WO2011070890A1 - Inspection device and inspection method - Google Patents

Inspection device and inspection method Download PDF

Info

Publication number
WO2011070890A1
WO2011070890A1 PCT/JP2010/070117 JP2010070117W WO2011070890A1 WO 2011070890 A1 WO2011070890 A1 WO 2011070890A1 JP 2010070117 W JP2010070117 W JP 2010070117W WO 2011070890 A1 WO2011070890 A1 WO 2011070890A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
sample
plate sample
insulator
flat plate
Prior art date
Application number
PCT/JP2010/070117
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 長谷川
智一 島倉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2011545156A priority Critical patent/JP5635009B2/en
Publication of WO2011070890A1 publication Critical patent/WO2011070890A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/026Means for avoiding or neutralising unwanted electrical charges on tube components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/226Optical arrangements for illuminating the object; optical arrangements for collecting light from the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/29Reflection microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/004Charge control of objects or beams
    • H01J2237/0041Neutralising arrangements
    • H01J2237/0044Neutralising arrangements of objects being observed or treated
    • H01J2237/0047Neutralising arrangements of objects being observed or treated using electromagnetic radiations, e.g. UV, X-rays, light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/25Tubes for localised analysis using electron or ion beams
    • H01J2237/2505Tubes for localised analysis using electron or ion beams characterised by their application
    • H01J2237/2538Low energy electron microscopy [LEEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present invention relates to an apparatus and a method suitable for inspecting the presence of foreign matter on a mold used in an insulating substrate, particularly in a nanoimprint technique, and the presence of a shape defect in a pattern formed on the mold.
  • the recording density of the magnetic recording medium is increased and high density recording of 1 Tb / in 2 (terabit / square inch) level is performed, it is adjacent to writing magnetic information on a conventional uniform magnetic film. Since it becomes difficult to separate recording units, development of a new magnetic recording medium technology called a pattern medium, in which grooves are formed in a magnetic film to spatially separate recording units, is being developed.
  • the manufacturing process of the pattern medium requires a processing technique comparable to semiconductor device manufacturing in which grooves are formed at a pitch of 100 nm or less, but the unit price of a magnetic recording medium is much lower than that of a semiconductor device.
  • the introduction of nanoimprint technology that enables high-precision patterning in large quantities at a low price is promising.
  • Nanoimprint technology creates a mold that is the pattern prototype in advance with high accuracy, presses this mold over the resist coated on the magnetic film, cures the resist, and then removes the mold. This is a technique for transferring the pattern shape of a mold to a resist pattern. After the pattern transfer, the resist pattern is transferred to the magnetic film pattern by etching as in the semiconductor device process.
  • One of the resist curing processes used in this nanoimprint technology is a method that utilizes a curing action by ultraviolet irradiation.
  • the mold is made of quartz glass that transmits ultraviolet rays because it is necessary to irradiate ultraviolet rays while the mold is pressed.
  • the pattern shape of this quartz glass mold Since the pattern shape of this quartz glass mold is transferred in large quantities to produce a pattern medium, the pattern shape of this quartz glass mold does not allow any defects. Further, a large amount of replica molds of quartz glass molds are manufactured by nanoimprint technology based on the quartz glass molds, and these replica molds are used for actual pattern medium production. Therefore, quality control of the pattern shape of these replica molds as well as the original quartz glass mold is extremely important.
  • Defective inspection of the pattern is essential for quality control of the pattern shape of the original quartz glass mold or replica mold.
  • the quartz glass mold is made of quartz glass, it is difficult to apply inspection technology using light, and application of inspection technology using electron beams is expected.
  • As a defect inspection technique using an electron beam there is a method using a scanning electron microscope (SEM) that scans a converged electron beam.
  • SEM scanning electron microscope
  • it is a SEM type visual inspection apparatus equipped with an image processing apparatus for comparing acquired SEM images as described in Patent Document 1.
  • the SEM type visual inspection apparatus has a great disadvantage that it takes a long time for the inspection.
  • Patent Document 2 a new electron beam application inspection method which is intended to increase the inspection speed as disclosed in Patent Document 2 and Patent Document 3.
  • These inspection technologies apply a negative potential close to the acceleration voltage of the electron beam applied to the sample, and then irradiate the entire inspection field onto the sample and image the electrons reflected by the sample. Get a statue.
  • the technique disclosed in Patent Document 2 applies a negative potential to the sample from the acceleration voltage of the irradiation electron beam and reflects the negative electron potential before the irradiation electron beam collides with the sample.
  • MEM Mirror Electron Microscope
  • Patent Document 3 is, for example, about several V with respect to the acceleration voltage of an irradiation electron beam.
  • This is an inspection technology applying a low energy reflection electron microscope (LEEM) that applies a positive electric potential to the sample and forms an image of the reflected electrons that collide with the sample surface with extremely low energy.
  • LEEM low energy reflection electron microscope
  • the reflected electrons in this specification include both mirror electrons and low energy reflected electrons.
  • An electron microscope that forms an image of mirror electrons or low-energy reflected electrons is hereinafter referred to as a reflection imaging electron microscope.
  • a defect inspection apparatus using a reflection imaging electron microscope an electron beam is irradiated, but the energy when electrons are incident on the quartz glass mold surface is several volts or less. Since electrons collide with the surface of the quartz glass mold with such low energy, secondary electrons are not emitted and incident electrons remain on the surface. That is, when the surface of the quartz glass mold is inspected with a reflection imaging electron microscope, the surface of the quartz glass is negatively charged because quartz is an insulator. In the reflection imaging electron microscope, when the surface is negatively charged, the resolution of the electron image is deteriorated, and as a result, the defect detection sensitivity is significantly lowered. In order to remove this negative charge, irradiation with ultraviolet rays is effective.
  • Patent Document 4 discloses a technique for removing the charge generated in the MEM by irradiating ultraviolet rays.
  • JP 05-258703 A Japanese Patent Laid-Open No. 11-108864 JP 2005-228743 A JP 2009-4114 A Japanese Patent Laid-Open No. 2005-174591
  • the equipotential surface on the surface of the sample must be parallel to the sample.
  • the sample is a dielectric such as a quartz glass mold, in order to form an equipotential surface parallel to the surface, it is sandwiched between parallel electrodes and the potential above and below is fixed.
  • the potential above and below is fixed.
  • the quartz glass mold is placed on a stage that moves continuously so that the electron beam irradiates the entire surface.
  • the position of the hole that is, the ultraviolet irradiation position is separated from the electron beam irradiation position as the stage moves. Even during movement, it is impossible to keep the back surface opposite to the electron beam irradiation position on the front surface being irradiated with ultraviolet rays.
  • the back side of the electron beam irradiation position is always irradiated with ultraviolet rays, so that the back surface of the quartz glass mold is exposed before the ultraviolet light collector. If the holes are made larger, the electric field on the quartz glass mold surface will be greatly disturbed.
  • the object of the present invention is to form an equipotential surface parallel to the surface of the sample and irradiate the sample with ultraviolet rays from the back surface (below), even when the sample is sandwiched between electrodes provided above and below it. It is an object of the present invention to provide an inspection apparatus and an inspection method that can perform inspection.
  • an inspection apparatus for inspecting the surface of the sample by irradiating the sample held by the holder with an electron beam and detecting reflected electrons from the sample
  • the upper electrode and the lower electrode are arranged in parallel, and the upper electrode has a hole through which the electron beam passes, and a voltage for accelerating the electron beam and irradiating the sample is applied.
  • the lower electrode has a hole for irradiating ultraviolet rays from the back side of the sample to the sample region irradiated with the electron beam, decelerates the accelerated electron beam, and the sample
  • the inspection apparatus is characterized in that a voltage reflected by the surface is applied.
  • means for irradiating the insulator flat plate sample with electrons as substantially parallel electron beams means for forming an electric field for pulling up the electron beam reflected near the surface of the insulator flat plate sample, and the reflected electron beam From the electron image, the electron optical means for obtaining the electron image, the means for moving the insulator flat plate sample with respect to the electron beam so that the shape formed on the insulator flat plate sample can be observed,
  • an electric field is formed to pull up the electron beam reflected near the surface of the insulator flat plate sample.
  • the means includes an electrode that does not move during the inspection operation on the side opposite to the side on which the electron beam of the insulator plate sample is irradiated, and on the side on which the electron beam of the insulator plate sample is irradiated against The surface, the inspection device characterized by comprising a means for irradiating ultraviolet rays.
  • means for irradiating the insulator flat plate sample with electrons as substantially parallel electron beams means for forming an electric field for pulling up the electron beam reflected near the surface of the insulator flat plate sample, and the reflected electron beam
  • Electron optical means for obtaining the electron image means for moving the insulator plate sample so that the shape formed on the insulator plate sample can be observed, and the desired insulator plate from the electron image
  • means for irradiating the surface of the insulator flat plate sample opposite to the side irradiated with the electron beam with ultraviolet rays An inspection apparatus comprising: an electrode made of a conductive material that transmits ultraviolet rays in means for forming an electric field for pulling up the electron beam reflected in the vicinity of the surface of the insulator plate sample.
  • an electron is irradiated on the insulator flat plate sample as a substantially parallel electron beam, and the electron beam reflected in the vicinity of the surface of the insulator flat plate sample is pulled up by an electric field formed on the surface of the insulator flat plate sample.
  • the inspection method for inspecting the shape formed on the surface of the insulator flat plate sample by obtaining an electron image by means the insulating plate is opposite to the side irradiated with the electron beam of the insulator flat plate sample.
  • an electron is irradiated on the insulator flat plate sample as a substantially parallel electron beam, and the electron beam reflected in the vicinity of the surface of the insulator flat plate sample is pulled up by an electric field formed on the surface of the insulator flat plate sample.
  • the inspection method for inspecting the shape of the surface of the insulator plate sample by obtaining an electron image by means the surface of the insulator plate sample opposite to the side irradiated with the electron beam is irradiated with ultraviolet rays. And a step of applying a voltage to the conductive electrode through which the ultraviolet rays are transmitted on the surface of the insulator flat plate sample opposite to the side irradiated with the electron beam.
  • the inspection method to be used.
  • the sample surface By arranging the upper electrode and the lower electrode to be parallel and using a lower electrode provided with a hole through which ultraviolet rays can pass, or by using a conductive thin film having a thickness that allows ultraviolet rays to pass through, the sample surface It is possible to provide an inspection apparatus and an inspection method capable of forming an equipotential surface parallel to the surface and irradiating the sample with ultraviolet rays from the back surface (below).
  • FIG. 1 is a main part schematic diagram of an inspection apparatus according to Embodiment 1.
  • FIG. It is a principal part schematic diagram of the inspection apparatus for demonstrating the operation
  • FIG. 1 is a schematic diagram of an inspection apparatus using a reflection imaging microscope according to Example 1.
  • FIG. 2 is a schematic diagram of a main part of an inspection apparatus for explaining a method for removing charge from a sample before inspection in Example 1.
  • FIG. 6 is a schematic diagram of a main part of an inspection apparatus according to a second embodiment. 6 is a schematic diagram of an inspection apparatus according to Embodiment 3.
  • an electrode provided with micropores for passing ultraviolet rays on the back side of the quartz glass mold is installed separately from the moving stage on which the quartz glass mold is placed,
  • the center position of the microhole was always matched with the central axis of the objective lens of the electron optical system.
  • a configuration in which the center position of the minute hole and the center axis of the objective lens of the electron optical system are coincident is optimal, but in practice, ultraviolet rays are irradiated so as to cover the electron beam irradiation region (about 100 ⁇ m ⁇ ). Thus, negative charging can be reduced and prevented.
  • UV light that can sufficiently remove the negative charge that occurs when using a high-current electron beam is supplied to the inspection field.
  • the quartz glass mold can be inspected at high speed.
  • FIG. 1 schematically shows a cross section of a configuration in the vicinity of a quartz glass mold sample. It is different from the actual size ratio for clarity.
  • the quartz glass mold 1 is placed on a holder 2 made of the same quartz glass as the quartz glass mold 1 or a material having the same dielectric constant, and the holder 2 is placed on the movable stage insulating member 3. It is done.
  • the quartz glass mold 1 used here has a diameter of 2 inches, but is not limited thereto, and may be 2 to 8 inches or larger. When the diameter of the quartz glass mold 1 is sufficiently large, it may be placed directly on the movable stage insulating member 3 instead of being placed on the holder 2.
  • the moving stage insulating member 3 is installed on the moving stage 4.
  • the holder 2 is configured to hold the periphery of the quartz glass mold 1. Thereby, the ultraviolet rays irradiated to the back surface of the sample are not shielded by the holder 2. Further, the inspection sample is not limited to the quartz glass mold, and may be a replica mold.
  • the moving stage 4 has a drive mechanism configured to irradiate the entire surface of the quartz glass mold 1 with the electron beam 5 by performing a rotational movement about the center of the quartz glass mold 1 and a rectilinear movement in a plane. Has been.
  • An upper electrode 6 and a lower electrode 7 are installed so as to sandwich the quartz glass mold 1.
  • the lower surface of the upper electrode 6 and the upper surface of the lower electrode 7 are parallel to the surface of the quartz glass mold 1 in a sufficiently wide area so as to form an equipotential surface parallel to the surface of the quartz glass mold 1.
  • the upper electrode 6 is provided with a hole (about 100 ⁇ m to 1 mm) through which the electron beam 5 passes, and constitutes a part of an objective lens that forms an image of the electron beam reflected near the quartz glass mold 1. .
  • the distance L1 between the upper electrode 6 and the quartz glass mold 1, the positive voltage applied to the upper electrode 6, and the diameter R1 of the passage hole of the electron beam 5 are optimally designed so as to obtain an optimal electron image for inspection. Has been. For example, when forming an equipotential surface, L1> R1 is desirable. In order to avoid scattering of the electron beam, it is desirable that R1 exceeds the diameter of the electron beam 5.
  • the voltage of the surface of the quartz glass mold 1 is sufficiently slowed down near the surface of the quartz glass mold 1 and collides with the surface with a low energy of about several eV, or reverses just before the surface collides with the surface.
  • a negative voltage is applied to the lower electrode 7.
  • the lower electrode 7 is provided with a fine hole R2 so that the ultraviolet rays 8 pass through and irradiate the back surface of the quartz glass mold 1.
  • the diameter of the passage hole for the ultraviolet rays 8 is designed to be smaller than the distance between the upper surface of the lower electrode 7 and the surface of the quartz glass mold 1, and the disturbance of the potential on the surface of the quartz glass mold 1 caused by this hole does not affect the electron image. .
  • the ultraviolet ray 8 is emitted from the ultraviolet light source 9, is collected by the lens 10, and irradiates the back surface of the quartz glass mold 1.
  • the irradiation area of the ultraviolet rays 8 is almost equal to the inspection visual field.
  • the ultraviolet light source 9 in this figure shows the light source for the lens 10.
  • the actual ultraviolet light source may be a tip further apart and introduced by quartz glass fiber.
  • the lens 10 can be installed close to the quartz glass mold 1 and can have a size of several centimeters, the lens 10 receives almost all ultraviolet rays from the ultraviolet light source 9 and collects them in an inspection region of about several hundred microns. Can be light. For this reason, the negative charge on the surface generated when the current amount of the electron beam 5 is increased and a high-speed inspection operation is performed can be removed by irradiating with a sufficient amount of ultraviolet rays.
  • the lower electrode 7, the lens 10, and the ultraviolet light source 9 are separated from the moving stage 4 so that the center of the ultraviolet passage hole of the lower electrode 7 and the center of the electron beam passage hole of the upper electrode 6 are aligned. ing. Therefore, even when the electron beam 5 is irradiated to various positions of the quartz glass mold 1 by the movement of the moving stage 4, the back side can always be correctly irradiated with the ultraviolet rays 8.
  • the lower electrode 7, the lens 10 and the ultraviolet light source 9 constitute one unit.
  • the moving stage 4 has an electron beam 5. The sample to be inspected moves away from the irradiation position near the introduction port through which the sample is taken in and out of the apparatus.
  • the lower electrode 7, the lens 10, and the ultraviolet light source 9 may obstruct the movement due to the structure.
  • the failure can be avoided by the operation shown in FIG. In FIG. 2, the lower electrode 7, the lens 10, and the ultraviolet light source 9 are used as one lower unit 11.
  • the lower unit 11 is lowered downward by the operation (1), and a space in which the moving stage 4 can move is created.
