WO2011070614A1 - Wireless apparatus and sir measurement method - Google Patents

Wireless apparatus and sir measurement method Download PDF

Info

Publication number
WO2011070614A1
WO2011070614A1 PCT/JP2009/006710 JP2009006710W WO2011070614A1 WO 2011070614 A1 WO2011070614 A1 WO 2011070614A1 JP 2009006710 W JP2009006710 W JP 2009006710W WO 2011070614 A1 WO2011070614 A1 WO 2011070614A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
signal
interference
sir
interference power
Prior art date
Application number
PCT/JP2009/006710
Other languages
French (fr)
Japanese (ja)
Inventor
末満大成
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/006710 priority Critical patent/WO2011070614A1/en
Priority to JP2010507754A priority patent/JP4525867B1/en
Publication of WO2011070614A1 publication Critical patent/WO2011070614A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3078Circuits generating control signals for digitally modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70701Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation featuring pilot assisted reception

Definitions

  • the present invention relates to a radio communication technique, and more particularly, to a radio apparatus and a SIR measurement method in the mobile communication field.
  • SIR Signal-to-Interference-power Ratio
  • the base station, mobile station, base station host apparatus, and the like determine the quality of the wireless transmission path based on the measured SIR, and change the transmission rate, service, and the like according to the quality. Since SIR is the ratio of signal power to interference power, the higher the calculation accuracy of signal power and interference power, the higher the SIR measurement accuracy.
  • a known symbol sequence (pilot signal) for detecting a phase in a physical channel is provided, for example, as in the W-CDMA system (for example, see Non-Patent Document 1).
  • the pilot signal is a symbol sequence that is known in advance by both the base station and the mobile station, and signal power and interference power are calculated by measuring the power or amplitude of the pilot signal.
  • received power received signal power
  • interference power dispersion of received signals
  • JP 2006-67002 A JP 2006-80585 A Japanese Patent No. 4226641 Japanese Patent No. 3993556 Japanese Patent No. 3901026 Patent No. 4090969 Japanese Patent No. 4053419
  • the signal power calculated by the conventional wireless device includes not only true signal power (power of only the signal component of the received signal) but also noise power. Therefore, the value is larger than the true signal power. For this reason, there is a problem that the measurement accuracy of SIR, which is the ratio of signal power to interference power, deteriorates and the quality of the wireless transmission path cannot be accurately grasped.
  • SIR the ratio of signal power to interference power
  • the amplitude of the received signal is not constant but varies. When the amplitude of the received signal is small, the influence of quantization noise becomes large, and when the amplitude of the received signal is large, overflow occurs, so that the signal power and the interference power cannot be calculated correctly. For this reason, the calculation accuracy of SIR deteriorates, and there is a problem that the quality of the wireless transmission path cannot be accurately grasped.
  • SIR is calculated by using the average value of the result of despreading the pilot signal in the W-CDMA system as signal power, and as an improvement in SIR measurement accuracy, the NF included in the SIR when the interference component is low
  • the pilot signal is a sequence that takes positive / negative (or 0/1) (see Non-Patent Document 1), and if the despread results are averaged as they are, they are canceled out by positive and negative (or 0 and 1 are not equal).
  • the signal power is not calculated correctly.
  • a signal that was only the I component or only the Q component at the time of data transmission should be a signal having amplitudes in both the I component and the Q component due to distortion of the wireless transmission path.
  • Patent Document 3 there is a problem that this is not taken into consideration in the calculation formula of the signal power.
  • Patent Document 4 estimates the statistical data of noise more accurately to evaluate the reliability of the received signal and reconstructs the data based on it.
  • Patent Document 5 estimates the ratio of signal power to interference noise power by increasing the accuracy of interference power and prevents deterioration of reception quality.
  • Patent Document 6 mentions that observation information is more Gaussian than information source signals. However, none of the above-described patent documents removes the noise power included in the signal power and calculates the highly accurate signal power.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a radio apparatus that can calculate signal power with high accuracy and improve SIR measurement accuracy.
  • a radio apparatus includes a variable amplifier, an AGC control unit that automatically controls a gain of a variable amplifier by controlling a gain of the variable amplifier, and a signal power and an interference power using a predetermined reception signal that is automatically gain controlled.
  • a signal power / interference power calculation unit to be calculated, and a SIR calculation unit to calculate SIR based on the signal power and interference power calculated by the signal power / interference power calculation unit.
  • signal power and interference power are calculated using a predetermined reception signal subjected to automatic gain control. Since the amplitude of the reception signal subjected to automatic gain control converges to a desired value, the influence of quantization noise in power calculation is small, and overflow does not occur, so that the calculation accuracy of signal power and interference power is improved. For this reason, since the measurement accuracy of SIR is improved and the quality of the wireless transmission path can be accurately grasped, the accuracy of scheduling processing according to the quality of the wireless transmission path is increased, and wireless communication can be performed at an appropriate transmission rate.
  • It is a block diagram which shows the structure of the radio
  • It is a block diagram which shows the structure of the input bit width adjustment part 20 in Embodiment 3 of this invention.
  • It is a graph which shows the error of signal power, interference power, and SIR which arise by frequency offset.
  • FIG. 1 is a block diagram showing a configuration of a radio apparatus according to Embodiment 1 of the present invention.
  • the wireless device includes an antenna 1, a receiver 2, a transmitter 9, and a scheduler unit 10.
  • the received signal received from the antenna 1 is converted from an analog signal to a digital signal by the A / D converter 3.
  • the analog signal input to the A / D converter 3 is frequency-converted from a high frequency to a baseband frequency or an intermediate frequency by a mixer (not shown in FIG. 1).
  • the digital signal output from the A / D converter 3 is input to the demodulator 4.
  • the demodulation unit 4 includes a timing synchronization unit 5, a detection unit 6, a signal power / interference power calculation unit 7, and an SIR calculation unit 8.
  • the timing synchronization unit 5 synchronizes the timing of the input digital signal.
  • the detector 6 detects the received signal and generates a complex signal composed of an I component and a Q component.
  • the signal power / interference power calculation unit 7 calculates the signal power based on the amplitude corresponding to the soft decision value for each symbol of the pilot signal. . Further, the variance of the amplitude of the pilot signal is calculated and used as interference power.
  • the SIR calculation unit 8 calculates the SIR by dividing the signal power calculated by the signal power / interference power calculation unit 7 by the interference power.
  • the scheduler unit 10 determines the optimum transmission rate for the quality of the wireless transmission path based on the SIR calculated by the SIR calculation unit 8 and the communication partner station (if the station is a base station, the partner station is a mobile station, If the local station is a mobile station, the partner station instructs the base station) to transmit at that transmission rate.
  • the modulation / encoding unit 11 encodes and modulates data including information instructed by the scheduler unit 10.
  • the D / A converter 12 converts a digital signal into an analog signal.
  • the demodulator 4 calculates the SIR using the signal power and interference power calculated for each predetermined data unit.
  • a method for calculating the signal power and the interference power for each slot of the DPCCH (Dedicated Physical Control Channel) defined in 3GPP TS25.211 will be described.
  • FIG. 2 is a frame configuration diagram of the DPCCH.
  • FIG. 3 is a table showing a slot format of DPCCH.
  • the signal power / interference power calculation unit 7 calculates signal power and interference power using the pilot signal of each slot.
  • the pilot signal is located at the head of each slot, and the number of symbols is N_pilot.
  • the number of pilot signal symbols (hereinafter referred to as the number of pilot symbols) N_pilot differs according to the slot format as shown in FIG.
  • the pilot signal is known, and the radio apparatus holds in advance the pilot signal symbol sequence as a reference pilot signal P_I [isym] + j ⁇ P_Q [isym].
  • Isym is a symbol number.
  • the detector 6 detects the input signal and extracts a complex signal represented by Rx_I [isym] + j ⁇ Rx_Q [isym]. Further, the detector 6 multiplies this complex signal by the complex conjugate of the reference pilot signal (level-converted from 0 ⁇ + 1, 1 ⁇ ⁇ 1), as shown in the following equation, for each symbol in the pilot signal. I component amplitude sym_I [isym] and Q component amplitude sym_Q [isym] are obtained.
  • the signal power / interference power calculation unit 7 calculates the signal power and the interference power by using the signal after adjustment so that each symbol of the pilot signal is in the same quadrant. For example, in the W-CDMA system, the detection unit 6 multiplies the despread signal by the inverse characteristic of the pilot signal, as shown in Equation 1, so that all symbols are complex planes (IQ planes). The signal power / interference power calculation unit 7 calculates the signal power using the corrected data (sym_I [isym], sym_Q [isym]). The signal expressed as A + j ⁇ 0 or 0 + j ⁇ A at the time of transmission from the communication partner station becomes C + j ⁇ D due to transmission path distortion. Although the real component C becomes the I component and the imaginary component D becomes the Q component, the signal power / interference power calculation unit 7 calculates the signal power and the interference power in consideration of both the I component and the Q component. Therefore, the power calculation accuracy is high.
  • FIG. 4 is a block diagram showing a configuration of the radio apparatus according to Embodiment 1 of the present invention.
  • a signal received from the antenna 1 is amplified by an amplifier 14 and separated into an I component and a Q component by a mixer 15.
  • the I component and Q component signals are converted from analog signals to digital signals by the A / D converter 3 and input to the demodulator 4.
  • the I component and Q component signals input to the demodulator 4 are subjected to quadrant conversion represented by Equation 1 by the quadrant converter 13, and the corrected data transferred to the first quadrant is signal power / interference power calculator. 7 is input.
  • the signal power / interference power calculation unit 7 calculates signal power and interference power using sym_I [isym] and sym_Q [isym].
  • N_pilot is the number of pilot symbols per slot as described above, in other words, the number of samples.
  • the interference power is obtained from the variance of the amplitude of the received signal.
  • the sample variance is used as the variance.
  • the interference power for each slot is expressed by the following equation.
  • the signal power correction described above can also be considered as follows. It is considered that the signal power RXPOW slot before correction includes Gaussian noise generated inside the apparatus. Gaussian noise has a normal distribution. If all the received pilot signals are a population, the pilot signal for one slot is a sample obtained by randomly extracting data from the population, and the pilot symbol number N_pilot for one slot can be said to be the number of samples. Since population variance is unknown, for example, ERRPOW slot is assumed to be population variance. According to the central limit theorem, when the population is sufficiently large, the average of the variance of the received signal is represented by (ERRPOW slot ⁇ N_pilot).
  • the central limit theorem is that if the variable X follows the distribution of mean ⁇ and standard deviation ⁇ , the sample mean X based on a random sample of size n is the mean ⁇ and standard deviation ⁇ when n becomes infinitely large. It approaches the normal distribution of / ⁇ n. According to the central limit theorem, the average of the variances (ERRPOW slot ⁇ N_pilot) is normally distributed, so that it can be regarded as Gaussian noise included in the received signal. Therefore, the calculation accuracy of the signal power can be improved by correcting the signal power shown in Formula 6.
  • the pilot signals for one slot may not be used as a population, but pilot signals of as many slots as possible may be used as the population.
  • a variance is obtained by using pilot signals for 4 frames (ie, 60 slots) as a population, and is assumed to be a population variance ⁇ S60 .
  • the ERRPOW slot of the slot for which signal power is to be calculated can be calculated as follows. First, a pilot signal for one slot is extracted from the population and used as a sample. The number of samples of the sample is the number N_pilot of pilot symbols in one slot, and an average of received signal dispersion ( ⁇ s60 ⁇ N_pilot) in the sample may be calculated and set as an ERRPOW slot . There is an effect that the accuracy of the signal power and the interference power is higher in the case where the variance of the pilot signals for four frames is used as the population variance than in the case where the variance of the pilot signal of 1 slot is the population variance.
  • the received signal includes a noise component
  • the power of the noise component is removed from the received power to obtain the signal power (SIGPOW slot ), so that the calculation accuracy of the signal power is increased.
  • the denominator of (ERRPOW slot / N_pilot) to be subtracted from the received power is not limited to the number of samples, and may be a changeable value for adjustment. This is because the noise component includes thermal noise and distortion noise in addition to the interference component due to interference from other users.
  • the SIR calculation unit 8 calculates SIR (SIR slot ) for each slot .
  • the SIR slot is a value obtained by dividing the signal power (SIGPOW slot ) for each slot by the interference power (EPPPOW slot ) for each slot , as shown in the following equation.
  • the received signal shown in Formula 2 When the received power shown in Formula 2 is used as the signal power as in a conventional wireless device, the received signal includes a noise component and thus becomes larger than the actual signal power.
  • signals with a low transmission rate such as RMC 12.2K (12.2 kbps, 3GPP TS25.141) and SDCCH 13.6K (13.6 kbps, 3GPP TS25.141), have a large influence on noise power, and noise power is reduced. It cannot be ignored.
  • the offset value (offset [dB]) shown in the following equation is generated in the SIR when Equation 2 is adopted as the signal power as in the conventional case and when Equation 6 is adopted as the signal power as in the present embodiment. . That is, when Equation 2 is used for calculating the signal power, the SIR is increased by 1 + ERRPOW slot / (SIGPOW slot ⁇ N_pilot) times as compared with the case where Equation 6 is adopted.
