WO2011077552A1 - Two dimensional encoding method, holographic reproduction device, and holographic recording/reproduction device - Google Patents

Two dimensional encoding method, holographic reproduction device, and holographic recording/reproduction device Download PDF

Info

Publication number
WO2011077552A1
WO2011077552A1 PCT/JP2009/071615 JP2009071615W WO2011077552A1 WO 2011077552 A1 WO2011077552 A1 WO 2011077552A1 JP 2009071615 W JP2009071615 W JP 2009071615W WO 2011077552 A1 WO2011077552 A1 WO 2011077552A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
pixel
code word
column
row
Prior art date
Application number
PCT/JP2009/071615
Other languages
French (fr)
Japanese (ja)
Inventor
昭人 小川
一右 土井
裕 柏原
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/071615 priority Critical patent/WO2011077552A1/en
Publication of WO2011077552A1 publication Critical patent/WO2011077552A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/12Formatting, e.g. arrangement of data block or words on the record carriers
    • G11B20/1217Formatting, e.g. arrangement of data block or words on the record carriers on discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2504Holographic discs; Holographic digital data storage [HDDS]

Definitions

  • the present invention relates to a two-dimensional encoding method suitable for holographic memory technology.
  • user data is modulated (encoded) into a two-dimensional codeword and recorded on a recording medium.
  • this two-dimensional code word is expressed by a combination of binary pixels (ON pixel and OFF pixel). More specifically, the user data is divided into predetermined unit data such as 10 bits and 8 bits. These predetermined units of data are converted into codewords uniquely assigned in advance.
  • a code word in the holographic memory technology has a fixed size (the total number of pixels of the code word is constant), and the ratio between the ON pixel and the OFF pixel is also fixed.
  • Patent Document 1 a 2 ON pixels, 3a 2 OFF pixels in a pixel array arranged in a square shape with 2a (a is an integer of 1 or more) in the row direction and 2a in the column direction, The two-dimensional code word expressed by the combination of is illustrated.
  • Patent Document 2 b-1 ON pixels in a pixel set arranged in a square shape of b (b is an integer of 3 or more) in the row direction and b squares in the column direction, and b 2 -b + 1 A two-dimensional code word expressed by a combination with an OFF pixel is illustrated.
  • Non-Patent Document 1 discloses that an ON pixel ratio of about 20 to 30% is appropriate. That is, by using an encoding method and codeword that satisfy the condition (A), the multiplicity of recording increases.
  • encoding efficiency is the ratio of the number of bits of user data to which a codeword is allocated to the total number of pixels (number of bits) of the codeword. For example, if a specific encoding method assigns a 16-pixel code word to 8-bit user data, the encoding efficiency of this encoding method is 8/16 (50%). On the other hand, if another encoding method assigns a 16-pixel code word to 12-bit user data, the encoding efficiency of this encoding method is 12/16 (75%). That is, if the conditions (the number of usable pixels, etc.) are the same, the latter encoding method can record 1.5 times as much user data as the former encoding method. That is, it is possible to substantially increase the recording capacity of the holographic memory by using an encoding method and a code word that satisfy the condition (B).
  • each code word has frequency characteristics corresponding to the arrangement of ON pixels and OFF pixels (for example, the number of continuous ON pixels or OFF pixels).
  • signal processing is performed on the reproduction light of the recorded code word.
  • the reproduced light includes noise components such as low-frequency noise (such as luminance unevenness) and high-frequency noise (such as scattered light and stray light) in addition to the signal component indicating the recorded code word. If the frequency band of the codeword is limited, the noise component can be removed by extracting the in-band component from the reproduction light (suppressing the out-of-band component).
  • this encoding method has a certain effect on the frequency band limitation because the number of ON pixels in the code word is limited to b-1.
  • the number of patterns in which three of the 16 pixels are ON pixels is 560 ( 16 C 3 ). Therefore, in order to uniquely assign this code word, the number of patterns of user data in a predetermined unit must be 560 or less.
  • the conventional two-dimensional encoding method has room for improvement, particularly with respect to the holographic memory technology.
  • an object of the present invention is to provide a two-dimensional encoding method suitable for holographic memory technology.
  • a two-dimensional encoding method is a two-dimensional encoding method for holographic recording, in which n (n is an integer of 4 or more) in the row direction and n squares in the column direction. From the two-dimensional codeword expressed by a combination of K (K is an integer of n or more) ON pixels and (n ⁇ n ⁇ K) OFF pixels in the array of arranged pixels, (a) the top row And at least one ON pixel in (2n-1) pixels in the rightmost column, and (b) at least one ON pixel in (2n-1) pixels in the rightmost column and the bottom row.
  • a holographic reproducing device includes a light source that generates laser light, and a set of pixels arranged in a square shape with n (n is an integer of 4 or more) in the row direction and n squares in the column direction.
  • K is an integer of n or more ON pixels and (n ⁇ n ⁇ K) OFF pixels in (a) (a) ( (2n-1) at least one ON pixel exists in the pixels, (b) at least one ON pixel exists in the (2n-1) pixels in the rightmost column and the bottom row, c) there is at least one ON pixel among the (2n-1) pixels in the lower end row and the left end column, and (d) (2n-1) pixels in the left end column and the upper end row.
  • a holographic recording / reproducing apparatus includes a light source that generates laser light, n pixels (n is an integer of 4 or more) in a row direction, and n pixels that are arranged in a square shape in a column direction.
  • a two-dimensional encoding method suitable for holographic memory technology can be provided.
  • the figure which shows a holographic recording medium Explanatory drawing of a book and a page.
  • Explanatory drawing of page data Explanatory drawing of the dotted-line area
  • the figure which shows a code word The figure which shows a code word.
  • the figure which shows a code word The figure which shows a code word.
  • the figure which shows a code word The figure which shows a code word.
  • the figure which shows a code word The figure which shows the collection of codewords.
  • the figure which shows the collection of codewords The figure which shows the collection of codewords.
  • the flowchart which shows the two-dimensional encoding method which concerns on 1st Embodiment.
  • the figure which shows a code word The figure which shows a code word.
  • the figure which shows a code word The figure which shows a code word.
  • the figure which shows a code word The figure which shows a code word.
  • the figure which shows a code word The figure which shows a code word.
  • the figure which shows a code word The figure which shows a code word.
  • the figure which shows a synchronization mark Explanatory drawing of the relationship between a synchronous mark and the combination of a codeword.
  • region of the synchronous mark of FIG. The figure which shows the code word similar to the partial area
  • the figure which shows a synchronization mark. The figure which shows a synchronization mark.
  • FIG. 1 shows a recording medium 10 on which codewords are recorded based on the two-dimensional encoding method according to the first embodiment of the present invention.
  • the outer shape of the recording medium 10 is a thick disk shape.
  • the recording medium 10 has a plurality of layers in the thickness direction. Specifically, the recording medium 10 has a laminated structure in which the protective layer 50 and the protective layer 60 sandwich the recording layer 70 (including the servo information recording layer 80).
  • the recording layer 70 has a sufficient thickness (for example, 1.0 mm) for multiple recording.
  • the recording layer 70 is made of a holographic material whose optical characteristics (such as refractive index) change in proportion to the amplitude of the irradiated light. Therefore, the recording layer 70 is sensitive to the recording laser beam.
  • a typical holographic material is a photopolymer.
  • a photopolymer is a photosensitive material utilizing photopolymerization of a polymerizable compound (monomer).
  • the photopolymer contains a monomer, a photopolymerization initiator, and a porous matrix as main components. This porous matrix plays a role of maintaining the volume of the recording layer 70 before and after recording.
  • the recording unit 70 can be made of any holographic material such as dichromated gelatin or a photorefractive crystal.
  • the protective layer 50 and the protective layer 60 serve to protect the recording layer 70 from scratches, dust, and the like and to maintain the shape of the recording layer 70.
  • the protective layer 50 and the protective layer 60 are made of a material such as glass, polycarbonate, or acrylic resin.
  • the protective layer 50 and the protective layer 60 are not limited to these materials, and are composed of other materials having various characteristics such as optical characteristics, mechanical strength characteristics, dimensional stability, and moldability with respect to the laser wavelength used. Is possible.
  • the servo information recording layer 80 information such as an encoder pattern for positioning and an address mark is recorded.
  • the recording medium 10 has a disk shape as described above, and has a clamp hole 20 near the center thereof.
  • the clamp hole 20 is used to clamp the recording medium 10 in a device for holographic recording or holographic reproduction (not shown).
  • the clamp hole 20 may be replaced with a hub.
  • the recording medium 10 has a plurality of tracks 30 arranged concentrically from the center.
  • a plurality of books 40 are recorded on each track 30.
  • the book 40 is information of a predetermined unit.
  • the track 30 disposed on the outer peripheral side can record more books 40 than the track 30 disposed on the inner peripheral side.
  • each book 40 is configured by multiplexing predetermined units of information called pages 41. Therefore, in the recording medium 10, a plurality of pages 41 are multiplexed and recorded in the area for recording each book 40.
  • the holographic recording / reproducing apparatus using the two-dimensional encoding method includes a light source 100, a beam splitter 101, a beam expander 102, a spatial light modulator 103, and a spatial light modulator 104. , Lens group 105, spatial filter 106, beam splitter 107, objective lens 108, holding and driving mechanism 109, mirror 110, mirror 111, mirror 112, mirror 113, lens group 113, spatial filter 114, image sensor 115 and controller 116.
  • the holographic recording / reproducing apparatus in FIG. 3 uses a phase conjugate reproducing method.
  • the light source 100 generates laser light in accordance with control from the controller 116.
  • the oscillation wavelength and intensity of the laser light are controlled by the controller 116.
  • a laser with an external resonator ELCD; External Cavity Laser Diode
  • ELCD External Cavity Laser Diode
  • the light source 100 includes a spatial filter and a collimator for realizing a desired intensity distribution and beam diameter by making the spatial intensity of the output beam uniform, an isolator for avoiding the influence of return light, and the like. I have.
  • the beam splitter 101 splits the laser light (collimated light) from the light source 100 into two light beams.
  • the division ratio is controlled by a wave plate (not shown).
  • the holding and driving mechanism 109 physically holds the recording medium 10.
  • the holding and driving mechanism 109 positions the recording medium 10 in accordance with an instruction from the controller 116.
  • the controller 116 controls each element of the holographic recording / reproducing apparatus shown in FIG. Specifically, the controller 116 notifies page data to the spatial light modulator 103, which will be described later, based on user data at the time of information recording, or user data based on a page data image from an image sensor 115, which will be described later, during information reproduction. Or play back.
  • the holographic recording / reproducing apparatus shown in FIG. 3 is a so-called two-beam recording / reproducing method in which the reference light 120 and the recording light 130 have separate optical axes.
  • the two-dimensional encoding method according to each embodiment is not limited to the two-beam recording / reproducing method, but can be applied to other recording / reproducing methods such as a coaxial method in which the reference light and the recording light pass through the same optical axis. is there.
  • Light is output from the light source 100 when recording information.
  • the beam expander 102 shapes the light output from the light source 100 and passed through the beam splitter 101 into a desired beam diameter.
  • the spatial light modulator 103 and the spatial light modulator 104 superimpose recording information (such as user data) on the light from the beam expander 102.
  • the recording information is converted into page data inside the controller 116.
  • the spatial light modulator 103 and the spatial light modulator 104 are configured by a device such as a DMD (Digital Mirror Device) configured by a minute mirror, or an LCOS (Liquid Crystal Crystal on silicon) using a liquid crystal element.
  • One of the spatial light modulator 103 and the spatial light modulator 104 modulates the intensity of light, and the other modulates the phase of light. In the following description, it is assumed that the spatial light modulator 103 modulates the light intensity and the spatial light modulator 104 modulates the light phase.
  • the spatial light modulator 103 sets ON / OFF of each pixel according to the page data notified from the controller 116.
  • the page data pixels have a one-to-one correspondence with the pixels set by the spatial light modulator 103.
  • the spatial light modulator 103 sets a pixel corresponding to “1” of page data to ON (passes light) and a pixel corresponding to “0” of page data to OFF (blocks light).
  • the spatial light modulator 104 modulates the phase of the modulated light from the spatial light modulator 103.
  • the spatial light modulator 104 randomly sets the phase of each pixel to either ⁇ or ⁇ .
  • the modulated light from the spatial light modulator 104 passes through the lens group 105.
  • the lens group 105 is The modulated light is shaped into a desired beam diameter.
  • a spatial filter 106 is provided between the lens groups 105.
  • the spatial filter 106 realizes a desired filter process for adjusting the spatial frequency component of the light passing through the lens group 105.
  • a low-pass filter (LPF) can be realized by providing a pinhole.
  • HPF high-pass filter
  • the light passing through the lens group 105 further passes through the beam splitter 107 and the objective lens 108 and is irradiated to a desired position of the recording medium 10 (recording layer 70).
  • this irradiation light is referred to as recording light 130.
  • the other light beam split by the above-described beam splitter 101 is also reflected by the mirror 110 and the mirror 113 and irradiated to a desired position of the recording medium 10 (recording layer 70).
  • this irradiation light is referred to as reference light 120.
  • the recording light 130 and the reference light 120 interfere with each other to form interference fringes in the recording layer 70.
  • the recording medium 10 holds this interference fringe shape as recording information.
  • the recording medium 10 can perform multiple recording. More specifically, as shown in FIG. 4, by changing the angle formed by the reference light 120 and the recording light 130 and the recording medium 10 and the incident angle of the reference light 120 with respect to the recording light 130, A plurality of information (page data) can be recorded at the same position. Such a multiplex recording system is called an angle multiplex system.
  • the plurality of books 40 are recorded on the recording layer 70 by changing the irradiation positions of the reference light 120 and the recording light 130.
  • each part of the holographic recording / reproducing apparatus in FIG. 3 will be described focusing on the case of reproducing information from the recording medium 10. Even when information is reproduced, light is output from the light source 100, but the path of the recording light 130 is blocked by a shutter (not shown).
  • the mirror 110 reflects the light output from the light source 100 and split by the beam splitter 101.
  • the light reflected by the mirror 110 and the mirror 113 is irradiated to a desired position of the recording medium 10 (recording layer 70). Further, the light transmitted through the recording medium 10 is reflected by the mirror 111 and is irradiated again on the recording medium 10.
  • the diffracted light of the irradiated light propagates to the objective lens 108. Recording information is superimposed on this diffracted light. In the following description, this diffracted light is referred to as reproduction light.
  • the reproduction light passes through the objective lens 108, is reflected by the beam splitter 107, is further reflected by the mirror 112, and is guided to the lens group 113.
  • the lens group 113 shapes the reproduction light into a desired beam diameter.
  • a spatial filter 114 is provided between the lens groups 113. The spatial filter 114 realizes a desired filter process for adjusting the spatial frequency component of the reproduction light. Due to the action of the spatial filter 114, a specific frequency component of the reproduction light is suppressed, or a specific frequency component of the reproduction light is emphasized. This reproduction light is guided from the lens group 113 to the image sensor 115.
  • the image sensor 115 receives the reproduction light from the lens group 113 and converts it into an electrical signal corresponding to the intensity.
  • the image sensor 115 is generally constituted by a device such as a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor) which is a multi-pixel image sensor.
  • the image sensor 115 converts this electrical signal into a digital signal by A / D conversion, and inputs it to the controller 116 as a page data image.
  • the value of each pixel of the page data image is represented by an 8-bit digital value (0 to 255) corresponding to the intensity of light received by each pixel of the image sensor 115.
  • the pixels of the page data image (pixels of the spatial light modulator 103) and the pixels of the image sensor 115 do not necessarily have a one-to-one correspondence. Specifically, more pixels (for example, four pixels) of the image sensor 115 may be assigned to one pixel of the page data image.
  • Such a page data image capturing method is called an oversample method. According to the oversampling method, even when a positional deviation occurs between the pixel of the page data image and the pixel of the image sensor, the controller 116 can easily display the page data image in which the positional deviation is corrected by predetermined signal processing. Can be restored.
  • FIGS. 1-10 a recording signal processing unit and a reproduction signal processing unit implemented as a part of the controller 116 will be described with reference to FIGS.
  • These recording signal processing unit and reproduction signal processing unit are implemented by hardware, software, or a combination of hardware and software.
  • the recording signal processing unit includes an error correction code calculation unit 210, a modulation unit 220, and a page data generation unit 230.
  • the recording signal processing unit notifies the spatial light modulator 103 of the page data 240 based on the user data 200 to be recorded.
  • the error correction code calculation unit 210 divides the user data 200 into data of a predetermined unit.
  • the error correction code calculation unit 210 calculates an error correction code for each predetermined unit of data according to a predetermined algorithm.
  • the error correction code calculation unit 210 adds an error correction code to data of a predetermined unit and inputs the data to the modulation unit 220.
  • the modulation unit 220 converts a predetermined unit of data (including the error correction code) from the error correction code calculation unit 210 into a code word according to a predetermined modulation table and modulation rule.
  • the modulation table and the modulation rule are based on the two-dimensional encoding method according to the present embodiment. Details of the two-dimensional encoding method according to the present embodiment will be described later.
  • the modulation unit 220 inputs the code word to the page data generation unit 230.
  • the page data generation unit 230 generates page data 240 in which a predetermined number of code words are arranged.
  • the page data 240 includes additional information such as address information.
  • a predetermined bit pattern called a synchronization mark is arranged at predetermined intervals.
  • the spatial light modulator 103 sets the pixel ON / OFF based on the bit pattern of the page data 240.
  • the page data 240 includes, for example, a plurality of synchronization marks 43 and a plurality of subpages 42 as shown in FIG.
  • the plurality of subpages 42 have the same or similar shape.
  • Synchronization marks 43 are arranged at the four corners of the subpage 42, respectively.
  • additional information such as address information is arranged in an area adjacent to the synchronization mark 43.
  • the address information indicates a book number, a page number in the book, a subpage number in the page, a modulation type, and the like.
  • a codeword in which user data is modulated (encoded) is arranged in an area other than the additional information.
  • FIG. 10 shows an enlarged view of the dotted area in FIG.
  • a plurality of code words 44 are arranged in each subpage.
  • each code word 44 as shown in FIG. 11, a plurality of pixels are arranged.
  • the hatched pixel in the drawing corresponding to the code word represents “0” and the white pixel represents “1”.
  • the code word 44 is composed of 4 ⁇ 4 pixels
  • the synchronization mark 43 is composed of 8 ⁇ 8 pixels.
  • the synchronization mark 43 has a pattern having higher symmetry than the code word 44.
  • the synchronization mark 43 has a pattern in which “0” and “1” are alternately arranged concentrically. Such a highly symmetrical pattern is suitable for correlation peak detection in template matching processing described later.
  • the reproduction signal processing unit includes a filter unit 310, a coordinate detection unit 320, a coordinate conversion unit 330, a filter unit 340, a binarization unit 350, a demodulation unit 360, and an error correction unit 370.
  • the reproduction signal processing unit reproduces user data 380 based on the page data image 300 from the image sensor 115. Basically, the reproduction signal processing unit performs the reverse process of the recording signal processing unit. However, there is a possibility that the page data image 300 includes noise or has a spatial shift. Therefore, the reproduction signal processing unit also performs processing for suppressing noise and processing for correcting spatial deviation.
  • FIG. 7A shows an example of a normal page data image 300.
  • FIG. 7B shows an example of the page data image 300 when low-frequency noise is generated.
  • Such low frequency noise is also called luminance unevenness.
  • the four corners of the page data image 300 are darker than the center. In such a state, since the light intensity of the ON pixel and the light intensity of the OFF pixel are close to each other, a bit error is likely to occur.
  • Low-frequency noise such as uneven brightness is caused by non-uniformity in the intensity distribution of recording light or reference light, aberrations in the optical system, non-uniformity in sensitivity of the spatial light modulator or image sensor, misalignment, changes in environmental temperature, etc. Due to various factors.
  • FIG. 8A shows an example of a normal page data image 300 in an enlarged state.
  • FIG. 8B shows an enlarged view of an example of the page data image 300 when high-frequency noise occurs.
  • the ON pixel and the OFF pixel can be clearly distinguished.
  • fine bright spots (high-frequency noise) different from the ON pixels are generated on the entire screen.
  • high-frequency noise may appear as distortion of the shape of the ON pixel or OFF pixel, but in this case as well, it is difficult to discriminate both. That is, even when high frequency noise is generated in the page data image 300, a bit error is likely to occur.
  • High frequency noise is generated by various factors such as scattered light or stray light generated by an optical system, and electrical noise.
  • the filter unit 310 performs a filtering process on the page data image 300 from the image sensor 115.
  • the filter unit 310 performs HPF processing using a two-dimensional FIR (Finite Impulse Response) filter or the like in order to suppress low frequency noise, or brightness of the entire page data image 300 by luminance difference averaging processing. May be averaged.
  • this brightness difference averaging process for example, the page data image 300 is divided into a plurality of sections, the brightness amplitudes of the pixels in each section are measured, and weighting for increase / decrease is performed so that these brightness amplitudes are equal. This is the process to be performed.
  • the filter unit 310 may perform LPF processing to suppress high frequency noise.
  • the filter unit 310 may perform an equalizing process for amplifying a specific frequency band component in order to emphasize the recording information component. Note that the processing of the filter unit 310 is preferably optimized in consideration of the processing of the coordinate detection unit 320 and the coordinate conversion unit 330 in the subsequent stage. The filter unit 310 inputs the filtered page data image to the coordinate detection unit 320.
  • the coordinate detection unit 320 corrects the spatial shift of the page data image from the filter unit 310 and detects the coordinates of the page data image corresponding to the center coordinates of each pixel of the page data.
  • a positional shift between the pixel 103 and the pixel of the image sensor 115, and a spatial shift due to factors such as image enlargement, reduction, and distortion due to optical aberration occur.
  • the coordinates of the page data image corresponding to the center coordinates of each pixel of the page data may change every time the page data image is processed.
  • the coordinate detection unit 320 detects the coordinates corresponding to the synchronization mark of the page data from the page data image.
  • the synchronization mark is arranged at a predetermined position such as the center or edge of the page data. Since these synchronization mark patterns are known, for example, the coordinate detection unit 320 performs a template matching process using the known pattern as a template for the page data image. The coordinate detection unit 320 detects the coordinate having the highest correlation in the page data image as the coordinate corresponding to the synchronization mark. Then, the coordinate detection unit 320 detects the coordinates of the page data image corresponding to the center coordinates of the other pixels of the page data by complementing processing based on the detected coordinates.
  • the coordinate conversion unit 330 resamples the page data image based on the coordinates detected by the coordinate detection unit 320.
  • This resampling process is realized by, for example, a bilinear method, a bicubic method, or the like. By this re-sampling process, a page data image having a one-to-one correspondence with the page data pixels is generated.
  • the coordinate conversion unit 330 inputs the page data image generated by the resampling process to the filter unit 340.
  • the filter unit 340 performs a filtering process or an equalizing process on the page data image from the coordinate conversion unit 330.
  • the processing of the filter unit 340 may be the same as or similar to the processing of the filter unit 310, or may be completely different processing, but is preferably optimized in consideration of the processing of the subsequent binarization unit 350. .
  • the pixels of the page data image to be processed by the filter unit 310 do not have a one-to-one correspondence with the pixels of the page data, so the sampling frequency is unknown, but the page data image to be processed by the filter unit 340 is Since the corresponding pixels have a one-to-one correspondence with the page data pixels, the sampling frequency can be fixed.
  • the filter unit 340 inputs the filtered page data image to the binarization unit 350.
  • the binarization unit 350 binarizes the value of each pixel of the page data image from the filter unit 340 to generate a bit string. For example, regarding an 8-bit value pixel, the binarization unit 350 determines “1” (ON pixel) if the pixel value is 127 or more, and determines “0” (OFF pixel) otherwise. The binarization unit 350 inputs the bit string to the demodulation unit 360.
  • the demodulation unit 360 converts the bit string from the binarization unit 350 into data of a predetermined unit (including an error correction code) in accordance with a predetermined demodulation table and demodulation rule in units of codewords.
  • the demodulation table and the demodulation rule correspond to the modulation table and the modulation rule used by the modulation unit 220 described above.
  • Demodulation section 360 inputs demodulated data to error correction section 370.
  • the error correction unit 370 performs error correction on the demodulated data and reproduces data of a predetermined unit.
  • the error correction process is realized using the error correction code given by the error correction code calculation unit 210.
  • the reproduced data of a predetermined unit is integrated as user data 380 and output to the outside.
  • the two-dimensional encoding method according to the present embodiment realizes the following modulation table, for example.
  • a 16-bit (pixel) code word is assigned to 10-bit user data. That is, since the encoding efficiency of this encoding method is 62.5% (10/16), the above-described condition (B) is satisfied.
  • code words “0100; 0000; 0011; 0100” are assigned to user data “526”.
  • the notation of the code word in this modulation table indicates the bit pattern in the raster order of the code word. For example, bits 0, 1, 0, and 0 are arranged in order from the left in the upper row of the code word. In the second row from the top of this code word, bits 0, 0, 0, 0 are arranged in order from the left. That is, this code word has the bit pattern shown in FIG.
  • the total number of pixels of the code word is the same, and the ratio of “1” (ON pixel) and “0” (OFF pixel) is fixed.
  • the code word is a bit pattern of 4 rows and 4 columns, and the number of ON pixels is fixed to 4. In this way, fixing the total number of pixels of the code word and the ON pixel ratio simplifies the cut-out process of the code word in the reproduction signal processing, improves its reliability, and improves the determination accuracy of the binarization process. Useful.
  • the parameter is changed and the binarization processing is executed again, or the ON number is set so as to match the specified number in order of increasing brightness. It is possible to determine a pixel.
  • the ON pixel ratio is suppressed to about 20 to 30% as described regarding the condition (A).
  • This basis is disclosed in Non-Patent Document 1. Specifically, as shown in FIG. 12, when the ON pixel ratio is about 20% to 30%, the holographic recording capacity (relative capacity based on the case where the ON pixel ratio is 50%) is maximum. It becomes. In the modulation table, since the ON pixel ratio is 25%, the above condition (A) is satisfied.
  • J represents the total number of pixels of the code word.
  • K represents the number of ON pixels included in the code word.
  • L represents the number of bits of user data to which a code word is assigned. That is, the modulation table is based on the two-dimensional encoding method E (16, 4, 10).
  • a codeword suitable for the holographic memory technology is selected from all codewords so as not to be less than the number of user data patterns, and then assigned to user data.
  • codewords that are not suitable for the holographic memory technique are excluded from all codewords within a surplus range and then allocated to user data.
  • the above-described two-dimensional encoding method E (16, 4, 10) selects a code word suitable for the holographic memory technology based on the following selection conditions.
  • Selection condition (1-1) The four ON pixels are not concentrated in any of the 3 ⁇ 3 pixel partial areas in the code word.
  • Selection condition (1-2) The maximum number of ON pixels included in a pixel region in which ON pixels are adjacent to each other in the row direction or the column direction is not three or more (two or less).
  • Selection condition (1-3) The maximum number of ON pixels included in the same row or column is not three or more (two or less).
  • the selection condition (1-1) may be read as the following selection condition (1-1 ′) or (1-1 ′′).
  • Selection condition (1-1 ′) At least one ON pixel exists in the seven pixels in the uppermost row and the rightmost column, and at least one ON pixel in the seven pixels in the rightmost column and the lowermost row And at least one ON pixel among the seven pixels in the bottom row and the left column, and at least one ON pixel among the seven pixels in the left column and the top row To do.
  • Selection condition (1-1 ′′) The maximum number of ON pixels included in the 3 ⁇ 3 pixel partial area in the code word is not four (three or less).
  • the code words in FIG. 13A are concentrated in a partial area of 3 ⁇ 3 pixels excluding the rightmost column and the lowermost row. Further, in this code word, the maximum number of ON pixels included in the pixel region in which the ON pixels are adjacent to each other in the row direction or the column direction is three. Therefore, this code word does not satisfy the selection conditions (1-1) and (1-2). In the code word of FIG. 13B, the maximum number of ON pixels included in the pixel region in which the ON pixels are adjacent to each other in the row direction or the column direction is three. Therefore, this code word does not satisfy the selection condition (1-2). In the code word of FIG.
  • the maximum number of ON pixels included in the pixel region in which the ON pixels are adjacent to each other in the row direction or the column direction is three. Further, this code word has the maximum number of ON pixels 3 included in the same row or the same column. Therefore, this code word does not satisfy the selection conditions (1-2) and (1-3).
  • the maximum number of ON pixels included in the pixel region in which the ON pixels are adjacent to each other in the row direction or the column direction is four. This code word has a maximum number of ON pixels of 4 in the same row or column. Therefore, this code word does not satisfy the selection conditions (1-2) and (1-3).
  • the maximum number of ON pixels included in the same row or the same column is three. Therefore, this code word does not satisfy the selection condition (1-3).
  • the selection condition (1-1) is useful for eliminating codewords in which ON pixels are concentrated in a local region.
  • the ON pixels are concentrated in the local area, the low frequency component of the codeword image tends to be strong. That is, the signal component of the code word tends to concentrate on the low frequency band.
  • signal components are concentrated in the low frequency band, more signal components are blocked (lost) when the reproduction signal processing unit applies HPF processing for low frequency noise suppression.
  • the holographic memory is recorded on the Fourier transform plane, if the low frequency component of the code word is strong, the distribution of the recording light is concentrated on the optical axis, resulting in a recording failure.
  • the selection conditions (1-2) and (1-3) are also useful for eliminating codewords in which ON pixels are concentrated in a local region. That is, the selection conditions (1-1), (1-2), and (1-3) are also effective for satisfying the above-described condition (C). In the selection conditions (1-1), (1-2), and (1-3), the maximum number of ON pixels included in the local area is limited to a predetermined value or less. May be. In addition, although the selection condition (1-1) defines 3 ⁇ 3 pixels as a local region, the local region may be changed as appropriate.
  • FIG. 14A shows a set of four code words that do not satisfy the selection condition (1-1).
  • FIG. 14B shows a set of four code words that satisfy the selection condition (1-1) (and the selection conditions (1-2), (1-3)).
  • 15A and 15B represent the frequency components of the images corresponding to FIGS. 14A and 14B, respectively.
  • the signal intensity, the column direction frequency, and the row direction frequency are all normalized.
  • 15A and 15B the signal intensity near the center indicates the low frequency component of the image corresponding to FIGS. 14A and 14B.
  • the signal component in the low frequency band is suppressed in the image corresponding to FIG. 14B compared to the image corresponding to FIG. 14A. Therefore, low-frequency noise can be effectively suppressed by performing HPF processing on the image corresponding to FIG. 14B. That is, according to the code word satisfying the selection condition (1-1), an improvement in the signal band noise ratio (SNR) is expected.
  • SNR signal band noise ratio
  • the number of codeword patterns satisfying the above selection condition (1-1) is 1587.
  • the number of codeword patterns that satisfy the selection condition (1-2) in addition to the selection condition (1-1) is 1267.
  • the number of codeword patterns satisfying all the selection conditions (1-1), (1-2), and (1-3) is 1123. Since the number of 10-bit patterns is 1024, the two-dimensional encoding method E (16, 4, 10) according to this embodiment satisfies all selection conditions (1-1), (1-2), and (1-3). A satisfying codeword can be uniquely assigned to user data.
  • the two-dimensional encoding method E satisfies the conditions (A) and (B) by setting J, K, and L, and the selection conditions (1-1), (1-2), It can be evaluated that the condition (C) is satisfied by applying (1-3).
  • the two-dimensional encoding method E (J, K, L) according to the present embodiment will be generalized and described.
  • the total number of pixels J of the code word is determined to be the square of n (n is an integer of 4 or more).
  • the number of ON pixels K of the code word is determined so that the ON pixel ratio (K / J) falls within about 20 to 30%.
  • the number K of ON pixels in the code word is determined so as to ensure the number of code words sufficient to satisfy the desired encoding efficiency.
  • the encoding efficiency is the ratio (L / J) of the number of bits L of user data to which a code word is allocated to the total number of pixels J of the code word.
  • the number of codeword patterns is J C K
  • the number of user data patterns is 2L .
  • the number of ON pixels K of the code word is determined to be a value of n or more, for example, in order to realize high encoding efficiency exceeding 50%.
  • a code word for satisfying the above condition (C) is selected or excluded.
  • the number of codeword patterns satisfying all the selection conditions (1-1), (1-2), (1-3) is the user data pattern. Although it is more than the number, such a relationship is not necessarily established depending on the values of J, K, and L. Therefore, for example, it is effective to perform selection / exclusion of codewords step by step in order from the selection condition with the highest priority.
  • the selection condition (1-1) can be read as follows regarding the two-dimensional encoding method E (J, K, L).
  • Selection condition (2-1) The K ON pixels are not concentrated in any of the partial areas of (n ⁇ 1) ⁇ (n ⁇ 1) pixels in the code word.
  • Selection condition (2-1 ′) At least one ON pixel exists in (2n ⁇ 1) pixels in the uppermost row and rightmost column, and (2n ⁇ 1) pixels in the rightmost column and lowermost row At least one ON pixel, and at least one ON pixel among (2n ⁇ 1) pixels in the lower row and the left column, and (2n -1) There is at least one ON pixel among the pixels.
  • Selection condition (2-1 ′′) The maximum number of ON pixels included in the partial area of (n ⁇ 1) ⁇ (n ⁇ 1) pixels in the code word is not K ((K ⁇ 1) or less). ).
  • the selection condition (2-2) is added to the codeword group satisfying the selection condition (2-1). ) Is further applied.
  • the selection condition (2-2) is obtained by replacing the selection condition (1-2) with respect to the two-dimensional encoding method E (J, K, L).
  • Selection condition (2-2) The maximum number of ON pixels included in a pixel region in which ON pixels are adjacent to each other in the row direction or the column direction is not (K-1) or more ((K-2) or less). If the number of codeword patterns satisfying these selection conditions (2-1) and (2-2) is greater than or equal to the number of user data patterns, the codeword group satisfying the selection conditions (2-1) and (2-2) The following selection condition (2-3) is further applied.
  • the selection condition (2-3) is obtained by replacing the selection condition (1-3) with respect to the two-dimensional encoding method E (J, K, L).
  • Selection Condition (2-3) The maximum number of ON pixels contained in the same row or column is not (K-1) or more ((K-2) or less). If the number of codeword patterns satisfying these selection conditions (2-1), (2-2), and (2-3) is greater than or equal to the number of user data patterns, selection conditions (2-1) and (2-2) , (2-3) is assigned to the user data. On the other hand, if the number of codeword patterns satisfying these selection conditions (2-1), (2-2), and (2-3) is less than the number of user data patterns, for example, the selection condition (2-3) The application is canceled and a code word satisfying the selection conditions (2-1) and (2-2) is assigned to the user data.
  • suitable codewords are narrowed down with the number of user data patterns as a lower limit.
  • the selection conditions (2-1), (2-2), and (2-3) are sequentially applied to the two-dimensional encoding method E (16, 4, L), as shown in FIG. 13A first. Code words that do not satisfy the selection condition (2-1) are excluded. Next, codewords that do not satisfy the selection condition (2-2) as shown in FIGS. 13B, 13C, and 13D are eliminated, and finally the selection condition (2-3) as shown in FIG. 13E is satisfied. No codewords are eliminated.
  • the priority difference between the selection conditions (2-1), (2-2), and (2-3) is determined for the following reason.
  • the order of the selection conditions (2-1), (2-2), and (2-3) is considered by comprehensively considering the influence on the low frequency components in the row direction and the column direction of the code word. Is given priority.
  • the two-dimensional encoding method according to the present embodiment selects a codeword group that satisfies the selection condition (excludes codewords that do not satisfy the selection condition) (step S401), and is selected. And assigning only code words included in the code word group (only code words not excluded) to user data (step S402). As a result, codewords assigned to user data by the two-dimensional encoding method according to the present embodiment are narrowed down to those suitable for the holographic memory technology.
  • a two-dimensional encoding method E (16, 5, 12) will be exemplified. Since the ON pixel ratio of the two-dimensional encoding method E (16, 5, 12) is about 31% (5/16), the condition (A) is satisfied. The encoding efficiency of the two-dimensional encoding method E (16, 5, 12) is 75% (12/16), which satisfies the condition (B). The number of codeword patterns is 4368 ( 16 C 5 ), and the number of user data patterns is 4096 (2 12 ). Therefore, the code word has a surplus of 372 patterns compared to the user data.
  • This two-dimensional encoding method E (16, 5, 12) applies the selection condition (2-1) in order to narrow down the codewords assigned to the user data. As a result, codewords as shown in FIGS. 17A, 17B and 17C are selected, while codewords as shown in FIGS. 18A, 18B, 18C and 18D are eliminated.
  • the number of codeword patterns satisfying this selection condition (2-1) is 4096, which matches the number of user data patterns. Therefore, in the two-dimensional encoding method E (16, 5, 12), the selection conditions (2-2) and (2-3) are not applied, and only code words that satisfy the selection condition (2-1) are user data. Assigned uniquely.
  • the two-dimensional encoding method according to this embodiment satisfies the conditions (A) and (B) by setting J, K, and L. Furthermore, the encoding method according to the present embodiment satisfies the condition (C) by applying the selection conditions (2-1), (2-2), and (2-3) stepwise to the codeword. Therefore, according to the two-dimensional encoding method according to the present embodiment, a code word suitable for the holographic memory technology can be assigned to user data.
  • the selection conditions (2-1), (2-2), and (2-3) are applied step by step to select / exclude codewords. Therefore, the condition (C) is satisfied.
  • the two-dimensional encoding method according to the second embodiment of the present invention assigns codewords more suitable for the holographic memory technology to the user by defining further selection conditions.
  • the page data includes a synchronization mark (43) in addition to the code word (44).
  • the synchronization mark is used for detecting the coordinates of the codeword pixel in the reproduction signal processing. For example, the position, inclination, size, and the like of the page data image are estimated based on the detection result of the position and shape of the synchronization mark.
  • the synchronization mark has more pixels than the code word. Further, as shown in FIG. 19, the synchronization mark has a pixel pattern in which ON pixels are relatively long and continuous. A synchronization mark having such a characteristic pattern is easier to detect than a normal codeword. However, when specific codewords are combined, a pixel pattern similar to (highly correlated with) such a characteristic pattern may be generated.
  • the two-dimensional encoding method E (16, 4, 10) exemplified in the first embodiment can use 1123 patterns of code words. When a part of the codewords of the 1123 pattern is combined, a pixel pattern similar to the synchronization pattern is generated as shown in FIG. In FIG. 20, the synchronization mark of FIG. 19 and the combination of codewords are displayed superimposed.
  • each code word is divided by a dotted line region, and has ON pixels at positions where “x” marks are given, and has OFF pixels at other positions. That is, in FIG. 20, the Hamming distance between the codeword combination and the synchronization mark matches the total number of white pixels (ON pixels with respect to the synchronization mark but OFF pixels with respect to the codeword combination). To do. Specifically, the Hamming distance is “8”. The Hamming distance is an example of a distance (index) indicating the similarity between bit patterns. In the example of FIG. 20, when a total of eight white pixels (OFF pixels) in a combination of codewords are determined as ON pixels in reproduction signal processing due to some factor (such as noise), the combination of these codewords is determined. Misdetected as a synchronization mark.
  • the two-dimensional encoding method according to the present embodiment further defines the following selection condition (3-1).
  • Selection condition (3-1) The minimum hamming distance from each partial region of the synchronization mark is equal to or greater than a predetermined value (“3” in the following description).
  • This selection condition is further applied after, for example, the above-described selection conditions (2-1), (2-2), and (2-3) are applied. That is, if the number of codeword patterns satisfying the selection conditions (2-1), (2-2), and (2-3) is greater than or equal to the number of user data patterns, the selection condition (3-1) is applied. .
  • this application order is an example and may be changed to a different application order.
  • FIG. 22A shows a code word having a Hamming distance “2” from the pixel pattern shown in FIG. 22B, 22C, and 22D also show codewords having a Hamming distance “2” from the partial region of the synchronization mark in FIG.
  • the two-dimensional encoding method E (16, 4, 10) codes that satisfy the selection conditions (2-1), (2-2), and (2-3) and do not satisfy the selection condition (3-1)
  • the words are the above four patterns (FIGS. 22A, 22B, 22C, and 22D).
  • the two-dimensional encoding method E (16, 4, 10) uses a selection condition from 1123 patterns of codewords that satisfy the selection conditions (2-1), (2-2), and (2-3).
  • the two-dimensional encoding method according to the present embodiment can use codewords that satisfy all the selection conditions (2-1), (2-2), (2-3), and (3-1).
  • the two-dimensional encoding method E (16, 4, 10) according to the present embodiment it is guaranteed that all codewords have a Hamming distance of “3” or more with each partial region of the synchronization mark. For example, as shown in FIG. 23, the Hamming distance is “12” even if each partial region of the synchronization mark in FIG. 19 is combined with a code word having a close Hamming distance. That is, the possibility that a combination of code words is erroneously detected as a synchronization mark is lower than in the example of FIG.
  • the two-dimensional encoding method according to the present embodiment defines that the minimum hamming distance from each partial region of the synchronization mark is a predetermined value as an additional selection condition. Therefore, according to the two-dimensional encoding method according to the present embodiment, the possibility that a combination of code words is erroneously detected as a synchronization mark is reduced.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. Further, for example, a configuration in which some components are deleted from all the components shown in each embodiment is also conceivable. Furthermore, you may combine suitably the component described in different embodiment.
  • a holographic recording / reproducing apparatus that records recording information encoded using the two-dimensional encoding method according to each embodiment on a holographic recording medium is an aspect of the invention disclosed by the present application.
  • a holographic recording medium that records recording information encoded using the two-dimensional encoding method according to each embodiment is also included in the aspects of the invention disclosed in the present application.
  • a holographic reproducing device (holographic recording / reproducing device) that reproduces the recorded information from a holographic recording medium that records the recorded information encoded by using the two-dimensional encoding method according to each embodiment. It is contained in the aspect of the invention which this application discloses.
  • the holographic recording apparatus can be configured by removing elements necessary only for holographic reproduction from the holographic recording / reproducing apparatus of FIG. 3, for example.
  • the holographic reproducing apparatus can be configured by removing elements necessary only for holographic recording from the holographic recording / reproducing apparatus of FIG. 3, for example.
  • DESCRIPTION OF SYMBOLS 10 ... Holographic recording medium 20 ... Clamp hole 30 ... Track 40 ... Book 41 ... Page 42 ... Subpage 43 ... Synchronization mark 44 ... Code word 50, 60 ... Protective layer 70 ... Recording layer 80 ... Servo information recording layer 100 ... Light source 101 ... Beam splitter 102 ... Beam expander 103, 104 ... Spatial light modulator 105 ... Lens group 106: Spatial filter 107 ... Beam splitter 108 ... Objective lens 109 ... Holding and driving mechanism 110, 111, 112, 113 ... Mirror 113 ... Lens group 114 ... Spatial filter 115 ... image sensor 116 ... controller 120 ... reference light 130 ... recording light 140 ...
  • reproduction light 200 ...
  • User data 210 ... Error correction code calculation unit 220 ... Modulation unit 230 ... Page data generation unit 240 ... Page data 300 ... Page data image 310 ... Filter unit 320 ... Coordinate detection Unit 330 ... coordinate conversion unit 340 ... filter unit 350 ... binarization unit 360 ... demodulation unit 370 ... error correction unit 380 ... user data