  • the moving stage 4 moves to the inspection sample introduction port (operation (2)), takes the inspection sample out of the apparatus, receives the next inspection sample, and returns to the position where the electron beam can be irradiated ( Operation (3)). Thereafter, the lower unit 11 moves up (operation (4)), and inspection is started.
  • FIG. 3 omits a pump for vacuum exhaust, its control device, exhaust system piping, a transport system for the sample to be inspected, and the like.
  • the electron beam trajectory is exaggerated from the actual trajectory for the sake of explanation.
  • the irradiation electron beam 100a emitted from the electron gun 101 is deflected by the separator 103 while being converged by the condenser lens 102 to form a crossover 100b, and then becomes an electron beam 5 having a substantially parallel bundle on the specimen 104 to be inspected. Is irradiated.
  • the sample 104 to be inspected shown in FIG. 3 is the quartz glass mold 1 or the holder 2 on which the quartz glass mold 1 is placed.
  • a Zr / O / W type Schottky electron source having a small light source diameter and a large current value is used, and a lanthanum hexaboride (LaB 6 ) electron source capable of obtaining a higher current value is used.
  • Other electron sources may be used.
  • a magnetic field superposition type in which a magnetic lens is disposed in the vicinity of the electron source may be used.
  • the condenser lens 102 is depicted as one in the drawing, it may be a system in which a plurality of lenses are combined so that an irradiation electron beam with higher parallelism can be obtained.
  • the condenser lens 102 is adjusted so that the electron beam is focused on the back focal plane of the objective lens 106.
  • the separator 103 is installed to separate the irradiation electron beam directed toward the sample 104 to be inspected and the reflected electron beam returning from the sample 104 to be inspected.
  • a separator using an E ⁇ B deflector is taken as an example.
  • the E ⁇ B deflector can be set so as to deflect the electron beam coming from above and to make the electron beam coming from below go straight.
  • the electron optical column that supplies the irradiation electron beam is tilted, and the electron optical column that forms an image of the reflected electrons stands upright. It is also possible to use a magnetic field sector as a separator.
  • a magnetic field is installed in a direction perpendicular to the optical axis of the electron beam, and the irradiated electron beam is deflected in the direction of the sample 104 to be inspected, and the electrons from the sample 104 to be inspected are deflected in a direction opposite to the direction in which the irradiated electron beam comes.
  • the optical axis of the irradiation electron beam column and the optical axis of the electron beam imaging column are arranged symmetrically about the optical axis of the objective lens.
  • the separator 103 When the irradiation electron beam 100a is deflected by the separator, the separator 103 generates aberration. When it is necessary to correct this aberration, when the separator 103 is an E ⁇ B deflector, an E ⁇ B deflector 120 for aberration correction is arranged. When the separator 103 is a magnetic sector, correction is made by providing an auxiliary coil.
  • the irradiation electron beam 100 a deflected by the separator 103 is formed on the parallel bundle of electron beams 5 incident perpendicularly to the surface of the sample 104 to be inspected by the objective lens 106.
  • the irradiation system condenser lens 102 is adjusted so that the electron beam is focused on the back focal point of the objective lens 106, it is possible to irradiate the specimen 104 with a highly parallel electron beam.
  • a region on the inspection sample 104 irradiated by the irradiation electron beam 100a has a large area such as 2500 ⁇ m 2 (square micron), 10000 ⁇ m 2 (square micron), or the like.
  • the sample 104 to be inspected is placed on the moving stage 4 via the insulating member 3 (not shown in FIG. 3).
  • the moving stage 4 can perform a rotational movement around the center of the quartz glass mold 1 (not shown in FIG. 3) and a linear movement of the quartz glass mold 1 in the radial direction.
  • the movement of the moving stage 4 is controlled by the moving stage control device 107 according to the operation during the inspection, the replacement operation of the sample 104 to be inspected described with reference to FIG.
  • the objective lens 106 is an electrostatic lens composed of a plurality of electrodes or a magnetic lens. In any case, since it is necessary to form an electric field on the surface so that the electron beam reflected in the vicinity of the specimen 104 to be inspected is pulled back to the objective lens, a positive potential can be applied to the position closest to the specimen.
  • the upper electrode 6 described in FIG. 1 is disposed. In this figure, it is included in the objective lens 106 and is not clearly shown.
  • the lower electrode 7 described with reference to FIG. 1 is arranged so that a negative potential substantially equal to the acceleration voltage of the electron beam is applied to the surface of the specimen 104 to be inspected.
  • FIG. 3 it is shown as the lower unit 11 described in FIG.
  • the voltage of the lower electrode 7 which is a component of the lower unit 11 is set by the lower unit control device 108 so that the difference between the surface voltage of the sample 104 to be inspected and the acceleration voltage is about several volts or less.
  • the irradiation electron beam 100a is decelerated in front of the sample 104 to be inspected by this negative potential, and is reflected in the opposite direction before colliding with the sample 104 to be inspected depending on the setting of the surface potential or by collision with low energy. Thus, the reflected electrons 100c are obtained.
  • the trajectory of the reflected electrons 100c reflects the pattern information on the specimen 104 to be inspected, and is taken into the apparatus as an image for defect determination by image formation using the electron imaging optical system.
  • the imaging optical system, image acquisition, and defect determination will be described.
  • the reflected electrons 100 c form a first image by the objective lens 106. Since the separator 103 is an E ⁇ B deflector in this embodiment, the separator 103 is controlled so as not to have a deflection action with respect to the electron beam traveling from below, and the reflected electron 100c travels without being deflected. These images are sequentially formed by the intermediate electron lens 109 and the projection electron lens 110, and finally enlarged and projected on the image detection unit 111.
  • the first image is desirably formed at the center of the separator 103. This is because the influence of the aberration on the image due to the electromagnetic field of the separator 3 can be minimized.
  • the projection electron lens 110 is depicted as a single electron lens, but it may be composed of a plurality of electron lenses for high magnification and image distortion correction.
  • the image detection unit 111 converts the image into an electric signal and sends a potential distribution image formed by the pattern on the surface of the quartz glass mold to the image processing unit 112.
  • the electron optical system controller 113 controls the various electron lenses and the electron optical systems such as the separator 103 described so far.
  • a fluorescent screen 111a for converting a reflected electron image into an optical image and an optical image detection device 111b are optically coupled by an optical image transmission system 111c.
  • An optical fiber bundle is used as the optical image transmission system 111c.
  • the optical fiber bundle is a bundle of thin optical fibers equal to the number of pixels, and can efficiently transmit an optical image.
  • the optical transmission efficiency may be lowered.
  • An optical lens is used instead of the optical fiber bundle, and the optical image on the fluorescent plate 111a is optically detected by the optical lens. In some cases, an image is formed on the light receiving surface 111b.
  • optical image detection device 111b converts the optical image formed on the light receiving surface into an electrical image signal and outputs it.
  • a TDI sensor using a time delay integration (TDI) type CCD is used for the optical image detection device 111b.
  • the image detection unit 111 uses a detector sensitive to an electron beam in addition to returning an electronic image to an optical image and then outputting the optical image as an image signal.
  • a device that directly outputs an image signal without conversion to an optical image can be used.
  • the image processing unit 112 includes an image signal storage unit 112a and a defect determination unit 112b.
  • the image signal storage unit 112 a obtains the electro-optical condition, image data, and stage position data from the electro-optical system control device 113, the image detection unit 111, and the stage control device 107, and the image data is stored on the specimen 104 to be inspected. It is stored in relation to the coordinate system.
  • the defect determination unit 112b uses various kinds of defects such as comparison with a preset value or comparison with an adjacent pattern image using image data with coordinates on the inspection sample (quartz glass mold) 104. Defects are determined by a determination method.
  • the coordinates of the defect and the signal intensity of the corresponding pixel are transferred and stored in the inspection apparatus control unit 114. These defect determination methods are set by the user, or the inspection apparatus control unit 114 selects a method associated with the type of sample to be inspected in advance.
  • the operating conditions of each part of the apparatus are input / output from the inspection apparatus control unit 114.
  • Various conditions such as an acceleration voltage at the time of generating an electron beam, an electron beam deflection width / deflection speed, a stage moving speed, and an image signal capturing timing from the image detection element are input to the inspection apparatus control unit 114 in advance.
  • the control device is comprehensively controlled and serves as an interface with the user.
  • the inspection apparatus control unit 114 may be composed of a plurality of computers that share roles and are connected by communication lines.
  • a monitor input / output device 115 is installed.
  • the above is an overall outline of a quartz glass mold inspection apparatus using a reflection imaging microscope. Next, the preliminary charging removal operation on the quartz glass mold surface and the inspection operation while irradiating with ultraviolet rays will be described.
  • quartz glass is an insulator, there is a possibility that charging will occur before electron beam irradiation is performed during the inspection process. For example, charging occurs during processing of a mold pattern or during conveyance. Even if the surface of the quartz glass mold is charged, it is possible to set the potential of the surface of the quartz glass mold to a desired potential by adjusting the voltage applied to the lower electrode 7, but the distribution of the charged potential Is usually not uniform, and the charge amount may be several hundred volts in voltage. If the charge on the surface of the quartz glass mold is previously removed before the inspection, it is not necessary to change the potential of the lower electrode 7 during the inspection, and a more stable inspection is possible.
  • the preliminary charge removal operation in which the charge is previously removed before entering the inspection operation, is performed in the load lock chamber through which the sample to be inspected passes when it is transported from the atmosphere to the main chamber where the inspection operation is performed. Efficient.
  • the load lock chamber is opened to the atmosphere and the sample to be inspected is introduced, and then the load lock chamber is evacuated and transported to the main chamber maintained in a vacuum.
  • the sample to be inspected always stops temporarily in the load lock chamber, the charge is removed at that time.
  • a method of neutralizing the charge on the surface of the sample to be inspected by irradiating ions or electrons in a vacuum state, or an ionization by injecting an inert gas and irradiating with ultraviolet rays for inspection A method of neutralizing the charge on the surface of the sample can be used.
  • FIG. 4 shows the configuration in the load lock chamber when the specimen to be inspected is heated to remove the charge.
  • the quartz glass mold 1 or the holder 2 on which the quartz glass mold 1 is placed is placed on the ground electrode 201.
  • a heater 202 is provided below the ground electrode 201 to uniformly heat the quartz glass mold 1 and the holder 2.
  • the heating temperature is about 200 ° C to about 400 ° C.
  • An electrode 203 may be provided above the quartz glass mold 1 and the holder 2 and an appropriate voltage may be applied to form an electric field in a direction in which the charged charges are released to the ground electrode 201.
  • the heater 202 is installed on a moving stage 204 in the load lock chamber.
  • the quartz glass mold from which the surface charge has been removed by the above process is transferred to the main chamber and enters the inspection operation.
  • the pattern of the quartz glass mold for processing the magnetic recording pattern medium is formed along the rotation direction.
  • the starting point of the inspection start is the position of the pattern outermost periphery or innermost periphery.
  • the entire surface of the pattern is inspected by moving the quartz glass mold in the radial direction while rotating the quartz glass mold. During the inspection, the sample is continuously irradiated with the electron beam.
  • the amount of negative charge generated by electron beam irradiation is proportional to the time during which an electron beam is irradiated to a certain inspection field, so if the speed at which the pattern crosses the inspection field is constant, the negative charge amount is always the same, that is, The amount of ultraviolet rays for removing this negative charge is also constant and convenient. Accordingly, the rotational speed is changed with the movement in the radial direction so that the pattern moving speed at the inspection position is constant.
  • the ultraviolet rays to be irradiated have a wavelength between about 200 nm and 300 nm, and are wavelengths that allow the quartz glass to pass through and remove the negative charge on the surface of the quartz glass (the quartz glass has energy larger than the energy for holding electrons). .
  • Ultraviolet rays are introduced immediately before the start of inspection, and then an electron beam is irradiated to start inspection. Prior to the inspection, the inspection conditions corresponding to the inspection speed, such as the irradiation ultraviolet ray amount, are determined in advance.
  • the electron beam irradiation is stopped, and the ultraviolet irradiation is also stopped almost simultaneously, and the discharging operation from the apparatus is executed.
  • the electron beam and ultraviolet light irradiation is stopped from the viewpoint of operational stability of the electron source and ultraviolet light source, not by stopping the electron source and ultraviolet light source itself, but by blocking the ultraviolet light by inserting a shutter, and blocking the electron beam by a blanker. .
  • the quartz glass mold surface is erased by irradiating the back surface of the quartz glass mold generated by electron beam irradiation with ultraviolet irradiation from the back surface even when the sample is sandwiched between parallel electrodes. Therefore, it is possible to provide an inspection apparatus and an inspection method capable of maintaining a constant electric potential of the quartz glass mold and realizing an inspection of the quartz glass mold at a high speed.
  • Example 1 a passage hole was opened in the lower electrode installed on the back side of the quartz glass mold, and ultraviolet rays were irradiated.
  • an electrode in which a thin conductive film was formed on the surface of quartz glass was used instead of the electrode having a hole.
  • FIG. 5 is a schematic diagram of a main part of the inspection apparatus according to the present embodiment.
  • the quartz glass mold 1 and the holder 2 are placed on a quartz glass plate 306 having a conductive thin film 305 formed on the upper surface.
  • the conductive thin film 305 is formed to a thickness that does not significantly reduce the ultraviolet transmittance by metal vapor deposition or the like.
  • platinum (Pt) having a thickness of 10 nm was used as the conductive thin film.
  • Gold (Au) can also be used.
  • a voltage is applied to the conductive thin film 305 and the surface potential is set so as to reflect the electron beam 5 near the surface of the quartz glass mold 1.
  • the quartz glass plate 306 transmits the ultraviolet light 8, even if the moving stage 4 moves during the inspection, the ultraviolet light 8 can be irradiated on the opposite side of the position irradiated by the electron beam 5, and the conductive thin film 305 allows quartz to be irradiated.
  • the surface potential of the glass mold 1 is stabilized. Since the lower electrode in the first embodiment can be eliminated from the unit installed at the lower part of the moving stage 4 and only the ultraviolet light source 9 and the condenser lens 10 are provided, the size of the entire lower unit can be reduced. Since the interference area with the moving area of the moving stage 4 becomes small, the moving stage 4 can be made small.
  • the present embodiment even when the sample is sandwiched between electrodes provided above and below it, an equipotential surface parallel to the sample surface is formed, and ultraviolet light is emitted from the back surface (below). It is possible to provide an inspection apparatus and an inspection method that can irradiate a sample with a sample. Further, by using a conductive thin film as the lower electrode, the structure is simplified, the sample can be easily supported, and the reliability is improved.
  • the previous examples have been inspection devices that perform negative charge removal by ultraviolet irradiation only from the back side of the quartz glass mold.
  • ultraviolet irradiation is performed not only from the rear surface of the quartz glass mold but also from the front surface, and further, high-speed negative charge removal is realized, thereby realizing high-speed inspection.
  • FIG. 6 is a schematic view of the inspection apparatus according to the present embodiment.
  • a condensing reflection mirror 402 is installed in the electron optical column so that the ultraviolet ray 401 is incident on the inspection apparatus 104 described with reference to FIG.
  • An ultraviolet light source 403 is disposed on the side of the cylinder.
  • the ultraviolet ray 401 is reflected and collected by the condensing / reflecting mirror 402, and is simultaneously irradiated onto the region of the sample 104 to be irradiated with the electron beam 5. Accordingly, it is possible to irradiate the ultraviolet rays with further increased intensity together with the ultraviolet rays irradiated from the back surface from the lower unit 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Provided is an inspection device wherein an equipotential plane parallel to the surface of a sample is formed, and the sample can be irradiated with ultraviolet light from the underside. The inspection device wherein a sample retained by a holder is irradiated with an electron beam, and the reflected electrons from the sample are detected to inspect the surface of the sample, is provided with an upper electrode (6) and a lower electrode (7), which are in parallel with each other so that a holder (2) for retaining a sample (1) is provided therebetween. The upper electrode (6) has a hole through which the electron beam (5) passes and to which a voltage for accelerating the electron beam (5) to irradiate the sample (1) with the electron beam is applied. The lower electrode (7) has a hole through which the area of the sample (1) irradiated with the electron beam (5) is irradiated with ultraviolet light (8) from the underside of the sample (1) and to which a voltage for decelerating the accelerated electron beam (5) to cause the electron beam to be reflected by the surface of the sample, is applied.

