WO2011074644A1 - Surface light source device, transparent image display device, and light source - Google Patents
Surface light source device, transparent image display device, and light source Download PDFInfo
- Publication number
- WO2011074644A1 WO2011074644A1 PCT/JP2010/072691 JP2010072691W WO2011074644A1 WO 2011074644 A1 WO2011074644 A1 WO 2011074644A1 JP 2010072691 W JP2010072691 W JP 2010072691W WO 2011074644 A1 WO2011074644 A1 WO 2011074644A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light source
- source device
- light sources
- front luminance
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133611—Direct backlight including means for improving the brightness uniformity
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133603—Direct backlight with LEDs
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
Definitions
- the present invention relates to a surface light source device, a transmissive image display device including the surface light source device, and a light source for the surface light source device.
- a direct type surface light source device is used as an example of a light source that outputs a backlight of a liquid crystal display unit.
- a typical surface light source device a device in which a plurality of light sources are arranged on the back side of a light diffusion plate is used.
- Such a surface light source device can easily increase the luminance of the light emitting surface by increasing the number of light sources to be arranged, but has a problem that the luminance uniformity is low.
- the periodic brightness non-uniformity that occurs because the brightness near the light source is high is a problem.
- the periodic brightness non-uniformity has become a bigger problem.
- Patent Document 1 a light amount correction pattern is formed on the light diffusion plate corresponding to the distance from the light source.
- Patent Document 2 the light near the light source with a large amount of light is scattered by providing a sawtooth-shaped prism in a part near the light source on the side surface of the light diffusion plate.
- a point light source such as an LED capable of reducing power consumption has come to be used.
- a linear light source such as a fluorescent lamp (cold cathode ray lamp)
- a point light source such as an LED capable of reducing power consumption
- a Lambertian type aiming at emitting light toward directly above is widely known, but a bat wing type or side emission type aiming at emitting light in an oblique direction, etc.
- an LED such as a batwing type or side emission type as a light source of a transmissive image display device, it is possible to suppress non-uniform luminance without special processing of the light diffusion plate as in Patent Documents 1 and 2. Can be considered.
- the LED of the bat wing type or the side emission type is used as it is, the effect of suppressing the uneven brightness is still low.
- the present invention provides a surface light source device capable of suppressing nonuniform luminance without performing special processing on the light diffusion plate, a transmissive image display device including the surface light source device, and the surface light source device.
- An object is to provide a light source for.
- the surface light source device of the present invention is a plurality of light sources arranged two-dimensionally, each of the plurality of light sources being a point light source, and the light diffusion for diffusing the light from the plurality of light sources and the plurality of light sources A board.
- the light distribution I ( ⁇ ) of each light source among the plurality of light sources is set so as to satisfy the following expression.
- ⁇ is an emission angle of light from the individual light sources
- f ( ⁇ , 0) is a front direction emission intensity function of BTDF of the light diffusion plate
- p ( ⁇ ) is A front luminance profile of the surface light source device by individual light sources, the front luminance profile being triangular, trapezoidal, or rectangular in consideration of overlap in order to make the front luminance of the surface light source device constant Front luminance profile.
- the front luminance L of the surface light source device with one light source is expressed by the following equation.
- I ( ⁇ ) (cos ⁇ ) ⁇ 2 ⁇ ⁇ f ( ⁇ , 0) ⁇ ⁇ 1
- the front luminance L of the surface light source device with one light source is set to the light output angle ⁇ from the light source. It can be made constant without dependence.
- the front luminance profile p ( ⁇ ) of the surface light source device with one light source is made triangular, trapezoidal, or rectangular, so that a plurality of light sources arranged two-dimensionally It is possible to make the front luminance of the surface light source device provided with constant.
- the front luminance of the surface light source device having a plurality of light sources arranged two-dimensionally is constant. Will be able to.
- the above-described emission intensity function f ( ⁇ , 0) in the front direction is obtained by measuring BTDF of the light diffusion plate, and the front luminance profile p ( ⁇ ) is obtained by the following equation.
- ⁇ ⁇ x1 p ( ⁇ ) 1 In ⁇ x1 ⁇
- ⁇ ArcTan ⁇ (I ⁇ x 1 ) / D ⁇ , p ( ⁇ ) (tan ⁇ I ⁇ tan ⁇ x1 ⁇ tan ⁇ ) / (tan ⁇ I ⁇ 2 tan ⁇ x1 ) ArcTan ⁇ (I ⁇ x 1 ) / D ⁇ ⁇
- p ( ⁇ ) 0 (Wherein, I is an interval between the plurality of light sources, D is an interval between the plurality of light sources and the light diffusion plate, and x 1 is the triangular shape, trapezoidal shape, or rectangular shape.
- the light emission angle of each light source which is ArcTan (x 1 / D)
- a transmissive image display device of the present invention includes a transmissive image display cell and a surface light source device that supplies light to the transmissive image display cell, and includes the above-described surface light source device.
- the point light source of the present invention is a point light source for a surface light source device including a plurality of light sources arranged two-dimensionally and a light diffusion plate that diffuses light from the plurality of light sources.
- the light distribution I ( ⁇ ) of the point light source of the present invention is set to satisfy the following expression.
- ⁇ is an emission angle of light from each of the plurality of light sources
- f ( ⁇ , 0) is a BTDF front emission intensity function of the light diffusion plate
- p ( ⁇ ) is a front luminance profile of the surface light source device by the individual light sources, and the front luminance profile is triangular or trapezoidal in consideration of overlap in order to make the front luminance of the surface light source device constant. Or a rectangular front luminance profile.
- the present invention it is possible to suppress uneven brightness of the surface light source device and the transmissive image display device without performing special processing on the light diffusion plate.
- FIG. 1 is a cross-sectional view showing a configuration of a transmissive image display device and a surface light source device according to an embodiment of the present invention.
- FIG. 2 is a diagram showing the arrangement of light sources from above in the surface light source device according to the embodiment of the present invention.
- FIG. 3A is a diagram showing the luminance characteristics of a batwing type or side emission type LED
- FIG. 3B is a diagram showing the luminance characteristics of a Lambertian type LED.
- FIG. 4 is a diagram for explaining the light distribution characteristics of light emitted from one light source.
- FIG. 5 is a diagram for explaining light distribution characteristics on the light irradiation surface of the light diffusion plate.
- FIG. 1 is a cross-sectional view showing a configuration of a transmissive image display device and a surface light source device according to an embodiment of the present invention.
- FIG. 2 is a diagram showing the arrangement of light sources from above in the surface light source device according to the embodiment of the present invention.
- FIG. 6 is a diagram for explaining the dependency of the light diffusion plate on the emission angle of BTDF.
- FIG. 7 is a diagram for explaining the incident angle dependence of the BTDF front emission intensity of the light diffusion plate.
- FIG. 8 is a diagram for explaining light distribution characteristics of a combination of a light source and a light diffusing plate.
- FIG. 9 is a diagram for explaining light distribution characteristics of a combination of a plurality of light sources and a light diffusing plate.
- FIG. 10 is a diagram showing a front luminance profile p ( ⁇ ) for each light source.
- FIG. 11 is a diagram showing a front luminance profile p ( ⁇ ) for each light source.
- FIG. 12 is a diagram showing a measurement result of BTDFf ( ⁇ , ⁇ ) of the light diffusion plate RM871S.
- FIG. 13 is a diagram showing a measurement result of BTDFf ( ⁇ , ⁇ ) of the light diffusion plate RM861S.
- FIG. 14 is a diagram showing a measurement result of BTDFf ( ⁇ , ⁇ ) of the light diffusion plate RM862S.
- FIG. 15 is a diagram showing a measurement result of BTDFf ( ⁇ , ⁇ ) of the light diffusion plate RM863S.
- FIG. 16 is a diagram showing a measurement result of BTDFf ( ⁇ , ⁇ ) of the light diffusion plate RM864S.
- FIG. 17 is a graph showing the light distribution I ( ⁇ ) of the light source of Example 1.
- FIG. 17 is a graph showing the light distribution I ( ⁇ ) of the light source of Example 1.
- FIG. 18 is a graph showing the light distribution I ( ⁇ ) of the light source of Example 2.
- FIG. 19 is a graph showing the light distribution I ( ⁇ ) of the light source of Example 3.
- FIG. 20 is a graph showing the light distribution I ( ⁇ ) of the light source of Example 4.
- FIG. 21 is a graph showing the light distribution I ( ⁇ ) of the light source of Example 5.
- FIG. 22 is a graph showing the light distribution I ( ⁇ ) of the light source of Example 6.
- FIG. 23 is a graph showing the light distribution I ( ⁇ ) of the light source of Example 7.
- FIG. 24 is a graph showing the light distribution I ( ⁇ ) of the light source of Example 8.
- FIG. 1 is a cross-sectional view illustrating a configuration of a transmissive image display device and a surface light source device according to an embodiment of the present invention
- FIG. 2 illustrates an arrangement of light sources in the surface light source device according to the embodiment of the present invention from above.
- FIG. 1 is a cross-sectional view taken along the line SS in FIG. 2.
- the transmissive image display apparatus is shown in an exploded manner.
- the transmissive image display device 1 is, for example, a liquid crystal display device, and includes a transmissive image display unit 10 in which polarizing plates 12 and 13 are stacked on both upper and lower surfaces of a liquid crystal cell 11, and a rear surface side of the transmissive image display unit 10 ( And a direct-type surface light source device 20 provided on the lower side.
- the liquid crystal cell 11 and the polarizing plates 12 and 13 may be those used in a transmissive image display device such as a conventional liquid crystal display device.
- Examples of the liquid crystal cell 11 include known liquid crystal cells such as a TFT type and an STN type.
- the surface light source device 20 is a so-called direct type surface light source device and includes a light source unit 30 including a plurality of light sources 31 arranged in a two-dimensional manner.
- a point light source such as a batwing type or side emission type LED that emits light in an oblique direction is exemplified.
- the plurality of light sources 31 are arranged at substantially equal intervals. When the distance between the centers of two adjacent light sources 31 and 31 is I, the distance I is, for example, 15 mm to 150 mm.
- the bat wing type and side emission type LEDs have been exemplified as the light source 31, as shown in FIG. 3B (several types of luminance characteristics), a Lambertian type that emits light toward the top is used. Various LEDs are applicable. Details of the light source 31 will be described later.
- the plurality of light sources 31 are supported by being disposed in the lamp box 32, and a light reflecting member 33 is preferably provided between the plurality of light sources 31 in the lamp box 32. Thereby, since the light output from each light source 31 is reliably output to the transmissive image display part 10 side, it becomes possible to use the light from each light source 31 efficiently.
- the surface light source device 20 includes a light diffusing plate 40 that is disposed away from the light source 31 on the front surface side (the upper side in FIG. 1) of the light source unit 30, that is, on the transmissive image display unit 10 side. .
- the distance D is, for example, 5 mm to 50 mm.
- the distance I between two adjacent light sources 31, 31 is set so that the I / D is 1.5 or more, and preferably the I / D is 2.5 or more. And the separation distance D is selected.
- the light diffusing plate 40 does not project the image of each light source 31 onto the transmissive image display unit 10, so that the light from the light source unit 30, that is, the direct light from each light source 31 and the reflected light reflected by the light reflecting member 33. Is diffusely irradiated toward the transmissive image display unit 10.
- the thickness d of the light diffusing plate 40 is about 0.8 mm to 5 mm.
- the light diffusion plate 40 is made of a transparent material such as a transparent resin or transparent glass.