Abstract

A two dimensional encoding method wherein, with respect to a pixel set wherein pixels are arranged in square with n-pieces (n is an integer of at least 4) in the row direction and n-pieces in the column direction, two-dimensional code words are expressed by combinations of K-pieces (K is an integer of at least n) of ON-pixels and (n×n-K)-pieces of OFF-pixels; a code word group is selected from the two-dimensional code words, so that the group satisfies the conditions that (a) at least one ON-pixel is present within (2n-1)-pieces of pixels in the upper edge row and the right edge column, (b) at least one ON-pixel is present within (2n-1)-pieces of pixels in the right edge column and the lower edge row, (c) at least one ON-pixel is present within (2n-1)-pieces of pixels in the lower edge row and the left edge column, and (d) at least one ON-pixel is present within (2n-1)-pieces of pixels in the left edge column and the upper edge row (S401); and only the code words included in the code word group are allocated to user data (S402).

Description

2次元符号化方法、ホログラフィック再生装置及びホログラフィック記録再生装置Two-dimensional encoding method, holographic reproducing apparatus, and holographic recording / reproducing apparatus
 本発明は、ホログラフィックメモリ技術に適した2次元符号化方法に関する。 The present invention relates to a two-dimensional encoding method suitable for holographic memory technology.
 ホログラフィックメモリ技術において、ユーザデータは2次元符号語に変調(符号化)されて記録媒体に記録される。通常、この2次元符号語は、2値画素(ON画素及びOFF画素)の組み合わせによって表現される。より具体的には、ユーザデータは、10ビット、8ビットなどの所定単位のデータに分割される。これら所定単位のデータは、予め一意に割り当てられている符号語に夫々変換される。 In holographic memory technology, user data is modulated (encoded) into a two-dimensional codeword and recorded on a recording medium. Usually, this two-dimensional code word is expressed by a combination of binary pixels (ON pixel and OFF pixel). More specifically, the user data is divided into predetermined unit data such as 10 bits and 8 bits. These predetermined units of data are converted into codewords uniquely assigned in advance.
 通常、ホログラフィックメモリ技術における符号語は、固定サイズ(符号語の総画素数が一定)であり、かつ、ON画素及びOFF画素の比率も固定である。特許文献1には、行方向に2a(aは1以上の整数)個及び列方向に2a個の正方形状に配列された画素集合におけるa個のON画素と、3a個のOFF画素との組み合わせよって表現される2次元符号語が例示されている。特許文献2には、行方向にb個(bは3以上の整数)及び列方向にb個の正方形状に配列された画素集合におけるb-1個のON画素と、b-b+1個のOFF画素との組み合わせによって表現される2次元符号語が例示されている。 In general, a code word in the holographic memory technology has a fixed size (the total number of pixels of the code word is constant), and the ratio between the ON pixel and the OFF pixel is also fixed. In Patent Document 1, a 2 ON pixels, 3a 2 OFF pixels in a pixel array arranged in a square shape with 2a (a is an integer of 1 or more) in the row direction and 2a in the column direction, The two-dimensional code word expressed by the combination of is illustrated. In Patent Document 2, b-1 ON pixels in a pixel set arranged in a square shape of b (b is an integer of 3 or more) in the row direction and b squares in the column direction, and b 2 -b + 1 A two-dimensional code word expressed by a combination with an OFF pixel is illustrated.
 ホログラフィックメモリ技術の原理上、符号化方法及び符号語は以下の3つの条件(A)~(C)を満たすことが望ましい。 
 (A)ON画素比率が小さい。 
 (B)符号化効率が高い。 
 (C)周波数帯域が制限されている。 
 条件(A)に関して、符号語全体に占めるON画素の比率が大きくなるほど、1ページ(ページの概念は後述する)のデータを記録するために必要なホログラムの回折効率が大きくなる。即ち、記録の多重度が低下する。一例として、非特許文献1は、このON画素の比率が20~30%程度が適当であることを開示している。即ち、条件(A)を満たす符号化方法及び符号語を利用することにより、記録の多重度が高くなる。
From the principle of holographic memory technology, it is desirable that the encoding method and codeword satisfy the following three conditions (A) to (C).
(A) The ON pixel ratio is small.
(B) Encoding efficiency is high.
(C) The frequency band is limited.
Regarding the condition (A), the higher the ratio of ON pixels in the entire code word, the higher the diffraction efficiency of the hologram necessary for recording data of one page (the concept of the page will be described later). That is, the multiplicity of recording decreases. As an example, Non-Patent Document 1 discloses that an ON pixel ratio of about 20 to 30% is appropriate. That is, by using an encoding method and codeword that satisfy the condition (A), the multiplicity of recording increases.
 条件(B)に関して、符号化効率とは、符号語が割り当てられるユーザデータのビット数の符号語の総画素数(ビット数)に対する比率である。例えば、特定の符号化方法が、8ビットのユーザデータに16画素の符号語を割り当てるならば、この符号化方法の符号化効率は8/16(50%)である。一方、別の符号化方法が、12ビットのユーザデータに16画素の符号語を割り当てるならば、この符号化方法の符号化効率は12/16(75%)である。即ち、条件(利用可能画素数など)が同じであれば、後者の符号化方法は、前者の符号化方法に比べて1.5倍のユーザデータを記録可能である。即ち、条件(B)を満たす符号化方法及び符号語を利用することにより、ホログラフィックメモリの記録容量を実質的に増加させることが可能である。 Regarding condition (B), encoding efficiency is the ratio of the number of bits of user data to which a codeword is allocated to the total number of pixels (number of bits) of the codeword. For example, if a specific encoding method assigns a 16-pixel code word to 8-bit user data, the encoding efficiency of this encoding method is 8/16 (50%). On the other hand, if another encoding method assigns a 16-pixel code word to 12-bit user data, the encoding efficiency of this encoding method is 12/16 (75%). That is, if the conditions (the number of usable pixels, etc.) are the same, the latter encoding method can record 1.5 times as much user data as the former encoding method. That is, it is possible to substantially increase the recording capacity of the holographic memory by using an encoding method and a code word that satisfy the condition (B).
 条件(C)に関して、各符号語はON画素及びOFF画素の配置(例えば、ON画素またはOFF画素の連続数)に応じた周波数特性を備えている。ホログラフィックメモリの再生時には、記録された符号語の再生光に対して信号処理を行う。しかしながら、この再生光には、記録された符号語を示す信号成分に加えて低周波雑音(輝度むらなど)、高周波雑音(散乱光、迷光など)などの雑音成分が含まれる。符号語の周波数帯域が制限されていれば、再生光から帯域内成分を抽出(帯域外成分を抑圧)することにより、雑音成分の除去が可能となる。即ち、条件(C)を満たす符号化方法及び符号語を利用することにより、ホログラフィックメモリの高精度な記録再生が可能となる。また、ホログラフィックメモリはフーリエ変換面で記録されるので、符号語の低周波成分が強ければ記録光の分布が光軸上に集中して記録に不具合が生じることが知られている。故に、特に低域成分が強くならないように周波数帯域を制限する必要がある。 Regarding the condition (C), each code word has frequency characteristics corresponding to the arrangement of ON pixels and OFF pixels (for example, the number of continuous ON pixels or OFF pixels). When reproducing the holographic memory, signal processing is performed on the reproduction light of the recorded code word. However, the reproduced light includes noise components such as low-frequency noise (such as luminance unevenness) and high-frequency noise (such as scattered light and stray light) in addition to the signal component indicating the recorded code word. If the frequency band of the codeword is limited, the noise component can be removed by extracting the in-band component from the reproduction light (suppressing the out-of-band component). That is, by using an encoding method and a code word that satisfy the condition (C), high-precision recording / reproduction of the holographic memory can be performed. In addition, since the holographic memory is recorded on the Fourier transform plane, it is known that if the low frequency component of the code word is strong, the recording light distribution is concentrated on the optical axis, resulting in recording failure. Therefore, it is necessary to limit the frequency band so that the low frequency component is not particularly strong.
特開平9-197947号公報Japanese Patent Laid-Open No. 9-197947 特開2001-75463号公報JP 2001-75463 A
 特許文献1に記載の2次元符号化方法は、ON画素比率が25%であり、条件(A)を満たしていると評価できる。また、この符号化方法は、例えばa=1の場合には、符号語中のON画素が1個(即ち、ON画素の連続数が最大1個に制限される)なので、結果的に条件(C)も満たしていると評価できる。しかしながら、この符号化方法は、例えばa=1の場合には、符号化効率が50%であり、条件(B)を満たしていると評価できない。符号化効率は、例えばa=2に増加させることによって向上する。但し、符号語中のON画素数はaの二乗に比例して増加するうえ連続数が制限されないので、aを増加させることは条件(C)に関して不利に作用する。 It can be evaluated that the two-dimensional encoding method described in Patent Document 1 has an ON pixel ratio of 25% and satisfies the condition (A). Also, in this encoding method, for example, when a = 1, the number of ON pixels in the code word is one (that is, the continuous number of ON pixels is limited to a maximum of one). It can be evaluated that C) is also satisfied. However, in this encoding method, for example, when a = 1, the encoding efficiency is 50%, and it cannot be evaluated that the condition (B) is satisfied. Encoding efficiency is improved by increasing to a = 2, for example. However, since the number of ON pixels in the code word increases in proportion to the square of a and the number of consecutive pixels is not limited, increasing a has an adverse effect on the condition (C).
 特許文献2に記載の2次元符号化方法は、例えばb=4の場合には、ON画素比率が19%程度(3/16)なので、条件(A)を満たしていると評価できる。また、条件(C)に関して、この符号化方法は、符号語中のON画素数がb-1個に制限されるため、周波数帯域の制限にある程度の効果がある。しかしながら、特許文献2に記載の2次元符号化方法は、例えばb=4の場合には、符号化効率が50%であり、条件(B)を満たしていると評価できない。具体的には、16画素のうち3個をON画素とするパターン数は560(16)である。故に、この符号語を一意に割り当てるためには、所定単位のユーザデータのパターン数は、560以下でなければならない。9ビットのパターン数は512(2)であるが、簡便さのために、ユーザデータの分割には一般的に2の倍数ビットが使用される。即ち、b=4の場合に、この符号化方法によって符号語を一意に割り当て可能なユーザデータは最大8ビットである。 The two-dimensional encoding method described in Patent Document 2 can be evaluated as satisfying the condition (A) because, for example, when b = 4, the ON pixel ratio is about 19% (3/16). Regarding the condition (C), this encoding method has a certain effect on the frequency band limitation because the number of ON pixels in the code word is limited to b-1. However, the two-dimensional encoding method described in Patent Document 2 has an encoding efficiency of 50% when b = 4, for example, and cannot be evaluated as satisfying the condition (B). Specifically, the number of patterns in which three of the 16 pixels are ON pixels is 560 ( 16 C 3 ). Therefore, in order to uniquely assign this code word, the number of patterns of user data in a predetermined unit must be 560 or less. Although the number of 9-bit patterns is 512 (2 9 ), for convenience, multiple bits of 2 are generally used for dividing user data. That is, in the case of b = 4, the maximum number of user data that can be uniquely assigned a code word by this encoding method is 8 bits.
 以上のように、従来の2次元符号化方法を使用した場合には、条件(A)~(C)を全て満たすことは難しい。即ち、従来の2次元符号化方法は、特にホログラフィックメモリ技術に関して改善の余地がある。 As described above, it is difficult to satisfy all the conditions (A) to (C) when the conventional two-dimensional encoding method is used. That is, the conventional two-dimensional encoding method has room for improvement, particularly with respect to the holographic memory technology.
 従って、本発明は、ホログラフィックメモリ技術に適した2次元符号化方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a two-dimensional encoding method suitable for holographic memory technology.
 本発明の一態様に係る2次元符号化方法は、ホログラフィック記録のための2次元符号化方法において、行方向にn(nは4以上の整数)個及び列方向にn個の正方形状に配列された画素集合におけるK(Kはn以上の整数)個のON画素と、(n×n-K)個のOFF画素との組み合わせによって表現される2次元符号語から、(a)上端行及び右端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(b)前記右端列及び下端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(c)前記下端行及び左端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、かつ、(d)前記左端列及び前記上端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在する条件を満たす第1の符号語群を選択することと、前記第1の符号語群に含まれる符号語のみをユーザデータに割り当てることとを具備する。 A two-dimensional encoding method according to an aspect of the present invention is a two-dimensional encoding method for holographic recording, in which n (n is an integer of 4 or more) in the row direction and n squares in the column direction. From the two-dimensional codeword expressed by a combination of K (K is an integer of n or more) ON pixels and (n × n−K) OFF pixels in the array of arranged pixels, (a) the top row And at least one ON pixel in (2n-1) pixels in the rightmost column, and (b) at least one ON pixel in (2n-1) pixels in the rightmost column and the bottom row. (C) there is at least one ON pixel among the (2n−1) pixels in the bottom row and left column, and (d) (2n−) in the left column and top row. 1) Satisfies the condition that at least one ON pixel exists in one pixel Comprising selecting a first code word group, and assigning only code word contained in the first code word group to the user data.
 本発明の他の態様に係るホログラフィック再生装置は、レーザ光を生成する光源と、行方向にn(nは4以上の整数)個及び列方向にn個の正方形状に配列された画素集合におけるK(Kはn以上の整数)個のON画素と、(n×n-K)個のOFF画素との組み合わせによって表現される2次元符号語から、(a)上端行及び右端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(b)前記右端列及び下端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(c)前記下端行及び左端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、かつ、(d)前記左端列及び前記上端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在する条件を満たす第1の符号語群に含まれる符号語のみを用いて符号化されたユーザデータが記録されたホログラフィック記録媒体に前記レーザ光が照射されて生じる再生光を受ける撮像素子と、前記再生光が示す符号語に基づいて前記ユーザデータを再生する再生部とを具備する。 A holographic reproducing device according to another aspect of the present invention includes a light source that generates laser light, and a set of pixels arranged in a square shape with n (n is an integer of 4 or more) in the row direction and n squares in the column direction. From a two-dimensional codeword expressed by a combination of K (K is an integer of n or more) ON pixels and (n × n−K) OFF pixels in (a) (a) ( (2n-1) at least one ON pixel exists in the pixels, (b) at least one ON pixel exists in the (2n-1) pixels in the rightmost column and the bottom row, c) there is at least one ON pixel among the (2n-1) pixels in the lower end row and the left end column, and (d) (2n-1) pixels in the left end column and the upper end row. In the first codeword group satisfying the condition that at least one ON pixel exists in An image sensor that receives reproduction light generated by irradiating the laser beam onto a holographic recording medium on which user data encoded using only the code word is recorded, and the code word indicated by the reproduction light. And a playback unit for playing back user data.
 本発明の他の態様に係るホログラフィック記録再生装置は、レーザ光を生成する光源と、行方向にn(nは4以上の整数)個及び列方向にn個の正方形状に配列された画素集合におけるK(Kはn以上の整数)個のON画素と、(n×n-K)個のOFF画素との組み合わせによって表現される2次元符号語から、(a)上端行及び右端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(b)前記右端列及び下端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(c)前記下端行及び左端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、かつ、(d)前記左端列及び前記上端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在する条件を満たす第1の符号語群に含まれる符号語のみをユーザデータに一意に割り当てる符号化を行う符号化部と、前記ユーザデータに割り当てられた符号語に応じて前記レーザ光を変調した記録光をホログラフィック記録媒体へ出力する変調部と、前記ホログラフィック記録媒体に前記レーザ光が照射されて生じる再生光を受ける撮像素子と、前記再生光が示す符号語に基づいて前記ユーザデータを再生する再生部とを具備する。 A holographic recording / reproducing apparatus according to another aspect of the present invention includes a light source that generates laser light, n pixels (n is an integer of 4 or more) in a row direction, and n pixels that are arranged in a square shape in a column direction. From the two-dimensional codeword expressed by the combination of K (K is an integer equal to or greater than n) ON pixels and (n × n−K) OFF pixels in the set, (a) the top row and the right column (2n-1) pixels have at least one ON pixel, and (b) the rightmost column and the bottom row have (2n-1) pixels, at least one ON pixel exists, (C) there is at least one ON pixel among the (2n-1) pixels in the lower end row and the left end column, and (d) (2n-1) end pixels in the left end column and the upper end row A first codeword that satisfies the condition that at least one ON pixel exists in the pixel An encoding unit that performs encoding that uniquely assigns only the codeword included in the user data, and outputs recording light obtained by modulating the laser light in accordance with the codeword assigned to the user data to the holographic recording medium A modulation unit; an imaging element that receives reproduction light generated by irradiating the holographic recording medium with the laser beam; and a reproduction unit that reproduces the user data based on a codeword indicated by the reproduction light.
 本発明によれば、ホログラフィックメモリ技術に適した2次元符号化方法を提供できる。 According to the present invention, a two-dimensional encoding method suitable for holographic memory technology can be provided.
ホログラフィック記録媒体を示す図。The figure which shows a holographic recording medium. ブック及びページの説明図。Explanatory drawing of a book and a page. ホログラフィック記録再生装置を示すブロック図。The block diagram which shows a holographic recording / reproducing apparatus. 多重記録の説明図。Explanatory drawing of multiple recording. 記録信号処理部を示すブロック図。The block diagram which shows a recording signal processing part. 再生信号処理部を示すブロック図。The block diagram which shows a reproduction | regeneration signal processing part. 正常なページデータ画像を示す図。The figure which shows a normal page data image. 低周波雑音が生じている場合のページデータの画像を示す図。The figure which shows the image of page data in case the low frequency noise has arisen. 正常なページデータ画像を示す図。The figure which shows a normal page data image. 高周波雑音が生じている場合のページデータ画像を示す図。The figure which shows a page data image in case the high frequency noise has arisen. ページデータの説明図。Explanatory drawing of page data. 図9における点線領域の説明図。Explanatory drawing of the dotted-line area | region in FIG. 符号語の説明図。Explanatory drawing of a code word. ON画素比率と相対容量との関係を示すグラフ。The graph which shows the relationship between ON pixel ratio and relative capacity | capacitance. 符号語を示す図。The figure which shows a code word. 符号語を示す図。The figure which shows a code word. 符号語を示す図。The figure which shows a code word. 符号語を示す図。The figure which shows a code word. 符号語を示す図。The figure which shows a code word. 符号語の集合を示す図。The figure which shows the collection of codewords. 符号語の集合を示す図。The figure which shows the collection of codewords. 図14Aに対応する周波数成分を示すグラフ。The graph which shows the frequency component corresponding to FIG. 14A. 図14Bに対応する周波数成分を示すグラフ。The graph which shows the frequency component corresponding to FIG. 14B. 第1の実施形態に係る2次元符号化方法を示すフローチャート。The flowchart which shows the two-dimensional encoding method which concerns on 1st Embodiment. 符号語を示す図。The figure which shows a code word. 符号語を示す図。The figure which shows a code word. 符号語を示す図。The figure which shows a code word. 符号語を示す図。The figure which shows a code word. 符号語を示す図。The figure which shows a code word. 符号語を示す図。The figure which shows a code word. 符号語を示す図。The figure which shows a code word. 同期マークを示す図。The figure which shows a synchronization mark. 同期マークと符号語の組み合わせとの関係の説明図。Explanatory drawing of the relationship between a synchronous mark and the combination of a codeword. 図19の同期マークの部分領域を示す図。The figure which shows the partial area | region of the synchronous mark of FIG. 図21の部分領域に類似した符号語を示す図。The figure which shows the code word similar to the partial area | region of FIG. 図19の同期マークの部分領域に類似した符号語を示す図。The figure which shows the code word similar to the partial area | region of the synchronous mark of FIG. 図19の同期マークの部分領域に類似した符号語を示す図。The figure which shows the code word similar to the partial area | region of the synchronous mark of FIG. 図19の同期マークの部分領域に類似した符号語を示す図。The figure which shows the code word similar to the partial area | region of the synchronous mark of FIG. 同期マークと符号語の組み合わせとの関係の説明図。Explanatory drawing of the relationship between a synchronous mark and the combination of a codeword. 同期マークを示す図。The figure which shows a synchronization mark. 同期マークを示す図。The figure which shows a synchronization mark. 同期マークを示す図。The figure which shows a synchronization mark. 同期マークを示す図。The figure which shows a synchronization mark.
