WO2011076706A1 - Vehicule aerien ultra-rapide et procede de locomotion aerienne associe - Google Patents

Vehicule aerien ultra-rapide et procede de locomotion aerienne associe Download PDF

Info

Publication number
WO2011076706A1
WO2011076706A1 PCT/EP2010/070189 EP2010070189W WO2011076706A1 WO 2011076706 A1 WO2011076706 A1 WO 2011076706A1 EP 2010070189 W EP2010070189 W EP 2010070189W WO 2011076706 A1 WO2011076706 A1 WO 2011076706A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
fuselage
wing
engine
delta
Prior art date
Application number
PCT/EP2010/070189
Other languages
English (en)
Inventor
Marco Prampolini
Yohann Coraboeuf
Original Assignee
Astrium Sas
European Aeronautic Defence And Space Company - Eads France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrium Sas, European Aeronautic Defence And Space Company - Eads France filed Critical Astrium Sas
Priority to CN201080059407.1A priority Critical patent/CN102822054B/zh
Priority to JP2012545259A priority patent/JP5791055B2/ja
Priority to US13/516,878 priority patent/US9079661B2/en
Priority to EP10790648.9A priority patent/EP2516269B1/fr
Priority to ES10790648.9T priority patent/ES2552794T3/es
Priority to RU2012131131/11A priority patent/RU2547962C2/ru
Publication of WO2011076706A1 publication Critical patent/WO2011076706A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C30/00Supersonic type aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • B64C23/065Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips
    • B64C23/069Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips using one or more wing tip airfoil devices, e.g. winglets, splines, wing tip fences or raked wingtips
    • B64C23/076Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips using one or more wing tip airfoil devices, e.g. winglets, splines, wing tip fences or raked wingtips the wing tip airfoil devices comprising one or more separate moveable members thereon affecting the vortices, e.g. flaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/08Stabilising surfaces mounted on, or supported by, wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/10Stabilising surfaces adjustable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/023Aircraft characterised by the type or position of power plants of rocket type, e.g. for assisting taking-off or braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/026Aircraft characterised by the type or position of power plants comprising different types of power plants, e.g. combination of a piston engine and a gas-turbine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/16Aircraft characterised by the type or position of power plants of jet type
    • B64D27/20Aircraft characterised by the type or position of power plants of jet type within, or attached to, fuselages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/40Arrangements for mounting power plants in aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/14Space shuttles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a high speed air vehicle and a method of locomotion by air using an air vehicle in accordance with the air vehicle of the invention.
  • the aircraft ⁇ ultra fast point to point that has been made are aircraft Concorde and Tupolev Tu-144 supersonic both.
  • the high-speed air vehicle proposed by the present invention can significantly improve the performance of these two aircraft.
  • the air vehicle proposed by the present invention considerably reduces the noise that accompanies the passage of the sound wall, also called supersonic "bang", which noise was the main, if not the only, limit to opening of non-transatlantic lines for the CONCORDE aircraft.
  • the invention relates to an air vehicle comprising a fuselage, a delta gothic wing distributed on either side of the fuselage, and an engine system capable of propelling the air vehicle.
  • the air vehicle is characterized in that:
  • the fuselage contains a tank of liquid or slush hydrogen ("slush" state in English) and one or more tanks of liquid oxygen;
  • the delta gothic wing has an extrados and a flat intrados, the root of the wing arising substantially at the level where begins the enlargement of the front part of the fuselage;
  • a fin is attached to each outer end of the trailing edge of the delta wing by means of a cylindrical part whose axis is parallel to the axis of the fuselage, each fin consisting of two substantially identical elements of trapezoidal shape fixed to the cylindrical piece and located in the same plane, on either side of the cylindrical piece, each cylindrical piece being able to move in rotation about its axis so that the two elements of trapezoidal shape which are fixed to the cylindrical part are positioned either in a plane parallel to the plane of the delta gothic wing, or in a plane perpendicular to the plane of the delta gothic wing; and
  • the engine system comprises at least one turbojet capable of retracting in the fuselage and located at a front part of the fuselage, at least one stationary geometry ramjet and a rocket engine located in a rear part of the fuselage, a door on the rear part of the fuselage being able to open or close for respectively, open the rocket motor on the outside or isolate the rocket motor from the outside.
  • the fuselage consists of a front or nose section which extends a section of cabin and a rear section, the front section having a constant section which widens progressively from the section of cabin and the rear section having a constant section which narrows gradually towards the rear of the vehicle.
  • each liquid oxygen tank has its center of gravity positioned, whether empty or full, closer to the center of gravity of the air vehicle.
  • the rocket engine is constituted either of a single engine, or a main engine accompanied by one or more auxiliary engines.
  • the vehicle has a leading edge arrow substantially between 70 ° and 75 °, calculated with reference to a right delta wing.
  • the invention also relates to a method of aerial locomotion using an air vehicle according to the invention, the method comprising a vehicle takeoff phase, characterized in that the takeoff phase comprises the following steps:
  • a flight step during which the air vehicle is simultaneously propelled by the turbojet engine (s) and the rocket engine, the vehicle being progressively brought into a quasi-vertical ascending flight phase by calling a strong thrust deployed by the engine rocket so that the vehicle reaches and exceeds the speed MACH 1 during the ascending flight phase, the turbojet or engines being stopped and returned to the fuselage before the speed MACH 1 is reached and the two trapezoidal elements of each of the two fins of the air vehicle being positioned progressively in a plane perpendicular to the plane of the delta gothic wing as soon as the vehicle reaches and / or exceeds the speed MACH 1.
  • the invention also relates to a method of aerial locomotion using an aerial vehicle according to the invention, the method comprising a phase of landing the vehicle from a cruising flight lane in which the vehicle is propelled by a thrust of the ramjet or ramjets, the two trapezoidal elements of each of the two fins being positioned in a plane perpendicular to the delta gothic wing, characterized in that the landing phase of the vehicle comprises the following steps:
  • the cruising flight is characterized by:
  • a dissipation distance of the nose shock wave of the vehicle substantially between 110km and 175km;
  • An angle of opening of the Mach cone substantially between 11 ° and 15 °.
  • the ultra-fast air vehicle proposed by the invention offers a speed twice that of the CONCORDE, Mach 4+, and a cruising altitude at least greater than 20km compared to that of a conventional airliner.
  • the air vehicle of the invention advantageously allows to transport the equivalent of 2-3 tons, for example, twenty passengers and offers, moreover, a particularly important advantage with regard to the environmental aspect due to a propulsion in the acceleration and cruising phase ensured by combining oxygen respectively embedded (liquid oxygen) and ambient and embedded hydrogen, the fuel of the future.
  • the performance of the aerial vehicle of the invention allows distances of about 9000km (eg Paris - San Francisco or Tokyo - Los Angeles) in three hours.
  • FIG. 1 represents a view from below of a high-speed aerial vehicle according to the invention
  • FIG. 2 represents a perspective view of a particular element of a high-speed aerial vehicle according to the invention
  • FIG. 3 represents a profile view of a high-speed aerial vehicle according to the invention.
  • FIG. 4 represents a half-view from above of a high-speed aerial vehicle according to the invention.
  • FIG. 5 represents a front view of a high-speed aerial vehicle according to the invention.
  • FIG. 6 shows a longitudinal sectional view of a high-speed air vehicle according to the invention
  • FIG. 7-11 show different cross-sectional views of the high-speed air vehicle of the invention shown in Figure 6;
  • FIG. 12 represents a detailed view of the high-speed aerial vehicle of the invention shown in FIG. 6;
  • Figure 13 shows a rear perspective view of the air vehicle of the invention
  • FIGS. 14A, 14B and 14C show partial rear views of the air vehicle of the invention for different positions of a door adapted to open or close the rocket motor access to the outside;
  • FIG. 15 represents a perspective view of an ultra-fast aerial vehicle according to the invention.
  • FIG. 16 represents the variation of the thrust center of an ultra-fast aerial vehicle of the invention as a function of the speed expressed in MACH;
  • FIG. 17 represents the variation of the road stability of an ultra-fast aerial vehicle of the invention as a function of the speed expressed in MACH;
  • FIG. 18 illustrates the different phases of flight of a high speed air vehicle according to the invention.
  • Quantities 1 represent distances.
  • the magnitudes ⁇ represent diameters.
  • the magnitudes ⁇ represent angles.
  • the quantities R represent radii of curvature.
  • FIG. 1 represents a view from below of an example of a high-speed aerial vehicle according to the invention.
  • the distances 1 represented have the following values, by way of non-limiting example:
  • diameters ⁇ represented have the following values by way of non-limiting example:
  • the high-speed aerial vehicle of the invention according to the example of FIG. 1, comprises all of the following elements:
  • a fuselage F which contains a tank Rv with liquid hydrogen or in the state of slush (see FIGS. 6 and 10) and two tanks of liquid oxygen ROI and R02, reservoirs Rv, ROI and R02 being intended to feed a Mf rocket engine; - A Gothic delta wing A having an extrados as flat as possible and equipped with its rear end, on each side of the fuselage, two rear flaps vl, v2;
  • a leading edge arrow of the vehicle ⁇ 3 preferably between 70 ° and 75 °, calculated with reference to a right delta wing;
  • a cabin P intended to contain, for example, passengers, located at the front of the wing plus fuselage assembly to be in the wind bed during cruising flight conditions, thereby minimizing the contribution of this part to the total drag of the vehicle, while not generating any lift;
  • a landing gear TRa, TRb, TRc adapted to be housed in the air vehicle, the kinematics of the landing gear being preferably simplified to the maximum;
  • Two turbojets TB1, TB2 placed in the transition zone between the cabin P and the fuselage F and able to be returned to the fuselage when they do not work;
  • the air vehicle of the invention comprises two turbojets and two ramjets. More generally, however, the invention also relates to air vehicles comprising at least one turbojet engine and at least one ramjet engine.
  • the two ramjets ST1, ST2 have their air intake placed in front of the zones of the aerial vehicle which are affected by the secondary shocks and / or the zone of the aerial vehicle which is affected by the head impact, allowing thus ensuring an air intake in undisturbed condition.
  • the widening of the front part of the fuselage advantageously generates a secondary oblique shock interacting strongly with the lower surface of the wing to generate compression lift commonly known as "compression lift" in the English language.
  • Figure 2 shows a movable wing al, a2 of the ultra fast air transport means of the invention.
  • a movable fin consists of two substantially identical elements of trapezoidal shape situated, in the same plane, on either side of a cylindrical piece attached to an outer end of a trailing edge of the delta wing.
  • the axis of the central cylindrical piece is parallel to the longitudinal axis of the aircraft.
  • the cylindrical piece is able to move in rotation to position the movable fin either in horizontal position at subsonic speeds, or in vertical position at supersonic speeds.
  • the two positions of the movable fin are shown simultaneously in FIG.
