WO2011078049A1 - Construction data management method, construction data management device, and construction data management system for structural object - Google Patents

Construction data management method, construction data management device, and construction data management system for structural object Download PDF

Info

Publication number
WO2011078049A1
WO2011078049A1 PCT/JP2010/072633 JP2010072633W WO2011078049A1 WO 2011078049 A1 WO2011078049 A1 WO 2011078049A1 JP 2010072633 W JP2010072633 W JP 2010072633W WO 2011078049 A1 WO2011078049 A1 WO 2011078049A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
influence
change
construction
management
Prior art date
Application number
PCT/JP2010/072633
Other languages
French (fr)
Japanese (ja)
Inventor
憲一郎 山根
将年 高田
和明 山形
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2011078049A1 publication Critical patent/WO2011078049A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Definitions

  • the present invention relates to the management of various data related to the construction of structures, and more particularly to a technique for improving the efficiency and quality of data management by automatically constructing associations between data in accordance with actual conditions.
  • the influence range (parts affected by the change) is searched based on the management information, and the exact impact of each influence range (increase or decrease in man-hours) It is important in managing the construction to promptly present it to the project manager along with the cost increase / decrease. This is because there is a possibility that the decision on whether or not to carry out the design change is seriously affected depending on the impact.
  • Patent Documents 1 and 2 As a conventional technology related to project management of structures, as shown in Patent Documents 1 and 2, when design change elements are specified, the elements acquired by tracing the links given between the elements of the design data and their impact are displayed. To do. In addition, as in Patent Document 3, an effect on design change is evaluated, and cost calculation is performed as one of the indexes of the effect.
  • Patent Documents 1, 2, and 3 have the following problems.
  • the first issue is that the designer must examine the scope of impact and impact within a limited period of time. In other words, it is necessary for the designer to examine the relationship between each data and function such as parts, processes, books, etc. in light of their own knowledge and experience, and to input the examined content into a management device composed of computers.
  • This is because, at the initial design stage of construction, even if the designer uses all the effort to define the relationship of all elements, the definition information on many that are not affected by the design change is not utilized. Part of the reason is that we cannot always find a positive need for definitions. Therefore, it can be said that it is practically impossible to construct a complete data regarding the relationship between the elements regarding the structure.
  • Patent Document 1 defines a method based on the subjectivity of a designer while taking importance into consideration.
  • Patent Document 2 defines a predetermined rule such as determining connection strengths between homogeneous elements and heterogeneous elements.
  • Patent Document 3 proposes a method of estimating the impact from the design change amount by expressing the relationship between the change amount and the impact by a regression equation based on past performance data.
  • this method may be effective when there is a large amount of data such as mass-produced products, but it is intended for products that are not mass-produced such as large buildings, bridges, or plants.
  • a regression equation that secures sufficient accuracy cannot be derived, which is unsuitable.
  • the amount of change in the structure design and the actual impact are not necessarily in a linear relationship, there is also a problem in accuracy.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is to manage design data and the like without burdening the designer more than necessary in managing various data related to construction such as plant construction.
  • the purpose is to automatically establish associations between various data using existing data and change record data.
  • Another object is to calculate the impact when a change is made based on the related information between the various data with high accuracy and present the result to the person in charge of the change.
  • the construction data management method of the structure of the present invention includes: An element division step for dividing the part into elements that do not affect elements that affect other parts that are connected to the part, and elements that do not have an influence on each of the parts that make up the structure. And a virtual element network generation step for generating virtual element network data that defines an influencing cause element, an influencing element on the affected side, and a past structure Based on the change management data generation step that generates data including the cause, the influence, and the degree of influence as change management data that is a set of change history data, and the virtual element network data based on past cases included in the change management data An element network generation step of generating element network data by giving an influence degree is provided.
  • the element network generation step when searching for virtual element network data corresponding to the change management data, the cause and effect IDs included in the change management data, the cause element and the influence element of the virtual element network
  • the first method for checking the match of the component IDs assigned to the component, the component type ID related to the cause and the influence included in the change management data, the cause side element of the virtual element network, and the component type ID related to the influence side element It is better to specify by the second method of seeing a match.
  • the part type ID in the second method is preferably divided into installation units at a predetermined construction site for each part.
  • An element division step for dividing the part into elements that do not affect elements that affect other parts that are connected to the part, and elements that do not have an influence on each of the parts that make up the structure.
  • a virtual element network generation step for generating virtual element network data that defines an influencing cause element, an influencing element on the affected side, and a past structure Based on the change management data generation step that generates data including the cause, the influence, and the degree of influence as change management data that is a set of change history data, and the virtual element network data based on past cases included in the change management data
  • An element network generation step for generating an element network data by giving an influence degree, and for evaluation Based on the change plan input step to create and input the data of the change plan in a predetermined format, and the change plan data, the object to be changed, the object that is directly affected by it, and the influence amount on the change target side are extracted, and the elements Impact assessment step of searching the network data until it can no longer find what is affected multiple times, extracting
  • the construction data management device of the structure of the present invention is An element dividing means for dividing a part into a plurality of parts constituting a structure and an element that has an influence on other parts that are connected to the part and an element that has no influence when the part is changed
  • a virtual element network generating means for generating virtual element network data that defines the influencing cause element, the influencing element on the affected side, and the past of the structure
  • change management data generation means for generating data including cause, influence, and degree of influence as change management data that is a set of change history data
  • a display control means display device and for controlling the content a plurality of components on the display device is divided into elements is, the connections between the elements are displayed with an arrow from causes side element to the affected side element.
  • the display on the display device uses the divided elements as nodes, links between the divided elements as links, and the arrows from the cause side elements to the influence side elements are displayed along the links. Is good.
  • the arrow from the cause side element to the influence side element is changed in display according to the magnitude of the degree of influence.
  • the display on the display device should have the degree of influence expressed numerically for each of the cause side and the influence side.
  • the structure construction data management system of the present invention is Engineering database group that stores data related to construction of structures such as design data, parts data, process data, book data, and past change history data of the structure, Change management data generation means for managing data in the engineering database group and generating data including cause, influence, and degree of influence as change management data that is a set of past change history data of structures Database management system, Elements that affect the other parts that are connected to the parts when the data of the parts that make up the structure stored in the engineering database group is captured and the parts are changed.
  • An element dividing unit that divides the part into elements that do not influence, a virtual element network that defines an influencing cause element and an affected influencing element for each connection of the divided elements
  • Virtual element network generation means for generating data, and element network data is generated by giving the virtual element network data an influence degree based on past cases included in the data generated by the change management data generation means in the database management system
  • a construction data management device comprising element network generation means It is comprised from the display apparatus which displays a display content based on said various data.
  • the construction data management device is directly affected by the change plan input means for creating and inputting the change plan data for evaluation in a predetermined format, and the object to be changed based on the change plan data.
  • the influence range of the object and the change target is extracted, and the element network data is searched until it can no longer find the multiple influences, so that the entire influence range is extracted and the overall influence amount is calculated.
  • the construction data management method, the construction data management device, and the construction data management system of the present invention provide the design data, the process, and the like in the management of various data related to the construction without imposing an unnecessary burden on the person in charge.
  • the relationship between various data is automatically and accurately built using existing data such as data and book data and the actual change data, and the impact when changes are made based on the relevant information between the various data Can be calculated with high accuracy based on past results and presented to the proposer of the change plan.
  • FIG. 3 is a diagram in which an arrangement position is expressed by XYZ three-dimensional coordinates and a rotation angle with respect to an apparatus whose component type is FIG. 2.
  • FIG. 3 is a diagram representing the pipe type of the part in FIG. 2 expressed by its diameter, length, angle of a bent portion, and the like.
  • connection information which shows the connection relation of components.
  • apparatus structure embodied by the memory content.
  • element structure of the plant after element division it is a schematic block diagram of the construction data management apparatus of this invention and the construction data management system comprised from them. It is the figure which defined components by component ID, component classification, and component number.
  • FIG. 6 is a flowchart for explaining processing contents of an element network generation unit 102.
  • FIG. 10 is a flowchart illustrating the processing content of an impact evaluation unit 121. It is a figure which shows an example of the data of an influence link list. It is a figure which shows an example of the display of the element network data per element based on a design drawing. It is a figure which shows an example of a display of typical element network data.
  • FIG. 1 is a schematic configuration diagram of a construction data management system including a construction data management device 1, a database management system 2, an engineering database group 3, a display device 4 and the like according to an embodiment of the present invention.
  • This construction data management system uses the data generated and edited by the database management system 2 and stored in various engineering database groups 3, and the construction data management device 1 manages and changes various data related to the construction of plants and the like. By evaluating the impact on the project and displaying the evaluation result on the display device 4, efficient project management such as re-planning is supported.
  • database is “DB” for convenience of description.
  • the construction data management apparatus 1 includes an element network generation unit 10, an element network database 11, a change impact evaluation unit 12, and a display control unit 13, manages various data related to construction, and evaluates the impact of change. By displaying various data and evaluation results, it supports efficient project management such as re-planning.
  • the database management system 2 is a system that generates and edits various database groups 3 and element network databases 11 related to construction, and there is a management system corresponding to each database in the engineering database group 3.
  • the database is the design database 3a
  • the product is based on a 3D CAD (Computer Aided Design) system that is a building design system, and if it is a parts database 3b, it is a BOM (Bill of Material) that is a parts table.
  • CAD Computer Aided Design
  • BOM Bill of Material
  • PDM Process Data Management
  • a dedicated management system for example, a PC incorporating software that supports data editing and storage, and a display for displaying data
  • a dedicated management system for example, a PC incorporating software that supports data editing and storage, and a display for displaying data
  • the element network generation unit 10 has a function of generating an element network by using the engineering database group 3 to link data related to construction of a plant or the like.
  • the configuration includes an element division unit 100, a virtual element network generation unit 101, and an element network generation unit 102.
  • Each processing unit of the element network generation unit 10 is virtually configured on the information processing apparatus when the CPU executes various programs loaded in a main storage device such as a memory. Further, the program can be easily loaded into the main storage device by recording it in a storage medium such as an HDD, SSD, DVD-ROM, BD-R or the like.
  • a plant will be described as an example of a structure.
  • the structure is not necessarily limited to a plant, and may be applied to general construction structures such as buildings and bridges.
  • a mechanical structure or an electrical structure may be used.
  • These structures are configured as a combination of a plurality of element structures suitable for those fields.
  • the element structures are expressed as parts.
  • the design database 3a of the engineering database group 3 stores the data of FIGS. 2 to 5, and the plant as a structure embodied by the stored contents is configured as shown in FIG. Shall be provided.
  • FIG. Shall be provided.
  • FIG. 2 defines parts used in the plant of FIG. 6 by part identification information (part ID), part type, and part number.
  • identification information is represented as “ID” for convenience of description.
  • the component ID is 1, the component type is a device and the component number is 5001.
  • the component ID 2 is piping and the component number is 7001.
  • the component ID 3 is a device, and the component number is 5002.
  • the part ID 4 is piping and the part number is 7002.
  • the component ID 7 is also present in the same manner below, but the description is omitted since it is the same as the above example.
  • FIG. 3 relates to device information in which the component type of FIG. 2 is a device, and the arrangement position is expressed by three-dimensional coordinates of XYZ and a rotation angle.
  • FIG. 4 relates to piping information expressed by the diameter, length, angle of the bent portion, etc. of the component type of FIG. 2 that is piping.
  • FIG. 5 is a diagram of connection information showing the connection relationship of the above components.
  • each component ID is described on the vertical axis, and the number of connected components, the connected component ID, and the connection position are stored on the horizontal axis. This will be described with the component ID1. Since the number of connected components on the horizontal axis of the component ID1 is “1”, it is connected to one component, and the connected component ID1 column is “2”. The component ID to be connected is component ID2. Furthermore, referring to the column of the connection position 1, it can be understood that the connection position with the component ID 2 is expressed in three dimensions of XYZ. 2 to 5, the part ID2 pipe in FIG.
  • the part ID3 equipment is the part ID2 pipe and the part ID4 pipe. It can be understood that the part ID4 is connected to the part ID3 device and the part ID5 pipe. Since the subsequent component IDs 5, 6, and 7 can be understood in the same manner, description thereof is omitted here.
  • FIG. 6 shows a plant embodied in the storage contents of the design database 3a described in FIGS.
  • the plant shown in the drawing is derived from the connection relationship of the parts constituting the plant. It is omitted that the plant is of such a configuration because no special explanation is required.
  • the element dividing unit 100 in the element network generating unit 10 uses each component (component ID1 to component ID7) constituting the plant. )), It is divided into elements that directly affect other parts and elements that do not affect. That is, one part is divided into an element that directly affects other parts and an element that does not affect the other parts.
  • the elements to be divided are not divided into actual physical units such as sub-parts constituting the part, but are logical parts that directly affect other parts and parts that do not. Therefore, the database used when dividing the elements is not the parts database 3b of the engineering database group 3, but the design database 3a in which the shape information, coordinate information, connection information, and other attribute information of the parts are defined.
  • FIG. 7 shows the element configuration of the plant after the element division.
  • component ID1, component ID5, and component ID7 in FIG.
  • the former may be divided as 1b, 5a, 7a, and the latter may be divided as 1a, 5b, 7b.
  • the component is divided into two parts, one of which is an element that directly affects the other and the other is an element that is not.
  • the parts when there are two counterpart parts to be connected as in the parts IDs 2, 4, and 6, the parts are divided into three parts, and the two parts on the side facing the connection counterpart are directly influenced elements. What is necessary is just to let the intermediate part sandwiched between the parts be elements that are not.
  • the former is divided into 2a, 2c, 4a, 4c, 6a, 6c, and the latter is divided into 2b, 4b, 6b. Good.
  • the part is divided into four parts, and the three parts 3a, 3c, and 3d on the side facing the mating part are directly influenced elements.
  • the intermediate portion 3b sandwiched between the two elements may be the other element.
  • part A and part C where a part A affects another part B and the affected part B affects another part C, is here. Then it is excluded. Therefore, it is only necessary to consider the physical connection relationship of each component, and using the information in the design database 3a in which the shape information, coordinate information, connection information, and other attribute information of the component are defined, as shown in FIG.
  • the element can be mechanically divided according to the number of connections.
  • elements with the same type of hatch represent parts that affect each other, and elements that are not hatched represent parts that do not affect any element. That is, the element dividing unit 100 has a function of dividing each part into a part that affects other parts and a part that does not affect other parts, and a part that affects other parts.
  • the virtual element network generation unit 101 in the element network generation unit 10 generates each element divided by the element division unit 100 as a node and a connection between the nodes as a link as a virtual element network.
  • a virtual element network can be mechanically generated by using the output information of the element dividing unit 100 (dividing elements and affecting elements).
  • FIG. 8 is a virtual element network based on a design drawing.
  • FIG. 8 is different from FIG. 7 in which parts are divided into elements in that an arrow is added to the top of FIG.
  • the arrows in FIG. 8 define the relationship of influences that can be exerted between the divided elements together with their directions. That is, in FIG. 7, the element is divided into elements that directly influence and elements that do not, but in the first rule, an arrow is set in the direction from the element that affects to the element that does not. That is, the arrow is given from the hatched element in FIG. 7 to the direction of the element not hatched. In the second rule, arrows are set in both directions between the affected elements. That is, an arrow is provided in both directions between the hatched elements in FIG. Further, according to the third rule, when the connection partner divides two or more parts into three or more elements, the change of the element at one end affects the element at the other end. An arrow is set in the direction. For example, in the case of the component 2, this is the case where the arrows are given in both directions directly from the element 2a to the element 2c and from the element 2c to the element 2a without going through the element 2b.
  • FIG. 9 shows a deformed schematic virtual element network.
  • FIG. 9 is different from FIG. 8 in that each element is represented by a square notation. is there.
  • FIG. 8 and FIG. 9 express the same thing only with different notations, but by expressing as in FIG. 9, each round element in FIG. 9 is a node, and an arrow as a connection between nodes Can be well understood as a virtual element network formed as a link.
  • FIG. 9 The meaning of FIG. 9 is that if a change such as a design change occurs in a certain node (divided element), the node at the tip of the arrow (divided element) is caused by that node. Indicates that the relationship is affected.
  • the virtual element network generation unit 101 in the element network generation unit 10 generates virtual element network data shown in FIG. 10 according to the above rules.
  • FIG. 10 pays attention to a link expressed by an arrow as a connection between nodes, and provides link identification information (link ID) for each link.
  • link ID link identification information
  • all the link IDs are described on the vertical axis, and the link type and nodes at both ends of the link ID are described on the horizontal axis. Nodes at both ends of the link ID are classified into a cause side node and an influence side node, and are described as node identification information (node ID).
  • the cause side means a side that affects other parts due to a design change or the like, and the affected side means an affected side.
  • 1001, 1002, 1003, and 1004 are shown in FIG. 9 as representative ones. As can be understood from FIG. 10, it can be understood that the link ID 1001 is the cause node ID 1b and the affected node ID 1a.
  • the component ID for identifying the component is used as key information when data is stored in the design database 3a, this component ID is also used in the component database 3b.
  • Related work processes and books are defined as a process ID and a book ID, respectively. Therefore, by using this information, the virtual element network generated by the virtual element network generation unit 101 is not limited to the relationship between the component elements (link IDs 1001 to 1004) as in the example shown in FIG. You may make it also include the elements contained in other databases, such as process ID and book ID. These examples are shown in the columns of link IDs 2001 and 3001.
  • the element network generation unit 102 in the element network generation unit 10 information of the change management database 3e, which is a set of past change history data, is added to the virtual element network data generated by the virtual element network generation unit 101.
  • element network data based on past cases is generated.
  • the change management database 3e in FIG. 12 stores past change cases 101, 102, and 103 as management identification information (management ID) on the vertical axis.
  • management ID management identification information
  • the cause ID is a part with a part ID1
  • the influence object ID is a part with a part ID2.
  • the horizontal axis includes columns of additional cause-side man-hours, cause-side additional costs, influence-side additional man-hours, influence-side additional costs, and downstream management ID.
  • the past work is not limited to the work related to the target plant, and it is better to include the work related to the plant performed in the past. By doing so, more past performance examples can be collected, and the accuracy in element network generation described later is improved.
  • the element network generator 102 generates the element network database of FIG. 11 by reflecting and modifying the information of the change management database 3e of FIG. 12 on the virtual element network data of FIG.
  • step S60 all records of virtual element network data are fetched from the virtual element network database of FIG.
  • step S61 one record of change management data is read from the change management database of FIG.
  • the change management data that is read first from the record of FIG. 12 is the change example 101
  • the management name is “collection tank nozzle position change”
  • the cause ID is part ID1
  • the influence object ID is part ID2, and the cause ID1.
  • the additional man-hours for the parts and the additional man-hours for the affected object ID 2 are 0.4 and 0.75, respectively.
  • step S62 it is determined whether the influence path (link) of the read change management data exists in the virtual element network of FIG.
  • the determination method is to check whether there is virtual element network data in which the combination of the cause ID and the influence ID in the change management data in FIG. 12 matches the combination of the cause node ID and the influence node ID in FIG. is there. In this way, if it exists (Yes), the process proceeds to step S63, and if it does not exist (No), the process proceeds to step S64 to proceed to the next change management record process.
  • the first method is whether the combination of the cause node ID and the influence node ID in the virtual element network data (FIG. 10) and the combination of the cause ID and the influence object ID in the change management data (FIG. 12) completely match. Judgment. In this method, since the part IDs are completely matched, the combination of parts is completely the same, so the accuracy is extremely high, but the number of achievements is extremely small, and additional man-hours and costs are reduced as described above. It is considered that it is difficult to obtain a value when calculating statistically.
  • the second method is a combination of the cause node component type and the influence node component type in the virtual element network data (FIG. 10), and the cause component type and the influence object component type in the change management data (FIG. 12). Judgment is made based on whether or not the combination completely matches.
  • each part is divided into predetermined installation units at the construction site (eg, large diameter pipe, small diameter pipe, large diameter support, small diameter support, pump, valve, turbine) , Pressure container, housing, control device, module, etc.), the part type ID matches.
  • the accuracy is inferior to that of the first method, it is possible to secure a considerable number of achievements by including past achievements such as design in the past plant, and when calculating additional man-hours and additional costs statistically as described above. Since an effective value is easily obtained, the second method is considered more suitable in the present invention.
  • the component type information is not directly described in FIGS. 10 and 12, it can be obtained by checking the component type column by referring to the design DB of FIG. 2 by tracing the component ID.
  • the cause ID in the change management data in FIG. 12 is “1”, and the influence ID is “2”.
  • the link ID 1002 in FIG. 10 describes a combination of the cause node ID “1” and the affected node ID “2”.
  • step S63 executed when it is determined Yes in step S62 and there is a virtual network link for change management data (FIG. 12) will be described.
  • cause side additional man-hours, cause-side additional costs, influence-side additional man-hours, and influence-side additional costs in the change management data (FIG. 12) are acquired, and cause-side addition in the virtual element network data (FIG. 10).
  • Data is set for each of the man-hour, cause-side additional cost, influence-side additional man-hour, and influence-side additional cost, and the number of changes is incremented by one.
  • 0.4 and 0.75 are additionally recorded in the columns of the additional man-hour of the cause ID 1 and the additional man-hour of the affected object ID 2 for the link ID 1002, respectively.
  • the number of changes indicates 0 when there is no change record in the past, and indicates the number when there is a change record.
  • step S65 it is determined whether all the records in the change management database in FIG. 12 have been processed. If the process has been completed (Yes), the process proceeds to step S65. If the process has not been completed (No), the process returns to step S61 to continue the process.
  • step S65 when the processing of all the records in the change management database (FIG. 12) is completed in step S65, the virtual element network database modified as described above is generated (duplicated) as the element network database 11.
  • the element network generation unit 102 corrects the virtual element network data using the change management database 3e, and outputs it as the element network database 11.
  • the element network generation unit 10 generates an element network by associating various data related to plant construction using the engineering database 3 such as the design database 3a and the change management database 3e.
  • the timing of executing the process of the element network generation unit 10 may be executed at any time based on the judgment of the person in charge of the element network database 11, or each database such as the design database 3a and the change management database 3e It may be executed automatically every time it is updated, or it may be executed automatically at a scheduled date and time, such as once a day or once a week.
  • the element network database 11 is generated by the element network generation unit 102, and an example of the data format is as shown in FIG.
  • the change impact evaluation unit 12 has a function of extracting an impact range and an impact amount in advance by searching the element network database 11 based on the proposed change and outputting the result as an impact link list when the change occurs.
  • the configuration includes a change plan input unit 120 and an impact evaluation unit 121.
  • the change plan input unit 120 examines a change plan of a part in charge of a person in charge such as a designer, a procurement manager, or a construction manager, and then creates data of the change plan in a predetermined format to generate an impact evaluation unit. It is about to transmit to 121.
  • the change plan data is created as one record data per change plan by the person in charge according to the data format (FIG. 12) defined in the change management database 3e using a data editing tool such as the database management system 2. .
  • the proposed change is unconfirmed information at this stage, it is not necessary to input all the items in the data format of FIG.
  • the person in charge is a design person and the change plan is a design change plan.
  • the impact evaluation unit 121 based on the design change plan data transmitted from the change plan input unit 120, the design change target part, the part that is directly affected, the process, the book, etc., the change target side impact amount, etc.
  • the influence range is extracted and the amount of influence is calculated by searching the data in the element network database 11 until no influence is found on the element network database 11.
  • step S70 all records of the element network data are read from the element network data (FIG. 11).
  • step S71 the change plan data related to the design transmitted from the change plan input unit 120 is read.
  • the change plan data will be described using the example of the management ID 101 in FIG. That is, in this example, the management name is the collection tank nozzle position change, and cases where the cause ID and the influence object ID are 1 and 2, respectively, are extracted as the design change proposal.
  • step S72 it is determined in step S72 whether or not the influence route (link) of the read change plan data exists in the element network data of FIG.
  • the determination method is to check whether there is element network data in which the combination of the cause and the influence in the change plan data matches the combination of the cause and the influence nodes. If it exists (Yes), the process proceeds to step S73. If it does not exist (No), the process proceeds to step S77.
  • a method of determining whether or not the combination of the cause node and the influence node in the element network data matches the combination of the cause and the influence object in the change plan data is the same as that of the element network generation unit 102 described in FIG. Similar to step S62 in the processing flow, there are two methods: a method of checking the match of component IDs and a method of checking the match of component type IDs. Hereinafter, for the sake of simplicity, the former determination method will be described as an example.
  • the cause ID and the influence ID in the former management ID 101 are 1 and 2, respectively.
  • the cause node ID and the influence node ID in the latter element network data of FIG. 11 are searched, it can be extracted that the link IDs 1002 corresponding to the respective data 1b and 2a are applicable.
  • the alphabet of node ID is a suffix indicating the component element, it can be ignored here. Therefore, in this example, the condition determination in step S72 is Yes.
  • step S73 that is executed when the influence route (link) of the change plan data exists in the element network (when it is determined Yes in step S72).
  • the link ID (1002) extracted in step S72 is registered in the influence link list.
  • the influence link list is created for each input change plan data, and its configuration is composed of a link ID data string indicating the range of influence covered by the change plan as illustrated in FIG.
  • the proposed change name is the collection tank nozzle position change, and the cause ID and the influence object ID are 1 and 2, respectively. Furthermore, 0.25 person is registered as the cause side additional man-hour and 0 is registered as the cause side additional cost in this influence link list.
  • step S74 it is determined whether or not there is an influence path (link) of the element network in which the affected node further affects other elements. Specifically, in this case, it is determined whether or not an influence path (link) whose cause node is an influence node ID affected by the change (influence node 2a in the column of link ID 1002 in FIG. 11) exists in the element network. To do. In the example of FIG. 11, there are two examples in which 2a is described in the cause node column of IDs 1003 and 1004. In the IDs 1003 and 1004, the influence nodes when 2a is the cause node are 2b and 1b.
  • step S74 when there is an influence path (link) of the element network in which the affected node ID affected further affects other elements (when determined Yes in step S74), the process proceeds to step S75. If not, the process proceeds to step S77.
  • Step S75 Process step executed when the affected node (2a in this example) that is affected has an influence route (link) of an element network that further affects other elements (when determined Yes in step S74) S75 will be described.
  • the link extracted in step S74 is a link opposite to the already extracted link.
  • the link 1002 and 1004 corresponds to this.
  • the latter link 1004 is opposite to the already extracted ID1002 link, so it is determined Yes, and the former does not have a reverse extracted link. No is determined.
  • step S75 If it is determined that the link is not in the opposite direction to the already extracted link (if it is determined No in step S75), the process returns to step S73 to continue the process. Otherwise, the corresponding link ID is set in the influence link list. The process proceeds to step S76 without registration.
  • the reason for not registering the reverse link has already incorporated the reverse effect in the influence amount (cause side additional man-hour, cause-side additional cost, influence side additional man-hour, influence side additional cost) in the already extracted link This is to avoid the double influence amount consideration.
  • step S76 that is executed when it is determined that the direction is opposite to the already extracted link (when determined Yes in step S75) will be described. In this step, it is determined whether or not the processing of all the influence links extracted in step S74 has been completed. If all have not been completed (if determined No in step S76), the process returns to step S75 to continue the process, otherwise the process proceeds to step S77.
  • step S77 referring to the causal side additional man-hour, the causal side additional cost, and each affected link ID in the data of the influence link list, the total additional man-hour and the total of the influence amount due to the proposed change are calculated.
  • the additional cost is calculated and registered in the influence link list data.
  • the element network database 11 is searched using the influence link ID as a key, and the cause side additional manpower, the cause side additional cost, the influence side additional manpower, and the influence side additional cost are calculated from the corresponding record.
  • Each influence amount may be extracted. When there are a plurality of corresponding records, the average value of each influence amount may be calculated.
  • the impact evaluation unit 121 based on the design change plan data transmitted from the change plan input unit 120, the part to be changed, the part that is directly affected, the process, the book, and the like, the change target The influence range is extracted and the influence amount is calculated by searching the data in the element network database 11 until no influence is found in the element network database 11.
  • the change impact evaluation unit 12 searches the element network database based on the proposed change, extracts the impact range and the impact amount in advance, and affects the result. Output as a linked list.
  • the display control unit 13 reads each database of the element network database 11 generated by the element network generation unit 10, the influence link list data generated by the change impact evaluation unit 12, or the engineering database group 3, and is in a format such as text or graphics Then, a display signal is transmitted to the display device 4. Thereby, for example, the following can be displayed on the display device 4.
  • FIG. 16 is a diagram showing an example of display of element network data in element units based on the design drawing
  • FIG. 17 is a diagram showing an example of display of schematic element network data
  • FIG. It is a figure which shows an example of the display of the element network data per component based on a figure.
  • FIGS. 16, 17, and 18 the influence relationship of each part is superimposed and displayed on the graphic showing the connection relationship of each element with an arrow 90. Clarify and visualize each other's connection and impact relationships.
  • FIG. 16 shows an example in which an element network based on a design diagram as shown in FIG. 8 and a schematic element network deformed as shown in FIG. 9 are graphically displayed.
  • FIG. 18 the display is simplified not for each element but for each part. In this case, the display of the influence relationship within the part (for example, 90d is an example) is omitted.
  • the arrows to be displayed in these display examples may be all records included in the element network database 11, but only the records with the number of changes greater than 0, that is, the links that have changed in the past may be targeted. . Or you may distinguish and display the display form (a magnitude
  • FIG. 19 is a diagram showing an example of the display of the influence range in element units based on the design drawing
  • FIG. 20 is an example of the display of the schematic influence range
  • FIG. 21 is a diagram showing an example of the display of the influence range in component units based on the design drawing.
  • the display of the arrow shape (size, thickness, line type, etc.) is changed according to the size of the impact amount (for example, the sum of the additional effort on the cause side and the additional effort on the impact side). It is possible to recognize the magnitude of the impact at a glance.
  • the form (size, thickness, line type, etc.) of the arrow to be displayed may be changed according to the number of changes, so that the number of changes can be recognized at a glance. it can.
  • the arrows 90a to 90d in FIGS. 17 and 18 are displayed in bold lines larger than the other arrows, indicating that the influence amount or the number of changes is larger than a predetermined value.
  • the details of the influence amount may be displayed by selecting an arrow representing the influence relationship of each part with an input device such as a mouse.
  • an input device such as a mouse.
  • visualization of impact link list data is given.
  • a part included in the change plan and its influence relation are superimposed and displayed on the graphic indicating the connection relation of each element with an arrow or the like.
  • reference numeral 92 denotes an influence route (link) of the change plan
  • 93 denotes a route (link) further influenced by the change plan.
  • the display form such as the size and thickness may be distinguished from the others.
  • the total additional man-hours and the total additional cost 94 included in the influence link list data may be displayed.
  • the display of the influence relationship in the part (for example, 93a is an example) is omitted as in FIG.
  • the display form such as the color of the display object may be changed for the parts that cause the change and the parts and elements that are affected by the proposed change.
  • the information of each database of the element network database 11, the influence link list data, or the engineering database group 3 can be displayed on the display device 4 in the form of text, graphics, etc. Will be able to visualize the impact of their proposed changes.
  • the display device 4 is a display device such as a CRT, LCD, or PDP, and displays text, graphics, or the like on the screen in accordance with a display signal transmitted from the display control unit 13.
  • the construction data management method, the construction data management device, and the construction data management system of the present invention can manage the design data, the management data, and the design data without burdening the person in charge more than necessary.
  • the impact can be calculated with high accuracy based on the past results and presented to the proposer of the change plan. By considering the presented impact, it is effective when the proposer makes a decision on whether to adopt the change proposal formally (register it in the change management database 3e) or to make another change proposal. Can be supported, and as a result, the efficiency of the entire construction project can be improved.
  • the construction data management method, the construction data management device, and the construction data management system according to the present invention can be used to manage existing data such as design data without burdening the person in charge more than necessary in managing various data related to construction.
  • the relationship between various data is automatically and accurately built using the engineering data and the actual change data, and the impact when changes are made is based on past information based on the relevant information between the various data.
  • Intention to adopt the change plan formally (register it in the change management database 3e) or to plan another change plan by calculating with high accuracy based on this and presenting it to the proposer of the change plan
  • the proposal can be effectively supported when the proponent makes the decision, and as a result, the efficiency of the entire construction project can be improved.
  • various engineering databases related to construction and various computer systems such as PCs, servers, mobile information terminals connected to the management system of the database, and construction data operating on the computer system
  • the present invention can be applied to management software.