 以下、図面を参照して、本発明の各実施形態について説明する。 
 (第1の実施形態) 
 図1は、本発明の第1の実施形態に係る2次元符号化方法に基づいて符号語が記録される記録媒体10を示す。記録媒体10の外形は、厚みのある円盤形である。記録媒体10は、厚み方向に複数の層を持つ。具体的には、記録媒体10は、保護層50及び保護層60が記録層70(サーボ情報記録層80を含む)を挟む積層構造を有する。記録層70は、多重記録のために十分な厚さ(例えば1.0mm)を持つ。記録層70は、照射された光の振幅に比例して光学的特性(屈折率など)が変化するホログラフィック材料により構成される。故に、記録層70は、記録用のレーザ光に対して感応性を持つ。代表的なホログラフィック材料は、フォトポリマーである。フォトポリマーは、重合性化合物(モノマー)の光重合を利用した感光材料である。フォトポリマーは、モノマー、光重合開始剤、多孔質状のマトリクスを主成分として含有する。この多孔質状のマトリクスは、記録前後での記録層70の体積保持の役割を果たす。記録部70は、フォトポリマー以外にも、重クロム酸ゼラチンまたはフォトリフラクティブ結晶などの任意のホログラフィック材料により構成可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 shows a recording medium 10 on which codewords are recorded based on the two-dimensional encoding method according to the first embodiment of the present invention. The outer shape of the recording medium 10 is a thick disk shape. The recording medium 10 has a plurality of layers in the thickness direction. Specifically, the recording medium 10 has a laminated structure in which the protective layer 50 and the protective layer 60 sandwich the recording layer 70 (including the servo information recording layer 80). The recording layer 70 has a sufficient thickness (for example, 1.0 mm) for multiple recording. The recording layer 70 is made of a holographic material whose optical characteristics (such as refractive index) change in proportion to the amplitude of the irradiated light. Therefore, the recording layer 70 is sensitive to the recording laser beam. A typical holographic material is a photopolymer. A photopolymer is a photosensitive material utilizing photopolymerization of a polymerizable compound (monomer). The photopolymer contains a monomer, a photopolymerization initiator, and a porous matrix as main components. This porous matrix plays a role of maintaining the volume of the recording layer 70 before and after recording. In addition to the photopolymer, the recording unit 70 can be made of any holographic material such as dichromated gelatin or a photorefractive crystal.
 保護層50及び保護層60は、記録層70を傷、埃などから保護する役割及び記録層70の形状を保持する役割を果たす。保護層50及び保護層60は、例えばガラス、ポリカーボネイト、アクリル系樹脂などの素材により構成される。尚、保護層50及び保護層60は、これらの素材に限られず、使用されるレーザ波長に対する光学特性、機械的強度特性、寸法安定性、成形性などの各種特性が良好なその他の素材により構成可能である。サーボ情報記録層80には、位置決めのためのエンコーダパターン、アドレスマークなどの情報が記録される。 The protective layer 50 and the protective layer 60 serve to protect the recording layer 70 from scratches, dust, and the like and to maintain the shape of the recording layer 70. The protective layer 50 and the protective layer 60 are made of a material such as glass, polycarbonate, or acrylic resin. The protective layer 50 and the protective layer 60 are not limited to these materials, and are composed of other materials having various characteristics such as optical characteristics, mechanical strength characteristics, dimensional stability, and moldability with respect to the laser wavelength used. Is possible. In the servo information recording layer 80, information such as an encoder pattern for positioning and an address mark is recorded.
 記録媒体10は、前述の通り円盤形であって、その中心付近にクランプ孔20を備えている。このクランプ孔20は、図示しないホログラフィック記録またはホログラフィック再生のための装置において記録媒体10をクランプするために使用される。尚、クランプ孔20は、ハブに置き換えられてもよい。記録媒体10は、中心から同心円状に配置された複数のトラック30を持つ。各トラック30には、複数のブック40が記録される。ブック40は、所定単位の情報である。尚、外周側に配置されたトラック30は、内周側に配置されたトラック30に比べて多くのブック40を記録可能である。 The recording medium 10 has a disk shape as described above, and has a clamp hole 20 near the center thereof. The clamp hole 20 is used to clamp the recording medium 10 in a device for holographic recording or holographic reproduction (not shown). The clamp hole 20 may be replaced with a hub. The recording medium 10 has a plurality of tracks 30 arranged concentrically from the center. A plurality of books 40 are recorded on each track 30. The book 40 is information of a predetermined unit. The track 30 disposed on the outer peripheral side can record more books 40 than the track 30 disposed on the inner peripheral side.
 前述のように、記録層70はホログラフィック材料により構成されるので、多重記録が可能である。具体的には、図2に示すように、各ブック40は、ページ41と呼ばれる所定単位の情報を多重化して構成される。故に、記録媒体10において、各ブック40を記録するための領域には、複数のページ41が多重記録される。 As described above, since the recording layer 70 is made of a holographic material, multiple recording is possible. Specifically, as shown in FIG. 2, each book 40 is configured by multiplexing predetermined units of information called pages 41. Therefore, in the recording medium 10, a plurality of pages 41 are multiplexed and recorded in the area for recording each book 40.
 図3に示すように、本実施形態に係る2次元符号化方法を利用するホログラフィック記録再生装置は、光源100、ビームスプリッタ101、ビームエキスパンダ102、空間光変調器103、空間光変調器104、レンズ群105、空間フィルタ106、ビームスプリッタ107、対物レンズ108、保持及び駆動機構109、ミラー110、ミラー111、ミラー112、ミラー113、レンズ群113、空間フィルタ114、撮像素子115及びコントローラ116を有する。図3のホログラフィック記録再生装置は、位相共役再生方式を利用する。 As shown in FIG. 3, the holographic recording / reproducing apparatus using the two-dimensional encoding method according to this embodiment includes a light source 100, a beam splitter 101, a beam expander 102, a spatial light modulator 103, and a spatial light modulator 104. , Lens group 105, spatial filter 106, beam splitter 107, objective lens 108, holding and driving mechanism 109, mirror 110, mirror 111, mirror 112, mirror 113, lens group 113, spatial filter 114, image sensor 115 and controller 116. Have. The holographic recording / reproducing apparatus in FIG. 3 uses a phase conjugate reproducing method.
 光源100は、コントローラ116からの制御に従って、レーザ光を発生する。レーザ光の発振波長、強度などはコントローラ116によって制御される。一般的には、レーザ光の発振波長を制御するために、半導体レーザに外部の共振器を組み合わせて構成される外部共振器付きレーザ(ELCD;External Cavity Laser Diode)などが利用される。また、図示されていないが、光源100は、出力ビームの空間強度を均一にして所望の強度分布及びビーム径を実現するための空間フィルタ及びコリメータ、戻り光の影響を回避するためのアイソレータなどを備えている。 The light source 100 generates laser light in accordance with control from the controller 116. The oscillation wavelength and intensity of the laser light are controlled by the controller 116. Generally, a laser with an external resonator (ELCD; External Cavity Laser Diode) configured by combining an external resonator with a semiconductor laser is used to control the oscillation wavelength of laser light. Although not shown, the light source 100 includes a spatial filter and a collimator for realizing a desired intensity distribution and beam diameter by making the spatial intensity of the output beam uniform, an isolator for avoiding the influence of return light, and the like. I have.
 ビームスプリッタ101は、光源100からのレーザ光(コリメート光)を2つの光束に分割する。分割の比率は、図示しない波長板などにより制御される。保持及び駆動機構109は、記録媒体10を物理的に保持する。また、保持及び駆動機構109は、コントローラ116からの指示に従って記録媒体10の位置決めを行う。 The beam splitter 101 splits the laser light (collimated light) from the light source 100 into two light beams. The division ratio is controlled by a wave plate (not shown). The holding and driving mechanism 109 physically holds the recording medium 10. The holding and driving mechanism 109 positions the recording medium 10 in accordance with an instruction from the controller 116.
 コントローラ116は、図3のホログラフィック記録再生装置の各要素を統括制御する。具体的には、コントローラ116は、情報記録時にユーザデータに基づいて後述する空間光変調器103にページデータを通知したり、情報再生時に後述する撮像素子115からのページデータ画像に基づいてユーザデータを再生したりする。尚、図3に示すホログラフィック記録再生装置は参照光120と記録光130とが別々の光軸を持つ2光束記録再生方式と呼ばれる方式である。しかしながら、各実施形態に係る2次元符号化方法は、この2光束記録再生方式に限らず、参照光と記録光とが同一の光軸を通るコアキシャル方式といった他の記録再生方式にも適用可能である。 The controller 116 controls each element of the holographic recording / reproducing apparatus shown in FIG. Specifically, the controller 116 notifies page data to the spatial light modulator 103, which will be described later, based on user data at the time of information recording, or user data based on a page data image from an image sensor 115, which will be described later, during information reproduction. Or play back. The holographic recording / reproducing apparatus shown in FIG. 3 is a so-called two-beam recording / reproducing method in which the reference light 120 and the recording light 130 have separate optical axes. However, the two-dimensional encoding method according to each embodiment is not limited to the two-beam recording / reproducing method, but can be applied to other recording / reproducing methods such as a coaxial method in which the reference light and the recording light pass through the same optical axis. is there.
 以下、記録媒体10へ情報を記録する場合を中心に、図3のホログラフィック記録再生装置の各部について説明する。情報の記録時には、光源100から光が出力される 
 ビームエキスパンダ102は、光源100から出力され、ビームスプリッタ101を通過した光を所望のビーム径に整形する。
Hereinafter, each part of the holographic recording / reproducing apparatus in FIG. 3 will be described focusing on the case of recording information on the recording medium 10. Light is output from the light source 100 when recording information.
The beam expander 102 shapes the light output from the light source 100 and passed through the beam splitter 101 into a desired beam diameter.
 空間光変調器103及び空間光変調器104は、ビームスエキスパンダ102からの光に記録情報(ユーザデータなど)を重畳させる。尚、記録情報は、コントローラ116内部においてページデータに変換されている。空間光変調器103及び空間光変調器104は、微小なミラーにより構成されるDMD(Digital Mirror Device)、液晶素子を用いたLCOS(Liquid crystal on silicon)などのデバイスにより構成される。空間光変調器103及び空間光変調器104は、一方が光の強度を変調し、他方が光の位相を変調する。以降の説明では、空間光変調器103が光の強度を変調し、空間光変調器104が光の位相を変調すると仮定する。 The spatial light modulator 103 and the spatial light modulator 104 superimpose recording information (such as user data) on the light from the beam expander 102. The recording information is converted into page data inside the controller 116. The spatial light modulator 103 and the spatial light modulator 104 are configured by a device such as a DMD (Digital Mirror Device) configured by a minute mirror, or an LCOS (Liquid Crystal Crystal on silicon) using a liquid crystal element. One of the spatial light modulator 103 and the spatial light modulator 104 modulates the intensity of light, and the other modulates the phase of light. In the following description, it is assumed that the spatial light modulator 103 modulates the light intensity and the spatial light modulator 104 modulates the light phase.
 空間光変調器103は、コントローラ116から通知されるページデータに従って各画素のON/OFFを設定する。ページデータの画素は、空間光変調器103が設定する画素に1対1対応している。空間光変調器103は、例えば、ページデータの「1」に対応する画素をON(光を通過)、ページデータの「0」に対応する画素をOFF(光を遮断)に設定する。空間光変調器104は、空間光変調器103からの変調光の位相を変調する。例えば、空間光変調器104は、各画素の位相を-πまたはπのいずれか一方にランダムで設定する。 The spatial light modulator 103 sets ON / OFF of each pixel according to the page data notified from the controller 116. The page data pixels have a one-to-one correspondence with the pixels set by the spatial light modulator 103. For example, the spatial light modulator 103 sets a pixel corresponding to “1” of page data to ON (passes light) and a pixel corresponding to “0” of page data to OFF (blocks light). The spatial light modulator 104 modulates the phase of the modulated light from the spatial light modulator 103. For example, the spatial light modulator 104 randomly sets the phase of each pixel to either −π or π.
 空間光変調器104からの変調光は、レンズ群105を通過する。レンズ群105は、
この変調光を所望のビーム径に整形する。また、レンズ群105の間には空間フィルタ106が設けられる。この空間フィルタ106は、このレンズ群105の通過光の空間周波数成分を調整するために所望のフィルタ処理を実現する。例えば、低域通過型フィルタ(LPF;Low-pass filter)は、ピンホールを設けることにより実現できる。一方、高域通過型フィルタ(HPF;High-pass filter)は、中心部分の光を遮断するマークを設けることにより実現できる。空間フィルタ106の作用により、レンズ群105の通過光は特定の周波数成分が抑圧され、或いは、特定の周波数成分が強調される。このレンズ群105の通過光は、ビームスプリッタ107及び対物レンズ108を更に通過して、記録媒体10(記録層70)の所望の位置に照射される。以降の説明において、この照射光を記録光130と称する。一方、前述のビームスプリッタ101によって分割された他方の光束もミラー110及びミラー113によって反射されて、記録媒体10(記録層70)の所望の位置に照射される。以降の説明において、この照射光を参照光120と称する。
The modulated light from the spatial light modulator 104 passes through the lens group 105. The lens group 105 is
The modulated light is shaped into a desired beam diameter. A spatial filter 106 is provided between the lens groups 105. The spatial filter 106 realizes a desired filter process for adjusting the spatial frequency component of the light passing through the lens group 105. For example, a low-pass filter (LPF) can be realized by providing a pinhole. On the other hand, a high-pass filter (HPF) can be realized by providing a mark that blocks light at the center. Due to the action of the spatial filter 106, a specific frequency component of the light passing through the lens group 105 is suppressed or a specific frequency component is emphasized. The light passing through the lens group 105 further passes through the beam splitter 107 and the objective lens 108 and is irradiated to a desired position of the recording medium 10 (recording layer 70). In the following description, this irradiation light is referred to as recording light 130. On the other hand, the other light beam split by the above-described beam splitter 101 is also reflected by the mirror 110 and the mirror 113 and irradiated to a desired position of the recording medium 10 (recording layer 70). In the following description, this irradiation light is referred to as reference light 120.
 記録光130及び参照光120は、互いに干渉して記録層70に干渉縞を形成する。そして、記録媒体10(記録層70)には、この干渉縞の形状が記録情報として保持される。尚、前述のように、記録媒体10は多重記録が可能である。より具体的には、図4に示されるように、参照光120及び記録光130と記録媒体10とがなす角度、記録光130に対する参照光120の入射角を変更することにより、記録層70の同一位置に複数の情報(ページデータ)を記録できる。このような多重記録方式は、角度多重方式と呼ばれる。また、参照光120及び記録光130の照射位置を変更することにより、記録層70に複数のブック40が記録される。 The recording light 130 and the reference light 120 interfere with each other to form interference fringes in the recording layer 70. The recording medium 10 (recording layer 70) holds this interference fringe shape as recording information. As described above, the recording medium 10 can perform multiple recording. More specifically, as shown in FIG. 4, by changing the angle formed by the reference light 120 and the recording light 130 and the recording medium 10 and the incident angle of the reference light 120 with respect to the recording light 130, A plurality of information (page data) can be recorded at the same position. Such a multiplex recording system is called an angle multiplex system. In addition, the plurality of books 40 are recorded on the recording layer 70 by changing the irradiation positions of the reference light 120 and the recording light 130.
 以下、記録媒体10から情報を再生する場合を中心に、図3のホログラフィック記録再生装置の各部について説明する。情報の再生時にも、光源100から光が出力されるものの、前述の記録光130の経路は図示しないシャッターなどにより遮断される。 Hereinafter, each part of the holographic recording / reproducing apparatus in FIG. 3 will be described focusing on the case of reproducing information from the recording medium 10. Even when information is reproduced, light is output from the light source 100, but the path of the recording light 130 is blocked by a shutter (not shown).
 ミラー110は、光源100から出力され、ビームスプリッタ101によって分割された光を反射する。ミラー110及びミラー113によって反射された光は、記録媒体10(記録層70)の所望の位置に照射される。更に、記録媒体10を透過した光がミラー111によって反射され、再び記録媒体10に照射される。これらの光の照射位置に記録情報が存在する場合には、照射された光の回折光が対物レンズ108へ伝播する。この回折光には、記録情報が重畳されている。以降の説明において、この回折光を再生光と称する。 The mirror 110 reflects the light output from the light source 100 and split by the beam splitter 101. The light reflected by the mirror 110 and the mirror 113 is irradiated to a desired position of the recording medium 10 (recording layer 70). Further, the light transmitted through the recording medium 10 is reflected by the mirror 111 and is irradiated again on the recording medium 10. When recording information exists at the irradiation position of these lights, the diffracted light of the irradiated light propagates to the objective lens 108. Recording information is superimposed on this diffracted light. In the following description, this diffracted light is referred to as reproduction light.
 再生光は、対物レンズ108を通過し、ビームスプリッタ107によって反射され、ミラー112によって更に反射されてレンズ群113へと導かれる。レンズ群113は、再生光を所望のビーム径に整形する。また、レンズ群113の間には空間フィルタ114が設けられる。この空間フィルタ114は、再生光の空間周波数成分を調整するために所望のフィルタ処理を実現する。空間フィルタ114の作用により、再生光の特定の周波数成分が抑圧され、或いは、再生光の特定の周波数成分が強調される。この再生光は、レンズ群113から撮像素子115へ導かれる。 The reproduction light passes through the objective lens 108, is reflected by the beam splitter 107, is further reflected by the mirror 112, and is guided to the lens group 113. The lens group 113 shapes the reproduction light into a desired beam diameter. A spatial filter 114 is provided between the lens groups 113. The spatial filter 114 realizes a desired filter process for adjusting the spatial frequency component of the reproduction light. Due to the action of the spatial filter 114, a specific frequency component of the reproduction light is suppressed, or a specific frequency component of the reproduction light is emphasized. This reproduction light is guided from the lens group 113 to the image sensor 115.
 撮像素子115は、レンズ群113から再生光を受け、強度に応じた電気信号に変換する。撮像素子115は、一般的には、多画素の撮像素子であるCCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)などのデバイスにより構成される。撮像素子115は、この電気信号をA/D変換によってデジタル信号に変換し、ページデータ画像としてコントローラ116に入力する。例えば、ページデータ画像の各画素の値は、撮像素子115の各画素が受けた光の強度に応じた8ビットのデジタル値(0以上255以下)によって表現される。尚、ページデータ画像の画素(空間光変調器103の画素)と、撮像素子115の画素とは必ずしも1対1対応していない。具体的には、ページデータ画像の1画素に対してより多くの撮像素子115の画素(例えば4画素)が割り当てられることがある。このようなページデータ画像の取り込み方式は、オーバーサンプル方式と呼ばれる。オーバーサンプル方式によれば、ページデータ画像の画素と撮像素子の画素との間に位置ずれが生じた場合にも、コントローラ116は所定の信号処理によって上記位置ずれが補正されたページデータ画像を容易に復元できる。 The image sensor 115 receives the reproduction light from the lens group 113 and converts it into an electrical signal corresponding to the intensity. The image sensor 115 is generally constituted by a device such as a CCD (Charge-Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor) which is a multi-pixel image sensor. The image sensor 115 converts this electrical signal into a digital signal by A / D conversion, and inputs it to the controller 116 as a page data image. For example, the value of each pixel of the page data image is represented by an 8-bit digital value (0 to 255) corresponding to the intensity of light received by each pixel of the image sensor 115. Note that the pixels of the page data image (pixels of the spatial light modulator 103) and the pixels of the image sensor 115 do not necessarily have a one-to-one correspondence. Specifically, more pixels (for example, four pixels) of the image sensor 115 may be assigned to one pixel of the page data image. Such a page data image capturing method is called an oversample method. According to the oversampling method, even when a positional deviation occurs between the pixel of the page data image and the pixel of the image sensor, the controller 116 can easily display the page data image in which the positional deviation is corrected by predetermined signal processing. Can be restored.
 以下、コントローラ116の一部として実装される記録信号処理部及び再生信号処理部について図5及び図6を用いて説明する。これら記録信号処理部及び再生信号処理部は、ハードウェア、ソフトウェアまたはハードウェア及びソフトウェアの組み合わせによって実装される。 Hereinafter, a recording signal processing unit and a reproduction signal processing unit implemented as a part of the controller 116 will be described with reference to FIGS. These recording signal processing unit and reproduction signal processing unit are implemented by hardware, software, or a combination of hardware and software.
