WO2011076485A1 - Method and device for determining desired torque for controlling an electric machine of a motor vehicle - Google Patents

Method and device for determining desired torque for controlling an electric machine of a motor vehicle Download PDF

Info

Publication number
WO2011076485A1
WO2011076485A1 PCT/EP2010/067591 EP2010067591W WO2011076485A1 WO 2011076485 A1 WO2011076485 A1 WO 2011076485A1 EP 2010067591 W EP2010067591 W EP 2010067591W WO 2011076485 A1 WO2011076485 A1 WO 2011076485A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
speed
torque
determined
friction
Prior art date
Application number
PCT/EP2010/067591
Other languages
German (de)
French (fr)
Inventor
Stefan Spoerhase
Markus Peter
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2011076485A1 publication Critical patent/WO2011076485A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0031Mathematical model of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a method for determining a desired torque for driving an electric machine of a motor vehicle, wherein between the electric machine and a wheels having axis of
  • the two coupling elements of the dog clutch in this case have teeth which are arranged at predetermined distances from each other.
  • a first coupling element is connected to the electric drive and the second coupling element with the driven axis of the motor vehicle.
  • To close the dog clutch in a moving vehicle it is necessary to set a differential speed between the two coupling elements, so that the teeth of the two coupling elements engage. That the teeth of one coupling element engage in the spaces between the teeth of the other coupling element and vice versa. This is ensured if the two coupling elements to each other have a differential speed.
  • the electric drive is controlled by a control unit so that there is a nearly constant differential speed band between the electric drive and driven by the electric drive axle of the vehicle. If the axle is at a standstill or only at a very low speed, it is difficult to to set a designed as an electric machine drive to the necessary differential speed band, which is between 20 to 40 revolutions per minute. At low vehicle speeds or vehicle standstill must be set.
  • the inventive method for determining a desired torque for controlling an electric machine of a motor vehicle with the features of claim 1 has the advantage that the dog clutch behaves the same at closing at each ambient temperature of the electric machine. Because friction moments of the electric machine are taken into account in the determination of the setpoint torque when the jaw clutch is open, the real behavior of the electric machine with regard to the friction behavior is corrected. By this procedure, the effects of friction on the speed behavior of the electric machine are accurately taken into account in order to achieve the necessary differential speed band for coupling the dog clutch. This increases the robustness of the engagement process. By taking into account the friction moments, speed, temperature and structure-specific influences on the method for engaging a dog clutch are reliably taken into account.
  • a factor is determined to determine the friction moments, by means of which a friction characteristic is applied, from which a torque correction value is determined, which is used as a target torque.
  • a torque correction value is determined, which is used as a target torque.
  • the factor is determined from the difference between the current rotational speed of the electric machine and a mathematically determined speed curve.
  • each course of the speed can be stored to achieve the required for the engagement of the dog clutch differential speed band. It is considered that the speed gradient during the passage of the differential speed band may not be too steep, otherwise the time to engage is too short. The speed gradient may also not be too flat, otherwise the coupling process takes too long.
  • the mathematical speed curve is determined from a rotational speed of the electric machine at a starting time, wherein there is no desired torque request to the electric machine at the start time.
  • the current conditions in the modeling of the speed behavior of the electric machine are taken into account.
  • the friction characteristic is determined as a function of a rotational speed of the electric machine. As an initial condition such a friction characteristic is not necessary, but can be determined in a first approach from a theoretical speed curve.
  • the friction characteristic is determined as a function of a temperature of the electrical machine.
  • a characteristic field which represents the temperature dependence of the rotational speed over time, stored, so that in the correction of the friction torque always the friction characteristic can be selected, which corresponds to the current ambient temperature of the electric machine, whereby the temperature dependence of the friction torque is considered sufficient.
  • the factor is determined after each opening of the dog clutch and the friction characteristic created in the preceding opening cycle of the dog clutch is corrected by the factor. Due to the speed error determination is a continuous adaptation of the friction characteristic over the life of the Procedure for changing the ambient conditions such as aging, viscosity of the coolant and temperature possible. A subsequent and complex application of a speed control can be omitted.
  • a further development of the invention relates to a device for determining a setpoint torque for controlling an electric machine of a motor vehicle, in which between the electric machine and a wheels having axle of the motor vehicle by closing a dog clutch, a force is transmitted.
  • the dog clutch In order for the dog clutch to behave the same at closing at each ambient temperature of the electric machine, means are provided which, when the dog clutch is open, take friction moments of the electric machine into account when determining the setpoint torque. In this case, the friction losses of the electric machine are corrected at no torque request, and their friction losses are reduced when closing the claw clutch. Since the friction losses depend on the environment of the electrical machine such as temperature, viscosity of the surrounding medium of the electric machine or aging of the electric machine, the dog clutch always shows the same behavior during the closing process, regardless of the environmental conditions.
  • a control unit (16) with the electric machine (2) and a speed sensor (19) is connected, which determines the speed of the electric machine (2).
  • a speed difference between the speed of the electric machine under the condition that a target torque of 0 Nm is requested, and a mathematically determined speed can be easily determine a speed error, which is due to the friction of the electric machine and at the determination of a mechanical target speed torque is taken into account.
  • no additional structural components are necessary to determine the target torque.
  • Figure 1 Schematic representation of a hybrid vehicle with an electrically driven axle
  • Figure 2 a schematic flow diagram for the engagement of the
  • FIG. 4 Schematic representation of an adaptive torque control of the electric machine
  • FIG. 1 shows a hybrid vehicle which has a hybrid drive consisting of an internal combustion engine 1 and an electric motor 2.
  • the internal combustion engine 1 and the electric motor 2 thereby drive different axes of the hybrid vehicle.
  • the internal combustion engine 1 is connected via a first transmission 3 to the front axle 4 of the hybrid vehicle, on which two drive wheels 5, 6 are arranged.
  • An engine control unit 7 generates the control signals for the internal combustion engine 1.
  • the electric motor 2 drives the rear axle 8 of the hybrid vehicle, which carries two further drive wheels 9 and 10.
  • the electric motor 2 forms with a dog clutch 1 1 and a second gear 12, a structural unit 13.
  • Transmission 12 leads to and is connected to the rear axle 8 of the hybrid vehicle.
  • the electric motor 2, the dog clutch 1 1 and the transmission 12 are located for cooling in a common oil pan.
  • the dog clutch 1 1 is a special design of a clutch. Both coupling elements 1 1 a, 1 1 b of the dog clutch 1 1 point Teeth on, the predetermined distances from each other. To close the jaw clutch 1 1, the teeth of a coupling element 1 1 a engage in the gaps of the other coupling element 1 1 b, whereby a firm engagement is formed and a good power transmission is ensured.
  • the first coupling element 1 1 a of the dog clutch 1 1 is connected to the electric motor 2, while the second coupling element 1 1 b is linked to the transmission 12.
  • the electric motor 2 is further connected to a power output stage 14 in the form of a pulse inverter, which generates the current for the operation of the electric motor 2.
  • the power output stage 14 is connected to a high-voltage battery 15, which provides an electrical voltage of approximately 230 V for the operation of the electric motor 2.
  • the electric motor 2 is formed in the present embodiment as a permanently excited synchronous machine.
  • the electric motor 2 is connected to an electric motor control unit 16 which leads to a speed sensor 17, which is arranged on the wheel 10 of the vehicle and thus measures the speed from which the driving speed of the motor vehicle is determined.
  • a further, connected to the control unit 16 speed sensor 19 is arranged on the shaft 18 of the electric motor 2, which detects the rotational speed of the electric motor 2.
  • the torque control target torque is set to a value of 0 Nm (block 105). This means that the electric motor 2 is no longer regulated. By friction losses and inertia effects occurring, the electric motor 2 is decelerated accordingly. After a predetermined time, it is checked in block 106 whether the rotational speed n E of the electric motor 2 has decayed so far that it has reached the rotational speed difference band ⁇ , which adjoins the rotational speed of the wheel 10 converted into an electric motor rotational speed n A. If this is not the case, the system returns to block 105, where, in the absence of torque control, the
  • FIG. Diagram 3a shows the behavior of the torque M of the electric motor 2 over time t. To overcome the breakaway torque of the electric motor 2 is driven so that it generates an electrical torque M, wherein the torque M starting from 0 increases linearly.
  • the control of the torque is set to 0 Nm.
  • the electric motor 2 keeps constant the torque M due to its inherent energy before, due to the inertia and frictional forces, the torque M linearly decreases approximately to 0, which occurs at a time point T2.
  • the torque at time T2 but one of
  • the speed n E of the electric motor 2 follows the torque M, as can be seen from the diagram 3b. However, the fall in the rotational speed n E is not linear, but asymptotic, so that the electric motor 2 at time T2 still has a measurable speed. If this speed measured at time T2 lies in the differential speed band, the dog clutch 11 is moved from the open to the closed state at this point in time T2 (diagram 3c).
  • Torque for compensating the friction torque depends on the speed controls. This results in a smooth progression of the speed, since no vibrations can arise through a torque or speed control.
  • the friction of the electric motor 2 is additionally compensated by the electric motor 2 via a friction characteristic which is dependent on the rotational speed in the control unit 16. This means that the electric torque of the electric motor 2 is not equal to 0, but minimizes the mechanical torque on the shaft 18 of the electric motor 2 by providing an additional torque to compensate for the friction.
  • the mechanical moment goes to zero. In this case, no torque control is performed, but controlled the torque to compensate for the friction torque speed dependent.
  • the stored in the control unit 16 electric motor-specific friction characteristic is dependent on the temperature of the environment. Since the electric motor 2 is oil-cooled and is arranged with the dog clutch 1 1 and the transmission 12 in a transmission housing 13, in addition to the temperature, the viscosity of the oily medium affects the friction characteristic.
  • FIG. 4 shows a corresponding method.
  • tO is required that the jaw clutch 1 1 is to be engaged.
  • the course of the speed in this state is determined by a mathematical function n math (t, n 0 ) over time with an initial condition of the starting speed n 0 , which is stored in the control unit 16 determines (block 200).
  • This mathematically determined speed curve n math (t, n 0 ) is continuously compared at point 201 with the measured actual speed n E of the electric motor 2, wherein a difference between the measured actual speed n E of the electric motor 2 and the mathematically modeled speed n math (t, n 0 ), which is regarded as an error.
  • an adaptation factor f (An D ) is determined in block 202.
  • a torque correction TrqFrc is output as a friction torque.
  • This torque correction TrqFrc is fed to a torque interface 204, where it is used to compensate for unwanted mechanical deviations to determine the torque TrqEMDesCalc of the electric motor 2 to be controlled.
  • the requested mechanical torque TrqDesMech is also set to zero at this time.
  • this newly determined and adapted characteristic is stored in the control unit 16 and used in the next request. This requirement is when a new command for engaging the dog clutch 1 1 is issued.
  • the stored friction characteristic curve is retrieved according to the method described and checked in dependence on the current speed n E of the electric motor 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The invention relates to a method for determining desired torque for controlling an electric machine (2) of a motor vehicle, in which force is transmitted, between the electric machine (2) and an axis (8) of a motor vehicle comprising wheels (9, 10), by closing a claw coupling (11). The invention is characterised in that when closing, said claw coupling remains constant independent of the ambient temperature of the electric machine (2). As a result, when the claw coupling (11) is open, the friction movements of the electric machine (2) are taken into account when determining the desired torque.

