WO2011071609A1 - Rattrapage de turbine à gaz à cycle simple pour application au stockage d'énergie d'air comprimé comprenant un détendeur pour la production d'énergie additionnelle - Google Patents

Rattrapage de turbine à gaz à cycle simple pour application au stockage d'énergie d'air comprimé comprenant un détendeur pour la production d'énergie additionnelle Download PDF

Info

Publication number
WO2011071609A1
WO2011071609A1 PCT/US2010/054382 US2010054382W WO2011071609A1 WO 2011071609 A1 WO2011071609 A1 WO 2011071609A1 US 2010054382 W US2010054382 W US 2010054382W WO 2011071609 A1 WO2011071609 A1 WO 2011071609A1
Authority
WO
WIPO (PCT)
Prior art keywords
expander
compressor
turbine assembly
combustion turbine
compressed air
Prior art date
Application number
PCT/US2010/054382
Other languages
English (en)
Inventor
Michael Nakhamkin
Original Assignee
Michael Nakhamkin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michael Nakhamkin filed Critical Michael Nakhamkin
Priority to CA2783593A priority Critical patent/CA2783593A1/fr
Priority to AU2010328634A priority patent/AU2010328634A1/en
Priority to CN2010800561735A priority patent/CN102822474A/zh
Priority to EP10836378A priority patent/EP2510208A1/fr
Priority to BR112012013712A priority patent/BR112012013712A2/pt
Priority to JP2012543105A priority patent/JP2013513072A/ja
Priority to EA201290477A priority patent/EA201290477A1/ru
Publication of WO2011071609A1 publication Critical patent/WO2011071609A1/fr
Priority to IN5088DEN2012 priority patent/IN2012DN05088A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/14Gas-turbine plants having means for storing energy, e.g. for meeting peak loads
    • F02C6/16Gas-turbine plants having means for storing energy, e.g. for meeting peak loads for storing compressed air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • This invention relates to a Compressed Air Energy Storage (CAES) system and, more particularly, to a CAES system that provides improved performance as compared to conventional CAES systems.
  • CAES Compressed Air Energy Storage
  • U.S. Patent No. 4,872,307 is based on the utilizing two combustion turbine assemblies.
  • One combustion turbine assembly 10 has a debladed turbine or expander 1 2 and is practically converted into a low pressure compressor 14 driven by a motor 15.
  • the second combustion turbine assembly 1 6 has a debladed compressor 18 and is practically converted into a turbine 20 with double the combustion turbine power driving an electric generator 22.
  • An auxiliary compressor 24, driven by motor 25, is provided to, in addition to compressor 14, charge the air storage 26 at an optimized maximum pressure.
  • the air storage 26 stores compressed air when off-peak energy is stored in the form of compressed air energy.
  • the electric generator/motor driven compressor 14 of first combustion turbine assembly 10 with debladed turbine 1 2, and motor- driven auxiliary compressor 24 utilize available energy and convert it into the energy of the compressed air stored in the air storage 26.
  • the compressed air is withdrawn from the air storage 26 and is directed to the combustor associated with turbine 20 of the second combustion turbine assembly 1 6 to produce power.
  • U.S. Patent No. 4,872,307 thus provides a power system that uses a plurality of modified combustion turbine assemblies along with additional equipment to provide a CAES system. Although this conventional CAES system is effective, there is a need to further modify this system to provide increased performance and operational flexibility.
  • An object of the invention is to fulfill the needs referred to above.
  • this objective is fulfilled by a method that provides a Compressed Air Energy Storage (CAES) system based on first and second combustion turbine assemblies.
  • the method provides a first combustion turbine assembly having a debladed turbine element, a compressor, and a generator/motor for driving the compressor.
  • Compressed air from an outlet of the compressor communicates with air storage, preferably via and auxiliary compressor, instead of with the turbine element.
  • a second combustion turbine assembly has a debladed compressor, a combustor, a turbine associated with the combustor, and a generator associated with the turbine.
  • Compressed air from the air storage communicates directly with the combustor upstream of the turbine of the second combustion turbine assembly instead of with air from the compressor of the second combustion turbine assembly so that the turbine can expand the compressed air from the air storage to produce electrical power via the generator without any reduction in power since the compressor of the second combustion turbine assembly is not driven.
  • An additional expander and an additional generator associated with the expander are provided.
  • the method ensures that compressed air from the air storage can be preheated and then can communicate with the expander, in addition to directly communicate with the combustor and thus the turbine of the second combustion turbine assembly, and ensures that airflow from the expander can communicate with the combustor and thus the turbine of the second turbine assembly, so that the additional expander can expand the preheated compressed air to produce electrical power via the additional generator, in addition to the electrical power produced by the generator of the second combustion turbine assembly.
