WO2011074471A1 - X-ray image diagnostic device, x-ray exposure control method and program - Google Patents

X-ray image diagnostic device, x-ray exposure control method and program Download PDF

Info

Publication number
WO2011074471A1
WO2011074471A1 PCT/JP2010/072116 JP2010072116W WO2011074471A1 WO 2011074471 A1 WO2011074471 A1 WO 2011074471A1 JP 2010072116 W JP2010072116 W JP 2010072116W WO 2011074471 A1 WO2011074471 A1 WO 2011074471A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
region
interest
ray intensity
value
Prior art date
Application number
PCT/JP2010/072116
Other languages
French (fr)
Japanese (ja)
Inventor
宗作 重村
克己 鈴木
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to JP2011546078A priority Critical patent/JPWO2011074471A1/en
Publication of WO2011074471A1 publication Critical patent/WO2011074471A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/467Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure

Definitions

  • the present invention relates to an X-ray diagnostic imaging apparatus, an X-ray exposure control method, and a program, and more particularly to exposure control in an X-ray generation means.
  • An X-ray diagnostic imaging apparatus that uses an image intensifier (hereinafter abbreviated as “I.I .: Image Intensifier”) as an X-ray detector and has a fluoroscopic function transmits X-rays transmitted through a subject to an I.D. I. , And the detected X-rays are converted into visible light, and the image is converted into a video signal by the camera and camera control unit, output to a monitor such as a CRT, and displayed as a fluoroscopic image.
  • I. As an automatic brightness adjustment function for fluoroscopic images using I.
  • the X-ray control device controls the tube voltage and / or the tube current so that the light amount level in a specific lighting field is compared with the reference level and the light amount level becomes equal to the reference level.
  • FPD Flat Panel Detector
  • the X-ray intensity in the specific ROI (RegionFPOf Interest) in the FPD is compared with the reference X-ray intensity, and the X-ray intensity in the ROI is equal to the reference X-ray intensity.
  • the X-ray control device controls the tube voltage and / or the tube current.
  • Patent Document 1 provides a function for arbitrarily moving an X-ray intensity measurement region (in the above, a lighting field in the case of II and ROI in the case of FPD) on the user side, An X-ray fluoroscopic apparatus capable of obtaining appropriate irradiation X-ray intensity according to a subject is disclosed.
  • Patent Document 1 has the following problems. That is, in the case of an X-ray examination in which the subject is stationary, the technique disclosed in the above-mentioned Patent Document 1 can sufficiently cope with the X-ray examination in which the subject moves, for example, the esophagus In the case of contrast imaging of the stomach and the appropriate sampling field or ROI, the position of the sampling field or ROI is fixed at the position initially set for the X-ray detector even though the lighting field or ROI always changes. Therefore, the X-ray intensity measurement area is constantly changed on the user side (corresponding to the lighting field in the case of II and ROI in the case of FPD) as the position of the appropriate lighting field or ROI changes. This may reduce inspection efficiency.
  • the present invention has been made in view of the above circumstances, and an X-ray diagnostic imaging apparatus, an X-ray exposure control method, and a program capable of obtaining an X-ray intensity corresponding to the part regardless of which part is observed
  • the purpose is to provide.
  • an X-ray diagnostic imaging apparatus detects X-ray generation means that generates X-rays and transmitted X-rays that have passed through the subject, and X-rays of the transmitted X-rays X-ray detection means for outputting image data indicating intensity, region-of-interest setting means for setting a plurality of regions of interest on an X-ray intensity distribution image based on the image data, and an index indicating the X-ray intensity of each region of interest X-ray intensity calculating means for calculating a representative value, X-ray intensity selecting means for selecting one representative value from representative values of the X-ray intensity of the plurality of regions of interest, and a representative of the selected X-ray intensity X-ray exposure control means for performing exposure control of the X-ray generation means based on the value.
  • the X-ray exposure control method includes a step of setting a plurality of regions of interest on an X-ray intensity distribution image based on image data indicating the X-ray intensity of transmitted X-rays transmitted through a subject, and each interest Calculating a representative value of an index indicating the X-ray intensity of the region; selecting a representative value from representative values of the X-ray intensity of the plurality of regions of interest; and And X-ray exposure control based on the representative value.
  • the X-ray exposure control program includes a step of setting a plurality of regions of interest on an X-ray intensity distribution image based on image data indicating the X-ray intensity of transmitted X-rays transmitted through a subject, Calculating a representative value of an index indicating the X-ray intensity of the region; selecting a representative value from representative values of the X-ray intensity of the plurality of regions of interest; and And causing the computer to execute an X-ray exposure control step based on the representative value.
  • an X-ray diagnostic imaging apparatus an X-ray exposure control method, and a program that can obtain an X-ray intensity corresponding to any part regardless of which part is observed.
  • FIG. 6 Schematic which shows the structure of the X-ray-image diagnostic apparatus which concerns on this embodiment.
  • the block diagram which shows the control system of this embodiment. 6 is a flowchart showing a flow of processing for performing an examination in a fluoroscopic mode by the X-ray image diagnostic apparatus 100 according to the present embodiment.
  • FIG. 4 is a flowchart showing a process flow of step S4 of FIG. Explanatory drawing for demonstrating ROI set by the region-of-interest setting means 7 with which the X-ray-image diagnostic apparatus which concerns on this embodiment is equipped.
  • FIG. 7 is an explanatory diagram for explaining an operation performed by the X-ray intensity calculation means 8 provided in the X-ray image diagnostic apparatus according to the present embodiment, and calculates ROI (patterns (A) to (D)); Explanatory drawing which shows the total pixel number of ROI (pattern 1-5) and pixel value total which can be calculated from the calculated ROI.
  • FIG. 6 is an explanatory diagram for explaining an operation performed by an X-ray intensity calculation means 8 provided in the X-ray image diagnostic apparatus according to the present embodiment, and shows ROI (patterns 6 to 11) that can be calculated from the calculated ROI.
  • Explanatory drawing which shows a total pixel number and pixel value total. Explanatory drawing for demonstrating this embodiment in light of clinical.
  • the perspective view which shows an example of the user interface in the case of applying the function proposed by this invention to a real machine.
  • an X-ray image is captured and displayed using an X-ray diagnostic imaging apparatus that obtains a fluoroscopic image including a moving image of the subject in the fluoroscopic mode.
  • the present invention may be applied to obtain a plurality of still images.
  • FIG. 1 is a schematic diagram showing the configuration of the X-ray image diagnostic apparatus according to the present embodiment.
  • FIG. 2 is a block diagram showing a control system of the present embodiment.
  • X-ray diagnostic imaging apparatus 100 is an X-ray generation unit 1 that irradiates a subject 12 with X-rays, and is disposed opposite to X-ray generation unit 1 and digital image of X-ray intensity distribution after passing through subject 12
  • X-ray detection means 2 comprising FPD output as data
  • image processing means 3 for processing digital image data output from the X-ray detection means 2
  • image display for displaying image data output from the image processing means 3
  • Means 4 and X-ray exposure control means 5 for automatically controlling the X-ray output conditions of the X-ray generation means 1 based on the digital value of the digital image data processed by the image processing means 3.
  • the X-ray diagnostic imaging apparatus 100 includes an X-ray intensity storage unit 6 for storing a digital value obtained by converting the X-ray intensity of each pixel detected by the X-ray detection unit 2 during fluoroscopy, and an X-ray intensity distribution storage.
  • the X-ray intensity is measured, and a plurality of areas (hereinafter referred to as “region of interest” or “ROI”) for calculating a representative value as an index of the X-ray intensity are used.
  • ROI region of interest
  • Region of interest setting means 7 to be set X-ray intensity calculating means 8 for calculating an average value of pixel values of pixels constituting each ROI set by the region of interest setting means 7, and an area of interest X-ray intensity selection means 9 for selecting one average value among the average values of the pixel values of the pixels constituting the ROI of the plurality of patterns set by the setting means 7, and one average by the X-ray intensity selection means 9 X-ray selected by selection condition setting means 10 for setting a condition for selecting a value and X-ray intensity selection means 9 Target X that determines the average value of X-ray intensity, which is the target for the X-ray exposure control means 5 to automatically control the X-ray output conditions, so that the average value of the ROI pixel value that is the index of the degree is kept constant Line intensity setting means 11 and a D / A converter 13 for digital / analog conversion of the digital image data processed by the image processing means 3 are provided.
  • the X-ray detection means 2 and the image processing means 3, and the image processing means 3, the image display means 4 and the X-ray exposure control means 5 are electrically connected. Further, the X-ray exposure control means 5 is electrically connected to the X-ray generation means 1.
  • the image processing means 3 includes an X-ray intensity distribution storage means 6, an X-ray intensity calculation means 8, and an X-ray intensity selection means 9.
  • the region of interest setting means 7 is electrically connected to the X-ray intensity calculation means 8, the selection condition setting means 10 is electrically connected to the X-ray intensity selection means 9, and the target X-ray intensity setting means 11 is electrically connected to the X-ray exposure control means 5. .
  • Image processing means 3 X-ray exposure control means 5, X-ray intensity distribution storage means 6, region of interest setting means 7, X-ray intensity calculation means 8, X-ray intensity selection means 9, selection condition setting means 10, and target X-ray
  • the strength setting means 11 is configured by the cooperation of a program module capable of performing each function and hardware resources including a control device, an arithmetic device, a storage device, and an input / output device for executing the program module. Is done.
  • the X-ray intensity calculating means 8 calculates the average value of the pixel values of the pixels constituting each ROI as the X-ray intensity, but the X-ray intensity calculating means 8 is an index of the X-ray intensity of each ROI.
  • the X-ray intensity of each ROI may be calculated using an index using pixel values, for example, the mode value and the median value in addition to the average value of the pixel values.
  • FIG. 3 is a flowchart showing a flow of processing for performing inspection in the fluoroscopic mode by the X-ray image diagnostic apparatus 100 according to the present embodiment.
  • FIG. 4 is a flowchart showing a process flow of step S4 of FIG.
  • FIG. 5 is an explanatory diagram for explaining the ROI set by the region-of-interest setting means 7 provided in the X-ray image diagnostic apparatus 100 according to the present embodiment.
  • FIG. 6A is an explanatory diagram for explaining an operation performed by the X-ray intensity calculation means 8 provided in the X-ray image diagnostic apparatus 100 according to the present embodiment, and calculates ROI (patterns (A) to ( FIG.
  • FIG. 4D is an explanatory diagram showing the total number of pixels and the total pixel value of ROI (patterns 1 to 5) that can be calculated from the calculated ROI.
  • FIG.6B is an explanatory diagram for explaining an operation performed by the X-ray intensity calculation means 8 provided in the X-ray image diagnostic apparatus according to the present embodiment, and ROI (pattern 6) that can be calculated from the calculated ROI.
  • FIG. 11 is an explanatory diagram showing the total number of pixels and the total pixel value of (11) to (11).
  • FIG. 7 is an explanatory diagram for explaining the present embodiment in light of clinical practice.
  • FIG. 8 is a perspective view showing an example of a user interface when the function proposed in the present invention is applied to an actual machine. In the following, description will be given along the order of steps in FIG.
  • step 1 Setting is performed by each setting means (S1). More specifically, ROI settings for calculating a value that is an index of X-ray intensity, and selection conditions for selecting one of the values that are an index of X-ray intensity obtained from each ROI, Then, a target value of X-ray intensity (also referred to as “target X-ray intensity”) necessary for obtaining a fluoroscopic image with a desired luminance is set.
  • target X-ray intensity also referred to as “target X-ray intensity”
  • the target X-ray intensity is also defined using the pixel value.
  • the X-ray image diagnostic apparatus 100 of this embodiment includes a region of interest setting means 7, a selection condition setting means 10, and a target X-ray intensity setting means 11 as setting means.
  • the region-of-interest setting means 7 sets an ROI for calculating the X-ray intensity necessary for the X-ray exposure control means 5 to automatically control the X-ray output conditions.