Description

Beschreibung Titel  Description title
Verfahren und Vorrichtung zur Bestimmung eines Solldrehmomentes zur An- steuerung einer elektrischen Maschine eines Kraftfahrzeuges  Method and device for determining a setpoint torque for driving an electric machine of a motor vehicle
Stand der Technik State of the art
Die Erfindung betrifft ein Verfahren zur Bestimmung eines Solldrehmomentes zur Ansteuerung einer elektrischen Maschine eines Kraftfahrzeuges, bei welcher zwischen der elektrischen Maschine und einer Räder aufweisenden Achse desThe invention relates to a method for determining a desired torque for driving an electric machine of a motor vehicle, wherein between the electric machine and a wheels having axis of
Kraftfahrzeuges durch Schließung einer Klauenkupplung eine Kraft übertragen wird sowie eine Vorrichtung zur Durchführung des Verfahrens. Motor vehicle by closing a jaw clutch, a force is transmitted and an apparatus for performing the method.
Zur Übertragung von Drehbewegungen bzw. Drehmomenten werden in Kraft- fahrzeugen sogenannte Klauenkupplungen eingesetzt. Die beiden Kupplungselemente der Klauenkupplung weisen dabei Zähne auf, welche in vorgegebenen Abständen voneinander angeordnet sind. Ein erstes Kupplungselement ist dabei mit dem elektrischen Antrieb und das zweite Kupplungselement mit der anzutreibenden Achse des Kraftfahrzeuges verbunden. Um die Klauenkupplung bei ei- nem bewegten Fahrzeug zu schließen, ist es notwendig, eine Differenzdrehzahl zwischen den beiden Kupplungselementen einzustellen, damit die Zähne der beiden Kupplungselemente ineinandergreifen. D.h. die Zähne des einen Kupplungselementes greifen in die Zwischenräume zwischen den Zähnen des anderen Kupplungselementes und anders herum. Dies wird gewährleistet, wenn die beiden Kupplungselemente zueinander eine Differenzdrehzahl aufweisen. To transmit rotary movements or torques so-called jaw clutches are used in motor vehicles. The two coupling elements of the dog clutch in this case have teeth which are arranged at predetermined distances from each other. A first coupling element is connected to the electric drive and the second coupling element with the driven axis of the motor vehicle. To close the dog clutch in a moving vehicle, it is necessary to set a differential speed between the two coupling elements, so that the teeth of the two coupling elements engage. That the teeth of one coupling element engage in the spaces between the teeth of the other coupling element and vice versa. This is ensured if the two coupling elements to each other have a differential speed.
Um die Klauenkupplung einzukuppeln, wird der elektrische Antrieb von einem Steuergerät so angesteuert, dass sich ein nahezu konstantes Differenzdrehzahlband zwischen dem elektrischen Antrieb und der durch den elektrischen Antrieb angetriebenen Achse des Fahrzeuges ergibt. Befindet sich die Achse im Stillstand oder dreht sie sich nur mit einer sehr geringen Drehzahl, ist es schwierig, einen als elektrische Maschine ausgebildeten Antrieb auf das notwendige Differenzdrehzahlband einzustellen, welches zwischen 20 bis 40 Umdrehungen pro Minute liegt. Bei kleinen Fahrzeuggeschwindigkeiten oder beim Fahrzeugstillstand müssenTo engage the dog clutch, the electric drive is controlled by a control unit so that there is a nearly constant differential speed band between the electric drive and driven by the electric drive axle of the vehicle. If the axle is at a standstill or only at a very low speed, it is difficult to to set a designed as an electric machine drive to the necessary differential speed band, which is between 20 to 40 revolutions per minute. At low vehicle speeds or vehicle standstill must
Einflüsse auf das Drehverhalten der elektrischen Maschine genau bekannt sein, um das notwendige Differenzdrehzahlband zu erreichen, da sonst kein Einkuppeln möglich ist. Zum Einkuppeln der Klauenkupplung muss die elektrische Maschine auf ein kleines Moment geregelt werden, damit die axialen Reibkräfte an der Klauenkupplung beim Schließen möglichst klein sind. Die durch die elektrische Maschine verursachten Reibungsverluste sind aber temperaturabhängig und für jede elektrische Maschine auf Grund produktionsbedingter Toleranzen des mechanischen Zusammenbaus unterschiedlich. Offenbarung der Erfindung Influences on the rotational behavior of the electric machine to be known exactly to achieve the necessary differential speed band, otherwise no engagement is possible. To engage the dog clutch, the electric machine must be controlled to a small moment so that the axial friction forces on the dog clutch when closing are as small as possible. However, the friction losses caused by the electrical machine are temperature-dependent and different for each electrical machine due to production-related tolerances of the mechanical assembly. Disclosure of the invention
Das erfindungsgemäße Verfahren zur Bestimmung eines Solldrehmomentes zur Ansteuerung einer elektrischen Maschine eines Kraftfahrzeuges mit den Merkmalen des Anspruchs 1 weist den Vorteil auf, dass sich die Klauenkupplung beim Schließen bei jeder Umgebungstemperatur der elektrischen Maschine gleich verhält. Dadurch, dass bei geöffneter Klauenkupplung Reibungsmomente der elektrischen Maschine bei der Bestimmung des Solldrehmomentes berücksichtigt werden, wird das reale Verhalten der elektrischen Maschine hinsichtlich des Reibungsverhaltens korrigiert. Durch diese Vorgehensweise werden die Einflüsse der Reibung auf das Drehzahlverhalten der elektrischen Maschine genau berücksichtigt, um das notwendige Differenzdrehzahlband zur Einkupplung der Klauenkupplung zu erreichen. Dadurch wird die Robustheit des Einkuppelverfahrens erhöht. Durch die Berücksichtigung der Reibungsmomente werden dreh- zahl-, temperatur- und aufbauspezifische Einflüsse auf das Verfahren zum Ein- kuppeln einer Klauenkupplung zuverlässig berücksichtigt. The inventive method for determining a desired torque for controlling an electric machine of a motor vehicle with the features of claim 1 has the advantage that the dog clutch behaves the same at closing at each ambient temperature of the electric machine. Because friction moments of the electric machine are taken into account in the determination of the setpoint torque when the jaw clutch is open, the real behavior of the electric machine with regard to the friction behavior is corrected. By this procedure, the effects of friction on the speed behavior of the electric machine are accurately taken into account in order to achieve the necessary differential speed band for coupling the dog clutch. This increases the robustness of the engagement process. By taking into account the friction moments, speed, temperature and structure-specific influences on the method for engaging a dog clutch are reliably taken into account.
Vorteilhafterweise wird zur Bestimmung der Reibungsmomente ein Faktor bestimmt, mittels welchem eine Reibungskennlinie beaufschlagt wird, aus welcher ein Drehmomentkorrekturwert ermittelt wird, der als Solldrehmoment verwendet wird. Ein solcher Prozess kann über die gesamte Fahrzeuglebensdauer durchgeführt werden. Darüber hinaus wird sichergestellt, dass die an der Klauenkupplung anliegenden Drehmomente zum Zeitpunkt des Einkuppeis sehr klein sind, wodurch ein Drehmomentenstoß auf den Antriebsstrang beim Einkuppeln unterbunden wird. Advantageously, a factor is determined to determine the friction moments, by means of which a friction characteristic is applied, from which a torque correction value is determined, which is used as a target torque. Such a process can be performed over the entire vehicle life. In addition, it ensures that the at the claw clutch applied torque at the time of Einkuppeis are very small, whereby a torque shock is prevented on the drive train during engagement.
