WO2011072485A1 - 发光装置 - Google Patents

发光装置 Download PDF

Info

Publication number
WO2011072485A1
WO2011072485A1 PCT/CN2010/002053 CN2010002053W WO2011072485A1 WO 2011072485 A1 WO2011072485 A1 WO 2011072485A1 CN 2010002053 W CN2010002053 W CN 2010002053W WO 2011072485 A1 WO2011072485 A1 WO 2011072485A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching unit
light
unit
light emitting
illuminating
Prior art date
Application number
PCT/CN2010/002053
Other languages
English (en)
French (fr)
Inventor
林崇智
Original Assignee
宇威光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇威光电股份有限公司 filed Critical 宇威光电股份有限公司
Publication of WO2011072485A1 publication Critical patent/WO2011072485A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/24Controlling the colour of the light using electrical feedback from LEDs or from LED modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback

Definitions

  • the present invention relates to a light emitting device. Background technique
  • LED Light-Emitting Diode
  • LED is a semiconductor component that is used as an indicator light and a light source for outdoor display panels.
  • Light-emitting diodes have been widely used in many types of electronic products because of their high efficiency, long life, and resistance to breakage, which are not possible with conventional light sources.
  • a known voltage-controlled light-emitting device la includes a light-emitting module 11, a capacitor 12, a plurality of resistors 13, and a constant voltage source 14.
  • the constant voltage control has the advantages of a simple circuit design, in order to make the signal of the LED of the input light-emitting module 11 a certain voltage signal, the designer usually has to use a capacitor with a large capacitance value or a complicated rectifier circuit. This achieves the effect of voltage regulation and thus increases manufacturing costs.
  • the light-emitting diode is a combination of electrons and holes, so that excess energy is released in the form of light to achieve the effect of illuminating. Therefore, the change in current will have a significant effect on the luminescence characteristics of the LED.
  • constant voltage control does not provide a stable current, so constant voltage control does not accurately control the illuminating characteristics of the LED.
  • the illuminating device lb of the constant current control includes a light emitting module 11, a capacitor 12, a plurality of resistors 13, a constant current source 15, and a detecting unit 16.
  • the known constant current control can provide a stable current of the LED, in actual application, due to the influence of the process and the operating temperature, the forward voltage of each LED still has a difference, so in order to overcome this For the difference, the resistor 13 must still be used as a current limiting component to absorb the power difference caused by the electrical variation to stabilize the current, thus causing additional power loss.
  • An object of the present invention is to provide a light-emitting device capable of adjusting a connection mode of a light-emitting module of a light-emitting device in response to fluctuations in an external power source to drive a variable power source and to improve utilization of the light-emitting module.
  • the present invention can be implemented by the following technical solutions.
  • a lighting device of the present invention is electrically connected to an external power source having a first power terminal and a second power terminal.
  • the light emitting device includes a plurality of light emitting modules and a control circuit.
  • Each of the light emitting modules has a first switching unit, a second switching unit, at least one connection switching unit, and a lighting unit.
  • the first switching unit, the lighting unit and the second switching unit are connected in series between the first power terminal and the second power terminal of the external power source.
  • the connection switching unit is electrically connected to another lighting module.
  • the control circuit is electrically connected to the first switching unit, the second switching unit, and the connection switching unit of each of the light emitting modules, and controls each of the first switching units, the second switching units, and/or according to a parameter representing a lighting state of the lighting module.
  • Each of the connection switching units further adjusts the current flowing through each of the light-emitting modules.
  • the light emitting unit and the connection switching unit of each of the light emitting modules are connected in series with the light emitting unit of the light emitting module connected to the switching unit.
  • control circuit adjusts the light-emitting modules to be connected in series or in parallel with each other via the first switching unit, each of the second switching units, or each of the connection switching units according to the parameter representing the lighting state of the lighting module. .
  • the light-emitting device of the present invention has at least the following advantages:
  • a light-emitting device detects a parameter representing a light-emitting state of a light-emitting module by a control unit, and adjusts a connection of a light-emitting module of the light-emitting device through each of the first switching unit, each of the second switching units, and each of the connection switching units
  • the modes are connected in series or in parallel with each other to adjust the current flowing through the light-emitting module, thereby realizing the driving of the variable power source and improving the utilization rate of the light-emitting module.
  • 1A is a schematic view of a known constant voltage controlled light emitting device
  • 1B is a schematic view of a known constant current controlled light emitting device
  • Figure 2 is a schematic illustration of a light emitting device in accordance with a preferred embodiment of the present invention.
  • 3 to 6 are schematic views showing variations of a light-emitting device in accordance with a preferred embodiment of the present invention.
  • LED i first light emitting diode
  • LED 2 second light emitting diode
  • FIG. 2 is a schematic diagram of a light emitting device according to a preferred embodiment of the present invention.
  • the illuminating device 2 is electrically connected to an external power source V having a first power terminal +1 and a second power terminal , 2 , and the illuminating device 2 is exemplified by three light emitting modules 21 and a control circuit 22. .
  • the external power supply V can be an alternating voltage or a direct current voltage.
  • the foregoing AC voltage may be a commonly known commercial power source, that is, an AC power of 90V to 250V, or an AC power output by the power converter.
  • the aforementioned DC voltage includes a voltage generated by a battery, a battery or an AC voltage through a rectifying circuit. Among them, the increase of battery and battery time will cause the level of the output voltage to change. In addition, the DC voltage generated by the rectifier circuit still has chopping, so in practical applications, the level of such DC voltage will still change with time.
  • the external power supply V is a variable voltage source that periodically or randomly changes its voltage level over time.
  • the light emitting module 21 has a first switching unit SWt, a second switching unit SW 2 , a connection switching unit SW 3 and a lighting unit 211.
  • each of the light-emitting module 21 of the first switching unit SW ,, light emitting unit 211 and the second switch SW 2 is connected in series sequentially a first external power supply terminal V T, and T between the second power supply terminal 2 .
  • the connection switching unit SW 3 of each of the light emitting modules 21 is electrically connected to the other light emitting module 21 For example, the electrical connection is made by electrically connecting the light-emitting module 21 to the adjacent light-emitting module 21.
  • the control circuit 22 is electrically connected to the first switching unit SW, the second switching unit SW 2 and the connection switching unit SW 3 of each of the light-emitting modules 21, and controls each of the light-emitting modules 21 according to a parameter representing the light-emitting state of the light-emitting module 21.
  • the first switching unit SW, the second switching unit SW 2 and or the connection switching unit SW :, in turn, adjust the current flowing through each of the light-emitting modules 21.