- Transparent resins include polycarbonate resin, ABS resin (acrylonitrile-styrene-butadiene copolymer resin), methacrylic resin, MS resin (methyl methacrylate-styrene copolymer resin), polystyrene resin, AS resin (acrylonitrile-styrene copolymer). Examples thereof include polyolefin resins such as coalesced resin), polyethylene, and polypropylene.
- a diffusing agent similar to the diffusing agent for diffusing light contained in a light diffusing plate used in a transmissive image display device such as a liquid crystal display device is appropriately added.
- the light diffusing plate 40 of the present invention is not limited to a diffusing plate to which diffusing agent particles are added, and has light deflection characteristics that allow light incident from an oblique direction to be deflected and emitted in the front direction.
- An optical deflection plate is included.
- Each light source 31 has a light distribution distribution set so that the front luminance (that is, the emission intensity in the front direction) of the surface light source device 20 is constant, that is, the luminance unevenness of the surface light source device 20 is suppressed. Yes. Below, the setting method of the light distribution of each light source 31 is demonstrated.
- FIG. 4 is a diagram for explaining the light distribution characteristics of the light emitted from one light source 31, and FIG. 5 shows the light distribution on the light irradiation surface (light source side surface, lower surface of the drawing) of the light diffusion plate 40. It is a figure for demonstrating a characteristic.
- the luminous intensity is represented by a light flux ⁇ per unit solid angle ⁇ .
- the light distribution characteristic I ( ⁇ ) is expressed by the following equation (1) as a function of the light emission angle ⁇ .
- FIG. 6 is a diagram for explaining the dependency of the light diffusion plate 40 on the emission angle of BTDF
- FIG. 7 is a diagram for explaining the dependency of the light diffusion plate 40 on the incidence angle of the emission intensity in the front direction of BTDF. It is.
- the light intensity Ii at the incident angle ⁇ of light to the light diffusion plate 40 and the light intensity Io at the light emission angle ⁇ from the light diffusion plate 40 are functions f ( ( ⁇ , ⁇ ) is expressed by the following formula (4).
- FIG. 8 is a diagram for explaining the light distribution characteristics of the combination of the light source 31 and the light diffusing plate 40.
- the front luminance L is expressed by the following equation (6) from the above equations (3) and (5).
- FIG. 9 is a diagram for explaining the light distribution characteristics of the combination of the plurality of light sources 31 and the light diffusing plate 40.
- the surface light source device 20 since the plurality of light sources 31 are arranged in a grid, it is necessary to consider the overlap of the front luminance profiles g (x) due to the adjacent light sources 31. For example, if the front luminance profile g (x) by each light source 31 is triangular, trapezoidal, or rectangular, the front luminance is constant even in the overlapping portion of the front luminance profiles g (x) by the adjacent light sources 31. be able to.
- the front luminance profile g (x) is replaced with a function p ( ⁇ ) of ⁇ . Is possible.
- the following equation (8) is obtained. That is, if the light distribution I ( ⁇ ) that satisfies the above equation (8) is set to the light distribution characteristic of each light source 31, the front luminance can be made constant.
- the light distribution I ( ⁇ ) and the front luminance profile p ( ⁇ ) normalized values are used unless otherwise specified.
- the BTDF front emission intensity function f ( ⁇ , 0) of the light diffusing plate 40 is measured by using, for example, a goniophotometer for the BTDF (or BSDF) of the light diffusing plate to be used. By seeking.
- a trapezoidal normalized front luminance distribution g (x) when it is desired to obtain a trapezoidal normalized front luminance distribution g (x), it is a position in the arrangement direction of the light sources 31 with respect to the position of each light source 31 and has a front luminance L.
- the attenuation start position is x 1 (0 ⁇ x 1 ⁇ I / 2)
- ⁇ x 1 g (x) 1, x 1 ⁇
- ⁇ I ⁇ x 1 g (x) (I ⁇ x 1 ⁇ x) / (I ⁇ 2x 1 ) In I ⁇ x 1 ⁇
- Let g (x) 0.
- the setting of the obtained light distribution I ( ⁇ ) of each light source 31 can be realized by, for example, a resin shape covering the semiconductor chip in the LED or a lens shape provided on the light emitting surface side of the semiconductor chip.
- the transmissive image display device 1 of the present embodiment since the surface light source device 20 is provided, it is possible to suppress nonuniform luminance.
- the BTDF front emission intensity function f ( ⁇ , 0) of the BTDF of the light diffusing plate 40 based on the following equation (9) obtained by modifying the above equation (8). It is done.
- the light diffusing plate a material in which diffusing agent particles are dispersed in a transparent material is often used. With this type of light diffusing plate, when the diffusing agent concentration is set so as to have a prescribed total light transmittance, It becomes difficult to set BSDF, that is, BTDF freely. Therefore, it is preferable to set the light distribution I ( ⁇ ) for each light source 31 as in the present invention.
- Example 1 a method for setting the light distribution I ( ⁇ ) of the light source 31 according to the present invention will be described more specifically based on Examples 1 to 8.
- Example 1
- BTDFf ( ⁇ , ⁇ ) of the light diffusion plate 40 was measured.
- the following five types of Sumipex (registered trademark) E manufactured by Sumitomo Chemical Co., Ltd. were used.
- RM863S (thickness 2 mm, total light transmittance Tt 65%)
- a measuring device a GC5000L type variable angle photometer manufactured by Nippon Denshoku Industries Co., Ltd.
- the angle of the light source was changed manually, and the incident angle ⁇ of the light was set from 0 ° to 75 ° at intervals of 5 °.
- 12 to 16 show the measurement results of BTDFf ( ⁇ , ⁇ ) of each light diffusion plate 40.
- Example 1 a front luminance profile p ( ⁇ ) was determined.
- FIG. 17 is a graph of the obtained I ( ⁇ ).
- the BTDF front direction emission intensity function f ( ⁇ , 0) of the light diffusing plate 40 was obtained from actual measurement.
- a front luminance profile p ( ⁇ ) was determined.
- FIG. 18 is a graph of the obtained I ( ⁇ ).
- the BTDF front direction emission intensity function f ( ⁇ , 0) of the light diffusing plate 40 was obtained from actual measurement.
- Example 3 a front luminance profile p ( ⁇ ) was determined.
- the light distribution I ( ⁇ ) of each light source 31 was obtained from the above equation (8).
- the obtained I ( ⁇ ) is graphed.
- the BTDF front direction emission intensity function f ( ⁇ , 0) of the light diffusing plate 40 was obtained from actual measurement.
- Example 4 a front luminance profile p ( ⁇ ) was determined.
- FIG. 20 is a graph of the obtained I ( ⁇ ).
- the BTDF front direction emission intensity function f ( ⁇ , 0) of the light diffusing plate 40 was obtained from actual measurement.
- Example 5 a front luminance profile p ( ⁇ ) was determined.
- FIG. 21 is a graph of the obtained I ( ⁇ ).
- the BTDF front direction emission intensity function f ( ⁇ , 0) of the light diffusing plate 40 was obtained from actual measurement.
- Example 6 a front luminance profile p ( ⁇ ) was determined.
- FIG. 22 is a graph of the obtained I ( ⁇ ).
- the BTDF front direction emission intensity function f ( ⁇ , 0) of the light diffusing plate 40 was obtained from actual measurement.
- a front luminance profile p ( ⁇ ) was determined.
- the light distribution I ( ⁇ ) of each light source 31 was obtained from the above equation (8).
- the obtained I ( ⁇ ) is graphed.
- the BTDF front direction emission intensity function f ( ⁇ , 0) of the light diffusing plate 40 was obtained from actual measurement.
- a front luminance profile p ( ⁇ ) was determined.
- the light distribution I ( ⁇ ) of each light source 31 was obtained from the above equation (8).
- the obtained I ( ⁇ ) is graphed.
- the present invention can be applied to the application of suppressing luminance unevenness of the surface light source device and the transmissive image display device without performing special processing on the light diffusion plate.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Planar Illumination Modules (AREA)
- Liquid Crystal (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
The disclosed surface light source device (20) is a plurality of two-dimensionally arrayed light sources, wherein each of said plurality of light sources is a point light source. The light source device (20) is provided with said plurality of light sources (31), and a light diffusion plate (40) that diffuses the light from the plurality of light sources (31). In the surface light source device (20), the light distribution I(θ) of the individual light sources (31) of the plurality of light sources fulfils the formula below. I(θ) = (cos θ)-2·{f(θ,0)}-1p(θ) (In the formula: θ is the angle of light radiation from the aforementioned individual light sources (31); f(θ,0) is the forward-direction radiation-intensity function of the BTDF of the light diffusion plate (40); p(θ) is the forward-direction luminance profile of the aforementioned surface light source device (20) resulting from said individual light sources (31); and said forward-direction luminance profile is triangular, trapezoidal, or rectangular taking into account overlap for causing the forward-direction luminance of said surface light source device (20) to be constant.)
Description
本発明は、面光源装置、この面光源装置を備える透過型画像表示装置、及び、この面光源装置のための光源に関するものである。
The present invention relates to a surface light source device, a transmissive image display device including the surface light source device, and a light source for the surface light source device.
液晶表示装置などの透過型画像表示装置では、液晶表示部のバックライトを出力する光源の一例として直下型面光源装置が使用されている。典型的な面光源装置として、光拡散板の背面側に複数の光源を並べたものが利用されている。このような面光源装置では、配置する光源数を増やすことにより発光面を容易に高輝度化できる反面、輝度均斉度が低いという問題点がある。特に、光源の真上付近での輝度が高くなるために発生する周期的な輝度の不均一が問題であるが、面光源装置の薄型化、或いは低消費電力化のための光源数削減化によって上記周期的な輝度の不均一がより大きな問題となってきている。
In a transmissive image display device such as a liquid crystal display device, a direct type surface light source device is used as an example of a light source that outputs a backlight of a liquid crystal display unit. As a typical surface light source device, a device in which a plurality of light sources are arranged on the back side of a light diffusion plate is used. Such a surface light source device can easily increase the luminance of the light emitting surface by increasing the number of light sources to be arranged, but has a problem that the luminance uniformity is low. In particular, the periodic brightness non-uniformity that occurs because the brightness near the light source is high is a problem. By reducing the thickness of the surface light source device or reducing the number of light sources to reduce power consumption, The periodic brightness non-uniformity has become a bigger problem.
そこで、輝度均斉度確保のために、例えば、特許文献1では、光拡散板に光源との距離に対応して光量補正パターンを形成している。同様に、特許文献2では、光拡散板の光源側面の光源真上付近の一部に断面鋸歯状のプリズムを設けることで、光量の多い光源真上付近の光を散らしている。
Therefore, in order to ensure the luminance uniformity, for example, in Patent Document 1, a light amount correction pattern is formed on the light diffusion plate corresponding to the distance from the light source. Similarly, in Patent Document 2, the light near the light source with a large amount of light is scattered by providing a sawtooth-shaped prism in a part near the light source on the side surface of the light diffusion plate.