Description

検査装置および検査方法Inspection apparatus and inspection method
 本発明は、絶縁性の基体、特にナノインプリント技術において使用される金型上の異物や、金型に形成されたパターンの形状欠陥の有無を検査するに好適な装置および方法に関する。 The present invention relates to an apparatus and a method suitable for inspecting the presence of foreign matter on a mold used in an insulating substrate, particularly in a nanoimprint technique, and the presence of a shape defect in a pattern formed on the mold.
 磁気記録媒体の記録密度の高密度化が進み1Tb/in(テラビット/平方インチ)レベルの高密度記録を行うようになると、従来の一様な磁性膜に磁気情報を書き込むのでは隣り合った記録単位の分離が困難になるため、磁性膜に溝を形成して記録単位を空間的に分離する、パターン媒体と呼ばれる新しい磁気記録媒体技術の開発が進められている。パターン媒体の製造プロセスには、100nm以下のピッチで溝を形成するような半導体デバイス製造に匹敵する加工技術が必要になるが、磁気記録媒体の単位価格は半導体デバイスに比べ圧倒的に低いため、低価格で大量に高精度のパターニングが可能な、ナノインプリント技術の導入が有望視されている。 When the recording density of the magnetic recording medium is increased and high density recording of 1 Tb / in 2 (terabit / square inch) level is performed, it is adjacent to writing magnetic information on a conventional uniform magnetic film. Since it becomes difficult to separate recording units, development of a new magnetic recording medium technology called a pattern medium, in which grooves are formed in a magnetic film to spatially separate recording units, is being developed. The manufacturing process of the pattern medium requires a processing technique comparable to semiconductor device manufacturing in which grooves are formed at a pitch of 100 nm or less, but the unit price of a magnetic recording medium is much lower than that of a semiconductor device. The introduction of nanoimprint technology that enables high-precision patterning in large quantities at a low price is promising.
 ナノインプリント技術は、パターンの原型となる金型を予め高精度に作成しておき、この金型を磁性膜上に塗布したレジストの上から押し付け、レジストを硬化させた後に金型を剥がす事によって、金型のパターン形状をレジストパターンに転写する技術である。パターン転写後は半導体デバイスプロセスと同様に、エッチングによりレジストパターンを磁性膜パターンに転写する。このナノインプリント技術で用いられるレジスト硬化過程の一つに、紫外線照射による硬化作用を利用する方法がある。UV硬化型のナノインプリント技術では、金型を押し付けた状態で紫外線を照射する必要性から、金型は紫外線を透過させる石英ガラスで製作される。 Nanoimprint technology creates a mold that is the pattern prototype in advance with high accuracy, presses this mold over the resist coated on the magnetic film, cures the resist, and then removes the mold. This is a technique for transferring the pattern shape of a mold to a resist pattern. After the pattern transfer, the resist pattern is transferred to the magnetic film pattern by etching as in the semiconductor device process. One of the resist curing processes used in this nanoimprint technology is a method that utilizes a curing action by ultraviolet irradiation. In the UV curable nanoimprint technology, the mold is made of quartz glass that transmits ultraviolet rays because it is necessary to irradiate ultraviolet rays while the mold is pressed.
 この石英ガラス金型のパターン形状が、大量に転写されてパターン媒体が生産されるので、この石英ガラス金型のパターン形状には欠陥の存在は全く許されない。また、この石英ガラス金型を元にナノインプリント技術によりさらに大量の石英ガラス金型のレプリカ金型が製作され、これらレプリカ金型が実際のパターン媒体生産に使用される。従って、元になる石英ガラス金型はもちろんのこと、これらレプリカ金型のパターン形状の品質管理は極めて重要である。 Since the pattern shape of this quartz glass mold is transferred in large quantities to produce a pattern medium, the pattern shape of this quartz glass mold does not allow any defects. Further, a large amount of replica molds of quartz glass molds are manufactured by nanoimprint technology based on the quartz glass molds, and these replica molds are used for actual pattern medium production. Therefore, quality control of the pattern shape of these replica molds as well as the original quartz glass mold is extremely important.
 元になる石英ガラス金型、あるいはレプリカ金型のパターン形状の品質管理には、パターンの欠陥検査が必須である。しかし、石英ガラス金型は材質が石英ガラス製のため、光を用いた検査技術の適用が困難であり、電子線を用いた検査技術の適用が期待されている。電子線を用いた欠陥検査技術しては、収束した電子線を走査する走査型電子顕微鏡(SEM)を用いる方法がある。例えば、特許文献1に記載されているような、取得したSEM像を比較する画像処理装置を搭載した、SEM式外観検査装置である。しかしながら、SEM式外観検査装置は検査に要する時間が長いという大きな欠点がある。 Defective inspection of the pattern is essential for quality control of the pattern shape of the original quartz glass mold or replica mold. However, since the quartz glass mold is made of quartz glass, it is difficult to apply inspection technology using light, and application of inspection technology using electron beams is expected. As a defect inspection technique using an electron beam, there is a method using a scanning electron microscope (SEM) that scans a converged electron beam. For example, it is a SEM type visual inspection apparatus equipped with an image processing apparatus for comparing acquired SEM images as described in Patent Document 1. However, the SEM type visual inspection apparatus has a great disadvantage that it takes a long time for the inspection.
 そこで近年、特許文献2や特許文献3に開示されている様な、検査速度の高速化を図った新たな電子線応用検査方法が開発された。これらの検査技術は、試料に照射する電子線の加速電圧に近い負電位を与えた上で、試料に検査視野全体に照射し、試料で反射される電子を結像することによって検査用の電子像を得る。但し、反射電子と言っても、特許文献2に開示された技術は、照射電子線の加速電圧より負の電位を試料に与え、照射電子線が試料に衝突する前に、負の電位によって反射された電子を結像する、ミラー電子顕微鏡(MEM:Mirror Electron Microscope)を応用した検査技術であり、一方、特許文献3に開示された技術は、照射電子線の加速電圧に対し例えば数V程度の正の電位を試料に与え、照射電子線が試料表面に極めて低エネルギーで衝突し反射した電子を結像する、低エネルギー反射電子顕微鏡(LEEM:Low Energy Electron Microscope)を応用した検査技術である。 Therefore, in recent years, a new electron beam application inspection method has been developed which is intended to increase the inspection speed as disclosed in Patent Document 2 and Patent Document 3. These inspection technologies apply a negative potential close to the acceleration voltage of the electron beam applied to the sample, and then irradiate the entire inspection field onto the sample and image the electrons reflected by the sample. Get a statue. However, even if it is referred to as a reflected electron, the technique disclosed in Patent Document 2 applies a negative potential to the sample from the acceleration voltage of the irradiation electron beam and reflects the negative electron potential before the irradiation electron beam collides with the sample. Is an inspection technique that applies a mirror electron microscope (MEM: Mirror Electron Microscope) that forms an image of the emitted electrons. On the other hand, the technique disclosed in Patent Document 3 is, for example, about several V with respect to the acceleration voltage of an irradiation electron beam. This is an inspection technology applying a low energy reflection electron microscope (LEEM) that applies a positive electric potential to the sample and forms an image of the reflected electrons that collide with the sample surface with extremely low energy. .
 本明細書中の反射電子には、ミラー電子と低エネルギー反射電子の両者を含むものとする。また、ミラー電子あるいは低エネルギー反射電子を結像する電子顕微鏡を、以下では反射結像型電子顕微鏡と呼ぶ。 The reflected electrons in this specification include both mirror electrons and low energy reflected electrons. An electron microscope that forms an image of mirror electrons or low-energy reflected electrons is hereinafter referred to as a reflection imaging electron microscope.
 反射結像型電子顕微鏡を用いた欠陥検査装置では、電子線を照射するが石英ガラス金型表面に電子が入射するときのエネルギーは数V以下である。電子は石英ガラス金型の表面にこのような低いエネルギーで衝突するので、2次電子は放出せず入射電子は表面に留まることになる。すなわち、反射結像型電子顕微鏡で石英ガラス金型表面を検査すると、石英は絶縁体であるため、表面が負に帯電する。反射結像型電子顕微鏡では表面が負帯電すると電子像の解像性が劣化し、結果として欠陥検出感度が著しく低下する。この負帯電を除去するためには、紫外線の照射が有効である。電子線照射と同時に紫外線を照射すれば、負帯電を除去しながら電子像を取得することができる。例えば、特許文献4では、MEMにおいて発生する帯電を、紫外線を照射することによって除去する技術が開示されている。 In a defect inspection apparatus using a reflection imaging electron microscope, an electron beam is irradiated, but the energy when electrons are incident on the quartz glass mold surface is several volts or less. Since electrons collide with the surface of the quartz glass mold with such low energy, secondary electrons are not emitted and incident electrons remain on the surface. That is, when the surface of the quartz glass mold is inspected with a reflection imaging electron microscope, the surface of the quartz glass is negatively charged because quartz is an insulator. In the reflection imaging electron microscope, when the surface is negatively charged, the resolution of the electron image is deteriorated, and as a result, the defect detection sensitivity is significantly lowered. In order to remove this negative charge, irradiation with ultraviolet rays is effective. By irradiating ultraviolet rays simultaneously with electron beam irradiation, an electron image can be obtained while removing negative charges. For example, Patent Document 4 discloses a technique for removing the charge generated in the MEM by irradiating ultraviolet rays.
 しかしながら、特許文献4に開示されている従来技術においては、紫外線は電子光学鏡筒の側方から導入され、電子光学鏡筒内に設置された反射鏡により試料へと反射され、試料を上方より照射していた。この紫外線照射方法では、反射鏡の反射面の面積が制限されるため、紫外線光源から発せられる紫外線を効率的に集めることができない。検査の高速化のため電子線の電流量は増加していくが、発生する試料表面の帯電量も大きくなる。十分な紫外線量を供給できないと、この帯電を消去できなくなるが、上述のように反射鏡が集めることができる紫外線量に制限がある。 However, in the prior art disclosed in Patent Document 4, ultraviolet rays are introduced from the side of the electron optical column, reflected by the reflecting mirror installed in the electron optical column, and the sample from above. Irradiated. In this ultraviolet irradiation method, since the area of the reflecting surface of the reflecting mirror is limited, the ultraviolet rays emitted from the ultraviolet light source cannot be collected efficiently. Although the amount of electron beam current increases to increase the speed of inspection, the amount of charge on the surface of the generated sample also increases. If a sufficient amount of ultraviolet rays cannot be supplied, this charge cannot be erased, but there is a limit to the amount of ultraviolet rays that can be collected by the reflecting mirror as described above.
 十分な紫外線量を検査視野領域に供給するためには、紫外線の集光素子を被照射物にさらに近づけることが必要である。試料表面には電子照射用の対物レンズがあるため、これは不可能である。そこで、特許文献5に記載されているように、試料が石英ガラス製であることを利用し、裏面から照射する方法が適している。紫外線は石英ガラスを透過するので、裏面からの照射で表面の負帯電を除去することができる。試料裏面は利用できる空間があり、十分な紫外線を集めることのできる受光面積の大きな光学素子も設置可能である。 In order to supply a sufficient amount of ultraviolet light to the inspection visual field region, it is necessary to bring the ultraviolet light condensing element closer to the irradiated object. This is not possible because there is an objective lens for electron irradiation on the sample surface. Therefore, as described in Patent Document 5, a method of irradiating from the back surface using the fact that the sample is made of quartz glass is suitable. Since ultraviolet rays are transmitted through quartz glass, negative charge on the surface can be removed by irradiation from the back surface. There is a space available on the back of the sample, and an optical element having a large light receiving area capable of collecting sufficient ultraviolet rays can be installed.
特開平05-258703号公報JP 05-258703 A 特開平11-108864号公報Japanese Patent Laid-Open No. 11-108864 特開2005-228743号公報JP 2005-228743 A 特開2009-4114号公報JP 2009-4114 A 特開2005-174591号公報Japanese Patent Laid-Open No. 2005-174591
 反射結像型顕微鏡においては、照射電子線をほぼ平行束にして試料に照射するため、試料の表面の等電位面は試料に平行でなければならない。試料が石英ガラス金型という誘電体である場合、表面に平行な等電位面を形成するためには、平行な電極ではさみ、その上下の電位を固定する。電子線照射時の帯電を除去するため紫外線を裏面から照射するためには、裏面側の電極に紫外線通過用の孔を設けなければならない。 In a reflection imaging microscope, since the irradiated electron beam is irradiated in a substantially parallel bundle, the equipotential surface on the surface of the sample must be parallel to the sample. When the sample is a dielectric such as a quartz glass mold, in order to form an equipotential surface parallel to the surface, it is sandwiched between parallel electrodes and the potential above and below is fixed. In order to irradiate ultraviolet rays from the back surface in order to remove the charge at the time of electron beam irradiation, it is necessary to provide a hole for passing ultraviolet rays in the electrode on the back surface side.
 検査動作中においては、電子線が全面隈なく表面を照射するように、石英ガラス金型は連続的に移動するステージに戴置される。従来の反射結像型顕微鏡の構成において、移動ステージに電極を設置し孔を設けても、ステージの移動に伴って、この孔の位置、すなわち、紫外線照射位置が電子線照射位置と離れてしまい、移動中においても表面の電子線照射位置に対して正反対の裏面に紫外線が照射されるように保つことができない。 During the inspection operation, the quartz glass mold is placed on a stage that moves continuously so that the electron beam irradiates the entire surface. In the configuration of a conventional reflection imaging microscope, even if an electrode is provided on the moving stage and a hole is provided, the position of the hole, that is, the ultraviolet irradiation position is separated from the electron beam irradiation position as the stage moves. Even during movement, it is impossible to keep the back surface opposite to the electron beam irradiation position on the front surface being irradiated with ultraviolet rays.
 また、検査動作中に石英ガラス金型が移動しても、常に電子線照射位置の裏側に紫外線を照射するため、紫外線集光素子の前に石英ガラス金型の裏面が暴露されるように電極の孔を大きくしてしまうと、石英ガラス金型表面の電界が大きく乱れる結果となる。 In addition, even if the quartz glass mold moves during the inspection operation, the back side of the electron beam irradiation position is always irradiated with ultraviolet rays, so that the back surface of the quartz glass mold is exposed before the ultraviolet light collector. If the holes are made larger, the electric field on the quartz glass mold surface will be greatly disturbed.
 すなわち、従来の反射結像型顕微鏡においては、石英ガラス金型表面に平行な等電位面を形成することと、裏面から紫外線を照射することとを両立することができないという課題があった。 That is, in the conventional reflection imaging microscope, there is a problem that it is impossible to simultaneously form an equipotential surface parallel to the quartz glass mold surface and to irradiate ultraviolet rays from the back surface.
 本発明の目的は、試料をその上方及び下方に設けられた電極で挟む構成であっても、試料表面に平行な等電位面を形成し、かつ裏面(下方)から紫外線を試料に照射することのできる検査装置及び検査方法を提供することにある。 The object of the present invention is to form an equipotential surface parallel to the surface of the sample and irradiate the sample with ultraviolet rays from the back surface (below), even when the sample is sandwiched between electrodes provided above and below it. It is an object of the present invention to provide an inspection apparatus and an inspection method that can perform inspection.
 上記目的を達成するための一実施形態として、ホルダに保持された試料に電子線を照射し、試料からの反射電子を検出して前記試料の表面を検査する検査装置において、前記ホルダを挟んで平行となるように配置される上部電極と下部電極とを有し、前記上部電極は、前記電子線が通過する孔を有すると共に、前記電子線を加速して前記試料に照射する電圧が印加されるものであり、前記下部電極は、前記電子線が照射される前記試料領域に紫外線を前記試料の裏面側から照射するための孔を有すると共に、加速された前記電子線を減速し、前記試料表面で反射させる電圧が印加されるものであることを特徴とする検査装置とする。 As an embodiment for achieving the above object, in an inspection apparatus for inspecting the surface of the sample by irradiating the sample held by the holder with an electron beam and detecting reflected electrons from the sample, The upper electrode and the lower electrode are arranged in parallel, and the upper electrode has a hole through which the electron beam passes, and a voltage for accelerating the electron beam and irradiating the sample is applied. The lower electrode has a hole for irradiating ultraviolet rays from the back side of the sample to the sample region irradiated with the electron beam, decelerates the accelerated electron beam, and the sample The inspection apparatus is characterized in that a voltage reflected by the surface is applied.
 また、電子を略平行電子線として、絶縁体平板試料に照射する手段と、前記絶縁体平板試料表面近傍で反射した前記電子線を引き上げるための、電界を形成する手段と、反射した前記電子線の電子像を得る電子光学的手段と、前記絶縁体平板試料上に形成された形状を観察できるように、前記絶縁体平板試料を前記電子線に対して移動させる手段と、前記電子像から、所望の前記絶縁体平板試料上の形状を検出し、前記検出箇所を記録する手段を備えた検査装置において、前記絶縁体平板試料表面近傍で反射した前記電子線を引き上げるための、電界を形成する手段に、前記絶縁体平板試料の前記電子線が照射される側に対して反対側に、検査動作中は移動しない電極を含み、前記絶縁体平板試料の前記電子線が照射される側に対して反対側の面に、紫外線を照射する手段を備えたことを特徴とする検査装置とする。 Also, means for irradiating the insulator flat plate sample with electrons as substantially parallel electron beams, means for forming an electric field for pulling up the electron beam reflected near the surface of the insulator flat plate sample, and the reflected electron beam From the electron image, the electron optical means for obtaining the electron image, the means for moving the insulator flat plate sample with respect to the electron beam so that the shape formed on the insulator flat plate sample can be observed, In an inspection apparatus provided with a means for detecting a desired shape on the insulator flat plate sample and recording the detected location, an electric field is formed to pull up the electron beam reflected near the surface of the insulator flat plate sample. The means includes an electrode that does not move during the inspection operation on the side opposite to the side on which the electron beam of the insulator plate sample is irradiated, and on the side on which the electron beam of the insulator plate sample is irradiated Against The surface, the inspection device characterized by comprising a means for irradiating ultraviolet rays.