  • the widest ROI (area 1) to be calculated is set.
  • the region 1 is a square closed region at an arbitrary position of the X-ray detection means 4, but the shape is not limited to a square shape, and may be a rectangular shape or a circular shape, and is not particularly limited.
  • Region 2 is a rectangular region that is long in the vertical direction (the horizontal direction in FIG. 5 is referred to as the horizontal direction and the vertical direction is referred to as the vertical direction), and is located near the center in the horizontal direction of region 1. It is a rectangular region that is long in the direction, and is located near the center of the region 1 in the vertical direction.
  • the ROI to be set is largely three areas 1 to 3.
  • a rectangular small area that is long in the vertical direction and is inscribed in the area 1 is added to the area 2 in addition to the area 2.
  • a modification such as further including a rectangular region that is long in the horizontal direction and inscribed in the region 1 in addition to the region 3.
  • both the region 2 and the region 3 are configured to be inscribed in the region 1, but the region 2 and the region 3 may be configured to fit in the region 1 without being inscribed.
  • the area 2 and the area 3 may be small areas that divide the area 1 at an arbitrary ratio.
  • N_ (n) is the total number of pixels in pattern (n)
  • average value _ (n) is the pattern ( n) average value of pixel values
  • the area 2 and the area 3 set in the area 1 are divided into nine small blocks of 3 ⁇ 3 by the area 2 and the area 3.
  • the above pattern From (1), (2), (3), (4), (5), (6), (7), (8), (9) from the upper left to the lower right, the above pattern (
  • the patterns A) to (D) and the patterns 1 to 11 are composed of the following blocks as shown in Equation 1 below.
  • the variables (N_ (A) to N_ (D) and average value_ (A) to average value_ (D)) obtained from the patterns (A) to (D) are X-ray incident surfaces in the X-ray detection means 2
  • the X-ray intensity calculation means 8 calculates the number of pixels included in each ROI of the patterns (A) to (D) and the digital value output from the X-ray detection means 2.
  • the average value of the pixel values of each ROI can be obtained from only the total pixel value and the total number of pixels in the area for which the average value is to be obtained according to the following formula 2. Therefore, the average value of the pixel values of patterns 1 to 11 is calculated by calculating the total pixel value of ROI and the total number of pixels of each pattern using the eight variables, and the calculated total pixel value and the total number of pixels. Can be used to calculate the average ROI of each pattern.
  • the following expression 3 is an expression used for calculating the total number of pixels of the patterns 1 to 11
  • the following expression 4 is an expression used for calculating the total pixel value of the patterns 1 to 11.
  • Average value_ (n) S_ (n) / N_ (n) (2) Average value_ (n): Average value of pixel values of pattern (n) S_ (n): Total pixel value of pattern (n) N_ (n): Total number of pixels of pattern (n)
  • the region 2 that fits within the region 1 as shown in FIG. 5 (A) above the region 2 that fits within the region 1 as shown in FIG.
  • Nine small blocks may be set by using four dividing lines 40, 41, 42, and 43 in contact with the sides.
  • the dividing lines 40 and 41 are the left side and the right side that are parallel and opposite to the upper side and the lower side of the region 1 (the right side, the left side, the upper side, and the lower side of the region 1 are defined with reference to the horizontal direction and the vertical direction in FIG. 5).
  • the interval between the dividing line 40 and the upper side of the region 1, the interval between the dividing line 40 and the dividing line 41, and the interval between the dividing line 41 and the lower side of the region 1 may be equal or unequal.
  • the interval between the dividing line 40 and the upper side of the region 1 and the interval between the dividing line 41 and the lower side of the region 1 are substantially the same, and the dividing line 40 and the dividing line are separated from those intervals.
  • the distance from the line 41 is set narrow.
  • the dividing lines 42 and 43 are line segments that are parallel to the left side and the right side of the region 1 and are in contact with the opposite upper side and lower side.
  • the interval between the left side of the region 1 and the dividing line 42, the interval between the dividing line 42 and the dividing line 43, and the interval between the dividing line 43 and the right side of the region 1 may be equal or unequal.
  • the interval between the left side of region 1 and the dividing line 42, the interval between dividing line 42 and dividing line 43, and the interval between dividing line 43 and the right side of region 1 are substantially the same. Is set.
  • the region 1 is divided into nine small blocks (1) to (9) by the dividing lines 40, 41, 42 and 43 as shown in FIG.
  • the average values of the patterns (A) to (D) and the patterns 1 to 11 can be calculated by combining them.
  • the average values of the patterns (A) to (D) and the patterns 1 to 11 are obtained by calculating eight variables based on the regions 2 and 3, and the patterns (1) to ( In addition to the method of calculating the average value of 11), a method of calculating the average value of each of the nine small blocks may be used.
  • the selection condition setting means 10 sets a condition for selecting one average value among the ROIs set by the region of interest setting means 7 and the average values of the other ROIs.
  • the X-ray examination details are esophageal and stomach contrast examinations
  • the X-rays irradiated to the subject will be insufficient or excessive during fluoroscopy due to the effects of direct X-rays and X-ray diaphragms, and appropriate brightness will be achieved. It may be difficult to display a fluoroscopic image.
  • the figure shows an example of gastric fluoroscopy
  • the left side of the figure is a schematic diagram of the entire gastric fluoroscopy
  • the right side of the figure shows an X-ray image displayed on the image display means 4.
  • the average value of ROI increases directly due to the influence of X-rays, and the X-ray output conditions become low, resulting in blackening of the esophagus.
  • the average value of ROI decreases due to the influence of the X-ray diaphragm, and the X-ray output conditions increase, so the fluoroscopic image is bright and halation is blurred.
  • ROI may be selected for each frame, ROI is selected for every two frames, etc.
  • the frequency of reselecting the ROI can be arbitrarily set, i.e., calculating the average value of the ROI for any number of frames, and X described later
  • the line output condition may be changed.
  • the ROI set by the region of interest setting means 7 and the average values of the plurality of ROIs (patterns 1 to 11) shown in the right side of FIG. 6A and FIG. 6B are always calculated and set as selection conditions. Based on the condition for selecting one average value set by the means 10, the optimum ROI average value is selected for each frame. Since the selected average value is used for X-ray automatic exposure control, it is possible to provide an image having stable perspective brightness.
  • the ROI of the pattern (B) in FIG. 6A is selected so that the ROI consisting only of the region where the subject is imaged except the direct X-ray incident region is selected
  • case 2 the ROI of the pattern (B) in FIG.6A is selected so that the ROI consisting only of the area where the subject is imaged is excluded except for the area where the X-ray aperture is imaged.
  • the selection condition setting 10 may be set such that the pattern (D) is selected so that the ROI consisting only of the area where the subject is imaged is excluded except the area where the line aperture is imaged.
  • the X-ray examination content is a contrast examination of the esophagus and the stomach
  • the average values other than the maximum and minimum This means that you only have to make a setting to select.
  • the selection condition setting contents for example, 1) Select the ROI that counts from the one with the smallest average value of each ROI, 2) ROI that can select which ROI (in addition to the four ROIs shown on the left side of Fig. 6A) Or put it in the candidate.
  • the selection condition 1) is effective for selecting an ROI excluding an area where direct X-rays are incident and an area where an X-ray aperture is photographed.
  • the selection conditions in 2) are all 11 patterns 1 to 11 in the right side of FIG. 6A and the example of FIG. 6B by narrowing down ROI candidates according to the X-ray examination content, technique method, and shape of the imaging region. Therefore, it is not necessary to calculate the average value of the pixel values, so that it is possible to expect high speed processing and effective use of hardware resources.
  • selection conditions 3) a fixed mode for fixing the position of the ROI with respect to the X-ray incident surface of the X-ray detection means 2 as in the conventional X-ray diagnostic imaging apparatus, and the X-ray exposure control method according to the present embodiment, As in a program, it may be possible to select a change mode in which the position of the ROI with respect to the X-ray incident surface is changed during one fluoroscopy.
  • the X-ray exposure control means 5 automatically controls the X-ray output conditions so that the average value of the X-ray intensity selected by the X-ray intensity selection means 9 is kept constant. Determine the average value of the target X-ray intensity.
  • Step 2 X-ray imaging is performed in the fluoroscopic mode, and a video signal is output (S2).
  • the X-rays irradiated from the X-ray generation means 1 are transmitted as digital image data from the X-ray detection means 2 after passing through the subject 12, and stored and held in the X-ray intensity distribution storage means 6.
  • Step 3 The X-ray intensity distribution image captured in the first frame is output from the X-ray detection means 2 to the image processing means 3 (S3).
  • Step 4 An average value of ROI used in the X-ray exposure control means 5 is calculated (S4).
  • the image processing means 3 includes an X-ray intensity distribution storage means 6, an X-ray intensity calculation means 8, and an X-ray intensity selection means 9, and is composed of digital image data output from the X-ray detection means 2.
  • the intensity distribution image is stored and held in the X-ray intensity distribution storage means 6 (S41).
  • Step S42 The X-ray intensity distribution image stored and held in the X-ray intensity distribution storage means 6 is sent to the X-ray intensity calculation means 8.
  • the X-ray intensity calculation means 8 calculates the average value of the pixel values of the ROI set by the region-of-interest setting means 7 and other ROIs (S42).
  • Step S43 The X-ray intensity selection means 9 selects one of the calculated average values of each ROI based on the conditions set by the selection condition setting means 10 and sends the average value to the X-ray exposure control means 5 (S43).
  • Step S5 the digital image data stored and held in the X-ray intensity distribution storage means 6 is an image such as noise reduction processing and display gradation processing, in order to obtain image quality as a diagnostic image. Processing is also performed in the image processing means 3 (S5).
  • Step S6 The D / A converter 13 converts the digital image data subjected to the image processing by the image processing means 3 into an analog signal, and the image processed by the image display means 4 is displayed (S6).
  • the X-ray exposure control means 5 determines X-ray output conditions for irradiating the subject in the next frame (S7).
  • the X-ray exposure control means 5 is the average value of the target X-ray intensity set by the target X-ray intensity setting means 11 and the ROI X in the current frame sent from the X-ray intensity selection means 9 in step S43.
  • the average value of the line intensities is compared, and an X-ray output condition for irradiating the subject in the next frame 12 is determined according to the result.
  • the X-ray output conditions are increased so as to eliminate the difference.
  • the X-ray output condition is reduced so as to eliminate the difference.
  • the increase / decrease of the X-ray output conditions in the case of continuous fluoroscopy, the tube voltage (kV) and / or tube current (mA), in the case of pulse fluoroscopy, in addition to the tube voltage and tube current, the pulse irradiation width is an adjustment parameter. Conceivable.
  • Step S8 If the inspection is not completed, the process proceeds to step S9. If the inspection is completed, the flow of this process ends (S8).
  • Step S9 The X-ray output condition determined in step S7 is sent to the X-ray generation means 1, and the subject 12 is irradiated with X-rays from the X-ray generation means 1 based on the sent information, and the X-ray detection means 2 Outputs an X-ray intensity distribution image of the next frame (S9). And it returns to step S4 and repeats the process after step S4.
  • the method for automatically selecting the ROI has been mainly described.
  • the display panel 71, the TV monitor 72 for displaying a fluoroscopic image, the manual setting of the X-ray output condition or the change has been made.
  • Patterns (A) to (D) and patterns 1 to 5 in FIG. 6A and patterns 1 to 5 and FIG. 6B are displayed on the display panel 71 on the remote control console 70 having the X-ray high voltage device operation panel 73 for displaying the X-ray output conditions as needed.
  • Buttons indicating the shapes of the patterns 6 to 11 may be provided so that the user can arbitrarily select the ROI manually.
  • a screen showing the X-ray incident surface of the X-ray detection means 2 is displayed on the display panel 71, and the position, size, and shape of region 1, region 2 and region 3 in FIG.
  • An input setting may be made using a pointing device such as a joystick.
  • the dividing lines 40, 41, 42, and 43 may be input and set in the region 1 set on the above-described screen.
  • an ROI having an arbitrary size and shape can be set at an arbitrary position with respect to the X-ray incident surface.

