-I000022
<Polymer type image receiving layer coating solution>
Figure JPOXMLDOC01-appb-I000022
[平版印刷版の製版3]
<水性顔料インクの作製>
 下記組成の顔料とスチレン-アクリル共重合体樹脂またはスチレン-メタアクリル共重合体樹脂を含有した水性顔料インクを作製した。
[Plate printing plate making 3]
<Preparation of water-based pigment ink>
An aqueous pigment ink containing a pigment having the following composition and a styrene-acrylic copolymer resin or a styrene-methacrylic copolymer resin was prepared.
 <水性顔料インク>
Figure JPOXMLDOC01-appb-I000023
<Water-based pigment ink>
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000024
 上記のようにして作製した平版印刷版原版A~Eに対して、水性顔料インク1~10を表3に記載した組み合わせにてインクジェットプリンターを用いて画像を記録した。 Images were recorded on the lithographic printing plate precursors A to E produced as described above using an ink jet printer with the combinations of aqueous pigment inks 1 to 10 described in Table 3.
[評価方法3]
 <画像品質>
 上記評価方法1<画像品質>と同様の評価基準にて記録画像の画像境界の鮮鋭性を目視で観察した。この結果を表4に示す。
[Evaluation Method 3]
<Image quality>
The sharpness of the image boundary of the recorded image was visually observed according to the same evaluation criteria as in the evaluation method 1 <image quality>. The results are shown in Table 4.
 <耐刷性>
 上記評価方法1<耐刷性>と同様にして印刷を開始し、印刷物の画像に欠落を生じ印刷できなくなった枚数を上記評価方法1<耐刷性>と同様の評価基準で評価した。この結果を表4に示す。
<Print durability>
Printing was started in the same manner as in the above evaluation method 1 <print durability>, and the number of prints that could not be printed due to missing images was evaluated according to the same evaluation criteria as in evaluation method 1 <print durability>. The results are shown in Table 4.
 <耐汚れ性>
 上記評価方法1<耐汚れ性>と同様にして印刷を開始し、印刷物の非画像部に汚れ(地汚れ)が発生した枚数を上記評価方法1<耐汚れ性>と同様の評価基準で評価した。この結果を表4に示す。
<Stain resistance>
Printing is started in the same manner as in the evaluation method 1 <stain resistance>, and the number of stains (background stains) generated on the non-image portion of the printed material is evaluated based on the same evaluation criteria as in the evaluation method 1 <stain resistance>. did. The results are shown in Table 4.
 <インキ着肉性>
 上記のようにして画像を記録した平版印刷版を用いて、印刷機はハイデルベルグTOK(Heidelberg社製オフセット印刷機の商標)を使用し、インキはBEST ONE墨H(T&KTOKA(株)製)、湿し水はアストロマーク3(株式会社日研化学研究所製湿し水)の1質量%水溶液を使用し評価した。印刷物の画像の平網部にインキが完全に着肉するまでの印刷枚数を数えた。枚数が少ないほどインキ着肉性が優れていることを示している。この結果を表4に示す。
<Ink fillability>
Using the planographic printing plate on which the image was recorded as described above, the printing machine was Heidelberg TOK (trademark of Heidelberg's offset printing machine), the ink was BEST ONE Ink H (T & KTOKA Co., Ltd.), wet The shimizu was evaluated using a 1% by mass aqueous solution of Astro Mark 3 (dampening water manufactured by Nikken Chemical Research Co., Ltd.). The number of printed sheets until the ink was completely deposited on the flat mesh portion of the printed image was counted. The smaller the number of sheets, the better the ink deposition property. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000025
 表1、表2および表4の結果から、本発明によりインクジェット方式によるダイレクト製版が可能であり、優れた画像品質を有し、良好な耐刷性と耐汚れ性を両立させることが可能な平版印刷版原版が得られることが判る。 From the results of Tables 1, 2 and 4, a lithographic plate capable of direct plate making by an ink jet method according to the present invention, having excellent image quality and having both good printing durability and stain resistance. It can be seen that a printing plate precursor can be obtained.
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. It is to be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are within the scope of the present invention.