  • the parameter representing the lighting state of the light emitting module 21 may be the current value, the voltage value, the electric power, the luminous intensity, and or the luminous power of the light emitting module 21.
  • the light-emitting device 3 includes three light-emitting modules 31a to 31c, and the light-emitting units 311a to 311c of the light-emitting modules 31a to 31c respectively have one, two and four light-emitting diodes.
  • the light emitting modules 31a to 31c are electrically connected to the first power terminal L and the second power terminal T 2 of the external power source V in parallel with each other, and the external power source V is transmitted through the first power terminal L. providing an operating voltage to the light emitting device 3, and the second power supply terminal is a ground terminal ⁇ 2.
  • the light-emitting device 3 has three light-emitting modules 31a-31c, and each of the light-emitting modules 31a, 31b, and 31c has one, two, and four light-emitting diodes as an example.
  • other numbers of light-emitting modules and light-emitting diodes can be used according to actual needs, and the light-emitting diodes of the light-emitting units 311a-311c can be connected in series or in parallel with each other.
  • the light emitting module 31a has a connection switching unit SW 31
  • the light emitting module 31b has two connection switching units SW 32 and SW 33
  • the light emitting module 31c has two connection switching units SW 34 and SW 35 .
  • connecting the light emitting module 31a switches the connection unit SW 3I and the light emitting module 31b of the switching unit SW 32, and connected to the light emitting module 31c of the switch 34 is electrically unit SW is connected, is connected to the light emitting module 31b is a switching unit SW 3: i and the light emitting module
  • the connection switching unit SW 35 of 31c is electrically connected.
  • connection switching unit of each of the light-emitting modules 31a to 31c is connected in series with the connection switching unit in the light-emitting module connected to the connection switching unit.
  • the light emitting module 31a is connected to a switching unit SW 31, and connected with the light emitting module 31b connected to the switching unit SW 31 are connected in the switching unit SW 32 are connected in series.
  • the first switching units SW n to SW 13 , the second switching units SW 21 to SW 23 , and the connection switching units 5 ⁇ 31 to 5 ⁇ 35 of the respective light emitting modules 31a to 31c are respectively a semiconductor component.
  • the connection switching units SW 31 to SW 35 are respectively field effect transistors (FETs).
  • the control circuit 32 includes a detecting unit 321 and a control unit 322.
  • the detecting unit 321 detects parameters representing the lighting states of the light emitting modules 31a to 31c and generates a parameter signal S P .
  • the detecting unit 321 includes a resistor, a photodetector, a photodiode, an inductive coil, an electromagnetic induction component, or a magnetoelectric sensing component, and the detecting unit 321 can be a real-time detection. unit.
  • the control unit 322 is electrically connected to the detecting unit 321 and controls the first switching units SW n to SW 13 , the second switching units SW 21 to SW 23 , and or the connection switching units SW 31 to SW 35 according to the parameter signal S P .
  • the current flowing through the light emitting modules 31a to 31 C is adjusted.
  • the control circuit 32 can be a digital control circuit or an analog control circuit depending on the requirements of the product.
  • the control unit 322 controls the first switching unit SW of the light-emitting module 31a, and the second switching unit SW 21 to be in an on state, thereby causing the light to be illuminated.
  • Unit 311a is illuminated.
  • the control unit 322 will switch the first switching unit SW U , the second switching unit 3 ⁇ 22 and the connection switching unit SW 31 according to the parameter signal S P generated by the detecting unit 321 .
  • the SW 32 is turned on, so that the light emitting units 311a, 311b are connected in series and simultaneously lit. That is, the load of the external power source V is increased, and the voltage applied to the light-emitting device 3 and the current flowing through the light-emitting modules 31a to 31c meet the designer's requirements and the specifications that the component can withstand to avoid the external power source V. The variation causes the light-emitting modules 31a to 31c to be damaged. If the voltage level of the external power source V continues to increase, the control unit 322 controls the first switching unit SWu, the second switching unit 5 ⁇ 23, and the connection switching units SW 31 to SW 33 and SW 35 to be in an on state, so that the light emitting unit 311a is enabled. ⁇ 311c forms a series connection and illuminates at the same time.
  • the control unit 322 can cause the light emitting device 3 to respectively turn on the light emitting unit 311a, the light emitting unit 311b, and or the light according to the parameter signal S P .
  • the unit 311c lights up one to seven light emitting diodes.
  • each of the light-emitting modules may be connected in parallel or in series with each other by turning on different switching units.
  • the control unit 322 can simultaneously turn on the first switching units 5, 1 to 5, and 13 and the second switching units SW 21 to SW 23 to form the parallel connection of the light-emitting units 311a to 311c, or to turn on the first switching unit.
  • SW traverse, SW 13 , second switching unit SW 22 , SW 23 and connection switching unit SW : il , SW 32 , such that the light-emitting units 311 a , 311 b are connected in series, and are connected in parallel with the light-emitting unit 311 c.
  • the control unit 322 can form a plurality of parallel connection modes for each of the light-emitting modules 31a to 31c according to the parameter signal S P to achieve the effect of the component flow, thereby controlling the light-emitting intensity of each of the light-emitting modules 31a to 31c of the light-emitting device 3.
  • the control unit of the light emitting module can control the number of lighting of the lighting unit and the connection mode of each lighting module according to parameters representing the lighting state of the lighting module.
  • the control unit can control the light-emitting characteristics of the light-emitting unit by changing the connection mode of each light-emitting module in response to the current voltage change of the external power source and adjusting the current flowing through each of the light-emitting modules.
  • the hardware structure described above allows each of the light-emitting modules to have a plurality of different connection modes, so that the utilization of the light-emitting module under variable power supply driving can be greatly improved.
  • each of the light-emitting modules is electrically connected to the connection switching unit of the other light-emitting modules by connecting the switching units. Therefore, any of the light emitting modules can be electrically connected to the plurality of light emitting modules by connecting the switching units. In other words, the present invention will expand the number of light emitting modules of the lighting device by connecting the switching units.
  • the control unit can determine the switching unit to be turned on or off by comparing and comparing the received parameter signal with a default value or by looking up the table.
  • FIG. 4 is a schematic diagram of another light-emitting device according to a preferred embodiment of the present invention.
  • the difference between the illumination device 4 and the illumination device 3 is that the illumination module 41c of the illumination device 4 further includes two switching units SW 41 and SW 42 .
  • the switching unit SW 41 is electrically connected to the cathode of the first LED in the LED unit 411c and the second power terminal T 2 of the external power source V
  • the switching unit SW 42 is electrically connected to the LED unit 411c.
  • the cathode of the second LED is connected to the second power terminal T 2 of the external power source V.
  • the control unit 422 is electrically connected to the switching units SW 41 and SW 42 and controls the switching units SW 41 and SW 42 according to the parameter signal S P .