  • a portion of airflow from the expander can be extracted and injected upstream of the combustor of the second combustion turbine assembly and the expander can expand the preheated compressed air to atmospheric pressure.
  • all exhaust airflow from the expander can be provided upstream of the combustor of the second combustion turbine assembly.
  • Figure 1 is a view of a conventional CAES system as disclosed in U.S.
  • Figure 2 is a view of a CAES system as disclosed in co-pending application No. 1 2/582,720 having an additional expander for additional power generation.
  • Figure 3 is a CAES system provided in accordance with a first embodiment thereof.
  • Figure 4 is a CAES system provided in accordance with a second embodiment thereof.
  • FIG. 2 shows a second generation CAES system, generally indicated at 28, from my co-pending patent Application No. 1 2/582,720, the content of which is hereby incorporated into this specification by reference.
  • a compressor 30 supplies compressed air to an air storage 32 during off-peak hours and, during peak hours, the stored compressed air is withdrawn from the air storage 32, is preheated by utilizing the exhaust gas heat of the combustion turbine 34, and then is directed into an expander 36 that generates the preheated compressed air power in addition to combustion turbine power.
  • a CAES system is shown, generally indicated as 40, in accordance with an embodiment.
  • the system 40 includes a first combustion turbine assembly, generally indicated as 42, having a compressor 44 receiving a source of inlet air and a turbine element 46 that is initially debladed since such turbine element is not to be utilized for the production of energy. Consequently, no fuel will be supplied to combustor 48 during this energy absorbing compression stage.
  • an externally located additional thrust bearing 50 is installed on shaft 52.
  • Shaft 52 serves to transmit rotational energy from a synchronous electrical generator/motor, illustratively, motor 54, to debladed turbine element 46, compressor 44 and thrust bearing 50.
  • a compressor discharge flange (not shown) is typically provided in the compressor of a conventional combustion turbine assembly to direct compressed air to combustor 48.
  • such compressed air input to combustor 48 is removed and the compressed air is directed to an intercooler 56 via interconnection 58.
  • intercooler 56 In addition to the above modification to combustion turbine assembly 42, intercooler 56, a high pressure compressor 60, driven by motor 62, and an aftercooler 64 are provided to complete the compression train.
  • High pressure compressor 60 further compresses the air from compressor 44 which functions as a lower pressure compressor.
  • High pressure compressor 60 is preferably driven through clutch 66 by motor 62.
  • high pressure compressor 60 may be driven by motor 54.
  • Aftercooler 64 is provided to cool the compressed air exiting high pressure compressor 60 before entering the air storage 66.
  • the air storage 66 is preferably underground air storage such as a geological structure.
  • the air storage can be an above-ground pressure vessel.
  • compressed air is preferably stored in the air storage 66, the compressed air can be converted into a liquid air and stored in the air storage 66. When needed, the liquid air can then be converted back to compressed air and used in the system 40.
  • the system 40 includes a second combustion turbine assembly, generally indicated at 68, that comprises a turbine 70 and a compressor 72 connected to a shaft 74.
  • Clutch devices 76, 78 are provided in the combustion turbine assembly 68 for isolating compressor 72, turbine 70 and a gas turbine generator 80.
  • Compressor 72 is initially debladed since such compressor is not to be utilized for the compression of air.
  • additional thrust bearing 82 is installed on shaft 74.
  • Shaft 74 serves to transmit rotational energy from turbine 70 to a synchronous electrical machine, illustratively, generator 80, debladed compressor 72, and thrust bearing 82.
  • valve 86 and associated interconnection 87 are placed between the combustor 84 and the air storage 66.
  • Valve 86 and air storage 66 serve as a compressed air source for the combustor 84, in place of compressor 72.
  • the conventional combustion turbine assembly is ordinarily coupled to an electrical power generator of predetermined capacity.
  • the electrical generator of the conventional combustion turbine assembly is removed and replaced by an electrical generator 80 of approximately double capacity since combustion turbine assembly 68 has approximately twice its original output once the compressor is debladed.
  • the CAES system 40 with a single generator outputs approximately the same power as the combined efforts of the two gas turbines each having its own generator, from which it was constructed.
  • compressed air is stored underground with the maximum pressure of 1 200 psia and most often over 2500 psia, with a significant energy used for the ambient air compression and directed to the compressed air storage at this pressure. These pressures are much higher than the combustion turbine assembly's combustor/turbine inlet pressure of approximately 1 70- 190 psia. Thus, the stored compressed air should be throttled from 1200 psia to 170-1 90 psia. However, such throttling results in the loss of a significant amount of compression energy. [0030] In accordance with the embodiments, compression energy is used by an additional expander 88 provided in the system 40.