 図5に示されるように、記録信号処理部は、エラー訂正符号算出部210、変調部220及びページデータ生成部230を有する。記録信号処理部は、記録対象となるユーザデータ200に基づいて、空間光変調器103にページデータ240を通知する。 As shown in FIG. 5, the recording signal processing unit includes an error correction code calculation unit 210, a modulation unit 220, and a page data generation unit 230. The recording signal processing unit notifies the spatial light modulator 103 of the page data 240 based on the user data 200 to be recorded.
 エラー訂正符号算出部210は、ユーザデータ200を所定単位のデータに分割する。エラー訂正符号算出部210は、この所定単位のデータ毎に所定のアルゴリズムに従ってエラー訂正符号を算出する。エラー訂正符号算出部210は、所定単位のデータにエラー訂正符号を付与して変調部220に入力する。 The error correction code calculation unit 210 divides the user data 200 into data of a predetermined unit. The error correction code calculation unit 210 calculates an error correction code for each predetermined unit of data according to a predetermined algorithm. The error correction code calculation unit 210 adds an error correction code to data of a predetermined unit and inputs the data to the modulation unit 220.
 変調部220は、エラー訂正符号算出部210からの所定単位のデータ(エラー訂正符号を含む)を、予め定められた変調テーブル及び変調規則に従って符号語に変換する。この変調テーブル及び変調規則は、本実施形態に係る2次元符号化方法に基づいている。本実施形態に係る2次元符号化方法の詳細は後述する。変調部220は、符号語をページデータ生成部230に入力する。 The modulation unit 220 converts a predetermined unit of data (including the error correction code) from the error correction code calculation unit 210 into a code word according to a predetermined modulation table and modulation rule. The modulation table and the modulation rule are based on the two-dimensional encoding method according to the present embodiment. Details of the two-dimensional encoding method according to the present embodiment will be described later. The modulation unit 220 inputs the code word to the page data generation unit 230.
 ページデータ生成部230は、所定数の符号語を配置したページデータ240を生成する。尚、ページデータ240にはアドレス情報などの追加情報も含まれる。また、ページデータ240には、所定の間隔で同期マークと呼ばれる所定のビットパターンが配置される。前述のように、空間光変調器103は、ページデータ240のビットパターンに基づいて画素のON/OFFを設定する。 The page data generation unit 230 generates page data 240 in which a predetermined number of code words are arranged. The page data 240 includes additional information such as address information. In the page data 240, a predetermined bit pattern called a synchronization mark is arranged at predetermined intervals. As described above, the spatial light modulator 103 sets the pixel ON / OFF based on the bit pattern of the page data 240.
 ページデータ240は、例えば図9に示すように、複数の同期マーク43と複数のサブページ42とを含む。複数のサブページ42は、いずれも同一または類似した形状である。サブページ42の4隅には同期マーク43が夫々配置される。サブページ42において、同期マーク43に隣接した領域にはアドレス情報などの付加情報が配置される。アドレス情報は、ブック番号、ブック内のページ番号、ページ内のサブページ番号、変調のタイプなどを示す。サブページ42において、上記付加情報以外の領域にはユーザデータが変調(符号化)された符号語が配置される。 The page data 240 includes, for example, a plurality of synchronization marks 43 and a plurality of subpages 42 as shown in FIG. The plurality of subpages 42 have the same or similar shape. Synchronization marks 43 are arranged at the four corners of the subpage 42, respectively. In the subpage 42, additional information such as address information is arranged in an area adjacent to the synchronization mark 43. The address information indicates a book number, a page number in the book, a subpage number in the page, a modulation type, and the like. In the subpage 42, a codeword in which user data is modulated (encoded) is arranged in an area other than the additional information.
 図10は、図9における点線領域の拡大図を示している。図10に示されるように、各サブページには複数の符号語44が配置されている。各符号語44には、図11に示されるように、複数の画素が配置されている。尚、以降の説明において、特に断りのない限り、符号語に対応する図面中の斜線が付けられた画素は「0」、白抜きの画素は「1」を表すとする。図10の例では、符号語44が4×4画素で構成され、同期マーク43が8×8画素で構成されている。一般的には、同期マーク43は符号語44に比べて対称性の高いパターンを持つ。例えば、図10を参照すると、同期マーク43は「0」及び「1」が同心円状に交互に配置されたパターンを持つ。このような対称性の高いパターンは、後述するテンプレートマッチング処理における相関のピーク検出に適している。 FIG. 10 shows an enlarged view of the dotted area in FIG. As shown in FIG. 10, a plurality of code words 44 are arranged in each subpage. In each code word 44, as shown in FIG. 11, a plurality of pixels are arranged. In the following description, unless otherwise specified, the hatched pixel in the drawing corresponding to the code word represents “0” and the white pixel represents “1”. In the example of FIG. 10, the code word 44 is composed of 4 × 4 pixels, and the synchronization mark 43 is composed of 8 × 8 pixels. In general, the synchronization mark 43 has a pattern having higher symmetry than the code word 44. For example, referring to FIG. 10, the synchronization mark 43 has a pattern in which “0” and “1” are alternately arranged concentrically. Such a highly symmetrical pattern is suitable for correlation peak detection in template matching processing described later.
 図6に示されるように、再生信号処理部は、フィルタ部310、座標検出部320、座標変換部330、フィルタ部340、2値化部350、復調部360及びエラー訂正部370を有する。再生信号処理部は、撮像素子115からのページデータ画像300に基づいてユーザデータ380を再生する。基本的には、再生信号処理部は記録信号処理部と逆の処理を行う。但し、ページデータ画像300には雑音が含まれていたり、空間的なずれが生じていたりする可能性がある。故に、再生信号処理部は、雑音の抑圧のための処理、空間的なずれを補正するための処理も行う。 As shown in FIG. 6, the reproduction signal processing unit includes a filter unit 310, a coordinate detection unit 320, a coordinate conversion unit 330, a filter unit 340, a binarization unit 350, a demodulation unit 360, and an error correction unit 370. The reproduction signal processing unit reproduces user data 380 based on the page data image 300 from the image sensor 115. Basically, the reproduction signal processing unit performs the reverse process of the recording signal processing unit. However, there is a possibility that the page data image 300 includes noise or has a spatial shift. Therefore, the reproduction signal processing unit also performs processing for suppressing noise and processing for correcting spatial deviation.
 図7Aは、正常なページデータ画像300の一例を示している。一方、図7Bは、低周波雑音が生じている場合のページデータ画像300の一例を示している。このような低周波雑音は、輝度むらとも呼ばれる。図7Bの例では、ページデータ画像300の4隅が中心部に比べて暗い。このような状態では、ON画素の光強度とOFF画素の光強度とが近接するので、ビットエラーが生じやすくなる。輝度むらなどの低周波雑音は、記録光または参照光の強度分布の不均一性、光学系の収差、空間光変調器または撮像素子の感度の不均一性、アライメントのずれ、環境温度の変化などの様々な要因によって発生する。 FIG. 7A shows an example of a normal page data image 300. On the other hand, FIG. 7B shows an example of the page data image 300 when low-frequency noise is generated. Such low frequency noise is also called luminance unevenness. In the example of FIG. 7B, the four corners of the page data image 300 are darker than the center. In such a state, since the light intensity of the ON pixel and the light intensity of the OFF pixel are close to each other, a bit error is likely to occur. Low-frequency noise such as uneven brightness is caused by non-uniformity in the intensity distribution of recording light or reference light, aberrations in the optical system, non-uniformity in sensitivity of the spatial light modulator or image sensor, misalignment, changes in environmental temperature, etc. Due to various factors.
 図8Aは、正常なページデータ画像300の一例を拡大した状態で示している。一方、図8Bは、高周波雑音が生じている場合のページデータ画像300の一例を拡大した状態で示している。図8Aの例では、ON画素とOFF画素とをはっきりと判別できる。図8Bの例では、画面全体に、ON画素とは異なる細かな明るい点(高周波雑音)が発生している。このような高周波雑音が生じている場合には、雑音による明点とON画素との区別がつきにくいので、ON画素の判別が困難になる。また、高周波雑音は、ON画素またはOFF画素の形状の歪みとして現れることもあるが、この場合にもやはり両者の判別は困難となる。即ち、ページデータ画像300に高周波雑音が生じている場合にもビットエラーが生じやすい。高周波雑音は、光学系によって発生する散乱光または迷光、電気的な雑音などの様々な要因によって発生する。 FIG. 8A shows an example of a normal page data image 300 in an enlarged state. On the other hand, FIG. 8B shows an enlarged view of an example of the page data image 300 when high-frequency noise occurs. In the example of FIG. 8A, the ON pixel and the OFF pixel can be clearly distinguished. In the example of FIG. 8B, fine bright spots (high-frequency noise) different from the ON pixels are generated on the entire screen. When such high-frequency noise is generated, it is difficult to distinguish between a bright point due to the noise and the ON pixel, and it becomes difficult to distinguish the ON pixel. In addition, high-frequency noise may appear as distortion of the shape of the ON pixel or OFF pixel, but in this case as well, it is difficult to discriminate both. That is, even when high frequency noise is generated in the page data image 300, a bit error is likely to occur. High frequency noise is generated by various factors such as scattered light or stray light generated by an optical system, and electrical noise.
 フィルタ部310は、撮像素子115からのページデータ画像300に対してフィルタリング処理などを行う。例えば、フィルタ部310は、低周波雑音を抑圧するために、2次元FIR(Finite Impulse Response)フィルタなどを用いてHPF処理を行ったり、輝度差の平均化処理によりページデータ画像300全体の明るさを平均化したりしてもよい。この輝度差の平均化処理は、例えば、ページデータ画像300を複数の区分に分割し、各区分内の画素の輝度振幅を計測し、これらの輝度振幅が等しくなるように増減のための重み付けを行う処理である。また、フィルタ部310は、高周波雑音を抑圧するためにLPF処理を行ってもよい。また、フィルタ部310は、記録情報成分を強調するために、特定の周波数帯域成分を増幅するイコライジング処理を行ってもよい。尚、フィルタ部310の処理は、後段の座標検出部320及び座標変換部330の処理を考慮して最適化されることが望ましい。フィルタ部310は、フィルタリング処理済みのページデータ画像を座標検出部320に入力する。 The filter unit 310 performs a filtering process on the page data image 300 from the image sensor 115. For example, the filter unit 310 performs HPF processing using a two-dimensional FIR (Finite Impulse Response) filter or the like in order to suppress low frequency noise, or brightness of the entire page data image 300 by luminance difference averaging processing. May be averaged. In this brightness difference averaging process, for example, the page data image 300 is divided into a plurality of sections, the brightness amplitudes of the pixels in each section are measured, and weighting for increase / decrease is performed so that these brightness amplitudes are equal. This is the process to be performed. The filter unit 310 may perform LPF processing to suppress high frequency noise. Further, the filter unit 310 may perform an equalizing process for amplifying a specific frequency band component in order to emphasize the recording information component. Note that the processing of the filter unit 310 is preferably optimized in consideration of the processing of the coordinate detection unit 320 and the coordinate conversion unit 330 in the subsequent stage. The filter unit 310 inputs the filtered page data image to the coordinate detection unit 320.
 座標検出部320は、フィルタ部310からのページデータ画像の空間的なずれを補正して、ページデータの各画素の中心座標に対応するページデータ画像の座標を検出する。記録時に設定されたページデータの画素と再生時に撮像されたページデータ画像の画素との間には、撮像素子115の画素とページデータの画素が1対1対応していないこと、空間光変調器103の画素と撮像素子115の画素との間の位置ずれ、光学的な収差による画像の拡大、縮小、歪などの要因による空間的なずれが生じる。具体的には、ページデータ画像の処理毎に、ページデータの各画素の中心座標に対応するページデータ画像の座標は変化する可能性がある。まず、座標検出部320は、ページデータ画像からページデータの同期マークに対応する座標を検出する。前述の通り、同期マークは、ページデータの中心、縁部などの所定位置に配置されている。これら同期マークのパターンは既知なので、例えば座標検出部320はこの既知パターンをテンプレートとするテンプレートマッチング処理をページデータ画像に対して行う。座標検出部320は、ページデータ画像において最も相関の高い座標を、同期マークに対応する座標として検出する。そして、座標検出部320は、検出済みの座標に基づく補完処理によってページデータのその他の画素の中心座標に対応するページデータ画像の座標を検出する。 The coordinate detection unit 320 corrects the spatial shift of the page data image from the filter unit 310 and detects the coordinates of the page data image corresponding to the center coordinates of each pixel of the page data. There is no one-to-one correspondence between the pixel of the image sensor 115 and the pixel of the page data between the pixel of the page data set at the time of recording and the pixel of the page data image captured at the time of reproduction. A positional shift between the pixel 103 and the pixel of the image sensor 115, and a spatial shift due to factors such as image enlargement, reduction, and distortion due to optical aberration occur. Specifically, the coordinates of the page data image corresponding to the center coordinates of each pixel of the page data may change every time the page data image is processed. First, the coordinate detection unit 320 detects the coordinates corresponding to the synchronization mark of the page data from the page data image. As described above, the synchronization mark is arranged at a predetermined position such as the center or edge of the page data. Since these synchronization mark patterns are known, for example, the coordinate detection unit 320 performs a template matching process using the known pattern as a template for the page data image. The coordinate detection unit 320 detects the coordinate having the highest correlation in the page data image as the coordinate corresponding to the synchronization mark. Then, the coordinate detection unit 320 detects the coordinates of the page data image corresponding to the center coordinates of the other pixels of the page data by complementing processing based on the detected coordinates.
 座標変換部330は、座標検出部320によって検出された座標に基づいて、ページデータ画像をリサンプルする。このリサンプル処理は、例えばバイリニア法、バイキュービック法などによって実現される。このリサンプル処理によって、ページデータの画素に1対1対応した画素を持つページデータ画像が生成される。座標変換部330は、リサンプル処理によって生成されたページデータ画像をフィルタ部340に入力する。 The coordinate conversion unit 330 resamples the page data image based on the coordinates detected by the coordinate detection unit 320. This resampling process is realized by, for example, a bilinear method, a bicubic method, or the like. By this re-sampling process, a page data image having a one-to-one correspondence with the page data pixels is generated. The coordinate conversion unit 330 inputs the page data image generated by the resampling process to the filter unit 340.
 フィルタ部340は、座標変換部330からのページデータ画像に対してフィルタリング処理またはイコライジング処理を行う。尚、フィルタ部340の処理は、フィルタ部310と同一または類似していてもよいし、全く異なる処理でもよいが、後段の2値化部350の処理を考慮して最適化されることが望ましい。尚、フィルタ部310が処理対象とするページデータ画像が持つ画素はページデータの画素に1対1対応していないのでサンプリング周波数が不明であるが、フィルタ部340が処理対象とするページデータ画像が持つ画素はページデータの画素に1対1対応しているのでサンプリング周波数を固定できる。フィルタ部340は、フィルタリング処理済みのページデータ画像を2値化部350に入力する。 The filter unit 340 performs a filtering process or an equalizing process on the page data image from the coordinate conversion unit 330. The processing of the filter unit 340 may be the same as or similar to the processing of the filter unit 310, or may be completely different processing, but is preferably optimized in consideration of the processing of the subsequent binarization unit 350. . Note that the pixels of the page data image to be processed by the filter unit 310 do not have a one-to-one correspondence with the pixels of the page data, so the sampling frequency is unknown, but the page data image to be processed by the filter unit 340 is Since the corresponding pixels have a one-to-one correspondence with the page data pixels, the sampling frequency can be fixed. The filter unit 340 inputs the filtered page data image to the binarization unit 350.
 2値化部350は、フィルタ部340からのページデータ画像の各画素の値を2値化してビット列を生成する。例えば、8ビット値の画素に関して、2値化部350は、画素の値が127以上であれば「1」(ON画素)と判定し、そうなければ「0」(OFF画素)と判定する。2値化部350は、ビット列を復調部360に入力する。 The binarization unit 350 binarizes the value of each pixel of the page data image from the filter unit 340 to generate a bit string. For example, regarding an 8-bit value pixel, the binarization unit 350 determines “1” (ON pixel) if the pixel value is 127 or more, and determines “0” (OFF pixel) otherwise. The binarization unit 350 inputs the bit string to the demodulation unit 360.
 復調部360は、2値化部350からのビット列を符号語単位で、予め定められた復調テーブル及び復調規則に従って所定単位のデータ(エラー訂正符号を含む)に変換する。尚、この復調テーブル及び復調規則は、前述の変調部220が使用する変調テーブル及び変調規則に対応する。復調部360は、復調データをエラー訂正部370に入力する。 The demodulation unit 360 converts the bit string from the binarization unit 350 into data of a predetermined unit (including an error correction code) in accordance with a predetermined demodulation table and demodulation rule in units of codewords. The demodulation table and the demodulation rule correspond to the modulation table and the modulation rule used by the modulation unit 220 described above. Demodulation section 360 inputs demodulated data to error correction section 370.
 エラー訂正部370は、復調データに対してエラー訂正を行って所定単位のデータを再生する。エラー訂正処理は、エラー訂正符号算出部210によって付与されたエラー訂正符号を利用して実現される。再生された所定単位のデータは、ユーザデータ380として統合され、外部に出力される。 The error correction unit 370 performs error correction on the demodulated data and reproduces data of a predetermined unit. The error correction process is realized using the error correction code given by the error correction code calculation unit 210. The reproduced data of a predetermined unit is integrated as user data 380 and output to the outside.
 以下、本実施形態に係る2次元符号化方法を説明する。本実施形態に係る2次元符号化方法は、例えば次のような変調テーブルを実現する。
Figure JPOXMLDOC01-appb-T000001
Hereinafter, the two-dimensional encoding method according to the present embodiment will be described. The two-dimensional encoding method according to the present embodiment realizes the following modulation table, for example.
Figure JPOXMLDOC01-appb-T000001
 この変調テーブルは、16ビット(画素)の符号語を10ビットのユーザデータに割り当てている。即ち、この符号化方法の符号化効率は、62.5%(10/16)なので前述の条件(B)を満たしている。この変調テーブルによれば、例えば「526」のユーザデータには、「0100;0000;0011;0100」の符号語が割り当てられる。尚、この変調テーブルにおける符号語の表記は、符号語のラスタ順でのビットパターンを示している。例えば、この符号語の上端行は左から順に0,1,0,0のビットが配置されている。また、この符号語の上から2番目の行は左から順に0,0,0,0のビットが配置されている。即ち、この符号語は、図11に示されるビットパターンを持つ。 In this modulation table, a 16-bit (pixel) code word is assigned to 10-bit user data. That is, since the encoding efficiency of this encoding method is 62.5% (10/16), the above-described condition (B) is satisfied. According to this modulation table, for example, code words “0100; 0000; 0011; 0100” are assigned to user data “526”. The notation of the code word in this modulation table indicates the bit pattern in the raster order of the code word. For example, bits 0, 1, 0, and 0 are arranged in order from the left in the upper row of the code word. In the second row from the top of this code word, bits 0, 0, 0, 0 are arranged in order from the left. That is, this code word has the bit pattern shown in FIG.
 本実施形態に係る2次元符号化方法は、符号語の総画素数が全て等しく、かつ、「1」(ON画素)及び「0」(OFF画素)の比率が固定であるものとする。例えば、上記変調テーブルにおいて、符号語は4行4列のビットパターンであり、ON画素が4個に固定されている。このように符号語の総画素数及びON画素比率を固定化することは、再生信号処理における符号語の切り出し処理の簡素化及びその信頼性の向上、2値化処理の判定精度の向上などに役立つ。例えば、2値化処理によって判定されたON画素の数が規定数と異なっていれば、パラメータを変更して2値化処理を再度実行したり、輝度の高い順に規定数に一致するようにON画素を判定したりすることが可能となる。 In the two-dimensional encoding method according to the present embodiment, it is assumed that the total number of pixels of the code word is the same, and the ratio of “1” (ON pixel) and “0” (OFF pixel) is fixed. For example, in the modulation table, the code word is a bit pattern of 4 rows and 4 columns, and the number of ON pixels is fixed to 4. In this way, fixing the total number of pixels of the code word and the ON pixel ratio simplifies the cut-out process of the code word in the reproduction signal processing, improves its reliability, and improves the determination accuracy of the binarization process. Useful. For example, if the number of ON pixels determined by the binarization processing is different from the specified number, the parameter is changed and the binarization processing is executed again, or the ON number is set so as to match the specified number in order of increasing brightness. It is possible to determine a pixel.