  • FIG. 5 is a graph showing the relationship between SIR and offset value.
  • the horizontal axis of FIG. 5 shows the SIR when the received power is the signal power, that is, the SIR calculated based on the prior art.
  • the offset value is remarkably large, and it can be seen that particularly in the region where the SIR is small, the influence of the noise component on the SIR calculation is large. Further, the offset value increases as the number of pilot symbols N_pilot decreases.
  • the SIR is calculated in slot units.
  • the SIR may be calculated in frame units. An example in which there are 15 slots per frame as shown in FIG. 2 will be described.
  • the signal power / interference power calculation unit 7 calculates the signal power (SIGPOW flame ) for each frame and the interference power (ERRPOW flame ) for each frame.
  • the signal power / interference power calculation unit 7 calculates signal power (SIGPOW slot ) and interference power (ERRPOW slot ) for each slot
  • the SIR calculation unit 8 calculates signal power (SIGPOW flame ) and interference power (ERRPOW) for each frame.
  • SIR flame SIR flame
  • the interference power for each frame ERRPOW flame
  • the signal power (SIGPOW flame ) for each frame is expressed by the following equation.
  • the SIR (SIR flame ) for each frame is expressed by the following equation.
  • the central limit theorem described above defines that the sample mean Xm approaches a normal distribution when the size n of the random sample becomes infinitely large.
  • the size of the random sample n is about 30. But it approaches a normal distribution.
  • the value ⁇ 2 / (N_pilot ⁇ 15) obtained by dividing the variance ⁇ 2 for one frame by the total number of pilot symbols for one frame is close to a normal distribution, and is close to Gaussian noise corresponding to thermal noise. .
  • the noise power with high accuracy is removed from the received power, so that the calculation accuracy for the signal power for each frame is high. Accordingly, the calculation accuracy of the SIR for each frame is also increased.
  • the SIR (SIR slot ) for each slot is calculated using the signal power (SIGPOW slot ) and the interference power (ERRPOW slot ) calculated for each slot , and the signal power is not calculated instead of calculating the sum total in one frame of the SIR slot.
  • the SIR is calculated last.
  • the method for calculating the signal power and the interference power for each slot or for each frame has been described. However, it may be calculated for each predetermined number of slots. If the number of slots used to calculate signal power and interference power is N_slot, the signal power and interference power for each predetermined number of slots are expressed by the following equations. However, RXPOW N_slot , AVE_I 2 and AVE_Q 2 are as follows.
  • the dispersion of pilot signals for one frame is obtained as interference power, but the dispersion of pilot signals in as many slots as possible is obtained.
  • Interference power may be used. For example, instead of one frame, seeking the variance of the pilot signals for four frames (60 slots), and the population variance sigma S60 2. And specimens withdrawn population variance sigma S60 2 from one frame of the number of pilot symbols (N_pilot ⁇ 15), the average in a sigma S60 2 ⁇ of the variance of the received signal at that sample a (N_pilot ⁇ 15) as the noise power Good.
  • the noise power is calculated. Increases accuracy. If the signal power is calculated using highly accurate noise power, the accuracy of the signal power is also increased.
  • ⁇ and ⁇ are time constants (such as 1/256).
  • accum_sym_I [N-1] 2 is an average obtained by sequentially adding N sym_I [isym] 2 from the symbol number isym from 0 to (N-1) using a time constant
  • accum_sym_Q [ N-1] 2 is obtained by averaging N sym_Q [isym] 2 by sequentially adding them using a time constant.
  • accum_sym_I [N-1] is obtained by averaging N sym_I [isym] by sequential addition using a time constant
  • accum_sym_Q [N-1] is N sym_Q [ isym] is averaged by sequential addition using a time constant.
  • the signal power / interference power calculation unit 7 uses Equation 17 instead of the first term on the right side of Equation 5, and uses Equation 18 and Equation 19 instead of AVE_I and AVE_Q in Equation 5 and Equation 6, to calculate signal power and interference power. May be calculated. Further, the signal power and the interference power may be calculated using Equation 17 instead of the first term on the right side of Equation 12, and using Equation 18 and Equation 19 instead of AVE_I 2 and AVE_Q 2 of Equation 12 and Equation 13. .
  • signal power is obtained by subtracting noise power from the power of a received signal including a noise component, so that signal power calculation accuracy is improved and SIR measurement accuracy is also improved.
  • the calculation accuracy of the signal power and the interference power can be further improved and the measurement accuracy of the SIR can be improved by increasing the population used for the calculation and increasing the number of samples.
  • the scheduler unit 10 can accurately grasp the quality of the radio transmission path, so that the accuracy of the scheduling process according to the quality of the radio transmission path is increased and radio communication can be performed at an appropriate transmission rate. For this reason, waste of power consumption due to wireless communication at an excessive transmission rate can be suppressed.
  • Embodiment 2 the interference power is calculated using the sample variance as the variance, but the interference power may be calculated using unbiased variance.
  • the configuration of the radio apparatus according to the second embodiment is the same as that of the first embodiment, and a description thereof will be omitted.
  • Embodiment 2 in calculating the interference power, instead of using the variance averaged by the number of samples, that is, the number of pilot symbols N_pilot, the variance averaged by (number of pilot symbols N_pilot-1) is used. This is because, when the number of samples is small, the unbiased variance corrected so that the expected value is equal to the population variance can express the degree of data dispersion more correctly than the sample variance. That is, when the number of pilot symbols N_pilot is small, interference power calculation accuracy is improved by using unbiased variance rather than sample variance of the received signal.
  • the signal power and interference power calculated by the signal power / interference power calculation unit 7 in the second embodiment will be described.
  • the interference power (ERRPOW2 slot ) for each slot calculated by the signal power / interference power calculation unit 7 is expressed by the following equation.
  • FIG. 6 is a graph showing the difference between the interference power (ERRPOW2 slot ) when using unbiased variance and the interference power (ERRPOW slot ) when using sample variance.
  • the value obtained by subtracting the interference power (ERRPOW slot ) using sample variance from the interference power (ERRPOW2 slot ) using unbiased variance is a signal similar to the calculation of SIR. If power is used, it matches the value obtained by subtracting the SIR calculated using unbiased variance from the SIR calculated using sample variance.
  • the interference power is higher by about 0.5 to 1.0 [dB] when using unbiased dispersion than when using sample dispersion. That is, the SIR is about 0.5 to 1.0 [dB] smaller when the unbiased variance is used than when the sample variance is used.
  • the signal power can also be expressed as follows using the unbiased dispersion.
  • FIG. 7 is a graph showing a difference ⁇ SIR [dB] between the SIR calculated based on the prior art and the SIR calculated based on the second embodiment.
  • 8 to 11 are tables showing ⁇ SIR [dB] for each number of pilot symbols N_pilot.
  • a difference ⁇ SIR [dB] between the SIR calculated based on the prior art and the SIR calculated based on the second embodiment is expressed by the following equation.
  • the first term in the last row of Equation 23 is equal to the value obtained by subtracting the SIR calculated using unbiased variance from the SIR calculated using sample variance. Also, the second term in the last row of Equation 23 is the SIR offset value when using unbiased dispersion.
  • the signal power / interference power calculation unit 7 calculates the signal power (SIGPOW2 slot ) and the interference power (ERRPOW2 slot ) for each slot using Expression 22 and Expression 20. By removing the noise component from the received power, the calculated signal power becomes smaller than before.
  • the calculated interference power becomes larger than before by using unbiased variance without using sample variance. . Since SIR is signal power ⁇ interference power, the SIR decreases as the signal power decreases, and the SIR decreases as the interference power increases. Therefore, the SIR calculated based on the second embodiment is smaller than the SIR calculated based on the conventional technique.
  • the difference ⁇ SIR is about 5 to 7 [dB] in the region where the SIR is small, and the difference ⁇ SIR is about 0.5 to 1 [dB] in the region where the SIR is large.
  • the SIR is significantly smaller when the second embodiment is used than when the conventional technique is used, and the tendency is more remarkable as the number of pilot symbols N_pilot, that is, the number of samples is smaller. become.
  • N_pilot pilot symbols
  • the method of calculating the signal power (SIGPOW2 slot ) and the interference power (ERRPOW2 slot ) for each slot has been described.
  • SIGPOW2 slot the SIGPOW2 slot and the ERRPOW2 slot
  • each frame The signal power (SIGPOW2 flame ) and the interference power (ERRPOW2 flame ) may be calculated. Since the variation of the thermal noise for each slot can be removed, the SIR calculation accuracy is improved.
  • High Speed Uplink Packet Access When performing wireless communication at a high transmission rate such as HSUPA (High Speed Uplink Packet Access), a high-quality wireless transmission path, that is, a high SIR is required.
  • a high-quality wireless transmission path that is, a high SIR is required.
  • SIR does not increase while maintaining linearity due to quantization error, signal power, and noise power calculation errors, and the accuracy of SIR calculation deteriorates in a region where SIR is high.
  • high-transmission-rate wireless communication such as HSUPA has the following characteristics (1) and (2). (1) It is difficult to obtain a diffusion gain because of a large amount of data and a low spreading factor. (2) Since the amount of data for encoding cannot be increased at the time of encoding, the encoding gain cannot be obtained.
  • reception performance and scheduling performance are more dependent on demodulation performance such as SIR estimation than at low transmission rates.
  • the linearity of the SIR cannot be maintained in a region where the SIR is large, and the SIR reaches the middle.
  • the scheduler unit 10 cannot determine whether to request the highest transmission rate from the communication partner station, and the highest transmission rate. There was a problem that it was impossible to maintain the reception.
  • the scheduler unit 10 can accurately grasp the state of the wireless transmission path and perform wireless communication at a high transmission rate. Even in such a case, it can be controlled to transmit and receive at an appropriate transmission rate. In addition, waste of power consumption due to wireless communication at an excessive transmission rate can be suppressed.
  • Embodiment 3 In order to satisfy reception performance at a high transmission rate such as HSUPA, it is necessary to take a large bit range in A / D conversion (conversion from analog to digital). For example, when the A / D converter 3 having a resolution of 16 bits is used, the demodulator 4 performs the multiplication after performing the averaging process in the multiplication process used for calculating the signal power and the like. A bit ⁇ 32 bit multiplier may be required, which increases the circuit scale. In order to reduce the circuit scale while preventing the reception performance from being deteriorated, it is effective to extract only necessary portions from the large bit range every time the arithmetic processing is performed.
  • a method of extracting 8 bits from a received signal that has been A / D converted at 16 bits before calculating signal power will be described.
  • a method of extracting 8 bits from 16 bits will be described, but the number of bits is not limited to these.
  • FIG. 12 is a block diagram showing a configuration of a radio apparatus according to Embodiment 3 of the present invention. A description of the same configuration as that of the first embodiment will be omitted, and differences from the first embodiment will be described.
  • An input bit width adjustment unit 20 is added to the demodulation unit 4.
  • a 16-bit complex signal (I component and Q component signals) is sent from the detection unit 6 to the input bit width adjustment unit 20 in a state in which the timing of the received signal that has been A / D converted into a digital signal is synchronized. Entered.
  • the input bit width adjustment unit 20 extracts 8 bits from the input 16-bit complex signal and outputs the extracted signal to the signal power / interference power calculation unit 7.
  • FIG. 13 is a block diagram showing the configuration of the input bit width adjustment unit 20 according to Embodiment 3 of the present invention.
  • FIG. 14 is an explanatory diagram showing the operation of the input bit width adjustment unit 20 according to Embodiment 3 of the present invention.
  • the operation of the input bit width adjustment unit 20 in the third embodiment will be described.
  • the operation of the input bit width adjustment unit 20 will be described by taking the case of the slot format # 1 shown in FIG. 3 as an example.
  • the leading symbol averaging unit 21 adds the absolute values of the leading eight symbols (corresponding to the pilot signal) of the slot for the input 16-bit signal and then averages them. Since the averaging is division by 8 which is the number of pilot symbols, the circuit scale can be reduced by using a 3-bit shift without using a divider.
  • the bit position determination unit 22 selects the 8 bits at any position out of the bit width of the 16-bit input signal. Determine whether to extract.
  • RX AVE is an average value of the amplitude of the received signal, and the bit position determination unit 22 determines a bit position to be extracted based on the amplitude of the received signal.
  • the bit position determination unit 22 holds eight parameters S1 to S8 in advance, compares RX AVE with the parameters S1 to S8, and determines an 8-bit extraction position.
  • the Further, the parameters S1 to S8 are set as variables, and can be changed by setting from software.
  • the bit position determination unit 22 determines that the bit extraction position is 8 bits from the least significant bit when RX AVE ⁇ S1, and sets the bit extraction position to 1 when S1 ⁇ RX AVE ⁇ S2. Bit shift is performed and it is determined that the lower 2 bits are 8 bits. As RX AVE increases, the bit extraction position is shifted to the upper side. When RX AVE ⁇ S8, the bit extraction position is determined to be 8 bits from the most significant bit.
  • the extraction unit 23 extracts 8 bits from the 16-bit input signal based on the bit extraction position determined by the bit position determination unit 22, and replaces the extracted 8 most significant bits with a sign bit.