  • an inlet to the expander 88 is coupled with the outlet of the air storage 66 via interconnection 90 in the form of piping or the like.
  • compressed air from an outlet of the motor driven additional compressor 60 charges the air storage 66.
  • compressed air is withdrawn from the air storage 66 at specific pressure and is routed through flow control and pressure reducing valve 86 to combustor 84 upstream of the turbine 70 instead of with air from the compressor 72.
  • the combustor 84 combines the compressed air with a fuel and combusts the result to produce a hot gas that drives the turbine 70 connected to the generator 80 to produce electrical power without any reduction in power since compressor 72 is not driven.
  • compressed air is routed from the air storage 66 through flow control valve 98, is preheated in a recuperator 92 that utilizes the exhaust gas heat of turbine 70, or any other heat source, and is expanded through the green power generation expander 88 driving an electric generator 94 to produce additional electrical power.
  • the expander 88 has air extraction via interconnection 96 and through valve 1 00 to supply the extracted air upstream of the combustor 84 at specific inlet pressure and flow parameters. The remaining airflow is expanded in the low pressure part of the expander 88 to the atmospheric pressure generating the additional green electrical power.
  • a combustor or duct burner 1 02 can be provided for burning fuel to heat air that is expanded in expander 88.
  • FIG 4 shows another embodiment of a CAES system, generally indicated at 40'.
  • the system 40' is substantially similar to the system 40 of Figure 3, with compressed air being withdrawn from the air storage 66 at specific pressure, being preheated in the recuperator 92 that utilizes the exhaust gas heat from turbine 70, or any other heat source, and expanded through the green power generation expander 88 driving the electric generator 94.
  • all exhaust airflow of expander 88 is provided upstream of the combustor 84, via interconnection 96' and through valve 1 00, at specific inlet pressure and flow parameters.
  • Table 1 shows a summary of the performance characteristics of the system of U.S. Patent No. 4,872,307 as shown in Figure 1 , the system of Application No. 1 2/582,720 shown in Figure 2, and the two embodiments, Figure 3 and Figure 4. This table indicates very significant performance improvements of the embodiments of Figures 3 and 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention porte sur un système de stockage d'énergie d'air comprimé (CAES) qui comprend un premier ensemble turbine à combustion (42) ayant un arbre (52) couplé à un moteur (54), un compresseur (44) et un élément de turbine sans aube (46). Un second ensemble turbine à combustion (68) a un arbre (74) accouplé à un générateur électrique (80), une turbine (70) et un compresseur sans aube (72). Une première interconnexion (58) est établie entre une sortie du compresseur (44) du premier ensemble turbine à combustion et un réservoir d'air (46). Une deuxième interconnexion (87) est établie du réservoir d'air à la turbine (70) du second ensemble turbine à combustion pour produire de l'énergie. Un détendeur (88) et un générateur d'électricité (94) sont prévus. Une troisième interconnexion (90) est établie du réservoir d'air (66) au détendeur (88). Une source de chaleur préchauffe l'air comprimé dans la troisième interconnexion. Une quatrième interconnexion (96) est établie entre le détendeur et la turbine (70).
PCT/US2010/054382 2009-12-08 2010-10-28 Rattrapage de turbine à gaz à cycle simple pour application au stockage d'énergie d'air comprimé comprenant un détendeur pour la production d'énergie additionnelle WO2011071609A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2783593A CA2783593A1 (fr) 2009-12-08 2010-10-28 Rattrapage de turbine a gaz a cycle simple pour application au stockage d'energie d'air comprime comprenant un detendeur pour la production d'energie additionnelle
AU2010328634A AU2010328634A1 (en) 2009-12-08 2010-10-28 Retrofit of simple cycle gas turbine for compressed air energy storage application having expander for additional power generation
CN2010800561735A CN102822474A (zh) 2009-12-08 2010-10-28 用于具有附加发电膨胀器的压缩空气储能应用的简单循环燃气轮机的改造
EP10836378A EP2510208A1 (fr) 2009-12-08 2010-10-28 Rattrapage de turbine à gaz à cycle simple pour application au stockage d'énergie d'air comprimé comprenant un détendeur pour la production d'énergie additionnelle
BR112012013712A BR112012013712A2 (pt) 2009-12-08 2010-10-28 método para prover um sistema de armazenamento de energia de ar comprimido (caes) a partir de primeiro e segundo conjuntos de turbina de combustão e sistema de armazenamento de energia de ar comprimido (caes)
JP2012543105A JP2013513072A (ja) 2009-12-08 2010-10-28 追加の発電のためのエキスパンダを有する圧縮空気エネルギー貯蔵室を利用するためのシンプルサイクルガスタービンの改造
EA201290477A EA201290477A1 (ru) 2009-12-08 2010-10-28 Модификация газовой турбины с простым циклом для применения, связанного с аккумулированием энергии сжатого воздуха, имеющей расширитель для генерирования дополнительной мощности
IN5088DEN2012 IN2012DN05088A (fr) 2009-12-08 2012-06-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/632,841 US8011189B2 (en) 2007-01-25 2009-12-08 Retrofit of simple cycle gas turbine for compressed air energy storage application having expander for additional power generation
US12/632,841 2009-12-08