 また、電子を略平行電子線として、絶縁体平板試料に照射する手段と、前記絶縁体平板試料表面近傍で反射した前記電子線を引き上げるための、電界を形成する手段と、反射した前記電子線の電子像を得る電子光学的手段と、前記絶縁体平板試料上に形成された形状を観察できるように、前記絶縁体平板試料を移動させる手段と、前記電子像から、所望の前記絶縁体平板試料上の形状を検出し、前記検出箇所を記録する手段を備えた検査装置において、前記絶縁体平板試料の前記電子線が照射される側に対して反対側の面に、紫外線を照射する手段を備え、前記絶縁体平板試料表面近傍で反射した前記電子線を引き上げるための、電界を形成する手段に、前記紫外線を透過する導電性材質で構成された電極を含むことを特徴とする検査装置とする。 Also, means for irradiating the insulator flat plate sample with electrons as substantially parallel electron beams, means for forming an electric field for pulling up the electron beam reflected near the surface of the insulator flat plate sample, and the reflected electron beam Electron optical means for obtaining the electron image, means for moving the insulator plate sample so that the shape formed on the insulator plate sample can be observed, and the desired insulator plate from the electron image In the inspection apparatus provided with means for detecting the shape on the sample and recording the detection location, means for irradiating the surface of the insulator flat plate sample opposite to the side irradiated with the electron beam with ultraviolet rays An inspection apparatus comprising: an electrode made of a conductive material that transmits ultraviolet rays in means for forming an electric field for pulling up the electron beam reflected in the vicinity of the surface of the insulator plate sample. To.
 また、電子を略平行電子線として、絶縁体平板試料に照射し、前記絶縁体平板試料表面近傍で反射した前記電子線を、前記絶縁体平板試料表面上に形成した電界によって引き上げ、電子光学的手段によって電子像を得ることにより、前記絶縁体平板試料表面に形成された形状を検査する検査方法において、前記絶縁体平板試料の前記電子線が照射される側に対して反対側に、前記絶縁体平板試料が戴置される移動ステージと独立した電極に電圧を印加する工程と、前記絶縁体平板試料の前記電子線が照射される側に対して反対側の面に、紫外線を照射する工程と、を含むことを特徴とする検査方法とする。 Further, an electron is irradiated on the insulator flat plate sample as a substantially parallel electron beam, and the electron beam reflected in the vicinity of the surface of the insulator flat plate sample is pulled up by an electric field formed on the surface of the insulator flat plate sample. In the inspection method for inspecting the shape formed on the surface of the insulator flat plate sample by obtaining an electron image by means, the insulating plate is opposite to the side irradiated with the electron beam of the insulator flat plate sample. A step of applying a voltage to an electrode independent of the moving stage on which the body plate sample is placed, and a step of irradiating the surface of the insulator plate sample opposite to the side irradiated with the electron beam with ultraviolet rays. And an inspection method characterized by including:
 また、電子を略平行電子線として、絶縁体平板試料に照射し、前記絶縁体平板試料表面近傍で反射した前記電子線を、前記絶縁体平板試料表面上に形成した電界によって引き上げ、電子光学的手段によって電子像を得ることにより、前記絶縁体平板試料表面の形状を検査する検査方法において、前記絶縁体平板試料の前記電子線が照射される側に対して反対側の面に、紫外線を照射する工程と、前記絶縁体平板試料の前記電子線が照射される側に対して反対側の面に、前記紫外線が透過する導電性の電極に電圧を印加する工程と、を含むことを特徴とする検査方法とする。 Further, an electron is irradiated on the insulator flat plate sample as a substantially parallel electron beam, and the electron beam reflected in the vicinity of the surface of the insulator flat plate sample is pulled up by an electric field formed on the surface of the insulator flat plate sample. In the inspection method for inspecting the shape of the surface of the insulator plate sample by obtaining an electron image by means, the surface of the insulator plate sample opposite to the side irradiated with the electron beam is irradiated with ultraviolet rays. And a step of applying a voltage to the conductive electrode through which the ultraviolet rays are transmitted on the surface of the insulator flat plate sample opposite to the side irradiated with the electron beam. The inspection method to be used.
 上部電極と下部電極とが平行となるように配置すると共に、紫外線が通過できる孔が設けられた下部電極を用いることにより、又は、紫外線が透過できる膜厚の導電薄膜を用いることにより、試料表面に平行な等電位面を形成し、かつ裏面(下方)から紫外線を試料に照射することのできる検査装置及び検査方法を提供することができる。 By arranging the upper electrode and the lower electrode to be parallel and using a lower electrode provided with a hole through which ultraviolet rays can pass, or by using a conductive thin film having a thickness that allows ultraviolet rays to pass through, the sample surface It is possible to provide an inspection apparatus and an inspection method capable of forming an equipotential surface parallel to the surface and irradiating the sample with ultraviolet rays from the back surface (below).
実施例1に係る検査装置の要部概略図である。1 is a main part schematic diagram of an inspection apparatus according to Embodiment 1. FIG. 実施例1における被検査物搬送時の動作を説明するための検査装置の要部概略図である。It is a principal part schematic diagram of the inspection apparatus for demonstrating the operation | movement at the time of the to-be-inspected object conveyance in Example 1. FIG. 実施例1に係る反射結像型顕微鏡を用いた検査装置の概略図である。1 is a schematic diagram of an inspection apparatus using a reflection imaging microscope according to Example 1. FIG. 実施例1における検査前の試料の帯電除去方法を説明するための検査装置の要部概略図である。FIG. 2 is a schematic diagram of a main part of an inspection apparatus for explaining a method for removing charge from a sample before inspection in Example 1. 実施例2に係る検査装置の要部概略図である。FIG. 6 is a schematic diagram of a main part of an inspection apparatus according to a second embodiment. 実施例3に係る検査装置の概略図である。6 is a schematic diagram of an inspection apparatus according to Embodiment 3. FIG.
 石英ガラス金型裏面から紫外線を照射するために、石英ガラス金型裏面に紫外線通過用の微小孔を設けた電極を、石英ガラス金型が戴置される移動ステージとは分離して設置し、この微小孔の中心位置が電子光学系の対物レンズの中心軸上に常に一致するようにした。なお、この微小孔の中心位置と電子光学系の対物レンズの中心軸とを一致させる構成が最適であるが、実用上は、電子線照射領域(100μmφ程度)を覆うように紫外線を照射することにより負帯電を低減、防止することができる。 In order to irradiate ultraviolet rays from the back side of the quartz glass mold, an electrode provided with micropores for passing ultraviolet rays on the back side of the quartz glass mold is installed separately from the moving stage on which the quartz glass mold is placed, The center position of the microhole was always matched with the central axis of the objective lens of the electron optical system. In addition, a configuration in which the center position of the minute hole and the center axis of the objective lens of the electron optical system are coincident is optimal, but in practice, ultraviolet rays are irradiated so as to cover the electron beam irradiation region (about 100 μmφ). Thus, negative charging can be reduced and prevented.
 試料裏面からの紫外線照射により光源を試料に近づけることが可能となり、紫外線の強度を上げられるため、大電流電子線を使用する際に発生する負帯電を、十分除去し得る紫外線を検査視野に供給できるため、石英ガラス金型の検査を高速に実施できるようになった。 It is possible to bring the light source closer to the sample by irradiating UV light from the back of the sample, and the intensity of the UV light can be increased. Therefore, UV light that can sufficiently remove the negative charge that occurs when using a high-current electron beam is supplied to the inspection field. As a result, the quartz glass mold can be inspected at high speed.
 以下、実施例により詳細に説明する。 Hereinafter, the embodiment will be described in detail.
 第1の実施例を、図1~図4を用いて説明する。図1は、石英ガラス金型試料近傍の構成の断面を模式的に表している。わかりやすくするため、実際の大きさの比とは異なっている。 The first embodiment will be described with reference to FIGS. FIG. 1 schematically shows a cross section of a configuration in the vicinity of a quartz glass mold sample. It is different from the actual size ratio for clarity.
 石英ガラス金型1は、石英ガラス金型1と同じ石英ガラス、または、同じ誘電率を有した材質で製作されたホルダ2の上に載せられており、ホルダ2は移動ステージ絶縁部材3に載せられる。ここで用いた石英ガラス金型1は直径が2インチのものであるが、これに限らず2~8インチ、又はそれ以上の大きさであってもよい。石英ガラス金型1の径が十分大きい場合は、ホルダ2に載せる代わりに直接、移動ステージ絶縁部材3に載せられてもよい。移動ステージ絶縁部材3は、移動ステージ4の上に設置されている。 The quartz glass mold 1 is placed on a holder 2 made of the same quartz glass as the quartz glass mold 1 or a material having the same dielectric constant, and the holder 2 is placed on the movable stage insulating member 3. It is done. The quartz glass mold 1 used here has a diameter of 2 inches, but is not limited thereto, and may be 2 to 8 inches or larger. When the diameter of the quartz glass mold 1 is sufficiently large, it may be placed directly on the movable stage insulating member 3 instead of being placed on the holder 2. The moving stage insulating member 3 is installed on the moving stage 4.
 なお、ホルダ2は石英ガラス金型1の周辺部を保持する構成とした。これにより、試料裏面へ照射される紫外線がホルダ2により遮蔽されることはない。また、検査試料としては石英ガラス金型に限らず、レプリカ金型でもよい。 The holder 2 is configured to hold the periphery of the quartz glass mold 1. Thereby, the ultraviolet rays irradiated to the back surface of the sample are not shielded by the holder 2. Further, the inspection sample is not limited to the quartz glass mold, and may be a replica mold.
 移動ステージ4は、石英ガラス金型1の中心を軸とした回転運動と平面内の直進運動とを行うことで、石英ガラス金型1の全面を電子線5が照射できるように駆動機構が構成されている。 The moving stage 4 has a drive mechanism configured to irradiate the entire surface of the quartz glass mold 1 with the electron beam 5 by performing a rotational movement about the center of the quartz glass mold 1 and a rectilinear movement in a plane. Has been.
 石英ガラス金型1をはさむように、上部電極6と下部電極7が設置されている。上部電極6の下面と下部電極7の上面は、石英ガラス金型1の表面に平行な等電位面を形成するように、十分広い領域で石英ガラス金型1表面と平行な面となっている。上部電極6は電子線5が通過する孔(100μm~1mm程度)が設けられており、石英ガラス金型1近傍で反射された電子線を結像する、対物レンズの一部を構成している。上部電極6と石英ガラス金型1との距離L1、上部電極6に与えられる正の電圧、また、電子線5の通過孔の径R1は、検査に最適な電子像が得られるよう、最適設計されている。例えば、等電位面を形成する上で、L1>R1が望ましい。また、電子線の散乱を避けるため、R1は電子線5の径を越えていることが望ましい。 An upper electrode 6 and a lower electrode 7 are installed so as to sandwich the quartz glass mold 1. The lower surface of the upper electrode 6 and the upper surface of the lower electrode 7 are parallel to the surface of the quartz glass mold 1 in a sufficiently wide area so as to form an equipotential surface parallel to the surface of the quartz glass mold 1. . The upper electrode 6 is provided with a hole (about 100 μm to 1 mm) through which the electron beam 5 passes, and constitutes a part of an objective lens that forms an image of the electron beam reflected near the quartz glass mold 1. . The distance L1 between the upper electrode 6 and the quartz glass mold 1, the positive voltage applied to the upper electrode 6, and the diameter R1 of the passage hole of the electron beam 5 are optimally designed so as to obtain an optimal electron image for inspection. Has been. For example, when forming an equipotential surface, L1> R1 is desirable. In order to avoid scattering of the electron beam, it is desirable that R1 exceeds the diameter of the electron beam 5.
 石英ガラス金型1の表面の電圧が、電子線5がその表面近傍で十分に減速され、その表面に数eV程度の低エネルギーで衝突するか、あるいは、その表面に衝突する直前で反転するように、下部電極7には負の電圧が与えられている。下部電極7には、紫外線8が通過して石英ガラス金型1の裏面を照射するように、微細な孔R2が設けられている。紫外線8の通過孔の径は、下部電極7上面と石英ガラス金型1表面との距離より小さく設計され、この孔に起因する石英ガラス金型1表面の電位の乱れは、電子像に影響しない。また、負帯電領域へ十分な紫外線を照射できるように、下部電極7に設けた紫外線8の通過孔の径R2は、電子線の径を越えていることが望ましい。 The voltage of the surface of the quartz glass mold 1 is sufficiently slowed down near the surface of the quartz glass mold 1 and collides with the surface with a low energy of about several eV, or reverses just before the surface collides with the surface. In addition, a negative voltage is applied to the lower electrode 7. The lower electrode 7 is provided with a fine hole R2 so that the ultraviolet rays 8 pass through and irradiate the back surface of the quartz glass mold 1. The diameter of the passage hole for the ultraviolet rays 8 is designed to be smaller than the distance between the upper surface of the lower electrode 7 and the surface of the quartz glass mold 1, and the disturbance of the potential on the surface of the quartz glass mold 1 caused by this hole does not affect the electron image. . Further, it is desirable that the diameter R2 of the passage hole for the ultraviolet ray 8 provided in the lower electrode 7 exceeds the diameter of the electron beam so that the negatively charged region can be irradiated with sufficient ultraviolet ray.
 紫外線8は、紫外線光源9から発射され、レンズ10により集光されて、石英ガラス金型1の裏面を照射する。紫外線8の照射領域は、検査視野とほぼ同等となっている。本図における紫外線光源9は、レンズ10に対する光源を示しており、たとえば、実際の紫外線光源はさらに離れた場所にあって石英ガラスファイバーで導入された先端であってもよい。 The ultraviolet ray 8 is emitted from the ultraviolet light source 9, is collected by the lens 10, and irradiates the back surface of the quartz glass mold 1. The irradiation area of the ultraviolet rays 8 is almost equal to the inspection visual field. The ultraviolet light source 9 in this figure shows the light source for the lens 10. For example, the actual ultraviolet light source may be a tip further apart and introduced by quartz glass fiber.
 レンズ10は石英ガラス金型1に接近して設置でき、また、その大きさも数cm程度にすることが可能なので、紫外線光源9からの紫外線をほとんど受光し、数100ミクロン程度の検査領域に集光することができる。このため、電子線5の電流量を増加させて高速の検査動作を行った際に発生する表面の負帯電を、十分な光量の紫外線を照射することにより、除去できる。 Since the lens 10 can be installed close to the quartz glass mold 1 and can have a size of several centimeters, the lens 10 receives almost all ultraviolet rays from the ultraviolet light source 9 and collects them in an inspection region of about several hundred microns. Can be light. For this reason, the negative charge on the surface generated when the current amount of the electron beam 5 is increased and a high-speed inspection operation is performed can be removed by irradiating with a sufficient amount of ultraviolet rays.
 下部電極7、レンズ10、紫外線光源9は、移動ステージ4とは分離されて、下部電極7の紫外線通過孔の中心と、上部電極6の電子線通過孔の中心とが、合わさるように設置されている。そのため、移動ステージ4の運動によって石英ガラス金型1の様々な位置に電子線5が照射される場合でも、常に正しくその裏側を紫外線8で照射することができる。 The lower electrode 7, the lens 10, and the ultraviolet light source 9 are separated from the moving stage 4 so that the center of the ultraviolet passage hole of the lower electrode 7 and the center of the electron beam passage hole of the upper electrode 6 are aligned. ing. Therefore, even when the electron beam 5 is irradiated to various positions of the quartz glass mold 1 by the movement of the moving stage 4, the back side can always be correctly irradiated with the ultraviolet rays 8.
 下部電極7、レンズ10、紫外線光源9は、ひとつのユニットを構成している事が望ましい。たとえば、石英ガラス金型1、あるいは、石英ガラス1が戴置されたホルダ2を被検査試料としてこの検査装置に導入する、あるいは検査後装置から排出する際は、移動ステージ4は、電子線5の照射位置から離れた、被検査試料を装置内に出し入れする導入口近くに移動する。 It is desirable that the lower electrode 7, the lens 10 and the ultraviolet light source 9 constitute one unit. For example, when the quartz glass mold 1 or the holder 2 on which the quartz glass 1 is placed is introduced into the inspection apparatus as a sample to be inspected or discharged from the post-inspection apparatus, the moving stage 4 has an electron beam 5. The sample to be inspected moves away from the irradiation position near the introduction port through which the sample is taken in and out of the apparatus.
 その移動の際、下部電極7、レンズ10、紫外線光源9は構造上、移動の障害となる場合がある。このようなときは、下部電極7、レンズ10、紫外線光源9を、ひとつのユニットとしておけば、図2に示すような動作で、障害を回避できる。図2では、下部電極7、レンズ10、紫外線光源9を一つの下部ユニット11としている。検査が終了すると、(1)の動作により下部ユニット11が下方に下がり、移動ステージ4が移動できる空間を作る。移動ステージ4は、被検査試料導入口へ移動し(動作(2))、被検査試料を装置外に出した後、次の被検査試料を受け入れて、電子線が照射できる位置に復帰する(動作(3))。その後、下部ユニット11が上昇し(動作(4))、検査を開始する。 When moving, the lower electrode 7, the lens 10, and the ultraviolet light source 9 may obstruct the movement due to the structure. In such a case, if the lower electrode 7, the lens 10, and the ultraviolet light source 9 are provided as a single unit, the failure can be avoided by the operation shown in FIG. In FIG. 2, the lower electrode 7, the lens 10, and the ultraviolet light source 9 are used as one lower unit 11. When the inspection is completed, the lower unit 11 is lowered downward by the operation (1), and a space in which the moving stage 4 can move is created. The moving stage 4 moves to the inspection sample introduction port (operation (2)), takes the inspection sample out of the apparatus, receives the next inspection sample, and returns to the position where the electron beam can be irradiated ( Operation (3)). Thereafter, the lower unit 11 moves up (operation (4)), and inspection is started.