In einer Weiterbildung wird der Faktor aus der Differenz der aktuellen Drehzahl der elektrischen Maschine und einem mathematisch bestimmten Drehzahlverlauf ermittelt. Somit kann jeder Verlauf der Drehzahl zum Erreichen des für das Einkuppeln der Klauenkupplung geforderten Differenzdrehzahlbandes hinterlegt werden. Dabei wird berücksichtigt, dass der Drehzahlgradient während des Durchlaufens des Differenzdrehzahlbandes dabei nicht zu steil sein darf, da sonst die Zeit zum Einkuppeln zu kurz ist. Der Drehzahlgradient darf aber auch nicht zu flach sein, da sonst der Kupplungsprozess zu lange dauert. In a further development, the factor is determined from the difference between the current rotational speed of the electric machine and a mathematically determined speed curve. Thus, each course of the speed can be stored to achieve the required for the engagement of the dog clutch differential speed band. It is considered that the speed gradient during the passage of the differential speed band may not be too steep, otherwise the time to engage is too short. The speed gradient may also not be too flat, otherwise the coupling process takes too long.
In einer Variante wird der mathematische Drehzahlverlauf aus einer Drehzahl der elektrischen Maschine zu einem Startzeitpunkt bestimmt, wobei zum Startzeitpunkt keine Solldrehmomentanforderung an der elektrischen Maschine vorliegt. Somit werden die aktuellen Bedingungen bei der Modellierung des Drehzahlverhaltens der elektrischen Maschine mit berücksichtigt. In one variant, the mathematical speed curve is determined from a rotational speed of the electric machine at a starting time, wherein there is no desired torque request to the electric machine at the start time. Thus, the current conditions in the modeling of the speed behavior of the electric machine are taken into account.
In einer Ausgestaltung wird die Reibungskennlinie als Funktion einer Drehzahl der elektrischen Maschine ermittelt. Als Anfangsbedingung ist eine solche Reibungskennlinie nicht notwendig, sondern kann in einem ersten Ansatz aus einem theoretischen Drehzahlverlauf bestimmt werden. In one embodiment, the friction characteristic is determined as a function of a rotational speed of the electric machine. As an initial condition such a friction characteristic is not necessary, but can be determined in a first approach from a theoretical speed curve.
Vorteilhafterweise wird die Reibungskennlinie als Funktion einer Temperatur der elektrischen Maschine ermittelt. Dabei wird ein Kennlinienfeld, welches die Temperaturabhängigkeit der Drehzahl über der Zeit darstellt, abgespeichert, so dass bei der Korrektur des Reibungsmomentes immer die Reibungskennlinie ausgewählt werden kann, die der aktuellen Umgebungstemperatur der elektrischen Maschine entspricht, wodurch die Temperaturabhängigkeit der Reibungsmomente ausreichend berücksichtigt wird. Advantageously, the friction characteristic is determined as a function of a temperature of the electrical machine. In this case, a characteristic field, which represents the temperature dependence of the rotational speed over time, stored, so that in the correction of the friction torque always the friction characteristic can be selected, which corresponds to the current ambient temperature of the electric machine, whereby the temperature dependence of the friction torque is considered sufficient.
In einer Ausgestaltung wird nach jedem Öffnen der Klauenkupplung der Faktor bestimmt und die im vorhergehenden Öffnungszyklus der Klauenkupplung erstellte Reibungskennlinie mit dem Faktor korrigiert. Durch die Drehzahlfehlerbestimmung ist eine stetige Adaption der Reibungskennlinie über die Laufzeit des Verfahrens bei Änderung der Umgebungsbedingungen wie Alterung, Viskosität des Kühlmittels und Temperatur möglich. Eine nachträgliche und aufwendige Applikation einer Drehzahlregelung kann dadurch entfallen. Eine weitere Weiterbildung der Erfindung betrifft eine Vorrichtung zur Bestimmung eines Solldrehmomentes zur Ansteuerung einer elektrischen Maschine eines Kraftfahrzeuges, bei welcher zwischen der elektrischen Maschine und einer Räder aufweisenden Achse des Kraftfahrzeuges durch Schließung einer Klauenkupplung eine Kraft übertragen wird. Damit sich die Klauenkupplung beim Schließen bei jeder Umgebungstemperatur der elektrischen Maschine gleich verhält, sind Mittel vorhanden, welche bei geöffneter Klauenkupplung Reibungsmomente der elektrischen Maschine bei der Bestimmung des Solldrehmomentes berücksichtigen. Dabei werden bei keiner Momentenanforderung die Reibungsverluste der elektrischen Maschine ausgeregelt, wobei beim Schließen der Klau- enkupplung deren Reibungsverluste reduziert werden. Da die Reibungsverluste von der Umgebung der elektrischen Maschine wie Temperatur, Viskosität des die elektrische Maschine umgebenden Mediums oder Alterung der elektrischen Maschine abhängen, zeigt die Klauenkupplung während des Schließvorganges unabhängig von den Umgebungsbedingungen immer ein gleiches Verhalten. In one embodiment, the factor is determined after each opening of the dog clutch and the friction characteristic created in the preceding opening cycle of the dog clutch is corrected by the factor. Due to the speed error determination is a continuous adaptation of the friction characteristic over the life of the Procedure for changing the ambient conditions such as aging, viscosity of the coolant and temperature possible. A subsequent and complex application of a speed control can be omitted. A further development of the invention relates to a device for determining a setpoint torque for controlling an electric machine of a motor vehicle, in which between the electric machine and a wheels having axle of the motor vehicle by closing a dog clutch, a force is transmitted. In order for the dog clutch to behave the same at closing at each ambient temperature of the electric machine, means are provided which, when the dog clutch is open, take friction moments of the electric machine into account when determining the setpoint torque. In this case, the friction losses of the electric machine are corrected at no torque request, and their friction losses are reduced when closing the claw clutch. Since the friction losses depend on the environment of the electrical machine such as temperature, viscosity of the surrounding medium of the electric machine or aging of the electric machine, the dog clutch always shows the same behavior during the closing process, regardless of the environmental conditions.
Vorteilhafterweise ist ein Steuergerät (16) mit der elektrischen Maschine (2) und einem Drehzahlsensor (19) verbunden, welcher die Drehzahl der elektrischen Maschine (2) bestimmt. Durch die Bestimmung einer Drehzahldifferenz zwischen der Drehzahl der elektrischen Maschine, unter der Bedingung dass ein Solldreh- moment von 0 Nm angefordert wird, und einer mathematisch bestimmten Drehzahl lässt sich einfach ein Drehzahlfehler ermitteln, welcher auf die Reibung der elektrischen Maschine zurückzuführen ist und der bei der Festlegung eines mechanischen Solldrehzahlmomentes berücksichtigt wird. Somit werden keine zusätzlichen konstruktiven Bauelemente notwendig, um das Solldrehmoment zu ermitteln. Advantageously, a control unit (16) with the electric machine (2) and a speed sensor (19) is connected, which determines the speed of the electric machine (2). By determining a speed difference between the speed of the electric machine, under the condition that a target torque of 0 Nm is requested, and a mathematically determined speed can be easily determine a speed error, which is due to the friction of the electric machine and at the determination of a mechanical target speed torque is taken into account. Thus, no additional structural components are necessary to determine the target torque.