 また、ON画素比率は、前述の条件(A)に関して述べた通り、20~30%程度に抑えられることが望ましい。この根拠は、非特許文献1に開示されている。具体的には、図12に示されるように、ON画素比率が20%から30%程度であるときにホログラフィック記録容量(ON画素比率が50%である場合を基準とする相対容量)が最大化される。尚、上記変調テーブルに関して、ON画素比率は25%なので前述の条件(A)を満たしている。 Also, it is desirable that the ON pixel ratio is suppressed to about 20 to 30% as described regarding the condition (A). This basis is disclosed in Non-Patent Document 1. Specifically, as shown in FIG. 12, when the ON pixel ratio is about 20% to 30%, the holographic recording capacity (relative capacity based on the case where the ON pixel ratio is 50%) is maximum. It becomes. In the modulation table, since the ON pixel ratio is 25%, the above condition (A) is satisfied.
 尚、以降の説明において、2次元符号化方法のパラメータを簡易に記載するために、E(J,K,L)という表記を使用する。Jは、符号語の総画素数を表す。Kは、符号語に含まれるON画素数を表す。Lは、符号語が割り当てられるユーザデータのビット数を表す。即ち、上記変調テーブルは、2次元符号化方法E(16,4,10)に基づいている。ところで、この符号語のパターン数は、16=1820である。一方、ユーザデータのパターン数は、210=1024である。即ち、この2次元符号化方法E(16,4,10)において、符号語のパターン数はユーザデータのパターン数に比べて余剰がある。そこで、本実施形態に係る2次元符号化方法は、全符号語からホログラフィックメモリ技術に適した符号語をユーザデータのパターン数を下回らないように選択してから、ユーザデータに割り当てる。換言すれば、本実施形態に係る2次元符号化方法は、全符号語からホログラフィックメモリ技術に適さない符号語を余剰の範囲内で排除してから、ユーザデータに割り当てる。以下、このホログラフィックメモリ技術に適した符号語を選択するための手法、または、ホログラフィックメモリ技術に適さない符号語を排除するための手法を説明する。 In the following description, the notation E (J, K, L) is used to simply describe the parameters of the two-dimensional encoding method. J represents the total number of pixels of the code word. K represents the number of ON pixels included in the code word. L represents the number of bits of user data to which a code word is assigned. That is, the modulation table is based on the two-dimensional encoding method E (16, 4, 10). By the way, the number of patterns of this code word is 16 C 4 = 1820. On the other hand, the number of patterns of user data is 2 10 = 1024. That is, in this two-dimensional encoding method E (16, 4, 10), the number of codeword patterns is surplus compared to the number of user data patterns. Therefore, in the two-dimensional encoding method according to the present embodiment, a codeword suitable for the holographic memory technology is selected from all codewords so as not to be less than the number of user data patterns, and then assigned to user data. In other words, in the two-dimensional encoding method according to the present embodiment, codewords that are not suitable for the holographic memory technique are excluded from all codewords within a surplus range and then allocated to user data. Hereinafter, a method for selecting a codeword suitable for the holographic memory technology or a method for eliminating a codeword not suitable for the holographic memory technology will be described.
 前述の2次元符号化方法E(16,4,10)は、ホログラフィックメモリ技術に適した符号語を以下の選択条件に基づいて選択する。 The above-described two-dimensional encoding method E (16, 4, 10) selects a code word suitable for the holographic memory technology based on the following selection conditions.
 選択条件(1-1) 4個のON画素が、符号語内の3×3画素の部分領域のいずれにも集中していない。 
 選択条件(1-2) 行方向または列方向でON画素同士が隣接した画素領域に含まれる最大のON画素数が3個以上でない(2個以下である)。 
 選択条件(1-3) 同一行または同一列に含まれる最大のON画素数が3個以上でない(2個以下である)。
Selection condition (1-1) The four ON pixels are not concentrated in any of the 3 × 3 pixel partial areas in the code word.
Selection condition (1-2) The maximum number of ON pixels included in a pixel region in which ON pixels are adjacent to each other in the row direction or the column direction is not three or more (two or less).
Selection condition (1-3) The maximum number of ON pixels included in the same row or column is not three or more (two or less).
 尚、選択条件(1-1)は、以下の選択条件(1-1’)または(1-1’’)に読み替えられても勿論よい。 
 選択条件(1-1’) 上端行及び右端列の7個の画素の中に少なくとも1つのON画素が存在し、かつ、右端列及び下端行の7個の画素の中に少なくとも1つのON画素が存在し、かつ、下端行及び左端列の7個の画素の中に少なくとも1つのON画素が存在し、かつ、左端列及び上端行の7個の画素の中に少なくとも1つのON画素が存在する。 
 選択条件(1-1’’) 符号語内の3×3画素の部分領域に含まれる最大のON画素数が4個でない(3個以下である)。
Of course, the selection condition (1-1) may be read as the following selection condition (1-1 ′) or (1-1 ″).
Selection condition (1-1 ′) At least one ON pixel exists in the seven pixels in the uppermost row and the rightmost column, and at least one ON pixel in the seven pixels in the rightmost column and the lowermost row And at least one ON pixel among the seven pixels in the bottom row and the left column, and at least one ON pixel among the seven pixels in the left column and the top row To do.
Selection condition (1-1 ″) The maximum number of ON pixels included in the 3 × 3 pixel partial area in the code word is not four (three or less).
 例えば、図13Aの符号語は、右端列及び下端行を除いた3×3画素の部分領域に集中している。また、この符号語は、行方向または列方向でON画素同士が隣接した画素領域に含まれる最大のON画素数が3個である。従って、この符号語は、選択条件(1-1),(1-2)を満たしていない。図13Bの符号語は、行方向または列方向でON画素同士が隣接した画素領域に含まれる最大のON画素数が3個である。従って、この符号語は選択条件(1-2)を満たしていない。図13Cの符号語は、行方向または列方向でON画素同士が隣接した画素領域に含まれる最大のON画素数が3個である。また、この符号語は、同一行または同一列に含まれる最大のON画素数が3個である。従って、この符号語は、選択条件(1-2),(1-3)を満たしていない。図13Dの符号語は、行方向または列方向でON画素同士が隣接した画素領域に含まれる最大のON画素数が4個である。また、この符号語は、同一行または同一列に含まれる最大のON画素数が4個である。従って、この符号語は、選択条件(1-2),(1-3)を満たしていない。図13Eの符号語は、同一行または同一列に含まれる最大のON画素数が3個である。従って、この符号語は、選択条件(1-3)を満たしていない。 For example, the code words in FIG. 13A are concentrated in a partial area of 3 × 3 pixels excluding the rightmost column and the lowermost row. Further, in this code word, the maximum number of ON pixels included in the pixel region in which the ON pixels are adjacent to each other in the row direction or the column direction is three. Therefore, this code word does not satisfy the selection conditions (1-1) and (1-2). In the code word of FIG. 13B, the maximum number of ON pixels included in the pixel region in which the ON pixels are adjacent to each other in the row direction or the column direction is three. Therefore, this code word does not satisfy the selection condition (1-2). In the code word of FIG. 13C, the maximum number of ON pixels included in the pixel region in which the ON pixels are adjacent to each other in the row direction or the column direction is three. Further, this code word has the maximum number of ON pixels 3 included in the same row or the same column. Therefore, this code word does not satisfy the selection conditions (1-2) and (1-3). In the code word of FIG. 13D, the maximum number of ON pixels included in the pixel region in which the ON pixels are adjacent to each other in the row direction or the column direction is four. This code word has a maximum number of ON pixels of 4 in the same row or column. Therefore, this code word does not satisfy the selection conditions (1-2) and (1-3). In the code word of FIG. 13E, the maximum number of ON pixels included in the same row or the same column is three. Therefore, this code word does not satisfy the selection condition (1-3).
 以下、選択条件(1-1),(1-2),(1-3)の技術的意義を説明する。 
 選択条件(1-1)は、局所領域にON画素が集中した符号語を排除するために役立つ。局所領域にON画素が集中すると、符号語の画像の低周波成分が強くなりやすい。即ち、符号語の信号成分が低周波帯に集中しやすい。低周波帯に信号成分が集中すると、再生信号処理部において低周波雑音抑圧のためのHPF処理を適用した場合に、より多くの信号成分が遮断される(失われる)。また、また、ホログラフィックメモリはフーリエ変換面で記録されるので、符号語の低周波成分が強ければ記録光の分布が光軸上に集中して記録に不具合が生じる。また、選択条件(1-2),(1-3)も、局所領域にON画素が集中した符号語を排除するために役立つ。即ち、選択条件(1-1),(1-2),(1-3)も、前述の条件(C)を満たすために有効である。尚、選択条件(1-1),(1-2),(1-3)において局所領域に含まれる最大のON画素数が所定値以下に制限されているが、この所定値を適宜変更してもよい。また、選択条件(1-1)は、3×3画素を局所領域として定めているが、この局所領域を適宜変更してもよい。
Hereinafter, the technical significance of the selection conditions (1-1), (1-2), and (1-3) will be described.
The selection condition (1-1) is useful for eliminating codewords in which ON pixels are concentrated in a local region. When the ON pixels are concentrated in the local area, the low frequency component of the codeword image tends to be strong. That is, the signal component of the code word tends to concentrate on the low frequency band. When signal components are concentrated in the low frequency band, more signal components are blocked (lost) when the reproduction signal processing unit applies HPF processing for low frequency noise suppression. Further, since the holographic memory is recorded on the Fourier transform plane, if the low frequency component of the code word is strong, the distribution of the recording light is concentrated on the optical axis, resulting in a recording failure. The selection conditions (1-2) and (1-3) are also useful for eliminating codewords in which ON pixels are concentrated in a local region. That is, the selection conditions (1-1), (1-2), and (1-3) are also effective for satisfying the above-described condition (C). In the selection conditions (1-1), (1-2), and (1-3), the maximum number of ON pixels included in the local area is limited to a predetermined value or less. May be. In addition, although the selection condition (1-1) defines 3 × 3 pixels as a local region, the local region may be changed as appropriate.
 図14Aは、選択条件(1-1)を満たさない4個の符号語の集合を示している。一方、図14Bは、選択条件(1-1)(及び選択条件(1-2),(1-3))を満たす4個の符号語の集合を示している。図15A及び図15Bは、図14A及び図14Bに対応する画像の周波数成分を夫々表す。尚、図15A及び図15Bにおいて、信号強度、列方向周波数及び行方向周波数はいずれも正規化されている。図15A及び図15Bにおいて、中心付近の信号強度が図14A及び図14Bに対応する画像の低周波成分を示している。図15A及び図15Bから明らかなように、図14Bに対応する画像は図14Aに対応する画像に比べて低周波帯の信号成分が抑えられている。故に、図14Bに対応する画像にHPF処理を行えば低周波雑音を効果的に抑圧することが可能である。即ち、選択条件(1-1)を満たす符号語によれば、信号帯雑音比(SNR)の向上が見込まれる。 FIG. 14A shows a set of four code words that do not satisfy the selection condition (1-1). On the other hand, FIG. 14B shows a set of four code words that satisfy the selection condition (1-1) (and the selection conditions (1-2), (1-3)). 15A and 15B represent the frequency components of the images corresponding to FIGS. 14A and 14B, respectively. In FIGS. 15A and 15B, the signal intensity, the column direction frequency, and the row direction frequency are all normalized. 15A and 15B, the signal intensity near the center indicates the low frequency component of the image corresponding to FIGS. 14A and 14B. As is apparent from FIGS. 15A and 15B, the signal component in the low frequency band is suppressed in the image corresponding to FIG. 14B compared to the image corresponding to FIG. 14A. Therefore, low-frequency noise can be effectively suppressed by performing HPF processing on the image corresponding to FIG. 14B. That is, according to the code word satisfying the selection condition (1-1), an improvement in the signal band noise ratio (SNR) is expected.
 2次元符号化方法E(16,4,10)に関して、以上の選択条件(1-1)を満たす符号語のパターン数は1587である。選択条件(1-1)に加えて選択条件(1-2)を満たす符号語のパターン数は1267である。全ての選択条件(1-1),(1-2),(1-3)を満たす符号語のパターン数は1123である。10ビットのパターン数は1024なので、本実施形態に係る2次元符号化方法E(16,4,10)は全ての選択条件(1-1),(1-2),(1-3)を満たす符号語をユーザデータに一意に割り当て可能である。従って、本実施形態に係る2次元符号化方法Eは、J,K,Lの設定により条件(A),(B)を満たしており、選択条件(1-1),(1-2),(1-3)の適用により条件(C)を満たしていると評価できる。 Regarding the two-dimensional encoding method E (16, 4, 10), the number of codeword patterns satisfying the above selection condition (1-1) is 1587. The number of codeword patterns that satisfy the selection condition (1-2) in addition to the selection condition (1-1) is 1267. The number of codeword patterns satisfying all the selection conditions (1-1), (1-2), and (1-3) is 1123. Since the number of 10-bit patterns is 1024, the two-dimensional encoding method E (16, 4, 10) according to this embodiment satisfies all selection conditions (1-1), (1-2), and (1-3). A satisfying codeword can be uniquely assigned to user data. Therefore, the two-dimensional encoding method E according to the present embodiment satisfies the conditions (A) and (B) by setting J, K, and L, and the selection conditions (1-1), (1-2), It can be evaluated that the condition (C) is satisfied by applying (1-3).
 以下、本実施形態に係る2次元符号化方法E(J,K,L)を一般化して説明する。 
 本実施形態に係る2次元符号化方法は、符号語の総画素数Jをn(nは4以上の整数)の2乗に決定する。本実施形態に係る2次元符号化方法は、符号語のON画素数KをON画素比率(K/J)が20~30%程度に収まるように決定する。更に、本実施形態に係る2次元符号化方法は、符号語のON画素数Kを所望の符号化効率を満たすだけの符号語数を確保できるように決定する。尚、前述の通り、符号化効率とは、符号語が割り当てられるユーザデータのビット数Lの符号語の総画素数Jに対する比率(L/J)である。符号語のパターン数はであり、ユーザデータのパターン数は2である。本実施形態に係る2次元符号化方法は、50%を超える高い符号化効率を実現するために、符号語のON画素数Kを例えばn以上の値に決定する。このようにJ,K,Lを決定することにより、前述の条件(A),(B)を満たすことができる。
Hereinafter, the two-dimensional encoding method E (J, K, L) according to the present embodiment will be generalized and described.
In the two-dimensional encoding method according to the present embodiment, the total number of pixels J of the code word is determined to be the square of n (n is an integer of 4 or more). In the two-dimensional encoding method according to the present embodiment, the number of ON pixels K of the code word is determined so that the ON pixel ratio (K / J) falls within about 20 to 30%. Furthermore, in the two-dimensional encoding method according to the present embodiment, the number K of ON pixels in the code word is determined so as to ensure the number of code words sufficient to satisfy the desired encoding efficiency. As described above, the encoding efficiency is the ratio (L / J) of the number of bits L of user data to which a code word is allocated to the total number of pixels J of the code word. The number of codeword patterns is J C K , and the number of user data patterns is 2L . In the two-dimensional encoding method according to the present embodiment, the number of ON pixels K of the code word is determined to be a value of n or more, for example, in order to realize high encoding efficiency exceeding 50%. By determining J, K, and L in this way, the above conditions (A) and (B) can be satisfied.
 以上のようにJ,K,Lを決定したうえで、前述の条件(C)を満たすための符号語の選択または排除が行われる。尚、前述の例(E(16,4,10))では、全ての選択条件(1-1),(1-2),(1-3)を満たす符号語のパターン数がユーザデータのパターン数以上であったが、J,K,Lの値次第では必ずしもこのような関係が成立しない。故に、例えば、優先度の高い選択条件から順番に適用して符号語の選択/排除を段階的に行うことが有効である。 After determining J, K, and L as described above, a code word for satisfying the above condition (C) is selected or excluded. In the above example (E (16, 4, 10)), the number of codeword patterns satisfying all the selection conditions (1-1), (1-2), (1-3) is the user data pattern. Although it is more than the number, such a relationship is not necessarily established depending on the values of J, K, and L. Therefore, for example, it is effective to perform selection / exclusion of codewords step by step in order from the selection condition with the highest priority.
 選択条件(1-1)は、2次元符号化方法E(J,K,L)に関して次のように読み替えられる。 
 選択条件(2-1) K個のON画素が、符号語内の(n-1)×(n-1)画素の部分領域のいずれにも集中していない。 
 選択条件(2-1’) 上端行及び右端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、かつ、右端列及び下端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、かつ、下端行及び左端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、かつ、左端列及び上端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在する。 
 選択条件(2-1’’) 符号語内の(n-1)×(n-1)画素の部分領域に含まれる最大のON画素数がK個でない((K-1)個以下である)。
The selection condition (1-1) can be read as follows regarding the two-dimensional encoding method E (J, K, L).
Selection condition (2-1) The K ON pixels are not concentrated in any of the partial areas of (n−1) × (n−1) pixels in the code word.
Selection condition (2-1 ′) At least one ON pixel exists in (2n−1) pixels in the uppermost row and rightmost column, and (2n−1) pixels in the rightmost column and lowermost row At least one ON pixel, and at least one ON pixel among (2n−1) pixels in the lower row and the left column, and (2n -1) There is at least one ON pixel among the pixels.
Selection condition (2-1 ″) The maximum number of ON pixels included in the partial area of (n−1) × (n−1) pixels in the code word is not K ((K−1) or less). ).
 この選択条件(2-1)を満たす符号語のパターン数がユーザデータのパターン数(2)以上ならば、選択条件(2-1)を満たす符号語群に以下の選択条件(2-2)を更に適用する。尚、この選択条件(2-2)は、前述の選択条件(1-2)を2次元符号化方法E(J,K,L)に関して読み替えたものである。 If the number of codeword patterns satisfying the selection condition (2-1) is equal to or greater than the number of user data patterns (2 L ), the following selection condition (2-2) is added to the codeword group satisfying the selection condition (2-1). ) Is further applied. The selection condition (2-2) is obtained by replacing the selection condition (1-2) with respect to the two-dimensional encoding method E (J, K, L).
 選択条件(2-2) 行方向または列方向でON画素同士が隣接した画素領域に含まれる最大のON画素数が(K-1)個以上でない((K-2)個以下である)。 
 これら選択条件(2-1),(2-2)を満たす符号語のパターン数がユーザデータのパターン数以上ならば、選択条件(2-1),(2-2)を満たす符号語群に以下の選択条件(2-3)を更に適用する。尚、この選択条件(2-3)は、前述の選択条件(1-3)を2次元符号化方法E(J,K,L)に関して読み替えたものである。一方、これら選択条件(2-1),(2-2)を満たす符号語のパターン数がユーザデータのパターン数未満ならば、例えば、この選択条件(2-2)の適用がキャンセルされて、選択条件(2-1)を満たす符号語がユーザデータに割り当てられる。
Selection condition (2-2) The maximum number of ON pixels included in a pixel region in which ON pixels are adjacent to each other in the row direction or the column direction is not (K-1) or more ((K-2) or less).
If the number of codeword patterns satisfying these selection conditions (2-1) and (2-2) is greater than or equal to the number of user data patterns, the codeword group satisfying the selection conditions (2-1) and (2-2) The following selection condition (2-3) is further applied. The selection condition (2-3) is obtained by replacing the selection condition (1-3) with respect to the two-dimensional encoding method E (J, K, L). On the other hand, if the number of codeword patterns satisfying these selection conditions (2-1) and (2-2) is less than the number of user data patterns, for example, application of this selection condition (2-2) is canceled, A code word satisfying the selection condition (2-1) is assigned to the user data.
 条件(2-3) 同一行または同一列に含まれる最大のON画素数が(K-1)個以上でない((K-2)個以下である)。 
 これら選択条件(2-1),(2-2),(2-3)を満たす符号語のパターン数がユーザデータのパターン数以上ならば、選択条件(2-1),(2-2),(2-3)を満たす符号語がユーザデータに割り当てられる。一方、これら選択条件(2-1),(2-2),(2-3)を満たす符号語のパターン数がユーザデータのパターン数未満ならば、例えば、この選択条件(2-3)の適用がキャンセルされて、選択条件(2-1),(2-2)を満たす符号語がユーザデータに割り当てられる。
Condition (2-3) The maximum number of ON pixels contained in the same row or column is not (K-1) or more ((K-2) or less).
If the number of codeword patterns satisfying these selection conditions (2-1), (2-2), and (2-3) is greater than or equal to the number of user data patterns, selection conditions (2-1) and (2-2) , (2-3) is assigned to the user data. On the other hand, if the number of codeword patterns satisfying these selection conditions (2-1), (2-2), and (2-3) is less than the number of user data patterns, for example, the selection condition (2-3) The application is canceled and a code word satisfying the selection conditions (2-1) and (2-2) is assigned to the user data.