ところで、この種の透過型画像表示装置では、蛍光ランプ(冷陰極線ランプ)のような線状光源に代えて、低消費電力化が可能なLEDなどの点状光源が用いられるようになってきている。LEDとしては、真上に向けて光を出射することを目的としたランバーシアンタイプなどが広く知られているが、斜め方向に光を出射することを目的としたバットウイングタイプやサイドエミッションタイプなども考案されている。バットウイングタイプやサイドエミッションタイプなどのLEDを透過型画像表示装置の光源として用いることにより、特許文献1及び2のように光拡散板に特殊加工を施すことなく、輝度の不均一を抑制することができるものと考えられる。しかしながら、バットウイングタイプやサイドエミッションタイプなどのLEDをそのまま用いたとしても、輝度の不均一の抑制効果はまだ低い。
By the way, in this type of transmissive image display device, instead of a linear light source such as a fluorescent lamp (cold cathode ray lamp), a point light source such as an LED capable of reducing power consumption has come to be used. Yes. As the LED, a Lambertian type aiming at emitting light toward directly above is widely known, but a bat wing type or side emission type aiming at emitting light in an oblique direction, etc. Has also been devised. By using an LED such as a batwing type or side emission type as a light source of a transmissive image display device, it is possible to suppress non-uniform luminance without special processing of the light diffusion plate as in Patent Documents 1 and 2. Can be considered. However, even if the LED of the bat wing type or the side emission type is used as it is, the effect of suppressing the uneven brightness is still low.
そこで、本発明は、光拡散板に特殊加工を施すことなく、輝度の不均一を抑制することが可能な面光源装置、この面光源装置を備える透過型画像表示装置、及び、この面光源装置のための光源を提供することを目的とする。
Accordingly, the present invention provides a surface light source device capable of suppressing nonuniform luminance without performing special processing on the light diffusion plate, a transmissive image display device including the surface light source device, and the surface light source device. An object is to provide a light source for.
本発明の面光源装置は、2次元配列された複数の光源であって、当該複数の光源それぞれは点状の光源である、当該複数の光源と、複数の光源からの光を拡散させる光拡散板と、を備える。本発明の面光源装置において、前記複数の光源のうちの個々の光源の配光分布I(θ)は、下式を満たすように設定されている。
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
(式中、θは、前記個々の光源からの光の出射角であり、f(θ,0)は、前記光拡散板のBTDFの正面方向出射強度関数であり、p(θ)は、当該個々の光源による前記面光源装置の正面輝度プロファイルであって、当該正面輝度プロファイルは、当該面光源装置の正面輝度を一定にするために重なりを考慮した三角形状、台形状、又は、長方形状の正面輝度プロファイルである。) The surface light source device of the present invention is a plurality of light sources arranged two-dimensionally, each of the plurality of light sources being a point light source, and the light diffusion for diffusing the light from the plurality of light sources and the plurality of light sources A board. In the surface light source device of the present invention, the light distribution I (θ) of each light source among the plurality of light sources is set so as to satisfy the following expression.
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
(In the formula, θ is an emission angle of light from the individual light sources, f (θ, 0) is a front direction emission intensity function of BTDF of the light diffusion plate, and p (θ) is A front luminance profile of the surface light source device by individual light sources, the front luminance profile being triangular, trapezoidal, or rectangular in consideration of overlap in order to make the front luminance of the surface light source device constant Front luminance profile.)
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
(式中、θは、前記個々の光源からの光の出射角であり、f(θ,0)は、前記光拡散板のBTDFの正面方向出射強度関数であり、p(θ)は、当該個々の光源による前記面光源装置の正面輝度プロファイルであって、当該正面輝度プロファイルは、当該面光源装置の正面輝度を一定にするために重なりを考慮した三角形状、台形状、又は、長方形状の正面輝度プロファイルである。) The surface light source device of the present invention is a plurality of light sources arranged two-dimensionally, each of the plurality of light sources being a point light source, and the light diffusion for diffusing the light from the plurality of light sources and the plurality of light sources A board. In the surface light source device of the present invention, the light distribution I (θ) of each light source among the plurality of light sources is set so as to satisfy the following expression.
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
(In the formula, θ is an emission angle of light from the individual light sources, f (θ, 0) is a front direction emission intensity function of BTDF of the light diffusion plate, and p (θ) is A front luminance profile of the surface light source device by individual light sources, the front luminance profile being triangular, trapezoidal, or rectangular in consideration of overlap in order to make the front luminance of the surface light source device constant Front luminance profile.)
1光源による面光源装置の正面輝度Lは下式のように表される。
この式において、I(θ)=(cosθ)-2・{f(θ,0)}-1とすれば、1光源による面光源装置の正面輝度Lを、光源からの光の出射角θに依存することなく一定にすることができる。更に、隣接する光源による重なりを考慮して、1光源による面光源装置の正面輝度プロファイルp(θ)を三角形状、台形状、又は、長方形状とすることにより、2次元配列された複数の光源を備える面光源装置の正面輝度を一定にすることができる。すなわち、I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)とすれば、2次元配列された複数の光源を備える面光源装置の正面輝度を一定にすることができることとなる。
The front luminance L of the surface light source device with one light source is expressed by the following equation.
In this equation, if I (θ) = (cos θ) −2 · {f (θ, 0)} −1 , the front luminance L of the surface light source device with one light source is set to the light output angle θ from the light source. It can be made constant without dependence. Further, in consideration of the overlap between adjacent light sources, the front luminance profile p (θ) of the surface light source device with one light source is made triangular, trapezoidal, or rectangular, so that a plurality of light sources arranged two-dimensionally It is possible to make the front luminance of the surface light source device provided with constant. That is, if I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ), the front luminance of the surface light source device having a plurality of light sources arranged two-dimensionally is constant. Will be able to.
この面光源装置によれば、複数の光源それぞれの配光分布I(θ)が、
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
を満たすように設定されているので、正面輝度を一定にすることができる。したがって、この面光源装置によれば、光拡散板に特殊加工を施すことなく、輝度の不均一を抑制することができる。 According to this surface light source device, the light distribution I (θ) of each of the plurality of light sources is
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
Since it is set to satisfy, the front luminance can be made constant. Therefore, according to this surface light source device, it is possible to suppress nonuniform brightness without performing special processing on the light diffusion plate.
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
を満たすように設定されているので、正面輝度を一定にすることができる。したがって、この面光源装置によれば、光拡散板に特殊加工を施すことなく、輝度の不均一を抑制することができる。 According to this surface light source device, the light distribution I (θ) of each of the plurality of light sources is
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
Since it is set to satisfy, the front luminance can be made constant. Therefore, according to this surface light source device, it is possible to suppress nonuniform brightness without performing special processing on the light diffusion plate.
上記した正面方向出射強度関数f(θ,0)は、前記光拡散板のBTDFを測定することによって求め、前記正面輝度プロファイルp(θ)は、下式により求める、ことが好ましい。
|θ|≦θx1において、
p(θ)=1
θx1<|θ|≦ArcTan{(I-x1)/D}において、
p(θ)=(tanθI-tanθx1-tanθ)/(tanθI-2tanθx1)
ArcTan{(I-x1)/D}≦|θ|において、
p(θ)=0
(式中、Iは、前記複数の光源の間隔であり、Dは、前記複数の光源と前記光拡散板との間隔であり、x1は、前記三角形状、台形状、又は、長方形状の減衰開始の位置であって、当該減衰開始の位置は前記個々の光源の位置を基準とした複数の光源の配列方向の位置であり、θx1は、前記減衰開始の位置x=x1に対する前記個々の光源の光の出射角であって、ArcTan(x1/D)であり、θIは、前記個々の光源の位置を基準とした複数の光源の配列方向の位置x=Iに対する前記個々の光源の光の出射角であって、ArcTan(I/D)である。)
なお、本明細書において、位置x=x1、位置x=Iは、対象の光源の位置を基準とした複数の光源の配列方向の位置(座標)であり、換言すれば、対象の光源からの距離を表すパラメータである。そして、上式のように、これらのx1、Iは、それぞれ数値を示すこともある。 It is preferable that the above-described emission intensity function f (θ, 0) in the front direction is obtained by measuring BTDF of the light diffusion plate, and the front luminance profile p (θ) is obtained by the following equation.
| θ | ≦ θ x1
p (θ) = 1
In θ x1 <| θ | ≦ ArcTan {(I−x 1 ) / D},
p (θ) = (tan θ I −tan θ x1 −tan θ) / (tan θ I −2 tan θ x1 )
ArcTan {(I−x 1 ) / D} ≦ | θ |
p (θ) = 0
(Wherein, I is an interval between the plurality of light sources, D is an interval between the plurality of light sources and the light diffusion plate, and x 1 is the triangular shape, trapezoidal shape, or rectangular shape. The attenuation start position is a position in the arrangement direction of a plurality of light sources with reference to the positions of the individual light sources, and θ x1 is the position relative to the attenuation start position x = x 1 . The light emission angle of each light source, which is ArcTan (x 1 / D), and θ I is the individual with respect to a position x = I in the arrangement direction of a plurality of light sources with respect to the position of each light source. The light emission angle of the light source of (ArcTan (I / D)).
In the present specification, the position x = x 1 and the position x = I are positions (coordinates) in the arrangement direction of a plurality of light sources with respect to the position of the target light source, in other words, from the target light source. Is a parameter representing the distance of. And, as in the above formula, these x 1 and I may each be a numerical value.
|θ|≦θx1において、
p(θ)=1
θx1<|θ|≦ArcTan{(I-x1)/D}において、
p(θ)=(tanθI-tanθx1-tanθ)/(tanθI-2tanθx1)
ArcTan{(I-x1)/D}≦|θ|において、
p(θ)=0
(式中、Iは、前記複数の光源の間隔であり、Dは、前記複数の光源と前記光拡散板との間隔であり、x1は、前記三角形状、台形状、又は、長方形状の減衰開始の位置であって、当該減衰開始の位置は前記個々の光源の位置を基準とした複数の光源の配列方向の位置であり、θx1は、前記減衰開始の位置x=x1に対する前記個々の光源の光の出射角であって、ArcTan(x1/D)であり、θIは、前記個々の光源の位置を基準とした複数の光源の配列方向の位置x=Iに対する前記個々の光源の光の出射角であって、ArcTan(I/D)である。)
なお、本明細書において、位置x=x1、位置x=Iは、対象の光源の位置を基準とした複数の光源の配列方向の位置(座標)であり、換言すれば、対象の光源からの距離を表すパラメータである。そして、上式のように、これらのx1、Iは、それぞれ数値を示すこともある。 It is preferable that the above-described emission intensity function f (θ, 0) in the front direction is obtained by measuring BTDF of the light diffusion plate, and the front luminance profile p (θ) is obtained by the following equation.
| θ | ≦ θ x1
p (θ) = 1
In θ x1 <| θ | ≦ ArcTan {(I−x 1 ) / D},
p (θ) = (tan θ I −tan θ x1 −tan θ) / (tan θ I −2 tan θ x1 )
ArcTan {(I−x 1 ) / D} ≦ | θ |
p (θ) = 0
(Wherein, I is an interval between the plurality of light sources, D is an interval between the plurality of light sources and the light diffusion plate, and x 1 is the triangular shape, trapezoidal shape, or rectangular shape. The attenuation start position is a position in the arrangement direction of a plurality of light sources with reference to the positions of the individual light sources, and θ x1 is the position relative to the attenuation start position x = x 1 . The light emission angle of each light source, which is ArcTan (x 1 / D), and θ I is the individual with respect to a position x = I in the arrangement direction of a plurality of light sources with respect to the position of each light source. The light emission angle of the light source of (ArcTan (I / D)).
In the present specification, the position x = x 1 and the position x = I are positions (coordinates) in the arrangement direction of a plurality of light sources with respect to the position of the target light source, in other words, from the target light source. Is a parameter representing the distance of. And, as in the above formula, these x 1 and I may each be a numerical value.