Abstract

Provided are an X-ray image diagnostic device, an X-ray exposure control method, and a program, wherein an appropriate radioscopic X-ray output condition is obtained even when a subject moves during radioscopy. The X-ray image diagnostic device is provided with an X-ray generation means (1) for generating X-rays, an X-ray detection means (2) for detecting transmitted X-rays transmitted through the subject and outputting image data indicating the X-ray intensity of the transmitted X-rays, a region-of-interest setting means (7) for setting a plurality of regions of interest on an X-ray intensity distribution image based on the image data, an X-ray intensity calculation means (8) for calculating the representative values of indexes indicating the X-ray intensities of the respective regions of interest, an X-ray intensity selection means (9) for selecting one representative value from among the representative values of the X-ray intensities of the plurality of regions of interest, and an X-ray exposure control means (5) for performing exposure control of the X-ray generation means (1) on the basis of the selected representative value of the X-ray intensity.

Description

X線画像診断装置、X線露出制御方法及びプログラムX-ray diagnostic imaging apparatus, X-ray exposure control method and program
 本発明は、X線画像診断装置、X線露出制御方法及びプログラムに関し、特に、X線発生手段における露出制御に関する。 The present invention relates to an X-ray diagnostic imaging apparatus, an X-ray exposure control method, and a program, and more particularly to exposure control in an X-ray generation means.
 イメージインテンシファイヤ(以下、I.I.:Image Intensifierと略記)をX線検出器として使用し、透視機能を有するX線画像診断装置は、被検体を透過したX線をI.I.で検出、及び検出したX線を可視光に変換し、その像をカメラ、カメラコントロールユニットで映像信号に変換して、CRT等のモニタへ出力し、透視像として表示する。一般的に、I.I.を使用した透視像の自動輝度調整機能としてはI.I.内の特定の採光野における光量のレベルと基準レベルを比較し、光量レベルが基準レベルと等しくなるように、X線制御装置が管電圧及び/又は管電流を制御する仕組みとなっている。 An X-ray diagnostic imaging apparatus that uses an image intensifier (hereinafter abbreviated as “I.I .: Image Intensifier”) as an X-ray detector and has a fluoroscopic function transmits X-rays transmitted through a subject to an I.D. I. , And the detected X-rays are converted into visible light, and the image is converted into a video signal by the camera and camera control unit, output to a monitor such as a CRT, and displayed as a fluoroscopic image. In general, I. As an automatic brightness adjustment function for fluoroscopic images using I. The X-ray control device controls the tube voltage and / or the tube current so that the light amount level in a specific lighting field is compared with the reference level and the light amount level becomes equal to the reference level.
 X線平面検出器(以下、FPD:Flat Panel Detectorと略記)をX線検出器として使用した場合もI.I.と同様で、FPD内の特定のROI(Region Of Interestの略)におけるX線強度と基準となるX線強度を比較し、ROI内におけるX線強度が基準となるX線強度と等しくなるように、X線制御装置が管電圧および/または管電流を制御する仕組みとなっている。 も Even when an X-ray flat detector (hereinafter abbreviated as FPD: Flat Panel Detector) is used as an X-ray detector. Similar to I., the X-ray intensity in the specific ROI (RegionFPOf Interest) in the FPD is compared with the reference X-ray intensity, and the X-ray intensity in the ROI is equal to the reference X-ray intensity. As described above, the X-ray control device controls the tube voltage and / or the tube current.
 上記技術の場合、被検体が予め想定されたポジションに位置していることを前提にROIをプリセットしているため、被検体が想定されたポジションから外れた場合、被検体に照射されるX線が不足または過多となり、適切な輝度を有する透視像を表示することが困難であるという問題があった。この問題に対し、例えば特許文献1では、X線強度測定領域(上記では、I.I.の場合採光野、FPDの場合ROIに相当)をユーザ側で任意に移動可能とする機能を設け、被検体に応じて適切な照射X線強度が得られるX線透視撮影装置が開示されている。 In the case of the above technology, since the ROI is preset on the assumption that the subject is located at the position assumed in advance, the X-ray irradiated to the subject when the subject deviates from the assumed position Is insufficient or excessive, and there is a problem that it is difficult to display a fluoroscopic image having appropriate luminance. To deal with this problem, for example, Patent Document 1 provides a function for arbitrarily moving an X-ray intensity measurement region (in the above, a lighting field in the case of II and ROI in the case of FPD) on the user side, An X-ray fluoroscopic apparatus capable of obtaining appropriate irradiation X-ray intensity according to a subject is disclosed.
特開2008-125610号公報JP 2008-125610 A
 しかしながら、上記特許文献1にて開示されている技術では、次のような問題があった。すなわち、被検体が静止しているようなX線検査の場合、上記特許文献1にて開示されている技術にて十分対応可能であるが、被検体が動くようなX線検査、例えば、食道、及び胃の造影検査の場合は、適切とされる採光野、またはROIが常時変化するにも関わらず、採光野、またはROIの位置は、X線検出器に対して初期設定した位置に固定されているため、適切とされる採光野、またはROIの位置の変化に伴って、ユーザ側で常時X線強度測定領域(I.I.の場合採光野、FPDの場合ROIに相当)を変更しなければならず、検査効率を低下させる可能性がある。 However, the technique disclosed in Patent Document 1 has the following problems. That is, in the case of an X-ray examination in which the subject is stationary, the technique disclosed in the above-mentioned Patent Document 1 can sufficiently cope with the X-ray examination in which the subject moves, for example, the esophagus In the case of contrast imaging of the stomach and the appropriate sampling field or ROI, the position of the sampling field or ROI is fixed at the position initially set for the X-ray detector even though the lighting field or ROI always changes. Therefore, the X-ray intensity measurement area is constantly changed on the user side (corresponding to the lighting field in the case of II and ROI in the case of FPD) as the position of the appropriate lighting field or ROI changes. This may reduce inspection efficiency.
 本発明は、上記の事情に鑑みてなされたものであって、どの部位を観察しても、その部位に応じたX線強度が得られるX線画像診断装置、X線露出制御方法、及びプログラムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an X-ray diagnostic imaging apparatus, an X-ray exposure control method, and a program capable of obtaining an X-ray intensity corresponding to the part regardless of which part is observed The purpose is to provide.
 上記課題を解決するために、本発明に係るX線画像診断装置は、X線を発生させるX線発生手段と、被検体を透過した透過X線を検出して、その透過X線のX線強度を示す画像データを出力するX線検出手段と、前記画像データに基づくX線強度分布像上に複数の関心領域を設定する関心領域設定手段と、各関心領域のX線強度を示す指標の代表値を算出するX線強度算出手段と、前記複数の関心領域のX線強度の代表値の中から一つの代表値を選択するX線強度選択手段と、前記選択されたX線強度の代表値に基づいて、前記X線発生手段の露出制御を行うX線露出制御手段と、を備えたことを特徴とする。 In order to solve the above problems, an X-ray diagnostic imaging apparatus according to the present invention detects X-ray generation means that generates X-rays and transmitted X-rays that have passed through the subject, and X-rays of the transmitted X-rays X-ray detection means for outputting image data indicating intensity, region-of-interest setting means for setting a plurality of regions of interest on an X-ray intensity distribution image based on the image data, and an index indicating the X-ray intensity of each region of interest X-ray intensity calculating means for calculating a representative value, X-ray intensity selecting means for selecting one representative value from representative values of the X-ray intensity of the plurality of regions of interest, and a representative of the selected X-ray intensity X-ray exposure control means for performing exposure control of the X-ray generation means based on the value.
 また、本発明に係るX線露出制御方法は、被検体を透過した透過X線のX線強度を示す画像データに基づくX線強度分布像上に複数の関心領域を設定するステップと、各関心領域のX線強度を示す指標の代表値を算出するステップと、前記複数の関心領域のX線強度の代表値の中から一つの代表値を選択するステップと、前記選択されたX線強度の代表値に基づいて、X線の露出制御を行うステップと、を含むことを特徴とする。 The X-ray exposure control method according to the present invention includes a step of setting a plurality of regions of interest on an X-ray intensity distribution image based on image data indicating the X-ray intensity of transmitted X-rays transmitted through a subject, and each interest Calculating a representative value of an index indicating the X-ray intensity of the region; selecting a representative value from representative values of the X-ray intensity of the plurality of regions of interest; and And X-ray exposure control based on the representative value.
 更に、本発明に係るX線露出制御プログラムは、被検体を透過した透過X線のX線強度を示す画像データに基づくX線強度分布像上に複数の関心領域を設定するステップと、各関心領域のX線強度を示す指標の代表値を算出するステップと、前記複数の関心領域のX線強度の代表値の中から一つの代表値を選択するステップと、前記選択されたX線強度の代表値に基づいて、X線の露出制御を行うステップと、をコンピュータに実行させることを特徴とする。 Further, the X-ray exposure control program according to the present invention includes a step of setting a plurality of regions of interest on an X-ray intensity distribution image based on image data indicating the X-ray intensity of transmitted X-rays transmitted through a subject, Calculating a representative value of an index indicating the X-ray intensity of the region; selecting a representative value from representative values of the X-ray intensity of the plurality of regions of interest; and And causing the computer to execute an X-ray exposure control step based on the representative value.
 本発明によれば、どの部位を観察しても、その部位に応じたX線強度が得られるX線画像診断装置、X線露出制御方法、及びプログラムを提供することができる。 According to the present invention, it is possible to provide an X-ray diagnostic imaging apparatus, an X-ray exposure control method, and a program that can obtain an X-ray intensity corresponding to any part regardless of which part is observed.
本実施形態に係るX線画像診断装置の構成を示す概略図。Schematic which shows the structure of the X-ray-image diagnostic apparatus which concerns on this embodiment. 本実施形態の制御系を示すブロック図。The block diagram which shows the control system of this embodiment. 本実施形態に係るX線画像診断装置100により、透視モードで検査を行う処理の流れを示すフローチャート。6 is a flowchart showing a flow of processing for performing an examination in a fluoroscopic mode by the X-ray image diagnostic apparatus 100 according to the present embodiment. 図3のステップS4の処理の流れを示すフローチャート。FIG. 4 is a flowchart showing a process flow of step S4 of FIG. 本実施形態に係るX線画像診断装置に備わっている関心領域設定手段7で設定するROIを説明するための説明図。Explanatory drawing for demonstrating ROI set by the region-of-interest setting means 7 with which the X-ray-image diagnostic apparatus which concerns on this embodiment is equipped. 本実施形態に係るX線画像診断装置に備わっているX線強度算出手段8で行われる演算を説明するための説明図であって、計算するROI(パターン(A)~(D))と、その計算したROIから算出可能なROI(パターン1~5)の総画素数と画素値合計を示す説明図。FIG. 7 is an explanatory diagram for explaining an operation performed by the X-ray intensity calculation means 8 provided in the X-ray image diagnostic apparatus according to the present embodiment, and calculates ROI (patterns (A) to (D)); Explanatory drawing which shows the total pixel number of ROI (pattern 1-5) and pixel value total which can be calculated from the calculated ROI. 本実施形態に係るX線画像診断装置に備わっているX線強度算出手段8で行われる演算を説明するための説明図であって、計算したROIから算出可能なROI(パターン6~11)の総画素数と画素値合計を示す説明図。FIG. 6 is an explanatory diagram for explaining an operation performed by an X-ray intensity calculation means 8 provided in the X-ray image diagnostic apparatus according to the present embodiment, and shows ROI (patterns 6 to 11) that can be calculated from the calculated ROI. Explanatory drawing which shows a total pixel number and pixel value total. 本実施形態を臨床に照らし合わせて説明するための説明図。Explanatory drawing for demonstrating this embodiment in light of clinical. 本発明で提案する機能を実機に適用する場合のユーザインタフェースの一例を示す斜視図。The perspective view which shows an example of the user interface in the case of applying the function proposed by this invention to a real machine.
 以下、本発明の実施形態について図面を用いて説明する。同一機能を有する構成及び同一の処理内容の手順には同一符号を付し、その説明の繰り返しを省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the procedures having the same functions and the same processing contents, and the description thereof will not be repeated.
 以下の説明では、透視モードによる被検体の動画像からなる透視像を得るX線画像診断装置を用いて、X線画像を撮像・表示する場合を例に説明するが、撮影モードにより、被検体の複数の静止画を得る場合に本発明を適用してもよい。 In the following description, an example in which an X-ray image is captured and displayed using an X-ray diagnostic imaging apparatus that obtains a fluoroscopic image including a moving image of the subject in the fluoroscopic mode will be described. The present invention may be applied to obtain a plurality of still images.