  • the light-emitting device 4 provides the light-emitting module 41c with an additional two current paths by providing the switching units SW 41 and SW 42 in the light-emitting module 41c.
  • the light emitting module 41c can respectively illuminate one, two or four light emitting diodes.
  • the control unit 422 will be able to have a variety of different options depending on the pre-set information, when a certain number of LEDs need to be turned on.
  • the light-emitting module 41c may be selectively lit, or the first light-emitting diodes of the light-emitting modules 41a, 41b and the light-emitting module 41c may be illuminated, or the light-emitting light may be illuminated.
  • the light-emitting diodes of the respective light-emitting units can be provided with a plurality of different connection modes, thereby greatly improving the utilization ratio of the light-emitting module under variable power supply driving.
  • FIG. 5 is a schematic view of a light-emitting device according to a preferred embodiment of the present invention.
  • the light-emitting device 5 includes four light-emitting modules 51a to 51d, and the light-emitting units 511a to 511d of the light-emitting modules 51a to 51d have one, two, four and eight light-emitting diodes, respectively.
  • each of the light-emitting units 511a to 511d has the same number of light-emitting diodes.
  • the light emitting module 51a has two connection switching units SW 51 to SW 52
  • the light emitting module 51 b has two connection switching units SW 53 to SW 54
  • the light emitting module 51 c has a connection switching unit SW 5S
  • the light emitting module 51 d has a connection switching unit SW 5fi
  • the aforementioned connection switching units SW 51 ⁇ SW 5fi are respectively a double carrier transistor (BJT) o
  • the light-emitting modules 51a are electrically connected to the light-emitting modules 51b and 51c by connecting the switching units SW 51 and SW 52, respectively
  • the light-emitting modules 51b are electrically connected to the light-emitting modules 51c and 51d by connecting the switching units SW 53 and SW 54
  • the light-emitting module 51c is electrically connected to the light-emitting module 51d through the connection switching unit SW 55
  • the light-emitting module 51d is electrically connected to the light-emitting module 51a via the connection switching unit SW 56 .
  • the light-emitting unit and the connection switching unit of each light-emitting module of the light-emitting device 5 are connected in series with the light-emitting unit of another light-emitting module connected to the connection switching unit.
  • the light emitting unit of the light emitting module is connected in series with the light emitting unit of the other light emitting module by connecting the switching unit.
  • FIG. 6 is a schematic diagram of a light emitting device according to a preferred embodiment of the present invention.
  • the light emitting device 6 comprises two light emitting module 61a, 61b, the light emitting unit and the light emitting module 61a, 61b to 611a, 611b both having a light-emitting diode, the light emitting modules 61a and 61b, respectively, and a light emitting module having a connection switching unit 5 ⁇ 61 and SW 62
  • the foregoing connection switching unit 5 ⁇ 61 and SW 62 are respectively a diode.
  • the diode since the diode has a state of being turned on or off depending on the voltage applied to the anode and the cathode thereof, the diode can also be regarded as a switching unit.
  • the light-emitting device 6 further includes a first light-emitting diode LED, a second light-emitting diode LED 2 , a first switch unit SW 71 and a second switch unit SW 72 .
  • the first light emitting diode LED is connected in series with the first switching unit SW 71
  • the second light emitting diode LED 2 is connected in series with the second switching unit SW 72 .
  • the first light emitting diode electrically ⁇ ⁇ through a diode 611a and the light emitting module 61a is connected to the light emitting unit, the light emitting module 61a by the connection switching unit SW. 6, the light emitting module 61b is connected electrically to the light-emitting module 61b by the connection switching unit SW 62 is electrically connected to the second light emitting diode LED 2 .
  • the control circuit 62 includes a first detecting unit 621, a second detecting unit 622 and a control unit. 623.
  • First detecting unit 621 is electrically connected to the first light emitting diode LED emitting module 61a to the first switching unit SW 63, the first switching unit SW 61b of the light-emitting module 64 and the second switching unit SW 72.
  • the second detecting unit 622 is electrically connected to the first switching unit SW 71 , the second switching unit SW B5 of the light emitting module 61 a , the second switching unit SW 66 of the light emitting module 61 b and the second light emitting diode LED 2 .
  • the first detecting unit 621 and the second detecting unit 622 are respectively a resistor.
  • the control unit 623 is electrically connected to the first detecting unit 621 and the second detecting unit 622, and controls the first switching units SW 63 , SW 64 , the second switching unit SW 65 , SW 66 , and the first switch according to the detection result.
  • control circuit 62 adjusts the connection manner of each of the light-emitting diodes by detecting the current values flowing through the light-emitting modules 61a, 61b, the first light-emitting diodes LEDt and the second light-emitting diodes LED 2 .
  • the first switching units SW 63 , SW 64 , the second switching units SW fi5 , SW 66 , the first switching unit SW 71 , and the second switching unit SW 72 are all in an off state, the first LED light emitting unit 611a, the light emitting unit 611b and the second light emitting diode LED 2 are connected in series and light up at the same time;
  • the second switching unit SW 66 is in an on state, the first switching unit SW 63 , SW M , the second switching unit SW S5 , a first switching unit 5 ⁇ 71 and the second switching unit SW 72 are both off state, the first light emitting diode LED, Illuminating section 611a and the light emitting cells 611b connected in series are formed, and simultaneously lights up;
  • the first switching unit SW fi3 When the SW M , the second switching unit SW 65 , the SW BB , the first switching unit ⁇ ⁇ 71 , and the second switching unit SW 72 are all in an on state, the first LED, the illuminating unit
  • the light-emitting diodes in the light-emitting device 6 can be provided with a plurality of different connection modes, and the utilization ratio of the light-emitting module under the variable power source driving is greatly improved.
  • the current threshold values of the first detecting unit 621 and the second detecting unit 622 are automatically adjusted according to the connection manner of the light emitting diodes in the light emitting device 6, for example, the current threshold is low when connected in series, and the current is connected in parallel. The threshold value is higher, and therefore, the light-emitting device 6 is more capable of reducing power consumption.
  • the control unit can change the connection manner of each of the light-emitting modules according to the parameter signal output by the detecting unit, thereby achieving driving of the variable voltage source, and controlling the light-emitting characteristics of the light-emitting units of the respective light-emitting modules.
  • the present invention can drive the light-emitting device with an AC power source depending on the actual needs of the product.
  • the light emitting diodes of the light emitting unit are connected in parallel in antiphase, and corresponding switching units are disposed on the conduction paths of the light emitting diodes.
  • the illuminating device of the present invention can be applied to the field of mobile communications, the field of lighting for transportation vehicles, and general lighting applications.
  • a light-emitting device detects a parameter representing a light-emitting state of a light-emitting module by a control unit, and adjusts light emission through each of the first switching unit, each of the second switching units, and each of the connection switching units.
  • the light-emitting modules of the device are connected in series or in parallel with each other to adjust the current flowing through the light-emitting module, thereby realizing the driving of the variable power source and improving the utilization rate of the light-emitting module.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Description

