WO2011073467A1 - Hydraulic wind turbine system with variable flow-rate per revolution and constant pressure - Google Patents

Hydraulic wind turbine system with variable flow-rate per revolution and constant pressure Download PDF

Info

Publication number
WO2011073467A1
WO2011073467A1 PCT/ES2010/000381 ES2010000381W WO2011073467A1 WO 2011073467 A1 WO2011073467 A1 WO 2011073467A1 ES 2010000381 W ES2010000381 W ES 2010000381W WO 2011073467 A1 WO2011073467 A1 WO 2011073467A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
pelton
turbines
constant pressure
per revolution
Prior art date
Application number
PCT/ES2010/000381
Other languages
Spanish (es)
French (fr)
Inventor
Manuel Torrez Martinez
Mario Garcia Sanz
Original Assignee
Manuel Torrez Martinez
Mario Garcia Sanz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manuel Torrez Martinez, Mario Garcia Sanz filed Critical Manuel Torrez Martinez
Publication of WO2011073467A1 publication Critical patent/WO2011073467A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/24Rotors for turbines
    • F05B2240/241Rotors for turbines of impulse type
    • F05B2240/2411Pelton type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention is related to hydraulic pumping systems by wind drive, proposing a wind-hydraulic wind turbine system of variable flow per revolution and constant pressure, both independent of the wind rotor speed, with coordinated control for performance optimization, rejection of voltage dips and the regulation of reactive power.
  • hydroelectric power plants whose development began at the end of the nineteenth century, are today, within the renewable energy sector, one of the most developed, mature, least cost and energy quality means, for power generation.
  • the hydraulic mini-plants with Pelton turbines that are arranged in high-altitude waterfalls (above one thousand meters), are the most efficient, reliable and economical for the generation of electricity.
  • a system is proposed that allows the control of wind-hydraulic wind turbines of variable flow per revolution, including groups of multi-wheel turbines with equal radii, so that it can work under pressure constant hydraulics to maximize the electrical energy produced, optimizing the overall performance of the machine, as well as operating before voltage gaps in the electricity grid, and regulating the reactive power that ; It is delivered to the network.
  • This system object of the invention comprises:
  • this subsystem modifies the pumping flow, varying the torque with which the The machine opposes the wind and thus the speed of rotation of the wind rotor, which optimizes aerodynamic performance and therefore the energy achieved with each wind speed.
  • Figure 1 shows a general scheme of the wind-hydraulic wind turbine system object of the invention.
  • FIG. 1A shows an enlarged detail of the scheme of a Pelton turbine (turbine i) used in the system of the invention.
  • Figure 2 shows a representative scheme of the power flow and the yields of the different stages, as well as the hierarchical control of the system of the invention.
  • Figure 3 shows a representative scheme of an injector of a Pelton turbine.
  • Figure 4 shows a representative scheme of a deflector of a Pelton turbine, in the position of flow deviation.
  • Figure 5 shows a representative plot of the aerodynamic performance of the wind rotor in the system of the invention.
  • Figure 6 shows a representative graph of the power curve of the wind-hydraulic wind turbine.
  • Figure 7 shows a graph representing the performance of a Pelton turbine according to the speed ratio.
  • Figure 8 shows a representative graph of the performance of a Pelton turbine according to the work flow.
  • Figure 9 shows a representative scheme of the Pelton multi-wheel turbines that are used in the wind-hydraulic wind turbine system of the invention to work at constant pressure.
  • Figure 10 shows a representative plot of a voltage gap in the power grid.
  • the invention consists of a wind-hydraulic wind turbine system of variable flow per revolution and constant pressure, both independent of the speed of the wind rotor, and with coordinated control for performance optimization, rejection of voltage gaps and reactive energy control in the network electric
  • Figure 1 represents the general scheme of the recommended system, comprising a multi-blade wind rotor (1), which transforms the wind energy into a mechanical torque in an axis (2) that in turn transmits the energy to a pumping system (3) that by means of a radial pump (4) introduces pressurized liquid into a hydraulic circuit (5) capable of generating electrical energy by groups formed by Pelton turbines (6) multi-wheel of equal radii and in combination with them respective electric generators (7).
  • the system has a control subsystem (8), by which the performance of the wind rotor (1) is controlled, a control subsystem (9), by which the turbine performance is controlled Pelton (6), a control subsystem (10), by which the operation is controlled in the event of voltage dips in the power grid (13) to which the electricity produced by the wind-hydraulic wind turbine system is supplied, a subsystem of control (11), by which the reactive power that is injected into the power grid (13) is controlled, and a coordinated control system (12), by which the four previous subsystems are monitored.
  • Figure 2 represents the energy flow diagram of the wind-hydraulic wind turbine system, its yields, and the coordinated control system of wind rotor performance (1), performance of Pelton turbines (6), voltage gaps and reactive power .
  • Tr is the mechanical torque that the wind rotor (1) extracts from the wind
  • p a ⁇ r is the density of the air
  • R is the radius of the space swept by the wind rotor (1)
  • C p is the aerodynamic performance of the wind rotor (1)
  • V is the wind speed
  • ⁇ r is the rotation speed of the wind rotor (1)
  • P wr is the mechanical power on the axis of the wind rotor (1)
  • P wb is the power at the end of the hydraulic circuit (5)
  • ⁇ b is the performance of said hydraulic circuit (5)
  • P b and Qb are the pressure and the flow rate of the liquid at the end of the hydraulic circuit (5)
  • P wgi is the power at the output of the Pelton turbines (6) and input to the electric generators
  • the actuators, d x , d y , d z I x are, respectively, the draft angle of the wind rotor blades (1), the eccentricity of the pump (4), the position of the injectors (figure 3) of the Pelton turbines (6), the position of the baffles (figure 4) of the Pelton turbines (6), and excitation currents of electric generators (7).
  • the control subsystem (8) controls the flow rate Qb, which is variable and independent of the speed ⁇ r of the wind rotor (1), optimizing the performance of the wind-hydraulic wind turbine.
  • the aerodynamic efficiency C p of the wind rotor (1) depends on the wind speed V and the rotation speed ⁇ r of the wind rotor (1) for each draft angle ⁇ of the blades of said wind rotor (1), according to Equation (XI) and Figure 5.
  • the rotational speed ⁇ r of the wind rotor (1) depends on the torques T r given by the wind and the antagonistic mechanical torque T b , such that: where r0 is the speed ⁇ at the working point stationary, J turb i na is the inertia of the wind rotor (1) and s the Laplace variable.
  • the wind rotor performance control subsystem (8) tries to keep said wind rotor (1) over the maximum aerodynamic coefficient C pmax , thus obtaining the maximum power for each wind speed.
  • the control subsystem (8) modifies the flow rate per revolution of the pump (4) by the coordinated variation of the eccentricity dx of said pump (4) and of the angles ⁇ of the blades of the wind rotor (1), according to a specific control algorithm.
  • the control subsystem (8) tries to maintain a speed r of rotation of the constant wind rotor (1) and a constant power, varying the angle ⁇ of the wind rotor blades (1), decreasing or thereby increasing the aerodynamic coefficient C p ( Figure 5).
  • the electric power generation system consists of a set of groups formed by Pelton turbines (6) multi-wheel and electric generators (7), according to figure 1.
  • P wgi Pturbina ⁇ kp 1 ⁇ t (XV) where k is a constant of proportionality, A v is the area of the injected liquid vein ,, is the performance of the Pelton turbine (6), p ⁇ the density of the injected liquid, and V ai the speed of the injected liquid.
  • the ⁇ t performance of the Pelton turbine (6) depends on the speed g r of the Pelton turbine itself (6) and the speed V a ⁇ of the injected liquid, according to Figure 7 and equations (XVI) and ( XVII) following:
  • J7, 2v (lv) [lk r cos ()] (XVI)
  • v is the ratio of speeds U / V ai , where U is the linear speed of the outer end (radius) of the Pelton turbine wheel (6) and V ai the speed of the injected liquid
  • ⁇ g is the speed of rotation of the axis of the Pelton turbine (6) or generator ⁇ 8)
  • R t is the radius of the Pelton turbine wheel (6)
  • k r is the friction factor (typically between 0.8 and 0.95)
  • is a constructive angle of the Pelton turbine (6) (typically "165 °)
  • K" is the speed coefficient of the injectors (typically ⁇ 0.98).
  • the performance control subsystem (9) of the Pelton turbines (6) manipulates the injectors d and ⁇ j of the Pelton turbines (6) (turbine i, injector j), to keep the hydraulic circuit (5) at constant pressure b , ie a V ai constant, at the point ( ⁇ g / V ai ) opt for maximum performance
  • the ⁇ t performance of the Pelton turbines (6) depends on the flow rate Q ⁇ , with which they work, with which the maximum performance of the wind-hydraulic system is reached when the Pelton turbines (6) work at high flow rates , while with a low flow the Pelton turbines (6) reduce the performance of the wind-hydraulic system (see figure 8).
  • Pelton (6) multi-wheel turbines are used, that is to say with several wheels of different sizes arranged on one axle, which provide different powers or maximum flows, in each Pelton turbine (6).
  • the wind, and therefore the flow rate Q b of the pumped liquid it is injected into the wheels of the Pelton turbines (6) in a staggered manner, thus maximizing the performance of the Pelton turbines (6) used.
  • the Pelton turbines (6) must have several wheels, all of the same radius and different maximum flows, according to a staggered relationship, being connected to the same axis, which is in turn the axis of the corresponding electric generator (7).
  • the turbine performance control subsystem (9) (6) measures the speed ⁇ ⁇ of rotation of the wind rotor (1), the asymmetry d x of the radial pump (4), and the pressure Pb of the hydraulic circuit (5) ), and depending on them, modify the positions d and j of the needles (14) of the injectors (15), of the wheels of each Pelton turbine (6) (figures 3 and 9).
  • Figure 10 shows the typical profile of a voltage gap in the electrical network (13), characterized by a momentary voltage drop V g , for a short period of time (17).
  • control subsystem (10) governs the position d z of the baffles (16) of the Pelton turbines (6) (figure 4), diverting the projection of the liquid that is injected, at the time (18) into which starts the tension gap, and redirecting the projection when the gap disappears, which it allows the wind-hydraulic system to continue working normally at the moment (19) that the tension gap disappears.
  • the regulation of the excitation currents I x of the synchronous generators (7), by means of the control subsystem (11), also allows to properly govern the reactive power that the wind-hydraulic system injects into the electricity grid (13).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