 まず、図1、図2に基づいて、本実施形態に係るX線画像診断装置100の構成について説明する。図1は、本実施形態に係るX線画像診断装置の構成を示す概略図である。図2は、本実施形態の制御系を示すブロック図である。 First, the configuration of the X-ray image diagnostic apparatus 100 according to the present embodiment will be described based on FIG. 1 and FIG. FIG. 1 is a schematic diagram showing the configuration of the X-ray image diagnostic apparatus according to the present embodiment. FIG. 2 is a block diagram showing a control system of the present embodiment.
 X線画像診断装置100は、X線を被検体12に照射するX線発生手段1と、X線発生手段1と対向に配置され、被検体12を透過した後のX線強度分布をデジタル画像データとして出力するFPDからなるX線検出手段2と、X線検出手段2から出力されたデジタル画像データを処理する画像処理手段3と、画像処理手段3から出力される画像データを表示する画像表示手段4と、画像処理手段3にて処理されたデジタル画像データのデジタル値に基づき、X線発生手段1のX線出力条件を自動制御するX線露出制御手段5と、を有している。 X-ray diagnostic imaging apparatus 100 is an X-ray generation unit 1 that irradiates a subject 12 with X-rays, and is disposed opposite to X-ray generation unit 1 and digital image of X-ray intensity distribution after passing through subject 12 X-ray detection means 2 comprising FPD output as data, image processing means 3 for processing digital image data output from the X-ray detection means 2, and image display for displaying image data output from the image processing means 3 Means 4 and X-ray exposure control means 5 for automatically controlling the X-ray output conditions of the X-ray generation means 1 based on the digital value of the digital image data processed by the image processing means 3.
 また、X線画像診断装置100は、透視時、X線検出手段2で検出された各画素のX線強度を変換したデジタル値を記憶するX線強度分記憶手段6と、X線強度分布記憶手段6で記憶されたデジタル画像データ内で、X線強度を測定し、X線強度の指標となる代表値を算出するための領域(以下「関心領域」又は「ROI」という。)を複数パターン設定する関心領域設定手段7と、関心領域設定手段7にて設定された各ROIを構成する画素の画素値の平均値をX線強度の指標として算出するX線強度算出手段8と、関心領域設定手段7で設定された複数パターンのROIを構成する画素の画素値の各平均値の内、1つの平均値を選択するX線強度選択手段9と、X線強度選択手段9で1つの平均値を選択するための条件を設定する選択条件設定手段10と、X線強度選択手段9で選択されたX線強度の指標となるROIの画素値の平均値が一定に保たれるよう、X線露出制御手段5がX線出力条件を自動制御するための目標となるX線強度の平均値を定める目標X線強度設定手段11と、画像処理手段3で処理されたデジタル画像データをデジタル/アナログ変換するD/A変換器13と、を備えている。 Further, the X-ray diagnostic imaging apparatus 100 includes an X-ray intensity storage unit 6 for storing a digital value obtained by converting the X-ray intensity of each pixel detected by the X-ray detection unit 2 during fluoroscopy, and an X-ray intensity distribution storage. In the digital image data stored in the means 6, the X-ray intensity is measured, and a plurality of areas (hereinafter referred to as “region of interest” or “ROI”) for calculating a representative value as an index of the X-ray intensity are used. Region of interest setting means 7 to be set, X-ray intensity calculating means 8 for calculating an average value of pixel values of pixels constituting each ROI set by the region of interest setting means 7, and an area of interest X-ray intensity selection means 9 for selecting one average value among the average values of the pixel values of the pixels constituting the ROI of the plurality of patterns set by the setting means 7, and one average by the X-ray intensity selection means 9 X-ray selected by selection condition setting means 10 for setting a condition for selecting a value and X-ray intensity selection means 9 Target X that determines the average value of X-ray intensity, which is the target for the X-ray exposure control means 5 to automatically control the X-ray output conditions, so that the average value of the ROI pixel value that is the index of the degree is kept constant Line intensity setting means 11 and a D / A converter 13 for digital / analog conversion of the digital image data processed by the image processing means 3 are provided.
 X線検出手段2と画像処理手段3、及び画像処理手段3と画像表示手段4及びX線露出制御手段5とは電気的に接続される。更にX線露出制御手段5はX線発生手段1と電気的に接続される。画像処理手段3は、X線強度分布記憶手段6、X線強度算出手段8、X線強度選択手段9を内包する。関心領域設定手段7はX線強度算出手段8に、選択条件設定手段10はX線強度選択手段9に、目標X線強度設定手段11は、X線露出制御手段5に電気的に接続される。 The X-ray detection means 2 and the image processing means 3, and the image processing means 3, the image display means 4 and the X-ray exposure control means 5 are electrically connected. Further, the X-ray exposure control means 5 is electrically connected to the X-ray generation means 1. The image processing means 3 includes an X-ray intensity distribution storage means 6, an X-ray intensity calculation means 8, and an X-ray intensity selection means 9. The region of interest setting means 7 is electrically connected to the X-ray intensity calculation means 8, the selection condition setting means 10 is electrically connected to the X-ray intensity selection means 9, and the target X-ray intensity setting means 11 is electrically connected to the X-ray exposure control means 5. .
 画像処理手段3、X線露出制御手段5、X線強度分布記憶手段6、関心領域設定手段7、X線強度算出手段8、X線強度選択手段9、選択条件設定手段10、及び目標X線強度設定手段11は、それぞれの機能を遂行可能なプログラムモジュールと、このプログラムモジュールを実行するための制御装置、演算装置、記憶装置、出入力装置からなるハードウェア資源とが協働することにより構成される。 Image processing means 3, X-ray exposure control means 5, X-ray intensity distribution storage means 6, region of interest setting means 7, X-ray intensity calculation means 8, X-ray intensity selection means 9, selection condition setting means 10, and target X-ray The strength setting means 11 is configured by the cooperation of a program module capable of performing each function and hardware resources including a control device, an arithmetic device, a storage device, and an input / output device for executing the program module. Is done.
 本実施形態では、X線強度算出手段8は、各ROIを構成する画素の画素値の平均値をX線強度として算出したが、X線強度算出手段8は、各ROIのX線強度の指標として、画素値を利用した指標、例えば、画素値の平均値の他、最頻値、中央値を用いて、各ROIのX線強度を算出してもよい。 In this embodiment, the X-ray intensity calculating means 8 calculates the average value of the pixel values of the pixels constituting each ROI as the X-ray intensity, but the X-ray intensity calculating means 8 is an index of the X-ray intensity of each ROI. As another example, the X-ray intensity of each ROI may be calculated using an index using pixel values, for example, the mode value and the median value in addition to the average value of the pixel values.
 次に、本実施形態に係るX線画像診断装置100の動作・原理を図3乃至図8に基づいて説明する。図3は、本実施形態に係るX線画像診断装置100により、透視モードで検査を行う処理の流れを示すフローチャートである。図4は、図3のステップS4の処理の流れを示すフローチャートである。図5は、本実施形態に係るX線画像診断装置100に備わっている関心領域設定手段7で設定するROIを説明するための説明図である。図6Aは、本実施形態に係るX線画像診断装置100に備わっているX線強度算出手段8で行われる演算を説明するための説明図であって、計算するROI(パターン(A)~(D))と、その計算したROIから算出可能なROI(パターン1~5)の総画素数と画素値合計を示す説明図である。図6Bは、本実施形態に係るX線画像診断装置に備わっているX線強度算出手段8で行われる演算を説明するための説明図であって、計算したROIから算出可能なROI(パターン6~11)の総画素数と画素値合計を示す説明図である。図7は、本実施形態を臨床に照らし合わせて説明するための説明図である。図8は、本発明で提案する機能を実機に適用する場合のユーザインタフェースの一例を示す斜視図である。以下、図3の各ステップ順に沿って説明する。 Next, the operation and principle of the X-ray diagnostic imaging apparatus 100 according to the present embodiment will be described with reference to FIGS. FIG. 3 is a flowchart showing a flow of processing for performing inspection in the fluoroscopic mode by the X-ray image diagnostic apparatus 100 according to the present embodiment. FIG. 4 is a flowchart showing a process flow of step S4 of FIG. FIG. 5 is an explanatory diagram for explaining the ROI set by the region-of-interest setting means 7 provided in the X-ray image diagnostic apparatus 100 according to the present embodiment. FIG. 6A is an explanatory diagram for explaining an operation performed by the X-ray intensity calculation means 8 provided in the X-ray image diagnostic apparatus 100 according to the present embodiment, and calculates ROI (patterns (A) to ( FIG. 4D is an explanatory diagram showing the total number of pixels and the total pixel value of ROI (patterns 1 to 5) that can be calculated from the calculated ROI. FIG.6B is an explanatory diagram for explaining an operation performed by the X-ray intensity calculation means 8 provided in the X-ray image diagnostic apparatus according to the present embodiment, and ROI (pattern 6) that can be calculated from the calculated ROI. FIG. 11 is an explanatory diagram showing the total number of pixels and the total pixel value of (11) to (11). FIG. 7 is an explanatory diagram for explaining the present embodiment in light of clinical practice. FIG. 8 is a perspective view showing an example of a user interface when the function proposed in the present invention is applied to an actual machine. In the following, description will be given along the order of steps in FIG.
 (ステップ1)
 各設定手段で設定を行う(S1)。より具体的にはX線強度の指標となる値を算出するためのROIの設定と、各ROIから得られたX線強度の指標となる値の中から一つを選択するための選択条件と、透視画像を所望する輝度で得るために必要なX線強度の目標値(「目標X線強度」ともいう。)と、を設定する。本実施形態では、X線強度の指標値として画素値の平均値を用いるため、目標X線強度も画素値を用いて定義する。
(step 1)
Setting is performed by each setting means (S1). More specifically, ROI settings for calculating a value that is an index of X-ray intensity, and selection conditions for selecting one of the values that are an index of X-ray intensity obtained from each ROI, Then, a target value of X-ray intensity (also referred to as “target X-ray intensity”) necessary for obtaining a fluoroscopic image with a desired luminance is set. In this embodiment, since the average value of the pixel values is used as the index value of the X-ray intensity, the target X-ray intensity is also defined using the pixel value.
 本実施形態のX線画像診断装置100は、設定手段として、関心領域設定手段7、選択条件設定手段10、及び目標X線強度設定手段11を備えている。 The X-ray image diagnostic apparatus 100 of this embodiment includes a region of interest setting means 7, a selection condition setting means 10, and a target X-ray intensity setting means 11 as setting means.
 以下、各設定手段で設定する内容について具体的に説明する。 Hereinafter, the contents set by each setting means will be specifically described.
 関心領域設定手段7では、X線露出制御手段5でX線出力条件を自動制御するために必要となるX線強度を算出するためのROIを設定する。設定するROIは図5の(A)に示すように大きく3つあり、まず、算出したい1番広いROI(領域1)を設定する。本実施形態では領域1は、X線検出手段4の任意の位置にある正方形状の閉領域であるが、形状は正方形状に限らず、矩形状、円形状でもよく、特に限定しない。 The region-of-interest setting means 7 sets an ROI for calculating the X-ray intensity necessary for the X-ray exposure control means 5 to automatically control the X-ray output conditions. There are three main ROIs as shown in FIG. 5A. First, the widest ROI (area 1) to be calculated is set. In the present embodiment, the region 1 is a square closed region at an arbitrary position of the X-ray detection means 4, but the shape is not limited to a square shape, and may be a rectangular shape or a circular shape, and is not particularly limited.
 次いで、領域1内に収まり、かつ領域1に内接する矩形状の小領域からなる領域2、領域3を設定する。領域2は、縦方向(図5における左右方向を横方向、上下方向を縦方向という)に長い矩形状領域であって、領域1の横方向におけるほぼ中央付近に位置し、領域3は、横方向に長い矩形状領域であって、領域1の縦方向におけるほぼ中央付近に位置する。 Next, a region 2 and a region 3 are set which are small regions of a rectangular shape that fit within the region 1 and are inscribed in the region 1. Region 2 is a rectangular region that is long in the vertical direction (the horizontal direction in FIG. 5 is referred to as the horizontal direction and the vertical direction is referred to as the vertical direction), and is located near the center in the horizontal direction of region 1. It is a rectangular region that is long in the direction, and is located near the center of the region 1 in the vertical direction.