发光装置 技术领域
本发明关于一种发光装置。 背景技术
发光二极管 (Light-Emitting Diode, LED) , 是一种半导体组件, 初时多 作为指示灯以及户外显示板的光源。 由于发光二极管具有效率高、 寿命长以及 不易破损等传统光源无法达到的优点, 因此发光二极管已被广泛地运用至许多 种类的电子产品中。
以发光二极管为光源的发光装置, 其控制方法一般而言可分为定电压控制 以及定电流控制。 请参照图 1A所示, 公知定电压控制的发光装置 la包括一发 光模块 11、 一电容器 12、 多个电阻器 13及一定电压源 14。 虽然, 定电压控制 具有较简易的电路设计的优点, 但为了使输入发光模块 11的发光二极管的讯号 为一定电压讯号, 设计人员通常必须采用大电容值的电容器, 或是较为复杂的 整流电路, 藉此达到稳压的效果, 因而将会增加制造成本。
此外, 发光二极管是通過电子与电洞的结合, 使过剩的能量以光的形式释 出, 而达成发光的效果。 因此, 电流的改变将对发光二极管的发光特性有极大 的影响。 然而, 定电压控制并无法提供一稳定的电流, 因而定电压控制并无法 精确的控制发光二极管的发光特性。
另外, 请参照图 1B所示, 公知定电流控制的发光装置 lb包括一发光模块 11、 一电容器 12、 多个电阻器 13、 一定电流源 15及一侦测单元 16。 虽然, 公 知的定电流控制可以提供发光二极管稳定的电流, 但在实际的运用上, 由于制 程及操作温度的影响, 各发光二极管的顺向电压 (forward voltage) 仍具有差 异, 因而为了克服此一差异, 仍须使用电阻器 13作为限流组件, 以吸收因电性 变动而造成的功率差异以稳定电流, 如此一来, 将造成额外的功率损耗。
然而, 无论是公知定电压控制的发光装置 la或是公知定电流控制的发光装 置 lb, 均需要一个能够提供稳定电源的电源供应单元, 或是设置可以有效稳定 电压或电流的组件。 因此, 如何提供一种发光装置, 使其能够因应外部电源的 变动, 而调整发光装置的发光模块的连接方式, 以达到可变电源的驱动, 并提 升发光模块的利用率, 已成为重要课题之一。 发明内容
本发明的目的是提供一种能够因应外部电源的变动, 而调整发光装置的发 光模块的连接方式, 以达到可变电源的驱动, 并提升发光模块的利用率的发光 装置。
本发明可采用以下技术方案来实现的。
本发明的一种发光装置与一具有一第一电源端与一第二电源端的外部电源 电性连接。 发光装置包括多个发光模块及一控制电路。 各发光模块具有一第一 切换单元、 一第二切换单元、 至少一连接切换单元及一发光单元。 第一切换单 元、 发光单元及第二切换单元串联连接于外部电源的第一电源端与第二电源端 之间。 连接切换单元与另一发光模块电性连接。 控制电路分别与各发光模块的 第一切换单元、 第二切换单元及连接切换单元电性连接, 并根据代表发光模块 的发光状态的一参数控制各第一切换单元、 各第二切换单元及或各连接切换单 元, 进而调整流经各发光模块的电流。
本发明的一实施例中, 各发光模块的发光单元及连接切换单元, 与连接切 换单元连接的发光模块中的发光单元串联连接。
本发明的一实施例中, 控制电路依据代表发光模块的发光状态的参数, 经 由各第一切换单元、 各第二切换单元及或各连接切换单元调整发光模块为相互 串联连接及或相互并联连接。
借由上述技术方案, 本发明的发光装置至少具有下列优点:
依据本发明的一种发光装置通过控制单元侦测代表发光模块的发光状态的 参数, 而透过各第一切换单元、 各第二切换单元及或各连接切换单元调整发光 装置的发光模块的连接方式为相互串联及或相互并联, 以调节流经发光模块的 电流, 从而实现可变电源的驱动, 并提升发光模块的利用率。
附图说明
图 1A是公知定电压控制的发光装置的示意图;
图 1B是公知定电流控制的发光装置的示意图;
图 2是本发明优选实施例的一种发光装置的示意图; 以及
图 3至图 6是显示依据本发明优选实施例的发光装置的变化态样的示意图。 主要元件符号说明:
la、 lb、 2、 3、 4、 5、 6: 发光装置
11、 21、 31a〜31c、 41a~41c、 51a〜51d、 61a~61b: 发光模块
12: 电容器
13: 电阻器 14: 定电压源
15: 定电流源
16、 321、 421、 521: 侦测单元
211、 311a〜311c、 411a〜411c、 511a~511d、 611a〜611b: 发光单元
22、 32、 42、 52、 62: 控制电路
322、 422、 522、 623: 控制单元
621: 第一侦测单元
622: 第二侦测单元
LEDi : 第一发光二极管
LED2: 第二发光二极管
SP: 参数讯号
SW SW„~SW13、 SW63〜SW64 : 第一切换单元
SW2、 SW21〜SW23、 SW65~SW66 : 第二切换单元
SW3、 SW31〜SW35、 SW51~SW56、 SW61~SW62: 连接切换单元
sw41〜sw42 : 切换单元
sw7i : 第一开关单元
SW72 : 第二开关单元
Τ, : 第一电源端
L: 第二电源端
V: 外部电源 具体实施方式
以下将参照相关图式, 说明依本发明优选实施例的一种发光装置, 其中相 同的元件将以相同的元件符号加以说明。
请参照图 2 所示, 其为本发明优选实施例的一种发光装置的示意图。 发光 装置 2是与一具有一第一电源端^ 1\与一第二电源端 Τ2的外部电源 V电性连接, 且发光装置 2是以包括三个发光模块 21及一控制电路 22为例。
在实际运用上, 外部电源 V可为一交流电压或一直流电压。 其中, 前述的 交流电压可为一般熟知的市电, 意即为 90V至 250V的交流电, 亦可为由电源转 换器所输出的交流电。 另外, 前述的直流电压包括由电池、 电瓶或交流电压经 由一整流电路而产生的电压。 其中, 电池与电瓶因使用时间的增加, 将使得输 出电压的准位产生变动。 此外, 经由整流电路所产生的直流电压则仍然存在涟 波, 因此, 在实际运用上, 此类直流电压的准位仍会随着时间而改变。 换句话 说, 外部电源 V为随着时间而以周期性或随机地改变其电压准位的可变电压源。
发光模块 21具有一第一切换单元 SWt、 一第二切换单元 SW2、 一连接切换单 元 SW3及一发光单元 211。 在实施上, 各发光模块 21的第一切换单元 SW,、 发光 单元 211及第二切换单元 SW2依序串联连接于外部电源 V的第一电源端 T,与第二 电源端 T2之间。另外, 各发光模块 21的连接切换单元 SW3与另一发光模块 21电 性连接, 于此以发光模块 21与相邻的发光模块 21电性连接为例。
控制电路 22与各发光模块 21的第一切换单元 SW,、 第二切换单元 SW2及连 接切换单元 SW3电性连接, 并根据代表发光模块 21的发光状态的一参数, 控制 各发光模块 21的第一切换单元 SW,、 第二切换单元 SW2及或连接切换单元 SW:,, 进而调整流经各发光模块 21 的电流。 在实际操作上, 代表发光模块 21的发光 状态的参数可为发光模块 21的电流值、 电压值、 电功率、 发光强度及或发光功 率。
接着, 请参照图 3所示, 以进一步说明本发明的发光装置。 发光装置 3包 括三个发光模块 31a〜31c,且发光模块 31a〜31 c的发光单元 311a〜311c分别具有 一、 二及四个发光二极管。 在本实施例中, 发光模块 31a〜31c 为相互并联连接 的方式而与外部电源 V的第一电源端 L与第二电源端 T2电性连接, 且外部电源 V透过第一电源端 L提供一操作电压至发光装置 3,而第二电源端 Τ2为一接地端。
于此, 需特别注意的是, 本实施例是以发光装置 3 具有三个发光模块 31a~31c , 且各发光模块 31a、 31b、 31c分别具有一、二及四个发光二极管为例。 然而, 在操作上, 可依据实际的需求, 使用其它数量的发光模块及发光二极管 进行操作, 且各发光单元 311a〜311c 的发光二极管可为相互串联及或相互并联 的连接方式
发光模块 31a具有一连接切换单元 SW31,发光模块 31b具有二连接切换单元 SW32、 SW33, 而发光模块 31c具有二连接切换单元 SW34、 SW35。其中, 发光模块 31a 的连接切换单元 SW3I与发光模块 31b的连接切换单元 SW32以及发光模块 31c的连 接切换单元 SW34电性连接, 而发光模块 31b的连接切换单元 SW3:i与发光模块 31c 的连接切换单元 SW35电性连接。
在本实施例中, 各发光模块 31a~31c 的连接切换单元, 与和连接切换单元 连接的发光模块中的连接切换单元串联连接。 举例来说, 发光模块 31a 的连接 切换单元 SW31,与和连接切换单元 SW31连接的发光模块 31b中的连接切换单元 SW32 串联连接。此外,在实际运用上,各发光模块 31a〜31c的第一切换单元 SWn〜SW13、 第二切换单元 SW21〜SW23及连接切换单元 5¥31〜5¥35分别为一半导体组件,而在本实 施例中, 连接切换单元 SW31〜SW35分别为一场效晶体管 (FET)。
控制电路 32包括一侦测单元 321及一控制单元 322。 侦测单元 321侦测代 表发光模块 31a~31c的发光状态的参数并产生一参数讯号 SP。 在实施上, 侦测 单元 321 包括一电阻器、 一光侦测器、 一感光二极管、 一感应线圈、 一电磁感 应组件及或一磁电感应组件, 且侦测单元 321可为一实时侦测单元。
控制单元 322与侦测单元 321 电性连接, 并依据参数讯号 SP, 控制第一切 换单元 SWn〜SW13、第二切换单元 SW21〜SW23及或连接切换单元 SW31~SW35以调整流经 发光模块 31a~31 C的电流。 此外, 控制电路 32可依据产品的需求, 而为一数字 控制电路或一模拟控制电路。
在实际操作时, 当外部电源 V所提供的操作电压输入发光装置 3, 控制单元 322将控制发光模块 31a的第一切换单元 SW,,及第二切换单元 SW21为导通状态, 而使发光单元 311a发亮。 当外部电源 V所提供的操作电压的电压准位上升时, 流经发光单元 311a的电流值亦同时增加, 控制单元 322将依据侦测单元 321所 产生的参数讯号 SP而将第一切换单元 SWU、 第二切换单元 3¥22及连接切换单元 SW31、 SW32导通, 以使发光单元 311a、 311b形成串联连接并同时发亮。 亦即, 增 加外部电源 V的负载,而使施加于发光装置 3的电压及流经其发光模块 31a〜31c 的电流符合设计者的需求及组件所能承受的规格, 以避免因外部电源 V 的变动 而造成发光模块 31a~31c的毁损。 若外部电源 V的电压准位持续增加, 控制单 元 322控制第一切换单元 SWu、第二切换单元 5¥23及连接切换单元 SW31~SW33及 SW35 为导通状态, 而使发光单元 311a〜311c形成串联连接并同时发亮。
由于本实施例中的发光单元 311a〜311c分别具有一、 二及四个发光二极管, 因而控制单元 322可依据参数讯号 SP而使发光装置 3分别导通发光单元 311a、 发光单元 311b及或发光单元 311c, 而点亮一至七个发光二极管。
此外, 在本实施例中, 亦可以通过导通不同的切换单元而使各发光模块形 成相互并联及或相互串联的连接方式。 例如: 控制单元 322 可同时导通第一切 换单元 5¥,1〜5¥13及第二切换单元 SW21~SW23而使发光单元 311a〜311c形成并联连 接, 或是导通第一切换单元 SW„、 SW13、 第二切换单元 SW22、 SW23及连接切换单元 SW:il、 SW32, 以使发光单元 311a、 311b为串联连接, 且其与发光单元 311c为并 联连接。 换句话说, 控制单元 322可依据参数讯号 SP, 而使各发光模块 31a〜31c 形成多种并联连接的态样, 以达成分流的效果, 进而控制发光装置 3 的各发光 模块 31a~31c的发光强度。
因而, 通过上述的硬件结构, 发光模块的控制单元可依据代表发光模块的 发光状态的参数控制发光单元点亮的数量, 以及各发光模块的连接方式。 换句 话说, 控制单元可透过改变各发光模块的连接方式而因应当前的外部电源的电 压变化, 并调整流经各发光模块的电流, 以控制发光单元的发光特性。 此外, 上述的硬件结构可使各发光模块具有多种不同的连接方式, 因此将可以大幅提 升发光模块在可变电源驱动下的利用率。
另外, 值得一提的是, 在本实施例中, 各发光模块分别通过连接切换单元 而与其它发光模块的连接切换单元电性连接。 因而, 任一发光模块可通过连接 切换单元而与多个发光模块电性连接。 换句话说, 本发明将可通过连接切换单 元扩充发光装置的发光模块的数量。 此外, 控制单元可通过将所接收的参数讯 号与一默认值进行比较与运算, 或是透过查表法, 而判断所要导通或截止的切 换单元。
接着, 请参照图 4所示, 其为本发明优选实施例的另一种发光装置的示意 图。 发光装置 4与发光装置 3的差异在于, 发光装置 4的发光模块 41c还包括 二切换单元 SW41、 SW42
在本实施例中, 切换单元 SW41电性连接发光单元 411c中的第一个发光二极 管的阴极与外部电源 V的第二电源端 T2, 而切换单元 SW42则电性连接发光单元 411c中的第二个发光二极管的阴极与外部电源 V的第二电源端 T2。 此外, 控制 单元 422与切换单元 SW41、 SW42电性连接, 并依据参数讯号 SP控制切换单元 SW41、 SW42。 在本实施例中, 发光装置 4通过在发光模块 41c中设置切换单元 SW41、 SW42, 进而使发光模块 41c提供额外的二条电流路径。 因此, 发光模块 41c可分别点 亮一、 二或四个发光二极管。 换句话说, 在实际操作时, 控制单元 422将可依 据预先设定的信息, 而在需要导通一定数量的发光二极管时, 有多种不同的选 择。例如,当发光装置 4需要点亮四个发光二极管时,可选择点亮发光模块 41c, 或是点亮发光模块 41a、 41b及发光模块 41c的第一个发光二级体, 或是点亮发 光模块 41b及发光模块 41c的第一、 第二个发光二级体, 或是其它不同的组合。
因而, 通过本实施例的结构, 将可使各发光单元的发光二极管具有多种不 同的连接方式, 进而大幅提升发光模块在可变电源驱动下的利用率。
接着, 请参照图 5所示, 图 5为本发明优选实施例的一种发光装置的示意 图。 发光装置 5包括四个发光模块 51a~51d, 且发光模块 51a〜51d的发光单元 511a〜511d分别具有一、 二、 四及八个发光二极管。 于此, 值得一提的是, 在实 际运用时, 亦可采用各发光单元 511a〜511d具有相同数量的发光二极管的设计。
发光模块 51a分别具有二连接切换单元 SW51〜SW52,发光模块 51b具有二连接 切换单元 SW53〜SW54, 而发光模块 51c具有一连接切换单元 SW5S, 发光模块 51d具 有一连接切换单元 SW5fi, 且前述的连接切换单元 SW51~ SW5fi分别为一双载子晶体 管 (BJT)o