Hydraulic wind turbine system with variable flow-rate per revolution and constant pressure, comprising a wind rotor (1) driving a pump system (3), which sends an actuating flow to electricity generators formed by Pelton turbines (6) and electrical generators (7), having a control subsystem (8) controlling the output of the wind rotor (1), a control subsystem (9) controlling the output of the Pelton turbines (6), a control subsystem (10) controlling operation in the event of voltage dips in the electricity network (13) used, a control subsystem (11) controlling the reactive power and a coordinated control system (12) supervising the four subsystems mentioned above.

Description

SISTEMA AEROGENERADOR EÓLICO-HIDRÁULICO DE CAUDAL VARIABLE POR REVOLUCIÓN Y PRESIÓN CONSTANTE  AIR-HYDRAULIC WIND AIR VARIABLE FLOW SYSTEM FOR REVOLUTION AND CONSTANT PRESSURE
Sector de la técnica Technical sector
La presente invención está relacionada con los sistemas de bombeo hidráulico mediante accionamiento eólico, proponiendo un sistema aerogenerador eólico- hidráulico de caudal variable por revolución y presión constante, ambas independientes de la velocidad del rotor eólico, con control coordinado para optimización del rendimiento, del rechazo de huecos de tensión y de la regulación de la potencia reactiva. Estado de la técnica The present invention is related to hydraulic pumping systems by wind drive, proposing a wind-hydraulic wind turbine system of variable flow per revolution and constant pressure, both independent of the wind rotor speed, with coordinated control for performance optimization, rejection of voltage dips and the regulation of reactive power. State of the art
Uno de los principales retos que plantea el uso de las energías renovables, es reducir los costes de aplicación y hacerlos competitivos con los de las fuentes de energía tradicionales. One of the main challenges posed by the use of renewable energies is to reduce application costs and make them competitive with those of traditional energy sources.
En ese sentido, las centrales hidroeléctricas, cuyo desarrollo se inició a finales del siglo diecinueve, son hoy en día, dentro del sector de las energías renovables, uno de los medios más desarrollados, más maduros, de menor coste y de mayor calidad energética, para la generación eléctrica. Concretamente, las minicentrales hidráulicas con turbinas Pelton que se disponen en saltos de agua de gran altura (por encima de los mil metros) , son las más eficientes, fiables y económicas, para la generación de electricidad. In that sense, hydroelectric power plants, whose development began at the end of the nineteenth century, are today, within the renewable energy sector, one of the most developed, mature, least cost and energy quality means, for power generation. Specifically, the hydraulic mini-plants with Pelton turbines that are arranged in high-altitude waterfalls (above one thousand meters), are the most efficient, reliable and economical for the generation of electricity.
Es conocida, por otro lado, la técnica de bombeo hidráulico mediante pistones radiales, con accionamiento de los pistones radiales por medio de una excéntrica incorporada en un eje giratorio, o mediante giro excéntrico del conjunto portador de los pistones radiales respecto de un eje central fijo. It is known, on the other hand, the technique of hydraulic pumping by radial pistons, with radial piston actuation by means of an eccentric incorporated in a rotating shaft, or by eccentric rotation of the radial piston carrier assembly with respect to a fixed central axis.
Y en otro campo, la técnica de los aerogeneradores que aprovechan la acción del viento como medio accionador para la producción de energía eléctrica, ha llegado a un alto nivel de desarrollo, de manera que el sector eólico se halla consolidado, con unas grandes perspectivas de crecimiento. And in another field, the technique of wind turbines that take advantage of the action of the wind as a driving means for the production of electric energy, has reached a high level of development, so that the wind sector is consolidated, with great prospects for increase.
A raíz de todos esos conocimientos, se han desarrollado soluciones, como las de las Patentes US 4 368 692 y US 4 496 846, que mediante el eje de un rotor eólico de palas captadoras de la acción del viento accionan un sistema complejo de pistones radiales, para producir un bombeo hidráulico que se puede utilizar en cualquier finalidad. Based on all this knowledge, solutions have been developed, such as those of US Patents 4 368 692 and US 4 496 846, which drive a complex system of radial pistons using the axis of a wind rotor with wind blades. , to produce a hydraulic pump that can be used for any purpose.
Según las Patentes US 6 856 039 y US 6 847 128, se han desarrollado también sistemas de control de los aerogeneradores para mejorar su rendimiento, pero con estas soluciones únicamente se regula la velocidad del rotor eólico en función de la fuerza del viento que incide contra las palas y del ángulo de calado de las mismas . According to US 6 856 039 and US 6 847 128, wind turbine control systems have also been developed to improve their performance, but with these solutions only the wind rotor speed is regulated based on the force of the wind that impacts against the blades and the angle of draft of the same.
Objeto de la invención Object of the invention
De acuerdo con la presente invención se propone un sistema que permite el control de aerogeneradores eólico-hidráulicos de caudal variable por revolución, incluyendo grupos de turbinas multi-rueda con radios iguales, de forma que permite trabajar a presión hidráulica constante para maximizar la energía eléctrica producida, optimizando el rendimiento global de la máquina, así como operar ante huecos de tensión en la red eléctrica, y regular la potencia reactiva que; se entrega a la red. In accordance with the present invention, a system is proposed that allows the control of wind-hydraulic wind turbines of variable flow per revolution, including groups of multi-wheel turbines with equal radii, so that it can work under pressure constant hydraulics to maximize the electrical energy produced, optimizing the overall performance of the machine, as well as operating before voltage gaps in the electricity grid, and regulating the reactive power that ; It is delivered to the network.
Este sistema objeto de la invención comprende: This system object of the invention comprises:
-Un subsistema de control del rendimiento aerodinámico del rotor eólico, mediante el cual se gobiernan de modo coordinado el caudal y la presión del circuito hidráulico, de forma variable e independiente de la velocidad del rotor eólico, de forma que, a partir de la medida de la velocidad del rotor eólico, y mediante la manipulación coordinada de la excentricidad de una bomba radial y de los ángulos de calado de las palas captadoras de la acción del viento, este subsistema modifica el caudal de bombeo, variando el par con el que la máquina se opone al viento y con ello la velocidad de giro del rotor eólico, con lo cual se optimiza el rendimiento aerodinámico y por tanto la energía que se consigue con cada velocidad del viento. -A subsystem for controlling the aerodynamic performance of the wind rotor, by means of which the flow and pressure of the hydraulic circuit are governed in a coordinated way, in a variable way and independent of the wind rotor speed, so that, from the measurement of the wind rotor speed, and by coordinated manipulation of the eccentricity of a radial pump and the draft angles of the wind blades, this subsystem modifies the pumping flow, varying the torque with which the The machine opposes the wind and thus the speed of rotation of the wind rotor, which optimizes aerodynamic performance and therefore the energy achieved with each wind speed.
-Un subsistema de control del rendimiento de _las turbinas, mediante el cual se gobierna un conjunto de inyectores en las mismas, para regular la presión del circuito hidráulico, con lo cual se optimiza dicho rendimiento de las turbinas. -A performance control subsystem of the turbines, by which a set of injectors is governed therein, to regulate the pressure of the hydraulic circuit, thereby optimizing said turbine performance.