  • Figure 3 shows a side view of the high-speed vehicle of the invention in the case where the vanes al, a2 are vertical (i.e. perpendicular to the axis of the vehicle).
  • the distances 1 represented have the following values, by way of nonlimiting example
  • angles ⁇ 1 and ⁇ 2 shown have the following values, as a non-limiting example
  • FIG. 4 represents a half-view from above of the ultra-fast vehicle of the invention.
  • the wing al represented is in a horizontal position.
  • the references B1 and B2 indicate, respectively, the position of the barycenter of the reference area of the vehicle in the subsonic configuration (fins al, a2 horizontal) and in the supersonic configuration (vertical fins al, a2).
  • the distances 1 represented in FIG. 4 are, by way of nonlimiting examples:
  • the angle ⁇ 3 (leading edge arrow of the vehicle) is, by way of non-limiting example, equal to 74 °.
  • FIG. 5 represents a front view of the ultra-fast aerial vehicle of the invention.
  • the distances 1 are the following, as non-limiting examples:
  • Figure 6 shows a longitudinal sectional view of the air vehicle of the invention.
  • the distances 1 represented in FIG. 6 are, by way of nonlimiting examples:
  • the radius R2 is equal to 445mm.
  • FIGS. 7, 8, 9, 10 and 11 are, respectively, views of the aerial vehicle of the invention according to the cross sections AA (cockpit), BB (cabin), CC (fuselage behind the cabin, just before the turbojets) , DD (fuselage just behind the turbojets, references TB1 ', TB2' for turbojet engines retracted into the fuselage and TB1, TB2 for turbofan engines) and EE (fuselage at the rear landing gear) of figure 6.
  • the distance 139 is for example equal to 630mm and the distance 140 for example equal to 505mm.
  • the distance 141 is, for example, equal to 2150 mm and the distances 142 and 143 respectively equal, for example, to 650 mm and 600 mm.
  • the distance 144 is for example equal to 870mm and the radius R4 is for example equal to 1550mm.
  • FIG. 12 is a detailed view of FIG. 6, namely a longitudinal sectional representation of the hydrogen tank Rv, and, in background, one of two ROI oxygen tanks.
  • the distance 145 is equal, for example, to 18805mm and the distance 146 to 20471mm for example.
  • the radii of curvature R4 and R5 are respectively equal to 591mm and 1839mm.
  • Figure 13 shows a rear perspective view of the air vehicle of the invention.
  • a door P preferably formed of two wings PI, P2, closes the access of the rocket motor Mf on the outside.
  • the Mf rocket engine is, for example, consisting of a main motor Mp and two auxiliary engines Mal, Ma2 located on either side of the main engine, closer to the lower part of the fuselage that the main engine.
  • FIGS. 14A, 14B, 14C show partial rear views of the aerial vehicle of the invention for different positions of the leaves of the door P.
  • Each of the wings PI, P2 is articulated around a proper horizontal axis.
  • FIG. 14A shows the case where the door P is closed and, as a result, completely isolates the rocket motor from the outside (case of the rocket motor extinguished).
  • FIG. 14B shows the case where the flap PI is closed and the flapper P2 is open. In this case, only the auxiliary motors have an outward opening, the opening on the outside of the main motor being partially obstructed (with the main engine off and auxiliary engines running).
  • Figure 14C shows the case where the two leaves are open. The main motor and the auxiliary motors are open on the outside (this is the case where the engine main and auxiliary motors work).
  • FIG. 15 represents, by way of simple illustration, a perspective view of a high-speed aerial vehicle of the invention.
  • the prior art solution relating to the CONCORDE aircraft was to move the center of gravity of the aircraft to achieve this condition regardless of the speed of the aircraft. This solution is possible, however, if it is expected opportunities for mobile ballast on board the aircraft. This is not the case of air transport of the invention.
  • the solution of the invention is to move the center of thrust of the high-speed vehicle by modifying the position of the fin according to what has been mentioned above, with reference to FIG.
  • FIG. 16 represents the estimated variation of the thrust center CP of the air vehicle of the invention as a function of the speed expressed in Mach number.
  • a first curve C1 represents the variation of the center of thrust CP in the case where the rear wings al, a2 are horizontal in zone ZA and vertical in zone ZB.
  • a second curve C2 represents the variation of the push center CP in the absence of rear wings.
  • the curves C1 and C2 are therefore confuse the speed of the aerial vehicle is greater than Mach 1 (fins in the perpendicular plane of the delta wing).
  • the curve C1 shows no variation in the center of thrust over the entire range of speeds.
  • the air vehicle of the invention is therefore chosen with rear fins in accordance with the fins shown in the figures, the position of the fins according to the speed of the air vehicle being horizontal for speeds below Mach 1 and vertical for speeds above Mach 1.
  • FIG. 17 represents the variation of the road stability St of an ultra-fast aerial vehicle of the invention as a function of the speed expressed in Mach.
  • the range of speeds is also distributed between zones ZA and ZB defined above.
  • a first curve C3 represents the variation of the road stability St in the case where the rear wings are horizontal in the zone ZA and vertical in the zone ZB and a second curve C4 represents the variation of the road stability in the absence of rear wings. It is clear that the road stability of an air transport according to the invention is excellent in itself and also very advantageous compared to a vehicle without rear fins, all things being equal.
  • the positioning of the fins described above is associated with a reference centering (ie a position of the center of gravity of the vehicle) coinciding with the supersonic thrust center (curve C1 in zone ZB of FIG. 16). This is an added benefit of the invention to allow to build an air vehicle centered in the rear sector.
  • Figures 18-21 illustrate different flight phases of a high speed air vehicle of the invention.
  • FIG. 18 represents a first example of the departure phase of the air vehicle of the invention.
  • the vehicle carries out a conventional take-off sequence, propelled by the turbojet engines TB1, TB2 assisted by the Mf rocket engine.
  • the Mf rocket engine may be a single rocket engine with continuously variable thrust or a split thrust rocket engine consisting, for example, of three or four different engines including a main engine.
  • turbojet / rocket engine configuration see points p1 to p3 in FIG. 18
  • the initial climb speed of the air vehicle being of the order of 350 km / h (see points p1 to p2 in the figure).
  • the main rocket engine is on (case of the split engine), or the maximum power is deployed on the rocket engine (case of the single rocket engine) and the ascent of the air vehicle becomes almost vertical.
  • the opening of the P door is controlled according to the different configurations required for the proper operation of the rocket engine (See Figures 14B, 14C previously described).
  • cryogenic propellants are consumed during a staggered flight and a return to the starting facilities can be undertaken with almost more propellant on board, which contributes significantly the security of a landing in an aborted mission situation.
  • the latter produces an ES soundprint whose size varies over time and whose duration is limited.
  • the main rocket engine is switched on or maximum thrust is called on the variable thrust rocket motor, a high thrust rise phase begins.
  • turbojets are stopped and returned inside the fuselage.
  • a thrust ratio on weight substantially equal to or greater than 1 is established.
  • the vehicle climbs steeply (ie almost vertically) with transonic acceleration at high altitude (for example between 15000m and 20000m) thanks to the rocket engine (see point p4 in Figure 18) .
  • high altitude for example between 15000m and 20000m
  • rocket engine variable thrust
  • precise control of the acceleration can advantageously be performed.
  • the passengers and possibly the crew are placed in hammocks to ensure better comfort.
  • the vehicle Once the vehicle in supersonic flight at very high altitude (see point p5 in Figure 18), the trajectory is gradually curved to the horizontal, for example using a ballistic trajectory, and the engine the rocket being stopped and streamlined by completely closing the door P and the ramjets being switched on, the vehicle enters its cruising flight lane, for example at an altitude of between 30000m and 35000m (see point p6 in FIG. 18). This is the cruising flight phase that begins (see point p7 in Figure 18).
  • Figure 19 shows a variant of the takeoff phase of the air vehicle of the invention.
  • the air vehicle performs, in a horizontal plane with respect to the ground, a loop before taking the direction of its destination.
  • This variant is intended to reduce noise in the airport area by moving the sound footprint away from the airport.
  • the trajectory of the vehicle is curved horizontally by returning to the airport (see point p5a in Figure 19) and the aerial vehicle enters the cruise flight corridor at one point closer to the airport than in the previous case (see point p6a in figure 19).
  • Figure 20 symbolically illustrates the aerial vehicle of the invention in the cruising flight lane. For the sake of simplicity, only the nose N of the vehicle of the invention is shown.
  • the flight parameters are, for example, the following:
  • angle of opening of the Mach cone substantially equal to 12.8 °.
  • the stato-reactors have a fixed geometry, which greatly simplifies their geometrical complexity and reduces their mass.
  • the thrust of the stato-reactors is modulated according to the need (vehicle lightening during the flight %) by variation of flow of hydrogen.
  • the vehicle produces a very limited environmental impact because of the very high cruise altitude as well as the constant heading of the vehicle.
  • geometric sound bang reduction solutions as presented during the HISAC 2009 conference (see form design by Sukhoy and Dassault) can be incorporated into the design of the air vehicle, such as, for example, a dihedral pronounced sails.
  • the gases emitted by the vehicle during the acceleration and cruising phases there is advantageously no CO2 emitted but only water vapor and, possibly, hydrogen gas.
  • the electrical energy necessary for the proper functioning of the vehicle is provided by any known means such as, for example, batteries, fuel cells, etc.
  • Figure 21 shows an example of deceleration and descent phase.
  • the ramjets are cut at a certain point of the vehicle trajectory (see point p8 of Figure 21).
  • the vehicle then begins to decelerate.
  • a gradual deployment of airbrakes (“split-flaps" in English) then brings the vehicle downhill on a steep slope with a quasi-vertical speed in transonic (see point p9 of Figure 21).
  • the descent under steep slope is carried out either at very high incidence, or at almost zero incidence under airbrake.
  • the focus boom (see the "super boom” mentioned above) is directed far from the earth's surface, the sound waves being then practically horizontal.
  • the air vehicle is inserted, at a given moment, in the existing air traffic, including, for example, to be put in a holding pattern.
  • the final approach of the vehicle is then carried out in a standard manner, that is to say at a vehicle speed in accordance with that of conventional civil aircraft, providing for making possible any go-around if necessary.
  • the vehicle rolls to a standstill under the sole thrust of the turbojets (point p2 in Figure 21).
  • a preliminary estimate of the flight attitude at landing advantageously leads to lower values than for the CONCORDE aircraft.
  • the taxiing of the vehicle is ensured by the turbojet engines which give the latter a mobility similar to that of a conventional airliner. During these phases, the vehicle complies with environmental regulations in force in civil aviation.
  • turbojet engine (s) are used only during the approach, waiting, go - around and landing phases at the end of the flight. This use of turbojet engines leads to a considerable reduction in their size and mass compared with standard use.
  • the turbojet engine (s) of the invention is consequently advantageously easy to retract inside the fuselage.
  • turbojet engines and a rocket engine provides an excellent compromise in terms of thrust-to-mass ratio associated with reduced cruising drag, particularly for approach and landing phases where the air vehicle is placed in the existing air traffic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Toys (AREA)