 次に、本実施例に係る反射結像型顕微鏡を用いたナノインプリント石英ガラス金型欠陥検査装置全体について、図3を用いて説明する。但し、図3には真空排気用のポンプやその制御装置、排気系配管、被検査試料の搬送系などは略されている。また、電子線の軌道は、説明のため実際の軌道より誇張されている。 Next, the whole nanoimprinted quartz glass mold defect inspection apparatus using the reflection imaging microscope according to this embodiment will be described with reference to FIG. However, FIG. 3 omits a pump for vacuum exhaust, its control device, exhaust system piping, a transport system for the sample to be inspected, and the like. The electron beam trajectory is exaggerated from the actual trajectory for the sake of explanation.
 まず、電子線照射に係わる部分について説明する。電子銃101から放出された照射電子線100aは、コンデンサレンズ102によって収束されながら、セパレータ103により偏向されて、クロスオーバー100bを形成した後、被検査試料104に略平行束の電子線5となって照射される。以下、各要素について説明する。図3に表示した被検査試料104は、石英ガラス金型1あるいは、石英ガラス金型1が戴置されたホルダ2である。 First, the part related to electron beam irradiation will be described. The irradiation electron beam 100a emitted from the electron gun 101 is deflected by the separator 103 while being converged by the condenser lens 102 to form a crossover 100b, and then becomes an electron beam 5 having a substantially parallel bundle on the specimen 104 to be inspected. Is irradiated. Hereinafter, each element will be described. The sample 104 to be inspected shown in FIG. 3 is the quartz glass mold 1 or the holder 2 on which the quartz glass mold 1 is placed.
 電子銃101には、光源径が小さく大きな電流値が得られる、Zr/O/W型のショットキー電子源が用いられるが、より高い電流値が得られる六ホウ化ランタン(LaB)電子源等、他の電子源を用いてもよい。また、電子源近傍に磁界レンズを配する磁界重畳型であってもよい。電子銃101への引出電圧、引き出された電子線の加速電圧、および電子源フィラメントの加熱電流などの、電子銃の運転に必要な電圧と電流は電子銃制御装置105により供給、制御されている。 For the electron gun 101, a Zr / O / W type Schottky electron source having a small light source diameter and a large current value is used, and a lanthanum hexaboride (LaB 6 ) electron source capable of obtaining a higher current value is used. Other electron sources may be used. Further, a magnetic field superposition type in which a magnetic lens is disposed in the vicinity of the electron source may be used. The voltage and current necessary for the operation of the electron gun, such as the extraction voltage to the electron gun 101, the acceleration voltage of the extracted electron beam, and the heating current of the electron source filament, are supplied and controlled by the electron gun controller 105. .
 コンデンサレンズ102は、図では1つに描かれているがより平行度の高い照射電子線が得られる様、複数のレンズを組み合わせたシステムであっても良い。コンデンサレンズ102は、対物レンズ106の後焦点面に電子線が集束するように調整される。 Although the condenser lens 102 is depicted as one in the drawing, it may be a system in which a plurality of lenses are combined so that an irradiation electron beam with higher parallelism can be obtained. The condenser lens 102 is adjusted so that the electron beam is focused on the back focal plane of the objective lens 106.
 セパレータ103は、被検査試料104に向かう照射電子線と、被検査試料104から戻ってくる反射電子線とを分離するために設置される。本実施例では、E×B偏向器を利用したセパレータを例としている。E×B偏向器は、上方から来た電子線を偏向し、下方から来た電子線を直進させるように設定できる。この場合、図のように照射電子線を供給する電子光学鏡筒は傾斜され、反射された電子を結像する電子光学鏡筒は直立する。セパレータとして、磁界セクターを使用することも可能である。電子線の光軸に垂直な方向に磁界を設置し、照射電子線を被検査試料104の方向へ偏向し、被検査試料104からの電子は照射電子線の来る方向とは正反対の方向へ偏向する。この場合は、照射電子線鏡筒の光軸と電子線結像鏡筒の光軸とは、対物レンズの光軸を中心に左右対称の配置となる。 The separator 103 is installed to separate the irradiation electron beam directed toward the sample 104 to be inspected and the reflected electron beam returning from the sample 104 to be inspected. In the present embodiment, a separator using an E × B deflector is taken as an example. The E × B deflector can be set so as to deflect the electron beam coming from above and to make the electron beam coming from below go straight. In this case, as shown in the figure, the electron optical column that supplies the irradiation electron beam is tilted, and the electron optical column that forms an image of the reflected electrons stands upright. It is also possible to use a magnetic field sector as a separator. A magnetic field is installed in a direction perpendicular to the optical axis of the electron beam, and the irradiated electron beam is deflected in the direction of the sample 104 to be inspected, and the electrons from the sample 104 to be inspected are deflected in a direction opposite to the direction in which the irradiated electron beam comes. To do. In this case, the optical axis of the irradiation electron beam column and the optical axis of the electron beam imaging column are arranged symmetrically about the optical axis of the objective lens.
 セパレータによって照射電子線100aが偏向されるとき、セパレータ103により収差が発生する。この収差を補正する必要がある場合は、セパレータ103がE×B偏向器の場合では、収差補正用のE×B偏向器120が配置される。また、セパレータ103が磁界セクターの場合は、補助的なコイルを設けて補正される。 When the irradiation electron beam 100a is deflected by the separator, the separator 103 generates aberration. When it is necessary to correct this aberration, when the separator 103 is an E × B deflector, an E × B deflector 120 for aberration correction is arranged. When the separator 103 is a magnetic sector, correction is made by providing an auxiliary coil.
 セパレータ103によって偏向された照射電子線100aは、対物レンズ106により被検査試料104表面に対し垂直に入射する平行束の電子線5に形成される。前述のように、対物レンズ106の後焦点に電子線が集束されるように、照射系コンデンサレンズ102が調整されるので、平行性の高い電子線を被検査試料104に対して照射できる。照射電子線100aが照射する被検査試料104上の領域は、例えば2500μm(平方ミクロン)、10000μm(平方ミクロン)等といった大きな面積を有する。 The irradiation electron beam 100 a deflected by the separator 103 is formed on the parallel bundle of electron beams 5 incident perpendicularly to the surface of the sample 104 to be inspected by the objective lens 106. As described above, since the irradiation system condenser lens 102 is adjusted so that the electron beam is focused on the back focal point of the objective lens 106, it is possible to irradiate the specimen 104 with a highly parallel electron beam. A region on the inspection sample 104 irradiated by the irradiation electron beam 100a has a large area such as 2500 μm 2 (square micron), 10000 μm 2 (square micron), or the like.
 被検査試料104は移動ステージ4の上に絶縁部材3(図3には図示せず)を介して戴置されている。移動ステージ4は、石英ガラス金型1(図3には図示せず)の中心を回転中心とした回転運動、および、石英ガラス金型1の半径方向への直進運動とを行うことができる。移動ステージ4が回転しながら石英ガラス金型1の半径方向に移動することにより、石英ガラス金型1のパターンが存在する領域を隈なく検査する。移動ステージ4の運動は、検査中の動作や、図2で説明した被検査試料104の入れ替え動作など、に応じて移動ステージ制御装置107によって制御されている。 The sample 104 to be inspected is placed on the moving stage 4 via the insulating member 3 (not shown in FIG. 3). The moving stage 4 can perform a rotational movement around the center of the quartz glass mold 1 (not shown in FIG. 3) and a linear movement of the quartz glass mold 1 in the radial direction. By moving the moving stage 4 in the radial direction of the quartz glass mold 1 while rotating, the region where the pattern of the quartz glass mold 1 exists is thoroughly inspected. The movement of the moving stage 4 is controlled by the moving stage control device 107 according to the operation during the inspection, the replacement operation of the sample 104 to be inspected described with reference to FIG.
 対物レンズ106は、複数の電極からなる静電レンズか、または、磁界レンズである。いずれの場合でも、被検査試料104近傍で反射した電子線が対物レンズに引き戻されるように、表面上に電界を形成する必要があるため、試料に最も近い位置には、正の電位を印加できる、図1で説明した上部電極6が配されている。本図では、対物レンズ106に含まれており、明示されていない。 The objective lens 106 is an electrostatic lens composed of a plurality of electrodes or a magnetic lens. In any case, since it is necessary to form an electric field on the surface so that the electron beam reflected in the vicinity of the specimen 104 to be inspected is pulled back to the objective lens, a positive potential can be applied to the position closest to the specimen. The upper electrode 6 described in FIG. 1 is disposed. In this figure, it is included in the objective lens 106 and is not clearly shown.
 被検査試料104表面の電圧が、電子線の加速電圧とほぼ等しい負電位が印加されるように、図1で説明した下部電極7が配されている。図3では、図2で説明した下部ユニット11として示されている。下部ユニット11の構成要素である下部電極7の電圧は、下部ユニット制御装置108により、被検査試料104の表面電圧と加速電圧との差が数V程度以下であるように設定される。照射電子線100aは、この負電位によって被検査試料104の手前で減速され、表面電位の設定に依存して被検査試料104に衝突する前、または、低エネルギーでの衝突によって、反対方向に反射され反射電子100cとなる。 The lower electrode 7 described with reference to FIG. 1 is arranged so that a negative potential substantially equal to the acceleration voltage of the electron beam is applied to the surface of the specimen 104 to be inspected. In FIG. 3, it is shown as the lower unit 11 described in FIG. The voltage of the lower electrode 7 which is a component of the lower unit 11 is set by the lower unit control device 108 so that the difference between the surface voltage of the sample 104 to be inspected and the acceleration voltage is about several volts or less. The irradiation electron beam 100a is decelerated in front of the sample 104 to be inspected by this negative potential, and is reflected in the opposite direction before colliding with the sample 104 to be inspected depending on the setting of the surface potential or by collision with low energy. Thus, the reflected electrons 100c are obtained.
 この反射電子100cの軌道は被検査試料104上のパターンの情報を反映しており、電子結像光学系を用いた像形成により、欠陥判定のための画像として装置に取り込まれる。次に、結像光学系および画像取得と欠陥判定について説明する。 The trajectory of the reflected electrons 100c reflects the pattern information on the specimen 104 to be inspected, and is taken into the apparatus as an image for defect determination by image formation using the electron imaging optical system. Next, the imaging optical system, image acquisition, and defect determination will be described.
 反射電子100cは対物レンズ106により第1の像を形成する。セパレータ103は本実施例ではE×B偏向器であるので、下方から進行した電子線に対しては偏向作用を持たないように制御され、反射電子100cは偏向を受けずに進行し、第1の像は中間電子レンズ109、投影電子レンズ110によって順次結像され、最終的に画像検出部111に拡大投影される。第1の像は、セパレータ103の中心に形成されることが望ましい。これにより、セパレータ3の電磁界による像への収差の影響を最小限にできるからである。また、図3では投影電子レンズ110は1つの電子レンズとして描かれているが、高い倍率の拡大や像歪の補正などのために複数の電子レンズで構成される場合もある。 The reflected electrons 100 c form a first image by the objective lens 106. Since the separator 103 is an E × B deflector in this embodiment, the separator 103 is controlled so as not to have a deflection action with respect to the electron beam traveling from below, and the reflected electron 100c travels without being deflected. These images are sequentially formed by the intermediate electron lens 109 and the projection electron lens 110, and finally enlarged and projected on the image detection unit 111. The first image is desirably formed at the center of the separator 103. This is because the influence of the aberration on the image due to the electromagnetic field of the separator 3 can be minimized. In FIG. 3, the projection electron lens 110 is depicted as a single electron lens, but it may be composed of a plurality of electron lenses for high magnification and image distortion correction.
 画像検出部111は像を電気信号に変換し石英ガラス金型の表面のパターンが形成する電位の分布像を、画像処理部112に送る。また、これまで述べてきた様々な電子レンズやセパレータ103などの電子光学系の制御は、電子光学系制御装置113が行っている。 The image detection unit 111 converts the image into an electric signal and sends a potential distribution image formed by the pattern on the surface of the quartz glass mold to the image processing unit 112. The electron optical system controller 113 controls the various electron lenses and the electron optical systems such as the separator 103 described so far.
 次に、画像検出部111について説明する。画像検出には、反射電子像を光学像に変換するための蛍光板111aと光学画像検出装置111bとを光学像伝達系111cにより光学結合させる。光学像伝達系111cとして、光ファイバー束が用いられている。光ファイバー束は、細い光ファイバーを画素数と同じ本数束ねたもので、光学像を効率よく伝達できる。 Next, the image detection unit 111 will be described. For image detection, a fluorescent screen 111a for converting a reflected electron image into an optical image and an optical image detection device 111b are optically coupled by an optical image transmission system 111c. An optical fiber bundle is used as the optical image transmission system 111c. The optical fiber bundle is a bundle of thin optical fibers equal to the number of pixels, and can efficiently transmit an optical image.
 また、十分な光量をもった蛍光像が得られる場合は光学伝達効率を低くしても良く、上記光ファイバー束の代わりに光学レンズを用い、光学レンズによって蛍光板111a上の光学像を光学画像検出装置111bの受光面上に結像させる場合もある。 Further, when a fluorescent image having a sufficient amount of light can be obtained, the optical transmission efficiency may be lowered. An optical lens is used instead of the optical fiber bundle, and the optical image on the fluorescent plate 111a is optically detected by the optical lens. In some cases, an image is formed on the light receiving surface 111b.
 また、光学像伝達系に増幅装置を挿入し、光学画像検出装置111bに十分な光量の光学像を伝達することもできる。光学画像検出装置111bは、その受光面上に結像された光学像を電気的な画像信号に変換して出力する。光学画像検出装置111bには、時間遅延積分(TDI)型のCCDを用いたTDIセンサが用いられている。 It is also possible to insert an amplification device into the optical image transmission system and transmit an optical image with a sufficient amount of light to the optical image detection device 111b. The optical image detection device 111b converts the optical image formed on the light receiving surface into an electrical image signal and outputs it. A TDI sensor using a time delay integration (TDI) type CCD is used for the optical image detection device 111b.
 画像検出部111としては、上記のように、電子像を一度光学像に返還してから、その光学像を画像信号として出力する場合の他、電子線に対して感度のある検出器を用いて、光学像への変換を経ずに直接画像信号として出力する装置を用いることができる。 As described above, the image detection unit 111 uses a detector sensitive to an electron beam in addition to returning an electronic image to an optical image and then outputting the optical image as an image signal. A device that directly outputs an image signal without conversion to an optical image can be used.
 画像処理部112は、画像信号記憶部112a、欠陥判定部112bより構成されている。画像信号記憶部112aは、電子光学条件、画像データ、およびステージ位置データを、電子光学系制御装置113、画像検出部111、およびステージ制御装置107からそれぞれ取得し、画像データを被検査試料104上の座標系に関係付けて記憶する。欠陥判定部112bは、被検査試料(石英ガラス金型)104上の座標付けがされた画像データを用い、あらかじめ設定された値との比較、あるいは隣接パターン像との比較、などの様々な欠陥判定法により欠陥を判定する。 The image processing unit 112 includes an image signal storage unit 112a and a defect determination unit 112b. The image signal storage unit 112 a obtains the electro-optical condition, image data, and stage position data from the electro-optical system control device 113, the image detection unit 111, and the stage control device 107, and the image data is stored on the specimen 104 to be inspected. It is stored in relation to the coordinate system. The defect determination unit 112b uses various kinds of defects such as comparison with a preset value or comparison with an adjacent pattern image using image data with coordinates on the inspection sample (quartz glass mold) 104. Defects are determined by a determination method.
 欠陥の座標および、対応するピクセルの信号強度は検査装置制御部114に転送、記憶される。これらの欠陥判定の方法は、ユーザーが設定するかまたは、あらかじめ被検査試料の種類に対応付けられた方法を検査装置制御部114が選択する。 The coordinates of the defect and the signal intensity of the corresponding pixel are transferred and stored in the inspection apparatus control unit 114. These defect determination methods are set by the user, or the inspection apparatus control unit 114 selects a method associated with the type of sample to be inspected in advance.
 装置各部の動作条件は、検査装置制御部114から入出力される。検査装置制御部114には、予め電子線発生時の加速電圧、電子線偏向幅・偏向速度、ステージ移動速度、画像検出素子からの画像信号取り込みタイミング等々の諸条件が入力されており、各要素の制御装置を総括的に制御し、ユーザーとのインターフェースとなる。検査装置制御部114は、役割を分担し通信回線で結合された複数の計算機から構成される場合もある。また、モニタ付入出力装置115が設置されている。 The operating conditions of each part of the apparatus are input / output from the inspection apparatus control unit 114. Various conditions such as an acceleration voltage at the time of generating an electron beam, an electron beam deflection width / deflection speed, a stage moving speed, and an image signal capturing timing from the image detection element are input to the inspection apparatus control unit 114 in advance. The control device is comprehensively controlled and serves as an interface with the user. The inspection apparatus control unit 114 may be composed of a plurality of computers that share roles and are connected by communication lines. In addition, a monitor input / output device 115 is installed.