In einer Ausgestaltung sind die elektrische Maschine (2), die Klauenkupplung (1 1 ) und ein Getriebe (12), welches mit der Achse (8) verbunden ist, in einer mit Öl ausgefüllten baulichen Einheit (13) angeordnet. Dadurch unterliegen alle an dem Vorgang des Einkuppeins der Klauenkupplung beteiligten Elemente den gleichen Umgebungsbedingungen. Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden. Es zeigt: In one embodiment, the electric machine (2), the dog clutch (1 1) and a gear (12) which is connected to the axis (8) arranged in a filled with oil structural unit (13). As a result, all the elements involved in the process of engagement of the dog clutch are subject to the same environmental conditions. The invention allows numerous embodiments. One of them will be explained in more detail with reference to the figures shown in the drawing. It shows:
Figur 1 : Prinzipdarstellung eines Hybridfahrzeuges mit einer elektrisch angetriebenen Achse Figur 2: schematisches Ablaufdiagramm für den Einkuppelvorgang der Figure 1: Schematic representation of a hybrid vehicle with an electrically driven axle Figure 2: a schematic flow diagram for the engagement of the
Klauenkupplung  claw clutch
Figur 3: Verlauf von Drehmoment und Drehzahl der elektrischen Maschine über der Zeit während des Einkuppelvorganges einer Klauen- kupplung Figure 3: Course of torque and speed of the electric machine over time during the engagement process of a dog clutch
Figur 4: Prinzipdarstellung einer adaptiven Drehmomentenregelung der elektrischen Maschine In Figur 1 ist ein Hybridfahrzeug dargestellt, welches einen Hybridantrieb bestehend aus einem Verbrennungsmotor 1 und einem Elektromotor 2 aufweist. Der Verbrennungsmotor 1 und der Elektromotor 2 treiben dabei unterschiedliche Achsen des Hybridfahrzeuges an. Der Verbrennungsmotor 1 ist über ein erstes Getriebe 3 mit der Vorderachse 4 des Hybridfahrzeuges verbunden, an welcher zwei Antriebsräder 5, 6 angeordnet sind. Ein Motorsteuergerät 7 erzeugt die An- steuersignale für den Verbrennungsmotor 1 . FIG. 4: Schematic representation of an adaptive torque control of the electric machine FIG. 1 shows a hybrid vehicle which has a hybrid drive consisting of an internal combustion engine 1 and an electric motor 2. The internal combustion engine 1 and the electric motor 2 thereby drive different axes of the hybrid vehicle. The internal combustion engine 1 is connected via a first transmission 3 to the front axle 4 of the hybrid vehicle, on which two drive wheels 5, 6 are arranged. An engine control unit 7 generates the control signals for the internal combustion engine 1.
Der Elektromotor 2 treibt die Hinterachse 8 des Hybridfahrzeuges an, welche zwei weitere Antriebsräder 9 und 10 trägt. Der Elektromotor 2 bildet mit einer Klauenkupplung 1 1 und einem zweiten Getriebe 12 eine bauliche Einheit 13. DasThe electric motor 2 drives the rear axle 8 of the hybrid vehicle, which carries two further drive wheels 9 and 10. The electric motor 2 forms with a dog clutch 1 1 and a second gear 12, a structural unit 13. Das
Getriebe 12 führt an die Hinterachse 8 des Hybridfahrzeuges und ist mit dieser verbunden. Der Elektromotor 2, die Klauenkupplung 1 1 und das Getriebe 12 befinden sich zur Kühlung in einer gemeinsamen Ölwanne. Transmission 12 leads to and is connected to the rear axle 8 of the hybrid vehicle. The electric motor 2, the dog clutch 1 1 and the transmission 12 are located for cooling in a common oil pan.
Bei der Klauenkupplung 1 1 handelt es sich um eine spezielle Bauform einer Kupplung. Beide Kupplungselemente 1 1 a, 1 1 b der Klauenkupplung 1 1 weisen Zähne auf, die vorgegebene Abstände voneinander aufweisen. Zum Schließen der Klauenkupplung 1 1 greifen die Zähne des einen Kupplungselementes 1 1 a in die Lücken des anderen Kupplungselementes 1 1 b, wodurch ein fester Eingriff entsteht und eine gute Kraftübertragung gewährleistet ist. Das erste Kupplungs- element 1 1 a der Klauenkupplung 1 1 ist mit dem Elektromotor 2 verbunden, während das zweite Kupplungselement 1 1 b mit dem Getriebe 12 verknüpft ist. The dog clutch 1 1 is a special design of a clutch. Both coupling elements 1 1 a, 1 1 b of the dog clutch 1 1 point Teeth on, the predetermined distances from each other. To close the jaw clutch 1 1, the teeth of a coupling element 1 1 a engage in the gaps of the other coupling element 1 1 b, whereby a firm engagement is formed and a good power transmission is ensured. The first coupling element 1 1 a of the dog clutch 1 1 is connected to the electric motor 2, while the second coupling element 1 1 b is linked to the transmission 12.
Der Elektromotor 2 ist weiterhin mit einer Leistungsendstufe 14 in Form eines Pulswechselrichters verbunden, die den Strom für den Betrieb des Elektromotors 2 erzeugt. Dazu ist die Leistungsendstufe 14 mit einer Hochvoltbatterie 15 verbunden, die eine elektrische Spannung von annähernd 230V zum Betrieb des Elektromotors 2 bereitstellt. Der Elektromotor 2 ist im vorliegenden Ausführungsbeispiel als permanent erregte Synchronmaschine ausgebildet. Weiterhin ist der Elektromotor 2 mit einem Elektromotorsteuergerät 16 verbunden, welches auf ei- nen Drehzahlsensor 17 führt, der am Rad 10 des Fahrzeuges angeordnet ist und somit die Drehzahl misst, aus welcher die Fahrgeschwindigkeit des Kraftfahrzeuges bestimmt wird. Außerdem ist an der Welle 18 des Elektromotors 2 ein weiterer, mit dem Steuergerät 16 verbundener Drehzahlsensor 19 angeordnet, der die Drehzahl des Elektromotors 2 detektiert. The electric motor 2 is further connected to a power output stage 14 in the form of a pulse inverter, which generates the current for the operation of the electric motor 2. For this purpose, the power output stage 14 is connected to a high-voltage battery 15, which provides an electrical voltage of approximately 230 V for the operation of the electric motor 2. The electric motor 2 is formed in the present embodiment as a permanently excited synchronous machine. Furthermore, the electric motor 2 is connected to an electric motor control unit 16 which leads to a speed sensor 17, which is arranged on the wheel 10 of the vehicle and thus measures the speed from which the driving speed of the motor vehicle is determined. In addition, a further, connected to the control unit 16 speed sensor 19 is arranged on the shaft 18 of the electric motor 2, which detects the rotational speed of the electric motor 2.
In Hybridfahrzeugen treten häufig Fälle auf, wo das Fahrzeug allein durch den Verbrennungsmotor 1 angetrieben wird. Zwar erfolgt der Antrieb, wie beschrieben, an der Vorderachse 4 des Hybridfahrzeuges, wobei durch die Fahrbewegung des Hybridfahrzeuges die Hinterachse 8 mit den Rädern 9, 10 beschleunigt wird. Da die Hinterachse 8 fest mit dem Getriebe 12 verbunden ist, welches im vorliegenden Fall nur eine fest eingestellte Übersetzungsstufe aufweist, dreht sich das Getriebe 12 entsprechend der Fahrzeuggeschwindigkeit. Durch die Verbindung des Getriebes 12 mit dem zweiten Kupplungselement 1 1 b der Klauenkupplung 1 1 befindet sich auch dieses Kupplungselement 1 1 b in einer Drehbe- wegung. In hybrid vehicles, there are often cases where the vehicle is driven solely by the engine 1. Although the drive, as described, takes place on the front axle 4 of the hybrid vehicle, the rear axle 8 with the wheels 9, 10 being accelerated by the driving movement of the hybrid vehicle. Since the rear axle 8 is fixedly connected to the transmission 12, which in the present case only has a fixed gear ratio, the transmission 12 rotates according to the vehicle speed. By the connection of the transmission 12 with the second coupling element 1 1 b of the dog clutch 1 1 is also this coupling element 1 1 b in a rotational movement.
Bei einem erhöhtem Schlupf der Räder 5, 6 der Vorderachse 4 wird der Elektromotor 2 eingeschaltet und die Räder 9, 10 der zuschaltbaren Hinterachse 8 durch den Elektromotor 2 angetrieben. Mit Hilfe von Figur 2 soll das Verfahren zum Einkuppeln einer Klauenkupplung beschrieben werden, wobei davon ausgegangen wird, dass die Drehzahl der Räder 9, 10 der von der Elektromotor 2 angetriebenen Hinterachse 8 kleiner ist als 300 Umdrehungen pro Minute. With an increased slip of the wheels 5, 6 of the front axle 4, the electric motor 2 is switched on and the wheels 9, 10 of the shiftable rear axle 8 are driven by the electric motor 2. The method for engaging a dog clutch is to be described with the aid of FIG. 2, it being assumed that the rotational speed of the wheels 9, 10 of the rear axle 8 driven by the electric motor 2 is less than 300 revolutions per minute.