-Un subsistema de control de los huecos de tensión en la red eléctrica a la que se suministra la electricidad que se produce, mediante el cual se monitoriza la tensión de la red eléctrica y las velocidades de los grupos turbina-generador, modificando la posición de unos deflectores que hacen variar el comportamiento de las turbinas en los casos de huecos de tensión, permitiendo al aerogenerador eólico-hidráulico seguir trabajando con normalidad en el momento que desaparece el hueco de tensión. -A subsystem for controlling the voltage gaps in the electricity grid to which the electricity produced is supplied, by means of which the voltage of the electricity grid and the speeds of the turbine-generator groups are monitored, modifying the position of some deflectors that do vary the behavior of the turbines in the cases of voltage gaps, allowing the wind-hydraulic wind turbine to continue working normally at the time the voltage gap disappears.
-Un subsistema de control de potencia reactiva, mediante el cual se modifican las corrientes de excitación de los generadores eléctricos síncronos que utiliza el sistema, gobernando así la potencia reactiva que se inyecta a la red eléctrica. -A reactive power control subsystem, by which the excitation currents of the synchronous electric generators used by the system are modified, thus governing the reactive power that is injected into the power grid.
-Un sistema de control coordinado, mediante el cual se supervisan los cuatro subsistemas anteriores, optimizando con ello el rendimiento y el funcionamiento global del aerogenerador eólico-hidráulico. -A coordinated control system, through which the four previous subsystems are monitored, thereby optimizing the performance and overall operation of the wind-hydraulic wind turbine.
De este modo se obtiene un sistema de aerogenerador eólico-hidráulico con unas características funcionales que le confieren vida propia y carácter preferente para la aplicación de bombeo hidráulico por acción del viento a la que se halla destinado. In this way, a wind-hydraulic wind turbine system is obtained with functional characteristics that give it its own life and preferential character for the application of hydraulic pumping by the action of the wind to which it is destined.
Descripción de las figuras Description of the figures
La figura 1 muestra un esquema general del sistema aerogenerador eólico-hidráulico objeto de la invención. Figure 1 shows a general scheme of the wind-hydraulic wind turbine system object of the invention.
La figura 1A muestra un detalle ampliado del esquema de una turbina Pelton (turbina i) utilizada en el sistema de la invención. Figure 1A shows an enlarged detail of the scheme of a Pelton turbine (turbine i) used in the system of the invention.
La figura 2 muestra un esquema representativo del flujo de potencia y de los rendimientos de las distintas etapas, así como del control jerárquico del sistema de la invención. Figure 2 shows a representative scheme of the power flow and the yields of the different stages, as well as the hierarchical control of the system of the invention.
La figura 3 muestra un esquema representativo un inyector de una turbina Pelton. Figure 3 shows a representative scheme of an injector of a Pelton turbine.
La figura 4 muestra un esquema representativo un deflector de una turbina Pelton, en posición desviación del flujo. Figure 4 shows a representative scheme of a deflector of a Pelton turbine, in the position of flow deviation.
La figura 5 muestra una gráfica representativa del rendimiento aerodinámico del rotor eólico en el sistema de la invención. Figure 5 shows a representative plot of the aerodynamic performance of the wind rotor in the system of the invention.
La figura 6 muestra una gráfica representativa de la curva de potencia del aerogenerador eólico- hidráulico . Figure 6 shows a representative graph of the power curve of the wind-hydraulic wind turbine.
La figura 7 muestra una gráfica representativa del rendimiento de una turbina Pelton según la relación de velocidades . Figure 7 shows a graph representing the performance of a Pelton turbine according to the speed ratio.
La figura 8 muestra una gráfica representativa del rendimiento de una turbina Pelton según el caudal de trabaj o . Figure 8 shows a representative graph of the performance of a Pelton turbine according to the work flow.
La figura 9 muestra un esquema representativo de las turbinas Pelton multi-rueda que se utilizan en el sistema aerogenerador eólico-hidráulico de la invención para trabajar a presión constante. Figure 9 shows a representative scheme of the Pelton multi-wheel turbines that are used in the wind-hydraulic wind turbine system of the invention to work at constant pressure.
La figura 10 muestra una gráfica representativa de un hueco de tensión de la red eléctrica. Figure 10 shows a representative plot of a voltage gap in the power grid.
Descripción detallada de la invención La invención consiste en un sistema aerogenerador eólico-hidráulico de caudal variable por revolución y presión constante, ambas independientes de la velocidad del rotor eólico, y con control coordinado para optimización del rendimiento, rechazo de huecos de tensión y control de energía reactiva en la red eléctrica . Detailed description of the invention The invention consists of a wind-hydraulic wind turbine system of variable flow per revolution and constant pressure, both independent of the speed of the wind rotor, and with coordinated control for performance optimization, rejection of voltage gaps and reactive energy control in the network electric
La Figura 1 representa el esquema general del sistema preconizado, comprendiendo un rotor eólico (1) de múltiples palas, el cual transforma la energía del viento en par mecánico en un eje (2) que a su vez transmite la energía a un sistema de bombeo (3) que mediante una bomba (4) radial introduce líquido a presión en un circuito hidráulico (5) capaz de generar energía eléctrica mediante grupos formados por turbinas Pelton (6) multi-rueda de radios iguales y en combinación con ellas respectivos generadores eléctricos (7 ) . Figure 1 represents the general scheme of the recommended system, comprising a multi-blade wind rotor (1), which transforms the wind energy into a mechanical torque in an axis (2) that in turn transmits the energy to a pumping system (3) that by means of a radial pump (4) introduces pressurized liquid into a hydraulic circuit (5) capable of generating electrical energy by groups formed by Pelton turbines (6) multi-wheel of equal radii and in combination with them respective electric generators (7).
En relación con ese conjunto funcional el sistema dispone de un subsistema de control (8), mediante el cual se controla el rendimiento del rotor eólico (1) , un subsistema de control (9), mediante el cual se controla el rendimiento de las turbinas Pelton (6), un subsistema de control (10) , mediante el cual se controla el funcionamiento ante huecos de tensión en la red eléctrica (13) a la que se suministra la electricidad que produce el sistema aerogenerador eólico-hidráulico, un subsistema de control (11) , mediante el cual se controla la potencia reactiva que se inyecta a la red eléctrica (13), y un sistema de control coordinado (12), mediante el cual se supervisan los cuatro subsistemas anteriores. El aerogenerador eólico-hidráulico del sistema propuesto desacopla la red eléctrica (13) del rotor eólico (1) en la dirección red => rotor, de manera que un evento en la red eléctrica (13) no afecta al rotor eólico (1), pero si viceversa. In relation to this functional set, the system has a control subsystem (8), by which the performance of the wind rotor (1) is controlled, a control subsystem (9), by which the turbine performance is controlled Pelton (6), a control subsystem (10), by which the operation is controlled in the event of voltage dips in the power grid (13) to which the electricity produced by the wind-hydraulic wind turbine system is supplied, a subsystem of control (11), by which the reactive power that is injected into the power grid (13) is controlled, and a coordinated control system (12), by which the four previous subsystems are monitored. The wind-hydraulic wind turbine of the proposed system decouples the electric network (13) of the wind rotor (1) in the network => rotor direction, so that an event in the electric network (13) does not affect the wind rotor (1), But vice versa.
