WO2011076750A1 - Identification of beverage ingredient containing capsules - Google Patents

Identification of beverage ingredient containing capsules Download PDF

Info

Publication number
WO2011076750A1
WO2011076750A1 PCT/EP2010/070269 EP2010070269W WO2011076750A1 WO 2011076750 A1 WO2011076750 A1 WO 2011076750A1 EP 2010070269 W EP2010070269 W EP 2010070269W WO 2011076750 A1 WO2011076750 A1 WO 2011076750A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
contact
support member
resilient support
beverage production
Prior art date
Application number
PCT/EP2010/070269
Other languages
French (fr)
Inventor
Matthieu Ozanne
Didier Vuagniaux
Original Assignee
Nestec S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nestec S.A. filed Critical Nestec S.A.
Priority to CA2785134A priority Critical patent/CA2785134C/en
Priority to SG2012044111A priority patent/SG181721A1/en
Priority to EP10798082.3A priority patent/EP2515725B1/en
Priority to ES10798082T priority patent/ES2435637T3/en
Priority to RU2012131138/12A priority patent/RU2542566C2/en
Priority to KR1020127019362A priority patent/KR101913438B1/en
Priority to CN201080058134.9A priority patent/CN102665501B/en
Priority to AU2010334943A priority patent/AU2010334943B2/en
Priority to JP2012543845A priority patent/JP5752706B2/en
Priority to DK10798082.3T priority patent/DK2515725T3/en
Priority to US13/518,305 priority patent/US9010237B2/en
Priority to BR112012017192A priority patent/BR112012017192A2/en
Priority to PL10798082T priority patent/PL2515725T3/en
Publication of WO2011076750A1 publication Critical patent/WO2011076750A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/24Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
    • A47J31/34Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
    • A47J31/36Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
    • A47J31/3604Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means with a mechanism arranged to move the brewing chamber between loading, infusing and ejecting stations
    • A47J31/3623Cartridges being employed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/24Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
    • A47J31/34Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
    • A47J31/36Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/24Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
    • A47J31/34Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
    • A47J31/36Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
    • A47J31/3604Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means with a mechanism arranged to move the brewing chamber between loading, infusing and ejecting stations
    • A47J31/3609Loose coffee being employed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/24Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
    • A47J31/34Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
    • A47J31/36Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
    • A47J31/3604Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means with a mechanism arranged to move the brewing chamber between loading, infusing and ejecting stations
    • A47J31/3647Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means with a mechanism arranged to move the brewing chamber between loading, infusing and ejecting stations a tape being employed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/4403Constructional details
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/4492Means to read code provided on ingredient pod or cartridge
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J43/00Implements for preparing or holding food, not provided for in other groups of this subclass