Im Block 100 wird abgefragt, ob ein Einkuppelvorgang durchgeführt werden soll. Ist dies der Fall, wird im Block 101 mit Hilfe des Drehzahlmessers 17 die Drehzahl des Rades 10 an der Hinterachse des Kraftfahrzeuges gemessen und diese unter Einbeziehung der Übersetzung des Getriebes 12 in eine Elektromotordreh- zahl nA umgerechnet. Im Block 102 wird die in eine Elektromotordrehzahl nA umgewandelte Drehzahl des Rades 10 mit einer Synchronisierungsdrehzahl ns des Elektromotors 2 verglichen. Die Synchronisierungsdrehzahl ns wird aus der aus der Raddrehzahl des Rades 10 gebildeten Elektromotordrehzahl plus dem für das Einkuppeln der Klauenkupplung erforderlichen Differenzdrehzahlband Δη von ca. 20 bis 40 Umdrehungen pro Minute gebildet. ns = nA + Δη In block 100 it is queried whether a coupling process is to be performed. If this is the case, the rotational speed of the wheel 10 at the rear axle of the motor vehicle is measured in block 101 with the aid of the tachometer 17 and converted into an electric motor speed n A , taking into account the ratio of the transmission 12. In block 102, the rotational speed of the wheel 10 converted into an electric motor rotational speed n A is compared with a synchronization rotational speed n s of the electric motor 2. The synchronization speed n s is formed from the electric motor speed formed from the wheel speed of the wheel 10 plus the differential speed band Δη required for the engagement of the dog clutch of approximately 20 to 40 revolutions per minute. n s = n A + Δη
Liegt die aus der Drehzahl des Rades 10 ermittelte Elektromotordrehzahl nA über der Synchronisierungsdrehzahl ns, wird der sich im Stillstand befindliche Elektromotor 2 im Block 103 gestartet und durch das Steuergerät 16 ein solches Drehmoment M eingestellt, dass der Elektromotor 2 ein sogenanntes Losreismoment überwindet. Dabei handelt es sich um ein sehr starkes Drehmoment M, welches notwendig ist, um die Massenträgheit und die damit verbundene me- chanische Reibung zu überwinden, welche auftritt, wenn der Elektromotor 2 aus dem Stillstand bewegt werden soll. Befindet sich der Elektromotor 2 schon in Bewegung, wird ein entsprechend kleineres Drehmoment M als Sollwert der Regelung eingestellt. Im Block 104 wird die Drehzahl nE des Elektromotors 2 mittels des Drehzahlsensors 19 gemessen und festgestellt, ob die Synchronisierungs- drehzahl ns erreicht oder überschritten ist. Ist die augenblickliche Drehzahl nE des Elektromotors 2 höher als die Synchronisierungsdrehzahl ns, wird das Solldrehmoment der Drehmomentregelung auf einen Wert von 0 Nm eingestellt (Block 105). Dies bedeutet, dass der Elektromotor 2 nicht mehr geregelt wird. Durch Reibungsverluste und auftretende Trägheitseffekte wird der Elektromotor 2 entsprechend abgebremst. Nach einer vorgegebenen Zeit wird im Block 106 geprüft, ob die Drehzahl nE des Elektromotors 2 soweit abgeklungen ist, dass sie das Drehzahldifferenzband Δη erreicht hat, welches sich oberhalb der in eine Elektromotordrehzahl nA umgerechnete Drehzahl des Rades 10 anschließt. Ist dies nicht der Fall, wird zum Block 105 zurückgekehrt, wo bei ausbleibender Drehmomentenregelung derIf the determined from the rotational speed of the wheel 10 electric motor speed n A above the synchronization speed n s , which is located at a standstill electric motor 2 is started in block 103 and adjusted by the controller 16 such a torque M that the electric motor 2 overcomes a so-called Losreismoment. It is a very strong torque M, which is necessary to overcome the inertia and the associated mechanical friction, which occurs when the electric motor 2 is to be moved from standstill. If the electric motor 2 is already in motion, a correspondingly smaller torque M is set as the desired value of the control. In block 104, the speed n E of the electric motor 2 is measured by means of the speed sensor 19 and it is determined whether the synchronization speed n s is reached or exceeded. If the instantaneous rotational speed n E of the electric motor 2 is higher than the synchronization rotational speed n s, the torque control target torque is set to a value of 0 Nm (block 105). This means that the electric motor 2 is no longer regulated. By friction losses and inertia effects occurring, the electric motor 2 is decelerated accordingly. After a predetermined time, it is checked in block 106 whether the rotational speed n E of the electric motor 2 has decayed so far that it has reached the rotational speed difference band Δη, which adjoins the rotational speed of the wheel 10 converted into an electric motor rotational speed n A. If this is not the case, the system returns to block 105, where, in the absence of torque control, the
Elektromotor 2 weiter ausrollt. Electric motor 2 continues to roll.
Hat die Elektromotordrehzahl nE das Differenzdrehzahlband Δη erreicht, wird im Block 107 die Klauenkupplung geschlossen. If the electric motor speed n E has reached the differential speed band Δη, the claw clutch is closed in block 107.
Das Verhalten des Elektromotors 2 bei der Beschleunigung aus dem Stillstand ist aus Figur 3 ersichtlich. Das Diagramm 3a zeigt das Verhalten des Drehmomentes M des Elektromotors 2 über der Zeit t. Zur Überwindung des Losbrechmomentes wird der Elektromotor 2 so angesteuert, dass es ein elektrisches Dreh- moment M erzeugt, wobei das Drehmoment M von 0 ausgehend linear ansteigt.The behavior of the electric motor 2 during the acceleration from standstill can be seen in FIG. Diagram 3a shows the behavior of the torque M of the electric motor 2 over time t. To overcome the breakaway torque of the electric motor 2 is driven so that it generates an electrical torque M, wherein the torque M starting from 0 increases linearly.
Zum Zeitpunkt T1 wird die Regelung des Drehmomentes auf 0 Nm eingestellt. Zunächst behält der Elektromotor 2 infolge der ihm innewohnenden Energie das Drehmoment M konstant, ehe, bedingt durch die Massenträgheit und Reibungskräfte, das Drehmoment M linear annähernd gegen 0 abfällt, was zu einem Zeit- punkt T2 erfolgt. Dabei erreicht das Drehmoment zum Zeitpunkt T2 aber eine vonAt time T1, the control of the torque is set to 0 Nm. First, the electric motor 2 keeps constant the torque M due to its inherent energy before, due to the inertia and frictional forces, the torque M linearly decreases approximately to 0, which occurs at a time point T2. However, the torque at time T2 but one of
Null unterschiedliche Größe, was auf die Reibungskräfte zurückzuführen ist, die auf den Elektromotor 2 einwirken. Zero different size, which is due to the frictional forces acting on the electric motor 2.
Die Drehzahl nE des Elektromotors 2 folgt dem Drehmoment M, wie aus dem Diagramm 3b ersichtlich ist. Allerdings erfolgt der Abfall der Drehzahl nE nicht linear, sondern asymptotisch, so dass der Elektromotor 2 zum Zeitpunkt T2 immer noch eine messbare Drehzahl aufweist. Liegt diese zum Zeitpunkt T2 gemessene Drehzahl im Differenzdrehzahlband, so wird zu diesem Zeitpunkt T2 die Klauenkupplung 1 1 von dem geöffneten in den geschlossenen Zustand verfahren (Diagramm 3c). The speed n E of the electric motor 2 follows the torque M, as can be seen from the diagram 3b. However, the fall in the rotational speed n E is not linear, but asymptotic, so that the electric motor 2 at time T2 still has a measurable speed. If this speed measured at time T2 lies in the differential speed band, the dog clutch 11 is moved from the open to the closed state at this point in time T2 (diagram 3c).