Abstract

L'invention concerne un véhicule aérien ultra-rapide ainsi qu'un procédé de locomotion aérienne assuré par un véhicule aérien ultra-rapide, le véhicule aérien étant propulsé par un système de moteurs formé de turboréacteurs (TB1, TB2), de statoréacteurs (ST1, ST2) et d'un moteur fusée carénable pour réduire la traînée de culot en phase de croisière, le véhicule aérien ayant une aile delta gothique (A) muni d'ailettes (a1, a2) mobiles aux deux extrémités extérieures du bord de fuite de l'aile delta (A).

Description

VEHICULE AERIEN ULTRA-RAPIDE
ET PROCEDE DE LOCOMOTION AERIENNE ASSOCIE
DESCRIPTION
Domaine technique et art antérieur
L' invention concerne un véhicule aérien ultra-rapide ainsi qu'un procédé de locomotion aérienne à l'aide d'un véhicule aérien conforme au véhicule aérien de l'invention.
Des études sur le thème du transport ultra¬ rapide point à point ont été récemment entreprises au Japon et aux États-Unis. Dans le sillage de ces initiatives, EADS et ASTRIUM ont également réalisé, en marge du programme ASP (ASP pour « ASTRIUM SPACE PLANE ») , des études de concept pour un véhicule aérien ultra-rapide point à point.
A ce jour, les véhicules aériens ultra¬ rapides point à point qui ont été réalisés sont les avions CONCORDE et Tupolev Tu-144, tous deux supersoniques. Le véhicule aérien ultra-rapide proposé par la présente invention permet d'améliorer très sensiblement les performances de ces deux avions.
En particulier, le véhicule aérien proposé par la présente invention diminue considérablement le bruit qui accompagne le passage du mûr du son, également appelé « bang » supersonique, lequel bruit a été la principale limite, si ce n'est la seule, à l'ouverture de lignes autres que transatlantiques pour l'avion CONCORDE. Exposé de l'invention
En effet, l'invention concerne un véhicule aérien comprenant un fuselage, une aile delta gothique répartie de part et d'autre du fuselage, et un système de moteurs apte à propulser le véhicule aérien. Le véhicule aérien est caractérisé en ce que :
- Le fuselage contient un réservoir d'hydrogène liquide ou à l'état de neige fondue (état « slush » en langue anglaise) et un ou plusieurs réservoirs d'oxygène liquide ;
- L'aile delta gothique a un extrados et un intrados plats, l'emplanture de l'aile prenant naissance sensiblement au niveau où débute l'élargissement de la partie avant du fuselage ;
- Une ailette est fixée à chaque extrémité extérieure du bord de fuite de l'aile delta à l'aide d'une pièce cylindrique dont l'axe est parallèle à l'axe du fuselage, chaque ailette étant constituée de deux éléments sensiblement identiques de forme trapézoïdale fixés à la pièce cylindrique et situés dans un même plan, de part et d'autre de la pièce cylindrique, chaque pièce cylindrique étant apte à se mouvoir en rotation autour de son axe de telle sorte que les deux éléments de forme trapézoïdale qui sont fixés à la pièce cylindrique soient positionnés soit dans un plan parallèle au plan de l'aile delta gothique, soit dans un plan perpendiculaire au plan de l'aile delta gothique; et
- Le système de moteurs comprend au moins un turboréacteur apte à se rétracter dans le fuselage et situé au niveau d'une partie avant du fuselage, au moins un statoréacteur de géométrie fixe et un moteur fusée situé dans une partie arrière du fuselage, une porte située sur la partie arrière du fuselage étant apte à s'ouvrir ou se fermer pour, respectivement, ouvrir le moteur fusée sur l'extérieur ou isoler le moteur fusée de 1 ' extérieur .
Selon une caractéristique supplémentaire de l'invention, le fuselage est constitué d'un tronçon avant ou nez qui prolonge un tronçon de cabine et d'un tronçon arrière, le tronçon avant ayant une section constante qui s'élargit progressivement à partir du tronçon de cabine et le tronçon arrière ayant une section constante qui rétrécit progressivement vers l'arrière du véhicule.
Selon une autre caractéristique supplémentaire de l'invention, chaque réservoir d'oxygène liquide a son centre de gravité positionné, qu'il soit vide ou plein, au plus près du centre de gravité du véhicule aérien.
Selon encore une autre caractéristique supplémentaire de l'invention, le moteur fusée est constitué soit d'un moteur unique, soit d'un moteur principal accompagné de un ou plusieurs moteurs auxiliaires .
Selon encore une autre caractéristique supplémentaire de l'invention, le véhicule a une flèche de bord d'attaque sensiblement comprise entre 70° et 75°, calculée en référence à une aile delta droite. L' invention concerne également un procédé de locomotion aérienne à l'aide d'un véhicule aérien conforme à l'invention, le procédé comprenant une phase de décollage du véhicule, caractérisé en ce que la phase de décollage comprend les étapes suivantes :
- une étape de roulage au sol du véhicule durant laquelle le véhicule est propulsé par les turboréacteurs pour atteindre un point d'alignement sur piste, les deux éléments de forme trapézoïdale de chacune des deux ailettes étant positionnés dans un plan parallèle à l'aile delta gothique en vue du décollage ;
- une étape d'ouverture ou de vérification d'un état d' ouverture de la porte arrière du véhicule ;
- une étape d'envol durant laquelle le véhicule aérien est propulsé simultanément par le ou les turboréacteurs et par le moteur fusée, le véhicule étant progressivement amené dans une phase de vol ascendante quasi-verticale par appel d'une forte poussée déployée par le moteur fusée de sorte que le véhicule atteigne et dépasse la vitesse MACH 1 durant la phase de vol ascendante, le ou les turboréacteurs étant arrêtés et rentrés dans le fuselage avant que la vitesse MACH 1 ne soit atteinte et les deux éléments de forme trapézoïdale de chacune des deux ailettes du véhicule aérien étant positionnés progressivement dans un plan perpendiculaire au plan de l'aile delta gothique dès que le véhicule atteint et/ou dépasse la vitesse MACH 1. L' invention concerne également un procédé de locomotion aérienne à l'aide d'un véhicule aérien conforme à l'invention, le procédé comprenant une phase d' atterissage du véhicule à partir d'un couloir de vol de croisière dans lequel le véhicule est propulsé par une poussée du ou des statoréacteurs , les deux éléments de forme trapézoïdale de chacune des deux ailettes étant positionnés dans un plan perpendiculaire à l'aile delta gothique, caractérisé en ce que la phase d' atterissage du véhicule comprend les étapes suivantes :
- un arrêt du ou des statoréacteurs ;
- un déploiement progressif d'aérofreins (« split flaps » en langue anglaise) qui amène le véhicule jusqu'à une phase de descente sous forte pente avec une vitesse quasi-verticale transonique qui diminue ;
- une modification progressive de la position des deux éléments de forme trapézoïdale de chacune des deux ailettes de façon à placer lesdits éléments dans un plan parallèle au plan de l'aile delta gothique dès lors que la vitesse du véhicule atteint et/ou passe sous la vitesse MACH 1 ;
- une fermeture progressive des aérofreins et un déploiement et un allumage du ou des turboréacteurs dès lors que la vitesse du véhicule devient inférieure à MACH 1; et
- une insertion du véhicule dans le trafic aérien standard . Selon encore une caractéristique supplémentaire de l'invention, le vol de croisière est caractérisé par :
- Une altitude de l'avion par rapport au sol sensiblement comprise entre 30000m et 35000m ;
- Une distance de dissipation de l'onde de choc de nez du véhicule sensiblement comprise entre 110km et 175km;
- Une vitesse de l'avion sensiblement comprise entre Mach 4 et Mach 4,5 ; et
- Un angle a d' ouverture du cône de Mach sensiblement compris entre 11° et 15°.
Le véhicule aérien ultra rapide proposé par l'invention offre une vitesse deux fois supérieure à celle du CONCORDE, soit Mach 4+ , et une altitude de croisière au moins supérieure à 20km comparée à celle d'un avion de ligne conventionnel.
Au-delà de ces performances brutes, le véhicule aérien de l'invention permet avantageusement de transporter l'équivalent de 2-3 tonnes soit, par exemple, une vingtaine de passagers et offre, par ailleurs, un avantage particulièrement important en ce qui concerne l'aspect environnemental du fait d'une propulsion en phase d'accélération et de croisière assurée en combinant de l'oxygène respectivement embarqué (oxygène liquide) et ambiant et de l'hydrogène embarqué, le carburant du futur.