Abstract

Disclosed are a construction data management method, construction data management device, and construction data management system for a structural object for automatically constructing associations among various data using various data related to construction and change performance data, calculating with high precision the impact if a change is made related to certain data, and presenting thereof. The construction data management method is provided with an element partitioning step that, for each of a plurality of components constituting a structural object, element-partitions the component into elements having an effect and elements not having an effect with respect to other components that are in a connection relationship with the component; a virtual element network generation step for generating virtual element network data defining, for each connection between each of the partitioned elements, cause-side elements imparting an effect and effect-side elements receiving the effect; a change management data generation step for generating data including objects that are causes, objects that receive effects, and degrees of effect for the same as change management data which are a collection of past change history data of the structural object; and an element network generation step for generating element network data by imparting degrees of effect, on the basis of past cases included in the change management data, to the virtual element network data.

Description

構造物の建設データ管理方法、建設データ管理装置および建設データ管理システムConstruction data management method, construction data management device, and construction data management system
 本発明は、構造物の建設に関わる各種データの管理に関わり、特にデータ間の関連付けを実態に即して自動的に構築することでデータ管理の効率と質を向上する技術に関する。 The present invention relates to the management of various data related to the construction of structures, and more particularly to a technique for improving the efficiency and quality of data management by automatically constructing associations between data in accordance with actual conditions.
 ビル、橋梁、プラント、電気的構造物、機械的構造物などの各種構造物を、定められた期限内に建設完遂するためには、構造物を構成する部品と部品、部品と工程、部品と図書等、各種データ間の関係を管理し、該管理情報を用いて建設プロジェクト管理を実施する必要がある。建設プロジェクト管理では、部品データ、設計データ、工程データ、図書データ、契約データなどの建設に関わる各種データを管理することになるが、構造物が巨大になるほど様々な種類の、膨大な量のデータを扱うことになる。然るところ、建設プロジェクト管理の当初計画に齟齬をきたす恐れのある変更が生じた場合に、その影響の度合いを先の各種データ間の関係を整理して推定するためには、これらのデータを効率的に管理することが求められる。 In order to complete construction of various structures such as buildings, bridges, plants, electrical structures, and mechanical structures within the prescribed time limit, parts and parts, parts and processes, parts and parts constituting the structure It is necessary to manage the relationship between various data such as books and implement construction project management using the management information. In construction project management, various data related to construction such as parts data, design data, process data, book data, contract data, etc. are managed, but as the structure becomes huge, various types of data, huge amounts of data Will be treated. However, in the event that changes occur that could lead to drastic changes in the initial plan for construction project management, in order to estimate the degree of impact by organizing the relationship between the various types of data above, these data must be used. Efficient management is required.
 例えば、構造物の一つの部品の設計内容を変更した場合に、該管理情報を基にその変更が及ぼす影響範囲(影響が及ぶ部品群)を検索し、各影響範囲の正確なインパクト(工数増減、コスト増減等)とともに迅速にプロジェクト管理者に提示することは、建設の管理において重要である。なぜなら、前記インパクトに応じて前記設計変更の実施要否の意思決定に重大な影響を及ぼす可能性があるからである。 For example, when the design content of one part of a structure is changed, the influence range (parts affected by the change) is searched based on the management information, and the exact impact of each influence range (increase or decrease in man-hours) It is important in managing the construction to promptly present it to the project manager along with the cost increase / decrease. This is because there is a possibility that the decision on whether or not to carry out the design change is seriously affected depending on the impact.
 構造物のプロジェクト管理に関する従来の技術としては、特許文献1、2に示すように設計変更要素が指定されると、設計データの要素間に付与されたリンクを辿り取得した要素とそのインパクトを表示するものが挙げられる。また、特許文献3のように設計変更に対する影響を評価し、その影響の指標の一つとしてコスト計算を行うものも挙げられる。 As a conventional technology related to project management of structures, as shown in Patent Documents 1 and 2, when design change elements are specified, the elements acquired by tracing the links given between the elements of the design data and their impact are displayed. To do. In addition, as in Patent Document 3, an effect on design change is evaluated, and cost calculation is performed as one of the indexes of the effect.
特開2005-322211号公報JP-A-2005-322211 特開2008-83798号公報JP 2008-83798 A 特開2006-65409号公報JP 2006-65409 A
 しかしながら、上記の特許文献1、2、3に記載の技術においても次の課題がある。
第一の課題は、設計者が自ら、限られた期間内に、影響範囲やインパクトの検討を実施せねばならないことである。つまり、設計者が自らの知識や経験に照らして、部品、工程、図書等各データや機能の間の関係を検討し、検討した内容を計算機で構成された管理装置に入力する必要があるが、大規模なビル、橋梁、あるいはプラントのように膨大な機能、部品といった要素から構成される製品に対してこれを限られた期間内に実施することは困難であるということである。これは、建設当初の設計段階においては、設計者がその労力を割いて全ての要素の関係を定義しても、設計変更の影響を受けない多くに関する定義情報は活用されないため、要素間関係の定義の積極的な必要性を必ずしも見出せないことも一因である。したがって、構造物に関して要素間の関係に関する完全なデータ構築は事実上不可能であるといえる。
However, the techniques described in Patent Documents 1, 2, and 3 have the following problems.
The first issue is that the designer must examine the scope of impact and impact within a limited period of time. In other words, it is necessary for the designer to examine the relationship between each data and function such as parts, processes, books, etc. in light of their own knowledge and experience, and to input the examined content into a management device composed of computers. This means that it is difficult to implement a product composed of elements such as a large number of functions and parts like a large-scale building, bridge, or plant within a limited period. This is because, at the initial design stage of construction, even if the designer uses all the effort to define the relationship of all elements, the definition information on many that are not affected by the design change is not utilized. Part of the reason is that we cannot always find a positive need for definitions. Therefore, it can be said that it is practically impossible to construct a complete data regarding the relationship between the elements regarding the structure.
 第二の課題は、変更のインパクトに関わる要素間の接続強度の定義に関するものである。その方法として、特許文献1には重要性を考慮しつつ設計者の主観で定義する方法が、特許文献2には同種要素間、異種要素間で各々接続強度を定めるなど予め定められたルールに基づき設定する方法が、提案されているが、いずれも実際の変更実績に基づかないため、精度に問題が発生する場合がある。 The second issue relates to the definition of connection strength between elements involved in the impact of change. As a method for this, Patent Document 1 defines a method based on the subjectivity of a designer while taking importance into consideration. Patent Document 2 defines a predetermined rule such as determining connection strengths between homogeneous elements and heterogeneous elements. Although the method of setting based on has been proposed, since none of them is based on actual change results, there may be a problem in accuracy.
 この点に関して、特許文献3においては、過去の実績データを基に変更量とインパクトの関係を回帰式で表し、設計変更量からインパクトを推定する方法を提案している。しかしながら、量産品のように、多数のデータが存在する場合にはこの方法は有効となる可能性があるが、大規模なビル、橋梁、あるいはプラントのような大量生産しない製品を対象とする場合においては、十分な量のデータが存在しないため十分な精度を確保する回帰式が導出できず、不向きである。また、構造物設計における変更量と実際のインパクトは、必ずしも線形の関係にあるとは限らないため、精度面にも課題がある。 In this regard, Patent Document 3 proposes a method of estimating the impact from the design change amount by expressing the relationship between the change amount and the impact by a regression equation based on past performance data. However, this method may be effective when there is a large amount of data such as mass-produced products, but it is intended for products that are not mass-produced such as large buildings, bridges, or plants. However, since a sufficient amount of data does not exist, a regression equation that secures sufficient accuracy cannot be derived, which is unsuitable. In addition, since the amount of change in the structure design and the actual impact are not necessarily in a linear relationship, there is also a problem in accuracy.
 本発明は、上記課題を解決するためになされたものであり、その目的は、プラント建設などの建設に関わる各種データの管理において、設計者に必要以上の負担をかけることなく、設計データ等の既存のデータと変更実績データを用いて各種データ間の関連付けを自動的に構築することにある。また、もう一つの目的は、前記各種データ間の関連情報を基に、変更がなされた場合のインパクトを高精度に算出し、その結果を変更担当者に提示することにある。 The present invention has been made to solve the above-mentioned problems, and its purpose is to manage design data and the like without burdening the designer more than necessary in managing various data related to construction such as plant construction. The purpose is to automatically establish associations between various data using existing data and change record data. Another object is to calculate the impact when a change is made based on the related information between the various data with high accuracy and present the result to the person in charge of the change.
 本発明の構造物の建設データ管理方法は、
構造物を構成する複数部品のそれぞれについて、当該部品に変更が生じたときに当該部品と接続関係にある他部品に影響を与える要素と影響を与えない要素に当該部品を要素分割する要素分割ステップと、分割された各要素のつながり毎に、影響を与える原因側要素と、影響を受ける側の影響側要素を定義する仮想要素ネットワークデータを生成する仮想要素ネットワーク生成ステップと、構造物の過去の変更履歴データの集合である変更管理データとして、原因物と影響物ならびにその影響度合いを含むデータを生成する変更管理データ生成ステップと、仮想要素ネットワークデータに、変更管理データに含まれる過去事例に基づく影響度合いを付与して要素ネットワークデータを生成する要素ネットワーク生成ステップを備える。
The construction data management method of the structure of the present invention includes:
An element division step for dividing the part into elements that do not affect elements that affect other parts that are connected to the part, and elements that do not have an influence on each of the parts that make up the structure. And a virtual element network generation step for generating virtual element network data that defines an influencing cause element, an influencing element on the affected side, and a past structure Based on the change management data generation step that generates data including the cause, the influence, and the degree of influence as change management data that is a set of change history data, and the virtual element network data based on past cases included in the change management data An element network generation step of generating element network data by giving an influence degree is provided.
 また、要素ネットワーク生成ステップにおいて、変更管理データに該当する仮想要素ネットワークデータを検索する際に、変更管理データに含まれる原因物と影響物のIDと、仮想要素ネットワークの原因側要素と影響側要素に付与された部品IDの一致をみる第一の方法と、変更管理データに含まれる原因物と影響物に関する部品種別IDと、仮想要素ネットワークの原因側要素と、影響側要素に関する部品種別IDの一致をみる第二の方法によって特定するのがよい。 Further, in the element network generation step, when searching for virtual element network data corresponding to the change management data, the cause and effect IDs included in the change management data, the cause element and the influence element of the virtual element network The first method for checking the match of the component IDs assigned to the component, the component type ID related to the cause and the influence included in the change management data, the cause side element of the virtual element network, and the component type ID related to the influence side element It is better to specify by the second method of seeing a match.
 また、第二の方法における部品種別IDは、各部品を予め定められた建設現場での据付単位に分割されるのがよい。 Also, the part type ID in the second method is preferably divided into installation units at a predetermined construction site for each part.
 本発明の構造物の建設データ管理方法においては、
構造物を構成する複数部品のそれぞれについて、当該部品に変更が生じたときに当該部品と接続関係にある他部品に影響を与える要素と影響を与えない要素に当該部品を要素分割する要素分割ステップと、分割された各要素のつながり毎に、影響を与える原因側要素と、影響を受ける側の影響側要素を定義する仮想要素ネットワークデータを生成する仮想要素ネットワーク生成ステップと、構造物の過去の変更履歴データの集合である変更管理データとして、原因物と影響物ならびにその影響度合いを含むデータを生成する変更管理データ生成ステップと、仮想要素ネットワークデータに、変更管理データに含まれる過去事例に基づく影響度合いを付与して要素ネットワークデータを生成する要素ネットワーク生成ステップと、評価するための変更案のデータを所定フォーマットで作成、入力する変更案入力ステップと、変更案データを基に、変更対象の物、それにより直接影響を受ける物、および変更対象側の影響量を抽出し、要素ネットワークのデータを、複次的に影響を受けるものが見つからなくなるまで検索することによって、全体の影響範囲を抽出し全体の影響量を算出して、その結果を影響リンクリストとして出力する影響評価ステップとを備える。
In the construction data management method of the structure of the present invention,
An element division step for dividing the part into elements that do not affect elements that affect other parts that are connected to the part, and elements that do not have an influence on each of the parts that make up the structure. And a virtual element network generation step for generating virtual element network data that defines an influencing cause element, an influencing element on the affected side, and a past structure Based on the change management data generation step that generates data including the cause, the influence, and the degree of influence as change management data that is a set of change history data, and the virtual element network data based on past cases included in the change management data An element network generation step for generating an element network data by giving an influence degree, and for evaluation Based on the change plan input step to create and input the data of the change plan in a predetermined format, and the change plan data, the object to be changed, the object that is directly affected by it, and the influence amount on the change target side are extracted, and the elements Impact assessment step of searching the network data until it can no longer find what is affected multiple times, extracting the overall impact range, calculating the overall impact, and outputting the result as an impact link list With.
 本発明の構造物の建設データ管理装置は、
構造物を構成する複数部品のそれぞれについて、当該部品に変更が生じたときに当該部品と接続関係にある他部品に影響を与える要素と影響を与えない要素に当該部品を要素分割する要素分割手段と、分割された各要素のつながり毎に、影響を与える原因側要素と、影響を受ける側の影響側要素を定義する仮想要素ネットワークデータを生成する仮想要素ネットワーク生成手段と、構造物の過去の変更履歴データの集合である変更管理データとして、原因物と影響物ならびにその影響度合いを含むデータを生成する変更管理データ生成手段と、仮想要素ネットワークデータに、変更管理データに含まれる過去事例に基づく影響度合いを付与して要素ネットワークデータを生成する要素ネットワーク生成手段と、上記の各種データに基づいて表示内容を制御する表示制御手段と表示装置とを備え、表示装置には要素分割された複数の部品が、要素間のつながりと、原因側要素から影響側要素への矢印と共に表示される。
The construction data management device of the structure of the present invention is
An element dividing means for dividing a part into a plurality of parts constituting a structure and an element that has an influence on other parts that are connected to the part and an element that has no influence when the part is changed For each of the divided elements, a virtual element network generating means for generating virtual element network data that defines the influencing cause element, the influencing element on the affected side, and the past of the structure Based on past cases included in change management data, change management data generation means for generating data including cause, influence, and degree of influence as change management data that is a set of change history data Element network generation means for generating element network data by assigning an influence degree, and a table based on the above various data Comprising a display control means display device and for controlling the content, a plurality of components on the display device is divided into elements is, the connections between the elements are displayed with an arrow from causes side element to the affected side element.
 また、表示装置への表示は、分割された要素をノードとし、分割された要素間のつながりをリンクとし、かつ原因側要素から影響側要素への矢印は、前記リンクに沿って表示されるのがよい。 In addition, the display on the display device uses the divided elements as nodes, links between the divided elements as links, and the arrows from the cause side elements to the influence side elements are displayed along the links. Is good.
 また、表示装置への表示は、影響度合いの大きさに応じて原因側要素から影響側要素への矢印が表示変更されるのがよい。 Also, for the display on the display device, it is preferable that the arrow from the cause side element to the influence side element is changed in display according to the magnitude of the degree of influence.
 また、表示装置への表示は、影響度合いが、原因側と影響側のそれぞれについて、数値表記されるのがよい。 Also, the display on the display device should have the degree of influence expressed numerically for each of the cause side and the influence side.
 本発明の構造物の建設データ管理システムは、
 設計データ、部品データ、工程データ、図書データなど構造物の建設に関わるデータと、当該構造物の過去の変更履歴データとを収納するエンジニアリングデータベース群、
 該エンジニアリングデータベース群のデータを管理するとともに、構造物の過去の変更履歴データの集合である変更管理データとして、原因物と影響物ならびにその影響度合いを含むデータを生成する変更管理データ生成手段を備えたデータベース管理システム、
 エンジニアリングデータベース群内に記憶された構造物を構成する複数部品のデータを取り込んで、複数部品のそれぞれについて、当該部品に変更が生じたときに当該部品と接続関係にある他部品に影響を与える要素と影響を与えない要素に当該部品を要素分割する要素分割手段と、分割された各要素のつながり毎に、影響を与える原因側要素と、影響を受ける側の影響側要素を定義する仮想要素ネットワークデータを生成する仮想要素ネットワーク生成手段と、仮想要素ネットワークデータに、データベース管理システム内の変更管理データ生成手段により生成されたデータに含まれる過去事例に基づく影響度合いを付与して要素ネットワークデータを生成する要素ネットワーク生成手段とから構成される建設データ管理装置、
 上記の各種データに基づいて表示内容を表示する表示装置から構成される。
The structure construction data management system of the present invention is
Engineering database group that stores data related to construction of structures such as design data, parts data, process data, book data, and past change history data of the structure,