Claims (11)

  1.  耐水性支持体上に無機微粒子を主体に含有する画像受理層Aと、当該画像受理層Aよりも当該耐水性支持体から離れた側に、カチオン性コロイダルシリカを主体に含有するか、あるいはコロイダルシリカを主体に含有しかつカチオン性化合物を含有する画像受理層Bを有することを特徴とする平版印刷版原版。 An image-receiving layer A mainly containing inorganic fine particles on a water-resistant support, and containing cationic colloidal silica mainly on the side farther from the water-resistant support than the image-receiving layer A or colloidal A lithographic printing plate precursor comprising an image receiving layer B mainly containing silica and containing a cationic compound.
  2.  前記画像受理層Bが、平均一次粒子径が30nm以上のカチオン性コロイダルシリカを主体に含有するか、あるいは非球状のカチオン性コロイダルシリカを主体に含有する層である、請求項1に記載の平版印刷版原版。 2. The planographic plate according to claim 1, wherein the image receiving layer B is a layer mainly containing cationic colloidal silica having an average primary particle diameter of 30 nm or more or mainly containing non-spherical cationic colloidal silica. A printing plate master.
  3.  前記非球状のカチオン性コロイダルシリカが、平均一次粒子径が25~60nmであり、かつ平均一次粒子径に対する平均二次粒子径の比が1.4~3.1である、請求項2に記載の平版印刷版原版。 The non-spherical cationic colloidal silica has an average primary particle diameter of 25 to 60 nm and a ratio of an average secondary particle diameter to an average primary particle diameter of 1.4 to 3.1. Lithographic printing plate precursor.
  4.  前記画像受理層Bが、平均一次粒子径が30nm以上のカチオン性コロイダルシリカを主体に含有する層である、請求項2に記載の平版印刷版原版。 The lithographic printing plate precursor according to claim 2, wherein the image receiving layer B is a layer mainly containing cationic colloidal silica having an average primary particle diameter of 30 nm or more.
  5.  前記画像受理層Bが、平均一次粒子径が50nm以上のカチオン性コロイダルシリカを主体に含有する層である、請求項4に記載の平版印刷版原版。 The lithographic printing plate precursor according to claim 4, wherein the image receiving layer B is a layer mainly containing cationic colloidal silica having an average primary particle diameter of 50 nm or more.
  6.  前記画像受理層Bが、ポリビニルアルコールおよびセルロース誘導体を含有する、請求項1に記載の平版印刷版原版。 The lithographic printing plate precursor according to claim 1, wherein the image receiving layer B contains polyvinyl alcohol and a cellulose derivative.
  7.  前記画像受理層Aが含有する無機微粒子が、BET法による比表面積が150m/gを超える無機微粒子である、請求項1~6の何れかに記載の平版印刷版原版。 The lithographic printing plate precursor as claimed in any one of Claims 1 to 6, wherein the inorganic fine particles contained in the image receiving layer A are inorganic fine particles having a specific surface area of more than 150 m 2 / g as measured by a BET method.
  8.  前記画像受理層Aが含有する無機微粒子が、BET法による比表面積が300m/gを超える気相法シリカである、請求項7に記載の平版印刷版原版。 The lithographic printing plate precursor according to claim 7, wherein the inorganic fine particles contained in the image receiving layer A are vapor phase method silica having a specific surface area by BET method of more than 300 m 2 / g.
  9.  請求項1~8記載の何れかに記載の平版印刷版原版に、インクジェット方式により水性顔料インクを印字することを特徴とする平版印刷版の製版方法。 A method for making a lithographic printing plate, comprising printing an aqueous pigment ink on the lithographic printing plate precursor according to any one of claims 1 to 8 by an inkjet method.
  10.  前記水性顔料インクが、顔料とスチレン-アクリル共重合体樹脂またはスチレン-メタアクリル共重合体樹脂とを含有する水性顔料インクである、請求項9記載の平版印刷版の製版方法。 The lithographic printing plate making method according to claim 9, wherein the aqueous pigment ink is an aqueous pigment ink containing a pigment and a styrene-acrylic copolymer resin or a styrene-methacrylic copolymer resin.
  11.  前記平版印刷版原版に前記水性顔料インクを印字後、印刷開始前に、不感脂化処理をすることを含む、請求項9または請求項10記載の平版印刷版の製版方法。
     