La figura 2 representa el diagrama de flujo de energía del sistema aerogenerador eólico-hidráulico, sus rendimientos, y el sistema de control coordinado de rendimiento del rotor eólico (1) , rendimiento de las turbinas Pelton (6) , huecos de tensión y potencia reactiva . Figure 2 represents the energy flow diagram of the wind-hydraulic wind turbine system, its yields, and the coordinated control system of wind rotor performance (1), performance of Pelton turbines (6), voltage gaps and reactive power .
Con todo ello, suponiendo una orientación correcta del rotor eólico (1) según la dirección del viento (ángulo de orientación o yaw = 0), las ecuaciones que describen el funcionamiento del sistema aerogenerador eólico-hidráulico son las siguientes: With all this, assuming a correct orientation of the wind rotor (1) according to the wind direction (orientation angle or yaw = 0), the equations that describe the operation of the wind-hydraulic wind turbine system are the following:
Figure imgf000009_0001
Figure imgf000009_0001
Figure imgf000010_0001
donde los subíndices r, b, t, g, representan rotor, bomba, turbina y generador, respectivamente, la función de (t) significa función dependiente del tiempo, Tr es el par mecánico que el rotor eólico (1) extrae del viento, pa¡r es la densidad del aire, A es el área (A = π R2) del rotor eólico (1), R es el radio del espacio barrido por el rotor eólico (1), Cp es el rendimiento aerodinámico del rotor eólico (1), V es la velocidad del viento, Ωr es la velocidad de giro del rotor eólico (1) , Pwr es la potencia mecánica en el eje del rotor eólico (1), Pwb es la potencia al final del circuito hidráulico (5), ηb es el rendimiento de dicho circuito hidráulico (5), Pb Y Qb son la presión y el caudal del líquido al final del circuito hidráulico (5), Pwgi es la potencia a la salida de las turbinas Pelton (6) y entrada a los generadores eléctricos (7), ηt es el rendimiento de las turbinas Pelton (6), Tg y Ωg son el par mecánico y la velocidad de giro de los generadores eléctricos (7) a la entrada de los mismos, Pwg0 es la potencia a la salida de los generadores eléctricos (7) y entrada a la red eléctrica (13), ηg es el rendimiento de los generadores eléctricos (7), Vg es la tensión simple de la red eléctrica (13), Ig es la corriente eléctrica de línea aportada a la red eléctrica (13) .
Figure imgf000010_0001
where the subscripts r, b, t, g, represent rotor, pump, turbine and generator, respectively, the function of (t) means time dependent function, Tr is the mechanical torque that the wind rotor (1) extracts from the wind, p a ¡ r is the density of the air, A is the area (A = π R 2 ) of the wind rotor (1), R is the radius of the space swept by the wind rotor (1), C p is the aerodynamic performance of the wind rotor (1), V is the wind speed, Ω r is the rotation speed of the wind rotor (1), P wr is the mechanical power on the axis of the wind rotor (1), P wb is the power at the end of the hydraulic circuit (5), η b is the performance of said hydraulic circuit (5), P b and Qb are the pressure and the flow rate of the liquid at the end of the hydraulic circuit (5), P wgi is the power at the output of the Pelton turbines (6) and input to the electric generators (7), η t is the performance of the Pelton turbines (6), T g and Ω g are the mechanical torque and the rotation speed of the electric generators (7) at their input, P wg0 is the power at the output of the electric generators (7) and input to the power grid (13), η g is the performance of the electric generators (7), V g is the simple voltage of the power grid (13), I g is the line electric current supplied to the power grid (13).
Los actuadores ,dx,dy,dzIx son, respectivamente, el ángulo de calado de las palas del rotor eólico (1), la excentricidad de la bomba (4), la posición de los inyectores (figura 3) de las turbinas Pelton (6), la posición de los deflectores (figura 4) de las turbinas Pelton (6), y las corrientes de excitación de los generadores eléctricos (7). The actuators, d x , d y , d z I x are, respectively, the draft angle of the wind rotor blades (1), the eccentricity of the pump (4), the position of the injectors (figure 3) of the Pelton turbines (6), the position of the baffles (figure 4) of the Pelton turbines (6), and excitation currents of electric generators (7).
El subsistema de control (8) controla el caudal Qb, que es variable e independiente de la velocidad Ωr del rotor eólico (1), optimizando el rendimiento del aerogenerador eólico-hidráulico . El rendimiento aerodinámico Cp del rotor eólico (1) depende de la velocidad V del viento y de la velocidad Ωr de giro del rotor eólico (1) para cada ángulo β de calado de las palas de dicho rotor eólico (1), según la ecuación (XI) y la Figura 5. El parámetro λ representa la relación entre la velocidad de la punta de las palas y la velocidad V del viento que llega al rotor eólico (1) . Es decir: λ = (Ωr R) I V.
Figure imgf000011_0002
The control subsystem (8) controls the flow rate Qb, which is variable and independent of the speed Ω r of the wind rotor (1), optimizing the performance of the wind-hydraulic wind turbine. The aerodynamic efficiency C p of the wind rotor (1) depends on the wind speed V and the rotation speed Ω r of the wind rotor (1) for each draft angle β of the blades of said wind rotor (1), according to Equation (XI) and Figure 5. The parameter λ represents the relationship between the speed of the blade blades and the speed V of the wind that reaches the wind rotor (1). That is: λ = (Ω r R) I V.
Figure imgf000011_0002
La velocidad Ωr de giro del rotor eólico (1) depende de los pares Tr dados por el viento y el par mecánico antagonista Tb, tal que:
Figure imgf000011_0001
donde Ωr0 es la velocidad en el punto de trabajo estacionario, Jturbina es la inercia del rotor eólico (1) y s la variable de Laplace. Así, estando el sistema en el punto de trabajo (Ωr0, VQ, ¾) de máximo coeficiente aerodinámico Cpmax según la figura 5, si la velocidad V del viento disminuye, entonces λ aumenta y por tanto CP disminuye, con lo cual Tr disminuye, según la ecuación (I) . Esto trae consigo, según la ecuación (XII), una deceleración de la velocidad Ωr del rotor eólico (1) , que hace que λ disminuya. El sistema busca entonces otro punto de equilibrio tal que Tr = Tb· Si en ese transito λ cae por debajo de λορί, manteniéndose Tb constante, el sistema acaba parando en la práctica.
The rotational speed Ω r of the wind rotor (1) depends on the torques T r given by the wind and the antagonistic mechanical torque T b , such that:
Figure imgf000011_0001
where r0 is the speed Ω at the working point stationary, J turb i na is the inertia of the wind rotor (1) and s the Laplace variable. Thus, the system being at the working point (Ω r0 , VQ, ¾) of maximum aerodynamic coefficient C pma x according to figure 5, if the wind speed V decreases, then λ increases and therefore C P decreases, so which T r decreases, according to equation (I). This brings, according to equation (XII), a deceleration of the speed Ω r of the wind rotor (1), which causes λ to decrease. The system then looks for another equilibrium point such that T r = T b · If in that transit λ falls below λ ορί , keeping T b constant, the system ends up stopping in practice.
Del mismo modo, estando el sistema en el punto de trabajo (Ωr0, V0, 0) de máximo coeficiente aerodinámico CPMAX según la Figura 5, si la velocidad V del viento aumenta, entonces λ disminuye, y por tanto CP disminuye, y con ello Tr disminuye, según la ecuación (I) . Esto trae consigo, según la ecuación (XII), una deceleración de la velocidad Ωr de giro del rotor eólico (1), que hace que λ disminuya más todavía. En estas circunstancias, si Tb se mantiene constante, el sistema acaba parando en la práctica. Similarly, the system being at the working point (Ω r0 , V 0 , 0 ) of maximum aerodynamic coefficient C PMAX according to Figure 5, if the wind speed V increases, then λ decreases, and therefore C P decreases , and with it T r decreases, according to equation (I). This brings, according to equation (XII), a deceleration of the rotation speed Ω r of the wind rotor (1), which causes λ to decrease further. In these circumstances, if T b remains constant, the system ends up stopping in practice.