本発明の透過型画像表示装置は、透過型画像表示セルと、透過型画像表示セルに光を供給する面光源装置であって、上記した面光源装置と、を備える。
A transmissive image display device of the present invention includes a transmissive image display cell and a surface light source device that supplies light to the transmissive image display cell, and includes the above-described surface light source device.
この透過型画像表示装置によれば、上記した面光源装置を備えているので、輝度の不均一を抑制することができる。
According to this transmissive image display device, since the above-described surface light source device is provided, nonuniform luminance can be suppressed.
本発明の点状の光源は、2次元配列された複数の光源と、当該複数の光源からの光を拡散させる光拡散板とを備える面光源装置のための点状の光源である。本発明の点状の光源の配光分布I(θ)は、下式を満たすように設定されている。
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
(式中、θは、前記複数の光源のうちの個々の光源からの光の出射角であり、f(θ,0)は、前記光拡散板のBTDFの正面方向出射強度関数であり、p(θ)は、当該個々の光源による前記面光源装置の正面輝度プロファイルであって、当該正面輝度プロファイルは、当該面光源装置の正面輝度を一定にするために重なりを考慮した三角形状、台形状、又は、長方形状の正面輝度プロファイルである。) The point light source of the present invention is a point light source for a surface light source device including a plurality of light sources arranged two-dimensionally and a light diffusion plate that diffuses light from the plurality of light sources. The light distribution I (θ) of the point light source of the present invention is set to satisfy the following expression.
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
(In the formula, θ is an emission angle of light from each of the plurality of light sources, f (θ, 0) is a BTDF front emission intensity function of the light diffusion plate, and p (θ) is a front luminance profile of the surface light source device by the individual light sources, and the front luminance profile is triangular or trapezoidal in consideration of overlap in order to make the front luminance of the surface light source device constant. Or a rectangular front luminance profile.)
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
(式中、θは、前記複数の光源のうちの個々の光源からの光の出射角であり、f(θ,0)は、前記光拡散板のBTDFの正面方向出射強度関数であり、p(θ)は、当該個々の光源による前記面光源装置の正面輝度プロファイルであって、当該正面輝度プロファイルは、当該面光源装置の正面輝度を一定にするために重なりを考慮した三角形状、台形状、又は、長方形状の正面輝度プロファイルである。) The point light source of the present invention is a point light source for a surface light source device including a plurality of light sources arranged two-dimensionally and a light diffusion plate that diffuses light from the plurality of light sources. The light distribution I (θ) of the point light source of the present invention is set to satisfy the following expression.
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
(In the formula, θ is an emission angle of light from each of the plurality of light sources, f (θ, 0) is a BTDF front emission intensity function of the light diffusion plate, and p (θ) is a front luminance profile of the surface light source device by the individual light sources, and the front luminance profile is triangular or trapezoidal in consideration of overlap in order to make the front luminance of the surface light source device constant. Or a rectangular front luminance profile.)
この光源によれば、配光分布I(θ)が、
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
を満たすように設定されているので、面光源装置の正面輝度を一定にすることができる。したがって、この光源によれば、光拡散板に特殊加工を要することなく、面光源装置の輝度の不均一を抑制することができる。 According to this light source, the light distribution I (θ) is
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
Therefore, the front luminance of the surface light source device can be made constant. Therefore, according to this light source, it is possible to suppress uneven brightness of the surface light source device without requiring special processing on the light diffusion plate.
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
を満たすように設定されているので、面光源装置の正面輝度を一定にすることができる。したがって、この光源によれば、光拡散板に特殊加工を要することなく、面光源装置の輝度の不均一を抑制することができる。 According to this light source, the light distribution I (θ) is
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
Therefore, the front luminance of the surface light source device can be made constant. Therefore, according to this light source, it is possible to suppress uneven brightness of the surface light source device without requiring special processing on the light diffusion plate.
本発明によれば、光拡散板に特殊加工を施すことなく、面光源装置及び透過型画像表示装置の輝度の不均一を抑制することができる。
According to the present invention, it is possible to suppress uneven brightness of the surface light source device and the transmissive image display device without performing special processing on the light diffusion plate.
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
図1は、本発明の実施形態に係る透過型画像表示装置及び面光源装置の構成を示す断面図であり、図2は、本発明の実施形態に係る面光源装置における光源の配列を上方から示す図である。なお、図1は、図2におけるS-S線に沿う断面図であり、図1では、透過型画像表示装置が分解されて示されている。
FIG. 1 is a cross-sectional view illustrating a configuration of a transmissive image display device and a surface light source device according to an embodiment of the present invention, and FIG. 2 illustrates an arrangement of light sources in the surface light source device according to the embodiment of the present invention from above. FIG. 1 is a cross-sectional view taken along the line SS in FIG. 2. In FIG. 1, the transmissive image display apparatus is shown in an exploded manner.
透過型画像表示装置1は、例えば液晶表示装置であり、液晶セル11の上下両面に偏光板12,13が積層されてなる透過型画像表示部10と、透過型画像表示部10の背面側(下側)に設けられた直下型の面光源装置20とを備えている。
The transmissive image display device 1 is, for example, a liquid crystal display device, and includes a transmissive image display unit 10 in which polarizing plates 12 and 13 are stacked on both upper and lower surfaces of a liquid crystal cell 11, and a rear surface side of the transmissive image display unit 10 ( And a direct-type surface light source device 20 provided on the lower side.
液晶セル11,偏光板12,13は、従来の液晶表示装置等の透過型画像表示装置で用いられているものを用いることができる。液晶セル11としては、TFT型、STN型等の公知の液晶セルが例示される。
The liquid crystal cell 11 and the polarizing plates 12 and 13 may be those used in a transmissive image display device such as a conventional liquid crystal display device. Examples of the liquid crystal cell 11 include known liquid crystal cells such as a TFT type and an STN type.
面光源装置20は、いわゆる直下型の面光源装置であり、2次元状に配列された複数の光源31を含む光源部30を有する。光源31としては、図3(a)に示すように(数タイプの輝度特性)、斜め方向に光を出射するバットウイングタイプやサイドエミッションタイプのLEDなどの点状光源が例示される。複数の光源31は略等間隔で配置されており、隣接する2つの光源31,31の中心間の距離をIとした場合、距離Iは、例えば15mm~150mmである。なお、光源31としてバットウイングタイプやサイドエミッションタイプのLEDを例示したが、図3(b)に示すように(数タイプの輝度特性)、真上に向けて光を出射するランバーシアンタイプなどの様々なLEDが適用可能である。光源31の詳細は後述する。
The surface light source device 20 is a so-called direct type surface light source device and includes a light source unit 30 including a plurality of light sources 31 arranged in a two-dimensional manner. As the light source 31, as shown in FIG. 3A (several types of luminance characteristics), a point light source such as a batwing type or side emission type LED that emits light in an oblique direction is exemplified. The plurality of light sources 31 are arranged at substantially equal intervals. When the distance between the centers of two adjacent light sources 31 and 31 is I, the distance I is, for example, 15 mm to 150 mm. Although the bat wing type and side emission type LEDs have been exemplified as the light source 31, as shown in FIG. 3B (several types of luminance characteristics), a Lambertian type that emits light toward the top is used. Various LEDs are applicable. Details of the light source 31 will be described later.
複数の光源31は、ランプボックス32内に配置されることによって支持され、ランプボックス32内における複数の光源31の間には、光反射部材33が設けられていることが好ましい。これにより、各光源31から出力された光が透過型画像表示部10側に確実に出力されるため、各光源31からの光を効率的に利用することが可能となる。
The plurality of light sources 31 are supported by being disposed in the lamp box 32, and a light reflecting member 33 is preferably provided between the plurality of light sources 31 in the lamp box 32. Thereby, since the light output from each light source 31 is reliably output to the transmissive image display part 10 side, it becomes possible to use the light from each light source 31 efficiently.
面光源装置20は、光源部30の前面側(図1中、上側)、すなわち、透過型画像表示部10側に光源31に対して離間して配置された光拡散板40を有している。上記光拡散板40と複数の光源31との間の離間距離をDとした場合、離間距離Dは、例えば5mm~50mmである。面光源装置20では、薄型化を図るため、I/Dが1.5以上であり、好ましくは、I/Dは2.5以上となるように、隣接する2光源31,31間の距離I及び離間距離Dが選択されている。
The surface light source device 20 includes a light diffusing plate 40 that is disposed away from the light source 31 on the front surface side (the upper side in FIG. 1) of the light source unit 30, that is, on the transmissive image display unit 10 side. . When the distance between the light diffusing plate 40 and the plurality of light sources 31 is D, the distance D is, for example, 5 mm to 50 mm. In the surface light source device 20, in order to reduce the thickness, the distance I between two adjacent light sources 31, 31 is set so that the I / D is 1.5 or more, and preferably the I / D is 2.5 or more. And the separation distance D is selected.
光拡散板40は、各光源31の像を透過型画像表示部10に投影しないために、光源部30からの光、すなわち、各光源31からの直接光及び光反射部材33で反射した反射光を透過型画像表示部10に向けて拡散照射するためのものである。光拡散板40の厚さdは、約0.8mm~5mm程度である。
The light diffusing plate 40 does not project the image of each light source 31 onto the transmissive image display unit 10, so that the light from the light source unit 30, that is, the direct light from each light source 31 and the reflected light reflected by the light reflecting member 33. Is diffusely irradiated toward the transmissive image display unit 10. The thickness d of the light diffusing plate 40 is about 0.8 mm to 5 mm.
光拡散板40は、透明材料、例えば透明樹脂、透明ガラスからなる。透明樹脂としては、ポリカーボネート樹脂、ABS樹脂(アクリロニトリル-スチレン-ブタジエン共重合体樹脂)、メタクリル樹脂、MS樹脂(メタクリル酸メチル-スチレン共重合体樹脂)、ポリスチレン樹脂、AS樹脂(アクリロニトリル-スチレン共重合体樹脂)、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂などが例示される。光拡散板40中には、液晶表示装置等の透過型画像表示装置で使用される光拡散板に含有される、光を拡散させるための拡散剤と同様の拡散剤が適宜添加されている。
The light diffusion plate 40 is made of a transparent material such as a transparent resin or transparent glass. Transparent resins include polycarbonate resin, ABS resin (acrylonitrile-styrene-butadiene copolymer resin), methacrylic resin, MS resin (methyl methacrylate-styrene copolymer resin), polystyrene resin, AS resin (acrylonitrile-styrene copolymer). Examples thereof include polyolefin resins such as coalesced resin), polyethylene, and polypropylene. In the light diffusing plate 40, a diffusing agent similar to the diffusing agent for diffusing light contained in a light diffusing plate used in a transmissive image display device such as a liquid crystal display device is appropriately added.
なお、本発明の光拡散板40としては、拡散剤粒子を添加した拡散板に限定することなく、斜め方向から入射する光を正面方向に偏向して出射することが可能な光偏向特性を有する光偏向板を含むものとする。
The light diffusing plate 40 of the present invention is not limited to a diffusing plate to which diffusing agent particles are added, and has light deflection characteristics that allow light incident from an oblique direction to be deflected and emitted in the front direction. An optical deflection plate is included.
次に、光源31について詳細に説明する。各光源31は、面光源装置20の正面輝度(すなわち、正面方向の出射強度)が一定になるように、すなわち、面光源装置20の輝度ムラを抑制するように、配光分布が設定されている。以下では、各光源31の配光分布の設定方法について説明する。
Next, the light source 31 will be described in detail. Each light source 31 has a light distribution distribution set so that the front luminance (that is, the emission intensity in the front direction) of the surface light source device 20 is constant, that is, the luminance unevenness of the surface light source device 20 is suppressed. Yes. Below, the setting method of the light distribution of each light source 31 is demonstrated.