  • the bit position determination unit 22 determines a bit extraction position for each slot, and the extraction unit 23 does not change the bit extraction position in the same slot section.
  • the signal power / interference power calculation unit 7 calculates signal power and interference power based on the 8-bit signal (I component amplitude and Q component amplitude for each symbol) extracted by the input bit width adjustment unit 20. Since the operations of the signal power / interference power calculation unit 7 and the SIR calculation unit 8 are the same as those in the first embodiment or the second embodiment, description thereof will be omitted.
  • the input bit width adjustment unit 20 may be added similarly to the wireless device shown in FIG. .
  • the input bit width adjuster 20 may be disposed at least before the signal power / interference power calculator 7.
  • Embodiment 3 by changing the bit extraction position based on the amplitude of the pilot signal for each slot, bit overflow can be suppressed and appropriate bit extraction can be performed. It is possible to prevent the reception performance from being deteriorated due to saturation of the received signal and missing bits, to reduce the circuit scale, and to reduce the power consumption. In addition, since the optimum bit extraction position is determined based on the amplitude of the pilot signal, the calculation accuracy of the signal power and the interference power is improved in spite of using a reception signal with a small bit width, and the embodiment The effect equivalent to 1 or Embodiment 2 can be obtained.
  • Embodiment 4 In actual wireless communication, a received signal has a frequency offset that oscillates with a certain period. Also, in the case of bit extraction described in the third embodiment, even if an overflow is unavoidable, the received signal input to the signal power / interference power calculation unit 7 similarly has a frequency offset. Arise. In the fourth embodiment, the calculation accuracy of the signal power and the interference power is improved by calculating the signal power and the interference power using the received signal whose frequency offset is corrected.
  • FIG. 15 is a graph showing signal power, interference power, and SIR errors caused by frequency offset.
  • a frequency offset occurs, an error occurs in the SIR as shown in FIG. 15, but after correcting the frequency offset, the calculation accuracy of both powers and the calculation accuracy of SIR can be improved by calculating the signal power and the interference power. Can be improved.
  • FIG. 16 is a block diagram showing a configuration of a demodulation unit in the fourth embodiment of the present invention.
  • the frequency offset correction unit 30 estimates the frequency offset from the input I component and Q component signals and corrects the frequency offset of the received signal.
  • the corrected signal is output to the signal power / interference power calculation unit 7.
  • the signal power / interference power calculation unit 7 calculates the signal power and the interference power by one of the methods described in the first embodiment or the second embodiment. Also, the received power represented by Equation 2 may be used as the signal power. By calculating the signal power and the interference power using the received signal whose frequency offset is corrected, the calculation accuracy of the signal power and the interference power is improved. Even when the input bit width adjustment unit 20 has an insufficient bit width and an overflow occurs, it is possible to prevent deterioration in calculation accuracy of signal power and interference power by correcting the frequency offset.
  • the frequency offset correction unit 30 estimates the frequency offset by the following method.
  • the values expressed by Equation 3 and Equation 4 are referred to as estimated transmission path characteristics.
  • Estimated transmission line characteristics including the I component and the Q component are expressed by the following equations.
  • islot indicates the slot number.
  • AVE_I [islot] and AVE_Q [islot] are the average of the I component and the average of the Q component in the slot number islot, respectively, and are expressed using Equations 3 and 4.
  • the frequency offset correction unit 30 first obtains the estimated transmission path specific change amount AVE_dif [islot] in the slot number islot.
  • AVE [islot-1] * is a complex conjugate of AVE [islot-1].
  • the change amounts AVE_I_dif [islot] and AVE_Q_dif [islot] for each of the I component and the Q component are expressed by the following equations.
  • the frequency offset correction unit 30 averages the amount of change in the estimated transmission path characteristics expressed by Expressions 25 to 27.
  • the averaging process is performed as follows using the forgetting factor ⁇ .
  • can also be said to be a time constant.
  • the averaging process for each of the I component and the Q component is expressed by the following equations.
  • the frequency offset correction unit 30 corrects the frequency offset of the received signal using the frequency offset estimated by Equation 31. Since esfo is a phase rotation amount in one slot, when one slot is composed of 10 symbols as in the DPCCH shown in FIG. 2, the phase rotation amount of the frequency offset per symbol is esfo / 10. . AVE_I [islot] and AVE_Q [islot] are corrected based on the rotation amount at the center position of the pilot signal. Since the number of pilot signal symbols per slot is N_pilot, correction is performed by rotating by 0- (N_pilot / 2) symbols.
  • the frequency offset correction unit 30 corrects the received signal using the estimated frequency offset.
  • a signal AVEcor [islot] obtained by correcting AVE [islot] is expressed by the following equation. Further, signals AVE_Icor [islot] and AVE_Qcor [islot] obtained by correcting each of the I component and the Q component are calculated as follows.
  • the frequency offset correction unit 30 corrects the frequency offset of the received signal and then calculates the signal power and the interference power, the calculation accuracy of the signal power and the interference power is improved.
  • the fourth embodiment can be used even when overflow does not occur. In this case, since the frequency offset that is not the cause of overflow is corrected, it is effective in improving the calculation accuracy of the signal power and the interference power.
  • Embodiment 5 In mobile communication, the amplitude of a received signal is not constant but varies. When the amplitude of the received signal is small, the signal power and the interference power cannot be calculated correctly, and the SIR calculation accuracy deteriorates. In addition, when the amplitude of the received signal is large, the calculation accuracy of the signal power, interference power, and SIR deteriorates due to the occurrence of overflow. Therefore, in the fifth embodiment, the calculation accuracy of the signal power, the interference power, and the SIR is improved by calculating the signal power and the interference power using the reception signal subjected to the automatic gain control.
  • a method for obtaining a desired wave level and interference wave level with high accuracy based on the signal power calculated by the signal power / interference power calculation unit 7, interference power, and control values used for automatic gain control. explain.
  • the desired wave level is the power of the signal component at a predetermined measurement location
  • the interference wave level is the power of the interference component at the predetermined measurement location.
  • the predetermined measurement location may be, for example, an antenna end.
  • the signal power and the interference power described above are the signal component power and the interference component power in the signal power / interference power calculation unit 7, respectively.
  • the specified points differ between the desired wave level and the signal power, and between the interference level and the interference power.
  • FIG. 17 is a block diagram showing a configuration of a receiver in the fifth embodiment of the present invention.
  • the AGC control unit 40 controls the gain of the variable amplifier 60 based on a gain control amount (AGC_GAIN) described later, and outputs the gain control amount (AGC_GAIN) to the desired wave / interference wave level calculation unit 50.
  • the desired wave / interference wave level calculation unit 50 calculates the desired wave level and the interference wave level.
  • FIG. 18 is a block diagram showing a configuration of a radio apparatus according to Embodiment 5 of the present invention.
  • the I component and the Q component signal are separated from the received signal by the mixer 15, and the I component and the Q component signal are converted into digital signals by the A / D converter 3, respectively.
  • the AGC control unit 40 and the desired wave / interference wave level calculation unit 50 are the same as those of the receiver 2 shown in FIG. Note that the input bit width adjustment unit 20 and the frequency offset correction unit 30 shown in FIGS. 17 and 18 may be provided as necessary, and are not essential components.
  • a signal received by the antenna 1 is amplified by an amplifier 14 and separated into an I component and a Q component by a mixer 15.
  • the I component and Q component signals are each amplified or attenuated by the variable amplifier 60 based on the gain control amount (AGC_GAIN) obtained by the AGC control unit 40.
  • the amplified or attenuated I component and Q component signals are converted into digital signals by the A / D converter 3 and input to the demodulator 4.
  • the I component and Q component signals converted into digital signals by the A / D converter 3 are input to the demodulator 4 and despread in the case of, for example, the W-CDMA system.
  • the quadrant conversion unit 13 multiplies the despread signal by the inverse characteristic of the pilot signal for each symbol. Thereby, a pilot signal having positive and negative amplitudes can be shifted to the first quadrant of the IQ plane.
  • the signal power / interference power calculation unit 7 calculates the signal power (SIGPOW) and the interference power (ERRPOW) using any of the methods described in the first to fourth embodiments. Also, the received power represented by Equation 2 may be used as the signal power.
  • the calculated signal power (SIGPOW) and interference power (ERRPOW) are output to the SIR calculation unit 8 and the desired wave / interference wave level calculation unit 50.
  • the AGC control unit 40 receives I component and Q component signals.
  • the signal immediately after being converted into a digital signal by the A / D converter 3 is input to the AGC control unit 40, but the input signal to the AGC control unit 40 is a signal indicating an I component and a Q component. It may be sufficient, and may be a signal after frequency offset correction as shown in FIG.
  • the I component signal used in the AGC control unit 40 is referred to as I
  • the Q component signal is referred to as Q.
  • the AGC control unit 40 first calculates ⁇ (I 2 + Q 2 ) as the RMS measurement value. When ⁇ (I 2 + Q 2 ) exceeds a preset upper limit value (AGC_UP), a gain control amount (AGC_GAIN) that attenuates the I component signal and the Q component signal is obtained, and ⁇ When (I 2 + Q 2 ) falls below a preset lower limit (AGC_DN), a gain control amount (AGC_GAIN) that amplifies the I component signal and the Q component signal, respectively, is obtained.
  • AGC_UP a preset upper limit value
  • AGC_GAIN gain control amount that attenuates the I component signal and the Q component signal
  • the gain control amount (AGC_GAIN), the upper limit value (AGC_UP), and the lower limit value (AGC_DN) are input from the AGC control unit 40 to the desired wave level / interference wave level calculation unit 50.
  • an RMS convergence value (RMSconv) that is an intermediate value between the upper limit value and the lower limit value may be input to the desired wave level / interference wave level calculation unit 50.
  • the RMS convergence value (RMSconv) is expressed by the following equation.
  • the AGC control unit 40 controls the gain of the variable amplifier 60 so that the RMS measurement value converges to the RMS convergence value (RMSconv).
  • the RMS convergence value (RMSconv) is a convergence value for automatic gain control.
  • the gain control amount (AGC_GAIN) is set to a value that decreases the gain of the variable amplifier 60 when the RMS measurement value exceeds the upper limit value (AGC_UP), and when the RMS measurement value falls below the lower limit value (AGC_DN).
  • the gain of the variable amplifier 60 is set to a value that increases.
  • the desired wave / interference wave level calculation unit 50 includes the signal power (SIGPOW) and interference power (ERRPOW) calculated by the signal power / interference power calculation unit 7, the gain control amount (AGC_GAIN) calculated by the AGC control unit 40, Based on a preset RMS convergence value (RMSconv) and a gain (GAIN_sp) from a predetermined measurement location to the signal power / interference power calculation unit 7, the desired wave level and the interference wave level are calculated.
  • the desired wave level and the interference wave level are expressed by the following equations. Strictly speaking, GAIN_sp indicates the gain of the portion excluding the variable amplifier 60 between the predetermined measurement location and the signal power / interference power calculation unit 7.
  • the interference wave level may be calculated as follows.
  • the calculations of Expressions 39 to 41 are based on the assumption that all the various parameters used in the calculation are true values. However, if the various parameters are values obtained by dB conversion, addition (+) instead of multiplication ( ⁇ ) is performed. ) Is calculated using subtraction ( ⁇ ) instead of division ( ⁇ ).
  • the gain control amount (AGC_GAIN) calculated by the AGC control unit 40 and the signal power (SIGPOW) calculated by the signal power / interference power calculation unit 7 by the above calculation method, a desired wave level with high accuracy is obtained. Can be sought.
  • the desired wave level only the signal power SIGPOW, the gain control amount (AGC_GAIN), and the fixed values (RMSconv and GAIN_sp) are used, and the interference power (ERRPOW) is not used. Since the interference power (ERRPOW) is obtained using dispersion, the accuracy deteriorates unless there is a sufficient number of samples. For this reason, the calculation accuracy of the desired wave level is higher when the interference power (ERRPOW) is not used than when the desired wave level is calculated using it.
  • the gain control amount AGC_GAIN
  • RMSconv RMS convergence value
  • the RMS measurement value
  • a desired wave / interference wave level is calculated using values (AGC_GAIN, RMSconv, etc.) used for automatic gain control and the signal power (SIGPOW) calculated by the signal power / interference power calculator 7.
  • the unit 50 obtains a desired wave level. Since the interference power (ERRPOW) is not used for calculating the desired wave level, the calculation accuracy of the desired wave level is improved. Even when the interference power (ERRPOW) is used for calculation of the desired wave level, the calculation accuracy of the desired wave level is improved by considering the amplitude ratio of the measurement target channel.
  • the radio apparatus according to the present invention is configured to improve the accuracy of SIR calculation, it is suitable for use in a radio apparatus in the mobile communication field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

A wireless apparatus and SIR measurement method which can accurately measure the signal-to-interference ratio, that is, SIR. An AGC control unit (40) controls the gain of a variable amplifier (60) to automatically control the gain of a received signal. A signal power/interference power calculator (7) calculates signal power and interference power based on a known predetermined received signal which had been subjected to automatic gain control. An SIR calculator (8) calculates an SIR based on the signal power and interference power that the signal power/interference power calculation unit (7) calculated, and outputs the SIR to the scheduler (10).