Por lo tanto, en ambos casos, si Tb es constante el sistema acaba parando. Para devolver el sistema al punto de CPMAXopt), hay que controlar el par mecánico antagonista Tb, de modo que disminuyéndolo o aumentándolo se modifique la velocidad ΩΓ de giro del rotor eólico (1) hasta llegar a CPMAX de nuevo. Para una máquina alineada con la dirección del viento (ángulo de orientación o yaw = 0) , la curva de potencia PWR (ecuación II) respecto a la velocidad V del viento sigue una función cúbica (Zona 1) o recta (Zona 2), según la figura 6 y las ecuaciones (XIII) y (XIV) siguientes : )
Figure imgf000013_0001
donde Pwr es la potencia mecánica en el eje (2) dada por el viento, Pnom es el valor nominal de dicha potencia y Vom es la primera velocidad de viento a la que se alcanza Pn0m-
Therefore, in both cases, if T b is constant the system ends up stopping. To return the system to the point of C PMAXopt ), the antagonistic mechanical torque T b must be controlled, so that by decreasing or increasing it, the rotation speed Ω Γ of the wind rotor (1) is modified until it reaches C PMAX of new. For a machine aligned with the wind direction (orientation angle or yaw = 0), the power curve P WR (equation II) with respect to wind speed V follows a cubic (Zone 1) or straight (Zone 2) function , according to figure 6 and the following equations (XIII) and (XIV):)
Figure imgf000013_0001
where P wr is the mechanical power on the axis (2) given by the wind, P nom is the nominal value of said power and Vom is the first wind speed at which P n0 m- is reached
En la zona de velocidad de viento menor que la velocidad nominal (V≤ Vnom, Zona 1), el subsistema (8) de control de rendimiento del rotor eólico (1) trata dé mantener a dicho rotor eólico (1) sobre el máximo coeficiente aerodinámico Cpmax, obteniendo asi la máxima potencia para cada velocidad de viento. In the wind speed zone less than the nominal speed (V≤ V nom , Zone 1), the wind rotor performance control subsystem (8) tries to keep said wind rotor (1) over the maximum aerodynamic coefficient C pmax , thus obtaining the maximum power for each wind speed.
Asi, estando el sistema a máximo Cp (Figura 5) , al variar la velocidad V del viento y por tanto ir a una nueva posición λ = ΩrR/Vy disminuir el coeficiente Cp, el subsistema de control (8) modifica el caudal por revolución de la bomba (4) mediante la variación coordinada de la excentricidad dx de dicha bomba (4) y de los ángulos β de las palas del rotor eólico (1) , según un algoritmo de control especifico. Con ello se modifica el par mecánico antagonista Tb, con lo cual cambia la velocidad r de giro del rotor eólico (1) , según la ecuación (XII), y el rotor eólico (1) retorna a la posición λ= QrR/V original y por tanto al punto de máximo rendimiento aerodinámico Cpmaxt optimizando asi el rendimiento aerodinámico y por tanto la energía que se consigue con cada velocidad del viento. De este modo, cada velocidad V de viento tiene una correspondiente velocidad ΩΓ de giro del rotor eólico (1) (λ= ürR/V= λορί = constante) para estar en el punto Cpmax. Thus, when the system is at maximum C p (Figure 5), by varying the wind speed V and therefore going to a new position λ = Ω r R / V and decreasing the coefficient C p , the control subsystem (8) modifies the flow rate per revolution of the pump (4) by the coordinated variation of the eccentricity dx of said pump (4) and of the angles β of the blades of the wind rotor (1), according to a specific control algorithm. This modifies the antagonistic mechanical torque T b , which changes the rotation speed r of the wind rotor (1), according to equation (XII), and the wind rotor (1) returns to the position λ = Q r R / V original and therefore to the point of maximum aerodynamic performance C pmaxt thus optimizing aerodynamic performance and therefore the energy that is achieved with each wind speed. Thus, each wind speed V has a corresponding Ω Γ speed of wind rotor rotation (1) (λ = ü r R / V = λ ορί = constant) to be at point C pmax .
En la zona de velocidad del viento mayor que la velocidad nominal (V > Vnom, Zona 2) , el subsistema de control (8) trata de mantener una velocidad r de giro del rotor eólico (1) constante, y una potencia constante, variando el ángulo β de las palas del rotor eólico (1) , disminuyendo o aumentando con ello el coeficiente aerodinámico Cp (Figura 5) . In the speed higher wind than the rated speed (V> V nom, Zone 2), the control subsystem (8) tries to maintain a speed r of rotation of the constant wind rotor (1) and a constant power, varying the angle β of the wind rotor blades (1), decreasing or thereby increasing the aerodynamic coefficient C p (Figure 5).
El sistema de generación de energía eléctrica está compuesto por un conjunto de grupos formados por turbinas Pelton (6) multi-rueda y generadores eléctricos (7), según la figura 1. The electric power generation system consists of a set of groups formed by Pelton turbines (6) multi-wheel and electric generators (7), according to figure 1.
La potencia generada por una turbina Pelton (6) multi-rueda responde a la ecuación siguiente: The power generated by a multi-wheel Pelton (6) turbine responds to the following equation:
Pwgi = Pturbina≈ k p1 ηt (XV) donde k es una constante de proporcionalidad, Av es el área de la vena líquida inyectada,, es el rendimiento de la turbina Pelton (6), p\ la densidad del líquido inyectado, y Vai la velocidad del líquido inyectado. P wgi = Pturbina≈ kp 1 ηt (XV) where k is a constant of proportionality, A v is the area of the injected liquid vein ,, is the performance of the Pelton turbine (6), p \ the density of the injected liquid, and V ai the speed of the injected liquid.
El rendimiento ηt, de la turbina Pelton (6) depende de la velocidad gr de giro de la propia turbina Pelton (6) y de la velocidad Va¡ del líquido inyectado, según la figura 7 y las ecuaciones (XVI) y (XVII) siguientes: The ηt performance of the Pelton turbine (6) depends on the speed g r of the Pelton turbine itself (6) and the speed V a ¡of the injected liquid, according to Figure 7 and equations (XVI) and ( XVII) following:
J7,=2v(l-v)[l-krcos( )] (XVI)
Figure imgf000015_0001
donde v es la relación de velocidades U/Vai, siendo U la velocidad lineal del extremo exterior (radio) de la rueda de la turbina Pelton (6) y Vai la velocidad del liquido inyectado, Ωg es la velocidad de giro del eje de la turbina Pelton (6) o del generador {8) , Rt es el radio de la rueda de la turbina Pelton (6), kr es el factor de fricción (típicamente de valor entre 0.8 y 0.95), φ es un ángulo constructivo de la turbina Pelton (6) (típicamente « 165°) y K„ es el coeficiente de velocidad de los inyectores (típicamente ≈ 0.98).
J7, = 2v (lv) [lk r cos ()] (XVI)
Figure imgf000015_0001
where v is the ratio of speeds U / V ai , where U is the linear speed of the outer end (radius) of the Pelton turbine wheel (6) and V ai the speed of the injected liquid, Ω g is the speed of rotation of the axis of the Pelton turbine (6) or generator {8), R t is the radius of the Pelton turbine wheel (6), k r is the friction factor (typically between 0.8 and 0.95), φ is a constructive angle of the Pelton turbine (6) (typically "165 °) and K" is the speed coefficient of the injectors (typically ≈ 0.98).
La velocidad í¾ de giro de las turbinas Pelton (6) es fija y está gobernada por los generadores (7) correspondientes y la red eléctrica (13) , dependiendo del número de pares de polos del generador (7) y de la frecuencia de la red eléctrica (13), de manera que Ωg = frec aed * 60 / num_pares_de_pobs · Por ejemplo: 1800 rpm con 2 pares de polos y red a 60 Hz, o 1500 rpm con 2 pares de polos y red a 50 Hz. The speed ¾ of rotation of the Pelton turbines (6) is fixed and governed by the corresponding generators (7) and the power grid (13), depending on the number of pairs of poles of the generator (7) and the frequency of the mains (13), so that Ω g = frec aed * 60 / num_pares_de_pobs · For example: 1800 rpm with 2 pairs of poles and network at 60 Hz, or 1500 rpm with 2 pairs of poles and network at 50 Hz.