まず、光源31の配光特性を考える。図4は、1光源31からの出射光の配光特性を説明するための図であり、図5は、光拡散板40の光照射面(光源側の面、図の下側面)における配光特性を説明するための図である。
First, consider the light distribution characteristics of the light source 31. 4 is a diagram for explaining the light distribution characteristics of the light emitted from one light source 31, and FIG. 5 shows the light distribution on the light irradiation surface (light source side surface, lower surface of the drawing) of the light diffusion plate 40. It is a figure for demonstrating a characteristic.
図4に示すように、光度は、単位立体角Ωあたりの光束Φで表される。その配光特性I(θ)は、光の出射角θの関数として、下式(1)で表される。
As shown in FIG. 4, the luminous intensity is represented by a light flux Φ per unit solid angle Ω. The light distribution characteristic I (θ) is expressed by the following equation (1) as a function of the light emission angle θ.
図5に示すように、光源31と光拡散板40との距離D、出射角θの光束Φの光拡散板40における照射位置x(θ=0°のときx=0)とすると、光拡散板40における光束Φの広がりΔlは下式(2)で表される。
よって、光拡散板40に対する照度Eは下式(3)で表される。
As shown in FIG. 5, when the distance D between the light source 31 and the light diffusing plate 40 and the irradiation position x (x = 0 when θ = 0 °) of the light beam Φ having the emission angle θ are assumed to be light diffusing. The spread Δl of the light flux Φ on the plate 40 is expressed by the following equation (2).
Therefore, the illuminance E with respect to the light diffusing plate 40 is expressed by the following equation (3).
次に、光拡散板40の配光特性、すなわちBSDF(Bidirectional Scattering Distribution Function)、特にBTDF(Bidirectional Transmission Distribution Function)を考える。図6は、光拡散板40のBTDFの出射角依存性を説明するための図であり、図7は、光拡散板40のBTDFの正面方向出射強度の入射角依存性を説明するための図である。
Next, consider the light distribution characteristics of the light diffusion plate 40, that is, BSDF (Bidirectional Scattering Distribution Function), particularly BTDF (Bidirectional Transmission Distribution Function). FIG. 6 is a diagram for explaining the dependency of the light diffusion plate 40 on the emission angle of BTDF, and FIG. 7 is a diagram for explaining the dependency of the light diffusion plate 40 on the incidence angle of the emission intensity in the front direction of BTDF. It is.
図6に示すように、光拡散板40への光の入射角θの光度Iiと光拡散板40からの光の出射角ψの光度Ioとは、入射角θ及び出射角ψの関数f(θ,ψ)として、下式(4)で表される。
As shown in FIG. 6, the light intensity Ii at the incident angle θ of light to the light diffusion plate 40 and the light intensity Io at the light emission angle ψ from the light diffusion plate 40 are functions f ( (θ, ψ) is expressed by the following formula (4).
図7に示すように、面光源装置20の正面輝度としては正面方向ψ=0°の出射強度が重要であるため、上記(4)式を正面方向出射強度の関数f(θ,0)に置き換えると、下式(5)で表される。
As shown in FIG. 7, since the emission intensity in the front direction ψ = 0 ° is important as the front luminance of the surface light source device 20, the above equation (4) is changed to a function f (θ, 0) of the emission intensity in the front direction. When replaced, it is expressed by the following formula (5).
次に、光源31と光拡散板40との組合せの配光特性を考える。図8は、光源31と光拡散板40との組合せの配光特性を説明するための図である。正面輝度Lは、上記(3)式及び(5)式より、下式(6)で表される。
Next, consider the light distribution characteristics of the combination of the light source 31 and the light diffusion plate 40. FIG. 8 is a diagram for explaining the light distribution characteristics of the combination of the light source 31 and the light diffusing plate 40. The front luminance L is expressed by the following equation (6) from the above equations (3) and (5).
上記(6)式において、I(θ)・cos2θ・f(θ,0)がθによらず一定であるならば、ひいては位置xによらず一定であるならば、正面輝度Lをフラットにすることができる。すなわち、下式(7)を満たすような配光分布I(θ)を光源31の配光特性に設定すれば、正面輝度Lを一定にすることができることとなる。
In the above equation (6), if I (θ) · cos 2 θ · f (θ, 0) is constant regardless of θ, and if it is constant regardless of position x, the front luminance L is flat. Can be. That is, if the light distribution I (θ) satisfying the following expression (7) is set to the light distribution characteristic of the light source 31, the front luminance L can be made constant.
次に、複数の光源31と光拡散板40との組合せの配光特性を考える。図9は、複数の光源31と光拡散板40との組合せの配光特性を説明するための図である。面光源装置20では、複数の光源31が格子配列されているので、隣接する光源31による正面輝度プロファイルg(x)の重なりを考慮する必要がある。例えば、各光源31による正面輝度プロファイルg(x)を三角形状、台形状、又は、長方形状にすれば、隣接する光源31による正面輝度プロファイルg(x)の重なり部分でも正面輝度を一定にすることができる。
Next, consider the light distribution characteristics of the combination of the plurality of light sources 31 and the light diffusion plate 40. FIG. 9 is a diagram for explaining the light distribution characteristics of the combination of the plurality of light sources 31 and the light diffusing plate 40. In the surface light source device 20, since the plurality of light sources 31 are arranged in a grid, it is necessary to consider the overlap of the front luminance profiles g (x) due to the adjacent light sources 31. For example, if the front luminance profile g (x) by each light source 31 is triangular, trapezoidal, or rectangular, the front luminance is constant even in the overlapping portion of the front luminance profiles g (x) by the adjacent light sources 31. be able to.
ここで、光源31の配列方向の位置xと光源31からの光の出射角θとは1対1対応であるので、正面輝度プロファイルg(x)は、θの関数p(θ)に置き換えることが可能である。このp(θ)を上記(7)式に乗算すると、下式(8)が求められる。
すなわち、上式(8)を満たすような配光分布I(θ)を各光源31の配光特性に設定すれば、正面輝度を一定にすることができることとなる。なお、配光分布I(θ)及び正面輝度プロファイルp(θ)としては、特に断りがない限り規格化した値が用いられる。
Here, since the position x in the arrangement direction of the light sources 31 and the emission angle θ of the light from the light sources 31 have a one-to-one correspondence, the front luminance profile g (x) is replaced with a function p (θ) of θ. Is possible. By multiplying the above equation (7) by this p (θ), the following equation (8) is obtained.
That is, if the light distribution I (θ) that satisfies the above equation (8) is set to the light distribution characteristic of each light source 31, the front luminance can be made constant. As the light distribution I (θ) and the front luminance profile p (θ), normalized values are used unless otherwise specified.
具体的には、まず、光拡散板40のBTDFの正面方向出射強度関数f(θ,0)は、使用する光拡散板のBTDF(又は、BSDF)を、例えば変角光度計を用いて実測することによって求める。
Specifically, first, the BTDF front emission intensity function f (θ, 0) of the light diffusing plate 40 is measured by using, for example, a goniophotometer for the BTDF (or BSDF) of the light diffusing plate to be used. By seeking.
次に、正面輝度プロファイルp(θ)は、得たい正面輝度プロファイルに基づいて、以下のように求める。図10、11は、正面輝度プロファイルp(θ)を示す図である。図10には、光源31が位置x=・・・、-3I、-2I、-I、0、I、2I、3I、・・・に配置されたときの光源31ごとの規格化正面輝度分布g(x)、すなわち、正面輝度プロファイルp(θ)が示されている。
Next, the front luminance profile p (θ) is obtained as follows based on the desired front luminance profile. 10 and 11 are diagrams showing the front luminance profile p (θ). FIG. 10 shows a normalized front luminance distribution for each light source 31 when the light source 31 is arranged at positions x =..., −3I, −2I, −I, 0, I, 2I, 3I,. g (x), that is, the front luminance profile p (θ) is shown.
例えば、図10に示すように、台形状の規格化正面輝度分布g(x)を得たい場合、各光源31の位置を基準とした光源31の配列方向の位置であって、正面輝度Lの減衰開始位置をx1(0≦x1≦I/2)とすると、
|x|≦x1において、
g(x)=1とし、
x1<|x|≦I-x1において、
g(x)=(I-x1-x)/(I-2x1)とし、
I-x1<|x|において、
g(x)=0とする。
なお、図11に示すように、x1=0のとき三角形状、0<x1<I/2のとき台形状、x1=I/2のとき長方形状の規格化正面輝度分布g(x)を得ることができる。 For example, as shown in FIG. 10, when it is desired to obtain a trapezoidal normalized front luminance distribution g (x), it is a position in the arrangement direction of thelight sources 31 with respect to the position of each light source 31 and has a front luminance L. If the attenuation start position is x 1 (0 ≦ x 1 ≦ I / 2),
| x | ≦ x 1
g (x) = 1,
x 1 <| x | ≦ I−x 1
g (x) = (I−x 1 −x) / (I−2x 1 )
In I−x 1 <| x |
Let g (x) = 0.
As shown in FIG. 11, a normalized front luminance distribution g (x that is triangular when x 1 = 0, trapezoidal when 0 <x 1 <I / 2, and rectangular when x 1 = I / 2. ) Can be obtained.
|x|≦x1において、
g(x)=1とし、
x1<|x|≦I-x1において、
g(x)=(I-x1-x)/(I-2x1)とし、
I-x1<|x|において、
g(x)=0とする。
なお、図11に示すように、x1=0のとき三角形状、0<x1<I/2のとき台形状、x1=I/2のとき長方形状の規格化正面輝度分布g(x)を得ることができる。 For example, as shown in FIG. 10, when it is desired to obtain a trapezoidal normalized front luminance distribution g (x), it is a position in the arrangement direction of the
| x | ≦ x 1
g (x) = 1,
x 1 <| x | ≦ I−x 1
g (x) = (I−x 1 −x) / (I−2x 1 )
In I−x 1 <| x |
Let g (x) = 0.
As shown in FIG. 11, a normalized front luminance distribution g (x that is triangular when x 1 = 0, trapezoidal when 0 <x 1 <I / 2, and rectangular when x 1 = I / 2. ) Can be obtained.
ここで、tanθ=x/Dであることから、減衰開始位置x1に対する光源31の光の出射角θx1=ArcTan(x1/D)、位置Iに対する光源31の光の出射角θI=ArcTan(I/D)となり、g(x)をθの関数p(θ)に変換すると、
|θ|≦θx1において、
p(θ)=1であり、
θx1<|θ|≦ArcTan{(I-x1)/D}において、
p(θ)=(tanθI-tanθx1-tanθ)/(tanθI-2tanθx1)であり、
ArcTan{(I-x1)/D}≦|θ|において、
p(θ)=0となる。 Here, since tan θ = x / D, the light emission angle θ x1 of thelight source 31 with respect to the attenuation start position x 1 = ArcTan (x 1 / D), and the light emission angle of the light source 31 with respect to the position I θ I = ArcTan (I / D), and g (x) is converted into a function p (θ) of θ,
| θ | ≦ θ x1
p (θ) = 1,
In θ x1 <| θ | ≦ ArcTan {(I−x 1 ) / D},
p (θ) = (tan θ I −tan θ x1 −tan θ) / (tan θ I −2 tan θ x1 ),
ArcTan {(I−x 1 ) / D} ≦ | θ |
p (θ) = 0.
|θ|≦θx1において、
p(θ)=1であり、
θx1<|θ|≦ArcTan{(I-x1)/D}において、
p(θ)=(tanθI-tanθx1-tanθ)/(tanθI-2tanθx1)であり、
ArcTan{(I-x1)/D}≦|θ|において、
p(θ)=0となる。 Here, since tan θ = x / D, the light emission angle θ x1 of the
| θ | ≦ θ x1
p (θ) = 1,
In θ x1 <| θ | ≦ ArcTan {(I−x 1 ) / D},
p (θ) = (tan θ I −tan θ x1 −tan θ) / (tan θ I −2 tan θ x1 ),
ArcTan {(I−x 1 ) / D} ≦ | θ |
p (θ) = 0.