Publications (1)

Publication Number Publication Date
WO2011071609A1 true WO2011071609A1 (fr) 2011-06-16

Family

ID=44145860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/054382 WO2011071609A1 (fr) 2009-12-08 2010-10-28 Rattrapage de turbine à gaz à cycle simple pour application au stockage d'énergie d'air comprimé comprenant un détendeur pour la production d'énergie additionnelle

Country Status (10)

Country Link
US (1) US8011189B2 (fr)
EP (1) EP2510208A1 (fr)
JP (1) JP2013513072A (fr)
CN (1) CN102822474A (fr)
AU (1) AU2010328634A1 (fr)
BR (1) BR112012013712A2 (fr)
CA (1) CA2783593A1 (fr)
EA (1) EA201290477A1 (fr)
IN (1) IN2012DN05088A (fr)
WO (1) WO2011071609A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064399A (ja) * 2011-08-16 2013-04-11 Alstom Technology Ltd 断熱圧縮空気エネルギー貯蔵システムおよび方法
US8978380B2 (en) 2010-08-10 2015-03-17 Dresser-Rand Company Adiabatic compressed air energy storage process
WO2017069922A1 (fr) 2015-10-21 2017-04-27 Conlon William M Énergie air-liquide haute-pression et stockage
US10738696B2 (en) 2015-06-03 2020-08-11 William M. Conlon Liquid air power and storage with carbon capture
US11221177B2 (en) 2015-06-16 2022-01-11 William M Conlon Cryogenic liquid energy storage
US11421560B2 (en) 2015-06-01 2022-08-23 William M. Conlon Part load operation of liquid air power and storage system