 以上が、反射結像型顕微鏡を用いた石英ガラス金型検査装置の全体的な概略である。次に、石英ガラス金型表面の予備帯電除去動作、および、紫外線照射しながらの検査動作について説明する。 The above is an overall outline of a quartz glass mold inspection apparatus using a reflection imaging microscope. Next, the preliminary charging removal operation on the quartz glass mold surface and the inspection operation while irradiating with ultraviolet rays will be described.
 石英ガラスは絶縁体であるため、検査過程において電子線照射が行われる前にも帯電が発生する可能性がある。たとえば、帯電は金型パターンの加工中や、搬送中などで生じる。石英ガラス金型の表面が帯電していても、下部電極7に与える電圧を調整することで、石英ガラス金型の表面の電位を所望の電位にすることは可能であるが、帯電電位の分布は通常一様でなく、また、帯電量も電圧にして数100Vに及ぶ場合もある。石英ガラス金型の表面の帯電を予め検査前に除去しておくと、検査中に下部電極7の電位を変化させる必要がなく、より安定な検査が可能である。 Since quartz glass is an insulator, there is a possibility that charging will occur before electron beam irradiation is performed during the inspection process. For example, charging occurs during processing of a mold pattern or during conveyance. Even if the surface of the quartz glass mold is charged, it is possible to set the potential of the surface of the quartz glass mold to a desired potential by adjusting the voltage applied to the lower electrode 7, but the distribution of the charged potential Is usually not uniform, and the charge amount may be several hundred volts in voltage. If the charge on the surface of the quartz glass mold is previously removed before the inspection, it is not necessary to change the potential of the lower electrode 7 during the inspection, and a more stable inspection is possible.
 検査動作に入る前に予め帯電を除去する、予備帯電除去動作は、被検査試料が大気中から、検査動作が実施されるメインチャンバに搬送される際に通過する、ロードロックチャンバで行うのが効率的である。被検査試料の装置への搬入では、ロードロックチャンバを大気開放して被検査試料を導入後、ロードロックチャンバを真空排気して、真空に保たれているメインチャンバへ搬送される。このように、被検査試料は必ずロードロックチャンバに一時停留するので、その際に帯電除去を行う。 The preliminary charge removal operation, in which the charge is previously removed before entering the inspection operation, is performed in the load lock chamber through which the sample to be inspected passes when it is transported from the atmosphere to the main chamber where the inspection operation is performed. Efficient. When the sample to be inspected is carried into the apparatus, the load lock chamber is opened to the atmosphere and the sample to be inspected is introduced, and then the load lock chamber is evacuated and transported to the main chamber maintained in a vacuum. As described above, since the sample to be inspected always stops temporarily in the load lock chamber, the charge is removed at that time.
 帯電を除去する方法としては、真空状態でイオンや電子を照射して被検査試料の表面の帯電を中和する方法や、不活性ガスを導入して紫外線を照射することによってイオン化し、被検査試料の表面の帯電を中和する方法などを用いることができる。 As a method of removing the charge, a method of neutralizing the charge on the surface of the sample to be inspected by irradiating ions or electrons in a vacuum state, or an ionization by injecting an inert gas and irradiating with ultraviolet rays for inspection A method of neutralizing the charge on the surface of the sample can be used.
 また別の方法として、被検査試料を加熱する方法もある。図4に被検査試料を加熱して帯電を除去する際の、ロードロックチャンバ内の構成を示す。石英ガラス金型1、あるいは石英ガラス金型1を戴置したホルダ2は、接地電極201の上に戴置されている。接地電極201の下部にはヒーター202が装備されており、石英ガラス金型1およびホルダ2を一様に加熱する。加熱温度は約200℃~約400℃である。石英ガラス金型1、およびホルダ2の上方に電極203を設けて適当な電圧を印加することにより、帯電電荷を接地電極201へ逃がす方向の電界を形成してもよい。ヒーター202はロードロックチャンバ内の移動ステージ204に設置されている。 Another method is to heat the sample to be inspected. FIG. 4 shows the configuration in the load lock chamber when the specimen to be inspected is heated to remove the charge. The quartz glass mold 1 or the holder 2 on which the quartz glass mold 1 is placed is placed on the ground electrode 201. A heater 202 is provided below the ground electrode 201 to uniformly heat the quartz glass mold 1 and the holder 2. The heating temperature is about 200 ° C to about 400 ° C. An electrode 203 may be provided above the quartz glass mold 1 and the holder 2 and an appropriate voltage may be applied to form an electric field in a direction in which the charged charges are released to the ground electrode 201. The heater 202 is installed on a moving stage 204 in the load lock chamber.
 上記の過程により、表面の帯電が除去された石英ガラス金型は、メインチャンバへ搬送され、検査動作に入る。磁気記録用パターン媒体加工用の石英ガラス金型のパターンは回転方向に沿って形成されている。検査開始の始点はパターン最外周あるいは、最内周の位置である。石英ガラス金型を回転させながら、半径方向に移動させることによって、パターン全面を検査する。検査の際、電子線は試料に連続的に照射される。 The quartz glass mold from which the surface charge has been removed by the above process is transferred to the main chamber and enters the inspection operation. The pattern of the quartz glass mold for processing the magnetic recording pattern medium is formed along the rotation direction. The starting point of the inspection start is the position of the pattern outermost periphery or innermost periphery. The entire surface of the pattern is inspected by moving the quartz glass mold in the radial direction while rotating the quartz glass mold. During the inspection, the sample is continuously irradiated with the electron beam.
 電子線照射によって発生する負帯電量は、ある検査視野に電子線が照射される時間に比例するため、検査視野をパターンが横切る速度を一定にしておけば、常に同じ負帯電量となり、すなわち、この負帯電を除去する紫外線の量も一定であり都合がよい。したがって、半径方向の移動に伴って、回転速度を変化させ、検査位置でのパターン移動速度が一定となるようにしておく。 The amount of negative charge generated by electron beam irradiation is proportional to the time during which an electron beam is irradiated to a certain inspection field, so if the speed at which the pattern crosses the inspection field is constant, the negative charge amount is always the same, that is, The amount of ultraviolet rays for removing this negative charge is also constant and convenient. Accordingly, the rotational speed is changed with the movement in the radial direction so that the pattern moving speed at the inspection position is constant.
 照射する紫外線は波長およそ200nmから300nmの間であり、石英ガラスを透過し、かつ、石英ガラス表面の負帯電を除去できる波長(石英ガラスが電子を保持するエネルギーよりも大きなエネルギーを有する)である。検査開始の直前に紫外線が導入され、次に電子線が照射されて検査が開始される。検査前に、予め照射紫外線量など、検査速度に応じた検査条件を決定しておく。 The ultraviolet rays to be irradiated have a wavelength between about 200 nm and 300 nm, and are wavelengths that allow the quartz glass to pass through and remove the negative charge on the surface of the quartz glass (the quartz glass has energy larger than the energy for holding electrons). . Ultraviolet rays are introduced immediately before the start of inspection, and then an electron beam is irradiated to start inspection. Prior to the inspection, the inspection conditions corresponding to the inspection speed, such as the irradiation ultraviolet ray amount, are determined in advance.
 石英ガラス金型全面の検査が終了すると、電子線照射が停止し、ほぼ同時に紫外線照射も停止して、装置からの排出動作が実行される。電子線および紫外線の照射停止は、電子源および紫外線光源の動作安定性の観点から、電子源、紫外線光源そのものの停止ではなく、シャッターの挿入による紫外線の遮断、ブランカーによる電子線の遮断によって行われる。 When the inspection of the entire surface of the quartz glass mold is completed, the electron beam irradiation is stopped, and the ultraviolet irradiation is also stopped almost simultaneously, and the discharging operation from the apparatus is executed. The electron beam and ultraviolet light irradiation is stopped from the viewpoint of operational stability of the electron source and ultraviolet light source, not by stopping the electron source and ultraviolet light source itself, but by blocking the ultraviolet light by inserting a shutter, and blocking the electron beam by a blanker. .
 本実施例によれば、試料を平行な電極で挟む構成であっても電子線照射によって発生する石英ガラス金型表面の負帯電を、裏面からの紫外線照射で消去しつつ、石英ガラス金型表面の電位を一定に保つことができ、石英ガラス金型の高速度での検査を実現できる検査装置および検査方法を提供することができる。 According to the present example, the quartz glass mold surface is erased by irradiating the back surface of the quartz glass mold generated by electron beam irradiation with ultraviolet irradiation from the back surface even when the sample is sandwiched between parallel electrodes. Therefore, it is possible to provide an inspection apparatus and an inspection method capable of maintaining a constant electric potential of the quartz glass mold and realizing an inspection of the quartz glass mold at a high speed.
 第2の実施例について図5を用いて説明する。なお、実施例1に記載され、本実施例に未記載の事項は本実施例にも適用できる。 The second embodiment will be described with reference to FIG. The matters described in the first embodiment but not described in the present embodiment can be applied to the present embodiment.
 実施例1においては、石英ガラス金型の裏側に設置された下部電極に通過孔を開口し、紫外線を照射していた。本実施例では、孔を開口した電極の変わりに、石英ガラス表面に薄い導電膜を形成した電極を用いた。 In Example 1, a passage hole was opened in the lower electrode installed on the back side of the quartz glass mold, and ultraviolet rays were irradiated. In this example, an electrode in which a thin conductive film was formed on the surface of quartz glass was used instead of the electrode having a hole.
 図5は本実施例に係る検査装置の要部概略図である。石英ガラス金型1およびホルダ2は、上面に導電薄膜305を形成した石英ガラス板306の上に戴置されている。導電薄膜305は金属蒸着などによって紫外線透過率を著しく低下しない程度の膜厚で形成される。本実施例では導電薄膜として白金(Pt)を10nm形成して用いた。金(Au)を用いることもできる。また、導電薄膜305には電圧が与えられ、石英ガラス金型1の表面近傍で電子線5を反射するような表面電位になるように設定される。 FIG. 5 is a schematic diagram of a main part of the inspection apparatus according to the present embodiment. The quartz glass mold 1 and the holder 2 are placed on a quartz glass plate 306 having a conductive thin film 305 formed on the upper surface. The conductive thin film 305 is formed to a thickness that does not significantly reduce the ultraviolet transmittance by metal vapor deposition or the like. In this example, platinum (Pt) having a thickness of 10 nm was used as the conductive thin film. Gold (Au) can also be used. In addition, a voltage is applied to the conductive thin film 305 and the surface potential is set so as to reflect the electron beam 5 near the surface of the quartz glass mold 1.
 石英ガラス板306は紫外線8を透過するので、移動ステージ4が検査中に移動しても、電子線5が照射する位置の反対側に紫外線8を照射することができるとともに、導電薄膜305によって石英ガラス金型1の表面の電位を安定化させる。移動ステージ4の下部に設置されるユニットから実施例1における下部電極を排除でき、紫外線光源9と集光レンズ10のみとなるので、下部ユニット全体のサイズを小さくすることができる。移動ステージ4の移動領域との干渉領域が小さくなるので、移動ステージ4を小さくすることができる。 Since the quartz glass plate 306 transmits the ultraviolet light 8, even if the moving stage 4 moves during the inspection, the ultraviolet light 8 can be irradiated on the opposite side of the position irradiated by the electron beam 5, and the conductive thin film 305 allows quartz to be irradiated. The surface potential of the glass mold 1 is stabilized. Since the lower electrode in the first embodiment can be eliminated from the unit installed at the lower part of the moving stage 4 and only the ultraviolet light source 9 and the condenser lens 10 are provided, the size of the entire lower unit can be reduced. Since the interference area with the moving area of the moving stage 4 becomes small, the moving stage 4 can be made small.
 以上述べたように、本実施例によれば試料をその上方及び下方に設けられた電極で挟む構成であっても、試料表面に平行な等電位面を形成し、かつ裏面(下方)から紫外線を試料に照射することのできる検査装置及び検査方法を提供することができる。また、下部電極として導電薄膜を用いることにより、構造が簡単になり、試料を容易に支持でき、信頼性が向上する。 As described above, according to the present embodiment, even when the sample is sandwiched between electrodes provided above and below it, an equipotential surface parallel to the sample surface is formed, and ultraviolet light is emitted from the back surface (below). It is possible to provide an inspection apparatus and an inspection method that can irradiate a sample with a sample. Further, by using a conductive thin film as the lower electrode, the structure is simplified, the sample can be easily supported, and the reliability is improved.
 第3の実施例について図6を用いて説明する。なお、実施例1や実施例2に記載され、本実施例に未記載の事項は本実施例にも適用できる。 The third embodiment will be described with reference to FIG. Note that items described in the first and second embodiments but not described in the present embodiment can be applied to the present embodiment.
 これまでの実施例は、石英ガラス金型裏面のみからの紫外線照射による負帯電除去を実施する検査装置であった。本実施例では、石英ガラス金型裏面からだけではなく、表面からも紫外線照射を行い、さらに高速の負帯電除去を実現し、検査の高速化を実現する実施例である。 The previous examples have been inspection devices that perform negative charge removal by ultraviolet irradiation only from the back side of the quartz glass mold. In the present embodiment, ultraviolet irradiation is performed not only from the rear surface of the quartz glass mold but also from the front surface, and further, high-speed negative charge removal is realized, thereby realizing high-speed inspection.
 図6は本実施例に係る検査装置の概略図である。本実施例では、図3を用いて説明した検査装置に、被検査試料104の上方からも紫外線401が入射するように、集光反射鏡402が電子光学鏡筒内に設置され、電子光学鏡筒側方に紫外線光源403が配されている。紫外線401は集光反射鏡402により反射および集光され、被検査試料104の電子線5が照射する領域に、同時に照射される。これにより、下部ユニット11から裏面から照射される紫外線と合わせて、さらに強度を上げた紫外線照射が可能となる。 FIG. 6 is a schematic view of the inspection apparatus according to the present embodiment. In the present embodiment, a condensing reflection mirror 402 is installed in the electron optical column so that the ultraviolet ray 401 is incident on the inspection apparatus 104 described with reference to FIG. An ultraviolet light source 403 is disposed on the side of the cylinder. The ultraviolet ray 401 is reflected and collected by the condensing / reflecting mirror 402, and is simultaneously irradiated onto the region of the sample 104 to be irradiated with the electron beam 5. Accordingly, it is possible to irradiate the ultraviolet rays with further increased intensity together with the ultraviolet rays irradiated from the back surface from the lower unit 11.
 本実施例によれば、試料をその上方及び下方に設けられた電極で挟む構成であっても、試料表面に平行な等電位面を形成し、かつ裏面(下方)から紫外線を試料に照射することのできる検査装置及び検査方法を提供することができる。また、電子線照射領域にさらに大量の紫外線を照射することができるため、照射電子線の電流量を増加させることができ、さらに高速の検査を行うことができる。 According to this example, even when the sample is sandwiched between electrodes provided above and below it, an equipotential surface parallel to the sample surface is formed and the sample is irradiated with ultraviolet rays from the back surface (below) It is possible to provide an inspection apparatus and an inspection method that can be used. Further, since a larger amount of ultraviolet rays can be irradiated to the electron beam irradiation region, the amount of current of the irradiation electron beam can be increased, and a higher-speed inspection can be performed.
1…石英ガラス金型、2…ホルダ、3…絶縁部材、4…移動ステージ、5…電子線、6…上部電極、7…下部電極、8…紫外線、9…紫外線光源、10…レンズ、11…下部ユニット、100a…照射電子線、100b…クロスオーバー、100c…反射電子、101…電子銃、102…コンデンサレンズ、103…セパレータ、104…被検査試料、105…電子銃制御装置、106…対物レンズ、107…移動ステージ制御装置、108…下部ユニット制御装置、109…中間電子レンズ、110…投影電子レンズ、111…画像検出部、111a…蛍光板、111b…光学画像検出装置、111c…光学像伝達系、112…画像処理部、112a…画像信号記憶部、112b…欠陥判定部、113…電子光学系制御装置、114…検査装置制御部、115…モニタ付入出力装置、120…偏向器(収差補正用)、201…接地電極、202…ヒーター、203…電極、204…移動ステージ、305…導電薄膜、306…石英ガラス板、401…紫外線、402…集光反射鏡、403…紫外線光源。 DESCRIPTION OF SYMBOLS 1 ... Quartz glass metal mold | die, 2 ... Holder, 3 ... Insulating member, 4 ... Moving stage, 5 ... Electron beam, 6 ... Upper electrode, 7 ... Lower electrode, 8 ... Ultraviolet light, 9 ... Ultraviolet light source, 10 ... Lens, 11 ... Lower unit, 100a ... Irradiated electron beam, 100b ... Crossover, 100c ... Reflected electron, 101 ... Electron gun, 102 ... Condenser lens, 103 ... Separator, 104 ... Sample to be inspected, 105 ... Electron gun control device, 106 ... Objective Lens 107, moving stage control device 108 lower unit control device 109 intermediate electron lens 110 projection electron lens 111 image detecting unit 111a fluorescent plate 111b optical image detecting device 111c optical image transmission 112, image processing unit, 112a, image signal storage unit, 112b, defect determination unit, 113, electron optical system control device, 114, inspection device control unit DESCRIPTION OF SYMBOLS 115 ... Input / output device with monitor, 120 ... Deflector (for aberration correction), 201 ... Ground electrode, 202 ... Heater, 203 ... Electrode, 204 ... Moving stage, 305 ... Conductive thin film, 306 ... Quartz glass plate, 401 ... Ultraviolet 402: Condensing reflector, 403: UV light source.