Definitions

  • the present invention relates to the identification of a capsule by a beverage production machine.
  • WO 2008/090122 describes a beverage ingredient capsule that is provided with an identification member designed for being physically contacted from outside in order to control operation parameters of an associated beverage production machine.
  • the identification member presents holes or recesses that correspond to a binary code state (0 or 1 ).
  • the identification member is not visible from outside as it is covered by cover means.
  • the beverage production machine comprises displaceable probe that can penetrate, deform, displace the cover means at regions susceptible to present holes or recesses. The degree of displacement of the probes in response to its contact with a hole or a recess is associated with information concerning the capsule.
  • the displaceable probes are resiliably positioned at a distance of a circuitry of the machine control means and are selectively moved into contact with said circuitry depending on their contact wit the recesses or the holes.
  • the contact of the probe and circuitry also constitutes a binary code (0 or 1 ).
  • the displaceable probes are resiliably positioned at a distance of the circuitry trough a resilient support member associated to the circuitry for both providing the elasticity to the probe to enable its return into a non-contact position and the insulation of the circuitry from the humidity coming from the capsule.
  • the resilient support member can be an elastomeric, preferably silicone member.
  • the probes can be formed of pins which have a base embedded or inserted in a seat of the support member.
  • the control means can be designed to control, in response to the read information, a beverage production condition such as for example the temperature of a liquid supplied to the interior of the capsule.
  • the identification member is moved and pressed against the probes by a manual movement in which the customer closes the capsule cage after he has introduced the capsule inside.
  • a variable force was necessary to transfer the information carried by the capsule identification member depending if this member wears a lot of holes or not (or a lot of recesses or not).
  • the capsule identification member presents a surface with few holes or a lot of recesses - according to the use of the holes or recesses configuration - an important force is needed to capture all these information and sometimes the capsule identification member can fold up during the identification phase.
  • a capsule identification member presents a surface with a lot of holes or few recesses, a weaker force is applied on this member, yet the machine must be able to sense all these holes or absence of recesses even if the force is weaker.
  • a problem to solve is then to provide a machine that is able to read as well a capsule identification member presenting a surface with a lot holes (or few recesses) or with few holes (or a lot of recesses) without making sensing error either in one case or in the other.
  • Another problem is to be able to apply an important force on the capsule identification member without folding it.
  • the invention concerns a beverage production system comprising beverage ingredient containing capsules comprising an identification member and a beverage production machine for receiving a capsule, said machine comprising contact means for physically contacting the capsule identification member in order to read information thereof and control means connected to the contact means and designed to control the operation of the beverage production machine i n response to the read i nformation, the contact means comprising :
  • part of the resilient support member in contact with the probe presents such a shape that it is able to deform itself when the probe applies a force on it, the deformation being partially transversal to the direction applied by the force.
  • the capsule is provided with an identification member designed for being physically contacted from outside.
  • the identification members code the information in a structural manner (in contrast to a visual bar code).
  • the identification member can comprise a plurality of predetermined localized contact surface receivers, each of them constituting a choice amongst two different surface levels that correspond upon a contact being established or not, with an external probe member, a binary code state (0 or 1 ).
  • a surface level can correspond, for example, to a difference in depth or height of a plurality of localized recesses/holes or protruding members.
  • first and second contact receivers are provided.
  • First contact receivers can be holes or recesses of a same depth whereas second contact receivers are holes or recesses of shorter depth or, alternatively, are filled or slightly in relief.
  • first contact receivers are protruding elements of same height whereas second contact receivers are protruding elements of greater height.
  • the identification member is not visible from outside and is not exposed to the exterior before being physically contacted by associated probe means of the beverage production machine.
  • the identification member can be covered to the outside by cover means, wherein the cover means and/or the identification member are designed to be transferable from a cover state to an identification reading state, e.g. by being penetrated, deformed, displace by probe means from an associated beverage production machine.
  • the identification member is coded by modulating a surface structure of a face of the capsule, e.g. by providing holes or recesses in an identification face of the capsule.
  • the identification face of the capsule can be covered by a displaceable, deformable or puncturable membrane such as a plastic layer, an aluminium layer or a laminate of plastic- aluminium.
  • the cover thus is designed to be selectively perforated from outside or deformed at portions overlapping the recessions or holes.
  • the cover can resist at least a certain penetration or deformation by being supported at regions which are not overlapping recessions or holes.
  • the cover member can remain unchanged, but the identification member can be manipulated (e.g.
  • the identification member can be formed in the front of a lid of the capsule which is associated to a cup-shaped body of the capsule to demarcate a cavity containing beverage forming ingredients.
  • the identification member can be formed as an integral part of the lid.
  • the lid can be made of a moulded plastic onto which the identification means are moulded.
  • the plurality of predetermined localized contact receivers can be arranged on the front of the lid in a non-linear pattern.
  • the receivers can be grouped in a substantially polygonal, star-shaped or curved pattern or a non- regular substantially closed pattern covering the surface of the lid.
  • the beverage production machine is designed for use with the hereabove beverage ingredient containing capsule.
  • the beverage production machine is equipped with means for physically contacting the capsule in order to read information thereof.
  • the beverage production machine is provided with control means which are connected with the contact means and are designed to control operation parameters of the beverage production machine in response to the read information.
  • the contact means comprise at least one displaceable probe which mechanically contacts the capsule identification member.
  • the control means are initially arranged with the at least one probe to detect an identification information in relation to the degree of displacement of the probe in response of its contact with the capsule identification member. More particularly, the at least one displaceable probe is resiliably positioned at a distance of a circuitry of the control means and is selectively moved into contact with said circuitry depending on its contact with the capsule wherein the contact of the probe and circuitry constitutes a predetermined binary coded state (0 or 1 ) and the non-contact of the probe and circuitry constitutes the other binary coded state.
  • the probes can further be formed of pins which have a base.
  • the base is preferably resting on the resilient support member.
  • the tip of the probe can aim at piercing the cover overlying the identification member.
  • the contact means comprise a plurality of identical displaceable pins for contacting a plurality of predetermined localized contact receivers of the capsule.
  • the at least one displaceable probe is a pin .
  • the pin presents a bevelled sharp end. This configuration enables an easier perforation of the cover when the identification member is recovered.
  • the contact means also comprises a resilient support member that is in contact with the at least one probe on one side and that is associated to a circuitry on its other side.
  • This resilient support member provides the elasticity to the probe to enable its return into a non-contact position and the insulation of the circuitry from the humidity coming from the capsule.
  • the resilient support member can be, for instance, an elastomeric member, preferably made of silicone or of an EPDM rubber (ethylene propylene diene monomer). Since the resilient support member is associated to a circuitry on its other side, the displacement of the probe can be made such that it selectively opens an associated contact of a circuitry of the control means.
  • the identification circuitry can be a printed circuitry.
  • the printed circuitry can be of a width of a few millimeters only and inserted in a small space of the machine adjacent the housing of the capsule. For instance, thickness of the printed circuitry is of 0,5 to 3 mm.
  • the printed circuitry comprises for instance, a plurality of printed circuits which are selectively closed or opened by a plurality of the probes to provide the coded state.
  • the part of the resilient support member in contact with the probe presents such a shape that it is able to deform itself when the probe applies a force on it, the deformation being partially transversal to the direction applied by the force.
  • the part of the resilient support member in contact with the probe presents such a shape that when the probe applies a force on it, it firstly deforms itself along a direction longitudinal to the force applied by the probe and it secondly deforms itself along a direction transversal to the direction applied by the force.
  • each part of the resilient support member in contact with each probe presents the same shape able to partially transversally deform itself.
  • the side of the part of the resilient support member in contact with the probe presents the form of a hollowed cylinder and the other side of said part of the resilient support member associated to the circuitry presents the form of a cone.
  • the resilient support member is a sheet :
  • the cone and the hollowed are attached to the sheet in such a manner that they can easily recover their initial shape and position as soon as a force is no more applied on them. For this reason, at the level of the connection of the hollowed cylinder and the cone, the sheet is preferably inclined or leant in direction of the hollowed cylinder.
  • the contact means comprises conductive means between the resilient support member and the circuitry.
  • the conductive means can comprise discrete conductive parts fixed on a layer placed between the resilient support member and the circuitry.
  • the discrete conductive parts are preferably fixed on the side of the layer facing the circuitry, more preferably the discrete conductive parts face the areas of the circuitry which can be short-circuited.
  • the layer is made of an elastomeric member, preferably a silicone or an EPDM rubber, and the electrical conductive parts are made of graphite.