Change management data generation means for managing data in the engineering database group and generating data including cause, influence, and degree of influence as change management data that is a set of past change history data of structures Database management system,
Elements that affect the other parts that are connected to the parts when the data of the parts that make up the structure stored in the engineering database group is captured and the parts are changed. An element dividing unit that divides the part into elements that do not influence, a virtual element network that defines an influencing cause element and an affected influencing element for each connection of the divided elements Virtual element network generation means for generating data, and element network data is generated by giving the virtual element network data an influence degree based on past cases included in the data generated by the change management data generation means in the database management system A construction data management device comprising element network generation means
It is comprised from the display apparatus which displays a display content based on said various data.
 また、建設データ管理装置は、評価するための変更案のデータを所定フォーマットで作成、入力する変更案入力手段と、該変更案データを基に、該変更対象の物、それにより直接影響を受ける物、および変更対象側の影響量を抽出し、要素ネットワークのデータを、複次的に影響を受けるものが見つからなくなるまで検索することによって、全体の影響範囲を抽出し全体の影響量を算出して、その結果を影響リンクリストとして出力する影響評価手段と、上記の各種データに基づいて表示内容を制御する表示制御手段と表示装置とを備えるのがよい。 Further, the construction data management device is directly affected by the change plan input means for creating and inputting the change plan data for evaluation in a predetermined format, and the object to be changed based on the change plan data. The influence range of the object and the change target is extracted, and the element network data is searched until it can no longer find the multiple influences, so that the entire influence range is extracted and the overall influence amount is calculated. It is preferable to include an impact evaluation unit that outputs the result as an influence link list, a display control unit that controls display contents based on the various data, and a display device.
 本発明によれば、本発明の建設データ管理方法、建設データ管理装置および建設データ管理システムは、建設に関わる各種データの管理において、担当者に必要以上の負担をかけることなく、設計データ、工程データ、図書データ等既存のデータと変更実績データとを用いて各種データ間の関連付けを自動的かつ高精度に構築するとともに、前記各種データ間の関連情報を基に、変更がなされた場合のインパクトを過去の実績に基づき高精度に算出し、変更案の提案者に対して提示することができるようになる。提示されたインパクトを考慮することにより、該変更案を正式に採用する(変更管理データベース3eに登録する)か、あるいは別の変更案を立案するかの意思決定を該提案者が行うに際して有効に支援することができ、ひいては建設プロジェクト全体の業務において効率化を進めることができるようになる。 According to the present invention, the construction data management method, the construction data management device, and the construction data management system of the present invention provide the design data, the process, and the like in the management of various data related to the construction without imposing an unnecessary burden on the person in charge. The relationship between various data is automatically and accurately built using existing data such as data and book data and the actual change data, and the impact when changes are made based on the relevant information between the various data Can be calculated with high accuracy based on past results and presented to the proposer of the change plan. By considering the presented impact, it is effective when the proposer makes a decision on whether to adopt the change proposal formally (register it in the change management database 3e) or to make another change proposal. Can be supported, and as a result, the efficiency of the entire construction project can be improved.
本発明の建設データ管理装置及びそれらから構成される建設データ管理システムの概略構成図である。It is a schematic block diagram of the construction data management apparatus of this invention and the construction data management system comprised from them. 部品を、部品IDと、部品種別と、部品番号により定義した図である。It is the figure which defined components by component ID, component classification, and component number. 図2の部品種別が機器であるものについて、その配置位置をXYZの三次元座標並びに、回転角で表現した図である。FIG. 3 is a diagram in which an arrangement position is expressed by XYZ three-dimensional coordinates and a rotation angle with respect to an apparatus whose component type is FIG. 2. 図2の部品種別が配管であるものについて、その口径、長さ、曲げ部の角度などで表現した図である。FIG. 3 is a diagram representing the pipe type of the part in FIG. 2 expressed by its diameter, length, angle of a bent portion, and the like. 部品の接続関係を示す接続情報の図である。It is a figure of the connection information which shows the connection relation of components. 記憶内容によって具現される装置構成を示す図である。It is a figure which shows the apparatus structure embodied by the memory content. 要素分割後のプラントの要素構成を示す図である。It is a figure which shows the element structure of the plant after element division. 設計図をベースとした仮想要素ネットワークを示す図である。It is a figure which shows the virtual element network based on a design drawing. デフォルメ化した模式的仮想要素ネットワークを示す図である。It is a figure which shows the deformed typical virtual element network. 仮想要素ネットワークデータの一例を示す図である。It is a figure which shows an example of virtual element network data. 要素ネットワークデータの一例を示す図である。It is a figure which shows an example of element network data. 変更管理データベースのデータフォーマットの一例を示す図である。It is a figure which shows an example of the data format of a change management database. 要素ネットワーク生成部102の処理内容を説明するフローチャート図である。FIG. 6 is a flowchart for explaining processing contents of an element network generation unit 102. 影響評価部121の処理内容を説明するフローチャート図である。FIG. 10 is a flowchart illustrating the processing content of an impact evaluation unit 121. 影響リンクリストのデータの一例を示す図である。It is a figure which shows an example of the data of an influence link list. 設計図をベースとした要素単位での要素ネットワークデータの表示の一例を示す図である。It is a figure which shows an example of the display of the element network data per element based on a design drawing. 模式的要素ネットワークデータの表示の一例を示す図である。It is a figure which shows an example of a display of typical element network data. 設計図をベースとした部品単位での要素ネットワークデータの表示の一例を示す図である。It is a figure which shows an example of the display of the element network data per component based on a design drawing. 設計図をベースとした要素単位での影響範囲の表示の一例を示す図である。It is a figure which shows an example of the display of the influence range in the element unit based on the design drawing. 模式的影響範囲の表示の一例を示す図である。It is a figure which shows an example of the display of a typical influence range. 設計図をベースとした部品単位での影響範囲の表示の一例を示す図である。It is a figure which shows an example of the display of the influence range in component units based on a design drawing.
 以下に、本発明の実施形態について、図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.
 図1は本発明の一実施形態にかかる建設データ管理装置1、データベース管理システム2、エンジニアリングデータベース群3、表示装置4などから構成される建設データ管理システムの概略構成図である。 FIG. 1 is a schematic configuration diagram of a construction data management system including a construction data management device 1, a database management system 2, an engineering database group 3, a display device 4 and the like according to an embodiment of the present invention.
 この建設データ管理システムは、データベース管理システム2で生成、編集され、各種エンジニアリングデータベース群3に記憶されたデータを用いて、建設データ管理装置1がプラント等の建設に関わる各種データを管理し、変更の影響に関する評価を実施し、その評価結果を表示装置4に表示することによって、再計画など効率的なプロジェクトの管理を支援するものである。なお、図1も含む各図においては、表記の都合上「データベース」を「DB」としている。 This construction data management system uses the data generated and edited by the database management system 2 and stored in various engineering database groups 3, and the construction data management device 1 manages and changes various data related to the construction of plants and the like. By evaluating the impact on the project and displaying the evaluation result on the display device 4, efficient project management such as re-planning is supported. In each of the drawings including FIG. 1, “database” is “DB” for convenience of description.
 以下、建設データ管理システムを構成する各部について説明する。 Hereinafter, each part constituting the construction data management system will be described.
 まず、建設データ管理装置1は、要素ネットワーク生成部10、要素ネットワークデータベース11、変更影響評価部12、および表示制御部13から構成され、建設に関わる各種データを管理し、変更の影響を評価し、各種データや評価結果等を表示することによって、再計画など効率的なプロジェクトの管理を支援するものである。 First, the construction data management apparatus 1 includes an element network generation unit 10, an element network database 11, a change impact evaluation unit 12, and a display control unit 13, manages various data related to construction, and evaluates the impact of change. By displaying various data and evaluation results, it supports efficient project management such as re-planning.
 データベース管理システム2は、建設に関わる各種データベース群3および要素ネットワークデータベース11を生成、編集するシステムであり、エンジニアリングデータベース群3内の各データベースに対応してそれぞれの管理システムが存在する。例えば、データベースが、設計データベース3aの場合には建築物の設計システムである3次元CAD(Computer Aided Design)システム、部品データベース3bの場合には部品表であるBOM(Bill of Material)をベースに製品情報を管理するPDM(Product Data Management)システム、工程データベース3cの場合には工程管理システムが存在するといった具合である。なお、図書データベース3d、変更管理データベース3e、および要素ネットワークデータベース11の場合にも、それぞれ専用の管理システム(例えば、データの編修や保存等をサポートするソフトウェアが組み込まれたPCおよびデータを表示するディスプレイ装置)がそれぞれ対応して存在する。 The database management system 2 is a system that generates and edits various database groups 3 and element network databases 11 related to construction, and there is a management system corresponding to each database in the engineering database group 3. For example, if the database is the design database 3a, the product is based on a 3D CAD (Computer Aided Design) system that is a building design system, and if it is a parts database 3b, it is a BOM (Bill of Material) that is a parts table. In the case of a PDM (Product Data Management) system for managing information and the process database 3c, there is a process management system. In the case of the book database 3d, the change management database 3e, and the element network database 11 as well, a dedicated management system (for example, a PC incorporating software that supports data editing and storage, and a display for displaying data) There is a corresponding device.
 次に、前記建設データ管理装置1を構成する各部について更に詳細に説明する。 Next, each part constituting the construction data management device 1 will be described in more detail.
 要素ネットワーク生成部10は、エンジニアリングデータベース群3を用いてプラント等の建設に関わるデータの関連を紐づけることにより要素ネットワークを生成する機能を有する。その構成は、要素分割部100、仮想要素ネットワーク生成部101、および要素ネットワーク生成部102から成る。要素ネットワーク生成部10の各処理部は、メモリなどの主記憶装置にロードされた各種プラグラムをCPUが実行することで、情報処理装置上に仮想的に構成される。また、前記プログラムは、HDD、SSD、DVD-ROM、BD-R等の記憶媒体に記録することにより、前記主記憶装置にロードすることが容易となる。 The element network generation unit 10 has a function of generating an element network by using the engineering database group 3 to link data related to construction of a plant or the like. The configuration includes an element division unit 100, a virtual element network generation unit 101, and an element network generation unit 102. Each processing unit of the element network generation unit 10 is virtually configured on the information processing apparatus when the CPU executes various programs loaded in a main storage device such as a memory. Further, the program can be easily loaded into the main storage device by recording it in a storage medium such as an HDD, SSD, DVD-ROM, BD-R or the like.
 次に、図1の各部装置の働きについて詳細に説明を行なう。その前提として以下の説明では、構造物としてプラントを例にした説明をするが、必ずしもプラントに限定すべきものではなく、ビルや橋梁等の建設構造物全般に適用しても差し支えない。更には、機械的な構造物あるいは電気的な構造物であってもよい。これらの構造物は、それらの分野に適した複数の要素構造物の組み合わせとして構成されているが、ここでは要素構造物を部品と表現することにする。 Next, the function of each unit shown in FIG. 1 will be described in detail. As a premise, in the following description, a plant will be described as an example of a structure. However, the structure is not necessarily limited to a plant, and may be applied to general construction structures such as buildings and bridges. Furthermore, a mechanical structure or an electrical structure may be used. These structures are configured as a combination of a plurality of element structures suitable for those fields. Here, the element structures are expressed as parts.
 また、以下の説明においては、エンジニアリングデータベース群3の設計データベース3aには、図2から図5のデータが記憶されており、この記憶内容によって具現される構造物としてのプラントは、図6の構成を備えるものとする。以下これらのデータにより具現されるプラントを例にとって、本発明装置の接続関係を諸図を対比しながら説明する。 Further, in the following description, the design database 3a of the engineering database group 3 stores the data of FIGS. 2 to 5, and the plant as a structure embodied by the stored contents is configured as shown in FIG. Shall be provided. Hereinafter, the connection relationship of the apparatus of the present invention will be described with reference to the drawings, taking a plant embodied by these data as an example.
 まず、図2は図6のプラントで使用される部品を、部品識別情報(部品ID)と、部品種別と、部品番号により定義している。なお、以下の図においては、表記の都合上「識別情報」を「ID」と表している。これによれば、部品IDが1のものは、部品種別が機器であり、部品番号が5001である。同様に、部品ID2は配管であり、部品番号が7001である。部品ID3は機器であり、部品番号が5002である。部品ID4は配管であり、部品番号が7002である。以下同様に部品ID7まで存在するが、記載内容の解釈は上述の例と同じであるのでここでの説明を省略する。 First, FIG. 2 defines parts used in the plant of FIG. 6 by part identification information (part ID), part type, and part number. In the following drawings, “identification information” is represented as “ID” for convenience of description. According to this, when the component ID is 1, the component type is a device and the component number is 5001. Similarly, the component ID 2 is piping and the component number is 7001. The component ID 3 is a device, and the component number is 5002. The part ID 4 is piping and the part number is 7002. The component ID 7 is also present in the same manner below, but the description is omitted since it is the same as the above example.
 図3は、図2の部品種別が機器であるものについて、その配置位置をXYZの三次元座標並びに、回転角で表現した機器情報に関するものである。図4は、図2の部品種別が配管であるものについて、その口径、長さ、曲げ部の角度などで表現した配管情報に関するものである。 FIG. 3 relates to device information in which the component type of FIG. 2 is a device, and the arrangement position is expressed by three-dimensional coordinates of XYZ and a rotation angle. FIG. 4 relates to piping information expressed by the diameter, length, angle of the bent portion, etc. of the component type of FIG. 2 that is piping.
 図5は、上記の部品の接続関係を示す接続情報の図である。この図によれば、縦軸に各部品IDが記述され、横軸に接続部品数と接続部品IDと接続位置を記憶している。これを部品ID1で説明すると、部品ID1の横軸の接続部品数の欄には、「1」とあることから一つの部品と接続されるものであり、かつ接続部品ID1の欄には「2」とあることから、接続される部品IDが部品ID2であることがわかる。さらにそのうえで、接続位置1の欄を参照すると、部品ID2との接続位置がXYZの三次元表記されていることが理解できる。図2乃至図5のかかる表記規則に従えば、図5の部品ID2の配管は、部品ID1の機器と部品ID3の機器に接続され、部品ID3の機器は、部品ID2の配管と部品ID4の配管と部品ID6の配管とに接続され、部品ID4の部品は、部品ID3の機器と、部品ID5の配管とに接続されることが理解できる。以降の部品ID5、6、7についても同様に理解できることなので、ここでは説明を省略する。 FIG. 5 is a diagram of connection information showing the connection relationship of the above components. According to this figure, each component ID is described on the vertical axis, and the number of connected components, the connected component ID, and the connection position are stored on the horizontal axis. This will be described with the component ID1. Since the number of connected components on the horizontal axis of the component ID1 is “1”, it is connected to one component, and the connected component ID1 column is “2”. The component ID to be connected is component ID2. Furthermore, referring to the column of the connection position 1, it can be understood that the connection position with the component ID 2 is expressed in three dimensions of XYZ. 2 to 5, the part ID2 pipe in FIG. 5 is connected to the part ID1 equipment and the part ID3 equipment, and the part ID3 equipment is the part ID2 pipe and the part ID4 pipe. It can be understood that the part ID4 is connected to the part ID3 device and the part ID5 pipe. Since the subsequent component IDs 5, 6, and 7 can be understood in the same manner, description thereof is omitted here.
 図6は、上記の図2乃至図5に記載された設計データベース3aの記憶内容にて具現されたプラントを表している。プラントを構成する各部品の接続関係からは、図示のプラントが導かれる。プラントがかかる構成のものであることは、格別の説明を要しないので省略する。 FIG. 6 shows a plant embodied in the storage contents of the design database 3a described in FIGS. The plant shown in the drawing is derived from the connection relationship of the parts constituting the plant. It is omitted that the plant is of such a configuration because no special explanation is required.
 エンジニアリングデータベース群3の設計データベース3aに記憶されている図2から図5のデータを用いて、要素ネットワーク生成部10内の要素分割部100においては、プラントを構成する各部品(部品ID1から部品ID7)について、その設計変更により他の部品に直接影響を及ぼす要素と影響を及ぼさない要素に分割する。つまり、一つの部品を他の部品に直接影響を及ぼす要素と影響を及ぼさない要素に分割する。 Using the data of FIGS. 2 to 5 stored in the design database 3a of the engineering database group 3, the element dividing unit 100 in the element network generating unit 10 uses each component (component ID1 to component ID7) constituting the plant. )), It is divided into elements that directly affect other parts and elements that do not affect. That is, one part is divided into an element that directly affects other parts and an element that does not affect the other parts.