 このように選択条件を満たす符号語群を段階的に選択することにより、ユーザデータのパターン数を下限として好適な符号語が絞り込まれる。例えば、2次元符号化方法E(16,4,L)に関して、選択条件(2-1),(2-2),(2-3)を順番に適用すると、最初に図13Aに示されるような選択条件(2-1)を満たさない符号語が排除される。次に、図13B、図13C及び図13Dに示されるような選択条件(2-2)を満たさない符号語が排除され、最後に図13Eに示されるような選択条件(2-3)を満たさない符号語が排除される。このような段階的な絞り込みによって、好適な符号語をユーザデータに割り当てることが可能となる。尚、本実施形態において選択条件(2-1),(2-2),(2-3)間の優先度の差異は、以下の理由で決定されている。 Thus, by selecting the codeword group satisfying the selection conditions in stages, suitable codewords are narrowed down with the number of user data patterns as a lower limit. For example, when the selection conditions (2-1), (2-2), and (2-3) are sequentially applied to the two-dimensional encoding method E (16, 4, L), as shown in FIG. 13A first. Code words that do not satisfy the selection condition (2-1) are excluded. Next, codewords that do not satisfy the selection condition (2-2) as shown in FIGS. 13B, 13C, and 13D are eliminated, and finally the selection condition (2-3) as shown in FIG. 13E is satisfied. No codewords are eliminated. Such stepwise narrowing down makes it possible to assign a suitable codeword to user data. In the present embodiment, the priority difference between the selection conditions (2-1), (2-2), and (2-3) is determined for the following reason.
 選択条件(2-1)を満たさない符号語は、(n-1)×(n-1)画素の局所領域に全てのON画素(K個のON画素)が集中する。故に、選択条件(2-1)を満たさない符号語は、例えば図13Aに示されるように、行方向及び列方向の両方の低周波帯に信号成分が集中する可能性が高い。選択条件(2-2)を満たさない符号語は、例えば図13A及び図13Bに示されるように、行方向及び列方向の両方の低周波帯に信号成分が集中する可能性がある。しかしながら、この符号語は、例えば図13C及び図13Dに示されるように、行方向及び列方向の一方のみの低周波帯に信号成分が集中する可能性もある。選択条件(2-3)を満たさない符号語は、図13C、図13D及び図13Eに示されるように、行方向及び列方向のうち一方のみの低周波帯に信号成分が集中する可能性が高い。故に、本実施形態では、符号語の行方向及び列方向の低周波成分に対する影響を総合的に考慮して、選択条件(2-1),(2-2),(2-3)の順で優先度が与えられている。 In a code word that does not satisfy the selection condition (2-1), all ON pixels (K ON pixels) are concentrated in a local area of (n-1) × (n-1) pixels. Therefore, for a codeword that does not satisfy the selection condition (2-1), for example, as shown in FIG. 13A, there is a high possibility that signal components are concentrated in the low frequency bands in both the row direction and the column direction. For codewords that do not satisfy the selection condition (2-2), for example, as shown in FIGS. 13A and 13B, signal components may be concentrated in the low frequency band in both the row direction and the column direction. However, in this code word, for example, as shown in FIGS. 13C and 13D, signal components may be concentrated in a low frequency band only in one of the row direction and the column direction. For codewords that do not satisfy the selection condition (2-3), as shown in FIGS. 13C, 13D, and 13E, there is a possibility that signal components are concentrated in only one of the low frequency bands in the row direction and the column direction. high. Therefore, in the present embodiment, the order of the selection conditions (2-1), (2-2), and (2-3) is considered by comprehensively considering the influence on the low frequency components in the row direction and the column direction of the code word. Is given priority.
 図16に示されるように、本実施形態に係る2次元符号化方法は、選択条件を満たす符号語群を選択(選択条件を満たさない符号語を排除する)こと(ステップS401)と、選択された符号語群に含まれる符号語のみ(排除されなかった符号語のみ)をユーザデータに割り当てること(ステップS402)とを含んでいる。結果的に、本実施形態に係る2次元符号化方法によってユーザデータに割り当てられる符号語は、ホログラフィックメモリ技術に適したものに絞り込まれる。 As shown in FIG. 16, the two-dimensional encoding method according to the present embodiment selects a codeword group that satisfies the selection condition (excludes codewords that do not satisfy the selection condition) (step S401), and is selected. And assigning only code words included in the code word group (only code words not excluded) to user data (step S402). As a result, codewords assigned to user data by the two-dimensional encoding method according to the present embodiment are narrowed down to those suitable for the holographic memory technology.
 以下、本実施形態に係る2次元符号化方法の1つとして、2次元符号化方法E(16,5,12)を例示する。この2次元符号化方法E(16,5,12)のON画素比率は、約31%(5/16)なので条件(A)を満たす。また、この2次元符号化方法E(16,5,12)の符号化効率は、75%(12/16)なので条件(B)を満たす。符号語のパターン数は4368(16)であり、ユーザデータのパターン数は4096(212)である。故に、符号語は、ユーザデータに比べて372パターンの余剰がある。 Hereinafter, as one of the two-dimensional encoding methods according to the present embodiment, a two-dimensional encoding method E (16, 5, 12) will be exemplified. Since the ON pixel ratio of the two-dimensional encoding method E (16, 5, 12) is about 31% (5/16), the condition (A) is satisfied. The encoding efficiency of the two-dimensional encoding method E (16, 5, 12) is 75% (12/16), which satisfies the condition (B). The number of codeword patterns is 4368 ( 16 C 5 ), and the number of user data patterns is 4096 (2 12 ). Therefore, the code word has a surplus of 372 patterns compared to the user data.
 この2次元符号化方法E(16,5,12)は、ユーザデータに割り当てられる符号語を絞り込むために選択条件(2-1)を適用する。結果的に、図17A、図17B及び図17Cに示されるような符号語が選択される一方、図18A、図18B、図18C及び図18Dに示されるような符号語が排除される。この選択条件(2-1)を満たす符号語のパターン数は4096であり、ユーザデータのパターン数と一致する。従って、この2次元符号化方法E(16,5,12)では選択条件(2-2),(2-3)は適用されず、選択条件(2-1)を満たす符号語のみがユーザデータに一意に割り当てられる。 This two-dimensional encoding method E (16, 5, 12) applies the selection condition (2-1) in order to narrow down the codewords assigned to the user data. As a result, codewords as shown in FIGS. 17A, 17B and 17C are selected, while codewords as shown in FIGS. 18A, 18B, 18C and 18D are eliminated. The number of codeword patterns satisfying this selection condition (2-1) is 4096, which matches the number of user data patterns. Therefore, in the two-dimensional encoding method E (16, 5, 12), the selection conditions (2-2) and (2-3) are not applied, and only code words that satisfy the selection condition (2-1) are user data. Assigned uniquely.
 以上説明したように、本実施形態に係る2次元符号化方法はJ,K,Lの設定により条件(A),(B)を満たす。更に、本実施形態に係る符号化方法は、符号語に選択条件(2-1),(2-2),(2-3)を段階的に適用することにより、条件(C)を満たす。従って、本実施形態に係る2次元符号化方法によれば、ホログラフィックメモリ技術に適した符号語をユーザデータに割り当てることが可能となる。 As described above, the two-dimensional encoding method according to this embodiment satisfies the conditions (A) and (B) by setting J, K, and L. Furthermore, the encoding method according to the present embodiment satisfies the condition (C) by applying the selection conditions (2-1), (2-2), and (2-3) stepwise to the codeword. Therefore, according to the two-dimensional encoding method according to the present embodiment, a code word suitable for the holographic memory technology can be assigned to user data.
 (第2の実施形態) 
 前述の第1の実施形態に係る2次元符号化方法は、選択条件(2-1),(2-2),(2-3)を段階的に適用して符号語を選択/排除することにより、条件(C)を満たしている。本発明の第2の実施形態に係る2次元符号化方法は、更なる選択条件を規定することにより、ホログラフィックメモリ技術に更に適した符号語をユーザに割り当てる。
(Second Embodiment)
In the two-dimensional encoding method according to the first embodiment described above, the selection conditions (2-1), (2-2), and (2-3) are applied step by step to select / exclude codewords. Therefore, the condition (C) is satisfied. The two-dimensional encoding method according to the second embodiment of the present invention assigns codewords more suitable for the holographic memory technology to the user by defining further selection conditions.
 図10に示されるように、ページデータには符号語(44)の他に同期マーク(43)が含まれている。同期マークは、再生信号処理において符号語の画素の座標検出などに利用される。例えば、同期マークの位置及び形状の検出結果に基づいて、ページデータ画像の位置、傾き、大きさなどが推定される。 As shown in FIG. 10, the page data includes a synchronization mark (43) in addition to the code word (44). The synchronization mark is used for detecting the coordinates of the codeword pixel in the reproduction signal processing. For example, the position, inclination, size, and the like of the page data image are estimated based on the detection result of the position and shape of the synchronization mark.
 同期マークは符号語よりも多くの画素を持つ。また、図19に示されるように、同期マークは、ON画素が比較的長く連続した画素パターンを持つ。このような特徴的なパターンを持つ同期マークは、通常の符号語に比べて検出が容易である。しかしながら、特定の符号語が組み合わさると、このような特徴的なパターンに類似した(相関の高い)画素パターンが生じる可能性がある。第1の実施形態において例示した2次元符号化方法E(16,4,10)は、1123パターンの符号語を使用することが可能である。この1123パターンの符号語の一部を組み合わせると、図20に示されるように、同期パターンに類似した画素パターンが生じる。尚、図20において図19の同期マークと、符号語の組み合わせとが重ね合わせて表示されている。また、図20において、符号語の組み合わせに含まれる画素のうち同期マークから外れた(同期マークと重ならない)位置の画素の詳細は省略されている。図20において、各符号語は、点線領域によって区分されており、×印が付与された位置にON画素を持ち、その他の位置にOFF画素を持つ。即ち、図20において、符号語の組み合わせと同期マークとの間のハミング距離は、白抜きの画素(同期マークに関してON画素であるが、符号語の組み合わせに関してOFF画素である)の合計数に一致する。具体的には、ハミング距離は「8」である。ハミング距離は、ビットパターン間の類似度を示す距離(指標)の一例である。図20の例では、符号語の組み合わせにおける計8個の白抜きの画素(OFF画素)が何らかの要因(雑音など)によって、再生信号処理においてON画素として判定されると、これら符号語の組み合わせが同期マークとして誤検出されてしまう。 The synchronization mark has more pixels than the code word. Further, as shown in FIG. 19, the synchronization mark has a pixel pattern in which ON pixels are relatively long and continuous. A synchronization mark having such a characteristic pattern is easier to detect than a normal codeword. However, when specific codewords are combined, a pixel pattern similar to (highly correlated with) such a characteristic pattern may be generated. The two-dimensional encoding method E (16, 4, 10) exemplified in the first embodiment can use 1123 patterns of code words. When a part of the codewords of the 1123 pattern is combined, a pixel pattern similar to the synchronization pattern is generated as shown in FIG. In FIG. 20, the synchronization mark of FIG. 19 and the combination of codewords are displayed superimposed. Also, in FIG. 20, details of pixels at positions that are out of the synchronization mark (do not overlap with the synchronization mark) among the pixels included in the codeword combination are omitted. In FIG. 20, each code word is divided by a dotted line region, and has ON pixels at positions where “x” marks are given, and has OFF pixels at other positions. That is, in FIG. 20, the Hamming distance between the codeword combination and the synchronization mark matches the total number of white pixels (ON pixels with respect to the synchronization mark but OFF pixels with respect to the codeword combination). To do. Specifically, the Hamming distance is “8”. The Hamming distance is an example of a distance (index) indicating the similarity between bit patterns. In the example of FIG. 20, when a total of eight white pixels (OFF pixels) in a combination of codewords are determined as ON pixels in reproduction signal processing due to some factor (such as noise), the combination of these codewords is determined. Misdetected as a synchronization mark.
 図19の同期マークは、図21に示される部分領域を含む。この部分領域のサイズは、符号語と同じである。このような同期マークの各部分領域に類似した符号語が組み合わさることにより、同期マークに類似した画素パターンが生じる。故に、本実施形態に係る2次元符号化方法は、次の選択条件(3-1)を更に規定する。 19 includes a partial area shown in FIG. The size of this partial area is the same as the code word. A code pattern similar to the synchronization mark is generated by combining a code word similar to each partial region of the synchronization mark. Therefore, the two-dimensional encoding method according to the present embodiment further defines the following selection condition (3-1).
 選択条件(3-1) 同期マークの各部分領域との最小のハミング距離が所定値(以降の説明では「3」)以上である。 
 この選択条件は、例えば、前述の選択条件(2-1),(2-2),(2-3)の適用の後に、更に適用される。即ち、選択条件(2-1),(2-2),(2-3)を満たす符号語のパターン数がユーザデータのパターン数以上であれば、選択条件(3-1)が適用される。尚、この適用順序は一例であり、異なる適用順序に変更されてもよい。
Selection condition (3-1) The minimum hamming distance from each partial region of the synchronization mark is equal to or greater than a predetermined value (“3” in the following description).
This selection condition is further applied after, for example, the above-described selection conditions (2-1), (2-2), and (2-3) are applied. That is, if the number of codeword patterns satisfying the selection conditions (2-1), (2-2), and (2-3) is greater than or equal to the number of user data patterns, the selection condition (3-1) is applied. . In addition, this application order is an example and may be changed to a different application order.
 図22Aは、図21に示される画素パターンとのハミング距離が「2」の符号語を示している。また、図22B、図22C及び図22Dも、図19の同期マークの部分領域とのハミング距離が「2」の符号語を示している。2次元符号化方法E(16,4,10)に関して、選択条件(2-1),(2-2),(2-3)を満たし、かつ、選択条件(3-1)を満たさない符号語は以上の4パターン(図22A、図22B、図22C及び図22D)である。本実施形態に係る2次元符号化方法E(16,4,10)は、選択条件(2-1),(2-2),(2-3)を満たす1123パターンの符号語から、選択条件(3-1)を満たさない4パターンの符号語を排除する。結果的に1119パターンの符号語が残り、これはユーザデータのパターン数1024以上である。故に、本実施形態に係る2次元符号化方法は、全ての選択条件(2-1),(2-2),(2-3),(3-1)を満たす符号語を使用できる。本実施形態に係る2次元符号化方法E(16,4,10)では、全ての符号語が同期マークの各部分領域と「3」以上のハミング距離を持つことが保証される。例えば図23に示されるように、図19の同期マークの各部分領域とハミング距離の近い符号語が組み合わさったとしてもハミング距離は「12」となる。即ち、図20の例に比べて、符号語の組み合わせが同期マークとして誤検出される可能性が低くなる。 FIG. 22A shows a code word having a Hamming distance “2” from the pixel pattern shown in FIG. 22B, 22C, and 22D also show codewords having a Hamming distance “2” from the partial region of the synchronization mark in FIG. Regarding the two-dimensional encoding method E (16, 4, 10), codes that satisfy the selection conditions (2-1), (2-2), and (2-3) and do not satisfy the selection condition (3-1) The words are the above four patterns (FIGS. 22A, 22B, 22C, and 22D). The two-dimensional encoding method E (16, 4, 10) according to the present embodiment uses a selection condition from 1123 patterns of codewords that satisfy the selection conditions (2-1), (2-2), and (2-3). Four patterns of code words that do not satisfy (3-1) are eliminated. As a result, 1119 patterns of codewords remain, which is more than 1024 user data patterns. Therefore, the two-dimensional encoding method according to the present embodiment can use codewords that satisfy all the selection conditions (2-1), (2-2), (2-3), and (3-1). In the two-dimensional encoding method E (16, 4, 10) according to the present embodiment, it is guaranteed that all codewords have a Hamming distance of “3” or more with each partial region of the synchronization mark. For example, as shown in FIG. 23, the Hamming distance is “12” even if each partial region of the synchronization mark in FIG. 19 is combined with a code word having a close Hamming distance. That is, the possibility that a combination of code words is erroneously detected as a synchronization mark is lower than in the example of FIG.
 また、上記説明は、図19に示す同期マークを例示しているが、我々はこれ以外に同期マークとして用いることが可能な様々なパターンについて調査を実施した。図24A、図24B、図24C及び図24Dは、調査の対象となった同期マークの例を示す。この調査の結果、上記選択条件(3-1)において所定値を「3」に設定すれば、符号語の数が十分確保され、かつ、同期マーク全体と符号語の組み合わせとの間のハミング距離を「8」よりも拡大することが可能であることを見出した。 In addition, although the above description exemplifies the synchronization mark shown in FIG. 19, we have investigated various patterns that can be used as the synchronization mark. 24A, 24B, 24C, and 24D show examples of synchronization marks that have been investigated. As a result of this investigation, if the predetermined value is set to “3” in the selection condition (3-1), the number of codewords is sufficiently secured, and the Hamming distance between the entire synchronization mark and the codeword combination Has been found to be able to be expanded beyond “8”.
 以上説明したように、本実施形態に係る2次元符号化方法は、同期マークの各部分領域との最小のハミング距離が所定値であることを追加的な選択条件として規定している。従って、本実施形態に係る2次元符号化方法によれば、符号語の組み合わせが同期マークとして誤検出される可能性が低くなる。 As described above, the two-dimensional encoding method according to the present embodiment defines that the minimum hamming distance from each partial region of the synchronization mark is a predetermined value as an additional selection condition. Therefore, according to the two-dimensional encoding method according to the present embodiment, the possibility that a combination of code words is erroneously detected as a synchronization mark is reduced.
 尚、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また上記各実施形態に開示されている複数の構成要素を適宜組み合わせることによって種々の発明を形成できる。また例えば、各実施形態に示される全構成要素からいくつかの構成要素を削除した構成も考えられる。さらに、異なる実施形態に記載した構成要素を適宜組み合わせてもよい。 Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. Further, for example, a configuration in which some components are deleted from all the components shown in each embodiment is also conceivable. Furthermore, you may combine suitably the component described in different embodiment.
 例えば、各実施形態に係る2次元符号化方法を利用して符号化された記録情報をホログラフィック記録媒体に記録するホログラフィック記録再生装置(ホログラフィック記録装置)は、本願が開示する発明の態様に含まれる。また、各実施形態に係る2次元符号化方法を利用して符号化された記録情報を記録したホログラフィック記録媒体もまた、本願が開示する発明の態様に含まれる。更に、各実施形態に係る2次元符号化方法を利用して符号化された記録情報を記録したホログラフィック記録媒体からこの記録情報を再生するホログラフィック再生装置(ホログラフィック記録再生装置)もまた、本願が開示する発明の態様に含まれる。尚、ホログラフィック記録装置は、例えば図3のホログラフィック記録再生装置からホログラフィック再生にのみ必要な要素を除去することにより構成可能である。また、ホログラフィック再生装置は、例えば図3のホログラフィック記録再生装置からホログラフィック記録にのみ必要な要素を除去することにより構成可能である。 For example, a holographic recording / reproducing apparatus (holographic recording apparatus) that records recording information encoded using the two-dimensional encoding method according to each embodiment on a holographic recording medium is an aspect of the invention disclosed by the present application. include. A holographic recording medium that records recording information encoded using the two-dimensional encoding method according to each embodiment is also included in the aspects of the invention disclosed in the present application. Furthermore, a holographic reproducing device (holographic recording / reproducing device) that reproduces the recorded information from a holographic recording medium that records the recorded information encoded by using the two-dimensional encoding method according to each embodiment. It is contained in the aspect of the invention which this application discloses. Note that the holographic recording apparatus can be configured by removing elements necessary only for holographic reproduction from the holographic recording / reproducing apparatus of FIG. 3, for example. Further, the holographic reproducing apparatus can be configured by removing elements necessary only for holographic recording from the holographic recording / reproducing apparatus of FIG. 3, for example.
 10・・・ホログラフィック記録媒体
 20・・・クランプ孔
 30・・・トラック
 40・・・ブック
 41・・・ページ
 42・・・サブページ
 43・・・同期マーク
 44・・・符号語
 50,60・・・保護層
 70・・・記録層
 80・・・サーボ情報記録層
 100・・・光源
 101・・・ビームスプリッタ
 102・・・ビームエキスパンダ
 103,104・・・空間光変調器
 105・・・レンズ群
 106・・・空間フィルタ
 107・・・ビームスプリッタ
 108・・・対物レンズ
 109・・・保持及び駆動機構
 110,111,112,113・・・ミラー
 113・・・レンズ群
 114・・・空間フィルタ
 115・・・撮像素子
 116・・・コントローラ
 120・・・参照光
 130・・・記録光
 140・・・再生光
 200・・・ユーザデータ
 210・・・エラー訂正符号算出部
 220・・・変調部
 230・・・ページデータ生成部
 240・・・ページデータ
 300・・・ページデータ画像
 310・・・フィルタ部
 320・・・座標検出部
 330・・・座標変換部
 340・・・フィルタ部
 350・・・2値化部
 360・・・復調部
 370・・・エラー訂正部
 380・・・ユーザデータ
DESCRIPTION OF SYMBOLS 10 ... Holographic recording medium 20 ... Clamp hole 30 ... Track 40 ... Book 41 ... Page 42 ... Subpage 43 ... Synchronization mark 44 ... Code word 50, 60 ... Protective layer 70 ... Recording layer 80 ... Servo information recording layer 100 ... Light source 101 ... Beam splitter 102 ... Beam expander 103, 104 ... Spatial light modulator 105 ... Lens group 106: Spatial filter 107 ... Beam splitter 108 ... Objective lens 109 ... Holding and driving mechanism 110, 111, 112, 113 ... Mirror 113 ... Lens group 114 ... Spatial filter 115 ... image sensor 116 ... controller 120 ... reference light 130 ... recording light 140 ... reproduction light 200 ... User data 210 ... Error correction code calculation unit 220 ... Modulation unit 230 ... Page data generation unit 240 ... Page data 300 ... Page data image 310 ... Filter unit 320 ... Coordinate detection Unit 330 ... coordinate conversion unit 340 ... filter unit 350 ... binarization unit 360 ... demodulation unit 370 ... error correction unit 380 ... user data