このように、光拡散板40のBTDFの正面方向出射強度関数f(θ,0)を実測により求め、各光源31による正面輝度プロファイルp(θ)を決めることによって、上記(8)式より、各光源31の配光分布I(θ)の設定を求めることができる。
In this way, by calculating the front direction emission intensity function f (θ, 0) of the BTDF of the light diffusing plate 40 by actual measurement and determining the front luminance profile p (θ) by each light source 31, from the above equation (8), The setting of the light distribution I (θ) of each light source 31 can be obtained.
求めた各光源31の配光分布I(θ)の設定は、例えば、LED中の半導体チップを覆う樹脂形状や半導体チップの発光面側に設けられるレンズ形状などによって実現可能である。
The setting of the obtained light distribution I (θ) of each light source 31 can be realized by, for example, a resin shape covering the semiconductor chip in the LED or a lens shape provided on the light emitting surface side of the semiconductor chip.
このように、本実施形態の面光源装置20によれば、複数の光源31それぞれの配光分布I(θ)が、
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
を満たすように設定されているので、正面輝度を一定にすることができる。したがって、本実施形態の面光源装置20によれば、光拡散板40に特殊加工を施すことなく、輝度の不均一を抑制することができる。 Thus, according to the surfacelight source device 20 of the present embodiment, the light distribution I (θ) of each of the plurality of light sources 31 is
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
Since it is set to satisfy, the front luminance can be made constant. Therefore, according to the surfacelight source device 20 of the present embodiment, it is possible to suppress uneven brightness without performing special processing on the light diffusion plate 40.
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
を満たすように設定されているので、正面輝度を一定にすることができる。したがって、本実施形態の面光源装置20によれば、光拡散板40に特殊加工を施すことなく、輝度の不均一を抑制することができる。 Thus, according to the surface
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
Since it is set to satisfy, the front luminance can be made constant. Therefore, according to the surface
また、本実施形態の透過型画像表示装置1によれば、この面光源装置20を備えているので、輝度の不均一を抑制することができる。
Further, according to the transmissive image display device 1 of the present embodiment, since the surface light source device 20 is provided, it is possible to suppress nonuniform luminance.
また、本実施形態の光源31によれば、上記したように配光分布I(θ)が、
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
を満たすように設定されているので、面光源装置の正面輝度を一定にすることができる。したがって、本実施形態の光源31によれば、光拡散板40に特殊加工を要することなく、面光源装置20の輝度の不均一を抑制することができる。 Further, according to thelight source 31 of the present embodiment, as described above, the light distribution I (θ) is
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
Therefore, the front luminance of the surface light source device can be made constant. Therefore, according to thelight source 31 of the present embodiment, nonuniform brightness of the surface light source device 20 can be suppressed without requiring special processing on the light diffusion plate 40.
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
を満たすように設定されているので、面光源装置の正面輝度を一定にすることができる。したがって、本実施形態の光源31によれば、光拡散板40に特殊加工を要することなく、面光源装置20の輝度の不均一を抑制することができる。 Further, according to the
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
Therefore, the front luminance of the surface light source device can be made constant. Therefore, according to the
なお、本発明の思想によれば、上記(8)式を変形した下式(9)に基づいて光拡散板40のBTDFの正面方向出射強度関数f(θ,0)を設定することも考えられる。
しかしながら、光拡散板としては、透明材料に拡散剤粒子を分散したものを使用することが多く、この種の光拡散板では、規定の全光線透過率になるように拡散剤濃度を設定すると、BSDF、すなわちBTDFを自由に設定することが困難となる。したがって、本発明のように、各光源31に配光分布I(θ)を設定することが好ましい。
According to the idea of the present invention, it is also possible to set the BTDF front emission intensity function f (θ, 0) of the BTDF of the light diffusing plate 40 based on the following equation (9) obtained by modifying the above equation (8). It is done.
However, as the light diffusing plate, a material in which diffusing agent particles are dispersed in a transparent material is often used. With this type of light diffusing plate, when the diffusing agent concentration is set so as to have a prescribed total light transmittance, It becomes difficult to set BSDF, that is, BTDF freely. Therefore, it is preferable to set the light distribution I (θ) for each light source 31 as in the present invention.
なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。
The present invention is not limited to the above-described embodiment, and various modifications can be made.
以下、実施例1~8に基づいて、本発明の光源31の配光分布I(θ)の設定方法をより具体的に説明する。
(実施例1) Hereinafter, a method for setting the light distribution I (θ) of thelight source 31 according to the present invention will be described more specifically based on Examples 1 to 8.
Example 1
(実施例1) Hereinafter, a method for setting the light distribution I (θ) of the
Example 1
まず、光拡散板40のBTDFf(θ,ψ)を測定した。光拡散板40としては、以下の5種の住友化学株式会社製スミペックス(登録商標)Eを使用した。
RM871S(厚さ2mm、全光線透過率Tt=53%)
RM861S(厚さ2mm、全光線透過率Tt=55%)
RM862S(厚さ2mm、全光線透過率Tt=60%)
RM863S(厚さ2mm、全光線透過率Tt=65%)
RM864S(厚さ2mm、全光線透過率Tt=70%)
測定装置としては、日本電色工業株式会社製GC5000L型変角光度計を用い、透過測定モードを使用した。なお、光源の角度を手動で変更して、光の入射角θを0°から75°まで5°間隔で設定した。それぞれの入射角θに対して、出射角ψ=-85°~85°の範囲で測定を実施し、BTDF(BSDF)f(θ,ψ)を取得した。図12~図16に各光拡散板40のBTDFf(θ,ψ)の測定結果を示す。図12~図16において、四角枠部分、すなわち出射角ψ=0°の測定結果より、BTDFの正面方向出射強度関数f(θ,0)を得た。 First, BTDFf (θ, ψ) of thelight diffusion plate 40 was measured. As the light diffusion plate 40, the following five types of Sumipex (registered trademark) E manufactured by Sumitomo Chemical Co., Ltd. were used.
RM871S (thickness 2 mm, total light transmittance Tt = 53%)
RM861S (thickness 2 mm, total light transmittance Tt = 55%)
RM862S (thickness 2 mm, total light transmittance Tt = 60%)
RM863S (thickness 2 mm, total light transmittance Tt = 65%)
RM864S (thickness 2 mm, total light transmittance Tt = 70%)
As a measuring device, a GC5000L type variable angle photometer manufactured by Nippon Denshoku Industries Co., Ltd. was used, and a transmission measurement mode was used. In addition, the angle of the light source was changed manually, and the incident angle θ of the light was set from 0 ° to 75 ° at intervals of 5 °. For each incident angle θ, measurement was performed in the range of the emission angle ψ = −85 ° to 85 °, and BTDF (BSDF) f (θ, ψ) was obtained. 12 to 16 show the measurement results of BTDFf (θ, ψ) of eachlight diffusion plate 40. FIG. 12 to 16, the front-side outgoing intensity function f (θ, 0) of the BTDF was obtained from the measurement result of the square frame portion, that is, the outgoing angle ψ = 0 °.
RM871S(厚さ2mm、全光線透過率Tt=53%)
RM861S(厚さ2mm、全光線透過率Tt=55%)
RM862S(厚さ2mm、全光線透過率Tt=60%)
RM863S(厚さ2mm、全光線透過率Tt=65%)
RM864S(厚さ2mm、全光線透過率Tt=70%)
測定装置としては、日本電色工業株式会社製GC5000L型変角光度計を用い、透過測定モードを使用した。なお、光源の角度を手動で変更して、光の入射角θを0°から75°まで5°間隔で設定した。それぞれの入射角θに対して、出射角ψ=-85°~85°の範囲で測定を実施し、BTDF(BSDF)f(θ,ψ)を取得した。図12~図16に各光拡散板40のBTDFf(θ,ψ)の測定結果を示す。図12~図16において、四角枠部分、すなわち出射角ψ=0°の測定結果より、BTDFの正面方向出射強度関数f(θ,0)を得た。 First, BTDFf (θ, ψ) of the
RM871S (
RM861S (
RM862S (
RM863S (
RM864S (
As a measuring device, a GC5000L type variable angle photometer manufactured by Nippon Denshoku Industries Co., Ltd. was used, and a transmission measurement mode was used. In addition, the angle of the light source was changed manually, and the incident angle θ of the light was set from 0 ° to 75 ° at intervals of 5 °. For each incident angle θ, measurement was performed in the range of the emission angle ψ = −85 ° to 85 °, and BTDF (BSDF) f (θ, ψ) was obtained. 12 to 16 show the measurement results of BTDFf (θ, ψ) of each
次に、正面輝度プロファイルp(θ)を決めた。実施例1では、光源31の配置をI/D=3.0とし、正面輝度プロファイルp(θ)における減衰開始位置をx1=0.0Dとした。すなわち、正面輝度プロファイルp(θ)を三角形状とした。
Next, a front luminance profile p (θ) was determined. In Example 1, the arrangement of the light source 31 was I / D = 3.0, and the attenuation start position in the front luminance profile p (θ) was x 1 = 0.0D. That is, the front luminance profile p (θ) is triangular.
次に、求めたp(θ)及びf(θ,0)を用い、上記(8)式より、各光源31の配光分布I(θ)を求めた。図17に、求めたI(θ)をグラフ化する。図17に示す配光分布I(θ)を各光源31に設定することによって、出射角θに依存することなく、面光源装置20の正面輝度を一定にすることができた。すなわち、光拡散板40に特殊加工を施すことなく、面光源装置20の輝度の不均一を低減することができた。
(実施例2) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of eachlight source 31 was obtained from the above equation (8). FIG. 17 is a graph of the obtained I (θ). By setting the light distribution I (θ) shown in FIG. 17 for each light source 31, the front luminance of the surface light source device 20 can be made constant without depending on the emission angle θ. That is, the brightness nonuniformity of the surface light source device 20 could be reduced without performing special processing on the light diffusion plate 40.
(Example 2)
(実施例2) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of each
(Example 2)
まず、実施例1と同様に、光拡散板40のBTDFの正面方向出射強度関数f(θ,0)を実測から求めた。
First, as in Example 1, the BTDF front direction emission intensity function f (θ, 0) of the light diffusing plate 40 was obtained from actual measurement.
次に、正面輝度プロファイルp(θ)を決めた。実施例2では、光源31の配置をI/D=3.0とし、正面輝度プロファイルp(θ)における減衰開始位置をx1=0.5Dとした。すなわち、正面輝度プロファイルp(θ)を台形状とした。
Next, a front luminance profile p (θ) was determined. In Example 2, the arrangement of the light source 31 was set to I / D = 3.0, and the attenuation start position in the front luminance profile p (θ) was set to x 1 = 0.5D. That is, the front luminance profile p (θ) was trapezoidal.