Bei diesem Vorgang wird ein möglichst drehzahlschwingungsfestes Verhalten an einer Welle 18 des Elektromotors 2 eingestellt, da bei zu hohen Drehschwingungen der Einkupplungsvorgang nicht ausgeführt werden kann. Bei dem vorliegen- den Verfahren wird keine Drehmomentenregelung durchgeführt, sondern dasIn this process, a vibration-resistant as possible behavior is set to a shaft 18 of the electric motor 2, since too high torsional vibrations of the coupling operation can not be performed. In the present method, no torque control is performed, but the
Drehmoment zum Ausgleichen des Reibungsmomentes drehzahlabhängig ge- steuert. Dadurch entsteht ein glatter Verlauf der Drehzahl, da keine Schwingungen durch eine Drehmoment- oder Drehzahlregelung entstehen können. Torque for compensating the friction torque depends on the speed controls. This results in a smooth progression of the speed, since no vibrations can arise through a torque or speed control.
Wird durch die Drehmomentregelung das Solldrehmoment M = 0 Nm von dem Elektromotor 2 angefordert, wird von dem Elektromotor 2 über eine im Steuergerät 16 abgelegte Reibungskennlinie, die von der Drehzahl abhängig ist, zusätzlich die Reibung des Elektromotors 2 ausgeglichen. Das bedeutet, dass das elektrische Drehmoment des Elektromotors 2 ungleich 0 ist, was jedoch durch das Stellen eines zusätzlichen Drehmomentes zum Ausgleich der Reibung das mechanische Moment an der Welle 18 des Elektromotors 2 möglichst minimiert.If the desired torque M = 0 Nm is requested by the electric motor 2 through the torque control, the friction of the electric motor 2 is additionally compensated by the electric motor 2 via a friction characteristic which is dependent on the rotational speed in the control unit 16. This means that the electric torque of the electric motor 2 is not equal to 0, but minimizes the mechanical torque on the shaft 18 of the electric motor 2 by providing an additional torque to compensate for the friction.
Im Idealfall geht das mechanische Moment gegen Null. Hierbei wird keine Drehmomentenregelung durchgeführt, sondern das Drehmoment zum Ausgleichen des Reibungsmomentes drehzahlabhängig gesteuert. Die im Steuergerät 16 abgelegte elektromotorspezifische Reibungskennlinie ist abhängig von der Temperatur der Umgebung. Da der Elektromotor 2 ölgekühlt ist und mit der Klauenkupplung 1 1 und dem Getriebe 12 in einem Getriebegehäuse 13 angeordnet ist, wirkt sich neben der Temperatur auch die Viskosität des öligen Mediums auf die Reibungskennlinie aus. Ideally, the mechanical moment goes to zero. In this case, no torque control is performed, but controlled the torque to compensate for the friction torque speed dependent. The stored in the control unit 16 electric motor-specific friction characteristic is dependent on the temperature of the environment. Since the electric motor 2 is oil-cooled and is arranged with the dog clutch 1 1 and the transmission 12 in a transmission housing 13, in addition to the temperature, the viscosity of the oily medium affects the friction characteristic.
Bei kleinen Fahrgeschwindigkeiten oder bei einem Fahrzeugstillstand müssen diese Einflüsse auf das Drehzahlverhalten des Elektromotors 2 genau bekannt sein, um das notwendige Differenzdrehzahlband zu erreichen, da ein Einkuppeln sonst nicht möglich ist. Aus diesem Grund wird das Drehmoment des Elektromo- tors 2 bei kleinen Drehzahlen oder Stillstand des Fahrzeuges adaptiv nachgeführt. Figur 4 zeigt ein entsprechendes Verfahren. Zum Zeitpunkt tO wird gefordert, dass die Klauenkupplung 1 1 eingekuppelt werden soll. Dabei wird das Solldrehmoment des Elektromotors 2 auf 0 Nm eingestellt. Aus der aktuellen Drehzahl nE des Elektromotors 2 wird zum Zeitpunkt tO eine Startdrehzahl n0 be- stimmt, wobei n0 = nE (t0) At low speeds or in a vehicle standstill, these influences on the speed behavior of the electric motor 2 must be known exactly to achieve the necessary differential speed band, since a clutch is otherwise not possible. For this reason, the torque of the electric motor 2 is adaptively tracked at low speeds or standstill of the vehicle. FIG. 4 shows a corresponding method. At time tO is required that the jaw clutch 1 1 is to be engaged. In this case, the target torque of the electric motor 2 is set to 0 Nm. From the current rotational speed n E of the electric motor 2, a starting rotational speed n 0 is determined at the time t 0 , where n 0 = n E (t 0 )
ist. is.
Der Verlauf der Drehzahl in diesem Zustand wird durch eine mathematische Funktion nmath(t, n0) über der Zeit mit einer Anfangsbedingung der Startdrehzahl n0, welche im Steuergerät 16 abgelegt ist, bestimmt (Block 200). Dieser mathematisch bestimmte Drehzahlverlauf nmath(t, n0) wird im Punkt 201 kontinuierlich mit der gemessenen Istdrehzahl nE des Elektromotors 2 verglichen, wobei eine Differenz zwischen der gemessenen Istdrehzahl nE des Elektromotors 2 und der mathematisch modellierten Drehzahl nmath(t, n0) gebildet wird, die als Fehler angesehen wird. In Abhängigkeit von der Größe dieses Fehlers wird im Block 202 ein Adaptionsfaktor f(AnD) bestimmt. Dieser wird dem Block 203 zugeführt, wo die in dem Steuergerät 16 abgelegte Reibungskennlinie in Abhängigkeit von der Öltemperatur als Kennfeld dargestellt ist. Durch den Adaptionsfaktor f(AnD) und der Berücksichtigung der Temperatur wird diese Reibungskennlinie angepasst, wobei der Adaptionsfaktor f(AnD) als Offset auf die Kennlinie addiert wird. Als Ausgangsgröße des Blocks 203 wird eine Drehmomentkorrektur TrqFrc als Reibungsmoment ausgegeben. Diese Drehmomentkorrektur TrqFrc wird auf eine Drehmomentenschnittstelle 204 geführt, wo es unter Kompensation ungewollter mechanischer Abweichungen zur Bestimmung des zu steuernden Drehmomentes TrqEMDesCalc des Elektromotors 2 genutzt wird. Das angeforderte mechanische Drehmoment TrqDesMech ist zu diesem Zeitpunkt ebenfalls auf Null gesetzt. The course of the speed in this state is determined by a mathematical function n math (t, n 0 ) over time with an initial condition of the starting speed n 0 , which is stored in the control unit 16 determines (block 200). This mathematically determined speed curve n math (t, n 0 ) is continuously compared at point 201 with the measured actual speed n E of the electric motor 2, wherein a difference between the measured actual speed n E of the electric motor 2 and the mathematically modeled speed n math (t, n 0 ), which is regarded as an error. Depending on the size of this error, an adaptation factor f (An D ) is determined in block 202. This is fed to the block 203, where the friction characteristic stored in the control unit 16 is represented as a characteristic field as a function of the oil temperature. The adaption factor f (An D ) and the consideration of the temperature are used to adapt this friction characteristic, whereby the adaptation factor f (An D ) is added as an offset to the characteristic curve. As the output of the block 203, a torque correction TrqFrc is output as a friction torque. This torque correction TrqFrc is fed to a torque interface 204, where it is used to compensate for unwanted mechanical deviations to determine the torque TrqEMDesCalc of the electric motor 2 to be controlled. The requested mechanical torque TrqDesMech is also set to zero at this time.
Nach erfolgter Adaption der Reibungskennlinie wird diese neu bestimmte und adaptierte Kennlinie im Steuergerät 16 abgelegt und bei der nächsten Anforderung verwendet. Diese Anforderung liegt vor, wenn ein neuer Befehl zum Einkuppeln der Klauenkupplung 1 1 ausgegeben wird. In dem Fall wird die abgespeicherte Reibungskennlinie nach dem beschriebenen Verfahren wieder aufgerufen und in Abhängigkeit der aktuellen Drehzahl nE des Elektromotors 2 überprüft. After the friction characteristic has been adapted, this newly determined and adapted characteristic is stored in the control unit 16 and used in the next request. This requirement is when a new command for engaging the dog clutch 1 1 is issued. In the case, the stored friction characteristic curve is retrieved according to the method described and checked in dependence on the current speed n E of the electric motor 2.