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8261552B2 (en) * 2007-01-25 2012-09-11 Dresser Rand Company Advanced adiabatic compressed air energy storage system
US20110227344A1 (en) * 2009-09-22 2011-09-22 Ian Raymond Hatton Method and apparatus for using de-compressed fluid (air) as a coolant
US8341964B2 (en) * 2009-10-27 2013-01-01 General Electric Company System and method of using a compressed air storage system with a gas turbine
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
US9410869B2 (en) * 2011-03-29 2016-08-09 S & J Design Llc Process for testing a compressor or a combustor of a gas turbine engine using a large compressed air storage reservoir
RU2013148004A (ru) * 2011-03-29 2015-05-10 Флорида Турбин Текнолоджиз, Инк. Устройство и способ испытаний промышленного газотурбинного двигателя и его компонентов
EP2530283B1 (fr) * 2011-05-31 2013-09-11 Ed. Züblin Ag Centrale d'accumulation d'air comprimé adiabatique
KR101204908B1 (ko) * 2011-06-30 2012-11-26 삼성테크윈 주식회사 압축 가스를 이용한 동력 생산 시스템
FR2988433B1 (fr) * 2012-03-23 2014-04-11 Alfred Procede de generation d'energie electrique a partir d'une energie stockee sous forme de gaz comprime et installation de stockage d'energie et de production d'electricite correspondante
WO2013151909A1 (fr) * 2012-04-02 2013-10-10 Kraft Robert J Procédé et appareil pour un système d'injection d'air comprimé pour des turbines à gaz
ITFI20120075A1 (it) * 2012-04-12 2013-10-13 Nuovo Pignone Srl "compressed-air energy-storage system"
WO2014052927A1 (fr) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systèmes et procédés de récupération et de stockage d'énergie
US9388737B2 (en) 2012-10-04 2016-07-12 Powerphase Llc Aero boost—gas turbine energy supplementing systems and efficient inlet cooling and heating, and methods of making and using the same
WO2014055717A1 (fr) 2012-10-04 2014-04-10 Kraft Robert J Systèmes de complément d'énergie de turbine à gaz - accélération aérodynamique et refroidissement et chauffage d'entrée efficaces, et leurs procédés de fabrication et d'utilisation
CN109681329B (zh) 2012-10-26 2022-03-22 鲍尔法斯有限责任公司 燃气轮机能量补充系统和加热系统
US9938895B2 (en) 2012-11-20 2018-04-10 Dresser-Rand Company Dual reheat topping cycle for improved energy efficiency for compressed air energy storage plants with high air storage pressure
US8984893B2 (en) 2013-04-10 2015-03-24 General Electric Company System and method for augmenting gas turbine power output
CN103410616B (zh) * 2013-08-22 2015-10-21 华北电力大学 大容量压缩空气储能高效发电系统
DE102014105237B3 (de) * 2014-04-11 2015-04-09 Mitsubishi Hitachi Power Systems Europe Gmbh Verfahren und Vorrichtung zum Speichern und Rückgewinnen von Energie
CN105464708A (zh) * 2014-08-08 2016-04-06 江洪泽 冷储氢氧天然气长期潜航动力系统
US20160123331A1 (en) * 2014-10-31 2016-05-05 Martin Eugene Nix Solar and wind powered blower utilizing a flywheel and turbine
US10215060B2 (en) 2014-11-06 2019-02-26 Powerphase Llc Gas turbine efficiency and power augmentation improvements utilizing heated compressed air
US10526966B2 (en) 2014-11-06 2020-01-07 Powerphase Llc Gas turbine efficiency and power augmentation improvements utilizing heated compressed air and steam injection
US9777630B2 (en) 2014-11-06 2017-10-03 Powerphase Llc Gas turbine fast regulation and power augmentation using stored air
US9863284B2 (en) 2015-03-19 2018-01-09 General Electric Company Power generation system having compressor creating excess air flow and cooling fluid injection therefor
US20160273398A1 (en) * 2015-03-19 2016-09-22 General Electric Company Power generation system having compressor creating excess air flow and storage vessel for augmenting excess air flow
US9822670B2 (en) 2015-03-19 2017-11-21 General Electric Company Power generation system having compressor creating excess air flow and turbo-expander for cooling inlet air
US9828887B2 (en) 2015-03-19 2017-11-28 General Electric Company Power generation system having compressor creating excess air flow and turbo-expander to increase turbine exhaust gas mass flow
FI128013B (en) * 2015-11-18 2019-07-31 Finno Energy Oy SYSTEM AND METHOD FOR PRODUCTION OF POWER
US10247029B2 (en) * 2016-02-04 2019-04-02 United Technologies Corporation Method for clearance control in a gas turbine engine
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
US10288520B1 (en) * 2017-02-24 2019-05-14 Florida Turbine Technologies, Inc Apparatus and process for testing an aero vehicle at high Mach number
US11892234B2 (en) 2017-06-01 2024-02-06 Institute Of Engineering Thermophysics, Chinese Academy Of Sciences Staged cryogenic storage type supercritical compressed air energy storage system and method
US10508596B2 (en) 2017-06-21 2019-12-17 John D. Upperman System and method for liquid air energy storage
US10774746B2 (en) * 2017-07-10 2020-09-15 Dresser-Rand Company Systems and methods for cooling components of a gas turbine
CN116557091A (zh) 2019-11-16 2023-08-08 马耳他股份有限公司 具有热存储介质再平衡的双动力系统泵送热能存储
US11492966B2 (en) * 2019-12-09 2022-11-08 Powerphase International, Llc Methods of modifying existing gas turbine engine design to create a combined storage engine and simple cycle peaker product
WO2021158639A1 (fr) * 2020-02-03 2021-08-12 Malta Inc. Turbomachines réversibles dans des systèmes d'accumulation d'énergie thermique par pompage
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
BR112023002561A2 (pt) 2020-08-12 2023-04-18 Malta Inc Sistema de armazenamento de energia térmica bombeada com integração de planta térmica
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
CN112502838B (zh) * 2020-12-07 2023-10-20 刘慕华 一种燃气轮机储能系统及峰谷发电方式