Les applications visées par le véhicule aérien ultra-rapide de l'invention sont duales, à savoir civiles et militaires. Pour les applications civiles, le marché visé est principalement celui des voyages d'affaires et des passengers VIP (VIP pour « Very Important Person ») qui nécessitent des allers-retours transcontinentaux dans la journée.
Les applications militaires concernent, quant à elles, par exemple, la reconnaissance stratégique, le transport ultra-rapide de marchandises à haute valeur ajoutée ainsi que les commandos d'élites équipés. Un dérivé offensif du véhicule aérien pourrait réaliser des frappes de précision et des mises hors d'usage de cibles privilégiées de haute valeur ajoutée, par exemple par impulsions électromagnétiques de forte puissance, également appelées impulsions EMP (EMP pour « Electro Magnetic Puise ») . Tout comme les satellites, le véhicule aérien de l'invention offre une invulnérabilité presque totale vis-à-vis des systèmes anti-aériens conventionnels tout en présentant la flexibilité et la nonprédictibilité d'un avion classique.
La performance du véhicule aérien de l'invention autorise des distances franchissables d'environ 9000km (par exemple Paris — San Francisco ou Tokyo — Los Angeles) en trois heures de temps.
Le concept opérationnel ainsi que l'architecture du véhicule aérien de l'invention permettent :
• des opérations au départ et à l'arrivée d'installations aéroportuaires standards, sous réserve d'un ravitaillement en hydrogène et en oxygène liquide à prendre en compte ; • un affranchissement de l'interaction avec la circulation aérienne générale en croisière (altitude de croisière au-delà des couloirs aériens actuels) ;
• des opérations quasiment en tout-temps, l'altitude du vol étant telle que les phénomènes météorologiques qui impactent la bonne conduite de vol sont inexistants ;
• une maintenance de nature aéronautique sur l'ensemble du véhicule à l'exception du système de moteurs fusée qui nécessite des opérations spécifiques.
Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaîtront à la lumière d'un mode de réalisation préférentiel fait en référence aux figures jointes, parmi lesquelles :
La figure 1 représente une vue de dessous d'un véhicule aérien ultra-rapide selon l'invention ;
- La figure 2 représente une vue en perspective d'un élément particulier d'un véhicule aérien ultra-rapide selon l'invention ;
La figure 3 représente une vue de profil d'un véhicule aérien ultra-rapide selon l'invention ;
- La figure 4 représente une demi-vue de dessus d'un véhicule aérien ultra-rapide selon l'invention ;
- La figure 5 représente une vue de face d'un véhicule aérien ultra-rapide selon l'invention ;
- La figure 6 représente une vue en coupe longitudinale d'un véhicule aérien ultra-rapide selon l'invention ;
Les figures 7-11 représentent différentes vues en coupe transversale du véhicule aérien ultra-rapide de l'invention représenté en figure 6 ; - La figure 12 représente une vue de détail du véhicule aérien ultra-rapide de l'invention représenté en figure 6 ;
La figure 13 représente une vue arrière en perspective du véhicule aérien de l'invention ;
- Les figures 14A, 14B et 14C représentent des vues arrière partielles du véhicule aérien de l'invention pour différentes positions d'une porte apte à ouvrir ou fermer l'accès du moteur fusée sur l'extérieur ;
- La figure 15 représente une vue en perspective d'un véhicule aérien ultra rapide selon l'invention ;
- La figure 16 représente la variation du centre de poussée d'un véhicule aérien ultra-rapide de l'invention en fonction de la vitesse exprimée en MACH ;
- la figure 17 représente la variation de la stabilité de route d'un véhicule aérien ultra-rapide de l'invention en fonction de la vitesse exprimée en MACH ;
- Les figures 18-21 illustrent les différentes phases de vol d'un véhicule aérien ultra rapide selon 1 ' invention .
Sur toutes les figures, les mêmes références désignent les mêmes éléments. Les grandeurs 1 représentent des distances. Les grandeurs Φ représentent des diamètres. Les grandeurs Θ représentent des angles. Les grandeurs R représentent des rayons de courbure. Exposé détaillé de modes de réalisation préférés de 1 ' invention
La figure 1 représente une vue de dessous d'un exemple de véhicule aérien ultra-rapide selon 1 ' invention .
Sur la figure 1, les distances 1 représentées ont les valeurs suivantes, à titre d'exemple non limitatif :
ll=52995mm ;
12=37855mm ;
13=36524mm ;
14=7135mm ;
15=4394mm ;
16=2150mm ;
17=3000mm ;
18=7115mm ;
19=8929mm.
De même, les diamètres Φ représentés ont les valeurs suivantes à titre d'exemple non limitatif :
4>l=3500mm ;
4>2=1800mm.
Le véhicule aérien ultra-rapide de l'invention selon l'exemple de la figure 1, comprend l'ensemble des éléments suivants :
- Un fuselage F qui contient un réservoir Rv à hydrogène liquide ou à l'état de neige fondue (cf. figures 6 et 10) et deux réservoirs d'oxygène liquide ROI et R02, les réservoirs Rv, ROI et R02 étant destinés à alimenter un moteur fusée Mf ; - Une aile A de type delta gothique ayant un extrados aussi plat que possible et munie à son extrémité arrière, de chaque côté du fuselage, de deux volets arrière vl, v2 ;
Une flèche de bord d'attaque du véhicule Θ3 (cf. figure 4) préférentiellement comprise entre 70° et 75°, calculée en référence à une aile delta droite ;
Une cabine P destinée à contenir, par exemple, des passagers, située à l'avant de l'ensemble aile plus fuselage afin d'être dans le lit du vent lors des conditions de vol de croisière, permettant ainsi de minimiser la contribution de cette partie à la traînée totale du véhicule, tout en ne générant aucune portance ;
Un cockpit et un nez formant un tronçon CN situé dans le prolongement de la cabine P, à l'avant du véhicule ;
Un train d'atterrissage TRa, TRb, TRc apte à se loger dans le véhicule aérien, la cinématique du train d'atterrissage étant préférentiellement simplifée au maximum ;
Deux ailettes mobiles al, a2 placées symétriquement par rapport à l'axe longitudinal du véhicule, chaque ailette étant fixée à l'extrémité extérieure d'un bord de fuite de l'aile delta ; Deux statoréacteurs ST1, ST2 placés symétriquement par rapport à l'axe du véhicule, chaque statoréacteur ayant une géométrie fixe optimisée pour la phase de vol de croisière ;
Deux turboréacteurs TB1, TB2 placés dans la zone de transition située entre la cabine P et le fuselage F et aptes à être rentrés dans le fuselage lorsqu' ils ne fonctionnent pas ;
- Un moteur fusée Mf (cf. figures 6, 14A, 14B) placé à l'arrière du fuselage et apte à être ouvert sur l'extérieur ou enfermé dans le fuselage à l'aide d'une porte arrière P du véhicule (cf. figures 14A-14C) .
Dans l'exemple de la figure 1 décrit ci- dessus, le véhicule aérien de l'invention comprend deux turboréacteurs et deux statoréacteurs . De façon plus générale, toutefois, l'invention concerne également des véhicules aériens comprenant au moins un turboréacteur et au moins statoréacteur .
De façon préférentielle, les deux statoréacteurs ST1, ST2 ont leur entrée d'air placée en avant des zones du véhicule aérien qui sont affectées par les chocs secondaires et/ou de la zone du véhicule aérien qui est affectée par le choc de tête, permettant ainsi d'assurer une admission d'air en condition non perturbée.
L'élargissement de la partie avant du fuselage génère avantageusement un choc oblique secondaire interagissant fortement avec l'intrados de l'aile pour générer de la portance par compression communément appelée « compression lift » en langue anglaise .
La figure 2 représente une ailette mobile al, a2 du moyen de transport aérien ultra rapide de l'invention. Une ailette mobile est constituée de deux éléments sensiblement identiques de forme trapézoïdale situés, dans un même plan, de part et d'autre d'une pièce cylindrique fixée à une extrémité extérieure d'un bord de fuite de l'aile delta. L'axe de la pièce cylindrique centrale est parallèle à l'axe longitudinal de l'avion. La pièce cylindrique est apte à se mouvoir en rotation pour positionner l'ailette mobile soit en position horizontale aux vitesses subsoniques, soit en position verticale aux vitesses supersoniques. Pour des raisons de commodité, les deux positions de l'ailette mobile sont représentées simultanément sur la figure 2.
La figure 3 représente une vue de profil du véhicule ultra-rapide de l'invention dans le cas où les ailettes al, a2 sont verticales (i.e. perpendiculaires à l'axe du véhicule) . Sur la figure 3, les distances 1 représentées ont les valeurs suivantes, à titre d'exemple non limitatif
110=57630mm