Claims

Ansprüche 1 . Verfahren zur Bestimmung eines Solldrehmomentes zur Ansteuerung einer elektrischen Maschine eines Kraftfahrzeuges, bei welcher zwischen der elektrischen Maschine (2) und einer Räder (9, 10) aufweisenden Achse (8) des Kraftfahrzeuges durch Schließung einer Klauenkupplung (1 1 ) eine Kraft übertragen wird, dadurch gekennzeichnet, dass bei geöffneter Klauenkupp- lung (1 1 ) Reibungsmomente der elektrischen Maschine (2) bei der Bestimmung des Solldrehmomentes berücksichtigt werden. Claims 1. Method for determining a setpoint torque for controlling an electric machine of a motor vehicle, in which a force is transmitted between the electric machine (2) and an axle (8) of the motor vehicle by closing a claw coupling (11), characterized in that friction moments of the electric machine (2) are taken into account in the determination of the target torque when the jaw clutch (1 1) is open.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass zur Bestimmung der Reibungsmomente ein Faktor (Δη0) bestimmt wird, mittels welchem eine Reibungskennlinie beaufschlagt wird, aus welcher ein Drehmomentkorrekturwert (TrqFrc) ermittelt wird, der als Solldrehmoment (TrqEMDesCal) verwendet wird. 2. The method according to claim 1, characterized in that for determining the friction moments, a factor (Δη 0 ) is determined, by means of which a friction characteristic is applied, from which a torque correction value (TrqFrc) is determined, which is used as a target torque (TrqEMDesCal).
3. Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass der Faktor (Δη0) aus der Differenz der aktuellen Drehzahl (nE) der elektrischen Maschine (2) und einem mathematisch bestimmten Drehzahlverlauf nmath(t, n0) ermittelt wird. 3. The method according to claim 2, characterized in that the factor (Δη 0 ) from the difference of the current speed (n E ) of the electric machine (2) and a mathematically determined speed curve n math (t, n 0 ) is determined.
4. Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass der mathemati- sehe Drehzahlverlauf nmath(t, n0) aus einer Drehzahl (n0) der elektrischen Maschine (2) zu einem Startzeitpunkt (tO) bestimmt wird, wobei zum Startzeitpunkt (tO) keine Solldrehmomentanforderung an der elektrischen Maschine (2) vorliegt. 4. The method according to claim 3, characterized in that the mathematical see speed curve n math (t, n 0 ) from a rotational speed (n 0 ) of the electric machine (2) at a start time (tO) is determined, wherein at the start time (tO ) there is no desired torque request to the electric machine (2).
5. Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass die Reibungskennlinie als Funktion einer Drehzahl (nE) der elektrischen Maschine (2) ermittelt wird. 5. The method according to claim 2, characterized in that the friction characteristic as a function of a rotational speed (n E ) of the electric machine (2) is determined.
6. Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass die Reibungs- kennlinie als Funktion einer Temperatur der elektrischen Maschine (2) ermittelt wird. Verfahren nach mindestens einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass nach jedem Öffnen der Klauenkupplung (1 1 ) der Faktor (Δη0) bestimmt wird und die im vorhergehenden Öffnungszyklus der Klauenkupplung (1 1 ) erstellte Reibungskennlinie mit dem neu bestimmten Faktor (Δη0) korrigiert wird. 6. The method according to claim 2, characterized in that the friction characteristic is determined as a function of a temperature of the electric machine (2). Method according to at least one of the preceding claims, characterized in that after each opening of the dog clutch (1 1) the factor (Δη 0 ) is determined and in the previous opening cycle of the dog clutch (1 1) created friction characteristic with the newly determined factor (Δη 0 ) is corrected.
Vorrichtung zur Bestimmung eines Solldrehmomentes zur Ansteuerung einer elektrischen Maschine eines Kraftfahrzeuges, bei welcher zwischen der elektrischen Maschine (2) und einer Räder (9, 10) aufweisenden Achse (8) des Kraftfahrzeuges durch Schließung einer Klauenkupplung (1 1 ) eine Kraft übertragen wird, dadurch gekennzeichnet, dass Mittel (16) vorhanden sind, welche bei geöffneter Klauenkupplung (1 1 ) Reibungsmomente der elektrischen Maschine (2) bei der Bestimmung des Solldrehmomentes berücksichtigen. Device for determining a setpoint torque for controlling an electric machine of a motor vehicle, in which a force is transmitted between the electric machine (2) and a wheel (9, 10) having the axle (8) of the motor vehicle by closing a dog clutch (11), characterized in that means (16) are present, which take into account when the jaw clutch (1 1) friction moments of the electric machine (2) in determining the target torque.
Vorrichtung nach Anspruch 8 dadurch gekennzeichnet, dass ein Steuergerät (16) mit der elektrischen Maschine (2) und einem Drehzahlsensor (19) verbunden ist, welcher die Drehzahl der elektrischen Maschine (2) bestimmt. Apparatus according to claim 8, characterized in that a control device (16) with the electric machine (2) and a speed sensor (19) is connected, which determines the rotational speed of the electric machine (2).
0. Vorrichtung nach Anspruch 8 oder 9 dadurch gekennzeichnet, dass die 0. Device according to claim 8 or 9, characterized in that the
elektrische Maschine (2), die Klauenkupplung (1 1 ) und ein Getriebe (12), welches mit der Achse (8) verbunden ist, in einer mit Öl ausgefüllten baulichen Einheit (13) angeordnet sind.  electric machine (2), the dog clutch (1 1) and a gear (12) which is connected to the axis (8) are arranged in a filled with oil structural unit (13).
PCT/EP2010/067591 2009-12-23 2010-11-16 Method and device for determining desired torque for controlling an electric machine of a motor vehicle WO2011076485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009055246.4 2009-12-23
DE102009055246.4A DE102009055246B4 (en) 2009-12-23 2009-12-23 Method and device for determining a target torque for controlling an electric machine of a motor vehicle