 ここで、分割される要素は、当該部品を構成するサブパーツなど実際の物単位に分割されるものではなく、他の部品に直接影響を及ぼす部分とそうでない部分という論理的な部分である。従って、要素を分割する際に使用するデータベースは、エンジニアリングデータベース群3の部品データベース3bではなく、部品の形状情報、座標情報、接続情報、その他属性情報が定義されている設計データベース3aである。 Here, the elements to be divided are not divided into actual physical units such as sub-parts constituting the part, but are logical parts that directly affect other parts and parts that do not. Therefore, the database used when dividing the elements is not the parts database 3b of the engineering database group 3, but the design database 3a in which the shape information, coordinate information, connection information, and other attribute information of the parts are defined.
 図7は、要素分割後のプラントの要素構成を示している。この図で一例を挙げれば、図6の部品ID1、部品ID5、部品ID7のように接続する相手部品が1個である場合には、直接影響を及ぼす要素とそうでない部分という論理的な要素として、前者は1b、5a、7aのように分け、後者は1a、5b、7bのように分ければよい。つまり、接続相手が1個である場合には、部品を2分割し、一方を直接影響を及ぼす要素とし、他方をそうでない要素とすればよい。 FIG. 7 shows the element configuration of the plant after the element division. To give an example in this figure, when there is one counterpart component to be connected, such as component ID1, component ID5, and component ID7 in FIG. The former may be divided as 1b, 5a, 7a, and the latter may be divided as 1a, 5b, 7b. In other words, if there is only one connection partner, the component is divided into two parts, one of which is an element that directly affects the other and the other is an element that is not.
 また、部品ID2、4、6のように接続する相手部品が2個である場合には、部品を3分割し、接続相手に面する側の2つの部分を直接影響を及ぼす要素とし、2つの部分にはさまれた中間部分をそうでない要素とすればよい。図7では、直接影響を及ぼす要素とそうでない部分という論理的な要素として、前者は2a、2c、4a、4c、6a、6cのように分け、後者は2b、4b、6bのように分ければよい。同様に部品3のように接続する相手部品が3個である場合には、部品を4分割し、接続相手に面する側の3つの部分3a、3c、3dを直接影響を及ぼす要素とし、2つの要素にはさまれた中間部分3bをそうでない要素とすればよい。 In addition, when there are two counterpart parts to be connected as in the parts IDs 2, 4, and 6, the parts are divided into three parts, and the two parts on the side facing the connection counterpart are directly influenced elements. What is necessary is just to let the intermediate part sandwiched between the parts be elements that are not. In FIG. 7, as the logical elements of the directly influencing element and the non-influenced part, the former is divided into 2a, 2c, 4a, 4c, 6a, 6c, and the latter is divided into 2b, 4b, 6b. Good. Similarly, when there are three mating parts to be connected like the part 3, the part is divided into four parts, and the three parts 3a, 3c, and 3d on the side facing the mating part are directly influenced elements. The intermediate portion 3b sandwiched between the two elements may be the other element.
 なお、ある部品Aが別の部品Bに影響を及ぼし、その影響を及ぼされた部品Bがまた別の部品Cに影響を及ぼすような部品Aと部品Cとの間接的な影響については、ここでは対象外とする。したがって、各部品の物理的な接続関係を考慮すればよく、部品の形状情報、座標情報、接続情報、その他属性情報が定義されている設計データベース3aの情報を用いれば、図7に示すように、接続数に応じて機械的に要素分割ができる。また、図7において、同種のハッチがかけられた要素は互いに影響を及ぼす部分、ハッチがかけられていない要素はいずれの要素にも影響を及ぼさない部分を表す。すなわち、要素分割部100では、各部品について、他へ影響を及ぼす部分と及ぼさない部分に分割し、さらに他へ影響を及ぼす部分については、影響を及ぼす要素を特定する機能を有する。 Note that the indirect influence between part A and part C, where a part A affects another part B and the affected part B affects another part C, is here. Then it is excluded. Therefore, it is only necessary to consider the physical connection relationship of each component, and using the information in the design database 3a in which the shape information, coordinate information, connection information, and other attribute information of the component are defined, as shown in FIG. The element can be mechanically divided according to the number of connections. In FIG. 7, elements with the same type of hatch represent parts that affect each other, and elements that are not hatched represent parts that do not affect any element. That is, the element dividing unit 100 has a function of dividing each part into a part that affects other parts and a part that does not affect other parts, and a part that affects other parts.
 次に、要素ネットワーク生成部10内の仮想要素ネットワーク生成部101においては、要素分割部100にて分割された各要素をノードとし、ノード間のつながりをリンクとして、仮想要素ネットワークとして生成する。ここでも、要素分割部100の出力情報(分割要素および影響を及ぼす要素)を用いることにより、機械的に仮想要素ネットワークを生成することができる。 Next, the virtual element network generation unit 101 in the element network generation unit 10 generates each element divided by the element division unit 100 as a node and a connection between the nodes as a link as a virtual element network. In this case as well, a virtual element network can be mechanically generated by using the output information of the element dividing unit 100 (dividing elements and affecting elements).
 図6に示したプラントの設計図を基に生成される仮想要素ネットワークの考え方を図8と、図9に示し説明する。図8は、設計図をベースとした仮想要素ネットワークであるが、この図8が、部品を要素分割した図7と相違するのは、図7の上に矢印が賦与された点である。 The concept of the virtual element network generated based on the plant design shown in FIG. 6 will be described with reference to FIG. 8 and FIG. FIG. 8 is a virtual element network based on a design drawing. FIG. 8 is different from FIG. 7 in which parts are divided into elements in that an arrow is added to the top of FIG.
 ここで、この図8の矢印は、分割された要素間に及ぼしうる影響の関係がその方向とともに定義されたものである。つまり、図7では、直接影響を及ぼす要素とそうでない要素に要素分割したわけであるが、第1の規則では、影響を及ぼす要素からそうでない要素の方向に矢印が設定されている。つまり、図7のハッチがかけられた要素から、ハッチがかけられていない要素の方向に矢印が付与されている。また第2の規則では、影響を及ぼす要素間では双方向に矢印が設定されている。つまり、図7のハッチがかけられた要素の間では、双方向に矢印が付与されている。さらに第3の規則では、接続相手が2つ以上の部品を3個以上に要素分割した場合に、一端の要素の変更は、他端の要素に影響を及ぼすことから、両端の要素間では双方向に矢印が設定されている。例えば部品2についてみると、要素2aから要素2cへ、要素2cから要素2aに対して、要素2bを介さずに直接双方向に矢印が付与されているのがこれに当る。 Here, the arrows in FIG. 8 define the relationship of influences that can be exerted between the divided elements together with their directions. That is, in FIG. 7, the element is divided into elements that directly influence and elements that do not, but in the first rule, an arrow is set in the direction from the element that affects to the element that does not. That is, the arrow is given from the hatched element in FIG. 7 to the direction of the element not hatched. In the second rule, arrows are set in both directions between the affected elements. That is, an arrow is provided in both directions between the hatched elements in FIG. Further, according to the third rule, when the connection partner divides two or more parts into three or more elements, the change of the element at one end affects the element at the other end. An arrow is set in the direction. For example, in the case of the component 2, this is the case where the arrows are given in both directions directly from the element 2a to the element 2c and from the element 2c to the element 2a without going through the element 2b.
 また、図9は、デフォルメ化した模式的仮想要素ネットワークを示しているが、この図9が図8と相違するのは、各要素を四角形で表記していたところを丸型表記としたものである。図8と、図9は表記が異なるのみで同じことを表現しているが、図9のように表現することで、図9の丸型の各要素をノードとし、ノード間のつながりとしての矢印をリンクとして形成された仮想要素ネットワークとして表現されたものであることが良く理解できるであろう。 FIG. 9 shows a deformed schematic virtual element network. FIG. 9 is different from FIG. 8 in that each element is represented by a square notation. is there. FIG. 8 and FIG. 9 express the same thing only with different notations, but by expressing as in FIG. 9, each round element in FIG. 9 is a node, and an arrow as a connection between nodes Can be well understood as a virtual element network formed as a link.
 この図9の意味するところは、あるノード(分割された要素)に設計変更などの変更が生じた場合には、そのノードが原因となって、矢印の先にあるノード(分割された要素)が影響を受ける関係にあることを示している。要素ネットワーク生成部10内の仮想要素ネットワーク生成部101においては、上記の規則などに従い、図10に示す仮想要素ネットワークデータを作成する。 The meaning of FIG. 9 is that if a change such as a design change occurs in a certain node (divided element), the node at the tip of the arrow (divided element) is caused by that node. Indicates that the relationship is affected. The virtual element network generation unit 101 in the element network generation unit 10 generates virtual element network data shown in FIG. 10 according to the above rules.
 図10は、ノード間のつながりとして、矢印で表現したリンクに着目し、リンクごとにリンク識別情報(リンクID)を付与する。図は縦軸に全てのリンクIDを記述し、横軸にリンク種別、リンクIDの両端のノードが記述される。リンクIDの両端のノードは、原因側のノードと、影響側のノードに区別され、且つノード識別情報(ノードID)として表記される。なお、以下の表記において、原因側とは設計変更などによりほかの部品に影響を与える側を意味し、影響側とは影響を受ける側を意味する。図10のリンクIDのうち、代表的なものとして、1001、1002、1003、1004を図9に表示している。なお、図10の読み方であるが、リンクID1001が、原因ノードID1bであり、影響ノードID1aであることが理解できる。 FIG. 10 pays attention to a link expressed by an arrow as a connection between nodes, and provides link identification information (link ID) for each link. In the figure, all the link IDs are described on the vertical axis, and the link type and nodes at both ends of the link ID are described on the horizontal axis. Nodes at both ends of the link ID are classified into a cause side node and an influence side node, and are described as node identification information (node ID). In the following notation, the cause side means a side that affects other parts due to a design change or the like, and the affected side means an affected side. Of the link IDs in FIG. 10, 1001, 1002, 1003, and 1004 are shown in FIG. 9 as representative ones. As can be understood from FIG. 10, it can be understood that the link ID 1001 is the cause node ID 1b and the affected node ID 1a.
 ところで、設計データベース3aにてデータ記憶する際のキー情報として、部品を識別する部品IDを使用していたが、この部品IDは、部品データベース3bでも使用されており、この部品IDに対して、関係する作業工程と図書がそれぞれ工程IDおよび図書IDとして定義されている。従って、この情報を用いることにより、仮想要素ネットワーク生成部101で生成される仮想要素ネットワークは、図10に示す例のように、部品の要素間の関係(リンクID1001から1004)だけにとどまらず、工程IDや図書IDなど他のデータベースに含まれる要素をも含むようにしてもよい。これらの例が、リンクID2001、3001の欄に示されている。 By the way, although the component ID for identifying the component is used as key information when data is stored in the design database 3a, this component ID is also used in the component database 3b. Related work processes and books are defined as a process ID and a book ID, respectively. Therefore, by using this information, the virtual element network generated by the virtual element network generation unit 101 is not limited to the relationship between the component elements (link IDs 1001 to 1004) as in the example shown in FIG. You may make it also include the elements contained in other databases, such as process ID and book ID. These examples are shown in the columns of link IDs 2001 and 3001.
 なお、図10において、原因側追加工数、原因側追加コスト、影響側追加工数、影響側追加コスト、変更回数の各項目について、その詳細は後述するが、要素間の影響の度合いである接続強度を示すものである。ただし、この仮想要素ネットワーク生成部101の処理段階では数値を反映させず、初期値の「0」が設定されている。変更回数以外の追加工数および追加コストに関する初期値の設定方法としては、このように全て「0」を設定する方法以外に、例えば、同種要素間、異種要素間で各々接続強度を定めるなど予め定められたルールに基づき初期値として設定するような方法であってもよい。 In addition, in FIG. 10, the details of each item of cause side additional man-hour, cause-side additional cost, influence side additional man-hour, influence side additional cost, and number of changes will be described later. Is shown. However, in the processing stage of the virtual element network generation unit 101, an initial value “0” is set without reflecting a numerical value. As a method for setting the initial values for the additional man-hours and the additional cost other than the number of changes, in addition to the method of setting all “0” in this way, for example, the connection strength is determined between the same type elements and between different types of elements in advance. A method may be used in which the initial value is set based on the determined rule.
 要素ネットワーク生成部10内の要素ネットワーク生成部102においては、仮想要素ネットワーク生成部101にて生成された仮想要素ネットワークデータに、過去の変更履歴データの集合である変更管理データベース3eの情報を加味することにより、過去事例に基づく要素ネットワークデータを生成する。 In the element network generation unit 102 in the element network generation unit 10, information of the change management database 3e, which is a set of past change history data, is added to the virtual element network data generated by the virtual element network generation unit 101. Thus, element network data based on past cases is generated.
 ここで、図12に変更管理データベース3eの一例を示す。図12の変更管理データベース3eは、縦軸に管理識別情報(管理ID)として、過去の変更事例101、102、103が記憶されている。横軸には管理名称と原因物識別情報(原因物ID)と影響物識別情報(影響物ID)が記憶されている。変更事例101によれば、これは収集槽ノズル位置を変更したものであり、原因物IDが部品ID1の部品であり、影響物IDが部品ID2の部品であった。また、横軸には原因側追加工数、原因側追加コスト、影響側追加工数、影響側追加コスト、下流側管理IDの欄があり、これによれば、原因物IDが部品ID1の部品の追加工数と共に、影響物IDが部品ID2の部品の追加工数がそれぞれ0.4人、0.75人発生したことがわかる。なお、追加工数(人日)の欄は、右欄に日、左欄に人数を表記している。管理ID102、103も同様の記載約束に従い作成されているので個々での説明を省略する。 Here, an example of the change management database 3e is shown in FIG. The change management database 3e in FIG. 12 stores past change cases 101, 102, and 103 as management identification information (management ID) on the vertical axis. On the horizontal axis, a management name, cause identification information (cause ID), and influence identification information (effect ID) are stored. According to the change example 101, this is a change in the collection tank nozzle position, the cause ID is a part with a part ID1, and the influence object ID is a part with a part ID2. In addition, the horizontal axis includes columns of additional cause-side man-hours, cause-side additional costs, influence-side additional man-hours, influence-side additional costs, and downstream management ID. According to this, addition of a component whose cause ID is component ID1 It can be seen that, along with the man-hours, 0.4 and 0.75 additional man-hours have been generated for the part whose influence object ID is part ID2. In the column of additional man-hours (person day), the right column shows the day and the left column shows the number of people. Since the management IDs 102 and 103 are created in accordance with the same description promise, a description thereof is omitted.
 図12に図示するように、過去の業務において、設計変更等の変更事項が発生するとその事項ごとに内容が保存されており、事項を識別するための管理ID、変更の原因となった物(部品、工程、図書等)のID、その結果影響を及ぼすことになった物(部品、工程、図書等)のID、原因側に発生した工数とコスト、影響側に発生した工数とコスト、および影響側からさらに影響を及ぼした場合の管理IDがそれぞれ格納される。ここで、過去の業務とは、当該対象のプラントに関する業務に限らず、過去に実施したプラントに関する業務を含んだ方がよい。そうすることによって、過去の実績事例をより多く集めることができ、後述する要素ネットワーク生成における精度が向上する。 As shown in FIG. 12, when a change item such as a design change occurs in the past work, the contents are saved for each item, the management ID for identifying the item, the item that caused the change ( IDs of parts, processes, books, etc., IDs of objects (parts, processes, books, etc.) that affected the result, man-hours and costs incurred on the cause side, man-hours and costs incurred on the influencing side, and A management ID when the influence is further exerted from the influence side is stored. Here, the past work is not limited to the work related to the target plant, and it is better to include the work related to the plant performed in the past. By doing so, more past performance examples can be collected, and the accuracy in element network generation described later is improved.
 要素ネットワーク生成部102においては、図10の仮想要素ネットワークのデータに、図12の変更管理データベース3eの情報を反映し、修正することによって、図11の要素ネットワークデータベースを生成する。 The element network generator 102 generates the element network database of FIG. 11 by reflecting and modifying the information of the change management database 3e of FIG. 12 on the virtual element network data of FIG.
 ここで、要素ネットワーク生成部102の詳細な処理内容について、図13のフローチャートを用いて説明する。はじめに、ステップS60において、図10の仮想要素ネットワークデータベースより、仮想要素ネットワークデータの全レコードを取り込む。 Here, detailed processing contents of the element network generation unit 102 will be described with reference to the flowchart of FIG. First, in step S60, all records of virtual element network data are fetched from the virtual element network database of FIG.
 次に、ステップS61において、図12の変更管理データベースより変更管理データの1レコードを読み込む。図12のレコードから、最初に読み込まれる変更管理データは、変更事例101、管理名称が「収集槽ノズル位置変更」、原因物IDが部品ID1、影響物IDが部品ID2であり、原因物ID1の部品の追加工数と、影響物ID2の追加工数がそれぞれ0.4人、0.75人発生したというものである。 Next, in step S61, one record of change management data is read from the change management database of FIG. The change management data that is read first from the record of FIG. 12 is the change example 101, the management name is “collection tank nozzle position change”, the cause ID is part ID1, the influence object ID is part ID2, and the cause ID1. The additional man-hours for the parts and the additional man-hours for the affected object ID 2 are 0.4 and 0.75, respectively.
 次に、ステップS62において、読み込んだ変更管理データの影響経路(リンク)が、図10の仮想要素ネットワークに存在するかを判定する。判定方法は、図12の変更管理データにおける原因物IDと影響物IDの組み合わせが、図10の原因ノードIDと影響ノードIDの組み合わせに合致する仮想要素ネットワークデータが存在するかどうかを見るものである。このようにして、存在する場合(Yes)にはステップS63の処理に進み、存在しない場合(No)にはステップS64に進んで次の変更管理レコードの処理に移る。 Next, in step S62, it is determined whether the influence path (link) of the read change management data exists in the virtual element network of FIG. The determination method is to check whether there is virtual element network data in which the combination of the cause ID and the influence ID in the change management data in FIG. 12 matches the combination of the cause node ID and the influence node ID in FIG. is there. In this way, if it exists (Yes), the process proceeds to step S63, and if it does not exist (No), the process proceeds to step S64 to proceed to the next change management record process.
 ここで、仮想要素ネットワークデータ(図10)における原因ノードと影響ノードの組み合わせと、変更管理データ(図12)における原因物と影響物の組み合わせが合致するか否かを判定する二つの方法について述べる。 Here, two methods for determining whether or not the combination of the cause node and the influence node in the virtual element network data (FIG. 10) and the combination of the cause and the influence object in the change management data (FIG. 12) match each other will be described. .