Dado que la velocidad -f¾ de giro de las turbinas Pelton (6) es fija debido a la conexión de los generadores (7) síncronos a la red eléctrica (13), y que la velocidad Vai del líquido inyectado depende directamente de la presión Pb del circuito hidráulico (5), según la ecuación (XVII), el subsistema (9) de control del rendimiento de las turbinas Pelton (6) manipula los inyectores dy¡j de las turbinas Pelton (6) (turbina i, inyector j) , para mantener el circuito hidráulico (5) a presión b constante, es decir a Vai constante, en el punto (Ωg/Vai)opt de máximo rendimientoSince the speed -f¾ of rotation of the Pelton turbines (6) is fixed due to the connection of the synchronous generators (7) to the mains (13), and that the speed V ai of the injected liquid depends directly on the pressure P b of the hydraulic circuit (5), according to equation (XVII), the performance control subsystem (9) of the Pelton turbines (6) manipulates the injectors d and ¡j of the Pelton turbines (6) (turbine i, injector j), to keep the hydraulic circuit (5) at constant pressure b , ie a V ai constant, at the point (Ω g / V ai ) opt for maximum performance
Vtjnax · Vtjnax
Por otro lado, el rendimiento ηt de las turbinas Pelton (6) depende del caudal Q¡, con el que trabajan, con lo cual el máximo rendimiento del sistema eólico- hidráulico se alcanza cuando las turbinas Pelton (6) trabajan a altos caudales, mientras que con un bajo caudal las turbinas Pelton (6) reducen el rendimiento del sistema eólico-hidráulico (véase figura 8) . On the other hand, the η t performance of the Pelton turbines (6) depends on the flow rate Q¡, with which they work, with which the maximum performance of the wind-hydraulic system is reached when the Pelton turbines (6) work at high flow rates , while with a low flow the Pelton turbines (6) reduce the performance of the wind-hydraulic system (see figure 8).
Por ello, en el sistema preconizado se utilizan turbinas Pelton (6) multi-rueda, es decir con varias ruedas de diferente tamaño dispuestas sobre un eje, las cuales proporcionan diferentes potencias o caudales máximos, en cada turbina Pelton (6) . Asi, al variar el viento, y por tanto el caudal Qb del liquido bombeado, éste se inyecta en las ruedas de las turbinas Pelton (6) de modo escalonado, maximizando asi el rendimiento de las turbinas Pelton (6) utilizadas. Therefore, in the recommended system, Pelton (6) multi-wheel turbines are used, that is to say with several wheels of different sizes arranged on one axle, which provide different powers or maximum flows, in each Pelton turbine (6). Thus, by varying the wind, and therefore the flow rate Q b of the pumped liquid, it is injected into the wheels of the Pelton turbines (6) in a staggered manner, thus maximizing the performance of the Pelton turbines (6) used.
Dado que el máximo rendimiento de una turbina Pelton multi-rueda se alcanza típicamente para una relación de velocidades U/Vai de valor v«0.5, y. dado que el modo más simple y eficaz de controlar el sistema eólico-hidráulico es a presión Pb constante, es decir, la misma para todas las ruedas de las turbinas Pelton (6), de acuerdo con la ecuación (XVII), las distintas ruedas de cada turbina Pelton (6) deben tener el mismo radio Rt = Rt1 = Rt2 = Rt3 = ...= Rtn (ver figura 9). Since the maximum performance of a Pelton multi-wheel turbine is typically achieved for a ratio of U / V speeds ai of value v «0.5, and. since the simplest and most efficient way to control the wind-hydraulic system is at constant pressure P b , that is, the same for all wheels of the Pelton turbines (6), according to equation (XVII), the different Wheels of each Pelton turbine (6) must have the same radius R t = R t1 = R t2 = R t3 = ... = R tn (see figure 9).
Por tanto, para maximizar el rendimiento del sistema eólico-hidráulico y hacerlo más controlable, las turbinas Pelton (6) deben tener varias ruedas, todas del mismo radio y diferentes caudales máximos, según una relación escalonada, yendo conectadas al mismo eje, que es a su vez el eje del generador eléctrico (7) correspondiente. El subsistema (9) de control de rendimiento de la turbina (6) mide la velocidad ΩΓ de giro del rotor eólico (1), la asimetría dx de la bomba (4) radial, y la presión Pb del circuito hidráulico (5), y en función de las mismas modifica las posiciones dyij de las agujas (14) de los inyectores (15), de las ruedas de cada turbina Pelton (6) (figuras 3 y 9) . Con ello se distribuye el caudal escalonadamente entre las ruedas de las turbinas Pelton (6), gobernando la presión Pb del circuito hidráulico (5) y la velocidad Va¡ del líquido inyectado, de modo que la relación Ωg / Vai sea la correspondiente al valor de máximo rendimiento ηt, según la Figura 7. Therefore, to maximize the performance of the wind-hydraulic system and make it more controllable, the Pelton turbines (6) must have several wheels, all of the same radius and different maximum flows, according to a staggered relationship, being connected to the same axis, which is in turn the axis of the corresponding electric generator (7). The turbine performance control subsystem (9) (6) measures the speed Ω Γ of rotation of the wind rotor (1), the asymmetry d x of the radial pump (4), and the pressure Pb of the hydraulic circuit (5) ), and depending on them, modify the positions d and j of the needles (14) of the injectors (15), of the wheels of each Pelton turbine (6) (figures 3 and 9). Thus the flow is distributed stepwise between the wheels of the Pelton turbine (6), governing the pressure Pb of the hydraulic circuit (5) and speed V to the injected liquid, so that the relationship Ω g / V ai is the corresponding to the maximum yield value η t , according to Figure 7.
La Figura 10 muestra el perfil típico de un hueco de tensión en la red eléctrica (13) , que se caracteriza por una bajada de tensión Vg momentánea, durante un breve periodo de tiempo (17). En esa situación, el sistema eólico-hidráulico no puede inyectar potencia activa Pwg0 a la red eléctrica (13) , ya que la potencia es Pwgo(t) = fí Ig(t) Vg(t), según la ecuación (VIII), y para Vg muy pequeña (hueco de tensión) se necesitaría una corriente Ig demasiado grande. Figure 10 shows the typical profile of a voltage gap in the electrical network (13), characterized by a momentary voltage drop V g , for a short period of time (17). In that situation, the wind-hydraulic system cannot inject active power P wg0 to the power grid (13), since the power is P wgo (t) = fí I g (t) V g (t), according to the equation (VIII), and V g very small (voltage dip) a current I g too large would be needed.
En esa situación, el subsistema de control (10) gobierna la posición dz de los deflectores (16) de las turbinas Pelton (6) (figura 4), desviando la proyección del líquido que se inyecta, en el momento (18) en el que se inicia el hueco de tensión, y re-direccionando la proyección cuando el hueco desaparece, lo cual permite que el sistema eólico-hidráulico pueda seguir trabajando con normalidad en el momento (19) que desaparece el hueco de tensión. La regulación de las corrientes de excitación Ix de los generadores (7) síncronos, mediante el subsistema de control (11), permite además gobernar apropiadamente la potencia reactiva que el sistema eólico-hidráulico inyecta a la red eléctrica (13) . In that situation, the control subsystem (10) governs the position d z of the baffles (16) of the Pelton turbines (6) (figure 4), diverting the projection of the liquid that is injected, at the time (18) into which starts the tension gap, and redirecting the projection when the gap disappears, which it allows the wind-hydraulic system to continue working normally at the moment (19) that the tension gap disappears. The regulation of the excitation currents I x of the synchronous generators (7), by means of the control subsystem (11), also allows to properly govern the reactive power that the wind-hydraulic system injects into the electricity grid (13).