  • a layer presents the advantage of isolating the circuitry from the humidity that can be generated in the capsule.
  • the layer is a film, the discrete electrical conductive pieces being stuck on said film and a waterproof material layer being placed between the resilient support member and the layer.
  • the film can be a simple plastic film that eventually presents some small holes for letting air passes through.
  • the waterproof material layer ca n be se l ected i n th e l ist of laminates of PET/aluminium/PP, PE/EVOH/PP, PET/Metallised/PP, aluminium/PP.
  • the control means is designed to control, in response to the read information, a beverage production condition such as for example the temperature of a liquid supplied to the interior of the capsule.
  • the contact means can comprise a plurality of displaceable pins forming a predetermined pattern which mechanically selectively contact the predetermined localized surface receivers of the capsule.
  • the control means can be designed to detect the identification information via the degree of displacement of the pin against the capsule.
  • the control means is designed to control a beverage production temperature and/or a brewing pause time in response to the read information.
  • the control means are designed to vary water temperature parameters, flow rate and/or brewing pause time in the brewing of different brewed tea beverages according to capsules containing leaf tea ingredients having different characteristics and/or origins.
  • the beverage production machine can be designed to produce tea, coffee and/or other beverages
  • FIG. 1 showing a schematic overview of a system according to the present invention designed for reading identification information from a beverage ingredient containing capsule.
  • a beverage production machine 1 1 is designed to produce a beverage from a capsule 1 positioned at a dedicated beverage production position of the beverage production machine 1 1 .
  • the capsule has a dedicated compartment for containing beverage ingredients 5.
  • a liquid 3, controlled by a control unit 10 of the beverage production machine 1 1 is made to enter the capsule 1 in order to interact with the ingredients 5 contained therein.
  • the result of the interaction i.e. a produced beverage or liquid comestible, can then be obtained 4 from the beverage production machine 1 1 .
  • Typical examples for the nature of the interaction between the liquid 3 and the ingredients 5 are brewing, mixing, extracting, dissolving etc.
  • the system as shown in figure 1 is provided with means for retrieving ("reading") identification data from the capsule 1 in order to transfer the read identification data to the control unit 10, such that the control unit 10 can control the operation of a following production cycle of the beverage production machine 11 depending on the content of the read identification data.
  • the identification data can refer to parameters of the capsule and/or the ingredients.
  • the capsule 1 according to the present invention is provided with an identification member 6 which carries, in a coded manner, identification information.
  • the information is coded by a modulation of the surface structure of a face of the capsule 1 .
  • a hole or a recession can represent one logical sate (e.g.
  • the identification member 6 is arranged at the capsule 1 such that it is not exposed to and usually not visible from outside.
  • a cover 7 can be provided for the identification member 6.
  • the cover 7 serves for aesthetic and/or protective purposes with regard to the identification member 6.
  • the cover 7 and the identification member 6 are part of the capsule and arranged such that at the beginning the identification member is in a protected state.
  • Contact means 8 of the beverage production machine can then manipulate the system cover means/identification member such that the system cover means/identification member is transferred from a covered state to an identification reading state in which the probe means can read visually or through mechanical contact the information encoded in the identification member.
  • the manipulation can take place with regard to the identification member 6 and/or the cover means 7.
  • the cover 7 is only carrying out the complete covering function as long as no detection process has been carried out.
  • the cover 7 can be e.g. at least partially removed, displaced, deformed or perforated.
  • the cover 7, during the information reading process is deflected in order to follow the surface contours of the identification member arranged below the cover.
  • a flexible cover 7 can be foreseen which can be deflected from outside in order to read the surface structure of the identification member 6 arranged below the cover 7.
  • the beverage production machine 1 1 is provided with contact means 8 which are designed to read the information coded by modulating the surface structure of the identification member 6.
  • the contact means 8 can preferably comprises a plurality of displaceable pins 81 , which during the information reading process are biased against the identification member 6 of the capsule 1. Depending on the specific shape of the surface structure of the identification member 6 at the contact area between a pin 81 in the identification member 6, a pin 81 will thus be allowed to protrude more or less towards the capsule 1.
  • the pins 81 are isolated from an electronic circuitry board 9 by means of a resilient support member 82 preferably made of an electrically isolating material layer, such as e.g. silicone. This member 82 will thus provide the necessary biasing force in order to slightly press the pins 81 towards the capsule and eventually perforate or deform any cover provided on top of the identification member of the capsule.
  • Each pin 81 can be provided with a flange 83 which is in contact with a part of the support member 82.
  • the pins are preferably more rigid than the resilient support member 82.
  • the pins can be made of metal or hard plastic. The relative displacement of the pins 81 is transmitted to a resilient support member 82 in contact with the pins 81 on its front side.
  • the resilient support member 82 is associated on its back side to a circuitry 9.
  • the mechanical displacement of the pins is then converted into electronic signals.
  • the thus generated electrical detection signals can then be processed by the control unit 10.
  • the control unit 10 will then set, as a function of the read identification data from the capsule, parameters of the beverage production process, such as for example (non-exhaustive list) the flow rate and temperature of the supplied liquid 3 as well as the interaction time etc..
  • conductive means 12, 121 can be inserted between the resilient support member 82 and the printed circuit board 9 which can selectively produce a defined short circuit on the printed circuit board 9, the defined short circuit corresponding to closing a switch.
  • the illustrated conductive means is layer 12, for example made of silicone, and the side of said layer 12 facing the printed circuit board 9 presents electrical conductive parts 121 at the places facing the deformable parts of the resilient support member 82 and the areas of the printed circuit board 9 which can be short- circuited.
  • Figure 2 shows more details of the printed circuit board 9.
  • the reference numeral 91 designates those areas which can be selectively short-circuited.
  • FIG. 3 describes a resilient support member 82 that can be implemented in the present invention.
  • This resilient support member 82 is a flat sheet 823 of a resilient material presenting six parts able to contact the probe means on its side 821 and associated to the circuitry 9 on its other side. On this side 821 all the parts able to contact the probe means present the form of a hollowed cylinder 822 protruding from the sheet 823 of the resilient support member.
  • the diameter of the cylinder is usually adapted to the size of the flange 82 of the pins 81 so that the pins can distribute their force on all the edge of the hollowed cylinder 822.
  • Figure 4 describes the other side 824 of the same resilient support member 82.
  • the six parts able to be associated to the circuitry 9 all present the form of a cone 825 hollowed out in the flat sheet 823 of the resilient material. Holes 826 in the corners of the flat sheet 823 and a lip 827 around all the edges of the sheet 823 enable the fastening of the resilient support member 82 to the part of the machine receiving the identification member of the capsule.
  • Figure 6 illustrates the positioning of the discrete conductive parts 121 placed between the resilient support member 82 and the circuitry.
  • the movements of the cones 825 induce the movements of these conductive pieces 121 and their contact with the areas of the circuitry that can be short-circuited.
  • These discrete conductive parts 121 are fixed on a layer 12 (illustrated in dotted points) placed between the resilient support member 82 and the circuitry ; the discrete conductive parts are fixed on the side of the layer facing the circuitry so as to be able to contact the circuitry.
  • Figures 5a, 5b, 5c and 5d are longitudinal sections of the resilient support means 82 illustrating how one of the six parts of the resilient support member in contact with the probe deforms when it is submitted to the force of the probes 81.
  • Figure 5a shows the resilient support member at rest : on the side 821 facing the probe meansthe hollowed cylinder 822 protruding from the flat sheet 823 of the resilient support member does not contact the probe means represented by a pin 81 with a flange 83.
  • the cone 825 On the side 824 facing the electrically conducting layer 12, the cone 825 does not press the conducting layer 12, 121 against the printed circuit board 9.
  • Figure 5b shows the resilient support member when it is contacted by probe means 81 when said probe means begin to enter into contact with the identification member 6 covered by the cover 7.
  • the probe means 81 faces a hole 61 in the identification member 6. Due to the sharp end 81 1 of the tip of the probe means 81 , only a small force is necessary to pierce the cover 6 above the hole 61 further to the movement of the identification member 6 from the right to the left side. The force f on the extremities of the hollowed cylinder 822 is not strong enough to deform the resilient support member.
  • Figure 5c shows the resilient support member when it is contacted by probe means 81 when said probe means 81 does not face a hole 61 in the identification member 6.
  • the movement of the identification member 6 from the right to the left side induces a force F that is greater than the force f applied in Figure 5b.
  • This force F-i creates a longitudinal movement of the cone 825 which pushes the layer 12 and its electrical conductive part 121 against the printed circuit board 9 at the level of the area 91 which is short-circuited, then an electric contact can be made in the printed circuit board 9.
  • Figure 5d shows the resilient support member 82 when it is contacted by probe means 81 when said probe means 81 does not face a hole 61 in the identification member 6 and when an important force F 2 must be applied to the resilient support member 82 for example in the case where the identification member comprises few holes.
  • This important force F 2 deforms transversally the hollowed cylinder 822. Then contrary to the prior art, the resilient support member does not resist to the force and the identification member is not folded.
  • the invention allows the application of an important force on the capsule identification member without folding it due to the dissipation of a part of the force according to a direction transveral to the force direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus For Making Beverages (AREA)
  • Prostheses (AREA)