Claims (17)

  1.  ホルダに保持された試料に電子線を照射し、試料からの反射電子を検出して前記試料の表面を検査する検査装置において、
      前記ホルダを挟んで平行となるように配置される上部電極と下部電極とを有し、
      前記上部電極は、前記電子線が通過する孔を有すると共に、前記電子線を加速して前記試料に照射する電圧が印加されるものであり、
      前記下部電極は、前記電子線が照射される前記試料領域に紫外線を前記試料の裏面側から照射するための孔を有すると共に、加速された前記電子線を減速し、前記試料表面で反射させる電圧が印加されるものであることを特徴とする検査装置。
    In an inspection apparatus that inspects the surface of the sample by irradiating the sample held by the holder with an electron beam, detecting reflected electrons from the sample,
    It has an upper electrode and a lower electrode arranged so as to be parallel across the holder,
    The upper electrode has a hole through which the electron beam passes and is applied with a voltage for accelerating the electron beam and irradiating the sample.
    The lower electrode has a hole for irradiating ultraviolet rays from the back side of the sample to the sample region irradiated with the electron beam, and decelerates the accelerated electron beam and reflects it on the sample surface An inspection apparatus characterized in that is applied.
  2.  請求項1記載の検査装置において、
      前記下部電極に設けられた孔の径は、前記電子線の径を越える大きさであることを特徴とする検査装置。
    The inspection apparatus according to claim 1,
    The diameter of the hole provided in the said lower electrode is a magnitude | size exceeding the diameter of the said electron beam, The inspection apparatus characterized by the above-mentioned.
  3.  請求項1記載の検査装置において、
      前記紫外線の光源と、前記紫外線を集光するためのレンズとを更に有し、
      前記下部電極と前記光源と前記レンズとは一体となって移動するものであることを特徴とする検査装置。
    The inspection apparatus according to claim 1,
    And further comprising a light source for the ultraviolet light and a lens for condensing the ultraviolet light,
    The inspection apparatus, wherein the lower electrode, the light source, and the lens move together.
  4.  請求項1記載の検査装置において、
      前記上部電極の孔は、前記試料上の前記電子線が照射される領域に前記試料の上方から照射される紫外線も通過するものであることを特徴とする検査装置。
    The inspection apparatus according to claim 1,
    The inspection apparatus according to claim 1, wherein the hole of the upper electrode allows ultraviolet rays irradiated from above the sample to pass through the region irradiated with the electron beam on the sample.
  5.  請求項1記載の検査装置において、
      前記下部電極に代えて、前記試料表面で反射させる電圧が印加され、かつ、紫外線が透過できる導電薄膜を備えることを特徴とする検査装置。
    The inspection apparatus according to claim 1,
    Instead of the lower electrode, an inspection apparatus comprising a conductive thin film to which a voltage reflected by the sample surface is applied and which can transmit ultraviolet rays.
  6.  電子を略平行電子線として、絶縁体平板試料に照射する手段と、前記絶縁体平板試料表面近傍で反射した前記電子線を引き上げるための、電界を形成する手段と、反射した前記電子線の電子像を得る電子光学的手段と、前記絶縁体平板試料上に形成された形状を観察できるように、前記絶縁体平板試料を前記電子線に対して移動させる手段と、前記電子像から、所望の前記絶縁体平板試料上の形状を検出し、前記検出箇所を記録する手段を備えた検査装置において、
      前記絶縁体平板試料表面近傍で反射した前記電子線を引き上げるための、電界を形成する手段に、前記絶縁体平板試料の前記電子線が照射される側に対して反対側に、検査動作中は移動しない電極を含み、
      前記絶縁体平板試料の前記電子線が照射される側に対して反対側の面に、紫外線を照射する手段を備えたことを特徴とする検査装置。
    Means for irradiating an insulator flat plate sample with electrons as substantially parallel electron beams; means for forming an electric field for pulling up the electron beam reflected near the surface of the insulator flat plate sample; and electrons of the reflected electron beam From the electron image, an electron optical means for obtaining an image, a means for moving the insulator flat plate sample with respect to the electron beam so that the shape formed on the insulator flat plate sample can be observed, In the inspection apparatus provided with means for detecting the shape on the insulator flat plate sample and recording the detection location,
    During the inspection operation, the means for forming an electric field for pulling up the electron beam reflected near the surface of the insulator plate sample is opposite to the side irradiated with the electron beam of the insulator plate sample. Including non-moving electrodes,
    An inspection apparatus comprising: means for irradiating ultraviolet rays on a surface opposite to the side irradiated with the electron beam of the insulator flat plate sample.
  7.  請求項6に記載の検査装置において、
      前記絶縁体平板試料の前記電子線が照射される側に対して反対側に設けられた前記電極に、前記電子線が照射される前記絶縁体平板試料上の位置に対応した位置に、紫外線通過孔が設けられたことを特徴とする検査装置。
    The inspection apparatus according to claim 6, wherein
    Ultraviolet light passes through a position corresponding to a position on the insulator plate sample irradiated with the electron beam to the electrode provided on the opposite side of the insulator plate sample to the side irradiated with the electron beam. An inspection apparatus characterized in that a hole is provided.
  8.  請求項7に記載の検査装置において、
      前記紫外線通過孔の大きさが、前記絶縁体平板試料の前記電子線が照射される側に対して反対側に設けられた前記電極と、前記絶縁体平板試料表面までの距離に比べ、小さいことを特徴とする検査装置。
    The inspection apparatus according to claim 7,
    The size of the ultraviolet light passage hole is smaller than the distance between the electrode provided on the side opposite to the side irradiated with the electron beam of the insulator plate sample and the surface of the insulator plate sample. Inspection device characterized by
  9.  請求項6記載の検査装置において、
      前記絶縁体平板試料の前記電子線が照射される側に対して反対側に設けられた前記電極が、前記絶縁体平板試料を検査装置内に導入または検査装置外へ排出する過程で、検査中における位置とは異なる位置に移動する機構を備えていることを特徴とする検査装置。
    The inspection apparatus according to claim 6, wherein
    The electrode provided on the opposite side of the insulator flat plate sample to the side irradiated with the electron beam is in the process of introducing the insulator flat plate sample into the inspection apparatus or discharging it out of the inspection apparatus. An inspection apparatus comprising a mechanism for moving to a position different from the position in the above.
  10.  電子を略平行電子線として、絶縁体平板試料に照射する手段と、前記絶縁体平板試料表面近傍で反射した前記電子線を引き上げるための、電界を形成する手段と、反射した前記電子線の電子像を得る電子光学的手段と、前記絶縁体平板試料上に形成された形状を観察できるように、前記絶縁体平板試料を移動させる手段と、前記電子像から、所望の前記絶縁体平板試料上の形状を検出し、前記検出箇所を記録する手段を備えた検査装置において、
      前記絶縁体平板試料の前記電子線が照射される側に対して反対側の面に、紫外線を照射する手段を備え、
      前記絶縁体平板試料表面近傍で反射した前記電子線を引き上げるための、電界を形成する手段に、前記紫外線を透過する導電性材質で構成された電極を含むことを特徴とする検査装置。
    Means for irradiating an insulator flat plate sample with electrons as substantially parallel electron beams; means for forming an electric field for pulling up the electron beam reflected near the surface of the insulator flat plate sample; and electrons of the reflected electron beam Electron optical means for obtaining an image; means for moving the insulator flat plate sample so that the shape formed on the insulator flat plate sample can be observed; In the inspection apparatus provided with means for detecting the shape of and recording the detection location,
    Means for irradiating ultraviolet rays on a surface opposite to the side irradiated with the electron beam of the insulator plate sample;
    An inspection apparatus comprising: an electrode made of a conductive material that transmits ultraviolet rays, as means for forming an electric field for pulling up the electron beam reflected in the vicinity of the surface of the insulator flat plate sample.
  11.  請求項10に記載の検査装置において、
      前記紫外線が透過する導電性材質で構成された電極が、表面に導電性薄膜を形成した石英ガラスであることを特徴とする検査装置。
    The inspection apparatus according to claim 10, wherein
    An inspection apparatus, wherein the electrode made of a conductive material that transmits ultraviolet rays is quartz glass having a conductive thin film formed on a surface thereof.
  12.  請求項6記載の検査装置において、
      前記絶縁体平板試料の材質が、石英ガラスであることを特徴とする検査装置。
    The inspection apparatus according to claim 6, wherein
    An inspection apparatus characterized in that a material of the insulator flat plate sample is quartz glass.
  13.  電子を略平行電子線として、絶縁体平板試料に照射し、前記絶縁体平板試料表面近傍で反射した前記電子線を、前記絶縁体平板試料表面上に形成した電界によって引き上げ、電子光学的手段によって電子像を得ることにより、前記絶縁体平板試料表面に形成された形状を検査する検査方法において、
      前記絶縁体平板試料の前記電子線が照射される側に対して反対側に、前記絶縁体平板試料が戴置される移動ステージと独立した電極に電圧を印加する工程と、
      前記絶縁体平板試料の前記電子線が照射される側に対して反対側の面に、紫外線を照射する工程と、
    を含むことを特徴とする検査方法。
    Electrons are irradiated as a substantially parallel electron beam onto an insulator flat plate sample, and the electron beam reflected near the surface of the insulator flat plate sample is pulled up by an electric field formed on the surface of the insulator flat plate sample. In the inspection method for inspecting the shape formed on the surface of the insulator flat plate sample by obtaining an electronic image,
    Applying a voltage to an electrode independent of the moving stage on which the insulator flat plate sample is placed on the opposite side of the insulator flat plate sample to the side irradiated with the electron beam;
    Irradiating the surface opposite to the side irradiated with the electron beam of the insulator flat plate sample with ultraviolet rays;
    The inspection method characterized by including.
  14.  請求項13に記載の検査方法において、
      前記絶縁体平板試料の前記電子線が照射される側に対して反対側に設けられた前記電極に、前記電子線が照射される前記絶縁体平板試料上の位置に対応した位置に孔を設け、紫外線を通過させることを特徴とする検査方法。
    The inspection method according to claim 13,
    A hole is provided at a position corresponding to a position on the insulator plate sample irradiated with the electron beam on the electrode provided on the opposite side of the insulator plate sample to the side irradiated with the electron beam. An inspection method characterized by passing ultraviolet rays.
  15.  電子を略平行電子線として、絶縁体平板試料に照射し、前記絶縁体平板試料表面近傍で反射した前記電子線を、前記絶縁体平板試料表面上に形成した電界によって引き上げ、電子光学的手段によって電子像を得ることにより、前記絶縁体平板試料表面の形状を検査する検査方法において、
      前記絶縁体平板試料の前記電子線が照射される側に対して反対側の面に、紫外線を照射する工程と、
      前記絶縁体平板試料の前記電子線が照射される側に対して反対側の面に、前記紫外線が透過する導電性の電極に電圧を印加する工程と、
      を含むことを特徴とする検査方法。
    Electrons are irradiated as a substantially parallel electron beam onto an insulator flat plate sample, and the electron beam reflected near the surface of the insulator flat plate sample is pulled up by an electric field formed on the surface of the insulator flat plate sample. In an inspection method for inspecting the shape of the insulator flat plate sample surface by obtaining an electronic image,
    Irradiating the surface opposite to the side irradiated with the electron beam of the insulator flat plate sample with ultraviolet rays;
    Applying a voltage to the conductive electrode through which the ultraviolet rays pass, on the surface of the insulator plate sample opposite to the side irradiated with the electron beam;
    The inspection method characterized by including.
  16.  請求項13記載の検査方法において、
      前記絶縁体平板試料の材質が、紫外線を透過する絶縁体であることを特徴とする検査方法。
    The inspection method according to claim 13,
    An inspection method, wherein the material of the insulator flat plate sample is an insulator that transmits ultraviolet rays.
  17.  請求項13記載の検査方法において、
      前記絶縁体平板試料の材質が、石英ガラスであることを特徴とする検査方法。
    The inspection method according to claim 13,
    An inspection method, wherein a material of the insulator flat plate sample is quartz glass.
PCT/JP2010/070117 2009-12-07 2010-11-11 Inspection device and inspection method WO2011070890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011545156A JP5635009B2 (en) 2009-12-07 2010-11-11 Inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-277614 2009-12-07
JP2009277614 2009-12-07