Description

無線装置及びSIR測定方法Wireless device and SIR measurement method
 本発明は、無線通信技術に関し、特に、移動体通信分野における無線装置及びSIRの測定方法に関する。 The present invention relates to a radio communication technique, and more particularly, to a radio apparatus and a SIR measurement method in the mobile communication field.
 無線装置において、SIR(Signal to Interference power Ratio)測定は、無線伝送路の品質を推定する上で必要な機能である。基地局、移動局、基地局上位装置等は、測定されたSIRによって無線伝送路の品質を判断し、その品質に応じて、伝送速度やサービス等の変更を行う。SIRは、信号電力対干渉電力比であるため、信号電力、干渉電力それぞれの算出精度が高いほど、SIRの測定精度も高くなる。 In a wireless device, SIR (Signal-to-Interference-power Ratio) measurement is a function necessary for estimating the quality of a wireless transmission path. The base station, mobile station, base station host apparatus, and the like determine the quality of the wireless transmission path based on the measured SIR, and change the transmission rate, service, and the like according to the quality. Since SIR is the ratio of signal power to interference power, the higher the calculation accuracy of signal power and interference power, the higher the SIR measurement accuracy.
 無線通信システムには、例えばW-CDMA方式のように、物理チャネル中に位相を検知するための既知シンボル系列(パイロット信号)が設けられている(例えば、非特許文献1参照)。パイロット信号は、基地局、移動局の双方が予め知っているシンボル系列であり、その電力、もしくは振幅を測定することで、信号電力及び干渉電力が算出される。 In a wireless communication system, a known symbol sequence (pilot signal) for detecting a phase in a physical channel is provided, for example, as in the W-CDMA system (for example, see Non-Patent Document 1). The pilot signal is a symbol sequence that is known in advance by both the base station and the mobile station, and signal power and interference power are calculated by measuring the power or amplitude of the pilot signal.
 従来の無線装置では、一般に、受信信号の電力(以下、受信電力と記す)を信号電力とし、受信信号の分散を算出して干渉電力としている。このように算出した信号電力及び干渉電力からSIRを算出している。(例えば、特許文献1、特許文献2参照)。 Conventional radio apparatuses generally use received signal power (hereinafter referred to as received power) as signal power, and calculate dispersion of received signals as interference power. The SIR is calculated from the signal power and the interference power calculated in this way. (For example, refer to Patent Document 1 and Patent Document 2).
特開2006-67002号公報JP 2006-67002 A 特開2006-80585号公報JP 2006-80585 A 特許第4226641号Japanese Patent No. 4226641 特許第3993556号Japanese Patent No. 3993556 特許第3901026号Japanese Patent No. 3901026 特許第4090969号Patent No. 4090969 特許第4053419号Japanese Patent No. 4053419
 受信信号には信号成分だけでなく雑音成分も含まれるため、従来の無線装置で算出された信号電力は、真の信号電力(受信信号の信号成分のみの電力)だけでなく、雑音電力も含んでしまい、真の信号電力よりも大きな値となってしまう。このため、信号電力対干渉電力比であるSIRの測定精度が劣化して、無線伝送路の品質を正確に把握できないという問題があった。また、移動体通信では受信信号の振幅は一定ではなく変動する。受信信号の振幅が小さい場合は量子化雑音の影響が大きくなるため、また受信信号の振幅が大きい場合はオーバーフローが発生するため、信号電力及び干渉電力を正しく算出することができない。このためSIRの算出精度が劣化して、無線伝送路の品質を正確に把握できないという問題があった。 Since the received signal includes not only the signal component but also the noise component, the signal power calculated by the conventional wireless device includes not only true signal power (power of only the signal component of the received signal) but also noise power. Therefore, the value is larger than the true signal power. For this reason, there is a problem that the measurement accuracy of SIR, which is the ratio of signal power to interference power, deteriorates and the quality of the wireless transmission path cannot be accurately grasped. In mobile communication, the amplitude of the received signal is not constant but varies. When the amplitude of the received signal is small, the influence of quantization noise becomes large, and when the amplitude of the received signal is large, overflow occurs, so that the signal power and the interference power cannot be calculated correctly. For this reason, the calculation accuracy of SIR deteriorates, and there is a problem that the quality of the wireless transmission path cannot be accurately grasped.
 また、特許文献3のように、W-CDMA方式におけるパイロット信号の逆拡散結果の平均値を信号電力としてSIRを算出し、SIR測定精度の向上として、干渉成分が低い場合にSIRに含まれるNF(Noise Figure)を除去する方式がある。しかし、パイロット信号は正/負(あるいは0/1)を取る系列であり(非特許文献1参照)、逆拡散結果をそのまま平均化すると、正と負で相殺され(あるいは0と1とが不確定となり)、信号電力がまともに算出されないという問題がある。さらに、実際には、データ送出時にはI成分のみ、またはQ成分のみであった信号が、無線伝送路の歪みによって、I成分とQ成分の両方に振幅を持った信号となるはずであるが、特許文献3では、信号電力の算出式に、そのことが考慮に入れられていないという問題がある。 Further, as in Patent Document 3, SIR is calculated by using the average value of the result of despreading the pilot signal in the W-CDMA system as signal power, and as an improvement in SIR measurement accuracy, the NF included in the SIR when the interference component is low There is a method to remove (Noise Figure). However, the pilot signal is a sequence that takes positive / negative (or 0/1) (see Non-Patent Document 1), and if the despread results are averaged as they are, they are canceled out by positive and negative (or 0 and 1 are not equal). There is a problem that the signal power is not calculated correctly. Furthermore, in practice, a signal that was only the I component or only the Q component at the time of data transmission should be a signal having amplitudes in both the I component and the Q component due to distortion of the wireless transmission path. In Patent Document 3, there is a problem that this is not taken into consideration in the calculation formula of the signal power.
 特許文献4は、雑音の統計データを推定することで受信信号の信頼性をより正確に評価し、それに基づいたデータの再構成を行うものである。特許文献5は、干渉電力の精度を高めることで、信号電力対干渉雑音電力比を推定し、受信品質の劣化を防ぐというものである。また、特許文献6では、観測情報は、情報源の信号よりも、よりガウス的である事に触れている。しかし、上述したいずれの特許文献も、信号電力に含まれる雑音電力を除去し、高精度な信号電力を算出するというものではない。 Patent Document 4 estimates the statistical data of noise more accurately to evaluate the reliability of the received signal and reconstructs the data based on it. Patent Document 5 estimates the ratio of signal power to interference noise power by increasing the accuracy of interference power and prevents deterioration of reception quality. Patent Document 6 mentions that observation information is more Gaussian than information source signals. However, none of the above-described patent documents removes the noise power included in the signal power and calculates the highly accurate signal power.
 本発明は、上述のような問題を解決するためになされたもので、信号電力を高精度に算出し、SIRの測定精度を向上させることができる無線装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a radio apparatus that can calculate signal power with high accuracy and improve SIR measurement accuracy.
 本発明に係る無線装置は、可変増幅器と、可変増幅器の利得を制御して受信信号を自動利得制御するAGC制御部と、自動利得制御された所定の受信信号を用いて信号電力及び干渉電力を算出する信号電力・干渉電力算出部と、前記信号電力・干渉電力算出部が算出した信号電力及び干渉電力に基づきSIRを算出するSIR算出部とを備えたものである。 A radio apparatus according to the present invention includes a variable amplifier, an AGC control unit that automatically controls a gain of a variable amplifier by controlling a gain of the variable amplifier, and a signal power and an interference power using a predetermined reception signal that is automatically gain controlled. A signal power / interference power calculation unit to be calculated, and a SIR calculation unit to calculate SIR based on the signal power and interference power calculated by the signal power / interference power calculation unit.
 本発明は、自動利得制御された所定の受信信号を用いて信号電力及び干渉電力を算出する。自動利得制御された受信信号の振幅は所望の値に収束するため、電力算出における量子化雑音の影響は小さく、またオーバーフローも発生しないため、信号電力及び干渉電力の算出精度が向上する。このため、SIRの測定精度が向上し、無線伝送路の品質を正確に把握できるので、無線伝送路の品質に応じたスケジューリング処理の精度が高まり、適正な伝送速度で無線通信を行える。 In the present invention, signal power and interference power are calculated using a predetermined reception signal subjected to automatic gain control. Since the amplitude of the reception signal subjected to automatic gain control converges to a desired value, the influence of quantization noise in power calculation is small, and overflow does not occur, so that the calculation accuracy of signal power and interference power is improved. For this reason, since the measurement accuracy of SIR is improved and the quality of the wireless transmission path can be accurately grasped, the accuracy of scheduling processing according to the quality of the wireless transmission path is increased, and wireless communication can be performed at an appropriate transmission rate.
本発明の実施の形態1における無線装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radio | wireless apparatus in Embodiment 1 of this invention. DPCCHのフレーム構成図である。It is a DPCCH frame configuration diagram. DPCCHのスロットフォーマットを示す表である。It is a table | surface which shows the slot format of DPCCH. 本発明の実施の形態1における無線装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radio | wireless apparatus in Embodiment 1 of this invention. SIRとオフセット値との関係を示すグラフである。It is a graph which shows the relationship between SIR and an offset value. 不偏分散と標本分散との差分を示すグラフである。It is a graph which shows the difference of unbiased variance and sample variance. 従来技術に基づき算出したSIRと本実施の形態2に基づき算出したSIRとの差分ΔSIR[dB]を示すグラフである。It is a graph which shows difference (DELTA) SIR [dB] between SIR calculated based on the prior art, and SIR calculated based on this Embodiment 2. FIG. パイロットシンボル数=5のときのΔSIR[dB]を示す表である。10 is a table showing ΔSIR [dB] when the number of pilot symbols = 5. パイロットシンボル数=6のときのΔSIR[dB]を示す表である。10 is a table showing ΔSIR [dB] when the number of pilot symbols = 6. パイロットシンボル数=7のときのΔSIR[dB]を示す表である。10 is a table showing ΔSIR [dB] when the number of pilot symbols = 7. パイロットシンボル数=8のときのΔSIR[dB]を示す表である。10 is a table showing ΔSIR [dB] when the number of pilot symbols = 8. 本発明の実施の形態3における無線装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radio | wireless apparatus in Embodiment 3 of this invention. 本発明の実施の形態3における入力ビット幅調整部20の構成を示すブロック図である。It is a block diagram which shows the structure of the input bit width adjustment part 20 in Embodiment 3 of this invention. 本発明の実施の形態3における入力ビット幅調整部20の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the input bit width adjustment part 20 in Embodiment 3 of this invention. 周波数オフセットにより生じる信号電力、干渉電力、及びSIRの誤差を示すグラフである。It is a graph which shows the error of signal power, interference power, and SIR which arise by frequency offset. 本発明の実施の形態4における復調部の構成を示すブロック図である。It is a block diagram which shows the structure of the demodulation part in Embodiment 4 of this invention. 本発明の実施の形態5における受信機の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver in Embodiment 5 of this invention. 本発明の実施の形態5における無線装置の構成を示すブロック図である。It is a block diagram which shows the structure of the radio | wireless apparatus in Embodiment 5 of this invention.
1 アンテナ
2 受信機
3 A/D変換器
4 復調部
5 タイミング同期部
6 検波部
7 信号電力・干渉電力算出部
8 SIR算出部
9 送信機
10 スケジューラ部
11 変調・符号化部
12 D/A変換器
13 象限変換部
14 増幅器
15 ミキサ
20 入力ビット幅調整部
21 先頭シンボル平均化部
22 ビット位置判断部
23 抽出部
30 周波数オフセット補正部
40 AGC制御部
50 希望波・干渉波レベル算出部
60 可変増幅器
DESCRIPTION OF SYMBOLS 1 Antenna 2 Receiver 3 A / D converter 4 Demodulation part 5 Timing synchronization part 6 Detection part 7 Signal power / interference power calculation part 8 SIR calculation part 9 Transmitter 10 Scheduler part 11 Modulation / coding part 12 D / A conversion 13 Quadrant conversion unit 14 Amplifier 15 Mixer 20 Input bit width adjustment unit 21 First symbol averaging unit 22 Bit position determination unit 23 Extraction unit 30 Frequency offset correction unit 40 AGC control unit 50 Desired wave / interference wave level calculation unit 60 Variable amplifier
 本発明に係る無線装置及びSIR測定方法の実施の形態について、図面を参照して説明する。以下の各図において、同一符号は、同一または相当の構成を示す。なお、本発明は以下に示す各実施の形態に限定されるものではない。 Embodiments of a wireless device and an SIR measurement method according to the present invention will be described with reference to the drawings. In the following drawings, the same reference numerals indicate the same or corresponding configurations. In addition, this invention is not limited to each embodiment shown below.
実施の形態1.