Abstract

The invention concerns a beverage production system comprising beverage ingredient containing capsules (1) comprising an identification member (6) and a beverage production machine for receiving said capsules, said machine comprising contact means (8) for physically contacting the capsule identification member (6) in order to read information thereof and control means connected to the contact means and designed to control the operation of the beverage production machine (11) in response to the read information, the contact means (8) comprising : - at least one displaceable probe (81) which mechanically contacts the capsule identification member (6), - a resilient support member (82) in contact with the probe on one side and associated to a circuitry (9) on its other side, wherein the part of the resilient support member in contact with the probe presents such a shape that it is able to deform itself when the probe applies a force on it, the deformation being partially transversal to the direction applied by the force.

Description

IDENTIFICATION OF BEVERAGE INGREDIENT CONTAINING CAPSULES
The present invention relates to the identification of a capsule by a beverage production machine.
WO 2008/090122 describes a beverage ingredient capsule that is provided with an identification member designed for being physically contacted from outside in order to control operation parameters of an associated beverage production machine. The identification member presents holes or recesses that correspond to a binary code state (0 or 1 ). Preferably the identification member is not visible from outside as it is covered by cover means. The beverage production machine comprises displaceable probe that can penetrate, deform, displace the cover means at regions susceptible to present holes or recesses. The degree of displacement of the probes in response to its contact with a hole or a recess is associated with information concerning the capsule. The displaceable probes are resiliably positioned at a distance of a circuitry of the machine control means and are selectively moved into contact with said circuitry depending on their contact wit the recesses or the holes. The contact of the probe and circuitry also constitutes a binary code (0 or 1 ). The displaceable probes are resiliably positioned at a distance of the circuitry trough a resilient support member associated to the circuitry for both providing the elasticity to the probe to enable its return into a non-contact position and the insulation of the circuitry from the humidity coming from the capsule. The resilient support member can be an elastomeric, preferably silicone member. The probes can be formed of pins which have a base embedded or inserted in a seat of the support member. The control means can be designed to control, in response to the read information, a beverage production condition such as for example the temperature of a liquid supplied to the interior of the capsule.
Usually the identification member is moved and pressed against the probes by a manual movement in which the customer closes the capsule cage after he has introduced the capsule inside. When implementing the capsule and the machine such as described above, it has been observed that a variable force was necessary to transfer the information carried by the capsule identification member depending if this member wears a lot of holes or not (or a lot of recesses or not). If the capsule identification member presents a surface with few holes or a lot of recesses - according to the use of the holes or recesses configuration - an important force is needed to capture all these information and sometimes the capsule identification member can fold up during the identification phase. Yet if a capsule identification member presents a surface with a lot of holes or few recesses, a weaker force is applied on this member, yet the machine must be able to sense all these holes or absence of recesses even if the force is weaker.
A problem to solve is then to provide a machine that is able to read as well a capsule identification member presenting a surface with a lot holes (or few recesses) or with few holes (or a lot of recesses) without making sensing error either in one case or in the other.
Another problem is to be able to apply an important force on the capsule identification member without folding it.
According to a first aspect, the invention concerns a beverage production system comprising beverage ingredient containing capsules comprising an identification member and a beverage production machine for receiving a capsule, said machine comprising contact means for physically contacting the capsule identification member in order to read information thereof and control means connected to the contact means and designed to control the operation of the beverage production machine i n response to the read i nformation, the contact means comprising :
- at least one displaceable probe which mechanically contacts the capsule identification member,
- a resilient support member in contact with the probe on one side and associated to a circuitry on its other side,
wherein the part of the resilient support member in contact with the probe presents such a shape that it is able to deform itself when the probe applies a force on it, the deformation being partially transversal to the direction applied by the force.
I n the system of the present invention the capsule is provided with an identification member designed for being physically contacted from outside. Thus the identification members code the information in a structural manner (in contrast to a visual bar code). More precisely, the identification member can comprise a plurality of predetermined localized contact surface receivers, each of them constituting a choice amongst two different surface levels that correspond upon a contact being established or not, with an external probe member, a binary code state (0 or 1 ). A surface level can correspond, for example, to a difference in depth or height of a plurality of localized recesses/holes or protruding members. In an embodiment, first and second contact receivers are provided. First contact receivers can be holes or recesses of a same depth whereas second contact receivers are holes or recesses of shorter depth or, alternatively, are filled or slightly in relief. In a possible variant, first contact receivers are protruding elements of same height whereas second contact receivers are protruding elements of greater height. Preferably the identification member is not visible from outside and is not exposed to the exterior before being physically contacted by associated probe means of the beverage production machine. To this regard the identification member can be covered to the outside by cover means, wherein the cover means and/or the identification member are designed to be transferable from a cover state to an identification reading state, e.g. by being penetrated, deformed, displace by probe means from an associated beverage production machine. Preferably the identification member is coded by modulating a surface structure of a face of the capsule, e.g. by providing holes or recesses in an identification face of the capsule. The identification face of the capsule can be covered by a displaceable, deformable or puncturable membrane such as a plastic layer, an aluminium layer or a laminate of plastic- aluminium. The cover thus is designed to be selectively perforated from outside or deformed at portions overlapping the recessions or holes. On the other hand, the cover can resist at least a certain penetration or deformation by being supported at regions which are not overlapping recessions or holes. Alternatively also the cover member can remain unchanged, but the identification member can be manipulated (e.g. displaced) in order to transfer the capsule from the identification-cover state to the identification-reading state. In a preferred embodiment, the identification member can be formed in the front of a lid of the capsule which is associated to a cup-shaped body of the capsule to demarcate a cavity containing beverage forming ingredients. The identification member can be formed as an integral part of the lid. For instance, the lid can be made of a moulded plastic onto which the identification means are moulded. For limiting the space required for the detection system, the plurality of predetermined localized contact receivers can be arranged on the front of the lid in a non-linear pattern. For instance, the receivers can be grouped in a substantially polygonal, star-shaped or curved pattern or a non- regular substantially closed pattern covering the surface of the lid.
According to the invention, the beverage production machine is designed for use with the hereabove beverage ingredient containing capsule. The beverage production machine is equipped with means for physically contacting the capsule in order to read information thereof. Further on, the beverage production machine is provided with control means which are connected with the contact means and are designed to control operation parameters of the beverage production machine in response to the read information.
The contact means comprise at least one displaceable probe which mechanically contacts the capsule identification member. The control means are initially arranged with the at least one probe to detect an identification information in relation to the degree of displacement of the probe in response of its contact with the capsule identification member. More particularly, the at least one displaceable probe is resiliably positioned at a distance of a circuitry of the control means and is selectively moved into contact with said circuitry depending on its contact with the capsule wherein the contact of the probe and circuitry constitutes a predetermined binary coded state (0 or 1 ) and the non-contact of the probe and circuitry constitutes the other binary coded state.
The probes can further be formed of pins which have a base. The base is preferably resting on the resilient support member. The tip of the probe can aim at piercing the cover overlying the identification member. The contact means comprise a plurality of identical displaceable pins for contacting a plurality of predetermined localized contact receivers of the capsule. Usually the at least one displaceable probe is a pin . Preferably the pin presents a bevelled sharp end. This configuration enables an easier perforation of the cover when the identification member is recovered.
The contact means also comprises a resilient support member that is in contact with the at least one probe on one side and that is associated to a circuitry on its other side. This resilient support member provides the elasticity to the probe to enable its return into a non-contact position and the insulation of the circuitry from the humidity coming from the capsule. The resilient support member can be, for instance, an elastomeric member, preferably made of silicone or of an EPDM rubber (ethylene propylene diene monomer). Since the resilient support member is associated to a circuitry on its other side, the displacement of the probe can be made such that it selectively opens an associated contact of a circuitry of the control means. In order to significantly reduce the size of the identification system, the identification circuitry can be a printed circuitry. The printed circuitry can be of a width of a few millimeters only and inserted in a small space of the machine adjacent the housing of the capsule. For instance, thickness of the printed circuitry is of 0,5 to 3 mm. The printed circuitry comprises for instance, a plurality of printed circuits which are selectively closed or opened by a plurality of the probes to provide the coded state.
According to the invention, the part of the resilient support member in contact with the probe presents such a shape that it is able to deform itself when the probe applies a force on it, the deformation being partially transversal to the direction applied by the force. Preferably the part of the resilient support member in contact with the probe presents such a shape that when the probe applies a force on it, it firstly deforms itself along a direction longitudinal to the force applied by the probe and it secondly deforms itself along a direction transversal to the direction applied by the force.
Due to this partial transversal deformation of the part of the resilient support member in contact with the probe, an important force can be applied through the probes on the resilient support member without folding the capsule identification member : actually the more important is the force, the more important is the transversal deformation of the resilient support member. This transversal deformation absorbs a part of the force which avoids the folding of the capsule identification member.
When a weaker force is applied on the resilient support member because it presents more holes (or less recesses) then the parts of the resilient support member facing the absence of holes (or the presence of recesses) deform themselves at least longitudinally along the direction applied by the force so that they contact the circuitry.
If the contact means of the machine comprises several probes, then each part of the resilient support member in contact with each probe presents the same shape able to partially transversally deform itself.
According to the preferred mode, the side of the part of the resilient support member in contact with the probe presents the form of a hollowed cylinder and the other side of said part of the resilient support member associated to the circuitry presents the form of a cone. Preferably the resilient support member is a sheet :
- on which the hollowed cylinder protrudes on the side of the resilient support member in contact with the probe and
- in which the cone is hollowed out on the other side of the resilient support member associated to the circuitry. It is preferred that the cone and the hollowed are attached to the sheet in such a manner that they can easily recover their initial shape and position as soon as a force is no more applied on them. For this reason, at the level of the connection of the hollowed cylinder and the cone, the sheet is preferably inclined or leant in direction of the hollowed cylinder.
Usually the contact means comprises conductive means between the resilient support member and the circuitry. The conductive means can comprise discrete conductive parts fixed on a layer placed between the resilient support member and the circuitry. The discrete conductive parts are preferably fixed on the side of the layer facing the circuitry, more preferably the discrete conductive parts face the areas of the circuitry which can be short-circuited.