 第一の方法は、仮想要素ネットワークデータ(図10)における原因ノードIDと影響ノードIDの組み合わせと、変更管理データ(図12)における原因物IDと影響物IDの組み合わせが完全一致するかどうかで判定するものである。この方法では、部品IDの完全一致をみるため、部品の組み合わせとして完全に同一のものとなるため、精度は極めて高いが、実績の数として極めて少なくなり、上記のように追加工数や追加コストを統計的に算出する場合に値が得られにくいと考えられる。 The first method is whether the combination of the cause node ID and the influence node ID in the virtual element network data (FIG. 10) and the combination of the cause ID and the influence object ID in the change management data (FIG. 12) completely match. Judgment. In this method, since the part IDs are completely matched, the combination of parts is completely the same, so the accuracy is extremely high, but the number of achievements is extremely small, and additional man-hours and costs are reduced as described above. It is considered that it is difficult to obtain a value when calculating statistically.
 第二の方法は、仮想要素ネットワークデータ(図10)における原因ノードの部品種別と影響ノードの部品種別の組み合わせと、変更管理データ(図12)における原因物の部品種別と影響物の部品種別の組み合わせが完全一致するかどうかで判定するものである。
この部品種別に着目する方法では、各部品を予め定められた建設現場での据付単位に分割された部品種別(例:大径配管、小径配管、大径サポート、小径サポート、ポンプ、弁、タービン、圧力容器、躯体、制御機器、モジュール等)に割り当てるため、部品種別IDの一致をみることになる。そのため、精度は第一の方法に比べて劣るものの、過去のプラントにおける設計等の実績を含めると実績数を相当数確保でき、上記のように追加工数や追加コストを統計的に算出する場合に有効な値が得られやすいため、本発明においては第二の方法がより適していると考えられる。なお、部品種別の情報は、図10と図12には直接記載されていないが、部品IDを辿ることにより図2の設計DBを参照し、部品種別の欄を確認することで得られる。
The second method is a combination of the cause node component type and the influence node component type in the virtual element network data (FIG. 10), and the cause component type and the influence object component type in the change management data (FIG. 12). Judgment is made based on whether or not the combination completely matches.
In the method focusing on this part type, each part is divided into predetermined installation units at the construction site (eg, large diameter pipe, small diameter pipe, large diameter support, small diameter support, pump, valve, turbine) , Pressure container, housing, control device, module, etc.), the part type ID matches. Therefore, although the accuracy is inferior to that of the first method, it is possible to secure a considerable number of achievements by including past achievements such as design in the past plant, and when calculating additional man-hours and additional costs statistically as described above. Since an effective value is easily obtained, the second method is considered more suitable in the present invention. Although the component type information is not directly described in FIGS. 10 and 12, it can be obtained by checking the component type column by referring to the design DB of FIG. 2 by tracing the component ID.
 なお、今回取り込んだ第1レコードの場合には、第一の方法による一致が見受けられる。図12の変更管理データにおける原因物IDは「1」であり、影響物IDは「2」の部品である。これに対し、図10のリンクID1002には、原因ノードIDが「1」、影響ノードIDが「2」の組み合わせが記載されている。 In the case of the first record imported this time, there is a match by the first method. The cause ID in the change management data in FIG. 12 is “1”, and the influence ID is “2”. On the other hand, the link ID 1002 in FIG. 10 describes a combination of the cause node ID “1” and the affected node ID “2”.
 次に、ステップS62でYesと判定され、変更管理データ(図12)について仮想ネットワークのリンクが存在する場合に実行する処理ステップS63について説明する。このステップでは、変更管理データ(図12)における原因側追加工数、原因側追加コスト、影響側追加工数、影響側追加コストの各データを取得し、仮想要素ネットワークデータ(図10)における原因側追加工数、原因側追加コスト、影響側追加工数、影響側追加コストにそれぞれデータを設定するとともに、変更回数を1だけインクリメントする。なお、今回の事例では、リンクID1002について、原因物ID1の追加工数と、影響物ID2の追加工数の欄にそれぞれ0.4人、0.75人が追加記録される。なお、変更回数は、過去に変更実績なしの場合は0、実績ありの場合はその回数を示す。 Next, processing step S63 executed when it is determined Yes in step S62 and there is a virtual network link for change management data (FIG. 12) will be described. In this step, cause side additional man-hours, cause-side additional costs, influence-side additional man-hours, and influence-side additional costs in the change management data (FIG. 12) are acquired, and cause-side addition in the virtual element network data (FIG. 10). Data is set for each of the man-hour, cause-side additional cost, influence-side additional man-hour, and influence-side additional cost, and the number of changes is incremented by one. In this case, 0.4 and 0.75 are additionally recorded in the columns of the additional man-hour of the cause ID 1 and the additional man-hour of the affected object ID 2 for the link ID 1002, respectively. The number of changes indicates 0 when there is no change record in the past, and indicates the number when there is a change record.
 ここまでの処理の前に、同一の原因ノードと影響ノードの組み合わせについて変更実績があり、今回新たに別の変更実績が加わった場合には、原因側追加工数、原因側追加コスト、影響側追加工数、影響側追加コストとして各々の平均値を設定する。平均値は、前回の値に前回の変更回数を乗算し、さらに今回の値を加えた上で、今回の変更回数(前回の変更回数に1加えた値)で除算することにより得られる。 Before processing so far, there is a change record for the combination of the same cause node and influence node, and when another change record is newly added this time, additional cause side man-hours, cause side additional cost, addition of influence side Each average value is set as the man-hour and the influence side additional cost. The average value is obtained by multiplying the previous value by the previous change count, adding the current value, and then dividing by the current change count (the value obtained by adding 1 to the previous change count).
 次に、図12の変更管理データベースの全レコードの処理が終了したかを判定する。終了した場合(Yes)にはステップS65に進み、終了していない場合(No)にはステップS61に戻って処理を続ける。 Next, it is determined whether all the records in the change management database in FIG. 12 have been processed. If the process has been completed (Yes), the process proceeds to step S65. If the process has not been completed (No), the process returns to step S61 to continue the process.
 最後に、ステップS65において、変更管理データベース(図12)の全レコードの処理が終了した場合に、上記により修正された仮想要素ネットワークデータベースを要素ネットワークデータベース11として生成(複製)する。以上のようにして、要素ネットワーク生成部102では、変更管理データベース3eを用いて仮想要素ネットワークデータを修正することにより、要素ネットワークデータベース11として出力する。 Finally, when the processing of all the records in the change management database (FIG. 12) is completed in step S65, the virtual element network database modified as described above is generated (duplicated) as the element network database 11. As described above, the element network generation unit 102 corrects the virtual element network data using the change management database 3e, and outputs it as the element network database 11.
 以上のようにして、要素ネットワーク生成部10においては、設計データベース3a、変更管理データベース3e等のエンジニアリングデータベース3を用いて、プラント建設に関わる各種データの関連を紐づけることにより要素ネットワークを生成する。なお、この要素ネットワーク生成部10の処理を実行するタイミングは、要素ネットワークデータベース11の管理担当者の判断で随時実行するようにしてもよいし、設計データベース3a、変更管理データベース3e等の各データベースが更新されるたびに自動で実行するようにしてもよいし、あるいは、日に1回、週に1回などスケジューリングされた日時に自動で実行するようにしてもよい。 As described above, the element network generation unit 10 generates an element network by associating various data related to plant construction using the engineering database 3 such as the design database 3a and the change management database 3e. Note that the timing of executing the process of the element network generation unit 10 may be executed at any time based on the judgment of the person in charge of the element network database 11, or each database such as the design database 3a and the change management database 3e It may be executed automatically every time it is updated, or it may be executed automatically at a scheduled date and time, such as once a day or once a week.
 次に、建設データ管理装置1を構成する他の各部について説明する。要素ネットワークデータベース11は、上述したように、前記要素ネットワーク生成部102において生成されるものであり、そのデータフォーマットの一例は、前記仮想要素ネットワークと同じく図11に示す通りである。 Next, other parts constituting the construction data management apparatus 1 will be described. As described above, the element network database 11 is generated by the element network generation unit 102, and an example of the data format is as shown in FIG.
 変更影響評価部12は、変更が発生する際に、該変更案を基に要素ネットワークデータベース11を検索することによって事前にその影響範囲及び影響量を抽出し、結果を影響リンクリストとして出力する機能を有し、その構成は、変更案入力部120、および影響評価部121から成る。 The change impact evaluation unit 12 has a function of extracting an impact range and an impact amount in advance by searching the element network database 11 based on the proposed change and outputting the result as an impact link list when the change occurs. The configuration includes a change plan input unit 120 and an impact evaluation unit 121.
 まず、変更影響評価部12を構成する各部について説明する。 First, each part which comprises the change influence evaluation part 12 is demonstrated.
 変更案入力部120は、設計担当者、調達担当者、建設管理担当者などの担当者が担当する部分の変更案を検討した後に、該変更案のデータを所定フォーマットで作成して影響評価部121へ送信するところである。変更案データは、担当者によって、データベース管理システム2等のデータ編集ツールを用いて変更管理データベース3eで定められたデータフォーマット(図12)にしたがって、1つの変更案につき1レコードデータとして作成される。ただし、この段階では変更案は未確定情報であるため、図12のデータフォーマットの必ずしも全ての項目を入力する必要はなく、少なくとも原因物ID、影響物ID、原因側追加工数、および原因側追加コストの情報を作成すればよく、残りの項目については、不明であれば空欄または初期値のゼロを入力してもよい。以下では、担当者は設計担当者、変更案は設計変更案である場合の例を用いて説明する。 The change plan input unit 120 examines a change plan of a part in charge of a person in charge such as a designer, a procurement manager, or a construction manager, and then creates data of the change plan in a predetermined format to generate an impact evaluation unit. It is about to transmit to 121. The change plan data is created as one record data per change plan by the person in charge according to the data format (FIG. 12) defined in the change management database 3e using a data editing tool such as the database management system 2. . However, since the proposed change is unconfirmed information at this stage, it is not necessary to input all the items in the data format of FIG. 12, and at least the cause ID, the influence ID, the cause side additional man-hour, and the cause side addition Cost information may be created, and the remaining items may be blank or an initial value of zero may be entered if unknown. In the following description, the person in charge is a design person and the change plan is a design change plan.
 影響評価部121においては、変更案入力部120より送信された設計変更案データを基に、設計変更対象の部品、直接影響を受ける部品、工程、図書等の物、変更対象側の影響量などを抽出し、前記要素ネットワークデータベース11のデータを、複次的に影響を受けるものが見つからなくなるまで検索することによって、影響範囲を抽出し、影響量を算出する。 In the impact evaluation unit 121, based on the design change plan data transmitted from the change plan input unit 120, the design change target part, the part that is directly affected, the process, the book, etc., the change target side impact amount, etc. The influence range is extracted and the amount of influence is calculated by searching the data in the element network database 11 until no influence is found on the element network database 11.
 ここで、影響評価部121の詳細な処理内容について、図11、図12のデータ例と図14のフローチャートを用いて説明する。図14のフローチャートにおいては、はじめにステップS70において、要素ネットワークデータ(図11)から要素ネットワークデータの全レコードを読み込む。 Here, detailed processing contents of the impact evaluation unit 121 will be described with reference to data examples in FIGS. 11 and 12 and a flowchart in FIG. In the flowchart of FIG. 14, first, in step S70, all records of the element network data are read from the element network data (FIG. 11).
 次に、ステップS71において、変更案入力部120より送信された設計に関する変更案のデータを読み込む。以下、変更案データとして、図5の管理ID101の例を用いて説明する。つまり、この例では管理名称が収集槽ノズル位置変更であり、原因物IDと影響物IDがそれぞれ1、2である事例が、設計に関する変更案として抽出される。 Next, in step S71, the change plan data related to the design transmitted from the change plan input unit 120 is read. Hereinafter, the change plan data will be described using the example of the management ID 101 in FIG. That is, in this example, the management name is the collection tank nozzle position change, and cases where the cause ID and the influence object ID are 1 and 2, respectively, are extracted as the design change proposal.
 次に、読み込んだ変更案データの影響経路(リンク)が、図11の要素ネットワークデータに存在するか否かを、ステップS72で判定する。判定方法は、変更案データにおける原因物と影響物の組み合わせが、原因ノードと影響ノードの組み合わせに合致する要素ネットワークデータが存在するかどうかを見るものである。存在する場合(Yes)にはステップS73の処理に進み、存在しない場合(No)にはステップS77の処理へ進む。 Next, it is determined in step S72 whether or not the influence route (link) of the read change plan data exists in the element network data of FIG. The determination method is to check whether there is element network data in which the combination of the cause and the influence in the change plan data matches the combination of the cause and the influence nodes. If it exists (Yes), the process proceeds to step S73. If it does not exist (No), the process proceeds to step S77.
 ここで、要素ネットワークデータにおける原因ノードと影響ノードの組み合わせと変更案データにおける原因物と影響物の組み合わせが合致するか否かを判定する方法については、図13で説明した要素ネットワーク生成部102の処理フローにおけるステップS62のステップと同様、部品IDの一致をみる方法と、部品種別IDの一致をみる方法の二方法がある。以下では、簡単のため、前者の判定方法を例に説明する。 Here, a method of determining whether or not the combination of the cause node and the influence node in the element network data matches the combination of the cause and the influence object in the change plan data is the same as that of the element network generation unit 102 described in FIG. Similar to step S62 in the processing flow, there are two methods: a method of checking the match of component IDs and a method of checking the match of component type IDs. Hereinafter, for the sake of simplicity, the former determination method will be described as an example.
 変更案データである管理ID101および要素ネットワークデータ(図11)の例において、前者の管理ID101における原因物IDおよび影響物IDがそれぞれ1、2である。次に後者の図11の要素ネットワークデータにおける原因ノードID、影響ノードIDを検索すると、それらの各データがそれぞれ1b、2aであるリンクID1002が該当することが抽出できる。ここで、ノードIDのアルファベットは部品の要素を表すサフィックスなので、ここでは無視できる。よって、この例では、ステップS72の条件判定ではYesということになる。 In the example of the management ID 101 and element network data (FIG. 11) that are the change plan data, the cause ID and the influence ID in the former management ID 101 are 1 and 2, respectively. Next, when the cause node ID and the influence node ID in the latter element network data of FIG. 11 are searched, it can be extracted that the link IDs 1002 corresponding to the respective data 1b and 2a are applicable. Here, since the alphabet of node ID is a suffix indicating the component element, it can be ignored here. Therefore, in this example, the condition determination in step S72 is Yes.
 次に、変更案データの影響経路(リンク)が前記要素ネットワークに存在する場合(ステップS72でYesと判定された場合)に実行される処理ステップS73について説明する。このステップS73では、ステップS72で抽出されたリンクID(1002)を影響リンクリストに登録する。影響リンクリストは、入力された変更案データごとに作成されるもので、その構成は図15に例示するように、変更案によって及ぶ影響範囲を示すリンクIDデータ列から成る。 Next, a description will be given of the processing step S73 that is executed when the influence route (link) of the change plan data exists in the element network (when it is determined Yes in step S72). In this step S73, the link ID (1002) extracted in step S72 is registered in the influence link list. The influence link list is created for each input change plan data, and its configuration is composed of a link ID data string indicating the range of influence covered by the change plan as illustrated in FIG.
 このケースで登録される影響リンクリストは、管理ID1について、変更案名称が収集槽ノズル位置変更であり、原因物IDおよび影響物IDがそれぞれ1、2である。さらにこの影響リンクリストには、原因側追加工数として0.25人が、原因側追加コストとして0が登録される。 In the influence link list registered in this case, for management ID 1, the proposed change name is the collection tank nozzle position change, and the cause ID and the influence object ID are 1 and 2, respectively. Furthermore, 0.25 person is registered as the cause side additional man-hour and 0 is registered as the cause side additional cost in this influence link list.
 次に、ステップS74において、影響を受けた影響ノードがさらに他の要素へ影響を及ぼす要素ネットワークの影響経路(リンク)が存在するかを判定する。具体的にこの事例では、変更により影響を受けた影響ノードID(図11のリンクID1002の欄の影響ノード2a)を原因ノードとする影響経路(リンク)が前記要素ネットワークに存在するかどうかを判定する。図11の例においては、ID1003と1004の原因ノードの欄に2aを記載した2例が存在する。ID1003と1004においては、2aを原因ノードとするときの影響ノードは2bと1bである。 Next, in step S74, it is determined whether or not there is an influence path (link) of the element network in which the affected node further affects other elements. Specifically, in this case, it is determined whether or not an influence path (link) whose cause node is an influence node ID affected by the change (influence node 2a in the column of link ID 1002 in FIG. 11) exists in the element network. To do. In the example of FIG. 11, there are two examples in which 2a is described in the cause node column of IDs 1003 and 1004. In the IDs 1003 and 1004, the influence nodes when 2a is the cause node are 2b and 1b.
 このように、影響を受けた影響ノードIDがさらに他の要素へ影響を及ぼす要素ネットワークの影響経路(リンク)が存在する場合(ステップS74でYesと判定された場合)には、ステップS75へ進み、そうでない場合はステップS77の処理へ進む。 As described above, when there is an influence path (link) of the element network in which the affected node ID affected further affects other elements (when determined Yes in step S74), the process proceeds to step S75. If not, the process proceeds to step S77.