lll=42995mm
112=37685mm
113=21995mm
114=17995mm
115=17950mm
116=13000mm
117=6780mm
118=6657mm
119=7400mm
120=6097mm.
De même, les angles Θ1 et Θ2 représentés ont les valeurs suivantes, à titre d'exemple non limitatif
Θ1
Θ2 La figure 4 représente une demi-vue de dessus du véhicule ultra-rapide de l'invention. L'ailette al représentée est en position horizontale. Les références Bl et B2 indiquent, respectivement, la position du barycentre de l'aire de référence du véhicule dans la configuration subsonique (ailettes al, a2 horizontales) et dans la configuration supersonique (ailettes al, a2 verticales).
Les distances 1 représentées sur la figure 4 sont, à titre d'exemples non limitatifs:
121=15326mm ;
122=27878mm ;
123=7556mm ;
124=35009mm ;
125=36722mm.
L'angle Θ3 (flèche de bord d'attaque du véhicule) est, à titre d'exemple non limitatif, égal à 74° .
La figure 5 représente une vue de face du véhicule aérien ultra-rapide de l'invention.
Les distances 1 sont ici les suivantes, à titre d'exemples non limitatifs :
126=27188mm ;
127=19788mm ;
128=11262mm ;
129=6578mm
130=6037mm
131=7900mm
132=2650mm.
Par ailleurs, le rayon RI est égal à 2797mm et l'angle Θ4 est égal à 20°. La figure 6 représente une vue en coupe longitudinale du véhicule aérien de l'invention.
Les distances 1 représentées sur la figure 6 sont, à titre d'exemples non limitatifs :
133=5495mm ;
134=11500mm ;
135=4200mm ;
136=21000 ;
137=10800mm ;
138=1500mm.
Le rayon R2 est égal à 445mm.
Les figures 7, 8, 9, 10 et 11 sont, respectivement, des vues du véhicule aérien de l'invention selon les coupes transversales A-A (cockpit) , B-B (cabine) , C-C (fuselage derrière la cabine, juste avant les turboréacteurs) , D-D (fuselage juste derrière les turboréacteurs, références TB1', TB2' pour turboréacteurs rentrés dans le fuselage et TB1, TB2 pour turboréacteurs sortis du fuselage) et E-E (fuselage au niveau du train arrière d' attérissage) de la figure 6.
Sur la figure 8, la distance 139 est par exemple égale à 630mm et la distance 140 par exemple égale à 505mm. Sur la figure 9, la distance 141 est, par exemple, égale à 2150mm et les distances 142 et 143 respectivement égales, par exemple, à 650mm et 600mm. Sur la figure 11, la distance 144 est par exemple égale à 870mm et le rayon R4 est par exemple égal à 1550mm.
La figure 12 est une vue de détail de la figure 6, à savoir une représentation en coupe longitudinale du réservoir d'hydrogène Rv ainsi que, en arrière-plan, d'un des deux réservoirs d'oxygène ROI. La distance 145 est égale, par exemple, à 18805mm et la distance 146 par exemple à 20471mm. Les rayons de courbures R4 et R5 sont respectivement égaux à 591mm et 1839mm .
La figure 13 représente une vue arrière en perspective du véhicule aérien de l'invention. Une porte P, préférentiellement formée de deux battants PI, P2, ferme l'accès du moteur fusée Mf sur l'extérieur. Le moteur fusée Mf est, par exemple, constitué d'un moteur principal Mp et de deux moteurs auxiliaires Mal, Ma2 situés de part et d'autre du moteur principal, plus près de la partie basse du fuselage que le moteur principal .
Les figures 14A, 14B, 14C représentent des vues arrière partielles du véhicule aérien de l'invention pour différentes position des battants de la porte P. Chacun des battants PI, P2 s'articule autour d'un axe horizontal propre. La figure 14A représente le cas où la porte P est fermée et, de ce fait, isole complètement le moteur fusée de l'extérieur (cas du moteur fusée éteint) . La figure 14B représente le cas où le battant PI est fermé et le battant P2 ouvert. Dans ce cas, seuls les moteurs auxilaires ont une ouverture vers l'extérieur, l'ouverture sur l'extérieur du moteur principal étant partiellement obstruée (cas du moteur principal éteint et des moteurs auxiliaires en fonctionnement) . La figure 14C représente le cas où les deux battants sont ouverts. Le moteur principal et les moteurs auxiliaires sont ouverts sur l'extérieur (c'est le cas où moteur principal et moteurs auxiliaires fonctionnent) . La figure 15 représente, à titre de simple illustration, une vue en perspective d'un véhicule aérien ultra-rapide de l'invention.
Comme cela est connu de l'homme de l'art, lors du vol d'un véhicule aérien, le centre de poussée et le centre de gravité du véhicule aérien doivent être confondus. La solution d'art antérieur relative à l'avion CONCORDE consistait à déplacer le centre de gravité de l'avion pour réaliser cette condition quelle que soit la vitesse de l'avion. Cette solution n'est toutefois possible que s'il est prévu des possibilités de lest mobile à bord de l'avion. Ce n'est pas le cas du transport aérien de l'invention. La solution de l'invention est de déplacer le centre de poussée du véhicule ultra-rapide en modifiant la position de l'ailette conformément à ce qui a été mentionné ci- dessus, en référence à la figure 2.
La figure 16 représente la variation estimée du centre de poussée CP du véhicule aérien de l'invention en fonction de la vitesse exprimée en nombre de Mach.
Dans une première zone ZA, la vitesse du véhicule est inférieure à la vitesse du son (Mach 1) et dans une deuxième zone ZB, la vitesse est supérieure à la vitesse du son. Une première courbe Cl représente la variation du centre de poussée CP dans le cas où les aillettes arrière al, a2 sont horizontales dans la zone ZA et verticales dans la zone ZB. Une deuxième courbe C2 représente la variation du centre de pousée CP en l'absence d' aillettes arrière. Les courbes Cl et C2 se confondent dès lors que la vitesse du véhicule aérien est supérieure à Mach 1 (ailettes dans le plan perpendiculaire de l'aile delta). Avantageusement, il apparaît que la courbe Cl ne présente aucune variation du centre de poussée sur l'ensemble de la gamme des vitesses. Le véhicule aérien de l'invention est donc choisi avec des ailettes arrière conformes aux aillettes représentées sur les figures, la position des ailettes en fonction de la vitesse du véhicule aérien étant horizontale pour les vitesses inférieures à Mach 1 et verticale pour les vitesses supérieures à Mach 1.
La figure 17 représente la variation de la stabilité de route St d'un véhicule aérien ultra-rapide de l'invention en fonction de la vitesse exprimée en Mach. La gamme des vitesses est également répartie entre les zones ZA et ZB définies ci-dessus. Une première courbe C3 représente la variation de la stabilité de route St dans le cas où les ailettes arrière sont horizontales dans la zone ZA et verticales dans la zone ZB et une deuxième courbe C4 représente la variation de la stabilité de route en l'absence d'ailettes arrière. Il apparaît clairement que la stabilité de route d'un transport aérien conforme à l'invention est excellente en soi et également très avantageuse par rapport à un véhicule dépourvu d'ailettes arrière, toutes choses égales par ailleurs. Au positionnement des ailettes décrit ci-dessus est associé un centrage de référence (i.e. une position du centre de gravité du véhicule) confondu avec le centre de poussée supersonique (courbe Cl en zone ZB de la figure 16) . C'est un avantage supplémentaire de l'invention que de permettre de construire un véhicule aérien centré en secteur arrière.
Les figures 18-21 illustrent différentes phases de vol d'un véhicule aérien ultra rapide de 1 ' invention .
La figure 18 représente un premier exemple de phase de départ du véhicule aérien de l'invention.
Le véhicule réalise une séquence de décollage conventionnelle, propulsé par les turboréacteurs TB1, TB2 assistés par le moteur fusée Mf . Le moteur fusée Mf peut être un moteur fusée unique à poussée continûment variable ou un moteur fusée à poussée fractionnée constitué, par exemple, de trois ou quatre moteurs différents dont un moteur principal. Tout d'abord, le roulage du véhicule du point de stationnement au point d'alignement s'effectue à l'aide des seuls turboréacteurs (cf. point pl sur la figure 18) . Le lâcher des freins n'est ensuite effectué qu'une fois vérifié le bon fonctionnement du moteur fusée.