次に、求めたp(θ)及びf(θ,0)を用い、上記(8)式より、各光源31の配光分布I(θ)を求めた。図18に、求めたI(θ)をグラフ化する。図18に示す配光分布I(θ)を各光源31に設定することによって、出射角θに依存することなく、面光源装置20の正面輝度を一定にすることができた。すなわち、光拡散板40に特殊加工を施すことなく、面光源装置20の輝度の不均一を低減することができた。
(実施例3) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of eachlight source 31 was obtained from the above equation (8). FIG. 18 is a graph of the obtained I (θ). By setting the light distribution I (θ) shown in FIG. 18 for each light source 31, the front luminance of the surface light source device 20 could be made constant without depending on the emission angle θ. That is, the brightness nonuniformity of the surface light source device 20 could be reduced without performing special processing on the light diffusion plate 40.
(Example 3)
(実施例3) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of each
(Example 3)
まず、実施例1と同様に、光拡散板40のBTDFの正面方向出射強度関数f(θ,0)を実測から求めた。
First, as in Example 1, the BTDF front direction emission intensity function f (θ, 0) of the light diffusing plate 40 was obtained from actual measurement.
次に、正面輝度プロファイルp(θ)を決めた。実施例3では、光源31の配置をI/D=3.0とし、正面輝度プロファイルp(θ)における減衰開始位置をx1=1.0Dとした。すなわち、正面輝度プロファイルp(θ)を台形状とした。
Next, a front luminance profile p (θ) was determined. In Example 3, the arrangement of the light source 31 was I / D = 3.0, and the attenuation start position in the front luminance profile p (θ) was x 1 = 1.0D. That is, the front luminance profile p (θ) was trapezoidal.
次に、求めたp(θ)及びf(θ,0)を用い、上記(8)式より、各光源31の配光分布I(θ)を求めた。図19に、求めたI(θ)をグラフ化する。図19に示す配光分布I(θ)を各光源31に設定することによって、出射角θに依存することなく、面光源装置20の正面輝度を一定にすることができた。すなわち、光拡散板40に特殊加工を施すことなく、面光源装置20の輝度の不均一を低減することができた。
(実施例4) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of eachlight source 31 was obtained from the above equation (8). In FIG. 19, the obtained I (θ) is graphed. By setting the light distribution I (θ) shown in FIG. 19 for each light source 31, the front luminance of the surface light source device 20 could be made constant without depending on the emission angle θ. That is, the brightness nonuniformity of the surface light source device 20 could be reduced without performing special processing on the light diffusion plate 40.
Example 4
(実施例4) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of each
Example 4
まず、実施例1と同様に、光拡散板40のBTDFの正面方向出射強度関数f(θ,0)を実測から求めた。
First, as in Example 1, the BTDF front direction emission intensity function f (θ, 0) of the light diffusing plate 40 was obtained from actual measurement.
次に、正面輝度プロファイルp(θ)を決めた。実施例4では、光源31の配置をI/D=3.0とし、輝度プロファイルp(θ)における減衰開始位置をx1=1.5Dとした。すなわち、正面輝度プロファイルp(θ)を長方形状とした。
Next, a front luminance profile p (θ) was determined. In Example 4, the arrangement of the light source 31 was I / D = 3.0, and the attenuation start position in the luminance profile p (θ) was x 1 = 1.5D. That is, the front luminance profile p (θ) is rectangular.
次に、求めたp(θ)及びf(θ,0)を用い、上記(8)式より、各光源31の配光分布I(θ)を求めた。図20に、求めたI(θ)をグラフ化する。図20に示す配光分布I(θ)を各光源31に設定することによって、出射角θに依存することなく、面光源装置20の正面輝度を一定にすることができた。すなわち、光拡散板40に特殊加工を施すことなく、面光源装置20の輝度の不均一を低減することができた。
(実施例5) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of eachlight source 31 was obtained from the above equation (8). FIG. 20 is a graph of the obtained I (θ). By setting the light distribution I (θ) shown in FIG. 20 for each light source 31, the front luminance of the surface light source device 20 can be made constant without depending on the emission angle θ. That is, the brightness nonuniformity of the surface light source device 20 could be reduced without performing special processing on the light diffusion plate 40.
(Example 5)
(実施例5) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of each
(Example 5)
まず、実施例1と同様に、光拡散板40のBTDFの正面方向出射強度関数f(θ,0)を実測から求めた。
First, as in Example 1, the BTDF front direction emission intensity function f (θ, 0) of the light diffusing plate 40 was obtained from actual measurement.
次に、正面輝度プロファイルp(θ)を決めた。実施例5では、光源31の配置をI/D=4.5とし、正面輝度プロファイルp(θ)における減衰開始位置をx1=0.0Dとした。すなわち、正面輝度プロファイルp(θ)を三角形状とした。
Next, a front luminance profile p (θ) was determined. In Example 5, the arrangement of the light source 31 was I / D = 4.5, and the attenuation start position in the front luminance profile p (θ) was x 1 = 0.0D. That is, the front luminance profile p (θ) is triangular.
次に、求めたp(θ)及びf(θ,0)を用い、上記(8)式より、各光源31の配光分布I(θ)を求めた。図21に、求めたI(θ)をグラフ化する。図21に示す配光分布I(θ)を各光源31に設定することによって、出射角θに依存することなく、面光源装置20の正面輝度を一定にすることができた。すなわち、光拡散板40に特殊加工を施すことなく、面光源装置20の輝度の不均一を低減することができた。
(実施例6) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of eachlight source 31 was obtained from the above equation (8). FIG. 21 is a graph of the obtained I (θ). By setting the light distribution I (θ) shown in FIG. 21 for each light source 31, the front luminance of the surface light source device 20 can be made constant without depending on the emission angle θ. That is, the brightness nonuniformity of the surface light source device 20 could be reduced without performing special processing on the light diffusion plate 40.
(Example 6)
(実施例6) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of each
(Example 6)
まず、実施例1と同様に、光拡散板40のBTDFの正面方向出射強度関数f(θ,0)を実測から求めた。
First, as in Example 1, the BTDF front direction emission intensity function f (θ, 0) of the light diffusing plate 40 was obtained from actual measurement.
次に、正面輝度プロファイルp(θ)を決めた。実施例6では、光源31の配置をI/D=4.5とし、正面輝度プロファイルp(θ)における減衰開始位置をx1=0.75Dとした。すなわち、正面輝度プロファイルp(θ)を台形状とした。
Next, a front luminance profile p (θ) was determined. In Example 6, the arrangement of the light source 31 was I / D = 4.5, and the attenuation start position in the front luminance profile p (θ) was x 1 = 0.75D. That is, the front luminance profile p (θ) was trapezoidal.
次に、求めたp(θ)及びf(θ,0)を用い、上記(8)式より、各光源31の配光分布I(θ)を求めた。図22に、求めたI(θ)をグラフ化する。図22に示す配光分布I(θ)を各光源31に設定することによって、出射角θに依存することなく、面光源装置20の正面輝度を一定にすることができた。すなわち、光拡散板40に特殊加工を施すことなく、面光源装置20の輝度の不均一を低減することができた。
(実施例7) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of eachlight source 31 was obtained from the above equation (8). FIG. 22 is a graph of the obtained I (θ). By setting the light distribution I (θ) shown in FIG. 22 for each light source 31, the front luminance of the surface light source device 20 could be made constant without depending on the emission angle θ. That is, the brightness nonuniformity of the surface light source device 20 could be reduced without performing special processing on the light diffusion plate 40.
(Example 7)
(実施例7) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of each
(Example 7)
まず、実施例1と同様に、光拡散板40のBTDFの正面方向出射強度関数f(θ,0)を実測から求めた。
First, as in Example 1, the BTDF front direction emission intensity function f (θ, 0) of the light diffusing plate 40 was obtained from actual measurement.
次に、正面輝度プロファイルp(θ)を決めた。実施例7では、光源31の配置をI/D=4.5とし、正面輝度プロファイルp(θ)における減衰開始位置をx1=1.5Dとした。すなわち、正面輝度プロファイルp(θ)を台形状とした。
Next, a front luminance profile p (θ) was determined. In Example 7, the arrangement of the light source 31 was I / D = 4.5, and the attenuation start position in the front luminance profile p (θ) was x 1 = 1.5D. That is, the front luminance profile p (θ) was trapezoidal.
次に、求めたp(θ)及びf(θ,0)を用い、上記(8)式より、各光源31の配光分布I(θ)を求めた。図23に、求めたI(θ)をグラフ化する。図23に示す配光分布I(θ)を各光源31に設定することによって、出射角θに依存することなく、面光源装置20の正面輝度を一定にすることができた。すなわち、光拡散板40に特殊加工を施すことなく、面光源装置20の輝度の不均一を低減することができた。
(実施例8) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of eachlight source 31 was obtained from the above equation (8). In FIG. 23, the obtained I (θ) is graphed. By setting the light distribution I (θ) shown in FIG. 23 for each light source 31, the front luminance of the surface light source device 20 can be made constant without depending on the emission angle θ. That is, the brightness nonuniformity of the surface light source device 20 could be reduced without performing special processing on the light diffusion plate 40.
(Example 8)
(実施例8) Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of each
(Example 8)
まず、実施例1と同様に、光拡散板40のBTDFの正面方向出射強度関数f(θ,0)を実測から求めた。
First, as in Example 1, the BTDF front direction emission intensity function f (θ, 0) of the light diffusing plate 40 was obtained from actual measurement.
次に、正面輝度プロファイルp(θ)を決めた。実施例8では、光源31の配置をI/D=4.5とし、正面輝度プロファイルp(θ)における減衰開始位置をx1=2.25Dとした。すなわち、正面輝度プロファイルp(θ)を長方形状とした。
Next, a front luminance profile p (θ) was determined. In Example 8, the arrangement of the light sources 31 was I / D = 4.5, and the attenuation start position in the front luminance profile p (θ) was x 1 = 2.25D. That is, the front luminance profile p (θ) is rectangular.
次に、求めたp(θ)及びf(θ,0)を用い、上記(8)式より、各光源31の配光分布I(θ)を求めた。図24に、求めたI(θ)をグラフ化する。図24に示す配光分布I(θ)を各光源31に設定することによって、出射角θに依存することなく、面光源装置20の正面輝度を一定にすることができた。すなわち、光拡散板40に特殊加工を施すことなく、面光源装置20の輝度の不均一を低減することができた。
Next, using the obtained p (θ) and f (θ, 0), the light distribution I (θ) of each light source 31 was obtained from the above equation (8). In FIG. 24, the obtained I (θ) is graphed. By setting the light distribution I (θ) shown in FIG. 24 for each light source 31, the front luminance of the surface light source device 20 can be made constant without depending on the emission angle θ. That is, the brightness nonuniformity of the surface light source device 20 could be reduced without performing special processing on the light diffusion plate 40.
なお、図17~図24において、光拡散板RM863S及びRM864Sに関して出射角θ=0°付近Aで変動が大きい原因は、図15、16に示すように、RM863S及びRM864Sは透明度が比較的高いことにより、素抜け成分が多いことであると考えられる。これより、透明度が比較的高い光拡散板を用いる場合には、出射角θ=0°付近Aの配光分布を細かく調整する必要があると考えられる。
In FIG. 17 to FIG. 24, the reason why the fluctuation is large in the vicinity of the emission angle θ = 0 ° A with respect to the light diffusion plates RM863S and RM864S is that RM863S and RM864S have relatively high transparency as shown in FIGS. Therefore, it can be considered that there are many unclear components. Accordingly, when using a light diffusion plate having a relatively high transparency, it is considered necessary to finely adjust the light distribution in the vicinity of the emission angle θ = 0 °.