 影響を受けた影響ノード(この例では2a)が、さらに他の要素へ影響を及ぼす要素ネットワークの影響経路(リンク)が存在する場合(ステップS74でYesと判定された場合)に実行する処理ステップS75について説明する。このステップでは、ステップS74で抽出されたリンクが、すでに抽出されたリンクと逆向きのリンクかどうかを判定する。例えば、図9の仮想要素ネットワークで言えば、リンク1002と1004の関係がこれに該当する。ステップS74で抽出されたID1003と1004の2データのうち、後者のリンク1004はすでに抽出されたID1002のリンクと逆向きであるためYesと判定され、前者は逆向きの抽出済みリンクが存在しないためNoと判定される。 Process step executed when the affected node (2a in this example) that is affected has an influence route (link) of an element network that further affects other elements (when determined Yes in step S74) S75 will be described. In this step, it is determined whether or not the link extracted in step S74 is a link opposite to the already extracted link. For example, in the virtual element network of FIG. 9, the relationship between the links 1002 and 1004 corresponds to this. Of the two data of ID1003 and 1004 extracted in step S74, the latter link 1004 is opposite to the already extracted ID1002 link, so it is determined Yes, and the former does not have a reverse extracted link. No is determined.
 すでに抽出されたリンクと逆向きではないと判定された場合(ステップS75でNoと判定された場合)にはステップS73へ戻って処理を続け、そうでない場合は、該当リンクIDを影響リンクリストに登録せずにステップS76へ進む。ここで、逆向きのリンクを登録しない理由は、すでに抽出されたリンクにおける影響量(原因側追加工数、原因側追加コスト、影響側追加工数、影響側追加コスト)において逆向きの影響を織り込み済みであり、二重の影響量考慮を避けるためである。 If it is determined that the link is not in the opposite direction to the already extracted link (if it is determined No in step S75), the process returns to step S73 to continue the process. Otherwise, the corresponding link ID is set in the influence link list. The process proceeds to step S76 without registration. Here, the reason for not registering the reverse link has already incorporated the reverse effect in the influence amount (cause side additional man-hour, cause-side additional cost, influence side additional man-hour, influence side additional cost) in the already extracted link This is to avoid the double influence amount consideration.
 次に、すでに抽出されたリンクと逆向きであると判定された場合(ステップS75でYesと判定された場合)に実行する処理ステップS76について説明する。このステップでは、ステップS74にて抽出された全ての影響リンクの処理を終了したかを判定する。
全てを終了していない(ステップS76でNoと判定された場合)場合にはステップS75に戻って処理を続け、そうでなければステップS77の処理へ進む。
Next, processing step S76 that is executed when it is determined that the direction is opposite to the already extracted link (when determined Yes in step S75) will be described. In this step, it is determined whether or not the processing of all the influence links extracted in step S74 has been completed.
If all have not been completed (if determined No in step S76), the process returns to step S75 to continue the process, otherwise the process proceeds to step S77.
 最後に、ステップS77において、影響リンクリストのデータのうち、原因側追加工数、原因側追加コスト、および各影響リンクIDを参照して、当該変更案による影響量の総計である総追加工数および総追加コストを算出し、影響リンクリストデータに登録する。
影響リンクIDからの影響量算出にあたっては、該影響リンクIDをキーに要素ネットワークデータベース11を検索し、該当レコードより原因側追加工数、原因側追加コスト、影響側追加工数、および影響側追加コストの各影響量をそれぞれ抽出すればよい。なお、該当レコードが複数存在する場合には、各影響量の平均値を算出すればよい。また、該当レコードの影響量と変更案を入力した影響量が重複する場合(例:図15の原因側追加工数0.25人日に対し、図11のリンクID1002の原因側追加工数0.4人日)、変更案の入力値(0.25人日)を優先的に採用する。
Finally, in step S77, referring to the causal side additional man-hour, the causal side additional cost, and each affected link ID in the data of the influence link list, the total additional man-hour and the total of the influence amount due to the proposed change are calculated. The additional cost is calculated and registered in the influence link list data.
In calculating the influence amount from the influence link ID, the element network database 11 is searched using the influence link ID as a key, and the cause side additional manpower, the cause side additional cost, the influence side additional manpower, and the influence side additional cost are calculated from the corresponding record. Each influence amount may be extracted. When there are a plurality of corresponding records, the average value of each influence amount may be calculated. Further, when the influence amount of the corresponding record overlaps with the influence amount inputted with the change plan (example: cause side additional man-hour 0.25 man-day in FIG. 15, cause side additional man-hour 0.4 man-day in link ID 1002 in FIG. 11. ), Preferentially adopt the input value (0.25 man-days) of the proposed change.
 以上のようにして、影響評価部121は、変更案入力部120より送信された設計変更案データを基に、設計変更対象の部品、直接影響を受ける部品、工程、図書等の物、変更対象側の影響量などを抽出し、要素ネットワークデータベース11のデータを、複次的に影響を受けるものが見つからなくなるまで検索することによって、影響範囲を抽出し、影響量を算出する。 As described above, the impact evaluation unit 121, based on the design change plan data transmitted from the change plan input unit 120, the part to be changed, the part that is directly affected, the process, the book, and the like, the change target The influence range is extracted and the influence amount is calculated by searching the data in the element network database 11 until no influence is found in the element network database 11.
 以上のようにして、変更影響評価部12は、変更が発生する際に、該変更案を基に要素ネットワークデータベースを検索することによって、事前にその影響範囲および影響量を抽出し、結果を影響リンクリストとして出力する。 As described above, when a change occurs, the change impact evaluation unit 12 searches the element network database based on the proposed change, extracts the impact range and the impact amount in advance, and affects the result. Output as a linked list.
 次に、図1に戻り建設データ管理装置1を構成する別の装置について説明を続ける。 Next, returning to FIG. 1, the description of another apparatus constituting the construction data management apparatus 1 will be continued.
 表示制御部13は、要素ネットワーク生成部10が生成した要素ネットワークデータベース11、変更影響評価部12が生成した影響リンクリストデータ、あるいはエンジニアリングデータベース群3の各データベースを読み込んで、テキストやグラフィック等の形式で表示装置4に表示信号を送信する。これにより、例えば次のようなものを表示装置4に表示することができる。 The display control unit 13 reads each database of the element network database 11 generated by the element network generation unit 10, the influence link list data generated by the change impact evaluation unit 12, or the engineering database group 3, and is in a format such as text or graphics Then, a display signal is transmitted to the display device 4. Thereby, for example, the following can be displayed on the display device 4.
 一つの表示例として、要素ネットワークデータベース11の可視化を挙げる。ここで、図16は、設計図をベースとした要素単位での要素ネットワークデータの表示の一例を示す図、図17は、模式的要素ネットワークデータの表示の一例を示す図、図18は、設計図をベースとした部品単位での要素ネットワークデータの表示の一例を示す図である。 As an example of display, the element network database 11 is visualized. Here, FIG. 16 is a diagram showing an example of display of element network data in element units based on the design drawing, FIG. 17 is a diagram showing an example of display of schematic element network data, and FIG. It is a figure which shows an example of the display of the element network data per component based on a figure.
 これらの図示表現において、例えば、図16、図17、図18に例示するように、各要素の接続関係を示したグラフィックに対して、各部の影響関係を矢印90で重畳表示することで、要素相互の接続関係と影響の関係を明示し可視化する。図3と同様に、図16は、図8のように設計図をベースとした要素ネットワーク、図17は、図9のようにデフォルメ化した模式的要素ネットワークをそれぞれグラフィック表示した例を示している。また、図18は、要素単位ではなく、部品単位に表示を簡略化したものであり、この場合には部品内の影響関係(例えば90dがその一例)の表示を省略する。 In these graphical representations, for example, as illustrated in FIGS. 16, 17, and 18, the influence relationship of each part is superimposed and displayed on the graphic showing the connection relationship of each element with an arrow 90. Clarify and visualize each other's connection and impact relationships. Similar to FIG. 3, FIG. 16 shows an example in which an element network based on a design diagram as shown in FIG. 8 and a schematic element network deformed as shown in FIG. 9 are graphically displayed. . In FIG. 18, the display is simplified not for each element but for each part. In this case, the display of the influence relationship within the part (for example, 90d is an example) is omitted.
 これらの表示事例で表示する矢印は、要素ネットワークデータベース11に含まれる全レコードとしてもよいが、変更回数が0より大きいレコード、すなわち過去に変更が発生したリンクのみを対象とするようにしてもよい。あるいは、過去の変更回数に応じて矢印の表示形態(大きさ、太さ、線の種類など)を区別して表示してもよい。このようにすることによって、過去に変更が発生した頻度に応じてリンクを表示することができるようになる。 The arrows to be displayed in these display examples may be all records included in the element network database 11, but only the records with the number of changes greater than 0, that is, the links that have changed in the past may be targeted. . Or you may distinguish and display the display form (a magnitude | size, thickness, the kind of line, etc.) of an arrow according to the past change frequency. By doing in this way, a link can be displayed according to the frequency with which the change occurred in the past.
 更に。影響範囲について、図示表現することも有効であり、例えば図19は、設計図をベースとした要素単位での影響範囲の表示の一例を示す図、図20は、模式的影響範囲の表示の一例を示す図で、図21は、設計図をベースとした部品単位での影響範囲の表示の一例を示す図である。 Furthermore, For example, FIG. 19 is a diagram showing an example of the display of the influence range in element units based on the design drawing, and FIG. 20 is an example of the display of the schematic influence range. FIG. 21 is a diagram showing an example of the display of the influence range in component units based on the design drawing.
 これらの表現においては、影響量(例えば原因側追加工数と影響側追加工数の和)の大きさに応じて表示する矢印の形態(大きさ、太さ、線の種類など)を変更して表示してもよく、これによりインパクトの大きさを一目でわかるようにすることができる。あるいは、変更回数に応じて表示する矢印の形態(大きさ、太さ、線の種類など)を変更して表示してもよく、これにより変更回数の多さを一目でわかるようにすることができる。図17、図18における矢印90a~90dは、他の矢印よりも太線で大きく表示しており、影響量または変更回数が所定の値よりも大きいことを表す。また、各部の影響関係を表す矢印をマウス等の入力装置で選択することにより、その影響量の詳細を表示するようにしてもよい。また、部品、要素について、これらと関連する工程、図書などとの関係を明示するのが良い。設計データベースとの関係は十分に表示されているが他のデータベースとの関係が希薄だからである。 In these expressions, the display of the arrow shape (size, thickness, line type, etc.) is changed according to the size of the impact amount (for example, the sum of the additional effort on the cause side and the additional effort on the impact side). It is possible to recognize the magnitude of the impact at a glance. Alternatively, the form (size, thickness, line type, etc.) of the arrow to be displayed may be changed according to the number of changes, so that the number of changes can be recognized at a glance. it can. The arrows 90a to 90d in FIGS. 17 and 18 are displayed in bold lines larger than the other arrows, indicating that the influence amount or the number of changes is larger than a predetermined value. Further, the details of the influence amount may be displayed by selecting an arrow representing the influence relationship of each part with an input device such as a mouse. In addition, it is desirable to clearly indicate the relationship between parts and elements and processes and books related to them. This is because the relationship with the design database is sufficiently displayed, but the relationship with other databases is sparse.
 なお、図16、図17、図18の各図においては、影響関係の矢印91aを選択した場合に表示される詳細情報の例を91bに示している。 In addition, in each figure of FIG.16, FIG.17, FIG.18, the example of the detailed information displayed when the arrow 91a of influence relationship is selected is shown to 91b.
 別の表示例として、影響リンクリストデータの可視化を挙げる。例えば、各要素の接続関係を示したグラフィックに対して、変更案に含まれる部分およびその影響関係を矢印等で重畳表示する。これらの図において、92は変更案の影響経路(リンク)、93は変更案によりさらに影響される経路(リンク)を表す。変更案に含まれる経路を表す矢印については、大きさや太さなどその表示形態を他と区別するようにしてもよい。さらに、影響リンクリストデータに含まれる総追加工数および総追加コスト94を表示するようにしてもよい。 可視 As another display example, visualization of impact link list data is given. For example, a part included in the change plan and its influence relation are superimposed and displayed on the graphic indicating the connection relation of each element with an arrow or the like. In these drawings, reference numeral 92 denotes an influence route (link) of the change plan, and 93 denotes a route (link) further influenced by the change plan. Regarding the arrow indicating the route included in the proposed change, the display form such as the size and thickness may be distinguished from the others. Further, the total additional man-hours and the total additional cost 94 included in the influence link list data may be displayed.
 なお、図21においては、図18と同様に部品内の影響関係(例えば93aがその一例)の表示を省略する。また、変更原因となる部品や該変更案によって影響が及ぶ部品や要素は、95、96、および97に示すように、表示オブジェクトの色などの表示形態を変更するようにしてもよい。 In FIG. 21, the display of the influence relationship in the part (for example, 93a is an example) is omitted as in FIG. Further, as shown in 95, 96, and 97, the display form such as the color of the display object may be changed for the parts that cause the change and the parts and elements that are affected by the proposed change.
 以上のようにすれば、前記要素ネットワークデータベース11、前記影響リンクリストデータ、あるいはエンジニアリングデータベース群3の各データベースの情報をテキストやグラフィック等の形式で表示装置4に表示することができ、変更担当者が自らの変更案のインパクトを可視化できるようになる。 By doing so, the information of each database of the element network database 11, the influence link list data, or the engineering database group 3 can be displayed on the display device 4 in the form of text, graphics, etc. Will be able to visualize the impact of their proposed changes.
 表示装置4は、CRT、LCD、PDP等のディスプレイ装置であり、前記表示制御部13から送信される表示信号にしたがって、その画面上にテキストやグラフィックス等を表示するものである。 The display device 4 is a display device such as a CRT, LCD, or PDP, and displays text, graphics, or the like on the screen in accordance with a display signal transmitted from the display control unit 13.
 以上のようにすれば、本発明の建設データ管理方法、建設データ管理装置および建設データ管理システムは、建設に関わる各種データの管理において、担当者に必要以上の負担をかけることなく、設計データ、工程データ、図書データ等既存のデータと変更実績データとを用いて各種データ間の関連付けを自動的かつ高精度に構築するとともに、前記各種データ間の関連情報を基に、変更がなされた場合のインパクトを過去の実績に基づき高精度に算出し、変更案の提案者に対して提示することができるようになる。提示されたインパクトを考慮することにより、該変更案を正式に採用する(変更管理データベース3eに登録する)か、あるいは別の変更案を立案するかの意思決定を該提案者が行うに際して有効に支援することができ、ひいては建設プロジェクト全体の業務において効率化を進めることができるようになる。 As described above, the construction data management method, the construction data management device, and the construction data management system of the present invention can manage the design data, the management data, and the design data without burdening the person in charge more than necessary. In addition to automatically and highly accurately associating various data using existing data such as process data and book data and actual change data, and when changes are made based on relevant information between the various data The impact can be calculated with high accuracy based on the past results and presented to the proposer of the change plan. By considering the presented impact, it is effective when the proposer makes a decision on whether to adopt the change proposal formally (register it in the change management database 3e) or to make another change proposal. Can be supported, and as a result, the efficiency of the entire construction project can be improved.
 以上のように、本発明にかかる建設データ管理方法、建設データ管理装置および建設データ管理システムは、建設に関わる各種データの管理において、担当者に必要以上の負担をかけることなく、設計データ等既存のエンジニアリングデータと変更実績データとを用いて各種データ間の関連付けを自動的かつ高精度に構築するとともに、前記各種データ間の関連情報を基に、変更がなされた場合のインパクトを過去の実績に基づき高精度に算出し、変更案の提案者に対して提示することにより、該変更案を正式に採用する(変更管理データベース3eに登録する)か、あるいは別の変更案を立案するかの意思決定を該提案者が行うに際して有効に支援することができ、ひいては建設プロジェクト全体の業務において効率化を進めることができるようになるという効果を有し、例えば、建設に関わる各種エンジニアリングデータベースやその管理システムとネットワークで接続されたPC、サーバ、モバイル情報端末などの各種コンピュータシステム、およびコンピュータシステム上で動作する建設データ管理ソフトウェアに対して、本発明を適用することができる。 As described above, the construction data management method, the construction data management device, and the construction data management system according to the present invention can be used to manage existing data such as design data without burdening the person in charge more than necessary in managing various data related to construction. As a result, the relationship between various data is automatically and accurately built using the engineering data and the actual change data, and the impact when changes are made is based on past information based on the relevant information between the various data. Intention to adopt the change plan formally (register it in the change management database 3e) or to plan another change plan by calculating with high accuracy based on this and presenting it to the proposer of the change plan The proposal can be effectively supported when the proponent makes the decision, and as a result, the efficiency of the entire construction project can be improved. For example, various engineering databases related to construction and various computer systems such as PCs, servers, mobile information terminals connected to the management system of the database, and construction data operating on the computer system The present invention can be applied to management software.
 1   建設データ管理装置
 2   データベース管理システム
 3   エンジニアリングデータベース群
 4   表示装置
 10  要素ネットワーク生成部
 11  要素ネットワークデータベース
 12  変更影響評価部
 13  表示制御部
 100 要素分割部
 101 仮想要素ネットワーク生成部
 102 要素ネットワーク生成部
 120 変更案入力部
 121 影響評価部
90、91a、92、93 各部の影響関係を表す矢印
91b 影響関係を表す矢印を選択した際に表示される詳細情報の例
94  変更案に対する総追加工数および総追加コストの例
95、96、97  変更案に対して影響を受けるもの
DESCRIPTION OF SYMBOLS 1 Construction data management apparatus 2 Database management system 3 Engineering database group 4 Display apparatus 10 Element network production | generation part 11 Element network database 12 Change influence evaluation part 13 Display control part 100 Element division part 101 Virtual element network production | generation part 102 Element network production | generation part 120 Change plan input unit 121 Impact assessment unit 90, 91a, 92, 93 Arrow 91b indicating the impact relationship of each unit Example of detailed information displayed when an arrow representing the impact relationship is selected 94 Total additional man-hours and total addition to the change plan Cost examples 95, 96, 97 What is affected by the proposed change