Claims (6)

  1.  ホログラフィック記録のための2次元符号化方法において、
     行方向にn(nは4以上の整数)個及び列方向にn個の正方形状に配列された画素集合におけるK(Kはn以上の整数)個のON画素と、(n×n-K)個のOFF画素との組み合わせによって表現される2次元符号語から、(a)上端行及び右端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(b)前記右端列及び下端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(c)前記下端行及び左端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、かつ、(d)前記左端列及び前記上端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在する条件を満たす第1の符号語群を選択することと、
     前記第1の符号語群に含まれる符号語のみをユーザデータに割り当てることと
     を具備する2次元符号化方法。
    In a two-dimensional encoding method for holographic recording,
    K (K is an integer of n or more) ON pixels in a pixel set arranged in a square shape with n (n is an integer of 4 or more) in the row direction and n in the column direction, and (n × n−K) (A) From a two-dimensional codeword represented by a combination with OFF pixels, (a) there is at least one ON pixel in (2n-1) pixels in the top row and right column, and (b) There is at least one ON pixel in (2n-1) pixels in the rightmost column and bottom row, and (c) at least one in (2n-1) pixels in the bottom row and left column. A first codeword group that satisfies the condition that there are two ON pixels and (d) at least one ON pixel is present in (2n-1) pixels in the leftmost column and the uppermost row To do
    A two-dimensional encoding method comprising: allocating only code words included in the first code word group to user data.
  2.  前記第1の符号語群から、ON画素同士が行方向または列方向で隣接した画素領域に含まれる最大のON画素数が(K-2)個以下である条件を満たす第2の符号語群を選択することを更に具備し、
     前記ユーザデータは、前記第2の符号語群に含まれる符号語のみに割り当てられる、
     請求項1の2次元符号化方法。
    From the first code word group, a second code word group satisfying a condition that the maximum number of ON pixels included in a pixel region in which ON pixels are adjacent to each other in the row direction or the column direction is (K−2) or less. Further comprising selecting
    The user data is assigned only to codewords included in the second codeword group.
    The two-dimensional encoding method according to claim 1.
  3.  前記第2の符号語群から、同一列または同一行に存在する最大のON画素数が(K-2)個以下である条件を満たす第3の符号語群を選択することを更に具備し、
     前記ユーザデータは、前記第3の符号語群に含まれる符号語のみに割り当てられる、
     請求項1の2次元符号化方法。
    Further comprising selecting from the second codeword group a third codeword group satisfying a condition that the maximum number of ON pixels existing in the same column or row is (K-2) or less,
    The user data is assigned only to codewords included in the third codeword group.
    The two-dimensional encoding method according to claim 1.
  4.  前記第3の符号語群から、同期マークの各部分領域との最小のハミング距離が所定値以上である条件を満たす第4の符号語群を選択することを更に具備し、
     前記ユーザデータは、前記第4の符号語群に含まれる符号語のみに割り当てられる、
     請求項1の2次元符号化方法。
    Further comprising selecting, from the third codeword group, a fourth codeword group that satisfies a condition that a minimum Hamming distance with each partial region of the synchronization mark is a predetermined value or more,
    The user data is assigned only to codewords included in the fourth codeword group.
    The two-dimensional encoding method according to claim 1.
  5.  レーザ光を生成する光源と、
     行方向にn(nは4以上の整数)個及び列方向にn個の正方形状に配列された画素集合におけるK(Kはn以上の整数)個のON画素と、(n×n-K)個のOFF画素との組み合わせによって表現される2次元符号語から、(a)上端行及び右端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(b)前記右端列及び下端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(c)前記下端行及び左端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、かつ、(d)前記左端列及び前記上端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在する条件を満たす第1の符号語群に含まれる符号語のみを用いて符号化されたユーザデータが記録されたホログラフィック記録媒体に前記レーザ光が照射されて生じる再生光を受ける撮像素子と、
     前記再生光が示す符号語に基づいて前記ユーザデータを再生する再生部と
     を具備するホログラフィック再生装置。
    A light source for generating laser light;
    K (K is an integer of n or more) ON pixels in a pixel set arranged in a square shape with n (n is an integer of 4 or more) in the row direction and n in the column direction, and (n × n−K) (A) From a two-dimensional codeword represented by a combination with OFF pixels, (a) there is at least one ON pixel in (2n-1) pixels in the top row and right column, and (b) There is at least one ON pixel in (2n-1) pixels in the rightmost column and bottom row, and (c) at least one in (2n-1) pixels in the bottom row and left column. Included in the first codeword group that satisfies the condition that (d) at least one ON pixel exists in the (2n-1) pixels in the leftmost column and the uppermost row Holographic recording of user data encoded using only encoded codewords An imaging element for receiving the reproduction light generated said is laser light irradiated on the recording medium,
    A holographic reproduction device comprising: a reproduction unit that reproduces the user data based on a codeword indicated by the reproduction light.
  6.  レーザ光を生成する光源と、
     行方向にn(nは4以上の整数)個及び列方向にn個の正方形状に配列された画素集合におけるK(Kはn以上の整数)個のON画素と、(n×n-K)個のOFF画素との組み合わせによって表現される2次元符号語から、(a)上端行及び右端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(b)前記右端列及び下端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、(c)前記下端行及び左端列の(2n-1)個の画素の中に少なくとも1つのON画素が存在し、かつ、(d)前記左端列及び前記上端行の(2n-1)個の画素の中に少なくとも1つのON画素が存在する条件を満たす第1の符号語群に含まれる符号語のみをユーザデータに一意に割り当てる符号化を行う符号化部と、
     前記ユーザデータに割り当てられた符号語に応じて前記レーザ光を変調した記録光をホログラフィック記録媒体へ出力する変調部と、
     前記ホログラフィック記録媒体に前記レーザ光が照射されて生じる再生光を受ける撮像素子と、
     前記再生光が示す符号語に基づいて前記ユーザデータを再生する再生部と
     を具備するホログラフィック記録再生装置。
    A light source for generating laser light;
    K (K is an integer of n or more) ON pixels in a pixel set arranged in a square shape with n (n is an integer of 4 or more) in the row direction and n in the column direction, and (n × n−K) (A) From a two-dimensional codeword represented by a combination with OFF pixels, (a) there is at least one ON pixel in (2n-1) pixels in the top row and right column, and (b) There is at least one ON pixel in (2n-1) pixels in the rightmost column and bottom row, and (c) at least one in (2n-1) pixels in the bottom row and left column. Included in the first codeword group that satisfies the condition that (d) at least one ON pixel exists in the (2n-1) pixels in the leftmost column and the uppermost row An encoding unit that performs encoding to uniquely assign only codewords to be assigned to user data;
    A modulator that outputs recording light obtained by modulating the laser light in accordance with a code word assigned to the user data to a holographic recording medium;
    An imaging device for receiving reproduction light generated by irradiating the holographic recording medium with the laser beam;
    A holographic recording / reproducing apparatus comprising: a reproducing unit that reproduces the user data based on a codeword indicated by the reproduction light.
PCT/JP2009/071615 2009-12-25 2009-12-25 Two dimensional encoding method, holographic reproduction device, and holographic recording/reproduction device WO2011077552A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/071615 WO2011077552A1 (en) 2009-12-25 2009-12-25 Two dimensional encoding method, holographic reproduction device, and holographic recording/reproduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/071615 WO2011077552A1 (en) 2009-12-25 2009-12-25 Two dimensional encoding method, holographic reproduction device, and holographic recording/reproduction device