According to a first mode, the layer is made of an elastomeric member, preferably a silicone or an EPDM rubber, and the electrical conductive parts are made of graphite. Such a layer presents the advantage of isolating the circuitry from the humidity that can be generated in the capsule.
According to a second mode, the layer is a film, the discrete electrical conductive pieces being stuck on said film and a waterproof material layer being placed between the resilient support member and the layer. In this second mode the film can be a simple plastic film that eventually presents some small holes for letting air passes through. The waterproof material layer ca n be se l ected i n th e l ist of laminates of PET/aluminium/PP, PE/EVOH/PP, PET/Metallised/PP, aluminium/PP.
The control means is designed to control, in response to the read information, a beverage production condition such as for example the temperature of a liquid supplied to the interior of the capsule. The contact means can comprise a plurality of displaceable pins forming a predetermined pattern which mechanically selectively contact the predetermined localized surface receivers of the capsule. The control means can be designed to detect the identification information via the degree of displacement of the pin against the capsule. Preferably the control means is designed to control a beverage production temperature and/or a brewing pause time in response to the read information. In particular, the control means are designed to vary water temperature parameters, flow rate and/or brewing pause time in the brewing of different brewed tea beverages according to capsules containing leaf tea ingredients having different characteristics and/or origins.
The beverage production machine can be designed to produce tea, coffee and/or other beverages
Brief description of the drawings
The characteristics and advantages of the invention will be better understood in relation to
- Figure 1 showing a schematic overview of a system according to the present invention designed for reading identification information from a beverage ingredient containing capsule.
- Figure 2 showing a printed circuit board which can be associated with the probe means.
- Figures 3 and 4 showing perspective front and rear view of a resilient support member used in the system of the present invention.
- Figures 5a, 5b, 5c, 5d illustrating how the resilient support member deforms when it is submitted to the force of the probes.
- Figure 6 corresponding to the perspective front view of the resilient support member according to Figure 4 with associated conductive means.
Generally it is an aspect of the present invention that a beverage production machine 1 1 is designed to produce a beverage from a capsule 1 positioned at a dedicated beverage production position of the beverage production machine 1 1 . As shown in figure 1 the capsule has a dedicated compartment for containing beverage ingredients 5. A liquid 3, controlled by a control unit 10 of the beverage production machine 1 1 , is made to enter the capsule 1 in order to interact with the ingredients 5 contained therein. The result of the interaction, i.e. a produced beverage or liquid comestible, can then be obtained 4 from the beverage production machine 1 1 . Typical examples for the nature of the interaction between the liquid 3 and the ingredients 5 are brewing, mixing, extracting, dissolving etc. Different types of ingredients can be present in the beverage compartment and different types of interactions can take place in the capsule. The system as shown in figure 1 is provided with means for retrieving ("reading") identification data from the capsule 1 in order to transfer the read identification data to the control unit 10, such that the control unit 10 can control the operation of a following production cycle of the beverage production machine 11 depending on the content of the read identification data. The identification data can refer to parameters of the capsule and/or the ingredients. The capsule 1 according to the present invention is provided with an identification member 6 which carries, in a coded manner, identification information. Preferably the information is coded by a modulation of the surface structure of a face of the capsule 1 . e.g. a hole or a recession can represent one logical sate (e.g. "0"), while another surface state ("no recession" or "no hole") can represent the other logical state (e.g. "1 "). Preferably the identification member 6 is arranged at the capsule 1 such that it is not exposed to and usually not visible from outside. To this regard a cover 7 can be provided for the identification member 6. The cover 7 serves for aesthetic and/or protective purposes with regard to the identification member 6. The cover 7 and the identification member 6 are part of the capsule and arranged such that at the beginning the identification member is in a protected state. Contact means 8 of the beverage production machine can then manipulate the system cover means/identification member such that the system cover means/identification member is transferred from a covered state to an identification reading state in which the probe means can read visually or through mechanical contact the information encoded in the identification member. The manipulation can take place with regard to the identification member 6 and/or the cover means 7. Preferably the cover 7 is only carrying out the complete covering function as long as no detection process has been carried out. Along with the detection process, as will be explained later on, the cover 7 can be e.g. at least partially removed, displaced, deformed or perforated. Alternatively the cover 7, during the information reading process, is deflected in order to follow the surface contours of the identification member arranged below the cover. To this regard a flexible cover 7 can be foreseen which can be deflected from outside in order to read the surface structure of the identification member 6 arranged below the cover 7. The beverage production machine 1 1 is provided with contact means 8 which are designed to read the information coded by modulating the surface structure of the identification member 6. Preferably such detection is carried out by means of a physical mechanical contact. To this regard the contact means 8 can preferably comprises a plurality of displaceable pins 81 , which during the information reading process are biased against the identification member 6 of the capsule 1. Depending on the specific shape of the surface structure of the identification member 6 at the contact area between a pin 81 in the identification member 6, a pin 81 will thus be allowed to protrude more or less towards the capsule 1.
The pins 81 are isolated from an electronic circuitry board 9 by means of a resilient support member 82 preferably made of an electrically isolating material layer, such as e.g. silicone. This member 82 will thus provide the necessary biasing force in order to slightly press the pins 81 towards the capsule and eventually perforate or deform any cover provided on top of the identification member of the capsule. Each pin 81 can be provided with a flange 83 which is in contact with a part of the support member 82. The pins are preferably more rigid than the resilient support member 82. The pins can be made of metal or hard plastic. The relative displacement of the pins 81 is transmitted to a resilient support member 82 in contact with the pins 81 on its front side. The resilient support member 82 is associated on its back side to a circuitry 9. The mechanical displacement of the pins is then converted into electronic signals. The thus generated electrical detection signals can then be processed by the control unit 10. The control unit 10 will then set, as a function of the read identification data from the capsule, parameters of the beverage production process, such as for example (non-exhaustive list) the flow rate and temperature of the supplied liquid 3 as well as the interaction time etc..
In the state shown in figure 1 only one depicted pin 81 faces a hole 61 of the identification member 6. Thus during the reading this specific pin is not pushed rearwards and thus not activating electrical micro-switches designed to selectively produce electrical short circuits of dedicated portions of a printed circuit board 9. On the contrary the three other pins do not face holes in the identification member 7 and then are not allowed to further slide into the surface structure of the identification member 7, they will thus be slightly pushed rewards (to the left inside Figure 1 ) thus pushing the parts of the resilient support member 82 silicone material in contact with their flanges 83 to activate (i.e. transfer in the conducting state) an electrically conducting micro switch towards the printed circuit board 9. To this regard conductive means 12, 121 can be inserted between the resilient support member 82 and the printed circuit board 9 which can selectively produce a defined short circuit on the printed circuit board 9, the defined short circuit corresponding to closing a switch. In Figurel , the illustrated conductive means is layer 12, for example made of silicone, and the side of said layer 12 facing the printed circuit board 9 presents electrical conductive parts 121 at the places facing the deformable parts of the resilient support member 82 and the areas of the printed circuit board 9 which can be short- circuited.
Figure 2 shows more details of the printed circuit board 9. The reference numeral 91 designates those areas which can be selectively short-circuited.
Figure 3 describes a resilient support member 82 that can be implemented in the present invention. This resilient support member 82 is a flat sheet 823 of a resilient material presenting six parts able to contact the probe means on its side 821 and associated to the circuitry 9 on its other side. On this side 821 all the parts able to contact the probe means present the form of a hollowed cylinder 822 protruding from the sheet 823 of the resilient support member. The diameter of the cylinder is usually adapted to the size of the flange 82 of the pins 81 so that the pins can distribute their force on all the edge of the hollowed cylinder 822.
Figure 4 describes the other side 824 of the same resilient support member 82. On this side the six parts able to be associated to the circuitry 9 all present the form of a cone 825 hollowed out in the flat sheet 823 of the resilient material. Holes 826 in the corners of the flat sheet 823 and a lip 827 around all the edges of the sheet 823 enable the fastening of the resilient support member 82 to the part of the machine receiving the identification member of the capsule.
Figure 6 illustrates the positioning of the discrete conductive parts 121 placed between the resilient support member 82 and the circuitry. The movements of the cones 825 induce the movements of these conductive pieces 121 and their contact with the areas of the circuitry that can be short-circuited. These discrete conductive parts 121 are fixed on a layer 12 (illustrated in dotted points) placed between the resilient support member 82 and the circuitry ; the discrete conductive parts are fixed on the side of the layer facing the circuitry so as to be able to contact the circuitry.
Figures 5a, 5b, 5c and 5d are longitudinal sections of the resilient support means 82 illustrating how one of the six parts of the resilient support member in contact with the probe deforms when it is submitted to the force of the probes 81.
Figure 5a shows the resilient support member at rest : on the side 821 facing the probe meansthe hollowed cylinder 822 protruding from the flat sheet 823 of the resilient support member does not contact the probe means represented by a pin 81 with a flange 83. On the side 824 facing the electrically conducting layer 12, the cone 825 does not press the conducting layer 12, 121 against the printed circuit board 9.
Figure 5b shows the resilient support member when it is contacted by probe means 81 when said probe means begin to enter into contact with the identification member 6 covered by the cover 7. In this figure, the probe means 81 faces a hole 61 in the identification member 6. Due to the sharp end 81 1 of the tip of the probe means 81 , only a small force is necessary to pierce the cover 6 above the hole 61 further to the movement of the identification member 6 from the right to the left side. The force f on the extremities of the hollowed cylinder 822 is not strong enough to deform the resilient support member.
Figure 5c shows the resilient support member when it is contacted by probe means 81 when said probe means 81 does not face a hole 61 in the identification member 6. The movement of the identification member 6 from the right to the left side induces a force F that is greater than the force f applied in Figure 5b. This force F-i creates a longitudinal movement of the cone 825 which pushes the layer 12 and its electrical conductive part 121 against the printed circuit board 9 at the level of the area 91 which is short-circuited, then an electric contact can be made in the printed circuit board 9.
Figure 5d shows the resilient support member 82 when it is contacted by probe means 81 when said probe means 81 does not face a hole 61 in the identification member 6 and when an important force F2 must be applied to the resilient support member 82 for example in the case where the identification member comprises few holes. This important force F2 deforms transversally the hollowed cylinder 822. Then contrary to the prior art, the resilient support member does not resist to the force and the identification member is not folded.
It can be noticed that at rest - that is when no force is applied on the resilient support member 82 (as represented in Figures 5a and 5b) -, at the connection 827 of the hollowed cylinder 822 and the cone 825, the sheet is inclined in direction of the hollowed cylinder. Due to this inclination, when the force F-i , F2 applied on the resilient support member 82 (as represented in Figures 5a and 5b) stops, the cone immediately comes back to its position at rest according to Figure 5a.
The invention allows the application of an important force on the capsule identification member without folding it due to the dissipation of a part of the force according to a direction transveral to the force direction.