Le décollage se poursuit en configuration turboréacteurs/moteur fusée (cf. points pl à p3 sur la figure 18), la vitesse de montée initiale du véhicule aérien étant de l'ordre de 350km/h (cf. points pl à p2 sur la figure 18. Ensuite (cf. point p3 sur la figure 18), soit le moteur fusée principal est allumé (cas du moteur fractionné) , soit la puissance maximale est déployée sur le moteur fusée (cas du moteur fusée unique) et l'ascension du véhicule aérien devient quasi-verticale. L'ouverture de la porte P est commandée en fonction des différentes configurations requises pour le bon fonctionnement du moteur fusée (cf. figures 14B, 14C précédemment décrites) . En cas de non allumage du moteur fusée principal, les ergols cryotechniques sont consommés au cours d'un vol d'attente en palier et un retour vers les installations de départ peut être entrepris avec quasiment plus d' ergols à bord, ce qui contribue significativement à la sécurité d'un atterrissage en situation de mission avortée. Pendant l'ascension du véhicule, ce dernier produit une empreinte sonore ES dont la taille varie dans le temps et dont la durée est limitée. Dès lors que le moteur fusée principal est allumé ou qu'une poussée maximale est appelée sur le moteur fusée à poussée variable, une phase de montée sous forte poussée débute. Peu avant l'entrée dans le domaine du vol transsonique, les turboréacteurs sont arrêtés et rentrés à l'intérieur du fuselage. Un rapport poussée sur poids sensiblement égal ou supérieur à 1 est établi. Durant cette phase de vol, le véhicule effectue une montée sous forte pente (i.e. quasiment à la verticale) avec une accélération transsonique à haute altitude (par exemple entre 15000m et 20000m) grâce au moteur fusée (cf. point p4 sur la figure 18) . Si le moteur fusée est à poussée variable, un contrôle précis de l'accélération peut avantageusement être effectué.
Ce type de trajectoire contribue significativement à la réduction des effets au sol du bang sonore de focalisation (dénommé «super-boom» en langue anglaise) , qui apparaît au cours du passage du mur du son (Mach 1) . En effet, compte tenu de la trajectoire quasi-verticale, aucune onde choc ne vient heurter le sol et l'énergie se dissipe dans toutes les directions radiales horizontales. Au sol, à la verticale du véhicule en accélération, l'empreinte sonore ES produite est confinée au voisinage de l'aéroport et dure sensiblement moins d'une minute.
Pendant la phase de décollage, dans un mode de réalisation particulier de l'invention, les passagers et, éventuellement, l'équipage sont placés dans des hamacs afin d' assurer un meilleur confort.
Une fois le véhicule en vol supersonique à très haute altitude (cf. point p5 sur la figure 18), la trajectoire est progressivement incurvée jusqu'à l'horizontale, par exemple à l'aide d'une trajectoire balistique, et, le moteur fusée étant arrêté et caréné par fermeture complète de la porte P et les statoréacteurs étant allumés, le véhicule entre dans son couloir de vol de croisière, par exemple à une altitude située entre 30000m et 35000m (cf. point p6 sur la figure 18) . C'est la phase de vol de croisière qui débute (cf. point p7 sur la figure 18) .
La figure 19 représente une variante de la phase de décollage du véhicule aérien de l'invention. Selon cette variante, le véhicule aérien effectue, dans un plan horizontal par rapport au sol, une boucle avant de prendre la direction de sa destination. Cette variante a pour but de réduire le bruit dans la zone de l'aéroport en déplaçant l'empreinte sonore loin de l'aéroport. De fait, au-delà de la phase d'ascension à la verticale, la trajectoire du véhicule est incurvée jusqu'à l'horizontale en rebroussant vers l'aéroport (cf. point p5a sur la figure 19) et le véhicule aérien entre dans le couloir de vol de croisière en un point plus proche de l'aéroport que dans le cas précédent (cf. point p6a sur la figure 19) .
La figure 20 illustre de façon symbolique le véhicule aérien de l'invention dans le couloir de vol de croisière. Pour des raisons de simplicité, seul le nez N du véhicule de l'invention est représenté.
Dans le couloir de vol de croisière, les paramètres de vol sont, par exemple, les suivants :
- altitude Z de l'avion par rapport au sol sensiblement égale, par exemple, à 35000m ;
- distance D de dissipation sensiblement égale à 154km ;
- vitesse V de l'avion comprise entre Mach 4 et Mach 4,5 ; et
- angle a d'ouverture du cône de Mach sensiblement égal à 12,8°.
A titre de comparaison, dans le cas de l'art antérieur, pour l'avion CONCORDE, les valeurs des paramètres ci-dessus sont les suivantes:
- Z = 20000m ;
- D = 35km ;
- V = Mach 2 ;
- A = 30°.
Les stato-réacteurs ont une géométrie fixe, ce qui simplifie grandement leur complexité géométrique et réduit leur masse. Durant cette phase de vol, la poussée des stato-réacteurs est modulée selon le besoin (allégement véhicule au cours du vol...) par variation de débit d'hydrogène. Avantageusement, pendant le vol de croisière, le véhicule produit un impact environnemental très limité du fait de la très haute altitude de croisière ainsi que du cap constant du véhicule. Au besoin, des solutions géométriques de réduction de bang sonores telles que présentées au cours de la conférence HISAC 2009 (cf. conception de forme par Sukhoy et Dassault) peuvent être incorporés dans la conception du véhicule aérien, comme, par exemple, un dièdre de voilure prononcé.
Concernant les gaz émis par le véhicule durant les phases d'accélération et de croisière, il n'y a avantageusement pas de CO2 émis mais seulement de la vapeur d'eau et, éventuellement, de l'hydrogène gazeux. Durant le vol de croisière, l'énergie électrique nécessaire au bon fonctionnement du véhicule (éclairage, climatisation, etc.) est fournie par tout moyen connu en soi tel que, par exemple, des batteries, des piles à combustible, etc.
A l'approche de l'aéroport de destination, une phase de décélération et de descente débute. La figure 21 représente un exemple de phase de décélération et de descente.
En vue de l'aéroport de destination (par exemple, à environ 750km de l'aéroport), les statoréacteurs sont coupés en un certain point de la trajectoire du véhicule (cf. point p8 de la figure 21) . Le véhicule commence alors sa décélération. Un déploiement progressif des aérofreins (« split flaps » en langue anglaise) amène ensuite le véhicule dans une descente sous forte pente avec une vitesse quasi- verticale en transsonique (cf. point p9 de la figure 21) . La descente sous forte pente est effectuée soit à très haute incidence, soit à incidence quasi-nulle sous aérofrein. Ainsi, le bang de focalisation (cf. le «super-boom» évoqué précédemment) est-il dirigé loin de la surface terrestre, les ondes sonores étant alors pratiquement horizontales. Une fois en régime de vol subsonique, une ressource est engagée et les aérofreins sont progressivement refermés (point plO de la figure 21). Les turboréacteurs sont ensuite déployés (cf. point pli de la figure 21) pour un redémarrage éventuellement assisté par vent relatif («wind milling» en langue anglaise) . Au besoin, les passagers et, éventuellement, l'équipage peuvent être placés dans des hamacs pour un meilleur confort au cours de toute cette phase de descente.
Lors de la phase d'atterrissage, le véhicule aérien s'insère, à un moment donné, dans le trafic aérien existant, y compris, par exemple, pour être mis dans un circuit d'attente. L'approche finale du véhicule est alors réalisée de façon standard, c'est-à-dire à une vitesse du véhicule conforme à celle des avions civils classiques, en prévoyant de rendre possible toute remise des gaz si cela s'avère nécessaire. Une fois à terre, le véhicule roule jusqu'à s'immobiliser sous la seule poussée des turboréacteurs (point pl2 sur la figure 21) .
Une estimation préliminaire de l'assiette de vol à l'atterrissage conduit avantageusement à des valeurs plus faibles que pour l'avion CONCORDE.
Le roulage au sol du véhicule est assuré par les turboréacteurs qui confèrent à celui-ci une mobilité similaire à celle d'un avion de ligne classique . Pendant ces phases, le véhicule respecte les réglementations environnementales en vigueur dans l'aviation civile.
Le ou les turboréacteurs ne sont utilisés que pendant les phases d'approche, d'attente, de remise des gaz et d' attérissage en fin de vol. Cette utilisation des turboréacteurs conduit à réduire considérablement leur taille et leur masse par rapport une utilisation standard. Le ou les turboréacteurs du véhicule aérien de l'invention sont en conséquence avantageusement faciles à rétracter à l'intérieur du fuselage .
De façon particulièrement avantageuse également, l'utilisation combinée de turboréacteurs et d'un moteur fusée apporte un excellent compromis en termes de rapport poussée sur masse associé à une traînée réduite en croisière, en particulier pour les phases d'approche et d' attérissage où le véhicule aérien est placé dans le traffic aérien existant.