Claims (10)

  1. 複数部品から構成される構造物の建設に関わる各種データを管理する方法であって、
    構造物を構成する複数部品のそれぞれについて、当該部品に変更が生じたときに当該部品と接続関係にある他部品に影響を与える要素と影響を与えない要素に当該部品を要素分割する要素分割ステップと、前記分割された各要素のつながり毎に、影響を与える原因側要素と、影響を受ける側の影響側要素を定義する仮想要素ネットワークデータを生成する仮想要素ネットワーク生成ステップと、前記構造物の過去の変更履歴データの集合である変更管理データとして、原因物と影響物ならびにその影響度合いを含むデータを生成する変更管理データ生成ステップと、前記仮想要素ネットワークデータに、前記変更管理データに含まれる過去事例に基づく影響度合いを付与して要素ネットワークデータを生成する要素ネットワーク生成ステップを備えたことを特徴とする構造物の建設データ管理方法。
    A method for managing various data related to the construction of a structure composed of a plurality of parts,
    An element division step for dividing the part into elements that do not affect elements that affect other parts that are connected to the part, and elements that do not have an influence on each of the parts that make up the structure. And a virtual element network generation step for generating virtual element network data that defines an influencing element on the affected side and an influencing element on the affected side for each connection of the divided elements; and The change management data that is a set of past change history data is included in the change management data, the change management data generation step for generating data including the cause, the influence, and the degree of the influence, and the virtual element network data is included in the change management data Element network generation step of generating element network data by assigning the degree of influence based on past cases Construction data management method of a structure characterized by comprising.
  2. 請求項1に記載の構造物の建設データ管理方法において、
    前記要素ネットワーク生成ステップにおいて、前記変更管理データに該当する前記仮想要素ネットワークデータを検索する際に、前記変更管理データに含まれる前記原因物と影響物のIDと、前記仮想要素ネットワークの前記原因側要素と影響側要素に付与された部品IDの一致をみる第一の方法と、前記変更管理データに含まれる前記原因物と影響物に関する部品種別IDと、前記仮想要素ネットワークの前記原因側要素と、影響側要素に関する部品種別IDの一致をみる第二の方法によって特定することを特徴とする構造物の建設データ管理方法。
    In the construction data management method of the structure according to claim 1,
    In the element network generation step, when searching for the virtual element network data corresponding to the change management data, the cause and influence IDs included in the change management data, and the cause side of the virtual element network A first method for checking the coincidence of component IDs assigned to an element and an influencing element, a component type ID relating to the causative and influencing substances included in the change management data, and the causal element of the virtual element network A construction data management method for a structure, characterized in that it is specified by a second method for checking the coincidence of component type IDs related to the influence side element.
  3. 請求項2に記載の構造物の建設データ管理方法において、
    前記第二の方法における部品種別IDは、各部品を予め定められた建設現場での据付単位に分割されたことを特徴とする建設データ管理方法。
    In the construction data management method of the structure according to claim 2,
    The part data ID in the second method is a construction data management method characterized in that each part is divided into predetermined installation units at a construction site.
  4. 複数部品から構成される構造物の建設に関わる各種データを管理する方法であって、
    構造物を構成する複数部品のそれぞれについて、当該部品に変更が生じたときに当該部品と接続関係にある他部品に影響を与える要素と影響を与えない要素に当該部品を要素分割する要素分割ステップと、前記分割された各要素のつながり毎に、影響を与える原因側要素と、影響を受ける側の影響側要素を定義する仮想要素ネットワークデータを生成する仮想要素ネットワーク生成ステップと、前記構造物の過去の変更履歴データの集合である変更管理データとして、原因物と影響物ならびにその影響度合いを含むデータを生成する変更管理データ生成ステップと、前記仮想要素ネットワークデータに、前記変更管理データに含まれる過去事例に基づく影響度合いを付与して要素ネットワークデータを生成する要素ネットワーク生成ステップと、評価するための変更案のデータを所定フォーマットで作成、入力する変更案入力ステップと、該変更案データを基に、該変更対象の物、それにより直接影響を受ける物、および変更対象側の影響量を抽出し、前記要素ネットワークのデータを、複次的に影響を受けるものが見つからなくなるまで検索することによって、全体の影響範囲を抽出し全体の影響量を算出して、その結果を影響リンクリストとして出力する影響評価ステップとを備えたことを特徴とする構造物の建設データ管理方法。
    A method for managing various data related to the construction of a structure composed of a plurality of parts,
    An element division step for dividing the part into elements that do not affect elements that affect other parts that are connected to the part, and elements that do not have an influence on each of the parts that make up the structure. And a virtual element network generation step for generating virtual element network data that defines an influencing element on the affected side and an influencing element on the affected side for each connection of the divided elements; and The change management data that is a set of past change history data is included in the change management data, the change management data generation step for generating data including the cause, the influence, and the degree of the influence, and the virtual element network data is included in the change management data Element network generation step of generating element network data by assigning the degree of influence based on past cases A change plan input step for creating and inputting change plan data for evaluation in a predetermined format, and based on the change plan data, an object to be changed, an item directly affected by the change plan, and a change target side By extracting the influence amount and searching the data of the element network until no influences are found in multiple ways, the entire influence range is extracted and the entire influence amount is calculated, and the result is influenced. A construction data management method for a structure, comprising: an impact evaluation step of outputting as a linked list.
  5. 複数部品から構成される構造物の建設に関わる各種データを管理する装置であって、
    構造物を構成する複数部品のそれぞれについて、当該部品に変更が生じたときに当該部品と接続関係にある他部品に影響を与える要素と影響を与えない要素に当該部品を要素分割する要素分割手段と、前記分割された各要素のつながり毎に、影響を与える原因側要素と、影響を受ける側の影響側要素を定義する仮想要素ネットワークデータを生成する仮想要素ネットワーク生成手段と、前記構造物の過去の変更履歴データの集合である変更管理データとして、原因物と影響物ならびにその影響度合いを含むデータを生成する変更管理データ生成手段と、前記仮想要素ネットワークデータに、前記変更管理データに含まれる過去事例に基づく影響度合いを付与して要素ネットワークデータを生成する要素ネットワーク生成手段と、上記の各種データに基づいて表示内容を制御する表示制御手段と表示装置とを備え、前記表示装置には要素分割された複数の部品が、要素間のつながりと、原因側要素から影響側要素への矢印と共に表示されることを特徴とする構造物の建設データ管理装置。
    A device that manages various data related to the construction of a structure composed of multiple parts,
    An element dividing means for dividing a part into a plurality of parts constituting a structure and an element that has an influence on other parts that are connected to the part and an element that has no influence when the part is changed A cause-side element that influences for each connection of the divided elements, virtual element network generation means for generating virtual element network data that defines the affected-side element on the affected side, and the structure Change management data that is a set of past change history data, change management data generation means for generating data including a cause, an influence, and the degree of the influence, and the virtual element network data are included in the change management data Element network generation means for generating element network data by assigning the degree of influence based on past cases; Display control means for controlling the display content based on the data and a display device, wherein the display device includes a plurality of divided components together with connections between elements and arrows from the cause side element to the influence side element A construction data management device for a structure characterized by being displayed.
  6. 請求項5に記載の構造物の建設データ管理装置において、
    前記表示装置への表示は、分割された要素をノードとし、分割された要素間のつながりをリンクとし、かつ原因側要素から影響側要素への矢印は、前記リンクに沿って表示されることを特徴とする構造物の建設データ管理装置。
    In the construction data management apparatus for a structure according to claim 5,
    In the display on the display device, the divided element is a node, the connection between the divided elements is a link, and the arrow from the cause side element to the influence side element is displayed along the link. Construction data management device for the featured structure.
  7. 請求項5または請求項6に記載の構造物の建設データ管理装置において、
    前記表示装置への表示は、前記影響度合いの大きさに応じて原因側要素から影響側要素への矢印が表示変更されることを特徴とする構造物の建設データ管理装置。
    In the construction data management device for a structure according to claim 5 or 6,
    The construction data management device for a structure is characterized in that the display from the causal element to the influencing element is changed according to the magnitude of the degree of influence.
  8. 請求項5または請求項6に記載の構造物の建設データ管理装置において、
    前記表示装置への表示は、前記影響度合いが、原因側と影響側のそれぞれについて、数値表記されることを特徴とする構造物の建設データ管理装置。
    In the construction data management device for a structure according to claim 5 or 6,
    The construction data management device for a structure is characterized in that the display on the display device is numerically expressed for the degree of influence on each of the cause side and the influence side.
  9.  設計データ、部品データ、工程データ、図書データなど構造物の建設に関わるデータと、当該構造物の過去の変更履歴データとを収納するエンジニアリングデータベース群、
     該エンジニアリングデータベース群のデータを管理するとともに、前記構造物の過去の変更履歴データの集合である変更管理データとして、原因物と影響物ならびにその影響度合いを含むデータを生成する変更管理データ生成手段を備えたデータベース管理システム、
     前記エンジニアリングデータベース群内に記憶された構造物を構成する複数部品のデータを取り込んで、複数部品のそれぞれについて、当該部品に変更が生じたときに当該部品と接続関係にある他部品に影響を与える要素と影響を与えない要素に当該部品を要素分割する要素分割手段と、前記分割された各要素のつながり毎に、影響を与える原因側要素と、影響を受ける側の影響側要素を定義する仮想要素ネットワークデータを生成する仮想要素ネットワーク生成手段と、前記仮想要素ネットワークデータに、前記データベース管理システム内の変更管理データ生成手段により生成されたデータに含まれる過去事例に基づく影響度合いを付与して要素ネットワークデータを生成する要素ネットワーク生成手段とから構成される建設データ管理装置、
     上記の各種データに基づいて表示内容を表示する表示装置
    から構成される構造物の建設データ管理システム。
    Engineering database group that stores data related to construction of structures such as design data, parts data, process data, book data, and past change history data of the structure,
    Change management data generation means for managing data of the engineering database group and generating data including cause, influence and influence degree as change management data which is a set of past change history data of the structure Equipped database management system,
    The data of a plurality of parts constituting the structure stored in the engineering database group is taken, and when each part of the plurality of parts is changed, the other parts connected to the part are affected. An element dividing unit that divides the part into elements that do not affect elements and elements, and a virtual element that defines an influencing cause element and an affected influencing element for each connection of the divided elements. A virtual element network generating means for generating element network data, and an element having an influence degree based on past cases included in the data generated by the change management data generating means in the database management system. Construction data management comprising element network generation means for generating network data Location,
    A construction data management system for a structure composed of a display device that displays display contents based on the various data.
  10. 請求項9に記載の構造物の建設データ管理システムにおいて、
    建設データ管理装置は、評価するための変更案のデータを所定フォーマットで作成、入力する変更案入力手段と、該変更案データを基に、該変更対象の物、それにより直接影響を受ける物、および変更対象側の影響量を抽出し、前記要素ネットワークのデータを、複次的に影響を受けるものが見つからなくなるまで検索することによって、全体の影響範囲を抽出し全体の影響量を算出して、その結果を影響リンクリストとして出力する影響評価手段と、上記の各種データに基づいて表示内容を制御する表示制御手段と表示装置とを備えたことを特徴とする構造物の建設データ管理システム。
    In the construction data management system of the structure according to claim 9,
    The construction data management device creates a change plan data for evaluation in a predetermined format and inputs the change plan input means, and based on the change plan data, the object to be changed, an object directly affected by it, Then, the influence amount on the change target side is extracted, and the data of the element network is searched until no one that is affected in a multiple manner is found, thereby extracting the entire influence range and calculating the entire influence amount. A structure construction data management system comprising: an impact evaluation means for outputting the result as an impact link list; a display control means for controlling display contents based on the various data described above; and a display device.
PCT/JP2010/072633 2009-12-25 2010-12-16 Construction data management method, construction data management device, and construction data management system for structural object WO2011078049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-294000 2009-12-25
JP2009294000A JP5289300B2 (en) 2009-12-25 2009-12-25 Construction data management method, construction data management device, and construction data management system