 図1は、本発明の実施の形態1における無線装置の構成を示すブロック図である。無線装置は、アンテナ1、受信機2、送信機9、及びスケジューラ部10を有する。アンテナ1から受信した受信信号は、A/D変換器3によりアナログ信号からデジタル信号に変換される。A/D変換器3に入力されるアナログ信号は、図1には図示しないミキサにより、高周波からベースバンド周波数または中間周波数に周波数変換されている。A/D変換器3から出力されたデジタル信号は復調部4に入力される。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a radio apparatus according to Embodiment 1 of the present invention. The wireless device includes an antenna 1, a receiver 2, a transmitter 9, and a scheduler unit 10. The received signal received from the antenna 1 is converted from an analog signal to a digital signal by the A / D converter 3. The analog signal input to the A / D converter 3 is frequency-converted from a high frequency to a baseband frequency or an intermediate frequency by a mixer (not shown in FIG. 1). The digital signal output from the A / D converter 3 is input to the demodulator 4.
 復調部4は、タイミング同期部5、検波部6、信号電力・干渉電力算出部7、及びSIR算出部8を有する。タイミング同期部5は、入力されたデジタル信号のタイミング同期をとる。検波部6は、受信信号を検波してI成分及びQ成分からなる複素信号を生成する。タイミング同期がとれ、パイロット信号を正確なタイミングで抽出することができる状態において、信号電力・干渉電力算出部7は、パイロット信号のシンボル毎の軟判定値に相当する振幅に基づき信号電力を算出する。また、パイロット信号の振幅の分散を算出して、それを干渉電力とする。SIR算出部8は、信号電力・干渉電力算出部7により算出された信号電力を干渉電力で除算してSIRを算出する。 The demodulation unit 4 includes a timing synchronization unit 5, a detection unit 6, a signal power / interference power calculation unit 7, and an SIR calculation unit 8. The timing synchronization unit 5 synchronizes the timing of the input digital signal. The detector 6 detects the received signal and generates a complex signal composed of an I component and a Q component. In a state in which timing synchronization is established and the pilot signal can be extracted at an accurate timing, the signal power / interference power calculation unit 7 calculates the signal power based on the amplitude corresponding to the soft decision value for each symbol of the pilot signal. . Further, the variance of the amplitude of the pilot signal is calculated and used as interference power. The SIR calculation unit 8 calculates the SIR by dividing the signal power calculated by the signal power / interference power calculation unit 7 by the interference power.
 スケジューラ部10は、SIR算出部8により算出されたSIR等に基づき、無線伝送路の品質に最適な伝送速度を決定し、通信相手局(自局が基地局であれば相手局は移動局、自局が移動局であれば相手局は基地局)に対して、その伝送速度で送信するように指示する。変調・符号化部11はスケジューラ部10により指示された情報を含むデータを符号化し、変調する。D/A変換器12は、デジタル信号をアナログ信号に変換する。 The scheduler unit 10 determines the optimum transmission rate for the quality of the wireless transmission path based on the SIR calculated by the SIR calculation unit 8 and the communication partner station (if the station is a base station, the partner station is a mobile station, If the local station is a mobile station, the partner station instructs the base station) to transmit at that transmission rate. The modulation / encoding unit 11 encodes and modulates data including information instructed by the scheduler unit 10. The D / A converter 12 converts a digital signal into an analog signal.
 次に、実施の形態1における無線装置の動作を説明する。復調部4は、予め決まったデータ単位毎に算出した信号電力及び干渉電力を用いてSIRを算出する。以下では、3GPP TS25.211で定義されたDPCCH(Dedicated Physical Control Channel)のスロット毎に、信号電力及び干渉電力を算出する方法を説明する。図2は、DPCCHのフレーム構成図である。図3は、DPCCHのスロットフォーマットを示す表である。 Next, the operation of the wireless device in the first embodiment will be described. The demodulator 4 calculates the SIR using the signal power and interference power calculated for each predetermined data unit. Hereinafter, a method for calculating the signal power and the interference power for each slot of the DPCCH (Dedicated Physical Control Channel) defined in 3GPP TS25.211 will be described. FIG. 2 is a frame configuration diagram of the DPCCH. FIG. 3 is a table showing a slot format of DPCCH.
 図2に示すフレーム構成において、各スロットのパイロット信号を用いて、信号電力・干渉電力算出部7は信号電力及び干渉電力を算出する。パイロット信号は各スロットの先頭に位置しており、シンボル数はN_pilotである。パイロット信号のシンボル数(以下、パイロットシンボル数と記す)N_pilotは、図3に示すとおり、スロットフォーマットに対応して異なる。 In the frame configuration shown in FIG. 2, the signal power / interference power calculation unit 7 calculates signal power and interference power using the pilot signal of each slot. The pilot signal is located at the head of each slot, and the number of symbols is N_pilot. The number of pilot signal symbols (hereinafter referred to as the number of pilot symbols) N_pilot differs according to the slot format as shown in FIG.
 パイロット信号は既知であり、無線装置は、パイロット信号のシンボル系列を参照パイロット信号P_I[isym]+j×P_Q[isym]として予め保持している。なお、isymはシンボル番号である。検波部6では、入力された信号を検波して、Rx_I[isym]+j×Rx_Q[isym]で表わされる複素信号を抽出する。さらに、検波部6は、次式に示すように、この複素信号を参照パイロット信号(0→+1、1→-1でレベル変換したもの)の複素共役で乗算して、パイロット信号におけるシンボル毎のI成分の振幅sym_I[isym]、Q成分の振幅sym_Q[isym]を求める。
Figure JPOXMLDOC01-appb-M000001
The pilot signal is known, and the radio apparatus holds in advance the pilot signal symbol sequence as a reference pilot signal P_I [isym] + j × P_Q [isym]. Isym is a symbol number. The detector 6 detects the input signal and extracts a complex signal represented by Rx_I [isym] + j × Rx_Q [isym]. Further, the detector 6 multiplies this complex signal by the complex conjugate of the reference pilot signal (level-converted from 0 → + 1, 1 → −1), as shown in the following equation, for each symbol in the pilot signal. I component amplitude sym_I [isym] and Q component amplitude sym_Q [isym] are obtained.
Figure JPOXMLDOC01-appb-M000001
 信号電力・干渉電力算出部7は、パイロット信号の各シンボルが同じ象限となるように調整した後の信号を用いて、信号電力及び干渉電力を算出する。例えば、W-CDMA方式では、検波部6は、数式1に示すように、逆拡散された信号に対してパイロット信号の逆特性を乗算して、シンボル毎に全て複素平面(IQ平面)の第一象限に移すような補正を行い、信号電力・干渉電力算出部7は、補正後のデータ(sym_I[isym]、sym_Q[isym])を用いて信号電力を算出する。通信相手局から送信された時点ではA+j×0、または、0+j×Aで表現されていた信号は、伝送路歪みにより、C+j×Dとなる。実数成分CがI成分となり、虚数成分DがQ成分となるが、信号電力・干渉電力算出部7での信号電力、干渉電力の計算は、このI成分、Q成分を共に考慮に入れて行われるため、電力算出の精度が高い。 The signal power / interference power calculation unit 7 calculates the signal power and the interference power by using the signal after adjustment so that each symbol of the pilot signal is in the same quadrant. For example, in the W-CDMA system, the detection unit 6 multiplies the despread signal by the inverse characteristic of the pilot signal, as shown in Equation 1, so that all symbols are complex planes (IQ planes). The signal power / interference power calculation unit 7 calculates the signal power using the corrected data (sym_I [isym], sym_Q [isym]). The signal expressed as A + j × 0 or 0 + j × A at the time of transmission from the communication partner station becomes C + j × D due to transmission path distortion. Although the real component C becomes the I component and the imaginary component D becomes the Q component, the signal power / interference power calculation unit 7 calculates the signal power and the interference power in consideration of both the I component and the Q component. Therefore, the power calculation accuracy is high.
 なお、図1に示す受信機2では、復調部4内の検波部6において、I成分及びQ成分を検出した後、象限変換をしているが、A/D変換器3の前段においてI成分、Q成分に分離した信号のそれぞれをA/D変換して復調部4へ入力する構成としてもよい。図4は、本発明の実施の形態1における無線装置の構成を示すブロック図である。アンテナ1から受信した信号は増幅器14により増幅され、ミキサ15によりI成分、Q成分に分離される。I成分、Q成分の信号はそれぞれA/D変換器3によりアナログ信号からデジタル信号に変換され、復調部4へ入力される。復調部4へ入力されたI成分、Q成分の信号は、象限変換部13により、数式1で示す象限変換がなされ、第一象限に移された補正後のデータが信号電力・干渉電力算出部7に入力される。 In the receiver 2 shown in FIG. 1, the detection unit 6 in the demodulation unit 4 performs quadrant conversion after detecting the I component and Q component, but the I component in the preceding stage of the A / D converter 3. Each of the signals separated into Q components may be A / D converted and input to the demodulator 4. FIG. 4 is a block diagram showing a configuration of the radio apparatus according to Embodiment 1 of the present invention. A signal received from the antenna 1 is amplified by an amplifier 14 and separated into an I component and a Q component by a mixer 15. The I component and Q component signals are converted from analog signals to digital signals by the A / D converter 3 and input to the demodulator 4. The I component and Q component signals input to the demodulator 4 are subjected to quadrant conversion represented by Equation 1 by the quadrant converter 13, and the corrected data transferred to the first quadrant is signal power / interference power calculator. 7 is input.
 信号電力・干渉電力算出部7は、sym_I[isym]及びsym_Q[isym]を用いて信号電力及び干渉電力を算出する。まず、スロット毎の受信電力(=補正前の信号電力、RXPOWslot)は数式2で表される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
ここで、N_pilotは、上述したとおり1スロット当たりのパイロットシンボル数であり、換言すればサンプル数である。
The signal power / interference power calculation unit 7 calculates signal power and interference power using sym_I [isym] and sym_Q [isym]. First, the received power for each slot (= signal power before correction, RXPOW slot ) is expressed by Equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Here, N_pilot is the number of pilot symbols per slot as described above, in other words, the number of samples.
 次に、干渉電力は受信信号の振幅の分散により求められるが、ここでは分散として標本分散を用いる。スロット毎の干渉電力(EPPPOWslot)は、次式で表される。
Figure JPOXMLDOC01-appb-M000005
Next, the interference power is obtained from the variance of the amplitude of the received signal. Here, the sample variance is used as the variance. The interference power for each slot (EPPPOW slot ) is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000005
 信号電力を算出する際に、電力算出に用いる受信信号のサンプル数が少ないと十分な平均化ができず、算出した電力に雑音成分が混入するが、サンプル数が多いと十分な平均化ができ、雑音成分は除去される。これは、受信信号に含まれる雑音成分の電力が(分散÷サンプル数)で表されることを示している。正確な信号電力を算出するためには、受信電力から受信信号の分散をシンボル数で平均化した値を減算すればよい。信号電力・干渉電力算出部7で算出するスロット毎の信号電力(SIGPOWslot)を次式に示す。
Figure JPOXMLDOC01-appb-M000006
When calculating the signal power, if the number of samples of the received signal used for power calculation is small, sufficient averaging cannot be performed, and noise components are mixed in the calculated power. The noise component is removed. This indicates that the power of the noise component included in the received signal is expressed by (variance / number of samples). In order to calculate an accurate signal power, a value obtained by averaging the variance of the received signal by the number of symbols may be subtracted from the received power. The signal power (SIGPOW slot ) for each slot calculated by the signal power / interference power calculation unit 7 is shown in the following equation.
Figure JPOXMLDOC01-appb-M000006
 上述した信号電力の補正は、次のように考えることもできる。補正前の信号電力RXPOWslotには、装置内部などで発生するガウス雑音が含まれていると考えられる。ガウス雑音は、正規分布をしている。受信する全てのパイロット信号を母集団とすると、1スロット分のパイロット信号は、母集団からランダムにデータを抜き取った標本であり、1スロットのパイロットシンボル数N_pilotは、サンプル数であるといえる。母分散は不明であるので、例えば、ERRPOWslotを母分散と仮定する。中心極限定理によれば、母集団が十分に大きい場合は、受信信号の分散の平均は(ERRPOWslot÷N_pilot)で表される。中心極限定理とは、変数Xが、平均μ、標準偏差σの分布に従うならば、大きさnの無作為標本に基づく標本平均Xは、nが無限に大きくなるとき、平均μ、標準偏差σ/√nの正規分布に近づくというものである。中心極限定理によれば、分散の平均(ERRPOWslot÷N_pilot)は正規分布するため、受信信号に含まれているガウス雑音であるとみなせる。従って、数式6に示す信号電力の補正を行うことで、信号電力の算出精度を高めることができる。 The signal power correction described above can also be considered as follows. It is considered that the signal power RXPOW slot before correction includes Gaussian noise generated inside the apparatus. Gaussian noise has a normal distribution. If all the received pilot signals are a population, the pilot signal for one slot is a sample obtained by randomly extracting data from the population, and the pilot symbol number N_pilot for one slot can be said to be the number of samples. Since population variance is unknown, for example, ERRPOW slot is assumed to be population variance. According to the central limit theorem, when the population is sufficiently large, the average of the variance of the received signal is represented by (ERRPOW slot ÷ N_pilot). The central limit theorem is that if the variable X follows the distribution of mean μ and standard deviation σ, the sample mean X based on a random sample of size n is the mean μ and standard deviation σ when n becomes infinitely large. It approaches the normal distribution of / √n. According to the central limit theorem, the average of the variances (ERRPOW slot ÷ N_pilot) is normally distributed, so that it can be regarded as Gaussian noise included in the received signal. Therefore, the calculation accuracy of the signal power can be improved by correcting the signal power shown in Formula 6.