Claims

REVENDICATIONS
1. Véhicule aérien comprenant un fuselage (F) , une aile delta gothique (A) répartie de part et d'autre du fuselage et un système de moteurs (TB1, TB2, ST1, ST2, Mf) apte à propulser le véhicule aérien, caractérisé en ce que :
- Le fuselage contient un réservoir (Rv) d'hydrogène liquide ou à l'état de neige fondue et un ou plusieurs réservoirs d'oxygène liquide (ROI,
R02 ) ;
- L'aile delta gothique (A) a un extrados et un intrados plats, l'emplanture de l'aile prenant naissance sensiblement au niveau où débute un élargissement d'une partie avant du fuselage ;
- Une ailette (al, a2) est fixée à chaque extrémité extérieure du bord de fuite de l'aile delta gothique à l'aide d'une pièce cylindrique dont l'axe est parallèle à l'axe du fuselage, chaque ailette étant constituée de deux éléments sensiblement identiques de forme trapézoïdale fixés à la pièce cylindrique et situés dans un même plan, de part et d'autre de la pièce cylindrique, chaque pièce cylindrique étant apte à se mouvoir en rotation autour de son axe de telle sorte que les deux éléments de forme trapézoïdale qui sont fixés à la pièce cylindrique soient positionnés soit dans un plan parallèle au plan de l'aile delta gothique, soit dans un plan perpendiculaire au plan de l'aile delta gothique; et - Le système de moteurs comprend au moins un turboréacteur (TB1, TB2) situé au niveau d'une partie avant du fuselage et apte à se rétracter dans le fuselage, au moins un statoréacteur (ST1, ST2) de géométrie fixe et un moteur fusée (Mf) situé dans une partie arrière du fuselage, une porte (P) située sur la partie arrière du fuselage étant apte à s'ouvrir ou se fermer pour, respectivement, ouvrir le moteur fusée sur l'extérieur ou isoler le moteur fusée de
1 ' extérieur .
2. Véhicule selon la revendication 1, dans lequel le fuselage (F) est constitué d'un tronçon avant ou nez qui prolonge un tronçon de cabine et d'un tronçon arrière, le tronçon avant ayant une section constante qui s'élargit progressivement à partir du tronçon de cabine et le tronçon arrière ayant une section constante qui rétrécit progressivement vers l'arrière du véhicule.
3. Véhicule selon la revendication 1 ou 2, dans lequel chaque réservoir d'oxygène liquide (ROI, R02) a son centre de gravité positionné, qu'il soit vide ou plein, au plus près du centre de gravité du véhicule aérien;
4. Véhicule selon l'une quelconque des revendications précédentes, dans lequel le moteur fusée est constitué soit d'un moteur unique, soit d'un moteur principal accompagné de un ou plusieurs moteurs auxiliaires .
5. Véhicule selon l'une quelconque des revendications 1 à 4, dans lequel deux statoréacteurs
(ST1, ST2) sont situés sous l'aile delta gothique, de part et d'autre du fuselage.
6. Véhicule selon l'une quelconque des revendications précédentes, dans lequel le véhicule a une flèche de bord d'attaque sensiblement comprise entre 70° et 75°, calculée en référence à une aile delta droite.
7. Véhicule aérien selon l'une quelconque des revendications 1 à 6, dans lequel le moteur fusée (Mf) est un moteur à poussée continûment variable ou un moteur à poussée fractionnée.
8. Procédé de locomotion aérienne à l'aide d'un véhicule aérien conforme à l'une quelconque des revendications 1 à 7, le procédé comprenant un phase de décollage du véhicule, caractérisé en ce que la phase de décollage comprend les étapes suivantes :
- une étape de roulage au sol du véhicule durant laquelle le véhicule aérien est propulsé par le ou les turboréacteurs (TB1, TB2) pour atteindre un point d'alignement (pl), les deux éléments de forme trapézoïdale de chacune des deux ailettes (al, a2) étant positionnés dans un plan parallèle à l'aile delta gothique ; une étape d'ouverture ou de vérification d'un état d'ouverture de la porte (P) située à l'arrière du véhicule ; et
une étape d'envol durant laquelle le véhicule aérien est propulsé simultanément par le ou les turboréacteurs (TB1, TB2) et par le moteur fusée
(Mf) , le véhicule étant progressivement amené dans une phase de vol ascendante quasi-verticale par une forte poussée déployée par le moteur fusée
(Mf) de sorte que le véhicule atteigne et dépasse la vitesse MACH 1 durant la phase de vol ascendante, le ou les turboréacteurs (TB1, TB2) étant arrêtés et rentrés dans le fuselage (F) avant que la vitesse MACH 1 ne soit atteinte et les deux éléments de forme trapézoïdale de chacune des deux aillettes (al, a2) du véhicule aérien étant progressivement positionnés dans un plan perpendiculaire au plan de l'aile delta gothique dès lors que le véhicule atteint et/ou dépasse la vitesse MACH 1.
9. Procédé selon la revendication 8, caractérisé en ce qu' il comprend une étape durant laquelle le véhicule est progressivement amené en position horizontale par rapport au sol et en ce que, le moteur fusée étant arrêté et caréné et les statoréacteurs étant allumés, le véhicule entre dans une phase de vol de croisière dès lors qu' il atteint la position horizontale par rapport au sol.
10. Procédé selon la revendication 9, dans lequel le véhicule effectue, dans un plan horizontal par rapport au sol, une boucle rebroussant vers son point de départ avant d'entrer dans la phase de vol de croisière.
11. Procédé de locomotion aérienne à l'aide d'un véhicule aérien conforme à l'une quelconque des revendications 1 à 7, le procédé comprenant une phase d'atterrissage du véhicule à partir d'un couloir de vol de croisière dans lequel le véhicule est propulsé par une poussée du ou des statoréacteurs , les deux éléments de forme trapézoïdale de chacune des deux ailettes (al, a2) étant positionnées dans un plan perpendiculaire à l'aile delta gothique, caractérisé en ce que la phase d'atterrissage du véhicule comprend les étapes suivantes :
- un arrêt du ou des des statoréacteurs (ST1, ST2) ;
- un déploiement progressif d'aérofreins qui amène le véhicule jusqu'à une phase de descente sous forte pente avec une vitesse quasi-verticale transonique qui diminue ;
- une modification de position des deux éléments de forme trapézoïdale de chacune des deux ailettes (al, a2) de façon à placer lesdits éléments dans un plan parallèle au plan de l'aile delta gothique dès lors que la vitesse du véhicule atteint et/ou passe sous la vitesse MACH 1 ;
- une fermeture progressive des aérofreins et un déploiement des turboréacteurs dès lors que la vitesse du véhicule devient inférieure à MACH 1 ; et - une insertion du véhicule dans le traffic aérien standard .
12. Procédé selon la revendication 11, dans lequel la phase de descente sous forte pente est effectuée soit à très haute incidence, soit à incidence quasi-nulle .
13. Procédé selon l'une quelconque des revendications 9 à 12, dans lequel le vol de croisière est caractérisé par :
- Une altitude de l'avion par rapport au sol sensiblement comprise entre 30000m et 35000m ;
- Une distance de dissipation de l'onde de choc de nez de véhicule sensiblement comprise entre 110km et 175km ;
- Une vitesse de l'avion comprise entre Mach 4 et Mach 4,5 ; et
- Un angle a d' ouverture du cône de Mach sensiblement compris entre 11° et 15°.
PCT/EP2010/070189 2009-12-22 2010-12-20 Vehicule aerien ultra-rapide et procede de locomotion aerienne associe WO2011076706A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080059407.1A CN102822054B (zh) 2009-12-22 2010-12-20 超高速飞行器及相关空中运动方法
JP2012545259A JP5791055B2 (ja) 2009-12-22 2010-12-20 超高速航空機及び関連する航空移動手段
US13/516,878 US9079661B2 (en) 2009-12-22 2010-12-20 Ultra-rapid air vehicle and related method for aerial locomotion
EP10790648.9A EP2516269B1 (fr) 2009-12-22 2010-12-20 Vehicule aerien ultra-rapide et procede de locomotion aerienne associe
ES10790648.9T ES2552794T3 (es) 2009-12-22 2010-12-20 Vehículo aéreo ultrarrápido y procedimiento de locomoción aérea asociado
RU2012131131/11A RU2547962C2 (ru) 2009-12-22 2010-12-20 Сверхскоростное воздушное судно и соответствующий способ воздушного передвижения

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959366 2009-12-22
FR0959366A FR2954275B1 (fr) 2009-12-22 2009-12-22 Vehicule aerien ultra-rapide et procede de locomotion aerienne associe

Publications (1)

Publication Number Publication Date
WO2011076706A1 true WO2011076706A1 (fr) 2011-06-30

Family

ID=42340406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/070189 WO2011076706A1 (fr) 2009-12-22 2010-12-20 Vehicule aerien ultra-rapide et procede de locomotion aerienne associe

Country Status (8)

Country Link
US (1) US9079661B2 (fr)
EP (1) EP2516269B1 (fr)
JP (1) JP5791055B2 (fr)
CN (1) CN102822054B (fr)
ES (1) ES2552794T3 (fr)
FR (1) FR2954275B1 (fr)
RU (1) RU2547962C2 (fr)
WO (1) WO2011076706A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2481241C1 (ru) * 2011-11-28 2013-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" Законцовка крыла летательного аппарата