Claims

1. A beverage production system comprising beverage ingredient containing capsules (1 ) comprising an identification member (6) and a beverage production machine for receiving said capsules, said machine comprising :
- contact means (8) for physically contacting the capsule identification member (6) in order to read information thereof and
- control means connected to the contact means and designed to control the operation of the beverage production machine (1 1 ) in response to the read information,
the contact means (8) comprising :
- at least one displaceable probe (81 ) which mechanically contacts the capsule identification member (6),
- a resilient support member (82) in contact with the probe on one side and associated to a circuitry (9) on its other side,
wherein the part of the resilient support member in contact with the probe on one side and associated to the circuitry on its other side presents such a shape that it is able to deform itself when the probe applies a force on it, the deformation being partially transversal to the direction applied by the force.
2. A beverage production system according to Claim 1 , wherein the part of the resilient support member in contact with the probe presents such a shape that when the probe applies a force on it, it firstly deforms itself along a direction longitudinal to the force applied by the probe and it secondly deforms itself along a direction transversal to the direction applied by the force.
3. A beverage production system according to Claim 1 or 2, wherein the resilient support member (82) is made of an elastomeric material.
4. A beverage production system according to Claim 3, wherein the resilient support member is made of silicone or of an EPDM rubber.
5. A beverage production system according to any of the precedent claims, wherein the side of the part of the resilient support member in contact with the probe presents the form of a hollowed cylinder and the other side of said part of the resilient support member associated to the circuitry presents the form of a cone.
6. A beverage production system according to Claim 4, wherein the resilient support member is a sheet :
- on which the hollowed cylinder protrudes on the side of the resilient support member in contact with the probe and
- in which the cone is hollowed out on the other side of the resilient support member associated to the circuitry.
7. A beverage production system according to any of the precedent claims, wherein the contact means comprises discrete conductive parts (121 ) fixed on a layer (12) placed between the resilient support member (82) and the circuitry (9).
8. A beverage production system according to Claim 7, wherein the discrete conductive parts (121 ) are fixed on the side of the layer (12) facing the circuitry (9)
9. A beverage production system according to Claim 8, wherein the discrete conductive parts (121 ) face the areas (91 ) of the circuitry (9) which can be short-circuited.
10. A beverage production system according to any of Claims 7 to 9, wherein the layer (12) is made of an elastomeric member, preferably a silicone or an EPDM rubber, and the electrical conductive parts (121 ) are made of graphite.
1 1. A beverage production system according to any of Claims 7 to 9, wherein the layer (12) is a film, the discrete electrical conductive pieces (121 ) being stuck on said film and a waterproof material layer being placed between the resilient support member (82) and the layer (12).
12. A beverage production system according to any of the precedent claims, wherein the machine comprises control means (8) arranged with the at least one probe (81 ) to detect an identification information in relation to the degree of displacement of the probe in response to its contact with the capsule (1 ).
13. A beverage production system according to any of the precedent claims, wherein the at least one displaceable probe (81 ) and the part of the resilient support member (82) coupled to said probe are selectively moved depending on the contact of the probe with the capsule and selectively and contact the associated circuitry wherein the contact of the probe, the coupled of the resilient member and the associated circuitry constitutes a predetermined binary coded state (0 or 1 ) and the non-contact of the probe the coupled of the resilient member and the associated circuitry constitutes the other binary coded state (1 or 0).
14. The system of any of the precedent claims, wherein the contact means comprises a plurality of identical displaceable pins for contacting a plurality of predetermined localized contact receivers of the capsule.
PCT/EP2010/070269 2009-12-21 2010-12-20 Identification of beverage ingredient containing capsules WO2011076750A1 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CA2785134A CA2785134C (en) 2009-12-21 2010-12-20 Identification of beverage ingredient containing capsules
SG2012044111A SG181721A1 (en) 2009-12-21 2010-12-20 Identification of beverage ingredient containing capsules
EP10798082.3A EP2515725B1 (en) 2009-12-21 2010-12-20 Identification of beverage ingredient containing capsules
ES10798082T ES2435637T3 (en) 2009-12-21 2010-12-20 Identification of capsules containing beverage ingredient
RU2012131138/12A RU2542566C2 (en) 2009-12-21 2010-12-20 Identification of capsules containing beverage ingredient
KR1020127019362A KR101913438B1 (en) 2009-12-21 2010-12-20 Identification of beverage ingredient containing capsules
CN201080058134.9A CN102665501B (en) 2009-12-21 2010-12-20 Identification of beverage ingredient containing capsules
AU2010334943A AU2010334943B2 (en) 2009-12-21 2010-12-20 Identification of beverage ingredient containing capsules
JP2012543845A JP5752706B2 (en) 2009-12-21 2010-12-20 Identification of capsules containing beverage ingredients
DK10798082.3T DK2515725T3 (en) 2009-12-21 2010-12-20 IDENTIFICATION OF BEVERAGE INGREDIENTS CONTAINING CAPS
US13/518,305 US9010237B2 (en) 2009-12-21 2010-12-20 Identification of beverage ingredient containing capsules
BR112012017192A BR112012017192A2 (en) 2009-12-21 2010-12-20 capsule identification containing beverage ingredients
PL10798082T PL2515725T3 (en) 2009-12-21 2010-12-20 Identification of beverage ingredient containing capsules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09180071.4 2009-12-21
EP09180071 2009-12-21