 また、干渉電力の算出において、1スロット分のパイロット信号を母集団とするのではなく、できるだけ多くのスロットのパイロット信号を母集団としてもよい。例えば、4フレーム分(即ち、60スロット分)のパイロット信号を母集団として分散を求め、それを母分散σS60と仮定する。信号電力を算出したいスロットのERRPOWslotは、次のように算出できる。まず、母集団から1スロット分のパイロット信号を抜き取って標本とする。当該標本のサンプル数は、1スロットのパイロットシンボル数N_pilotであり、その標本での受信信号の分散の平均である(σs60÷N_pilot)を算出して、ERRPOWslotとしてもいい。1スロットのパイロット信号の分散を母分散とする場合よりも、4フレーム分のパイロット信号の分散を母分散とする場合の方が、信号電力及び干渉電力の精度が高くなるという効果がある。 Further, in calculating the interference power, the pilot signals for one slot may not be used as a population, but pilot signals of as many slots as possible may be used as the population. For example, a variance is obtained by using pilot signals for 4 frames (ie, 60 slots) as a population, and is assumed to be a population variance σ S60 . The ERRPOW slot of the slot for which signal power is to be calculated can be calculated as follows. First, a pilot signal for one slot is extracted from the population and used as a sample. The number of samples of the sample is the number N_pilot of pilot symbols in one slot, and an average of received signal dispersion (σ s60 ÷ N_pilot) in the sample may be calculated and set as an ERRPOW slot . There is an effect that the accuracy of the signal power and the interference power is higher in the case where the variance of the pilot signals for four frames is used as the population variance than in the case where the variance of the pilot signal of 1 slot is the population variance.
 受信信号には雑音成分が含まれるが、受信電力から雑音成分の電力を除去して信号電力(SIGPOWslot)とするため、信号電力の算出精度は高くなる。なお、受信電力から減算する(ERRPOWslot/N_pilot)の分母は、サンプル数に限られたものではなく、調整用として、変更可能な値としてもよい。雑音成分には、他ユーザ等からの干渉による干渉成分の他に、熱雑音や歪み雑音等も含まれるからである。 Although the received signal includes a noise component, the power of the noise component is removed from the received power to obtain the signal power (SIGPOW slot ), so that the calculation accuracy of the signal power is increased. Note that the denominator of (ERRPOW slot / N_pilot) to be subtracted from the received power is not limited to the number of samples, and may be a changeable value for adjustment. This is because the noise component includes thermal noise and distortion noise in addition to the interference component due to interference from other users.
 信号電力・干渉電力算出部7で算出された信号電力(SIGPOWslot)及び干渉電力(EPPPOWslot)に基づき、SIR算出部8はスロット毎のSIR(SIRslot)を算出する。SIRslotは次式に示すように、スロット毎の信号電力(SIGPOWslot)をスロット毎の干渉電力(EPPPOWslot)で除算した値である。
Figure JPOXMLDOC01-appb-M000007
Based on the signal power (SIGPOW slot ) and interference power (EPPPOW slot ) calculated by the signal power / interference power calculation unit 7, the SIR calculation unit 8 calculates SIR (SIR slot ) for each slot . The SIR slot is a value obtained by dividing the signal power (SIGPOW slot ) for each slot by the interference power (EPPPOW slot ) for each slot , as shown in the following equation.
Figure JPOXMLDOC01-appb-M000007
 従来の無線装置のように、数式2に示す受信電力を信号電力として用いた場合、受信信号には雑音成分が含まれるため、実際の信号電力よりも大きくなってしまう。特に、伝送レートの低い信号、例えばRMC12.2K(12.2kbps、3GPP TS25.141)やSDCCH13.6K(13.6kbps、3GPP TS25.141)は、信号電力に与える雑音電力の影響が大きく、雑音電力を無視できない。従来のように信号電力として数式2を採用した場合と、本実施の形態のように信号電力として数式6を採用した場合とでは、SIRに次式で示すオフセット値(offset[dB])が生じる。
Figure JPOXMLDOC01-appb-M000008
即ち、信号電力の算出に数式2を採用した場合は、数式6を採用した場合に比べ、1+ERRPOWslot/(SIGPOWslot×N_pilot)倍だけSIRが大きくなってしまう。
When the received power shown in Formula 2 is used as the signal power as in a conventional wireless device, the received signal includes a noise component and thus becomes larger than the actual signal power. In particular, signals with a low transmission rate, such as RMC 12.2K (12.2 kbps, 3GPP TS25.141) and SDCCH 13.6K (13.6 kbps, 3GPP TS25.141), have a large influence on noise power, and noise power is reduced. It cannot be ignored. The offset value (offset [dB]) shown in the following equation is generated in the SIR when Equation 2 is adopted as the signal power as in the conventional case and when Equation 6 is adopted as the signal power as in the present embodiment. .
Figure JPOXMLDOC01-appb-M000008
That is, when Equation 2 is used for calculating the signal power, the SIR is increased by 1 + ERRPOW slot / (SIGPOW slot × N_pilot) times as compared with the case where Equation 6 is adopted.
 図5は、SIRとオフセット値との関係を示すグラフである。図5の横軸は、受信電力を信号電力とした場合のSIR、即ち従来技術に基づき算出したSIRを示している。図5に示すように、SIRが0[dB]を下回る場合にオフセット値が顕著に大きくなっており、SIRが小さい領域では、特に、雑音成分がSIR算出に与える影響が大きいことがわかる。また、パイロットシンボル数N_pilotが小さい程オフセット値は大きくなっている。 FIG. 5 is a graph showing the relationship between SIR and offset value. The horizontal axis of FIG. 5 shows the SIR when the received power is the signal power, that is, the SIR calculated based on the prior art. As shown in FIG. 5, when the SIR is less than 0 [dB], the offset value is remarkably large, and it can be seen that particularly in the region where the SIR is small, the influence of the noise component on the SIR calculation is large. Further, the offset value increases as the number of pilot symbols N_pilot decreases.
 上述のSIR算出部8では、スロット単位でSIRを算出したが、例えば、フレーム単位でSIRを算出してもよい。図2に示すように、1フレームにつきスロットが15個ある場合を例に説明する。SIR算出部8がフレーム単位でSIRを算出する場合は、信号電力・干渉電力算出部7はフレーム毎の信号電力(SIGPOWflame)及びフレーム毎の干渉電力(ERRPOWflame)を算出する。もしくは、信号電力・干渉電力算出部7ではスロット毎の信号電力(SIGPOWslot)及び干渉電力(ERRPOWslot)を算出し、SIR算出部8においてフレーム毎の信号電力(SIGPOWflame)及び干渉電力(ERRPOWflame)を算出した後、フレーム毎のSIR(SIRflame)を算出してもよい。フレーム毎の干渉電力(ERRPOWflame)は、次式で表される。
Figure JPOXMLDOC01-appb-M000009
また、フレーム毎の信号電力(SIGPOWflame)は次式で表される。
Figure JPOXMLDOC01-appb-M000010
従って、フレーム毎のSIR(SIRflame)は次式で表される。
Figure JPOXMLDOC01-appb-M000011
In the SIR calculation unit 8 described above, the SIR is calculated in slot units. However, for example, the SIR may be calculated in frame units. An example in which there are 15 slots per frame as shown in FIG. 2 will be described. When the SIR calculation unit 8 calculates the SIR in units of frames, the signal power / interference power calculation unit 7 calculates the signal power (SIGPOW flame ) for each frame and the interference power (ERRPOW flame ) for each frame. Alternatively, the signal power / interference power calculation unit 7 calculates signal power (SIGPOW slot ) and interference power (ERRPOW slot ) for each slot , and the SIR calculation unit 8 calculates signal power (SIGPOW flame ) and interference power (ERRPOW) for each frame. After calculating flame ), SIR (SIR flame ) for each frame may be calculated. The interference power for each frame (ERRPOW flame ) is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000009
The signal power (SIGPOW flame ) for each frame is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000010
Accordingly, the SIR (SIR flame ) for each frame is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000011
 前述した中心極限定理では、無作為標本の大きさnが無限に大きくなるとき、標本平均Xmが正規分布に近づくと定義しているが、実際には、無作為標本nの大きさは30程度でも正規分布に近づく。1スロット当たりのパイロットシンボル数N_pilotが3~8であったとしても、1フレームでは45~120となる。従って、1フレーム分の分散σを1フレーム分のパイロットシンボル数の合計で割った値σ/(N_pilot×15)は正規分布に近づき、熱雑音に相当するガウス雑音に近づいているといえる。フレーム単位の信号電力の算出において、受信電力から精度の高い雑音電力を除くことになるため、フレーム単位の信号電力は算出精度が高くなる。従って、フレーム単位のSIRも算出精度が高くなる。 The central limit theorem described above defines that the sample mean Xm approaches a normal distribution when the size n of the random sample becomes infinitely large. In practice, the size of the random sample n is about 30. But it approaches a normal distribution. Even if the number N_pilot of pilot symbols per slot is 3 to 8, it is 45 to 120 in one frame. Therefore, the value σ 2 / (N_pilot × 15) obtained by dividing the variance σ 2 for one frame by the total number of pilot symbols for one frame is close to a normal distribution, and is close to Gaussian noise corresponding to thermal noise. . In calculating the signal power for each frame, the noise power with high accuracy is removed from the received power, so that the calculation accuracy for the signal power for each frame is high. Accordingly, the calculation accuracy of the SIR for each frame is also increased.
 スロット毎に算出した信号電力(SIGPOWslot)と干渉電力(ERRPOWslot)とを用いてスロット毎のSIR(SIRslot)を算出し、SIRslotの1フレームにおける総和を算出するのではなく、信号電力、干渉電力それぞれについて1フレームの総和(SIGPOWflame、ERRPOWflame)を算出した後、SIRを最後に算出する。このようにフレーム毎のSIR(SIRflame)を算出することにより、スロット毎の熱雑音のばらつきを除去することができ、SIR算出の精度が向上する。SIR算出の精度が向上することにより、スケジューラ部10は無線伝送路の品質を正確に把握でき、適正な伝送速度を送信機9に設定するとともに、通信相手局に対して適正な伝送速度を通知することもできる。 The SIR (SIR slot ) for each slot is calculated using the signal power (SIGPOW slot ) and the interference power (ERRPOW slot ) calculated for each slot , and the signal power is not calculated instead of calculating the sum total in one frame of the SIR slot. After calculating the sum of one frame (SIGPOW flame , ERRPOW flame ) for each interference power, the SIR is calculated last. By calculating the SIR (SIR flame ) for each frame in this way, variations in thermal noise for each slot can be eliminated, and the accuracy of SIR calculation is improved. By improving the accuracy of the SIR calculation, the scheduler unit 10 can accurately grasp the quality of the wireless transmission path, set an appropriate transmission rate in the transmitter 9, and notify the communication partner station of the appropriate transmission rate. You can also
 上述では、1スロット毎もしくは1フレーム毎の信号電力、干渉電力を算出する方法を説明したが、所定数のスロット毎に算出してもよい。信号電力、干渉電力の算出に用いるスロット数をN_slotとすると、所定数のスロット毎の信号電力、干渉電力は以下の数式で表される。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
但し、RXPOWN_slot、AVE_I2、AVE_Q2は以下のとおりである。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
In the above description, the method for calculating the signal power and the interference power for each slot or for each frame has been described. However, it may be calculated for each predetermined number of slots. If the number of slots used to calculate signal power and interference power is N_slot, the signal power and interference power for each predetermined number of slots are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
However, RXPOW N_slot , AVE_I 2 and AVE_Q 2 are as follows.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 W-CDMA方式であれば、1フレームは15スロットであるので、数式12~数式16において、N_slot=15を代入すれば、1フレーム平均の信号電力、干渉電力が算出できる。sym_I[isym]、sym_Q[isym]の平均化が行われるので、信号電力及び干渉電力の算出精度が向上する。 In the W-CDMA system, since one frame has 15 slots, if N_slot = 15 is substituted in Equations 12 to 16, the average signal power and interference power of one frame can be calculated. Since sym_I [isym] and sym_Q [isym] are averaged, the calculation accuracy of signal power and interference power is improved.