    The method for making a lithographic printing plate according to claim 9 or 10, comprising a desensitizing treatment after printing the aqueous pigment ink on the lithographic printing plate precursor and before starting printing.
PCT/JP2010/073018 2009-12-25 2010-12-21 Planographic printing original plate, and method for producing planographic printing plate WO2011078175A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-294277 2009-12-25
JP2009294277 2009-12-25
JP2010037319 2010-02-23
JP2010-037319 2010-02-23
JP2010-221452 2010-09-30
JP2010221452A JP2011194876A (en) 2009-12-25 2010-09-30 Lithographic printing original plate, and method for making lithographic printing plate
JP2010230157A JP2012081664A (en) 2010-10-13 2010-10-13 Method for producing planographic printing original plate
JP2010-230157 2010-10-13

Publications (1)

Publication Number Publication Date
WO2011078175A1 true WO2011078175A1 (en) 2011-06-30

Family

ID=44195702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073018 WO2011078175A1 (en) 2009-12-25 2010-12-21 Planographic printing original plate, and method for producing planographic printing plate

Country Status (1)

Country Link
WO (1) WO2011078175A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066816A (en) * 2002-08-02 2004-03-04 Eastman Kodak Co Manufacturing method for printing plate
JP2004090512A (en) * 2002-09-02 2004-03-25 Konica Minolta Holdings Inc Printing method, lithographic plate making method, printing equipment and controlling method therefor
JP2007190804A (en) * 2006-01-19 2007-08-02 Mitsubishi Paper Mills Ltd Original lithographic printing plate and platemaking method for lithographic printing plate
JP2008183846A (en) * 2007-01-31 2008-08-14 Iwatsu Electric Co Ltd Coating composition and offset printing master plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066816A (en) * 2002-08-02 2004-03-04 Eastman Kodak Co Manufacturing method for printing plate
JP2004090512A (en) * 2002-09-02 2004-03-25 Konica Minolta Holdings Inc Printing method, lithographic plate making method, printing equipment and controlling method therefor
JP2007190804A (en) * 2006-01-19 2007-08-02 Mitsubishi Paper Mills Ltd Original lithographic printing plate and platemaking method for lithographic printing plate
JP2008183846A (en) * 2007-01-31 2008-08-14 Iwatsu Electric Co Ltd Coating composition and offset printing master plate

Similar Documents

Publication Publication Date Title
JP4616816B2 (en) Inkjet recording method
JP4504316B2 (en) Inkjet recording material
JP2006205422A (en) Inkjet recording material and its manufacturing method
JP2010194788A (en) Inkjet recording material
JP2009234121A (en) Inkjet recording material for glycol based ink
JP2005335120A (en) Inkjet recording material and its manufacturing method
JP2013205611A (en) Electrophotographic recording sheet
JP2007237549A (en) Manufacturing method of inkjet recording material
JP2008230206A (en) Inkjet recording material
WO2011078175A1 (en) Planographic printing original plate, and method for producing planographic printing plate
JP2018149762A (en) Method for producing inkjet recording material
JP2012201089A (en) Lithographic printing plate precursor and method of making lithographic printing plate
JP2006227473A (en) Color electrophotographic image receiving material
JP2012081664A (en) Method for producing planographic printing original plate
JP5552076B2 (en) Electrophotographic recording method
JP2013176856A (en) Lithographic printing plate
JP2011194876A (en) Lithographic printing original plate, and method for making lithographic printing plate
JP2013202819A (en) Planographic printing plate
JP2012196788A (en) Manufacturing method of original planographic printing plate
JP3895625B2 (en) Inkjet recording material
JP2012152942A (en) Plate making method for lithographic printing plate original plate
JP5600287B2 (en) Wet electrophotographic recording method
JP2006256183A (en) Ink jet recording material and its manufacturing method
JP6612582B2 (en) Method for producing ink jet recording material
JP2018134831A (en) Method for producing inkjet recording material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839405

Country of ref document: EP

Kind code of ref document: A1