光拡散板に特殊加工を施すことなく、面光源装置及び透過型画像表示装置の輝度ムラを抑制する用途に適用することができる。
The present invention can be applied to the application of suppressing luminance unevenness of the surface light source device and the transmissive image display device without performing special processing on the light diffusion plate.
1 透過型画像表示装置
10 透過型画像表示部
11 液晶セル
12,13 偏光板
20 面光源装置
30 光源部
31 光源
32 ランプボックス
33 光反射部材
40 光拡散板 DESCRIPTION OFSYMBOLS 1 Transmission type image display apparatus 10 Transmission type image display part 11 Liquid crystal cell 12, 13 Polarizing plate 20 Surface light source device 30 Light source part 31 Light source 32 Lamp box 33 Light reflection member 40 Light diffusing plate
10 透過型画像表示部
11 液晶セル
12,13 偏光板
20 面光源装置
30 光源部
31 光源
32 ランプボックス
33 光反射部材
40 光拡散板 DESCRIPTION OF
Claims (4)
- 2次元配列された複数の光源であって、当該複数の光源それぞれは点状の光源である、当該複数の光源と、
前記複数の光源からの光を拡散させる光拡散板と、
を備える面光源装置において、
前記複数の光源のうちの個々の光源の配光分布I(θ)は、下式を満たすように設定されている、面光源装置。
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
(式中、θは、前記個々の光源からの光の出射角であり、f(θ,0)は、前記光拡散板のBTDFの正面方向出射強度関数であり、p(θ)は、当該個々の光源による前記面光源装置の正面輝度プロファイルであって、当該正面輝度プロファイルは、当該面光源装置の正面輝度を一定にするために重なりを考慮した三角形状、台形状、又は、長方形状の正面輝度プロファイルである。) A plurality of light sources arranged two-dimensionally, each of the plurality of light sources being a point light source;
A light diffusing plate for diffusing light from the plurality of light sources;
In a surface light source device comprising:
A surface light source device in which a light distribution I (θ) of each of the plurality of light sources is set to satisfy the following expression.
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
(In the formula, θ is an emission angle of light from the individual light sources, f (θ, 0) is a front direction emission intensity function of BTDF of the light diffusion plate, and p (θ) is A front luminance profile of the surface light source device by individual light sources, the front luminance profile being triangular, trapezoidal, or rectangular in consideration of overlap in order to make the front luminance of the surface light source device constant Front luminance profile.) - 前記正面方向出射強度関数f(θ,0)は、前記光拡散板のBTDFを測定することによって求め、
前記正面輝度プロファイルp(θ)は、下式により求める、請求項1記載の面光源装置。
|θ|≦θx1において、
p(θ)=1
θx1<|θ|≦ArcTan{(I-x1)/D}において、
p(θ)=(tanθI-tanθx1-tanθ)/(tanθI-2tanθx1)
ArcTan{(I-x1)/D}≦|θ|において、
p(θ)=0
(式中、Iは、前記複数の光源の間隔であり、Dは、前記複数の光源と前記光拡散板との間隔であり、x1は、前記三角形状、台形状、又は、長方形状の減衰開始の位置であって、当該減衰開始の位置は前記個々の光源の位置を基準とした前記複数の光源の配列方向の位置であり、θx1は、前記減衰開始の位置x=x1に対する前記個々の光源の光の出射角であって、ArcTan(x1/D)であり、θIは、前記個々の光源の位置を基準とした前記複数の光源の配列方向の位置x=Iに対する前記個々の光源の光の出射角であって、ArcTan(I/D)である。) The front-direction outgoing intensity function f (θ, 0) is obtained by measuring BTDF of the light diffusion plate,
The surface light source device according to claim 1, wherein the front luminance profile p (θ) is obtained by the following equation.
| θ | ≦ θ x1
p (θ) = 1
In θ x1 <| θ | ≦ ArcTan {(I−x 1 ) / D},
p (θ) = (tan θ I −tan θ x1 −tan θ) / (tan θ I −2 tan θ x1 )
ArcTan {(I−x 1 ) / D} ≦ | θ |
p (θ) = 0
(Wherein, I is an interval between the plurality of light sources, D is an interval between the plurality of light sources and the light diffusion plate, and x 1 is the triangular shape, trapezoidal shape, or rectangular shape. The attenuation start position is a position in the arrangement direction of the plurality of light sources with respect to the positions of the individual light sources, and θ x1 is relative to the attenuation start position x = x 1 The light emission angle of each individual light source is ArcTan (x 1 / D), and θ I is relative to a position x = I in the arrangement direction of the plurality of light sources with respect to the position of each individual light source. (An output angle of light of each individual light source, which is ArcTan (I / D).) - 透過型画像表示セルと、
前記透過型画像表示セルに光を供給する面光源装置であって、請求項1に記載の当該面光源装置と、
を備える、透過型画像表示装置。 A transmissive image display cell;
A surface light source device for supplying light to the transmissive image display cell, wherein the surface light source device according to claim 1;
A transmissive image display device. - 2次元配列された複数の光源と、当該複数の光源からの光を拡散させる光拡散板とを備える面光源装置のための点状の光源であって、
配光分布I(θ)が、下式を満たすように設定されている、点状の光源。
I(θ)=(cosθ)-2・{f(θ,0)}-1・p(θ)
(式中、θは、前記複数の光源のうちの個々の光源からの光の出射角であり、f(θ,0)は、前記光拡散板のBTDFの正面方向出射強度関数であり、p(θ)は、当該個々の光源による前記面光源装置の正面輝度プロファイルであって、当該正面輝度プロファイルは、当該面光源装置の正面輝度を一定にするために重なりを考慮した三角形状、台形状、又は、長方形状の正面輝度プロファイルである。) A point light source for a surface light source device comprising a plurality of light sources arranged two-dimensionally and a light diffusion plate for diffusing light from the light sources,
A point light source in which the light distribution I (θ) is set so as to satisfy the following expression.
I (θ) = (cos θ) −2 · {f (θ, 0)} −1 · p (θ)
(In the formula, θ is an emission angle of light from each of the plurality of light sources, f (θ, 0) is a BTDF front emission intensity function of the light diffusion plate, and p (θ) is a front luminance profile of the surface light source device by the individual light sources, and the front luminance profile is triangular or trapezoidal in consideration of overlap in order to make the front luminance of the surface light source device constant. Or a rectangular front luminance profile.)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009286624A JP5075190B2 (en) | 2009-12-17 | 2009-12-17 | Surface light source device, transmissive image display device, and light source |
JP2009-286624 | 2009-12-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011074644A1 true WO2011074644A1 (en) | 2011-06-23 |
Family
ID=44167395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072691 WO2011074644A1 (en) | 2009-12-17 | 2010-12-16 | Surface light source device, transparent image display device, and light source |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5075190B2 (en) |
TW (1) | TW201207292A (en) |
WO (1) | WO2011074644A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116997852A (en) * | 2022-02-08 | 2023-11-03 | 合肥瑞识智能科技有限公司 | Backlight module and display device III |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6091559B2 (en) | 2014-10-20 | 2017-03-08 | キヤノン株式会社 | Light source device and image display device |
EP3273297B1 (en) | 2016-07-20 | 2021-05-26 | Nichia Corporation | Light emitting device |
JP6436193B2 (en) * | 2016-07-20 | 2018-12-12 | 日亜化学工業株式会社 | Light emitting device |
US20240219774A1 (en) * | 2022-01-11 | 2024-07-04 | Hefei Raysees Ai Technology Co., Ltd. | Backlight module and display deviceii |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008146544A1 (en) * | 2007-05-25 | 2008-12-04 | Showa Denko K.K. | Light-emitting device and display device |
JP2009048995A (en) * | 2007-07-24 | 2009-03-05 | Sony Corp | Optical film, illuminating apparatus and display device |
JP2009123709A (en) * | 2003-03-31 | 2009-06-04 | Sharp Corp | Surface lighting device and liquid crystal display device using the same |
WO2009122761A1 (en) * | 2008-04-02 | 2009-10-08 | シャープ株式会社 | Illuminating device and display device |
-
2009
- 2009-12-17 JP JP2009286624A patent/JP5075190B2/en not_active Expired - Fee Related
-
2010
- 2010-12-16 WO PCT/JP2010/072691 patent/WO2011074644A1/en active Application Filing
- 2010-12-17 TW TW99144557A patent/TW201207292A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009123709A (en) * | 2003-03-31 | 2009-06-04 | Sharp Corp | Surface lighting device and liquid crystal display device using the same |
WO2008146544A1 (en) * | 2007-05-25 | 2008-12-04 | Showa Denko K.K. | Light-emitting device and display device |
JP2009048995A (en) * | 2007-07-24 | 2009-03-05 | Sony Corp | Optical film, illuminating apparatus and display device |
WO2009122761A1 (en) * | 2008-04-02 | 2009-10-08 | シャープ株式会社 | Illuminating device and display device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116997852A (en) * | 2022-02-08 | 2023-11-03 | 合肥瑞识智能科技有限公司 | Backlight module and display device III |
Also Published As
Publication number | Publication date |
---|---|
TW201207292A (en) | 2012-02-16 |
JP2011129371A (en) | 2011-06-30 |
JP5075190B2 (en) | 2012-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7798696B2 (en) | Illumination device for liquid crystal display | |
US7309143B2 (en) | Optical material, optical element, illuminator and display device | |
US8342729B2 (en) | Backlight module | |
WO2007119584A1 (en) | Liquid crystal display device | |
KR20080064862A (en) | Backlight arrangement for uniform illumination using surface-emitting(led) light sources | |
WO2011074644A1 (en) | Surface light source device, transparent image display device, and light source | |
US7722240B2 (en) | Surface light source device and transmission display device | |
JP2009053623A (en) | Lens sheet, optical sheet for display, backlight unit and display apparatus using them | |
RU2478872C2 (en) | Lighting device, reflection device and television receiver | |
KR100790497B1 (en) | Direct type Back-light unit for LCD | |
JP2009176512A (en) | Surface light source device and image display apparatus | |
TW201222030A (en) | Optical sheet, area light source device, and transmission image display device | |
KR102236710B1 (en) | Optical element and backlight unit including the same | |
JP2009043506A (en) | Backlight device, liquid crystal display device, optical member, and lenticular lens sheet | |
WO2016183909A1 (en) | Backlight module and liquid crystal display device | |
KR101327852B1 (en) | Backlight unit | |
JP2009271346A (en) | Optical unit, backlight device, liquid crystal module, and liquid crystal display | |
US9477114B2 (en) | Direct type backlight module and liquid crystal display device having same | |
TWM553818U (en) | Optical film, backlight module, and display device | |
JP6086766B2 (en) | Planar light emitting device and liquid crystal display device | |
WO2015025364A1 (en) | Light source device and display device | |
TWI344022B (en) | Optical plate and backlight module using the same | |
JP2007057871A (en) | Optical sheet and backlight unit for display | |
KR101671513B1 (en) | Light guide plate, and back light unit and liquid crystal display using the same | |
KR100905284B1 (en) | Light collecting sheets and back light unit having the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10837669 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10837669 Country of ref document: EP Kind code of ref document: A1 |