 本実施形態では、設定するROIは大きくは、領域1~3の3つとしたが、例えば、縦方向に長い矩形状領域であって領域1に内接する矩形状の小領域を領域2の他に更に備えたり、横方向に長い矩形状領域であって領域1に内接する矩形状の小領域を領域3の他に更に備えたりするなどの変形も可能である。なお、本実施形態では、領域2、領域3ともに、領域1に内接する形状として構成したが、領域2、領域3は、領域1に内接することなく収まる形状により構成してもよい。また、領域2、領域3は、領域1を任意の割合で分割する小領域であってもよい。 In this embodiment, the ROI to be set is largely three areas 1 to 3. For example, a rectangular small area that is long in the vertical direction and is inscribed in the area 1 is added to the area 2 in addition to the area 2. It is also possible to make a modification such as further including a rectangular region that is long in the horizontal direction and inscribed in the region 1 in addition to the region 3. In the present embodiment, both the region 2 and the region 3 are configured to be inscribed in the region 1, but the region 2 and the region 3 may be configured to fit in the region 1 without being inscribed. In addition, the area 2 and the area 3 may be small areas that divide the area 1 at an arbitrary ratio.
 本実施形態では、図5の(A)の領域1~3を図6A左側に示すパターン(A)~(D)にそれぞれ対応させて設定したと仮定した場合、同図左側の8つの変数(N_(A)~N_(D)、及び平均値_(A)~平均値_(D)、但し、N_(n)はパターン(n)の総画素数、平均値_(n)はパターン(n)の画素値の平均値)を用いて、パターン(A)~(D)で設定された領域以外の領域、すなわち、図6A右側のパターン1~5及び図6Bのパターン6~11の平均値を算出可能である。説明の便宜のため、図5の(B)に示すように、領域1内に設定した領域2及び領域3により領域1内を3×3の9つの小ブロックに分け、各ブロックに領域1の左上から右下にかけて、(1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)と番号をつけると、上記パターン(A)~(D)、パターン1~11は、下式1の通り、以下のブロックにより構成される。 In this embodiment, assuming that the areas 1 to 3 in FIG. 5A are set in correspondence with the patterns (A) to (D) shown on the left side of FIG. 6A, the eight variables ( N_ (A) to N_ (D) and average value_ (A) to average value_ (D), where N_ (n) is the total number of pixels in pattern (n) and average value _ (n) is the pattern ( n) average value of pixel values), other than the areas set in patterns (A) to (D), that is, the average of patterns 1 to 5 on the right side of FIG. 6A and patterns 6 to 11 of FIG. 6B The value can be calculated. For convenience of explanation, as shown in FIG. 5 (B), the area 2 and the area 3 set in the area 1 are divided into nine small blocks of 3 × 3 by the area 2 and the area 3. From (1), (2), (3), (4), (5), (6), (7), (8), (9) from the upper left to the lower right, the above pattern ( The patterns A) to (D) and the patterns 1 to 11 are composed of the following blocks as shown in Equation 1 below.
 [数1]
Figure JPOXMLDOC01-appb-I000001
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
 パターン(A)~(D)から得られる変数(N_(A)~N_(D)、及び平均値_(A)~平均値_(D))は、X線検出手段2におけるX線入射面においてパターン(A)~(D)の各ROIに含まれる画素数と、X線検出手段2から出力されるデジタル値と、に基づいてX線強度算出手段8が算出する。 The variables (N_ (A) to N_ (D) and average value_ (A) to average value_ (D)) obtained from the patterns (A) to (D) are X-ray incident surfaces in the X-ray detection means 2 The X-ray intensity calculation means 8 calculates the number of pixels included in each ROI of the patterns (A) to (D) and the digital value output from the X-ray detection means 2.
 各ROIの画素値の平均値は、下式2に従って、平均値を求めたい領域の画素値合計、及び総画素数のみで求められる。よって、パターン1~11の画素値の平均値は、前記8つの変数を用いて、各パターンのROIの画素値合計と総画素数とが算出され、これら算出された画素値合計と総画素数とを用いて各パターンのROIの平均値を算出することができる。下式3は、パターン1~11の総画素数の算出に用いる式を、下式4は、パターン1~11の画素値合計の算出に用いる式を示す。下式3、下式4で得られた各ROIすなわち、各パターンの総画素数と画素値合計とを下式2にあてはめることにより、各ROIの画素値の平均値が算出できる。 The average value of the pixel values of each ROI can be obtained from only the total pixel value and the total number of pixels in the area for which the average value is to be obtained according to the following formula 2. Therefore, the average value of the pixel values of patterns 1 to 11 is calculated by calculating the total pixel value of ROI and the total number of pixels of each pattern using the eight variables, and the calculated total pixel value and the total number of pixels. Can be used to calculate the average ROI of each pattern. The following expression 3 is an expression used for calculating the total number of pixels of the patterns 1 to 11, and the following expression 4 is an expression used for calculating the total pixel value of the patterns 1 to 11. By applying each ROI obtained by the following formula 3 and the following formula 4, that is, the total number of pixels of each pattern and the total pixel value to the following formula 2, the average value of the pixel values of each ROI can be calculated.
 [数2]
  平均値_(n)=S_(n)/N_(n)・・・(2)
  平均値_(n):パターン(n)の画素値の平均値
   S_(n) :パターン(n)の画素値合計
   N_(n) :パターン(n)の総画素数
[Equation 2]
Average value_ (n) = S_ (n) / N_ (n) (2)
Average value_ (n): Average value of pixel values of pattern (n) S_ (n): Total pixel value of pattern (n) N_ (n): Total number of pixels of pattern (n)
 [数3]
Figure JPOXMLDOC01-appb-I000002
[Equation 3]
Figure JPOXMLDOC01-appb-I000002
 [数4]
Figure JPOXMLDOC01-appb-I000003
[Equation 4]
Figure JPOXMLDOC01-appb-I000003
 上記図5の(A)のように領域1内に収まる小領域領域2、領域3を設定する代わりに、図5の(B)のように領域1内に収まり、かつ領域1の対向する2辺に接する4本の分割線40、41、42、43を用いて、9つの小ブロックを設定してもよい。分割線40、41は、領域1の上辺及び下辺(図5における左右方向と上下方向とを基準に領域1の右辺、左辺、上辺、下辺を定義する。)に平行、かつ対向する左辺及び右辺に接する線分である。分割線40と領域1の上辺との間隔と、分割線40と分割線41との間隔、及び分割線41と領域1の下辺との間隔は、均等でもよいし、不均等でもよい。図5の(B)の例では、分割線40と領域1の上辺との間隔と、分割線41と領域1の下辺との間隔はほぼ同一であり、それらの間隔よりも分割線40と分割線41との間隔が狭く設定されている。 Instead of setting the small region 2 and the region 3 that fit within the region 1 as shown in FIG. 5 (A) above, the region 2 that fits within the region 1 as shown in FIG. Nine small blocks may be set by using four dividing lines 40, 41, 42, and 43 in contact with the sides. The dividing lines 40 and 41 are the left side and the right side that are parallel and opposite to the upper side and the lower side of the region 1 (the right side, the left side, the upper side, and the lower side of the region 1 are defined with reference to the horizontal direction and the vertical direction in FIG. 5). Is a line segment that touches The interval between the dividing line 40 and the upper side of the region 1, the interval between the dividing line 40 and the dividing line 41, and the interval between the dividing line 41 and the lower side of the region 1 may be equal or unequal. In the example of FIG. 5B, the interval between the dividing line 40 and the upper side of the region 1 and the interval between the dividing line 41 and the lower side of the region 1 are substantially the same, and the dividing line 40 and the dividing line are separated from those intervals. The distance from the line 41 is set narrow.
 また、分割線42、43は、領域1の左辺及び右辺に平行、かつ対向する上辺及び下辺に接する線分である。領域1の左辺と分割線42との間隔と、分割線42と分割線43との間隔、及び分割線43と領域1の右辺との間隔は、均等でもよいし、不均等でもよい。 Further, the dividing lines 42 and 43 are line segments that are parallel to the left side and the right side of the region 1 and are in contact with the opposite upper side and lower side. The interval between the left side of the region 1 and the dividing line 42, the interval between the dividing line 42 and the dividing line 43, and the interval between the dividing line 43 and the right side of the region 1 may be equal or unequal.
 図5の(A)の例では、領域1の左辺と分割線42との間隔と、分割線42と分割線43との間隔、及び分割線43と領域1の右辺との間隔はほぼ同一に設定されている。 In the example of FIG. 5A, the interval between the left side of region 1 and the dividing line 42, the interval between dividing line 42 and dividing line 43, and the interval between dividing line 43 and the right side of region 1 are substantially the same. Is set.
 分割線40、41、42、43により、領域1は、図5の(B)に示すように(1)~(9)の9つの小ブロックに分割される。これらそれぞれのブロックの総画素数、及び画素値合計を求めておいて、それらの組み合わせで、パターン(A)~(D)、及びパターン1~11の平均値を算出することができる。パターン(A)~(D)、及びパターン1~11の各平均値の算出方法は、上記の如く、領域2、領域3を基に8つの変数を計算で求めて、パターン(1)~(11)の平均値を算出する方法の他、9つの小ブロックの各平均値を求める方法でもよい。 The region 1 is divided into nine small blocks (1) to (9) by the dividing lines 40, 41, 42 and 43 as shown in FIG. By obtaining the total number of pixels and the total pixel value of each block, the average values of the patterns (A) to (D) and the patterns 1 to 11 can be calculated by combining them. As described above, the average values of the patterns (A) to (D) and the patterns 1 to 11 are obtained by calculating eight variables based on the regions 2 and 3, and the patterns (1) to ( In addition to the method of calculating the average value of 11), a method of calculating the average value of each of the nine small blocks may be used.
 選択条件設定手段10では、関心領域設定手段7で設定されたROI、及びそれら以外のROIの各平均値のうち、1つの平均値を選択する条件を設定する。 The selection condition setting means 10 sets a condition for selecting one average value among the ROIs set by the region of interest setting means 7 and the average values of the other ROIs.
 例えば、X線検査内容が、食道、及び胃の造影検査の場合、直接X線やX線絞りによる影響で、透視時、被検体に照射されるX線が不足または過多となり、適切な輝度を有する透視像を表示することが困難となる場合がある。 For example, if the X-ray examination details are esophageal and stomach contrast examinations, the X-rays irradiated to the subject will be insufficient or excessive during fluoroscopy due to the effects of direct X-rays and X-ray diaphragms, and appropriate brightness will be achieved. It may be difficult to display a fluoroscopic image.
 具体的に図7を用いて説明する。同図は胃透視の例を示した図であり、同図左側は胃透視全体の概略図、同図右側は画像表示手段4に表示されているX線画像を示している。従来技術ではケース1の場合、直接X線の影響によってROIの平均値が大きくなり、X線出力条件が低くなるため、食道の黒沈みが発生する。ケース2、及びケース3の場合、X線絞りの影響によって、ROIの平均値が小さくなり、X線出力条件が高くなるため、透視像が明るく、ハレーションぎみになる。従って、直接X線やX線絞りの影響を受けることなく、適切な透視輝度を有する画像を提供するためには、撮像部位が食道から胃にかけて動くに従って適切なROIを選択する必要がある。そのため、本実施形態では、フレームレートが30枚/secの映像信号を出力する透視モードであるとした場合、フレーム毎にROIを選択してもよいし、2フレーム毎にROIを選択するなど、撮像部位の変化の程度や画像処理手段3の処理能力に応じて、ROIを選択しなおす頻度を任意に設定できる、すなわち任意の枚数毎のフレームについて、ROIの平均値の算出・及び後述のX線出力条件の変更を行うようにしてもよい。 Specific description will be given with reference to FIG. The figure shows an example of gastric fluoroscopy, the left side of the figure is a schematic diagram of the entire gastric fluoroscopy, and the right side of the figure shows an X-ray image displayed on the image display means 4. In the case of Case 1, in the case of Case 1, the average value of ROI increases directly due to the influence of X-rays, and the X-ray output conditions become low, resulting in blackening of the esophagus. In case 2 and case 3, the average value of ROI decreases due to the influence of the X-ray diaphragm, and the X-ray output conditions increase, so the fluoroscopic image is bright and halation is blurred. Therefore, in order to provide an image having appropriate fluoroscopic brightness without being directly affected by X-rays or an X-ray aperture, it is necessary to select an appropriate ROI as the imaging region moves from the esophagus to the stomach. Therefore, in this embodiment, when it is a fluoroscopic mode that outputs a video signal with a frame rate of 30 frames / sec, ROI may be selected for each frame, ROI is selected for every two frames, etc. Depending on the degree of change in the imaging region and the processing capability of the image processing means 3, the frequency of reselecting the ROI can be arbitrarily set, i.e., calculating the average value of the ROI for any number of frames, and X described later The line output condition may be changed.
 本実施形態の場合、関心領域設定手段7にて設定されたROI、及び図6A右側及び図6Bに示す複数のROI(パターン1~11)の平均値は常に計算にて算出し、選択条件設定手段10にて設定された1つの平均値を選択するための条件に基づいて、フレーム毎に最適なROIの平均値を選択する。そして、その選択された平均値をX線自動露出制御に使用するため、安定した透視輝度を有する画像を提供することが可能となる。 In the case of this embodiment, the ROI set by the region of interest setting means 7 and the average values of the plurality of ROIs (patterns 1 to 11) shown in the right side of FIG. 6A and FIG. 6B are always calculated and set as selection conditions. Based on the condition for selecting one average value set by the means 10, the optimum ROI average value is selected for each frame. Since the selected average value is used for X-ray automatic exposure control, it is possible to provide an image having stable perspective brightness.