 数式12、数式13により1フレーム平均の信号電力、干渉電力を算出する場合は、1フレーム分のパイロット信号の分散を求めて干渉電力とするが、なるべく多くのスロットにおけるパイロット信号の分散を求めて干渉電力としてもよい。例えば、1フレーム分ではなく、4フレーム分(60スロット分)のパイロット信号の分散を求めて、母分散σS60 2とする。母分散σS60 2から1フレーム分のパイロットシンボル数(N_pilot×15)を抜き取って標本とし、その標本での受信信号の分散の平均であるσS60 2÷(N_pilot×15)を雑音電力としてもよい。母分散として1フレーム分のパイロット信号の分散を用いる場合よりも、4フレーム分のパイロット信号の分散を用いる場合の方が、算出した雑音電力は正規分布に近づくことになるので、雑音電力の算出精度が高くなる。精度の高い雑音電力を用いて信号電力を算出すれば、信号電力の精度も高くなる。 When calculating the average signal power and interference power of one frame using Equations 12 and 13, the dispersion of pilot signals for one frame is obtained as interference power, but the dispersion of pilot signals in as many slots as possible is obtained. Interference power may be used. For example, instead of one frame, seeking the variance of the pilot signals for four frames (60 slots), and the population variance sigma S60 2. And specimens withdrawn population variance sigma S60 2 from one frame of the number of pilot symbols (N_pilot × 15), the average in a sigma S60 2 ÷ of the variance of the received signal at that sample a (N_pilot × 15) as the noise power Good. Since the calculated noise power is closer to the normal distribution when the pilot signal variance for 4 frames is used as the variance of the pilot signal for 1 frame, the noise power is calculated. Increases accuracy. If the signal power is calculated using highly accurate noise power, the accuracy of the signal power is also increased.
 また、上述では、sym_I[isym]、sym_Q[isym]やsym_I[isym]2+sym_Q[isym]2の平均化として、サンプル数分加算してから、当該サンプル数で除算して平均する手法を使ったが、ループフィルタのように時定数を乗算し、逐次加算する手法を使ってもよい。除算処理を行う場合は回路規模が大きくなるが、逐次加算する手法を用いることにより、除算処理が不要となるため、回路規模を小さくできる。 In addition, in the above description, as the averaging of sym_I [isym], sym_Q [isym] and sym_I [isym] 2 + sym_Q [isym] 2 , the method of adding the number of samples and then dividing and averaging by the number of samples Although used, a method of multiplying time constants and sequentially adding them may be used like a loop filter. When the division process is performed, the circuit scale becomes large. However, by using the sequential addition method, the division process becomes unnecessary, so that the circuit scale can be reduced.
 ループフィルタの計算は、例えば、以下のように行う。α、βは時定数(1/256等)である。accum_sym_I[N-1]2は、シンボル番号isymが0から(N-1)までN個のsym_I[isym]2を、時定数を用いて逐次加算することにより平均化したものであり、accum_sym_Q[N-1]2は、N個のsym_Q[isym]2を、時定数を用いて逐次加算することにより平均化したものである。同様に、accum_sym_I[N-1]は、N個のsym_I[isym]を、時定数を用いて逐次加算することにより平均化したものであり、accum_sym_Q[N-1]は、N個のsym_Q[isym]を、時定数を用いて逐次加算することにより平均化したものである。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
The calculation of the loop filter is performed as follows, for example. α and β are time constants (such as 1/256). accum_sym_I [N-1] 2 is an average obtained by sequentially adding N sym_I [isym] 2 from the symbol number isym from 0 to (N-1) using a time constant, and accum_sym_Q [ N-1] 2 is obtained by averaging N sym_Q [isym] 2 by sequentially adding them using a time constant. Similarly, accum_sym_I [N-1] is obtained by averaging N sym_I [isym] by sequential addition using a time constant, and accum_sym_Q [N-1] is N sym_Q [ isym] is averaged by sequential addition using a time constant.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 信号電力・干渉電力算出部7では、数式5の右辺第一項の代わりに数式17を用い、数式5、数式6のAVE_I、AVE_Qの代わりに数式18、数式19を用いて信号電力及び干渉電力を算出してもよい。また、数式12の右辺第一項の代わりに数式17を用い、数式12、数式13のAVE_I2、AVE_Q2の代わりに数式18、数式19を用いて信号電力及び干渉電力を算出してもよい。 The signal power / interference power calculation unit 7 uses Equation 17 instead of the first term on the right side of Equation 5, and uses Equation 18 and Equation 19 instead of AVE_I and AVE_Q in Equation 5 and Equation 6, to calculate signal power and interference power. May be calculated. Further, the signal power and the interference power may be calculated using Equation 17 instead of the first term on the right side of Equation 12, and using Equation 18 and Equation 19 instead of AVE_I 2 and AVE_Q 2 of Equation 12 and Equation 13. .
 本発明の実施の形態1によれば、雑音成分を含む受信信号の電力から雑音電力を除いたものを信号電力とするため、信号電力の算出精度が向上するとともに、SIRの測定精度も向上する。また、信号電力及び干渉電力の算出において、演算に用いる母集団を大きくしたり、サンプル数を多くすることで、より信号電力及び干渉電力の算出精度が向上し、SIRの測定精度も向上する。SIRの測定精度の向上により、スケジューラ部10は、無線伝送路の品質を正確に把握できるため、無線伝送路の品質に応じたスケジューリング処理の精度が高まり、適正な伝送速度で無線通信を行える。このため、過剰な伝送速度で無線通信することによる消費電力の浪費を抑制することができる。 According to the first embodiment of the present invention, signal power is obtained by subtracting noise power from the power of a received signal including a noise component, so that signal power calculation accuracy is improved and SIR measurement accuracy is also improved. . Further, in calculating the signal power and the interference power, the calculation accuracy of the signal power and the interference power can be further improved and the measurement accuracy of the SIR can be improved by increasing the population used for the calculation and increasing the number of samples. By improving the measurement accuracy of the SIR, the scheduler unit 10 can accurately grasp the quality of the radio transmission path, so that the accuracy of the scheduling process according to the quality of the radio transmission path is increased and radio communication can be performed at an appropriate transmission rate. For this reason, waste of power consumption due to wireless communication at an excessive transmission rate can be suppressed.
実施の形態2.
 実施の形態1では、分散として標本分散を用いて干渉電力を算出したが、不偏分散を用いて干渉電力を算出してもよい。標本分散は、その期待値が母集団の分散よりも小さくなる。期待値が母集団の分散に等しくなるように補正をかけたものが不偏分散である。サンプル数が十分多ければ、標本分散=不偏分散となる。しかし、1スロット分のパイロット信号を標本とする場合のように、サンプル数(=1スロット毎のパイロットシンボル数N_pilot)が少ない場合は、干渉電力に不偏分散を用いた方が精度は高くなる。本実施の形態2における無線装置の構成は、実施の形態1と同様であるため説明を省略する。
Embodiment 2. FIG.
In Embodiment 1, the interference power is calculated using the sample variance as the variance, but the interference power may be calculated using unbiased variance. The sample variance has a smaller expected value than the population variance. Unbiased variance is obtained by correcting the expected value to be equal to the variance of the population. If the number of samples is sufficiently large, sample variance = unbiased variance. However, when the number of samples (= the number of pilot symbols per slot N_pilot) is small as in the case where a pilot signal for one slot is used as a sample, accuracy is higher when unbiased dispersion is used for interference power. The configuration of the radio apparatus according to the second embodiment is the same as that of the first embodiment, and a description thereof will be omitted.
 本実施の形態2では干渉電力の算出において、サンプル数、即ちパイロットシンボル数N_pilotで平均化した分散を用いるのではなく、(パイロットシンボル数N_pilot-1)で平均化した分散を用いる。サンプル数が少ない場合、期待値が母分散に等しくなるように補正をかけた不偏分散の方が、標本分散よりも正しくデータの散らばり具合を表現できるからである。即ち、パイロットシンボル数N_pilotが小さい場合には、受信信号の標本分散よりも不偏分散を用いた方が、干渉電力の算出精度が向上する。 In Embodiment 2, in calculating the interference power, instead of using the variance averaged by the number of samples, that is, the number of pilot symbols N_pilot, the variance averaged by (number of pilot symbols N_pilot-1) is used. This is because, when the number of samples is small, the unbiased variance corrected so that the expected value is equal to the population variance can express the degree of data dispersion more correctly than the sample variance. That is, when the number of pilot symbols N_pilot is small, interference power calculation accuracy is improved by using unbiased variance rather than sample variance of the received signal.
 本実施の形態2における信号電力・干渉電力演算部7で算出する信号電力及び干渉電力について説明する。信号電力・干渉電力算出部7が算出するスロット毎の干渉電力(ERRPOW2slot)は次式で表される。
Figure JPOXMLDOC01-appb-M000020
The signal power and interference power calculated by the signal power / interference power calculation unit 7 in the second embodiment will be described. The interference power (ERRPOW2 slot ) for each slot calculated by the signal power / interference power calculation unit 7 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000020
 図6は、不偏分散を用いた場合の干渉電力(ERRPOW2slot)と標本分散を用いた場合の干渉電力(ERRPOWslot)との差分を示すグラフである。次式に示すように、デシベル表示した場合には、不偏分散を用いた干渉電力(ERRPOW2slot)から標本分散を用いた干渉電力(ERRPOWslot)を差し引いた値は、SIRの算出に同様の信号電力を用いるなら、標本分散を用いて算出したSIRから不偏分散を用いて算出したSIRを差し引いた値と一致する。
Figure JPOXMLDOC01-appb-M000021
FIG. 6 is a graph showing the difference between the interference power (ERRPOW2 slot ) when using unbiased variance and the interference power (ERRPOW slot ) when using sample variance. As shown in the following equation, when displayed in decibels, the value obtained by subtracting the interference power (ERRPOW slot ) using sample variance from the interference power (ERRPOW2 slot ) using unbiased variance is a signal similar to the calculation of SIR. If power is used, it matches the value obtained by subtracting the SIR calculated using unbiased variance from the SIR calculated using sample variance.
Figure JPOXMLDOC01-appb-M000021
 図6に示すように、不偏分散を用いた場合の方が標本分散を用いた場合よりも干渉電力は0.5~1.0[dB]程度大きくなる。即ち、不偏分散を用いた場合の方が標本分散を用いた場合よりもSIRは0.5~1.0[dB]程度小さくなる。 As shown in FIG. 6, the interference power is higher by about 0.5 to 1.0 [dB] when using unbiased dispersion than when using sample dispersion. That is, the SIR is about 0.5 to 1.0 [dB] smaller when the unbiased variance is used than when the sample variance is used.
 なお、不偏分散により干渉電力(ERRPOW2slot)を算出する場合には、信号電力も不偏分散を用いて次式のように表わせる。
Figure JPOXMLDOC01-appb-M000022
When the interference power (ERRPOW2 slot ) is calculated by unbiased dispersion, the signal power can also be expressed as follows using the unbiased dispersion.
Figure JPOXMLDOC01-appb-M000022
 図7は、従来技術に基づき算出したSIRと本実施の形態2に基づき算出したSIRとの差分ΔSIR[dB]を示すグラフである。図8~図11はそれぞれ、パイロットシンボル数N_pilot別のΔSIR[dB]を示す表である。従来技術に基づき算出したSIRと本実施の形態2に基づき算出したSIRとの差分ΔSIR[dB]は、次式で表される。
Figure JPOXMLDOC01-appb-M000023
FIG. 7 is a graph showing a difference ΔSIR [dB] between the SIR calculated based on the prior art and the SIR calculated based on the second embodiment. 8 to 11 are tables showing ΔSIR [dB] for each number of pilot symbols N_pilot. A difference ΔSIR [dB] between the SIR calculated based on the prior art and the SIR calculated based on the second embodiment is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000023
 数式23の最終行の第1項は、SIRの算出に同様の信号電力を用いるなら、標本分散を用いて算出したSIRから不偏分散を用いて算出したSIRを差し引いた値に等しい。また、数式23の最終行の第2項は、不偏分散使用時のSIRのオフセット値である。 If the same signal power is used for the calculation of SIR, the first term in the last row of Equation 23 is equal to the value obtained by subtracting the SIR calculated using unbiased variance from the SIR calculated using sample variance. Also, the second term in the last row of Equation 23 is the SIR offset value when using unbiased dispersion.
 本実施の形態2では、信号電力・干渉電力算出部7は数式22、数式20を用いてスロット毎の信号電力(SIGPOW2slot)及び干渉電力(ERRPOW2slot)を算出する。受信電力から雑音成分を除去することで、算出した信号電力は従来よりも小さくなる。また、干渉電力の算出において、サンプル数(即ち、1スロット当たりのパイロットシンボル数N_pilot)が少ない場合は、標本分散を用いずに不偏分散を用いることで、算出した干渉電力は従来よりも大きくなる。SIRは信号電力÷干渉電力であるため、信号電力が小さい程SIRは小さくなり、干渉電力が大きい程SIRは小さくなる。従って、従来技術に基づき算出したSIRよりも、本実施の形態2に基づき算出したSIRの方が小さくなる。 In the second embodiment, the signal power / interference power calculation unit 7 calculates the signal power (SIGPOW2 slot ) and the interference power (ERRPOW2 slot ) for each slot using Expression 22 and Expression 20. By removing the noise component from the received power, the calculated signal power becomes smaller than before. In the calculation of interference power, when the number of samples (that is, the number of pilot symbols per slot N_pilot) is small, the calculated interference power becomes larger than before by using unbiased variance without using sample variance. . Since SIR is signal power ÷ interference power, the SIR decreases as the signal power decreases, and the SIR decreases as the interference power increases. Therefore, the SIR calculated based on the second embodiment is smaller than the SIR calculated based on the conventional technique.