Publications (1)

Publication Number Publication Date
WO2011076750A1 true WO2011076750A1 (en) 2011-06-30

Family

ID=42077430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/070269 WO2011076750A1 (en) 2009-12-21 2010-12-20 Identification of beverage ingredient containing capsules

Country Status (16)

Country Link
US (1) US9010237B2 (en)
EP (1) EP2515725B1 (en)
JP (1) JP5752706B2 (en)
KR (1) KR101913438B1 (en)
CN (1) CN102665501B (en)
AU (1) AU2010334943B2 (en)
BR (1) BR112012017192A2 (en)
CA (1) CA2785134C (en)
DK (1) DK2515725T3 (en)
ES (1) ES2435637T3 (en)
PL (1) PL2515725T3 (en)
PT (1) PT2515725E (en)
RU (1) RU2542566C2 (en)
SG (1) SG181721A1 (en)
TW (1) TW201143689A (en)
WO (1) WO2011076750A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037782A1 (en) 2011-09-16 2013-03-21 Nestec S.A. Multi-system beverage machine safe connector
WO2013037781A1 (en) 2011-09-16 2013-03-21 Nestec S.A. Multi-system beverage machine multiple connections
WO2013037783A1 (en) 2011-09-16 2013-03-21 Nestec S.A. Clean multi-system beverage machine
WO2013098173A1 (en) 2011-12-30 2013-07-04 Nestec S.A. A multi-system beverage machine
WO2015124627A1 (en) * 2014-02-19 2015-08-27 Nestec S.A. A capsule kit for use in a food preparation machine
US9268984B2 (en) 2011-11-16 2016-02-23 Nestec S.A. Support and capsule for preparing a beverage by centrifugation, system and method for preparing a beverage by centrifugation
US10966564B2 (en) 2016-08-03 2021-04-06 Koninklijke Douwe Egberts B.V. System for preparing a quantity of beverage suitable for consumption
US11096516B2 (en) 2016-08-03 2021-08-24 Koninklijke Douwe Egberts B.V. System, apparatus, method, capsule and kit of capsules for preparing a beverage
US11129492B2 (en) 2016-08-03 2021-09-28 Koninklijke Douwe Egberts B.V. System for preparing a beverage
US11129493B2 (en) 2016-08-03 2021-09-28 Koninklijke Douwe Egberts B.V. System for preparing a beverage
US11197574B2 (en) 2016-08-03 2021-12-14 Koninklijke Douwe Egberts B.V. System and method for preparing a beverage field and background
US11304555B2 (en) 2016-08-03 2022-04-19 Koninklijke Douwe Egberts B.V. System and apparatus for preparing a beverage
US11395557B2 (en) 2016-08-03 2022-07-26 Koninklijke Douwe Egberts B.V. Apparatus and method for preparing a beverage and system comprising the apparatus and an exchangeable capsule
US11524268B2 (en) 2016-11-09 2022-12-13 Pepsico, Inc. Carbonated beverage makers, methods, and systems
US11576519B2 (en) 2016-08-03 2023-02-14 Koninklijke Douwe Egberts B.V. System, apparatus, method, capsule and kit of capsules for preparing a beverage

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY166048A (en) * 2010-11-11 2018-05-22 Nestec Sa Capsule, beverage production machine and system for the preparation of a nutritional product
IN2014DN08890A (en) * 2012-04-25 2015-05-22 Nestec Sa
JP6159404B2 (en) 2012-08-24 2017-07-05 ネステク ソシエテ アノニム Capsules for use in food preparation machines
JP6588439B2 (en) * 2014-02-19 2019-10-09 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Coding inserts used in food preparation equipment
US20150257586A1 (en) * 2014-03-11 2015-09-17 Starbucks Corporation Dba Starbucks Coffee Company Single-serve beverage production machine
JP7189888B2 (en) 2017-05-23 2022-12-14 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Beverage preparation machine with improved pump control
AU2019239860B2 (en) 2018-03-21 2024-05-23 Precision Planting Llc Reagent cartridge
NL2022190B1 (en) 2018-12-12 2020-07-03 Douwe Egberts Bv Air purge groove
US11751585B1 (en) 2022-05-13 2023-09-12 Sharkninja Operating Llc Flavored beverage carbonation system
US11647860B1 (en) 2022-05-13 2023-05-16 Sharkninja Operating Llc Flavored beverage carbonation system
US12096880B2 (en) 2022-05-13 2024-09-24 Sharkninja Operating Llc Flavorant for beverage carbonation system
WO2024023356A1 (en) * 2022-07-29 2024-02-01 Société des Produits Nestlé S.A. Beverage or foodstuff preparation system
WO2024023358A1 (en) * 2022-07-29 2024-02-01 Société des Produits Nestlé S.A. Beverage or foodstuff preparation system
WO2024023355A1 (en) * 2022-07-29 2024-02-01 Société des Produits Nestlé S.A. Beverage or foodstuff preparation system
US12084334B2 (en) 2022-11-17 2024-09-10 Sharkninja Operating Llc Ingredient container
US11738988B1 (en) 2022-11-17 2023-08-29 Sharkninja Operating Llc Ingredient container valve control
US11745996B1 (en) 2022-11-17 2023-09-05 Sharkninja Operating Llc Ingredient containers for use with beverage dispensers
US11634314B1 (en) 2022-11-17 2023-04-25 Sharkninja Operating Llc Dosing accuracy
US12103840B2 (en) 2022-11-17 2024-10-01 Sharkninja Operating Llc Ingredient container with sealing valve
US11871867B1 (en) 2023-03-22 2024-01-16 Sharkninja Operating Llc Additive container with bottom cover
US11925287B1 (en) 2023-03-22 2024-03-12 Sharkninja Operating Llc Additive container with inlet tube
US12116257B1 (en) 2023-03-22 2024-10-15 Sharkninja Operating Llc Adapter for beverage dispenser
US12005408B1 (en) 2023-04-14 2024-06-11 Sharkninja Operating Llc Mixing funnel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058786A1 (en) * 2000-02-14 2001-08-16 Kraft Foods Uk Ltd. Cartridge for the preparation of whipped beverages
US20020048621A1 (en) * 2000-10-06 2002-04-25 Boyd David D. Encoded coffee packet
EP1593329A1 (en) * 2004-05-04 2005-11-09 Datalogic S.P.A. Apparatus with cartridges for the preparation of drinks, with activation following the reading of an optical code carried by the cartridge
WO2008090122A2 (en) 2007-01-24 2008-07-31 Nestec S.A. Identification of beverage ingredient containing capsules