Publications (1)

Publication Number Publication Date
WO2011078049A1 true WO2011078049A1 (en) 2011-06-30

Family

ID=44195579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072633 WO2011078049A1 (en) 2009-12-25 2010-12-16 Construction data management method, construction data management device, and construction data management system for structural object

Country Status (2)

Country Link
JP (1) JP5289300B2 (en)
WO (1) WO2011078049A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6517144B2 (en) * 2013-09-30 2019-05-22 株式会社テレコグニックス Inter-element impact determination system, inter-element impact determination device, inter-element impact determination method and program
JP2018124734A (en) * 2017-01-31 2018-08-09 三菱重工業株式会社 Layout process support system and control method and program
JP7101381B2 (en) * 2018-04-11 2022-07-15 国立大学法人千葉大学 Parts management system and parts management method
JP7200459B2 (en) * 2019-04-24 2023-01-10 トヨタホーム株式会社 Design support device
JP7276203B2 (en) * 2020-03-06 2023-05-18 横河電機株式会社 Information processing device, information processing method, and program
JP7276204B2 (en) * 2020-03-06 2023-05-18 横河電機株式会社 Information processing device, information processing method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259703A (en) * 1999-03-08 2000-09-22 Hitachi Ltd Engineering supporting method and its device
JP2005322211A (en) * 2004-04-08 2005-11-17 Hitachi Ltd Design support system
JP2006065409A (en) * 2004-08-24 2006-03-09 Sharp Corp Design specification evaluating device and method, design specification evaluating program for realizing design specification evaluating method, and recording medium which stores design specification evaluating program
JP2008083798A (en) * 2006-09-26 2008-04-10 Hitachi Ltd Design change range retrieval method, design change range retrieval device and design change range retrieval system
JP2008226090A (en) * 2007-03-15 2008-09-25 Toshiba Corp Plant model development system
JP2009054062A (en) * 2007-08-29 2009-03-12 Hitachi-Ge Nuclear Energy Ltd Plant design support method and device thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000259703A (en) * 1999-03-08 2000-09-22 Hitachi Ltd Engineering supporting method and its device
JP2005322211A (en) * 2004-04-08 2005-11-17 Hitachi Ltd Design support system
JP2006065409A (en) * 2004-08-24 2006-03-09 Sharp Corp Design specification evaluating device and method, design specification evaluating program for realizing design specification evaluating method, and recording medium which stores design specification evaluating program
JP2008083798A (en) * 2006-09-26 2008-04-10 Hitachi Ltd Design change range retrieval method, design change range retrieval device and design change range retrieval system
JP2008226090A (en) * 2007-03-15 2008-09-25 Toshiba Corp Plant model development system
JP2009054062A (en) * 2007-08-29 2009-03-12 Hitachi-Ge Nuclear Energy Ltd Plant design support method and device thereof

Also Published As

Publication number Publication date
JP2011134168A (en) 2011-07-07
JP5289300B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
Lee et al. BIM-based 4D simulation to improve module manufacturing productivity for sustainable building projects
Li et al. Critical success factors for project planning and control in prefabrication housing production: A China study
JP5289300B2 (en) Construction data management method, construction data management device, and construction data management system
Mirshokraei et al. A web-based BIM–AR quality management system for structural elements
Schimanski et al. Pushing digital automation of configure-to-order services in small and medium enterprises of the construction equipment industry: A design science research approach
Collao et al. BIM visual programming tools applications in infrastructure projects: a state-of-the-art review
US20120226967A1 (en) Spreadsheet-Based Graphical User Interface for Modeling of Products Using the Systems Engineering Process
Qi et al. Investigating US industry practitioners’ perspectives towards the adoption of emerging technologies in industrialized construction
CN106682336A (en) Modeling method for structural finite element model
Haddad et al. Application of fuzzy-TOPSIS method in supporting supplier selection with focus on HSE criteria: A case study in the oil and gas industry
CN108710654A (en) A kind of public sentiment data method for visualizing and equipment
Xiahou et al. Analyzing critical factors for the smart construction site development: A DEMATEL-ISM based approach
Jing et al. System dynamics modeling strategy for civil construction projects: The concept of successive legislation periods
CA2707237A1 (en) Bridge information modeling
Wu et al. Green mining strategy selection via an integrated SWOT-PEST analysis and Fuzzy AHP-MARCOS approach
Mohammed et al. Ontology-driven guidelines for architecting digital twins in factory automation applications
Xu et al. Automated optimization for the production scheduling of prefabricated elements based on the genetic algorithm and IFC object segmentation
Yang et al. Network model analysis of quality control factors of prefabricated buildings based on the complex network theory
Xie et al. Opportunities and challenges of digital twin applications in modular integrated construction
Li et al. The impact of different internet application contexts on knowledge transfer between enterprises
Lam et al. A Bibliometric analysis of digital twin in the supply chain
Pane et al. Mapping log data activity using heuristic miner algorithm in manufacture and logistics company
Willenbacher et al. Machine learning for optimization of energy and plastic consumption in the production of thermoplastic parts in SME
Fradi et al. Conflict resolution in mechatronic collaborative design using category theory
Cioca et al. Reducing the risks during the purchase of five-axis CNC machining centers using AHP method and fuzzy systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839282

Country of ref document: EP

Kind code of ref document: A1