 例えば図7のケース1の場合、直接X線の入射領域を除いて被検体が撮影された領域のみからなるROIが選択されるように図6Aのパターン(B)のROIが選択され、ケース2の場合、X線絞りが撮影された領域を除いて被検体が撮影された領域のみからなるROIが選択されるように図6Aのパターン(B)のROIが選択され、ケース3の場合、X線絞りが撮影された領域を除いて被検体が撮影された領域のみからなるROIが選択されるようにパターン(D)が選択させるような条件を選択条件設定10に設定すれば良い。 For example, in case 1 of FIG. 7, the ROI of the pattern (B) in FIG. 6A is selected so that the ROI consisting only of the region where the subject is imaged except the direct X-ray incident region is selected, and case 2 In the case of (3), the ROI of the pattern (B) in FIG.6A is selected so that the ROI consisting only of the area where the subject is imaged is excluded except for the area where the X-ray aperture is imaged. The selection condition setting 10 may be set such that the pattern (D) is selected so that the ROI consisting only of the area where the subject is imaged is excluded except the area where the line aperture is imaged.
 すなわち、X線検査内容が、食道、及び胃の造影検査の場合には、関心領域設定手段7で設定されたROI、及びそれら以外のROIの各平均値のうち、最大と最小以外の平均値を選択するような設定を施せば良いということになる。 That is, when the X-ray examination content is a contrast examination of the esophagus and the stomach, among the average values of the ROI set by the region of interest setting means 7 and other ROIs, the average values other than the maximum and minimum This means that you only have to make a setting to select.
 選択条件設定内容について、例えば、1)各ROIの平均値の小さい方から数えて何番目のROIを選択する、2)(図6A左側に示す4つのROI以外に)どのROIを選択可能なROIの候補に入れるか、等がある。1)の選択条件は、直接X線が入射した領域やX線絞りが撮影された領域を除いたROIを選択するのに有効である。また、2)の選択条件は、X線検査内容、手技の方法、撮影部位の形状に合わせてROI候補を絞り込むことにより、図6A右側及び図6Bの例では、パターン1~11までの11全てについて画素値の平均値を算出する必要がなくなるため、処理の高速化やハードウェア資源の有効活用が期待できる。更に、選択条件として、3)従来のX線画像診断装置のようにX線検出手段2のX線入射面に対するROIの位置を固定する固定モードと、本実施形態に係るX線露出制御方法及びプログラムのように、一の透視中にX線入射面に対するROIの位置を変動させる変動モードとを選択できるようにしてもよい。 For the selection condition setting contents, for example, 1) Select the ROI that counts from the one with the smallest average value of each ROI, 2) ROI that can select which ROI (in addition to the four ROIs shown on the left side of Fig. 6A) Or put it in the candidate. The selection condition 1) is effective for selecting an ROI excluding an area where direct X-rays are incident and an area where an X-ray aperture is photographed. In addition, the selection conditions in 2) are all 11 patterns 1 to 11 in the right side of FIG. 6A and the example of FIG. 6B by narrowing down ROI candidates according to the X-ray examination content, technique method, and shape of the imaging region. Therefore, it is not necessary to calculate the average value of the pixel values, so that it is possible to expect high speed processing and effective use of hardware resources. Further, as selection conditions, 3) a fixed mode for fixing the position of the ROI with respect to the X-ray incident surface of the X-ray detection means 2 as in the conventional X-ray diagnostic imaging apparatus, and the X-ray exposure control method according to the present embodiment, As in a program, it may be possible to select a change mode in which the position of the ROI with respect to the X-ray incident surface is changed during one fluoroscopy.
 目標X線強度設定手段11では、X線強度選択手段9で選択されたX線強度の平均値が一定に保たれるよう、X線露出制御手段5がX線出力条件を自動制御するための目標となるX線強度の平均値を定める。 In the target X-ray intensity setting means 11, the X-ray exposure control means 5 automatically controls the X-ray output conditions so that the average value of the X-ray intensity selected by the X-ray intensity selection means 9 is kept constant. Determine the average value of the target X-ray intensity.
 (ステップ2)
 透視モードによりX線撮像が行われ、映像信号が出力される(S2)。
 X線発生手段1から照射されたX線は被検体12を透過後、X線検出手段2よりデジタル画像データとして出力され、X線強度分布記憶手段6により記憶・保持される。
(Step 2)
X-ray imaging is performed in the fluoroscopic mode, and a video signal is output (S2).
The X-rays irradiated from the X-ray generation means 1 are transmitted as digital image data from the X-ray detection means 2 after passing through the subject 12, and stored and held in the X-ray intensity distribution storage means 6.
 (ステップ3)
 最初のフレームに撮像されたX線強度分布像が、X線検出手段2から画像処理手段3に出力される(S3)。
(Step 3)
The X-ray intensity distribution image captured in the first frame is output from the X-ray detection means 2 to the image processing means 3 (S3).
 (ステップ4)
 X線露出制御手段5で用いるROIの平均値を算出する(S4)。
(Step 4)
An average value of ROI used in the X-ray exposure control means 5 is calculated (S4).
 (ステップS41)
 画像処理手段3は、X線強度分布記憶手段6、X線強度算出手段8、及びX線強度選択手段9を内包しており、X線検出手段2から出力されたデジタル画像データからなるX線強度分布像は、X線強度分布記憶手段6で記憶・保持される(S41)。
(Step S41)
The image processing means 3 includes an X-ray intensity distribution storage means 6, an X-ray intensity calculation means 8, and an X-ray intensity selection means 9, and is composed of digital image data output from the X-ray detection means 2. The intensity distribution image is stored and held in the X-ray intensity distribution storage means 6 (S41).
 (ステップS42)
 X線強度分布記憶手段6で記憶・保持されたX線強度分布像は、X線強度算出手段8へ送られる。X線強度算出手段8は、関心領域設定手段7で設定されたROI、及びそれら以外のROIの各画素値の平均値を算出する(S42)。
(Step S42)
The X-ray intensity distribution image stored and held in the X-ray intensity distribution storage means 6 is sent to the X-ray intensity calculation means 8. The X-ray intensity calculation means 8 calculates the average value of the pixel values of the ROI set by the region-of-interest setting means 7 and other ROIs (S42).
 (ステップS43)
 X線強度選択手段9は、選択条件設定手段10で設定された条件に基づいて、算出された各ROIの平均値のうち1つを選択し、その平均値をX線露出制御手段5へ送る(S43)。
(Step S43)
The X-ray intensity selection means 9 selects one of the calculated average values of each ROI based on the conditions set by the selection condition setting means 10 and sends the average value to the X-ray exposure control means 5 (S43).
 (ステップS5)
 また、上記平均値算出と併せて、X線強度分布記憶手段6で記憶・保持されたデジタル画像データは、診断画像としての画質を得るために、ノイズ低減処理や表示階調処理、等の画像処理も画像処理手段3において施される(S5)。
(Step S5)
In addition to the above average value calculation, the digital image data stored and held in the X-ray intensity distribution storage means 6 is an image such as noise reduction processing and display gradation processing, in order to obtain image quality as a diagnostic image. Processing is also performed in the image processing means 3 (S5).
 (ステップS6)
 D/A変換器13は、画像処理手段3にて画像処理が施されたデジタル画像データをアナログ信号へ変換し、画像表示手段4にて処理された画像が表示される(S6)。
(Step S6)
The D / A converter 13 converts the digital image data subjected to the image processing by the image processing means 3 into an analog signal, and the image processed by the image display means 4 is displayed (S6).
 (ステップ7)
 X線露出制御手段5で次のフレームで被検体に照射するX線出力条件を決定する(S7)。
 X線露出制御手段5は、目標X線強度設定手段11で設定された目標となるX線強度の平均値と、ステップS43でX線強度選択手段9から送られて来る現フレームにおけるROIのX線強度の平均値と、を比較して、その結果に応じて次のフレーム12で被検体に照射するX線出力条件を決定する。
(Step 7)
The X-ray exposure control means 5 determines X-ray output conditions for irradiating the subject in the next frame (S7).
The X-ray exposure control means 5 is the average value of the target X-ray intensity set by the target X-ray intensity setting means 11 and the ROI X in the current frame sent from the X-ray intensity selection means 9 in step S43. The average value of the line intensities is compared, and an X-ray output condition for irradiating the subject in the next frame 12 is determined according to the result.
 すなわち、目標となるX線強度の平均値が現フレームにおけるROIのX線強度の平均値より大きい場合には、その差を解消するよう、X線出力条件を増加させる。一方、目標となるX線強度の平均値が現フレームにおけるROIのX線強度の平均値より小さい場合には、その差を解消するよう、X線出力条件を減少させる。尚、X線出力条件の増減に関しては、連続透視の場合、管電圧(kV)および/または管電流(mA)、パルス透視の場合、管電圧、管電流に加え、パルス照射幅が調整パラメータとして考えられる。 That is, when the average value of the target X-ray intensity is larger than the average value of the ROI X-ray intensity in the current frame, the X-ray output conditions are increased so as to eliminate the difference. On the other hand, when the average value of the target X-ray intensity is smaller than the average value of the ROI X-ray intensity in the current frame, the X-ray output condition is reduced so as to eliminate the difference. Regarding the increase / decrease of the X-ray output conditions, in the case of continuous fluoroscopy, the tube voltage (kV) and / or tube current (mA), in the case of pulse fluoroscopy, in addition to the tube voltage and tube current, the pulse irradiation width is an adjustment parameter. Conceivable.
 (ステップS8)
 検査が終了でない場合にはステップS9へ進み、検査が終了である場合には、本処理の流れを終了する(S8)。
(Step S8)
If the inspection is not completed, the process proceeds to step S9. If the inspection is completed, the flow of this process ends (S8).
 (ステップS9)
 ステップS7で決定されたX線出力条件がX線発生手段1へと送られ、送られた情報に基づいてX線発生手段1から被検体12にX線が照射されて、X線検出手段2が次のフレームのX線強度分布像を出力する(S9)。そして、ステップS4へ戻り、ステップS4以下の処理を繰り返す。
(Step S9)
The X-ray output condition determined in step S7 is sent to the X-ray generation means 1, and the subject 12 is irradiated with X-rays from the X-ray generation means 1 based on the sent information, and the X-ray detection means 2 Outputs an X-ray intensity distribution image of the next frame (S9). And it returns to step S4 and repeats the process after step S4.
 上記実施形態では、自動的にROIを選択する方法について主に述べたが、図8に示すように、表示パネル71、透視像を映し出すTVモニタ72、X線出力条件のマニュアル設定や変更されたX線出力条件を随時表示するX線高電圧装置操作パネル73を備えた遠隔操作卓70上の表示パネル71に、図6Aのパターン(A)~(D)及びパターン1~5と図6Bのパターン6~11の形状を示すボタンを設け、ユーザ側で任意にROIをマニュアル的に選択できるように構成してもよい。また、表示パネル71上にX線検出手段2のX線入射面を示す画面を表示し、その画面上において、図5の領域1、領域2及び領域3の位置、大きさ、形状をマウスやジョイステックなどのポインティングデバイスを用いて入力設定できるようにしてもよい。又は上述の画面上において設定した領域1に、分割線40、41、42、43を入力設定してもよい。これにより、X線入射面に対する任意の位置に、任意の大きさや形状のROIを設定することができる。 In the above embodiment, the method for automatically selecting the ROI has been mainly described. However, as shown in FIG. 8, the display panel 71, the TV monitor 72 for displaying a fluoroscopic image, the manual setting of the X-ray output condition or the change has been made. Patterns (A) to (D) and patterns 1 to 5 in FIG. 6A and patterns 1 to 5 and FIG. 6B are displayed on the display panel 71 on the remote control console 70 having the X-ray high voltage device operation panel 73 for displaying the X-ray output conditions as needed. Buttons indicating the shapes of the patterns 6 to 11 may be provided so that the user can arbitrarily select the ROI manually. Further, a screen showing the X-ray incident surface of the X-ray detection means 2 is displayed on the display panel 71, and the position, size, and shape of region 1, region 2 and region 3 in FIG. An input setting may be made using a pointing device such as a joystick. Alternatively, the dividing lines 40, 41, 42, and 43 may be input and set in the region 1 set on the above-described screen. As a result, an ROI having an arbitrary size and shape can be set at an arbitrary position with respect to the X-ray incident surface.
 また、検査対象部位に応じて、1)領域1~3の各形状(大きさ)、2) 領域1~3を設定するX線入射面上の推奨位置を初期表示し、この初期表示に対して任意に変更できるように構成してもよい。 In addition, depending on the region to be inspected, 1) Initially display the recommended positions on the X-ray entrance plane to set each shape (size) of regions 1 to 3 and 2) regions 1 to 3. It may be configured to be arbitrarily changed.
 また、上記実施形態では、X線検出手段2として、FPDを使用した場合について記述しているが、I.I.に置き換えることも可能である。 In the above embodiment, the case where FPD is used as the X-ray detection means 2 is described. I. It is also possible to replace with.
 1 X線発生手段、2 X線検出手段、3 画像処理手段、4 画像表示手段、5 X線露出制御手段、6 X線強度分布記憶手段、7 X線強度算出領域設定手段、8 X線強度算出手段、9 X線強度選択手段、10 選択条件設定手段、11 目標X線強度設定手段、12 被検体、13 D/A変換器、70 遠隔操作卓、100 X線画像診断装置 1 X-ray generation means, 2 X-ray detection means, 3 image processing means, 4 image display means, 5 X-ray exposure control means, 6 X-ray intensity distribution storage means, 7 X-ray intensity calculation area setting means, 8 X-ray intensity Calculation means, 9 X-ray intensity selection means, 10 Selection condition setting means, 11 Target X-ray intensity setting means, 12 Subject, 13 D / A converter, 70 Remote operator console, 100 X-ray diagnostic imaging device