Claims

REIVINDICACIONES
1. - Sistema aerogenerador eólico-hidráulico de caudal variable por revolución y presión constante, del tipo que comprende un rotor eólico (1) que transforma la energía del viento en par mecánico para accionar un sistema de bombeo (3) que por medio de una bomba radial (4) produce un flujo de accionamiento de grupos productores de electricidad formados por turbinas Pelton (6) y generadores eléctricos (7), suministrándose la electricidad producida a una red eléctrica (13), caracterizado en que en relación con el conjunto funcional dispone un subsistema de control (8) que controla el rendimiento aerodinámico del rotor eólico (1), un subsistema de control (9) que controla el rendimiento de las turbinas Pelton (6), un subsistema de control (10) que controla el funcionamiento ante huecos de tensión en la red eléctrica (13), un subsistema de control (11) que controla la potencia reactiva que se inyecta a la red eléctrica (13), y un sistema de control coordinado (12) que supervisa los cuatro subsistemas anteriores; utilizándose en los grupos productores de electricidad turbinas Pelton (6) multi-rueda con ruedas de igual radio y de diferentes caudales máximos. 1. - Wind-hydraulic wind turbine system of variable flow per revolution and constant pressure, of the type comprising a wind rotor (1) that transforms wind energy into mechanical torque to drive a pumping system (3) that by means of a radial pump (4) produces a drive flow of electricity producing groups formed by Pelton turbines (6) and electric generators (7), supplying the electricity produced to an electric network (13), characterized in that in relation to the functional set it has a control subsystem (8) that controls the aerodynamic performance of the wind rotor (1), a control subsystem (9) that controls the performance of Pelton turbines (6), a control subsystem (10) that controls the operation before voltage gaps in the power grid (13), a control subsystem (11) that controls the reactive power that is injected into the power grid (13), and a coordinated control system (12) that monitors isa the four previous subsystems; using Pelton turbines (6) multi-wheel turbines with wheels of the same radius and different maximum flow rates.
2. - Sistema aerogenerador eólico-hidráulico de caudal variable por revolución y presión constante, de acuerdo con la primera reivindicación, caracterizado en que el sistema de control (8) varía la asimetría de la bomba radial (4) y el ángulo de las palas del rotor eólico (1), en función de la velocidad de giro del rotor eólico (1), produciendo en el eje de dicho rotor eólico (1) un par mecánico variable y antagonista al par del viento, para maximizar el rendimiento aerodinámico con cada velocidad de viento. 2. - Wind-wind turbine system of variable flow per revolution and constant pressure, according to the first claim, characterized in that the control system (8) varies the asymmetry of the radial pump (4) and the angle of the blades of the wind rotor (1), depending on the speed of rotation of the wind rotor (1), producing on the axis of said wind rotor (1) a variable and antagonistic mechanical torque to the wind torque, to maximize the performance aerodynamic with each wind speed.
3. - Sistema aerogenerador eólico-hidráulico de caudal variable por revolución y presión constante, de acuerdo con la primera reivindicación, caracterizado en que el sistema de control (9) modifica la inyección del flujo de liquido que se proyecta a las turbinas Pelton (6), en función de la velocidad de giro del rotor eólico (1), de la asimetria de la bomba radial (4) y de la presión del liquido que se va a proyectar a las turbinas Pelton (6), para maximizar el rendimiento de dichas turbinas Pelton (6) . 3. - Wind-wind turbine system of variable flow per revolution and constant pressure, according to the first claim, characterized in that the control system (9) modifies the injection of the liquid flow projected to the Pelton turbines (6 ), depending on the speed of rotation of the wind rotor (1), the asymmetry of the radial pump (4) and the pressure of the liquid to be projected to the Pelton turbines (6), to maximize the efficiency of said Pelton turbines (6).
4. - Sistema aerogenerador eólico-hidráulico de caudal variable por revolución y presión constante, de acuerdo con la primera reivindicación, caracterizado en que el sistema de control (10) desvia la proyección del flujo de liquido que se inyecta a la turbinas Pelton (6), cuando se produce un hueco de tensión en la red eléctrica (13), re-direccionando la proyección de la inyección del flujo de liquido hacia las turbinas Pelton (6) cuando desaparece el hueco de tensión. 4. - Wind-wind turbine system of variable flow per revolution and constant pressure, according to the first claim, characterized in that the control system (10) deflects the projection of the liquid flow that is injected into the Pelton turbines (6 ), when a voltage gap occurs in the power grid (13), re-directing the projection of the injection of the liquid flow to the Pelton turbines (6) when the voltage gap disappears.
5. - Sistema aerogenerador eólico-hidráulico de caudal variable por revolución y presión constante, de acuerdo con la primera reivindicación, caracterizado en que el sistema de control (11) regula las corrientes de excitación de los generadores eléctricos (7) asociados a las turbinas Pelton (6), para gobernar la potencia reactiva que se inyecta a la red eléctrica (13). 5. - Wind-wind turbine system of variable flow per revolution and constant pressure, according to the first claim, characterized in that the control system (11) regulates the excitation currents of the electric generators (7) associated with the turbines Pelton (6), to govern the reactive power that is injected into the power grid (13).
6. - Sistema aerogenerador eólico-hidráulico de caudal variable por revolución y presión constante, de acuerdo con la primera reivindicación, caracterizado en que las turbinas Pelton (6) multi-rueda determinan una relación escalonada de caudales máximos que optimiza el rendimiento del sistema eólico-hidráulico al variar el caudal de liquido que se bombea. 6. - Wind-wind turbine system of variable flow per revolution and constant pressure, according to the first claim, characterized in that the multi-wheel Pelton turbines (6) determine a staggered ratio of maximum flows that optimizes the performance of the wind-hydraulic system by varying the flow of liquid that is pumped.
7.- Sistema aerogenerador eólico-hidráulico de caudal variable por revolución y presión constante, de acuerdo con la primera reivindicación, caracterizado en que el caudal y la presión del flujo de liquido que se inyecta a las turbinas Pelton (6) son independientes de la velocidad de giro del rotor eólico (1) . 7.- Wind-wind turbine system of variable flow per revolution and constant pressure, according to the first claim, characterized in that the flow and the pressure of the liquid flow injected into the Pelton turbines (6) are independent of the wind rotor rotation speed (1).
PCT/ES2010/000381 2009-12-14 2010-09-17 Hydraulic wind turbine system with variable flow-rate per revolution and constant pressure WO2011073467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200902327A ES2361986B1 (en) 2009-12-14 2009-12-14 AEROGENERADOR EÓLICO-HIDR�? ULICO SYSTEM OF VARIABLE FLOW FOR REVOLUTION AND CONSTANT PRESSURE.
ESP200902327 2009-12-14