Publications (1)

Publication Number Publication Date
WO2011077552A1 true WO2011077552A1 (en) 2011-06-30

Family

ID=44195113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071615 WO2011077552A1 (en) 2009-12-25 2009-12-25 Two dimensional encoding method, holographic reproduction device, and holographic recording/reproduction device

Country Status (1)

Country Link
WO (1) WO2011077552A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083670A1 (en) * 2012-11-30 2014-06-05 日立コンシューマエレクトロニクス株式会社 Optical information playback device and optical information playback method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066377A (en) * 2005-08-30 2007-03-15 Sony Corp Recorder, recording method and hologram recording medium
JP2007156801A (en) * 2005-12-05 2007-06-21 Optware:Kk Optical information recording method and reproduction method
JP2008112559A (en) * 2006-10-05 2008-05-15 Sharp Corp Hologram recording device, hologram reproducing device, information encoding method, recording method, and information reproducing method
WO2009047832A1 (en) * 2007-10-09 2009-04-16 Fujitsu Limited Hologram recording device, hologram reproducing device, hologram recording method and hologram reproducing method
JP2009163842A (en) * 2008-01-09 2009-07-23 Mitsubishi Kagaku Media Co Ltd Information recording and reproducing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066377A (en) * 2005-08-30 2007-03-15 Sony Corp Recorder, recording method and hologram recording medium
JP2007156801A (en) * 2005-12-05 2007-06-21 Optware:Kk Optical information recording method and reproduction method
JP2008112559A (en) * 2006-10-05 2008-05-15 Sharp Corp Hologram recording device, hologram reproducing device, information encoding method, recording method, and information reproducing method
WO2009047832A1 (en) * 2007-10-09 2009-04-16 Fujitsu Limited Hologram recording device, hologram reproducing device, hologram recording method and hologram reproducing method
JP2009163842A (en) * 2008-01-09 2009-07-23 Mitsubishi Kagaku Media Co Ltd Information recording and reproducing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083670A1 (en) * 2012-11-30 2014-06-05 日立コンシューマエレクトロニクス株式会社 Optical information playback device and optical information playback method

Similar Documents

Publication Publication Date Title
US9076464B2 (en) Optical information recording apparatus, optical information recording method, optical information reproducing apparatus and optical information reproducing method
JP4350127B2 (en) Two-dimensional modulation method and hologram device for hologram recording
JP7157623B2 (en) Hologram recording and reproducing device
JPWO2004034387A1 (en) Information recording method, reproducing method and recording / reproducing method using holography
WO2012032601A1 (en) Two-dimensional information recording/reproducing method
JP5230651B2 (en) Data recording / reproducing method and recording / reproducing apparatus for / from holographic recording medium
JP2007156801A (en) Optical information recording method and reproduction method
JP2008170606A (en) Holographic information recording and reproducing device
JP2006220933A (en) Optical information recording method and apparatus using holography
JP2006216148A (en) Holographic recording apparatus, holographic reproducing apparatus, its method and holographic medium
WO2011077552A1 (en) Two dimensional encoding method, holographic reproduction device, and holographic recording/reproduction device
JP2008130137A (en) Information recording device and information reproducing device
JP5953284B2 (en) Optical information recording medium, optical information recording apparatus, optical information recording method, optical information reproducing apparatus, and optical information reproducing method.
WO2015011745A1 (en) Optical information recording medium, optical information recording method and optical information playback method
JP2008033260A (en) Hologram recording apparatus, hologram reproducing apparatus, hologram recording method, and hologram reproducing method
JP5414861B2 (en) Optical information recording apparatus, optical information recording method, optical information recording / reproducing apparatus, and optical information recording / reproducing method
JP2005141879A (en) Hologram reproducing device, hologram reproducing method and hologram recording medium
CN107077871B (en) Optical information recording/reproducing device, optical information reproducing device, and optical information reproducing method
JP2008140485A (en) Hologram recording/reproducing device and reproducing method for hologram recording medium
JP2010152940A (en) Optical information recording and reproducing device, and optical information recording and reproducing method
JP2009015987A (en) Data recording/reproducing device
JP2015060613A (en) Optical information recording device and optical information recording method
JP2007250076A (en) Data recording and reproducing device
JP6088146B2 (en) Interleave number calculation device and program thereof, and hologram recording device
JP5462814B2 (en) Hologram recording / reproducing apparatus and program thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP