WO2011072460A1 - 一种交流有级可控单相/三相并联电抗器 - Google Patents

一种交流有级可控单相/三相并联电抗器 Download PDF

Info

Publication number
WO2011072460A1
WO2011072460A1 PCT/CN2009/075731 CN2009075731W WO2011072460A1 WO 2011072460 A1 WO2011072460 A1 WO 2011072460A1 CN 2009075731 W CN2009075731 W CN 2009075731W WO 2011072460 A1 WO2011072460 A1 WO 2011072460A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
stepped
phase
main
reactors
Prior art date
Application number
PCT/CN2009/075731
Other languages
English (en)
French (fr)
Inventor
钟俊涛
安振
章海庭
Original Assignee
特变电工沈阳变压器集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 特变电工沈阳变压器集团有限公司 filed Critical 特变电工沈阳变压器集团有限公司
Priority to PCT/CN2009/075731 priority Critical patent/WO2011072460A1/zh
Publication of WO2011072460A1 publication Critical patent/WO2011072460A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P13/00Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output

Definitions

  • the invention relates to a reactor for use in an electric power transmission line, in particular to an alternating current level controllable single-phase/three-phase shunt reactor.
  • the technical problem to be solved by the present invention is to provide an exchange levelable utility for implementing the flexible AC transmission technology of the power grid. Control single-phase / three-phase shunt reactor.
  • the technical solution adopted by the present invention is:
  • the AC cascading controllable single-phase shunt reactor has a main reactor, a grading reactor, a detecting unit and a central controller, wherein the main reactor is in a single-phase form, and the primary coil is directly connected to the power network,
  • the secondary coil is connected in parallel with one or more stepped reactors, each of which has a control part for controlling its input and cutoff; the input end of the detecting unit is connected with the power network and related parameter information of the main reactor, and the output terminal and the central control The controller is connected; the control end of the central controller is connected to the control part of each of the stepped reactors.
  • each of the stepped reactors comprises a circuit breaker, a thyristor assembly and an isolating switch, wherein the isolating switch and the thyristor assembly are connected in series and connected in parallel with the circuit breaker, and then connected to the parallel branch in which the stepped reactor is located;
  • the isolating switch and the control terminals of the thyristor assembly are respectively connected to the output of the central controller.
  • the alternating current controllable three-phase shunt reactor of the invention has a main reactor, a stepped reactor, a detecting unit and a central controller, wherein the main reactor is in a three-phase form, and the three-phase primary coil is "Y" connected, directly After receiving the power network, the neutral point is short-circuited and directly grounded, and the three-phase secondary coil is respectively connected with one or more stepped reactors, and each of the stepped reactors is respectively connected with the control part that controls its input and cut; The phases are closed and the ends are grounded directly.
  • the control loop of each graded reactor comprises a circuit breaker, a thyristor assembly and an isolating switch, wherein the isolating switch and the thyristor assembly are connected in series and connected in parallel with the circuit breaker, and then connected to the parallel branch of the stepped reactor;
  • the switches and the control terminals of the thyristor assembly are respectively connected to the output of the central controller.
  • an additional reactor is provided between the secondary reactor of the main reactor of each phase and the parallel node of each of the stepped reactors.
  • the present invention has the following advantages in the power grid whether it is in a single-phase shunt reactor or a three-phase shunt reactor -
  • the invention designs the hierarchical reactors in parallel mode, and the adjustment capacity range can be combined, the adjustment is convenient, and the response speed is fast;
  • the invention has all the functions and characteristics of the common reactor, no harmonic generation, low noise, low vibration and high safety reliability;
  • the invention isolates more harmonics and reduces the impact on the power grid
  • the body short circuit impedance can be designed to be less than 100%.
  • Figure 1 is a schematic view showing the structure of the present invention
  • 2 is an electrical schematic diagram of an alternating current level controllable single-phase shunt reactor according to the present invention
  • FIG. 3 is an electrical schematic diagram of an alternating current level controllable three-phase shunt reactor according to the present invention.
  • the invention comprises two forms of an alternating current controllable single-phase shunt reactor and an alternating current controllable three-phase shunt reactor, wherein the alternating current controllable single-phase shunt reactor has a main reactor and a stepped reactor, wherein the main The reactor is in single-phase form, the primary coil is directly connected to the power network, and the secondary coil is connected in parallel with one or more stepped reactors, and each of the stepped reactors has a control portion for controlling its input and cut.
  • each of the stepped reactors comprises a circuit breaker, a thyristor assembly and an isolating switch, wherein the isolating switch and the thyristor assembly are connected in series and connected to the circuit breaker, and then connected to the parallel branch in which the stepped reactor is located, the circuit breaker
  • the isolating switch and the control end of the thyristor assembly are respectively connected to the output of the central controller 4.
  • the high-impedance single-phase transformer type main reactor and one or more stepped reactors connected in parallel with the secondary side may be co-assembled in a fuel tank to form a body of the controllable reactor, or may be designed as a main reactor and a graded reactance. The devices are placed separately.
  • the main body portion 1 of the fast response galvanically controlled reactor of the present invention is immersed in a fuel tank, and the main body portion 1 is composed of three single-phase high-impedance transformers 5, each single-phase high-impedance type.
  • the transformer 5 has at least two coils, wherein the primary coil is directly connected to the network, and the secondary winding is connected to the auxiliary reactor unit 2, the auxiliary reactor unit 2 has a stepped reactor, a circuit breaker, and a thyristor assembly portion, and the detecting unit 3 passes
  • the relevant parameter information of the acquisition network and the main body is transmitted to the central controller 4, and the central controller 4 issues relevant information such as the isolation switch of the auxiliary reactor unit and the opening and closing of the circuit breaker according to the internal command, thereby realizing the hierarchical reactor in different capacities.
  • the switching under the state that is, the automatic control dynamic adjustment characteristic of the stepped reactance or capacity of the main body of the controllable reactor.
  • the capacity adjustment of the reactor is to adjust the capacity of the reactor according to the demand of the system compensation capacity and the operating conditions of the system; the automatic control is determined by the central controller according to the needs of the system and issues instructions to the thyristor control device and the circuit breaker.
  • the control device performs automatic control according to the set logic control to realize automatic adjustment of the reactor capacity.
  • the AC level-controlled single-phase shunt reactor having the above structure can be designed to be close to 100%. If the short-circuit impedance of the main reactor is designed to be less than 100%, an additional reactor L can be added between the secondary reactor of the main reactor and the parallel node a of each of the stepped reactors to solve the problem of small short-circuit impedance of the body.
  • each phase AC-stage controllable shunt reactor has a high-impedance single-phase transformer type main reactor and three graded reactors, and a high-impedance single-phase transformer type main reactor.
  • the primary coil AX is directly connected to the power network, and the secondary coil ax is connected to a plurality of hierarchical reactors.
  • the switching of the stepped reactor is realized by the controller controlling the input or disconnection combination of the circuit breaker and the thyristor assembly of each part.
  • the isolating switch K and the wide 3 isolating switches K1, ⁇ 2, and ⁇ 3 are always in the closing state during normal operation, and can be realized by switching between the thyristor assembly ⁇ and the different combinations of the third thyristor assemblies ⁇ 1, ⁇ 2, and ⁇ 3.
  • For the step-by-step adjustment of more capacity of the shunt reactor take the adjustment range of 25-100% as an example.
  • the control process is as follows: AC-level controllable single-phase shunt reactor adjustment capacity control table:
  • each group of cascade reactors is required to be provided with a logic control program.
  • the order of action of each group of cascade reactors is as follows: When closing, first open the thyristor assembly and then close the circuit breaker; when disconnecting, first open the circuit breaker, then turn off the thyristor assembly to improve
  • the capacity switching of the controllable shunt reactor is fast response.
  • Three-phase electric linkage is installed in the three-phase control, and three-phase synchronous operation is realized by electric control.
  • the entire unit can be controlled locally or remotely, and can be controlled manually or automatically. That is to say, the whole device is provided with command signal and logic control function.
  • the switch is opened or opened. And thyristor components to achieve system requirements for reactor capacity regulation.
  • the invention is an alternating current controllable three-phase shunt reactor, having a main reactor and a stepped reactor, wherein the main reactor is in a three-phase form, and the three-phase primary coil is "Y" "Connected, directly connected to the power network, after the neutral point is shorted, grounded or directly grounded by the small reactor; in the three-phase secondary coil, each phase of the secondary coil is connected in parallel with one or more stepped reactors, each rating The reactors are respectively connected to the control part that controls their input and cut-off; the secondary side phases are closed and the ends are directly grounded.
  • the control loop of each of the stepped reactors comprises a circuit breaker, a thyristor assembly and an isolating switch, wherein the normally open contact of the isolating switch and the thyristor assembly are connected in series with the normally open contact of the circuit breaker, and then connected in parallel with the stepped reactor In the branch;
  • the main reactor is a high-impedance three-phase transformer type main reactor, and the primary coil is the main coil, and the three-phase connection is connected to the "Y", and is directly connected to the network, and the neutral point After short-circuiting, the small reactor L0 is grounded or directly grounded.
  • the secondary coils are respectively connected with one or more stepped reactors in parallel.
  • Each of the stepped reactors has a circuit breaker, a thyristor component connected in series, and an isolating switch. The secondary sides are closed and the ends are directly grounded.
  • the A-phase secondary side wide-band three-stage reactor is XK1' XK3'
  • the third-wide circuit breaker is D1' ⁇ D3'
  • the third wide thyristor assembly is TK1' ⁇ TK 3'
  • the third wide The isolating switch is K1' ⁇ 3' ⁇ phase secondary side ⁇ 3 grading reactor is ⁇ ' ⁇ ⁇ 3
  • the third wide circuit breaker is D1" ) 3
  • the third wide thyristor assembly is ⁇ ' ⁇ ⁇ 3 ⁇
  • the isolating switch is ⁇ 1 ⁇ ⁇ 3"
  • the C-phase secondary side wide-band 3 rated reactor is XK1" ' ⁇ 3
  • the third wide circuit breaker is Dl ⁇ 3
  • the third wide-thyristor assembly is TK1" ' ⁇ 3" '
  • the wide 3 isolating switch is K1" ' ⁇ 3" '.
  • the A (B and C) phase thyristor assemblies TK' (TK" and TK” ') and the isolating switch K' (K" and DK” ') are connected in series with the circuit breakers D' (D" and D" ') in parallel. Connect between the a (b and c) points and the X (y and z) points.
  • an additional reactor can be connected in series in the short-circuit loop of each phase of the secondary coil to solve the problem of small short-circuit impedance of the body. That is, in the secondary coil of each phase of the three-phase main reactor, an A (B, C) stepped reactor L is further provided between the parallel nodes a (b, c) and x (y, z) of each of the stepped reactors. ' (L" , L" ' ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Description

一种交流有级可控单相 /三相并联电抗器 技术领域
本发明涉及一种用于电力输电线路中的电抗器,具体的说是一种交流有级可控单相 /三相并联电抗器。
背景技术
随着超高压和特高压电网建设和发展, 对于较长的输电线路, 为了限制工频和操作 过电压、 需要在线路上配置高压并联电抗器, 但常规的高压并联电抗器不可调节的固有 特性, 容易造成输变电系统电压降低, 影响电网安全稳定水平和电能质量, 限制了线路 输送能力。
发明内容
针对现有技术中存在的常规高压并联电抗器不可调节, 影响电网安全稳定水平和电 能质量的不足,本发明要解决的技术问题是提供一种用于实现电网柔性交流输电技术的 交流有级可控单相 /三相并联电抗器。
为解决上述技术问题, 本发明采用的技术方案是:
本发明一种交流有级可控单相并联电抗器具有主电抗器、分级电抗器、检测单元以 及中央控制器, 其中主电抗器为单相形式, 其一次线圈直接接到电力网络中, 二次线圈 并联一个或多个分级电抗器, 每个分级电抗器分别具有控制其投入、 切断的控制部分; 检测单元的输入端接有电力网路及主电抗器的相关参数信息, 输出端与中央控制器相 连; 中央控制器的控制端连接各分级电抗器的控制部分。
所述每个分级电抗器的控制部分包括断路器、 晶闸管组件以及隔离开关, 其中隔离 开关和晶闸管组件串联后与断路器并联, 再接入该分级电抗器所在的并联支路中; 断路 器、 隔离开关以及晶闸管组件的控制端分别与中央控制器的输出端相连。
当主电抗器的短路阻抗小于 100%,在主电抗器二次线圈与各分级电抗器的并联节点 之间还设有附加电抗器。
本发明交流有级可控三相并联电抗器, 具有主电抗器、 分级电抗器、 检测单元以及 中央控制器, 其中主电抗器为三相形式, 其三相一次线圈为 "Y"接, 直接接到电力网络 中, 中性点短接后直接接地, 三相二次线圈分别并联一个或多个分级电抗器, 每个分级 电抗器分别与控制其投入、 切断的控制部分相连; 二次侧各相闭合连接, 末端直接接地。
所述每个分级电抗器的控制回路包括断路器、 晶闸管组件以及隔离开关, 其中隔离 开关和晶闸管组件串联后与断路器并联, 再接入该分级电抗器的并联支路中; 断路器、 隔离开关以及晶闸管组件的控制端分别与中央控制器的输出端相连。
当主电抗器的短路阻抗小于 100%,在每相的主电抗器二次线圈与各分级电抗器的并 联节点之间还设有附加电抗器。
本发明与现有技术相比, 无论是在单相并联电抗器还是三相并联电抗器, 电网中采 用本发明具有以下优点-
1. 本发明将分级电抗器设计成并联方式, 调节容量范围可以多组合, 调节方便, 响应速度快;
2. 本发明具有普通电抗器的所有功能和特性, 无谐波产生, 噪声低、 振动低, 安 全可靠性高;
3. 本发明将更多的谐波隔离, 减少对电网的影响;
4. 本体短路阻抗可以设计成小于 100%。
附图说明
图 1为本发明结构原理示意图; 图 2为本发明交流有级可控单相并联电抗器电气原理图;
图 3为本发明交流有级可控三相并联电抗器电气原理图。
具体实施方式
实施例 1
本发明包括交流有级可控单相并联电抗器和交流有级可控三相并联电抗器两种形 式, 其中交流有级可控单相并联电抗器具有主电抗器和分级电抗器, 其中主电抗器为单 相形式, 其一次线圈直接接到电力网络中, 二次线圈并联一个或多个分级电抗器, 每个 分级电抗器分别具有控制其投入、 切断的控制部分。
所述每个分级电抗器的控制部分包括断路器、 晶闸管组件以及隔离开关, 其中隔 离开关和晶闸管组件串联后与断路器并连, 再接入该分级电抗器所在的并联支路中, 断 路器、 隔离开关以及晶闸管组件的控制端分别与中央控制器 4的输出端相连。
上述高阻抗单相变压器型主电抗器与二次侧并接的一个或多个分级电抗器, 可以共 装在一个油箱内构成可控电抗器的本体, 也可以设计成主电抗器与分级电抗器分别放置。
如图 1所示, 本发明快速响应的交流有级可控电抗器的主体部分 1浸渍于油箱内, 主体部分 1由三个单相的高阻抗式变压器 5组成,每个单相高阻抗式变压器 5至少含有 两个线圈, 其中一次线圈直接接在网路上, 二次绕组连接到辅助电抗器单元 2, 该辅助 电抗器单元 2具有分级电抗器、 断路器、 晶闸管组件部分, 检测单元 3通过采集网路及 主体的相关参数信息传送到中央控制器 4, 中央控制器 4根据内部指令发出控制调节辅 助电抗器单元的隔离开关、 断路器的开合等相关信息, 实现分级电抗器在不同容量状态 下的投切, 即实现可控电抗器主体分级电抗或容量的自动控制动态调节特性。
电抗器容量的调节是根据系统补偿容量的需求情况以及系统的运行工况等因素来 调节电抗器的容量; 自动控制是由中央控制器根据系统需要作出决策并向晶闸管控制装 置及断路器发出指令, 控制装置按设定好的逻辑控制进行自动控制, 实现电抗器容量的 自动调节。
具有上述结构的交流有级可控单相并联电抗器阻抗可以设计成接近 100%。 若主电 抗器的短路阻抗设计成小于 100%,可以在主电抗器二次线圈与各分级电抗器的并联节点 a之间增加附加电抗器 L, 解决本体短路阻抗小问题。
本实施例的电气结构如图 2所示,每相交流有级可控并联电抗器具有一个高阻抗单 相变压器型主电抗器和三个分级电抗器, 高阻抗单相变压器型主电抗器的一次线圈 A-X 直接接在电力网络中,二次线圈 a-x并接有多个分级电抗器,本实施例为三个,即第广 3 分级电抗器 XK1、 ΧΚ2、 ΧΚ3, 其中第 1 ( 2、 3 ) 分级电抗器 XK1 (ΧΚ2、 ΧΚ3) 串联有第 1 ( 2、 3) 断路器 Dl (D2、 D3) ; 第 1 ( 2、 3 ) 晶闸管组件 TK1 (TK2、 ΤΚ 3)、 第 1 ( 2、 3) 隔离开关 Kl (Κ2、 3 ) 串联, 第 1 ( 2、 3) 晶闸管组件 TK1 ( ΤΚ2、 ΤΚ 3 )与第 1 ( 2、 3) 隔离开关 Kl (Κ2、 Κ3 ) 串联后与第 1 ( 2、 3)断路器 Dl (D2、 D3 )并联, 节点为 al 2、 a3 ), 节点为 al (a2、 a3 ) 与 x之间即为并联连接的第 1 ( 2、 3 ) 断路器 Dl (D2、 D3) 和第 1 ( 2、 3 ) 晶闸管组件 TK1 (TK2、 ΤΚ 3), 而 al ( a2、 a3) 点与 a点之间则为第 1 ( ( 2、 3 )分级电抗器 XK1 (XK2、 ΧΚ3)。 同时晶闸管组件 ΤΚ、 隔离开关 Κ串联后与断路 器 D并联、 接入 a点与 X点之间。
分级电抗器的投切是通过控制器控制各部分的断路器和晶闸管组件的投入或断开 组合来实现。
隔离开关 K和第广 3隔离开关 Kl、 Κ2、 Κ3在正常运行时一直处于合闸状态, 同时, 通过晶闸管组件 ΤΚ和第广 3晶闸管组件 ΤΚ1、 ΤΚ2、 ΤΚ3之间的不同组合切换可以实现 可控并联电抗器更多容量的分级调节, 以调节范围 25-100%为例, 其控制过程如下: 交流有级可控单相并联电抗器调节容量控制表举例:
Figure imgf000005_0001
其中: x——表示断开; O——表示合闸导通。
本实施例的控制过程如下:
整个装置要求设置有逻辑控制程序, 分级电抗器每组动作次序为: 合闸时, 先开通 晶闸管组件, 后合闸断路器; 断开时, 先断开断路器, 后关闭晶闸管组件, 以提高可控 并联电抗器的容量切换快速响应。三相控制时并设置三相电气联动装置,通过电动控制, 实现三相同步动作。 整个装置能就地控制, 也能远方控制, 能手动控制也能自动控制。 也就是说整个装置内设置有指令信号和逻辑控制功能, 当接到外部发来的信号时(就地 发来或由中央控制系统发来), 根据信号的要求, 合闸或开断任意断路器和晶闸管组件, 以实现系统对电抗器容量调节的要求。
实施例 2
与实施例 1的不同之处在于: 本发明为交流有级可控三相并联电抗器, 具有主电抗 器和分级电抗器, 其中主电抗器为三相形式, 其三相一次线圈为 "Y"接, 直接接到电 力网络中, 中性点短接后经小电抗器接地或直接接地; 三相二次线圈中, 每相二次线圈 分别并联一个或多个分级电抗器, 每个分级电抗器分别与控制其投入、 切断的控制部分 相连; 二次侧各相闭合连接, 末端直接接地。
所述每个分级电抗器的控制回路包括断路器、 晶闸管组件以及隔离开关, 其中隔离 开关的常开接点和晶闸管组件串联后与断路器的常开接点并联,再接入该分级电抗器的 并联支路中;
如图 3所示, 本实施例中, 主电抗器为高阻抗三相变压器型主电抗器, 其一次线圈 为主线圈, 三相连接成 " Y"接, 直接接到网路上, 中性点短接后经小电抗器 L0接地或 直接接地, 二次线圈每相分别并联有一个或多个分级电抗器, 每个分级电抗器分别并联 有断路器、 串联连接的晶闸管组件和隔离开关, 二次侧各相闭合连接, 末端直接接地。
本实施例中, A相二次侧第广 3分级电抗器为 XK1' XK3', 第广 3断路器为 D1' ~D3', 第广 3晶闸管组件为 TK1' 〜TK 3'、 第广 3隔离开关为 K1' Ύ3' Β相二次侧第 Γ3分级电抗器为 ΧΚ ' ~ ΧΚ3" , 第 广 3断路器为 D1" )3" , 第 广 3 晶闸管组件为 ΤΚ ' 〜ΤΚ3〃 、第广 3隔离开关为 Κ1〃 Ύ3" ; C相二次侧第广 3分级电抗器为 XK1" ' ΧΚ3" , 第广 3断路器为 Dl〃 3" , 第广 3晶闸管组件为 TK1" ' 〜ΤΚ3" ' 、 第 广 3隔离开关为 K1" ' Ύ3" ' 。
同时 A (B和 C)相晶闸管组件 TK' (TK"和 TK" ' )、 隔离开关 K' (K"禾 DK" ' ) 串联后与断路器 D' (D"和 D" ' ) 并联、 接入 a (b和 c) 点与 X (y和 z) 点之间。
同理,若电抗器的短路阻抗设计成小于 100%,可以在二次线圈各相的短路回路中串联一 附加电抗器, 解决本体短路阻抗小问题。即在三相主电抗器的每相二次线圈中与各分级电抗 器的并联节点 a (b、 c)与 x (y、 z)之间还设有 A (B、 C)分级电抗器 L' (L" 、 L" ' )。

Claims

权 利 要 求 书
1.一种交流有级可控单相并联电抗器, 其特征在于: 具有主电抗器(1 )、 分级电抗 器 (2)、 检测单元(3 ) 以及中央控制器 (4), 其中主电抗器(1 ) 为单相形式, 其一次 线圈直接接到电力网络中, 二次线圈并联一个或多个分级电抗器, 每个分级电抗器分别 具有控制其投入、 切断的控制部分; 检测单元 (3) 的输入端接有电力网路及主电抗器
( 1 ) 的相关参数信息, 输出端与中央控制器 (4) 相连; 中央控制器 (4) 的控制端连 接各分级电抗器 (2) 的控制部分。
2. 按权利要求 1所述的交流有级可控单相并联电抗器, 其特征在于:
所述每个分级电抗器的控制部分包括断路器、 晶闸管组件以及隔离开关,其中隔离 开关和晶闸管组件串联后与断路器并联, 再接入该分级电抗器所在的并联支路中; 断 路器、 隔离开关以及晶闸管组件的控制端分别与中央控制器 (4) 的输出端相连。
3. 按权利要求 1所述的交流有级可控单相并联电抗器, 其特征在于:
当主电抗器 (1 ) 的短路阻抗小于 100%, 在主电抗器二次线圈与各分级电抗器的并 联节点之间还设有附加电抗器。
4. 一种交流有级可控三相并联电抗器, 其特征在于: 具有主电抗器 (1 )、 分级电 抗器(2)、 检测单元 (3) 以及中央控制器(4), 其中主电抗器 (1 ) 为三相形式, 其三 相一次线圈为 "Y"接, 直接接到电力网络中, 中性点短接后直接接地, 三相二次线圈 分别并联一个或多个分级电抗器, 每个分级电抗器分别具有控制其投入、切断的控制部 分; 二次侧各相闭合连接, 末端直接接地。
5. 按权利要求 4所述的交流有级可控三相并联电抗器, 其特征在于:
所述每个分级电抗器的控制回路包括断路器、 晶闸管组件以及隔离开关, 其中隔离 开关和晶闸管组件串联后与断路器并联, 再接入该分级电抗器的并联支路中; 断路器、 隔离开关以及晶闸管组件的控制端分别与中央控制器 (4) 的输出端相连。
6. 按权利要求 4所述的交流有级可控三相并联电抗器, 其特征在于:
当主电抗器 (1 ) 的短路阻抗小于 100%, 在每相的主电抗器二次线圈与各分级电抗 器的并联节点之间还设有附加电抗器。
PCT/CN2009/075731 2009-12-18 2009-12-18 一种交流有级可控单相/三相并联电抗器 WO2011072460A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/075731 WO2011072460A1 (zh) 2009-12-18 2009-12-18 一种交流有级可控单相/三相并联电抗器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/075731 WO2011072460A1 (zh) 2009-12-18 2009-12-18 一种交流有级可控单相/三相并联电抗器

Publications (1)

Publication Number Publication Date
WO2011072460A1 true WO2011072460A1 (zh) 2011-06-23

Family

ID=44166742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075731 WO2011072460A1 (zh) 2009-12-18 2009-12-18 一种交流有级可控单相/三相并联电抗器

Country Status (1)

Country Link
WO (1) WO2011072460A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213113A (ja) * 1983-05-19 1984-12-03 Meidensha Electric Mfg Co Ltd 可変リアクトル装置
CN1738188A (zh) * 2005-09-09 2006-02-22 西安西电变压器有限责任公司 交流有级可控并联电抗器装置
CN1933054A (zh) * 2006-09-04 2007-03-21 特变电工沈阳变压器集团有限公司技术中心 外接电源可控电抗器
CN201051444Y (zh) * 2006-09-04 2008-04-23 特变电工沈阳变压器集团有限公司技术中心 一种自馈式可控电抗器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213113A (ja) * 1983-05-19 1984-12-03 Meidensha Electric Mfg Co Ltd 可変リアクトル装置
CN1738188A (zh) * 2005-09-09 2006-02-22 西安西电变压器有限责任公司 交流有级可控并联电抗器装置
CN1933054A (zh) * 2006-09-04 2007-03-21 特变电工沈阳变压器集团有限公司技术中心 外接电源可控电抗器
CN201051444Y (zh) * 2006-09-04 2008-04-23 特变电工沈阳变压器集团有限公司技术中心 一种自馈式可控电抗器

Similar Documents

Publication Publication Date Title
CN102790382B (zh) 一种限流软开断装置
CA2486325C (en) Convertible high voltage direct current installation
WO2013163853A1 (zh) 一种电抗器型短路故障限流器
EP3480913B1 (en) Series compensation device applicable to double-circuit line
CN102104359A (zh) 一种交流有级可控单相/三相并联电抗器
CN107134348A (zh) 一种配电变压器调压系统
WO2010051727A1 (zh) 500kV及特高压线路上的变压电抗器装置
CN206877795U (zh) 一种配电变压器调压系统
CN111600467B (zh) 一种提升能量路由器稳定性的系统运行方法
CN103269063A (zh) 一种抑制输电线路故障甩负荷过电压的系统及方法
WO2012019514A1 (zh) 一种高压直流换流变压器及其有载调压开关连接方法
CN202585083U (zh) 仪用互感器以及铁共振抑制电路
CN112103954A (zh) 一种混合式配电变压器电压补偿变换器无冲击投切系统、装置和方法
CN109193739B (zh) 一种基于换流站的直流转换开关电路与直流输电系统
WO2023231278A1 (zh) 真空有载分接开关测试系统及谐波电流源
CN105356434A (zh) 一种新型桥式固态故障电流限制器及其使用方法
WO2011072460A1 (zh) 一种交流有级可控单相/三相并联电抗器
Beheshtaein et al. A secondary-control based fault current limiter for four-wire three phase inverter-interfaced DGs
CN115051335A (zh) 一种抑制直流配电网故障电流的一次回路配置方法和系统
AU2020220030B2 (en) Fault protection configuration for a resettable transformer protector
CN106159879B (zh) 一种组合式大容量断路器系统
CN111181171A (zh) 一种无功补偿装置
CN213959761U (zh) 一种无功补偿装置
CN103490395A (zh) 利用双芯可控移相器限制线路短路电流的方法
CN220190473U (zh) 一种新型电容器串联补偿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852198

Country of ref document: EP

Kind code of ref document: A1