Claims (13)

  1.  X線を発生させるX線発生手段と、
     被検体を透過した透過X線を検出して、その透過X線のX線強度を示す画像データを出力するX線検出手段と、
     前記画像データに基づくX線強度分布像上に複数の関心領域を設定する関心領域設定手段と、
     各関心領域のX線強度を示す指標の代表値を算出するX線強度算出手段と、
     前記複数の関心領域のX線強度の代表値の中から一つの代表値を選択するX線強度選択手段と、
     前記選択されたX線強度の代表値に基づいて、前記X線発生手段の露出制御を行うX線露出制御手段と、
     を備えたことを特徴とするX線画像診断装置。
    X-ray generation means for generating X-rays;
    X-ray detection means for detecting transmitted X-rays transmitted through the subject and outputting image data indicating the X-ray intensity of the transmitted X-rays;
    Region-of-interest setting means for setting a plurality of regions of interest on the X-ray intensity distribution image based on the image data;
    X-ray intensity calculation means for calculating a representative value of an index indicating the X-ray intensity of each region of interest;
    X-ray intensity selection means for selecting one representative value from representative values of X-ray intensity of the plurality of regions of interest;
    X-ray exposure control means for performing exposure control of the X-ray generation means, based on the representative value of the selected X-ray intensity,
    An X-ray diagnostic imaging apparatus comprising:
  2.  前記X線検出手段により検出される前記透過X線のX線強度の目標値を設定する目標X線強度設定手段と、
     前記各関心領域から得られた代表値の中から一つの代表値を選択するため選択条件を設定する選択条件設定手段と、を更に備え、
     前記X線強度選択手段は、前記選択条件に従って、前記一つの代表値を選択し、
     前記X線露出制御手段は、前記選択された代表値と、前記目標値と、を比較して、前記代表値と前記目標値との差が小さくなるようにX線の出力条件を変更して、前記露出制御を行う、
     ことを特徴とする請求項1に記載のX線画像診断装置。
    Target X-ray intensity setting means for setting a target value of the X-ray intensity of the transmitted X-ray detected by the X-ray detection means;
    Selection condition setting means for setting a selection condition for selecting one representative value from the representative values obtained from each region of interest;
    The X-ray intensity selection means selects the one representative value according to the selection condition,
    The X-ray exposure control means compares the selected representative value with the target value, and changes the X-ray output condition so that the difference between the representative value and the target value is reduced. Performing the exposure control,
    2. The X-ray image diagnostic apparatus according to claim 1, wherein
  3.  前記被検体の透視中に、
     前記X線強度算出手段は、前記透視中に得られる映像信号を構成するフレームのうち、所定数毎の各フレームに撮像された前記X線強度分布像に対して設定された前記各関心領域のX線強度を示す指標の代表値を算出し、
     前記X線強度選択手段は、前記所定数毎の各フレームに撮像された前記X線強度分布像から得られた複数のX線強度を示す指標の代表値の中から前記一つの代表値を選択し、
     前記X線露出制御手段は、前記選択された代表値と前記目標値とを比較して前記X線の出力条件を変更し、前記一つの代表値が選択されたX線強度分布像が撮像されたフレームよりも後のフレームを得るための露出制御を行う、
     ことを特徴とする請求項2に記載のX線画像診断装置。
    During fluoroscopy of the subject,
    The X-ray intensity calculation means is configured to calculate each of the regions of interest set with respect to the X-ray intensity distribution image captured in each predetermined number of frames among the frames constituting the video signal obtained during the fluoroscopy. Calculate the representative value of the index indicating the X-ray intensity,
    The X-ray intensity selection means selects the one representative value from representative values of an index indicating a plurality of X-ray intensities obtained from the X-ray intensity distribution image captured in each predetermined number of frames. And
    The X-ray exposure control means compares the selected representative value with the target value to change the X-ray output condition, and an X-ray intensity distribution image with the one representative value selected is captured. Exposure control to obtain a frame after the frame
    3. The X-ray image diagnostic apparatus according to claim 2, wherein
  4.  前記関心領域設定手段は、前記X線検出手段におけるX線入射面上の任意の位置にある閉領域と、前記閉領域を分割して得られた複数の分割領域と、に基づいて、前記閉領域、前記分割領域、及び前記分割領域の組み合わせからなる領域のうちの少なくとも2以上を前記関心領域として設定する、
     ことを特徴とする請求項1に記載のX線画像診断装置。
    The region-of-interest setting means is based on a closed region at an arbitrary position on the X-ray incident surface in the X-ray detection unit and a plurality of divided regions obtained by dividing the closed region. Setting at least two or more of the region, the divided region, and a region formed by a combination of the divided regions as the region of interest;
    2. The X-ray image diagnostic apparatus according to claim 1, wherein
  5.  前記代表値は、各関心領域の画素値の平均値、最頻値、又は中央値の何れかである、
     ことを特徴とする請求項4に記載のX線画像診断装置。
    The representative value is either an average value, a mode value, or a median value of pixel values of each region of interest.
    5. The X-ray image diagnostic apparatus according to claim 4, wherein
  6.  前記代表値は、各関心領域の画素値の平均値であって、
     前記関心領域設定手段は、矩形状領域又は正方形状領域からなる前記閉領域と、その閉領域に内接する矩形状領域又は正方形状領域からなる1以上の小領域と、を設定することにより、前記閉領域を2以上の分割領域に分割し、
     前記X線強度算出手段は、前記閉領域及び前記小領域を構成する画素の画素値と、前記閉領域の総画素数及び前記小領域の総画素数と、に基づいて、前記閉領域及び前記小領域からなる各関心領域の画素値の平均値を計算し、前記閉領域内における前記小領域とは異なる分割領域からなる関心領域の画素値の平均値を、前記計算された閉領域及び前記小領域のそれぞれの画素値の平均値と、前記閉領域を構成する総画素数及び前記小領域を構成する総画素数と、を用いて算出する、
     ことを特徴とする請求項5に記載のX線画像診断装置。
    The representative value is an average value of pixel values of each region of interest,
    The region-of-interest setting means sets the closed region composed of a rectangular region or a square region, and one or more small regions composed of a rectangular region or a square region inscribed in the closed region, Divide the closed area into two or more divided areas,
    The X-ray intensity calculating means, based on the pixel values of the pixels constituting the closed region and the small region, the total number of pixels in the closed region and the total number of pixels in the small region, An average value of pixel values of each region of interest consisting of a small region is calculated, and an average value of pixel values of a region of interest consisting of a divided region different from the small region in the closed region is calculated using the calculated closed region and the calculated region Calculate using the average value of each pixel value of the small region, the total number of pixels constituting the closed region and the total number of pixels constituting the small region,
    6. The X-ray image diagnostic apparatus according to claim 5, wherein
  7.  前記代表値は、各関心領域の画素値の平均値であって、
     前記関心領域設定手段は、矩形状領域又は正方形状領域からなる前記閉領域と、その閉領域の対向する両辺に接する分割線により前記閉領域を2以上の領域に分割して分割領域を設定し、
     前記X線強度算出手段は、前記閉領域及び少なくとも一つの分割領域を構成する画素の画素値と、前記閉領域の総画素数及び前記少なくとも一つの分割領域の総画素数と、に基づいて、前記閉領域及び前記少なくとも一つの分割領域からなる各関心領域の画素値の平均値を計算し、その計算の対象とはならない、前記分割領域又は前記分割領域の組み合わせからなる関心領域の画素値の平均値を、前記計算された閉領域及び前記少なくとも一つの分割領域の画素値の平均値と、前記閉領域を構成する総画素数及び前記少なくとも一つの分割領域を構成する総画素数と、を用いて算出する、
     ことを特徴とする請求項5に記載のX線画像診断装置。
    The representative value is an average value of pixel values of each region of interest,
    The region-of-interest setting means sets the divided region by dividing the closed region into two or more regions by the closed region composed of a rectangular region or a square region, and a dividing line contacting both opposite sides of the closed region. ,
    The X-ray intensity calculation means is based on the pixel values of the pixels constituting the closed region and at least one divided region, the total number of pixels in the closed region and the total number of pixels in the at least one divided region, The average value of the pixel values of each region of interest consisting of the closed region and the at least one divided region is calculated, and the pixel value of the region of interest consisting of the divided region or a combination of the divided regions is not subject to the calculation. The average value is calculated by calculating the average value of the pixel values of the closed region and the at least one divided region, the total number of pixels constituting the closed region, and the total number of pixels constituting the at least one divided region. Calculate using
    6. The X-ray image diagnostic apparatus according to claim 5, wherein
  8.  前記閉領域と、前記小領域又は前記分割線と、を前記X線検出手段におけるX線入射面上の任意の位置に設定入力するための入力手段を更に備える、
     ことを特徴とする請求項6に記載のX線画像診断装置。
    Further comprising an input means for setting and inputting the closed area, the small area or the dividing line at an arbitrary position on the X-ray incident surface in the X-ray detection means,
    7. The X-ray image diagnostic apparatus according to claim 6, wherein
  9.  前記閉領域と、前記小領域又は前記分割線と、を前記X線検出手段におけるX線入射面上の任意の位置に設定入力するための入力手段を更に備える、
     ことを特徴とする請求項7に記載のX線画像診断装置。
    Further comprising an input means for setting and inputting the closed area, the small area or the dividing line at an arbitrary position on the X-ray incident surface in the X-ray detection means,
    8. The X-ray image diagnostic apparatus according to claim 7, wherein
  10.  前記関心領域設定手段は、前記被検体の撮像部位に対応させて、前記関心領域の位置、大きさ、及び形状の少なくとも一つを変更する、
     ことを特徴とする請求項1に記載のX線画像診断装置。
    The region-of-interest setting means changes at least one of the position, size, and shape of the region of interest in correspondence with the imaging region of the subject.
    2. The X-ray image diagnostic apparatus according to claim 1, wherein
  11.  前記選択条件設定手段は、前記各関心領域から得られた複数の代表値のうちの最小値よりも大きく、かつ、最大値よりも小さい値を、前記一つの代表値として選択することを、前記選択条件として設定する、
     ことを特徴とする請求項2に記載のX線画像診断装置。
    The selection condition setting means selects, as the one representative value, a value that is larger than a minimum value and smaller than a maximum value among the plurality of representative values obtained from each region of interest. Set as selection condition,
    3. The X-ray image diagnostic apparatus according to claim 2, wherein
  12.  被検体を透過した透過X線のX線強度を示す画像データに基づくX線強度分布像上に複数の関心領域を設定するステップと、
     各関心領域のX線強度を示す指標の代表値を算出するステップと、
     前記複数の関心領域のX線強度の代表値の中から一つの代表値を選択するステップと、 前記選択されたX線強度の代表値に基づいて、X線の露出制御を行うステップと、
     を含むことを特徴とするX線露出制御方法。
    Setting a plurality of regions of interest on an X-ray intensity distribution image based on image data indicating the X-ray intensity of transmitted X-rays transmitted through the subject;
    Calculating a representative value of an index indicating the X-ray intensity of each region of interest;
    Selecting one representative value from representative values of the X-ray intensity of the plurality of regions of interest; and performing X-ray exposure control based on the selected representative value of the X-ray intensity;
    An X-ray exposure control method comprising:
  13.  被検体を透過した透過X線のX線強度を示す画像データに基づくX線強度分布像上に複数の関心領域を設定するステップと、
     各関心領域のX線強度を示す指標の代表値を算出するステップと、
     前記複数の関心領域のX線強度の代表値の中から一つの代表値を選択するステップと、 前記選択されたX線強度の代表値に基づいて、X線の露出制御を行うステップと、
     をコンピュータに実行させることを特徴とするX線露出制御プログラム。
    Setting a plurality of regions of interest on an X-ray intensity distribution image based on image data indicating the X-ray intensity of transmitted X-rays transmitted through the subject;
    Calculating a representative value of an index indicating the X-ray intensity of each region of interest;
    Selecting one representative value from representative values of the X-ray intensity of the plurality of regions of interest; and performing X-ray exposure control based on the selected representative value of the X-ray intensity;
    X-ray exposure control program characterized in that a computer is executed.
PCT/JP2010/072116 2009-12-18 2010-12-09 X-ray image diagnostic device, x-ray exposure control method and program WO2011074471A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011546078A JPWO2011074471A1 (en) 2009-12-18 2010-12-09 X-ray diagnostic imaging apparatus, X-ray exposure control method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-288282 2009-12-18
JP2009288282 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011074471A1 true WO2011074471A1 (en) 2011-06-23