Publications (1)

Publication Number Publication Date
WO2011070890A1 true WO2011070890A1 (en) 2011-06-16

Family

ID=44145442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070117 WO2011070890A1 (en) 2009-12-07 2010-11-11 Inspection device and inspection method

Country Status (2)

Country Link
JP (1) JP5635009B2 (en)
WO (1) WO2011070890A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021002507A (en) * 2019-06-25 2021-01-07 株式会社荏原製作所 Method for evaluating secondary optical system of electron beam inspection device
US10921253B2 (en) 2018-09-18 2021-02-16 Samsung Display Co., Ltd. Apparatus of evaluating stability of luminescent material and method of evaluating the same
JPWO2020115876A1 (en) * 2018-12-06 2021-10-07 株式会社日立ハイテク Charged particle beam device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258703A (en) * 1991-05-30 1993-10-08 Nippon K L Ee Kk Electron beam inspection method and system thereof
JP2001135621A (en) * 1999-11-02 2001-05-18 Creative Technology:Kk View port fitted with heater
JP2004342341A (en) * 2003-05-13 2004-12-02 Hitachi High-Technologies Corp Mirror electron microscope, and pattern defect inspection device using it
JP2005174591A (en) * 2003-12-08 2005-06-30 Horon:Kk Charged particle beam device and charged particle beam image generation method
WO2006016613A1 (en) * 2004-08-11 2006-02-16 Hitachi High-Technologies Corporation Scanning type electron microscope
JP2009004114A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Inspection method and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100478A (en) * 1984-09-28 1985-06-04 Hitachi Ltd Photovoltage measuring device
JP3712559B2 (en) * 1999-03-26 2005-11-02 日本電子株式会社 Cathode lens
JP2001052642A (en) * 1999-08-11 2001-02-23 Toshiba Corp Scanning electron microscope and micro-pattern measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258703A (en) * 1991-05-30 1993-10-08 Nippon K L Ee Kk Electron beam inspection method and system thereof
JP2001135621A (en) * 1999-11-02 2001-05-18 Creative Technology:Kk View port fitted with heater
JP2004342341A (en) * 2003-05-13 2004-12-02 Hitachi High-Technologies Corp Mirror electron microscope, and pattern defect inspection device using it
JP2005174591A (en) * 2003-12-08 2005-06-30 Horon:Kk Charged particle beam device and charged particle beam image generation method
WO2006016613A1 (en) * 2004-08-11 2006-02-16 Hitachi High-Technologies Corporation Scanning type electron microscope
JP2009004114A (en) * 2007-06-19 2009-01-08 Hitachi Ltd Inspection method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921253B2 (en) 2018-09-18 2021-02-16 Samsung Display Co., Ltd. Apparatus of evaluating stability of luminescent material and method of evaluating the same
JPWO2020115876A1 (en) * 2018-12-06 2021-10-07 株式会社日立ハイテク Charged particle beam device
JP7076574B2 (en) 2018-12-06 2022-05-27 株式会社日立ハイテク Charged particle beam device
JP2021002507A (en) * 2019-06-25 2021-01-07 株式会社荏原製作所 Method for evaluating secondary optical system of electron beam inspection device
JP7157708B2 (en) 2019-06-25 2022-10-20 株式会社荏原製作所 METHOD FOR EVALUATING SECONDARY OPTICAL SYSTEM OF ELECTRON BEAM INSPECTION SYSTEM

Also Published As

Publication number Publication date
JP5635009B2 (en) 2014-12-03
JPWO2011070890A1 (en) 2013-04-22

Similar Documents

Publication Publication Date Title
CN110214361B (en) Method for inspecting a sample and charged particle multibeam device
JP4988444B2 (en) Inspection method and apparatus
US7982188B2 (en) Apparatus and method for wafer pattern inspection
US6310341B1 (en) Projecting type charged particle microscope and projecting type substrate inspection system
JP4790324B2 (en) Pattern defect inspection method and apparatus
JP2003215067A (en) System and method for automatically inspecting substrate using charged particle beam
JPH11132975A (en) Inspection method and device using electron beam
JP6666627B2 (en) Charged particle beam device and method of adjusting charged particle beam device
JP7308981B2 (en) MULTI-CHARGED PARTICLE BEAM DEVICE AND OPERATION METHOD THEREOF
JP4253576B2 (en) Pattern defect inspection method and inspection apparatus
JP5635009B2 (en) Inspection device
US7009177B1 (en) Apparatus and method for tilted particle-beam illumination
JP5228080B2 (en) Pattern defect inspection method and apparatus
JP4334159B2 (en) Substrate inspection system and substrate inspection method
JP4484860B2 (en) Pattern defect inspection method
JPH1062149A (en) Defect inspection equipment
JP2005164608A (en) Pattern defect inspection method and device
JP5822614B2 (en) Inspection device
WO2021199528A1 (en) Inspection device
JP4702472B2 (en) Inspection method and inspection apparatus using electron beam
JP2007192560A (en) Devise and method for inspecting sample surface shape
TW202405856A (en) Charged-particle beam apparatus with large field-of-view and methods thereof
JP2020020710A (en) Inspection device
JPH0260A (en) Method and device for ion beam processing
TW202420363A (en) Multi-beam charged particle microscope design with mirror for field curvature correction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835812

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835812

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545156

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835812

Country of ref document: EP

Kind code of ref document: A1