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872307A (en) * 1987-05-13 1989-10-10 Gibbs & Hill, Inc. Retrofit of simple cycle gas turbines for compressed air energy storage application
US5491969A (en) * 1991-06-17 1996-02-20 Electric Power Research Institute, Inc. Power plant utilizing compressed air energy storage and saturation
US20090100835A1 (en) * 2007-01-25 2009-04-23 Michael Nakhamkin CAES system with synchronous reserve power requirements
US20090178384A1 (en) * 2007-01-25 2009-07-16 Michael Nakhamkin CAES plant using humidified air in the bottoming cycle expander

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2061867A5 (fr) * 1969-08-08 1971-06-25 Edf
SU383859A1 (ru) 1970-12-11 1973-05-23 Способ получения пиковой электроэнергии
AU5900380A (en) 1979-06-08 1980-12-11 Payne, B.M.M. Compressed air system
US4885912A (en) 1987-05-13 1989-12-12 Gibbs & Hill, Inc. Compressed air turbomachinery cycle with reheat and high pressure air preheating in recuperator
RU2029119C1 (ru) 1988-05-04 1995-02-20 Гришин Александр Николаевич Газотурбинная установка
US5181376A (en) 1990-08-10 1993-01-26 Fluor Corporation Process and system for producing power
IL108546A (en) 1994-02-03 1997-01-10 Israel Electric Corp Ltd Compressed air energy storage method and system
US5442904A (en) 1994-03-21 1995-08-22 Shnaid; Isaac Gas turbine with bottoming air turbine cycle
US5934063A (en) 1998-07-07 1999-08-10 Nakhamkin; Michael Method of operating a combustion turbine power plant having compressed air storage
US6038849A (en) 1998-07-07 2000-03-21 Michael Nakhamkin Method of operating a combustion turbine power plant using supplemental compressed air
US6745569B2 (en) 2002-01-11 2004-06-08 Alstom Technology Ltd Power generation plant with compressed air energy system
DE102004040890A1 (de) 2003-09-04 2005-03-31 Alstom Technology Ltd Kraftwerksanlage, und Verfahren zum Betrieb
EP1512855A1 (fr) 2003-09-04 2005-03-09 ALSTOM Technology Ltd générateur électrique et son procédé d'opération
DE102004007482B4 (de) * 2004-02-13 2010-06-24 Alstom Technology Ltd. Kraftwerksanlage
EP1917428B1 (fr) 2005-08-23 2017-12-13 General Electric Technology GmbH Procédé d'operation d'une centrale electrique equipee d'un reservoir sous pression
US8261552B2 (en) * 2007-01-25 2012-09-11 Dresser Rand Company Advanced adiabatic compressed air energy storage system
US20080178601A1 (en) 2007-01-25 2008-07-31 Michael Nakhamkin Power augmentation of combustion turbines with compressed air energy storage and additional expander with airflow extraction and injection thereof upstream of combustors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872307A (en) * 1987-05-13 1989-10-10 Gibbs & Hill, Inc. Retrofit of simple cycle gas turbines for compressed air energy storage application
US5491969A (en) * 1991-06-17 1996-02-20 Electric Power Research Institute, Inc. Power plant utilizing compressed air energy storage and saturation
US20090100835A1 (en) * 2007-01-25 2009-04-23 Michael Nakhamkin CAES system with synchronous reserve power requirements
US20090178384A1 (en) * 2007-01-25 2009-07-16 Michael Nakhamkin CAES plant using humidified air in the bottoming cycle expander