Publications (1)

Publication Number Publication Date
WO2011076485A1 true WO2011076485A1 (en) 2011-06-30

Family

ID=43532908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/067591 WO2011076485A1 (en) 2009-12-23 2010-11-16 Method and device for determining desired torque for controlling an electric machine of a motor vehicle

Country Status (2)

Country Link
DE (1) DE102009055246B4 (en)
WO (1) WO2011076485A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581252A3 (en) * 2011-10-12 2015-12-30 Robert Bosch Gmbh Arrangement having an electrically powered axle for a four-wheel drive of a motor vehicle
CN109139741A (en) * 2018-08-28 2019-01-04 阿尔特汽车技术股份有限公司 A kind of control method of the reliable connection of dental inlay structure electromagnetic clutch
CN113790225A (en) * 2021-07-07 2021-12-14 重庆青山工业有限责任公司 Pressure control method for clutch of hybrid power transmission
SE2251343A1 (en) * 2022-11-16 2024-05-17 Scania Cv Ab Method and control arrangement for diagnosing of a powertrain component of a vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012003020A1 (en) 2012-02-15 2013-08-22 Audi Ag Control system for speed control of a drive motor
FR3056160B1 (en) * 2016-09-20 2019-08-09 Renault S.A.S TRANSMISSION FOR MOTOR VEHICLE WITH ELECTRIC PROPULSION
DE102021208600A1 (en) 2021-08-06 2023-02-09 Robert Bosch Gesellschaft mit beschränkter Haftung Method of operating a drive assembly, drive assembly and vehicle
DE102021208596A1 (en) 2021-08-06 2023-02-09 Robert Bosch Gesellschaft mit beschränkter Haftung Drive arrangement and vehicle with such a drive arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2390767A (en) * 2002-07-11 2004-01-14 Visteon Global Tech Inc Vector control system for permanent magnet synchronous motor
US20040036434A1 (en) * 2002-06-03 2004-02-26 Ballard Power Systems Corporation Method and apparatus for motor control
US20040154853A1 (en) * 2000-04-07 2004-08-12 Tochigi Fuji Sangyo Kabushiki Kaisha Power transmission system and operation method therefor
WO2009021574A1 (en) * 2007-08-14 2009-02-19 Getrag Innovations Gmbh Drive train for a motor vehicle
DE102008029287A1 (en) * 2008-06-11 2009-12-17 Getrag Innovations Gmbh Powertrain for a motor vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811521B1 (en) 1995-12-21 2002-08-21 Aisin Aw Co., Ltd. Drive device for electric motorcars
JP3261673B2 (en) 1997-09-18 2002-03-04 本田技研工業株式会社 Vehicle start assist device
DE102006003715A1 (en) 2006-01-26 2007-08-02 Zf Friedrichshafen Ag Synchronizing automated gearbox with matching to input revolution rate involves controlling additional electrical machine, optionally main drive motor, so input revolution rate to be adjusted with drive gear engaged has desired time profile
DE102007029934A1 (en) 2006-07-21 2008-01-24 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Rocker lever actuator for operating a vehicle's clutch has a rocker lever to exert variable operating force for engaging and disengaging a clutch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040154853A1 (en) * 2000-04-07 2004-08-12 Tochigi Fuji Sangyo Kabushiki Kaisha Power transmission system and operation method therefor
US20040036434A1 (en) * 2002-06-03 2004-02-26 Ballard Power Systems Corporation Method and apparatus for motor control
GB2390767A (en) * 2002-07-11 2004-01-14 Visteon Global Tech Inc Vector control system for permanent magnet synchronous motor
WO2009021574A1 (en) * 2007-08-14 2009-02-19 Getrag Innovations Gmbh Drive train for a motor vehicle
DE102008029287A1 (en) * 2008-06-11 2009-12-17 Getrag Innovations Gmbh Powertrain for a motor vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581252A3 (en) * 2011-10-12 2015-12-30 Robert Bosch Gmbh Arrangement having an electrically powered axle for a four-wheel drive of a motor vehicle
CN109139741A (en) * 2018-08-28 2019-01-04 阿尔特汽车技术股份有限公司 A kind of control method of the reliable connection of dental inlay structure electromagnetic clutch
CN113790225A (en) * 2021-07-07 2021-12-14 重庆青山工业有限责任公司 Pressure control method for clutch of hybrid power transmission
SE2251343A1 (en) * 2022-11-16 2024-05-17 Scania Cv Ab Method and control arrangement for diagnosing of a powertrain component of a vehicle

Also Published As

Publication number Publication date
DE102009055246A1 (en) 2011-06-30
DE102009055246B4 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2011076485A1 (en) Method and device for determining desired torque for controlling an electric machine of a motor vehicle
EP2193060B1 (en) Method for the operation of a drive train
EP2497940B1 (en) Method for operating a rail-free vehicle
DE102009055242B4 (en) Method and device for engaging a claw clutch for driving an axle of a motor vehicle
DE102012212678A1 (en) Simultaneous autostart and asynchronous switching for a hybrid vehicle
WO2011076513A1 (en) Method and device for operating a claw coupling in a motor vehicle having an electro-motor drive
DE102019204294B4 (en) Method for controlling a dog clutch and arrangement comprising a transmission and a gear actuator
EP2300296A1 (en) Method for operating a drive train
DE102012007622A1 (en) Method for performing a switching step
DE102014211381A1 (en) Method and device for determining a touch point of a hybrid disconnect clutch of a hybrid vehicle
DE112013003797B4 (en) Method for operating a drive train
DE102015208822A1 (en) A method of operating an automated disconnect clutch of a hybrid powertrain of a motor vehicle and a clutch actuation system
DE102013200825A1 (en) Method for operating hybrid vehicle e.g. motor car, involves determining time sequence for closing between engine and electrical machine, and between switched clutch and switching element based on operating point of drive unit
DE102014009715B4 (en) Method for operating a drive device of a motor vehicle and corresponding drive device
EP3263382B1 (en) Method for operating a drive device and corresponding drive device
WO2013152846A1 (en) Method for operating a hybrid drive device
DE102015118507B4 (en) Method for transmitting a torque via a drive train of a vehicle and control unit
EP3235677B1 (en) Method for controlling an electric drive without a position encoder
DE112021007759T5 (en) Gear shift control method for a hybrid drive system and hybrid drive system
DE102017100683A1 (en) Method for engagement point determination of a friction clutch in a hybrid powertrain
EP3124304A1 (en) Method for operating a hybrid drive device for a motor vehicle and corresponding hybrid drive device
DE102008051295A1 (en) Hybrid drivetrain i.e. parallel hybrid drivetrain, controlling method for vehicle, involves controlling torque-fluctuation-free and speed fluctuation-free transition from electromotive drive operation to internal combustion engine operation
WO2007128260A1 (en) Process for operating a drive train
EP2300295A1 (en) Method for operating a drive train
DE102009001297A1 (en) Power train operating method for motor vehicle, involves utilizing difference between output desired moment of internal combustion engine and filtered output desired moment of electrical machine as desired moment of combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777020

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10777020

Country of ref document: EP

Kind code of ref document: A1