Publications (1)

Publication Number Publication Date
WO2011073467A1 true WO2011073467A1 (en) 2011-06-23

Family

ID=44140661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/000381 WO2011073467A1 (en) 2009-12-14 2010-09-17 Hydraulic wind turbine system with variable flow-rate per revolution and constant pressure

Country Status (2)

Country Link
ES (1) ES2361986B1 (en)
WO (1) WO2011073467A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020522647A (en) * 2017-06-09 2020-07-30 デルフト・オフショア・タービン・ベー・フェー Wind turbine generator with hydraulic pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496846A (en) * 1982-06-04 1985-01-29 Parkins William E Power generation from wind
WO2002084116A1 (en) * 2001-04-10 2002-10-24 New World Generation Inc. Wind powered hydroelectric power plant and method of operation thereof
WO2006037828A1 (en) * 2004-10-01 2006-04-13 Torres Martinez M Electrical power generation and desalination system on a floating plant
US20060275121A1 (en) * 2003-04-17 2006-12-07 Merswolka Paul H/F And Meyer Charles F Wind turbine with friction drive power take off on outer rim
ES2291081A1 (en) * 2005-07-28 2008-02-16 M. Torres, Diseños Industriales, S.A. System for controlling a variable-speed water/wind turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496846A (en) * 1982-06-04 1985-01-29 Parkins William E Power generation from wind
WO2002084116A1 (en) * 2001-04-10 2002-10-24 New World Generation Inc. Wind powered hydroelectric power plant and method of operation thereof
US20060275121A1 (en) * 2003-04-17 2006-12-07 Merswolka Paul H/F And Meyer Charles F Wind turbine with friction drive power take off on outer rim
WO2006037828A1 (en) * 2004-10-01 2006-04-13 Torres Martinez M Electrical power generation and desalination system on a floating plant
ES2291081A1 (en) * 2005-07-28 2008-02-16 M. Torres, Diseños Industriales, S.A. System for controlling a variable-speed water/wind turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020522647A (en) * 2017-06-09 2020-07-30 デルフト・オフショア・タービン・ベー・フェー Wind turbine generator with hydraulic pump
JP7266589B2 (en) 2017-06-09 2023-04-28 デルフト・オフショア・タービン・ベー・フェー Wind turbine generator with hydraulic pump

Also Published As

Publication number Publication date
ES2361986A1 (en) 2011-06-27
ES2361986B1 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
ES2700661T3 (en) Wind farm with autogenous start capability
JP3368536B1 (en) Fluid power generator
CN104169574B (en) Turbine
ES2646016T3 (en) Wind turbine control methods to improve energy production
CN102748236A (en) Novel fluid transmission wind driven generator for guaranteeing stability of grid connection
CN103590981A (en) Laval nozzle utilized wind power generation method and multi-combination power station system
ES2900555T3 (en) Improvements in the stabilization of hydraulic machines with characteristic with zone in S
CN104612884A (en) Hydroelectric generator, hydroelectric power generation system and grid-connected power generation method
WO2011073467A1 (en) Hydraulic wind turbine system with variable flow-rate per revolution and constant pressure
CN107327368B (en) A kind of all-hydraulic wind-tidal mixing generating equipment
Bhattacharjee Wind power technology
CN104500328A (en) Two-end direct-driven type wind-driven generator
KR101597466B1 (en) Wind and hydro hybrid power plant
US10914282B2 (en) Multi-rotor, multi-axis wind turbine
RU2352809C1 (en) Bolotov's wind-driven electric plant
CN106499584A (en) A kind of loop compensation gain scheduling control method of wind power generating set
CN102817788A (en) Multi-element energy-reinforcement-type wind-optic magnetic power generator set
US11384734B1 (en) Wind turbine
KR101006171B1 (en) Wind force generator device
WO2007012683A2 (en) System for controlling a variable-speed water/wind turbine
CN106870258B (en) River flow blade variable-angle hydroelectric generating set
CN206409335U (en) A kind of high-efficiency high-power vertical axis wind-mill generator
KR101656674B1 (en) Power generating apparatus having hydraulic machineries
KR20150145868A (en) Airflow control it using arrow keys, and a turbo-fan wind turbine generator
WO2014084796A1 (en) A wind turbine and method of initiating or impeding rotation thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO-FORM 1205A DATE 10.10.12

122 Ep: pct application non-entry in european phase

Ref document number: 10837068

Country of ref document: EP

Kind code of ref document: A1