在本实施例中, 发光模块 51a分别通过连接切换单元 SW51、 SW52而与发光模 块 51b、 51c电性连接, 发光模块 51b通过连接切换单元 SW53、 SW54而与发光模块 51c、 51d电性连接, 发光模块 51c则通过连接切换单元 SW55与发光模块 51d电 性连接, 发光模块 51d通过连接切换单元 SW56与发光模块 51a电性连接。
在本实施例中, 发光装置 5 的各发光模块的发光单元及连接切换单元, 与 连接切换单元连接的另一发光模块中的发光单元为串联连接。 换句话说, 发光 模块的发光单元通过连接切换单元而与另一发光模块的发光单元形成串联连 接。
接着, 请参照图 6所示, 图 6为本发明优选实施例的一种发光装置的示意 图。 发光装置 6包括二个发光模块 61a、 61b , 且发光模块 61a、 61b的发光单元 611a, 611b皆具有一个发光二极管, 且发光模块 61a及发光模块 61b分别具有 一连接切换单元 5¥61与 SW62, 其中前述的连接切换单元 5¥61与 SW62分别为一二极 管。 于此, 需特别注意的是, 由于二极管依据施加于其阳极与阴极的跨压, 而 具有导通或截止的状态, 因而二极管亦可视为是一种切换单元。
在本实施例中, 发光装置 6更包括一第一发光二极管 LED,、 一第二发光二 极管 LED2、.一第一开关单元 SW71及一第二开关单元 SW72。 其中, 第一发光二极管 LED,与第一开关单元 SW71串联连接, 第二发光二极管 LED2与第二开关单元 SW72 串联连接。
此外, 第一发光二极管 Ι^ 透过一二极管与发光模块 61a的发光单元 611a 电性连接,发光模块 61a通过连接切换单元 SW6,与发光模块 61b电性连接,发光 模块 61b通过连接切换单元 SW62与第二发光二极管 LED2电性连接。
控制电路 62包括一第一侦测单元 621、 一第二侦测单元 622及一控制单元 623。 第一侦测单元 621电性连接第一发光二极管 LED 发光模块 61a的第一切 换单元 SW63、 发光模块 61b的第一切换单元 SW64与第二开关单元 SW72。 第二侦测 单元 622电性连接第一幵关单元 SW71、 发光模块 61a的第二切换单元 SWB5、 发光 模块 61b的第二切换单元 SW66与第二发光二极管 LED2。 其中, 第一侦测单元 621 与第二侦测单元 622分别为一电阻器。
控制单元 623与第一侦测单元 621及第二侦测单元 622电性连接, 并依据 侦测结果控制第一切换单元 SW63、 SW64、 第二切换单元 SW65、 SW66、 第一开关单元 SW71及或第二开关单元 SW72
在本实施例中, 控制电路 62通过侦测流经发光模块 61a、 61b,第一发光二 极管 LEDt与第二发光二极管 LED2的电流值, 调整各发光二极管的连接方式。 例 如是, 当第一切换单元 SW63、 SW64、 第二切换单元 SWfi5、 SW66、 第一开关单元 SW71 及第二开关单元 SW72皆为截止状态时, 第一发光二极管 LED 发光单元 611a、 发光单元 611b及第二发光二极管 LED2形成串联连接, 并同时发亮; 当第二切换 单元 SW66为导通状态, 而第一切换单元 SW63、 SWM、 第二切换单元 SWS5、 第一开关 单元 5¥71及第二开关单元 SW72皆为截止状态时, 第一发光二极管 LED、发光单元 611a及发光单元 611b形成串联连接, 并同时发亮; 当第一切换单元 SWfi3、 SWM、 第二切换单元 SW65、 SWBB、 第一开关单元≤¥71及第二开关单元 SW72皆为导通状态 时, 第一发光二极管 LED,、 发光单元 611a、 发光单元 611b及第二发光二极管 LED2形成并联连接, 并同时发亮。
因而, 通过本实施例的结构, 将可使发光装置 6 中的发光二极管具有多种 不同的连接方式, 而大幅提升发光模块在可变电源驱动下的利用率。 此外, 由 于第一侦测单元 621及第二侦测单元 622的电流临界值将依据发光装置 6中的 发光二极管的连接方式而自动调整, 例如串联连接时电流临界值较低, 并联连 接时电流临界值较高, 因此, 发光装置 6更能减少功率的耗损。
通过上述的硬件结构, 控制单元可依据侦测单元所输出的参数讯号改变各 发光模块的连接方式, 而达成可变电压源的驱动, 并控制各发光模块的发光单 元的发光特性。 于此, 需特别注意的是, 本发明可依据产品的实际需求, 而以 交流电源驱动发光装置。 其中, 发光单元的发光二极管以反相并联的方式连接, 并于各发光二极管的导通路径设置相对应的切换单元。 另外, 本发明的发光装 置可应用于行动通讯领域、 交通运输工具的照明领域及一般照明应用领域。
综上所述, 因依据本发明的一种发光装置通过控制单元侦测代表发光模块 的发光状态的参数, 而透过各第一切换单元、 各第二切换单元及或各连接切换 单元调整发光装置的发光模块的连接方式为相互串联及或相互并联, 以调节流 经发光模块的电流, 从而实现可变电源的驱动, 并提升发光模块的利用率。
以上所述仅是举例性, 而非限制性。 任何未脱离本发明的精神与范畴, 而 对其进行的等效修改或变更, 均应包括在权利要求所限定的范围内。