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2834152B1 (fr) * 2012-04-04 2023-06-07 Commercial Aerospace Plane Pty. Limited Système d'avion aérospatial
US10384796B2 (en) 2012-04-04 2019-08-20 Commercial Aerospace Plane Pty Limited Aerospace plane system
RU2525335C1 (ru) * 2013-01-25 2014-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" Законцовка крыла летательного аппарата
GB201301680D0 (en) * 2013-01-31 2013-03-13 Airbus Uk Ltd Downwardly extending wing tip device
FR3001709B1 (fr) * 2013-02-06 2015-08-07 Astrium Sas Avion spatial
CN103625634B (zh) * 2013-12-17 2015-10-21 中国航天空气动力技术研究院 一种可拆卸可调倾角的翼梢小翼装置
CN104260873B (zh) * 2014-10-22 2016-08-03 临沂高新区翔鸿电子科技有限公司 一种三角翼飞行器
JP2016097863A (ja) * 2014-11-25 2016-05-30 直美 菊池 航空機の飛行方法
CN104554707A (zh) * 2015-01-14 2015-04-29 西北工业大学 一种新型飞翼无人机及其航向控制方法
US11148801B2 (en) 2017-06-27 2021-10-19 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
ES2844127T3 (es) 2015-09-02 2021-07-21 Jetoptera Inc Configuraciones de eyector y perfil aerodinámico
US11001378B2 (en) 2016-08-08 2021-05-11 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US10464668B2 (en) 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
CN105235889B (zh) * 2015-10-16 2017-04-12 中国空气动力研究与发展中心高速空气动力研究所 一种飞行器自适应菱形翼布局
FR3096963A1 (fr) * 2019-06-07 2020-12-11 Arianegroup Sas Aéronef, en particulier véhicule de rentrée atmosphérique, à deux gouvernes de direction doubles.
FR3096029A1 (fr) * 2019-09-16 2020-11-20 Airbus Aeronef comportant des reservoirs a hydrogene
GB2591255A (en) * 2020-01-22 2021-07-28 Airbus Operations Ltd An aircraft
IL273270B2 (en) * 2020-03-12 2023-09-01 Israel Aerospace Ind Ltd Dispatch system and method
CN113184219A (zh) * 2021-04-13 2021-07-30 中国航空研究院 基于亚跨声速载机的空基发射系统及发射方法
CN113335499B (zh) * 2021-06-01 2024-05-24 中国航空工业集团公司沈阳飞机设计研究所 一种基于固体火箭辅助动力的高机动无人机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2944764A (en) * 1958-09-01 1960-07-12 Bristol Siddeley Engines Ltd Jet-propelled aircraft
US3093348A (en) * 1960-10-06 1963-06-11 Garrett Corp Hypersonic aircraft
US3146971A (en) * 1963-03-21 1964-09-01 James H Walker Hypersonic aircraft
DE2136129A1 (de) * 1971-07-20 1973-02-01 Erno Raumfahrttechnik Gmbh Raumfahrzeug mit abdeckbaren triebwerken
US4538779A (en) * 1982-09-30 1985-09-03 The Boeing Company Caster type empennage assembly for aircraft
US5529263A (en) * 1992-10-21 1996-06-25 The Boeing Company Supersonic airplane with subsonic boost engine means and method of operating the same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3076625A (en) * 1960-04-12 1963-02-05 Rolls Royce Supersonic aircraft
US3432125A (en) * 1966-07-18 1969-03-11 Gen Dynamics Corp Stowable aft fairing for a reusable rocket
US3672606A (en) * 1969-12-31 1972-06-27 British Aircraft Corp Ltd Trolley for recoverable spacecraft
DE2756107C2 (de) * 1977-12-16 1980-02-28 Messerschmitt-Boelkow-Blohm Gmbh, 8000 Muenchen Hochwirksames Seitenleitwerk mit variabler Flügelgeometrie
US4828204A (en) * 1979-08-13 1989-05-09 The Boeing Company Supersonic airplane
US4802639A (en) * 1984-09-28 1989-02-07 The Boeing Company Horizontal-takeoff transatmospheric launch system
US4817890A (en) * 1986-10-14 1989-04-04 General Electric Company Multiple-propellant air vehicle and propulsion system
US5295642A (en) * 1991-11-08 1994-03-22 Spread Spectrum, Inc. High altitude launch platform payload launching apparatus and method
US5402965A (en) * 1993-09-20 1995-04-04 Rockwell International Corporation Reusable flyback satellite
US6612522B1 (en) * 1998-03-17 2003-09-02 Starcraft Boosters, Inc. Flyback booster with removable rocket propulsion module
US6193187B1 (en) * 1998-12-31 2001-02-27 Harry Scott Payload carry and launch system
US6575406B2 (en) * 2001-01-19 2003-06-10 The Boeing Company Integrated and/or modular high-speed aircraft
US20030052232A1 (en) * 2001-09-17 2003-03-20 Hall Allison Earl Space transportation system
US6726154B2 (en) * 2001-11-30 2004-04-27 United Technologies Corporation Reusable space access launch vehicle system
RU2211784C2 (ru) * 2002-02-18 2003-09-10 Власенко Владимир Григорьевич Многоразовый летательный аппарат-разгонщик
US6616092B1 (en) * 2002-06-24 2003-09-09 Lockheed Martin Corporation Reusable flyback rocket booster and method for recovering same
US7281682B2 (en) * 2003-03-25 2007-10-16 Dbi/Century Fuels & Aerospace Services Spacecraft and launch system
US8534598B2 (en) * 2006-10-12 2013-09-17 Robert Salkeld Direct flight far space shuttle
FR2907422B1 (fr) * 2006-10-20 2009-12-18 Astrium Sas Aeronef a vol mixte aerodynamique et spatial, et procede de pilotage associe.
US7549604B2 (en) * 2006-10-26 2009-06-23 Hutterer Joseph A Fuel efficient fixed wing aircraft
US7762077B2 (en) * 2006-12-05 2010-07-27 Pratt & Whitney Rocketdyne, Inc. Single-stage hypersonic vehicle featuring advanced swirl combustion
US20080128547A1 (en) * 2006-12-05 2008-06-05 Pratt & Whitney Rocketdyne, Inc. Two-stage hypersonic vehicle featuring advanced swirl combustion
FR2924411B1 (fr) * 2007-11-29 2010-02-12 Astrium Sas Dispositif d'arriere corps d'engin spatial
US8500070B2 (en) * 2009-06-10 2013-08-06 Sunstar IM Personal spacecraft

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2944764A (en) * 1958-09-01 1960-07-12 Bristol Siddeley Engines Ltd Jet-propelled aircraft
US3093348A (en) * 1960-10-06 1963-06-11 Garrett Corp Hypersonic aircraft
US3146971A (en) * 1963-03-21 1964-09-01 James H Walker Hypersonic aircraft
DE2136129A1 (de) * 1971-07-20 1973-02-01 Erno Raumfahrttechnik Gmbh Raumfahrzeug mit abdeckbaren triebwerken
US4538779A (en) * 1982-09-30 1985-09-03 The Boeing Company Caster type empennage assembly for aircraft
US5529263A (en) * 1992-10-21 1996-06-25 The Boeing Company Supersonic airplane with subsonic boost engine means and method of operating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2481241C1 (ru) * 2011-11-28 2013-05-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" Законцовка крыла летательного аппарата

Also Published As

Publication number Publication date
RU2012131131A (ru) 2014-02-10
CN102822054A (zh) 2012-12-12
US9079661B2 (en) 2015-07-14
JP5791055B2 (ja) 2015-10-07
FR2954275B1 (fr) 2012-01-13
FR2954275A1 (fr) 2011-06-24
CN102822054B (zh) 2015-07-15
EP2516269A1 (fr) 2012-10-31
EP2516269B1 (fr) 2015-08-12
JP2013514938A (ja) 2013-05-02
US20120325957A1 (en) 2012-12-27
ES2552794T3 (es) 2015-12-02
RU2547962C2 (ru) 2015-04-10

Similar Documents

Publication Publication Date Title
EP2516269B1 (fr) Vehicule aerien ultra-rapide et procede de locomotion aerienne associe
JP5841137B2 (ja) ランチャー用の簡易型再利用可能モジュール
KR101984332B1 (ko) 지상 및 공중에서 사용하기 위한 하이브리드 수송용 운송 수단의 변형 방법 및 하이브리드 수송용 운송 수단
US20180056743A1 (en) Jet-propelled vtol hybrid car
US10532813B2 (en) Dual purpose vehicle for air and ground transportation, and related methods
JPH10509113A (ja) グライダのように構成され、従来の航空機により牽引されて高度を上げる宇宙発射用飛行機
JP2002535193A (ja) ペイロード輸送打ち上げシステム
JP2003512254A (ja) ロケットの第1段の再使用型ブースタ
FR2915459A1 (fr) Architecture d'avion a fuselage large
US20210237872A1 (en) Launch system
RU2442727C1 (ru) Многоразовый ракетно-авиационный модуль и способ его возвращения на космодром
CA3200032A1 (fr) Systeme de transport spatial reutilisable
FR2830238A1 (fr) Lancement aerien de vehicule de transport de charge utile a partir d'un aeronef de transport
CN114945509A (zh) 包括中央翼和两个可旋转侧翼的电动推进飞行器
US10815010B2 (en) High altitude air launched rocket
EP2981461A1 (fr) Dispositif de contrôle de la vitesse d'un avion spatial lors de la transition d'une phase de vol spatial vers une phase de vol aéronautique et procédé de transition associé
WO2000024633A1 (fr) Avion supersonique a faible consommation de carburant et son procede de fonctionnement
RU2503592C1 (ru) Космолет староверова (варианты) и алгоритм его работы
FR2803822A1 (fr) Avion supersonique a turbosoufflantes escamotables par translation horizontale et procedes de mise en oeuvre
EP3774547B1 (fr) Véhicules de lancement spatiaux à propulsion située au centre de gravité
JP4141539B2 (ja) トンネル内飛行体及びそれを用いた高速輸送システム
WO2022200713A1 (fr) Systeme de transport hypersonique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059407.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10790648

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 5387/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012545259

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010790648

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012131131

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13516878

Country of ref document: US