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8978380B2 (en) 2010-08-10 2015-03-17 Dresser-Rand Company Adiabatic compressed air energy storage process
JP2013064399A (ja) * 2011-08-16 2013-04-11 Alstom Technology Ltd 断熱圧縮空気エネルギー貯蔵システムおよび方法
US11421560B2 (en) 2015-06-01 2022-08-23 William M. Conlon Part load operation of liquid air power and storage system
US10738696B2 (en) 2015-06-03 2020-08-11 William M. Conlon Liquid air power and storage with carbon capture
US11221177B2 (en) 2015-06-16 2022-01-11 William M Conlon Cryogenic liquid energy storage
US11686527B2 (en) 2015-06-16 2023-06-27 Pintail Power Llc Cryogenic liquid energy storage
WO2017069922A1 (fr) 2015-10-21 2017-04-27 Conlon William M Énergie air-liquide haute-pression et stockage
EP3365536A4 (fr) * 2015-10-21 2019-07-03 William M. Conlon Énergie air-liquide haute-pression et stockage
US11073080B2 (en) 2015-10-21 2021-07-27 William M. Conlon High pressure liquid air power and storage
US11674439B2 (en) 2015-10-21 2023-06-13 Pintail Power Llc High pressure liquid air power and storage

Also Published As

Publication number Publication date
BR112012013712A2 (pt) 2016-03-15
US8011189B2 (en) 2011-09-06
CA2783593A1 (fr) 2011-06-16
EA201290477A1 (ru) 2013-01-30
JP2013513072A (ja) 2013-04-18
IN2012DN05088A (fr) 2015-10-09
EP2510208A1 (fr) 2012-10-17
AU2010328634A1 (en) 2012-06-28
CN102822474A (zh) 2012-12-12
US20100083660A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
US8011189B2 (en) Retrofit of simple cycle gas turbine for compressed air energy storage application having expander for additional power generation
US8261552B2 (en) Advanced adiabatic compressed air energy storage system
US7640643B2 (en) Conversion of combined cycle power plant to compressed air energy storage power plant
US10683803B2 (en) Compressed-air energy-storage system
US7406828B1 (en) Power augmentation of combustion turbines with compressed air energy storage and additional expander with airflow extraction and injection thereof upstream of combustors
US10584634B2 (en) Compressed-air-energy-storage (CAES) system and method
US6745569B2 (en) Power generation plant with compressed air energy system
EP1095212B1 (fr) Turbine a gaz a adjonction d'air comprime
US20100043437A1 (en) Method of producing power by storing wind energy in the form of compressed air
WO1988008923A1 (fr) Rattrapage de turbines a gaz a cycle simple en vue de leur application pour le stockage d'energie d'air comprime
KR20150079976A (ko) 기계식 구동 어플리케이션의 가스 터빈 및 작동 방법
CA2996351C (fr) Train d'expansion d'air a fonction de flux constant dote de chambre de combustion

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080056173.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836378

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010836378

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012543105

Country of ref document: JP

Ref document number: 2010836378

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2783593

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010328634

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5088/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010328634

Country of ref document: AU

Date of ref document: 20101028

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A201208320

Country of ref document: UA

Ref document number: 201290477

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013712

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012013712

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120606