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150422A (en) 1981-03-12 1982-09-17 Hitachi Plant Eng & Constr Co Ltd Dust removing device for gas
JPS57150422U (en) * 1981-03-17 1982-09-21
US5312017A (en) * 1991-08-30 1994-05-17 The Coca-Cola Company Product identification system for beverage dispenser
JP2001043768A (en) 1999-08-02 2001-02-16 Nec Saitama Ltd Waterproof structure of keybutton
US7115825B2 (en) 2001-02-15 2006-10-03 Integral Technologies, Inc. Low cost key actuators and other switching device actuators manufactured from conductive loaded resin-based materials
US6392176B1 (en) 2001-03-05 2002-05-21 Chicony Electronics Co., Ltd. Keyswitch of keyboard
HUE029753T2 (en) * 2002-01-16 2017-04-28 Nestle Sa Closed capsule with opening means
GB0314277D0 (en) * 2003-06-19 2003-07-23 Whitlenge Drink Equipment Ltd Beverage dispensing system
PT1510160E (en) * 2003-08-25 2011-11-02 Nestec Sa Method and apparatus for making a beverage from a cartridge containing a substance
FR2874210B1 (en) * 2004-08-10 2006-09-22 Cie Mediterraneenne Des Cafes CONDITIONING FOR INFUSION OF A MATERIAL TO INFUSE
CN200984099Y (en) * 2005-12-21 2007-12-05 皇家飞利浦电子股份有限公司 Cylinder for prepairng beverage, machine for prepairng beverage and system for prepairng beverage
WO2007080638A1 (en) * 2006-01-12 2007-07-19 Fujitsu Limited Electronic apparatus
PL2071986T3 (en) 2007-12-18 2012-07-31 Nestec Sa System for preparing a beverage from ingredients supported by an encoded insert

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001058786A1 (en) * 2000-02-14 2001-08-16 Kraft Foods Uk Ltd. Cartridge for the preparation of whipped beverages
US20020048621A1 (en) * 2000-10-06 2002-04-25 Boyd David D. Encoded coffee packet
EP1593329A1 (en) * 2004-05-04 2005-11-09 Datalogic S.P.A. Apparatus with cartridges for the preparation of drinks, with activation following the reading of an optical code carried by the cartridge
WO2008090122A2 (en) 2007-01-24 2008-07-31 Nestec S.A. Identification of beverage ingredient containing capsules

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037781A1 (en) 2011-09-16 2013-03-21 Nestec S.A. Multi-system beverage machine multiple connections
WO2013037783A1 (en) 2011-09-16 2013-03-21 Nestec S.A. Clean multi-system beverage machine
WO2013037782A1 (en) 2011-09-16 2013-03-21 Nestec S.A. Multi-system beverage machine safe connector
US9582699B2 (en) 2011-11-16 2017-02-28 Nestec S.A. Support and capsule for preparing a beverage by centrifugation, system and method for preparing a beverage by centrifugation
US9268984B2 (en) 2011-11-16 2016-02-23 Nestec S.A. Support and capsule for preparing a beverage by centrifugation, system and method for preparing a beverage by centrifugation
WO2013098173A1 (en) 2011-12-30 2013-07-04 Nestec S.A. A multi-system beverage machine
US10455974B2 (en) 2014-02-19 2019-10-29 Societe Des Produits Nestle S.A. Capsule kit for use in a food preparation machine
US20160353918A1 (en) * 2014-02-19 2016-12-08 Nestec S.A. A capsule kit for use in a food preparation machine
RU2671695C1 (en) * 2014-02-19 2018-11-06 Нестек С.А. Set capsules for application in device for cooking
AU2015220843B2 (en) * 2014-02-19 2019-08-22 Société des Produits Nestlé S.A. A capsule kit for use in a food preparation machine
WO2015124627A1 (en) * 2014-02-19 2015-08-27 Nestec S.A. A capsule kit for use in a food preparation machine
US11129492B2 (en) 2016-08-03 2021-09-28 Koninklijke Douwe Egberts B.V. System for preparing a beverage
US11096516B2 (en) 2016-08-03 2021-08-24 Koninklijke Douwe Egberts B.V. System, apparatus, method, capsule and kit of capsules for preparing a beverage
US10966564B2 (en) 2016-08-03 2021-04-06 Koninklijke Douwe Egberts B.V. System for preparing a quantity of beverage suitable for consumption
US11129493B2 (en) 2016-08-03 2021-09-28 Koninklijke Douwe Egberts B.V. System for preparing a beverage
US11197574B2 (en) 2016-08-03 2021-12-14 Koninklijke Douwe Egberts B.V. System and method for preparing a beverage field and background
US11304555B2 (en) 2016-08-03 2022-04-19 Koninklijke Douwe Egberts B.V. System and apparatus for preparing a beverage
US11395557B2 (en) 2016-08-03 2022-07-26 Koninklijke Douwe Egberts B.V. Apparatus and method for preparing a beverage and system comprising the apparatus and an exchangeable capsule
US11576519B2 (en) 2016-08-03 2023-02-14 Koninklijke Douwe Egberts B.V. System, apparatus, method, capsule and kit of capsules for preparing a beverage
US11524268B2 (en) 2016-11-09 2022-12-13 Pepsico, Inc. Carbonated beverage makers, methods, and systems
US12048905B2 (en) 2016-11-09 2024-07-30 Pepsico, Inc. Carbonation cup for carbonated beverage maker

Also Published As

Publication number Publication date
CN102665501A (en) 2012-09-12
KR20120121885A (en) 2012-11-06
DK2515725T3 (en) 2013-11-25
PT2515725E (en) 2013-11-26
RU2012131138A (en) 2014-01-27
AU2010334943A1 (en) 2012-07-12
US20120260805A1 (en) 2012-10-18
CA2785134C (en) 2018-02-06
JP2013514820A (en) 2013-05-02
RU2542566C2 (en) 2015-02-20
ES2435637T3 (en) 2013-12-20
EP2515725B1 (en) 2013-10-16
EP2515725A1 (en) 2012-10-31
SG181721A1 (en) 2012-07-30
KR101913438B1 (en) 2018-10-30
CN102665501B (en) 2015-06-17
PL2515725T3 (en) 2014-02-28
JP5752706B2 (en) 2015-07-22
TW201143689A (en) 2011-12-16
BR112012017192A2 (en) 2016-03-22
CA2785134A1 (en) 2011-06-30
US9010237B2 (en) 2015-04-21
AU2010334943B2 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
CA2785134C (en) Identification of beverage ingredient containing capsules
EP2515724B1 (en) Identification of beverage ingredient containing capsules
AU2014202783B2 (en) Identification of beverage ingredient containing capsules

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080058134.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10798082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012543845

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2785134

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010798082

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010334943

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13518305

Country of ref document: US

Ref document number: 5573/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010334943

Country of ref document: AU

Date of ref document: 20101220

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127019362

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012131138

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012017192

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012017192

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120620