Claims

权 利 要 求 书
1、 一种发光装置, 与一具有一第一电源端与一第二电源端的外部电源电性 连接, 其特征在于, 所述发光装置包括:
多个发光模块, 各发光模块具有一第一切换单元、 一第二切换单元、 至少 一连接切换单元及一发光单元, 其中所述第一切换单元、 所述发光单元及所述 第二切换单元串联连接于所述外部电源的所述第一电源端与所述第二电源端之 间, 至少其中一个所述连接切换单元与另一个发光模块电性连接; 以及
一控制电路, 分别与各发光模块的所述第一切换单元、 所述第二切换单元 及所述连接切换单元电性连接, 并根据代表所述发光模块的发光状态的一参数 控制各所述第一切换单元、 各所述第二切换单元及或各所述连接切换单元, 进 而调整流经各发光模块的电流。
2、 根据权利要求 1所述的发光装置, 其特征在于, 所述连接切换单元包括 一二极管。
3、 根据权利要求 1所述的发光装置, 其特征在于, 所述外部电源为一可变 电压源。
4、 根据权利要求 1所述的发光装置, 其特征在于, 所述第一电源端为一电 源输入端。
5、 根据权利要求 4所述的发光装置, 其特征在于, 所述第二电源端为一接 地端。
6、 根据权利要求 1所述的发光装置, 其特征在于, 所述发光模块的各所述 发光单元具有至少一发光二极管。
7、 根据权利要求 1所述的发光装置, 其特征在于, 所述发光单元至少其中 之二具有数量不同的发光二极管。
8、 根据权利要求 1所述的发光装置, 其特征在于, 代表所述发光模块的发 光状态的所述参数为所述发光模块的电流值、 电压值、 电功率、 发光强度及或 发光功率。
9、 根据权利要求 1所述的发光装置, 其特征在于, 各发光模块的所述发光 单元及所述连接切换单元, 与所述连接切换单元连接的所述发光模块中的所述 发光单元串联连接。
10、 根据权利要求 1所述的发光装置, 其特征在于, 各发光模块的所述连 接切换单元, 与所述连接切换单元连接的所述发光模块中的所述连接切换单元 串联连接。
11、 根据权利要求 1所述的发光装置, 其特征在于, 所述第一切换单元、 所述第二切换单元及所述连接切换单元为一半导体组件。 '
12、 根据权利要求 11所述的发光装置, 其特征在于, 所述半导体组件为一 双载子晶体管或一场效晶体管。
13、 根据权利要求 1所述的发光装置, 其特征在于, 所述控制电路依据代 表所述发光模块的发光状态的所述参数, 经由各所述第一切换单元、 各所述第 二切换单元及或各所述连接切换单元调整所述发光模块为相互串联连接及或相 互并联连接。
14、 根据权利要求 1所述的发光装置, 其特征在于, 所述控制电路包括: 一侦测单元, 其侦测代表所述发光模块的所述发光状态的所述参数而产生 一参数讯号; 以及
一控制单元, 与所述侦测单元电性连接, 并依据所述参数讯号, 经由各所 述第一切换单元、 各所述第二切换单元及或各所述连接切换单元调整流经各所 述发光模块的电流。
15、 根据权利要求 14所述的发光装置, 其特征在于, 所述侦测单元包括一 电阻器、 一光侦测器、 一感光二极管、 一感应线圈、 一电磁感应组件及或一磁 电感应组件。
16、 根据权利要求 1所述的发光装置, 其特征在于, 所述控制电路为一数 字控制电路或一模拟控制电路。
PCT/CN2010/002053 2009-12-17 2010-12-16 发光装置 WO2011072485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910222981A CN102102814B (zh) 2009-12-17 2009-12-17 发光装置
CN200910222981.3 2009-12-17

Publications (1)

Publication Number Publication Date
WO2011072485A1 true WO2011072485A1 (zh) 2011-06-23

Family

ID=44155776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/002053 WO2011072485A1 (zh) 2009-12-17 2010-12-16 发光装置

Country Status (2)

Country Link
CN (1) CN102102814B (zh)
WO (1) WO2011072485A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103249201A (zh) * 2012-02-06 2013-08-14 光宝电子(广州)有限公司 发光二极管电路及其发光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040090403A1 (en) * 2002-11-08 2004-05-13 Dynascan Technology Corp. Light-emitting diode display apparatus with low electromagnetic display
CN1716350A (zh) * 2004-07-02 2006-01-04 雅捷科技股份有限公司 串联红、绿及蓝光发光二极管的驱动装置
CN1766963A (zh) * 2004-10-27 2006-05-03 雅捷科技股份有限公司 并联式发光二极管驱动装置
US20080303452A1 (en) * 2005-12-13 2008-12-11 Koninklijke Philips Electronics, N.V. Led Lighting Device
CN101330786A (zh) * 2007-06-20 2008-12-24 夏普株式会社 发光二极管驱动电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040090403A1 (en) * 2002-11-08 2004-05-13 Dynascan Technology Corp. Light-emitting diode display apparatus with low electromagnetic display
CN1716350A (zh) * 2004-07-02 2006-01-04 雅捷科技股份有限公司 串联红、绿及蓝光发光二极管的驱动装置
CN1766963A (zh) * 2004-10-27 2006-05-03 雅捷科技股份有限公司 并联式发光二极管驱动装置
US20080303452A1 (en) * 2005-12-13 2008-12-11 Koninklijke Philips Electronics, N.V. Led Lighting Device
CN101330786A (zh) * 2007-06-20 2008-12-24 夏普株式会社 发光二极管驱动电路

Also Published As

Publication number Publication date
CN102102814A (zh) 2011-06-22
CN102102814B (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
CN102563400B (zh) 双端电流控制器及相关发光二极管照明装置
TWI423724B (zh) 可動態維持定電流驅動之光源驅動裝置及其相關方法
TWI404452B (zh) 發光二極體之電流供電電路以及電流控制電路
CN101827481B (zh) 分段变换投入的交流供电led光源驱动电路
TWI418252B (zh) 可避免閃爍效應之控制方法及發光裝置
TW201019795A (en) Light-emitting device
EP3026985A1 (en) Led lighting drive circuit
CN101720150A (zh) Led驱动电路、led照明器件、led照明设备和led照明系统
US20150022106A1 (en) Light-emitting diode driving apparatus and light-emitting diode illumination system using the same
CN105723807A (zh) Led照明装置的控制电路
TW201524262A (zh) Led驅動電路
TW201037213A (en) Light-emitting device
CN102802295B (zh) 光源驱动装置
CN101871582A (zh) 发光装置
WO2011072485A1 (zh) 发光装置
CN216057574U (zh) 多段开关降压电路和led灯具
KR20160094020A (ko) 발광 다이오드 조명 장치의 제어 회로 및 제어 방법
CN101737643A (zh) 发光装置
CN105704858B (zh) 用于两个或多个并联led灯串的驱动器
CN201047522Y (zh) 一种led发光装置的电路结构
US8587207B2 (en) Electronic ballast
CN202503706U (zh) 多串发光二极管驱动控制器芯片
CN201854480U (zh) Led移相调光电路
RU2479957C2 (ru) Способ и устройство для возбуждения светодиода
KR20120054517A (ko) 발광 다이오드의 구동 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10836924

Country of ref document: EP

Kind code of ref document: A1