Family

ID=44167227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072116 WO2011074471A1 (en) 2009-12-18 2010-12-09 X-ray image diagnostic device, x-ray exposure control method and program

Country Status (2)

Country Link
JP (1) JPWO2011074471A1 (en)
WO (1) WO2011074471A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042413A1 (en) * 2011-09-21 2013-03-28 富士フイルム株式会社 Radiographic moving image processing device, radiographic moving image shooting device, radiographic moving image shooting system, radiographic moving image shooting method, and radiographic moving image shooting program
JP2015009097A (en) * 2013-07-02 2015-01-19 株式会社東芝 X-ray diagnostic apparatus
WO2015059795A1 (en) * 2013-10-24 2015-04-30 株式会社島津製作所 Radioscopic apparatus
JP2015228994A (en) * 2014-06-05 2015-12-21 株式会社日立メディコ X-ray image diagnostic apparatus and x-ray control method
JPWO2018025347A1 (en) * 2016-08-03 2019-05-23 株式会社島津製作所 X-ray fluoroscope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356884U (en) * 1986-09-30 1988-04-15
JPH05269118A (en) * 1992-03-25 1993-10-19 Shimadzu Corp X-ray radioscopic photographing system
JP2005143672A (en) * 2003-11-12 2005-06-09 Hitachi Medical Corp X-ray image diagnostic apparatus
JP2009268699A (en) * 2008-05-07 2009-11-19 Canon Inc Fluoroscopic apparatus, moving image processing method, program and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356884U (en) * 1986-09-30 1988-04-15
JPH05269118A (en) * 1992-03-25 1993-10-19 Shimadzu Corp X-ray radioscopic photographing system
JP2005143672A (en) * 2003-11-12 2005-06-09 Hitachi Medical Corp X-ray image diagnostic apparatus
JP2009268699A (en) * 2008-05-07 2009-11-19 Canon Inc Fluoroscopic apparatus, moving image processing method, program and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042413A1 (en) * 2011-09-21 2013-03-28 富士フイルム株式会社 Radiographic moving image processing device, radiographic moving image shooting device, radiographic moving image shooting system, radiographic moving image shooting method, and radiographic moving image shooting program
JP2015009097A (en) * 2013-07-02 2015-01-19 株式会社東芝 X-ray diagnostic apparatus
WO2015059795A1 (en) * 2013-10-24 2015-04-30 株式会社島津製作所 Radioscopic apparatus
JP2015228994A (en) * 2014-06-05 2015-12-21 株式会社日立メディコ X-ray image diagnostic apparatus and x-ray control method
JPWO2018025347A1 (en) * 2016-08-03 2019-05-23 株式会社島津製作所 X-ray fluoroscope

Also Published As

Publication number Publication date
JPWO2011074471A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP6176821B2 (en) Medical diagnostic imaging equipment
EP2074383B1 (en) C-arm computerized tomography
JP5375655B2 (en) Radiography equipment
JP5835333B2 (en) Image processing apparatus and radiation imaging apparatus including the same
JP2011030778A (en) Medical imaging apparatus and imaging method of the same
WO2011074471A1 (en) X-ray image diagnostic device, x-ray exposure control method and program
US20080025586A1 (en) Histogram Calculation for Auto-Windowing of Collimated X-Ray Image
US20150310602A1 (en) X-ray imaging apparatus and image processing method thereof
JP5742970B2 (en) Radiography equipment
JP5721833B2 (en) X-ray diagnostic imaging apparatus and control method for X-ray generation apparatus
JP2011067436A (en) Radiographic apparatus, radiography method and storage medium
JP5042533B2 (en) Medical image display device
JP2011019712A (en) X-ray equipment
JP6397659B2 (en) X-ray image diagnostic apparatus and X-ray control method
US20110305382A1 (en) Image processing method and radiographic apparatus using the same
JP4314001B2 (en) Image display device
JP2011076224A (en) Device, system, method, and program for information processing
JP4460901B2 (en) X-ray diagnostic apparatus and image processing method
JP2011239804A (en) X-ray examination apparatus
JP2010172560A (en) Radiographic imaging apparatus and image processor
JP5884680B2 (en) Foil shadow removal method of radiation grid and radiation imaging apparatus using the same
JP2014033850A (en) Medical image capturing apparatus and medical image capturing method
JP2018149166A (en) Radiation image processing device
JP7015113B2 (en) X-ray diagnostic device, control method of X-ray diagnostic device, and image processing device
JP6033556B2 (en) X-ray inspection apparatus and X-ray inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011546078

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837499

Country of ref document: EP

Kind code of ref document: A1