 図7に示すように、SIRが小さい領域では、差分ΔSIRは5~7[dB]程度であり、SIRが大きい領域では、差分ΔSIRは0.5~1[dB]程度である。SIRが小さい領域では、従来技術を用いた場合よりも本実施の形態2を用いた場合の方が、顕著にSIRが小さくなり、パイロットシンボル数N_pilot、即ちサンプル数が少ない程、その傾向は顕著になる。また、SIRが大きい領域においても、0.5~1[dB]程度の誤差があるため、従来技術を用いた場合よりも本実施の形態2を用いた場合の方が正確にSIRを算出することができる。 As shown in FIG. 7, the difference ΔSIR is about 5 to 7 [dB] in the region where the SIR is small, and the difference ΔSIR is about 0.5 to 1 [dB] in the region where the SIR is large. In a region where the SIR is small, the SIR is significantly smaller when the second embodiment is used than when the conventional technique is used, and the tendency is more remarkable as the number of pilot symbols N_pilot, that is, the number of samples is smaller. become. Even in a region where the SIR is large, there is an error of about 0.5 to 1 [dB], so that the SIR is calculated more accurately when the second embodiment is used than when the conventional technique is used. be able to.
 本実施の形態2では、スロット毎の信号電力(SIGPOW2slot)及び干渉電力(ERRPOW2slot)の算出方法について説明したが、SIGPOW2slot及びERRPOW2slotを用いて、実施の形態1と同様に、フレーム毎の信号電力(SIGPOW2flame)及び干渉電力(ERRPOW2flame)を算出してもよい。スロット毎の熱雑音のばらつきを除去することができるため、SIRの算出精度が高まる。 In the second embodiment, the method of calculating the signal power (SIGPOW2 slot ) and the interference power (ERRPOW2 slot ) for each slot has been described. However, using the SIGPOW2 slot and the ERRPOW2 slot , as in the first embodiment, each frame. The signal power (SIGPOW2 flame ) and the interference power (ERRPOW2 flame ) may be calculated. Since the variation of the thermal noise for each slot can be removed, the SIR calculation accuracy is improved.
 HSUPA(High Speed Uplink Packet Access)等の高伝送レートの無線通信を行う場合は、高品質な無線伝送路、即ち高いSIRが要求される。しかし、量子化誤差や、信号電力、雑音電力の算出誤差により、SIRが線形性を維持したまま高くならず、SIRが高い領域ではSIR算出の精度が劣化するという問題があった。また、HSUPAのような高伝送レートの無線通信は、以下の(1)(2)に示す特徴がある。
(1)データ量が多く拡散率が低いため拡散利得が得にくい。
(2)符号化時に符号化用のデータ量を増やせないため符号化利得が得られない。
このため、高伝送レートの無線通信では、低伝送レートの場合よりも、受信性能やスケジューリング性能は、SIR推定などの復調性能に大きく依存する。特に、SIRが大きい領域でSIRの線形性が維持できなくなり、途中で頭打ちとなるが、これによりスケジューラ部10が、最高伝送レートを通信相手局に対して要求する判断ができなくなり、最高伝送レートの受信を維持できなくなるという問題があった。しかし、本実施の形態2によれば、SIRが大きい領域においても高精度にSIRを算出できるので、スケジューラ部10は正確に無線伝送路の状態を把握することができ、高伝送レートで無線通信する場合でも、適正な伝送速度で送受信するように制御できる。また、過剰な伝送速度で無線通信することによる消費電力の浪費を抑制することができる。
When performing wireless communication at a high transmission rate such as HSUPA (High Speed Uplink Packet Access), a high-quality wireless transmission path, that is, a high SIR is required. However, there is a problem that SIR does not increase while maintaining linearity due to quantization error, signal power, and noise power calculation errors, and the accuracy of SIR calculation deteriorates in a region where SIR is high. Further, high-transmission-rate wireless communication such as HSUPA has the following characteristics (1) and (2).
(1) It is difficult to obtain a diffusion gain because of a large amount of data and a low spreading factor.
(2) Since the amount of data for encoding cannot be increased at the time of encoding, the encoding gain cannot be obtained.
For this reason, in wireless communication at a high transmission rate, reception performance and scheduling performance are more dependent on demodulation performance such as SIR estimation than at low transmission rates. In particular, the linearity of the SIR cannot be maintained in a region where the SIR is large, and the SIR reaches the middle. However, the scheduler unit 10 cannot determine whether to request the highest transmission rate from the communication partner station, and the highest transmission rate. There was a problem that it was impossible to maintain the reception. However, according to the second embodiment, since the SIR can be calculated with high accuracy even in a region where the SIR is large, the scheduler unit 10 can accurately grasp the state of the wireless transmission path and perform wireless communication at a high transmission rate. Even in such a case, it can be controlled to transmit and receive at an appropriate transmission rate. In addition, waste of power consumption due to wireless communication at an excessive transmission rate can be suppressed.
実施の形態3.
 HSUPA等の高伝送レートでの受信性能を満たすためには、A/D変換(アナログからデジタルへの変換)におけるビットレンジを多く取る必要がある。例えば、分解能が16ビットのA/D変換器3を用いた場合には、復調部4では、信号電力などの算出に用いる乗算処理において、平均化処理を行ってから乗算を行うことで、32ビット×32ビットの乗算器が必要となることもあり、回路規模の増大を促す。受信性能の劣化を防止しつつ、回路規模を小さくするためには、大きいビットレンジから、必要な箇所だけを演算処理の都度抽出する手法が有効である。本実施の形態3では、16ビットでA/D変換した受信信号から、信号電力の計算を行う前に8ビットを抽出する手法を説明する。なお、本実施の形態3では16ビットから8ビットを抽出する手法について説明するが、ビット数はこれらに限られたものではない。
Embodiment 3 FIG.
In order to satisfy reception performance at a high transmission rate such as HSUPA, it is necessary to take a large bit range in A / D conversion (conversion from analog to digital). For example, when the A / D converter 3 having a resolution of 16 bits is used, the demodulator 4 performs the multiplication after performing the averaging process in the multiplication process used for calculating the signal power and the like. A bit × 32 bit multiplier may be required, which increases the circuit scale. In order to reduce the circuit scale while preventing the reception performance from being deteriorated, it is effective to extract only necessary portions from the large bit range every time the arithmetic processing is performed. In the third embodiment, a method of extracting 8 bits from a received signal that has been A / D converted at 16 bits before calculating signal power will be described. In the third embodiment, a method of extracting 8 bits from 16 bits will be described, but the number of bits is not limited to these.
 図12は、本発明の実施の形態3における無線装置の構成を示すブロック図である。実施の形態1と同様の構成については説明を省略し、実施の形態1との相違点について説明する。復調部4に、入力ビット幅調整部20が加わっている。A/D変換されてデジタル信号になった受信信号のタイミング同期がとれた状態において、検波部6から入力ビット幅調整部20に対して16ビットの複素信号(I成分及びQ成分の信号)が入力される。入力ビット幅調整部20では、入力された16ビットの複素信号から8ビットを抽出して信号電力・干渉電力算出部7へ出力する。 FIG. 12 is a block diagram showing a configuration of a radio apparatus according to Embodiment 3 of the present invention. A description of the same configuration as that of the first embodiment will be omitted, and differences from the first embodiment will be described. An input bit width adjustment unit 20 is added to the demodulation unit 4. A 16-bit complex signal (I component and Q component signals) is sent from the detection unit 6 to the input bit width adjustment unit 20 in a state in which the timing of the received signal that has been A / D converted into a digital signal is synchronized. Entered. The input bit width adjustment unit 20 extracts 8 bits from the input 16-bit complex signal and outputs the extracted signal to the signal power / interference power calculation unit 7.
 図13は、本発明の実施の形態3における入力ビット幅調整部20の構成を示すブロック図である。図14は、本発明の実施の形態3における入力ビット幅調整部20の動作を示す説明図である。図13、図14を参照して、本実施の形態3における入力ビット幅調整部20の動作について説明する。なお、図2に示すDPCCHにおいて、図3に示すスロットフォーマット#1の場合を例に、入力ビット幅調整部20の動作を説明する。 FIG. 13 is a block diagram showing the configuration of the input bit width adjustment unit 20 according to Embodiment 3 of the present invention. FIG. 14 is an explanatory diagram showing the operation of the input bit width adjustment unit 20 according to Embodiment 3 of the present invention. With reference to FIGS. 13 and 14, the operation of the input bit width adjustment unit 20 in the third embodiment will be described. In the DPCCH shown in FIG. 2, the operation of the input bit width adjustment unit 20 will be described by taking the case of the slot format # 1 shown in FIG. 3 as an example.
 先頭シンボル平均化部21は、入力された16ビットの信号について、スロットの先頭8シンボル分(パイロット信号に相当)の絶対値を加算した後、平均化する。平均化はパイロットシンボル数である8での除算であるので、3ビットシフトを行うことで除算器を用いることなく、回路規模を削減できる。 The leading symbol averaging unit 21 adds the absolute values of the leading eight symbols (corresponding to the pilot signal) of the slot for the input 16-bit signal and then averages them. Since the averaging is division by 8 which is the number of pilot symbols, the circuit scale can be reduced by using a 3-bit shift without using a divider.
 先頭シンボル平均化部21において平均化された結果(以下、RXAVEと記す)に基づいて、ビット位置判断部22は、16ビットで入力された信号のビット幅のうち、どの位置の8ビットを抽出するかを判断する。RXAVEは受信信号の振幅の平均値であり、ビット位置判断部22は、受信信号の振幅に基づき抽出するビット位置を決定する。ビット位置判断部22は、S1~S8の8つのパラメータを予め保持し、RXAVEとパラメータS1~S8とを比較して8ビットの抽出位置を決定する。パラメータS1~S8は、例えばS1=16、S2=32、S3=64、S4=128、S5=256、S6=512、S7=1024、S8=2048のように、徐々に大きくなるように設定される。また、パラメータS1~S8は変数としておき、ソフトウェアからの設定などで変更可能なつくりとしておく。 Based on the result averaged by the head symbol averaging unit 21 (hereinafter referred to as “RX AVE” ), the bit position determination unit 22 selects the 8 bits at any position out of the bit width of the 16-bit input signal. Determine whether to extract. RX AVE is an average value of the amplitude of the received signal, and the bit position determination unit 22 determines a bit position to be extracted based on the amplitude of the received signal. The bit position determination unit 22 holds eight parameters S1 to S8 in advance, compares RX AVE with the parameters S1 to S8, and determines an 8-bit extraction position. The parameters S1 to S8 are set to increase gradually, for example, S1 = 16, S2 = 32, S3 = 64, S4 = 128, S5 = 256, S6 = 512, S7 = 1024, S8 = 2048. The Further, the parameters S1 to S8 are set as variables, and can be changed by setting from software.
 図14に示すように、ビット位置判断部22は、RXAVE<S1の場合はビット抽出位置を最下位ビットから8ビット分と判断し、S1≦RXAVE<S2の場合はビット抽出位置を1ビットシフトさせて下位2ビット目から8ビット分と判断する。RXAVEが大きくなるに従い、ビット抽出位置を上位側に移していき、RXAVE≧S8の場合はビット抽出位置を最上位ビットから8ビット分と判断する。 As shown in FIG. 14, the bit position determination unit 22 determines that the bit extraction position is 8 bits from the least significant bit when RX AVE <S1, and sets the bit extraction position to 1 when S1 ≦ RX AVE <S2. Bit shift is performed and it is determined that the lower 2 bits are 8 bits. As RX AVE increases, the bit extraction position is shifted to the upper side. When RX AVE ≧ S8, the bit extraction position is determined to be 8 bits from the most significant bit.
 抽出部23は、ビット位置判断部22において判断されたビット抽出位置に基づき、16ビットの入力信号から8ビットを抽出し、抽出した8ビットの最上位ビットは符号ビットに置き換える。なお、ビット位置判断部22は、スロット毎にビット抽出位置を決定し、抽出部23は同一スロット区間ではビット抽出位置を変更しないものとする。信号電力・干渉電力算出部7は、入力ビット幅調整部20において抽出された8ビットの信号(シンボル毎のI成分の振幅、Q成分の振幅)に基づき、信号電力及び干渉電力を算出する。信号電力・干渉電力算出部7、SIR算出部8の動作については、実施の形態1または実施の形態2と同様であるので、説明を省略する。また、図12では、図1に示す無線装置に入力ビット幅調整部20を追加する構成を示したが、図4に示す無線装置についても同様に入力ビット幅調整部20を追加してもよい。復調部4内において、少なくとも信号電力・干渉電力算出部7よりも前段に入力ビット幅調整部20を配置すればよい。 The extraction unit 23 extracts 8 bits from the 16-bit input signal based on the bit extraction position determined by the bit position determination unit 22, and replaces the extracted 8 most significant bits with a sign bit. The bit position determination unit 22 determines a bit extraction position for each slot, and the extraction unit 23 does not change the bit extraction position in the same slot section. The signal power / interference power calculation unit 7 calculates signal power and interference power based on the 8-bit signal (I component amplitude and Q component amplitude for each symbol) extracted by the input bit width adjustment unit 20. Since the operations of the signal power / interference power calculation unit 7 and the SIR calculation unit 8 are the same as those in the first embodiment or the second embodiment, description thereof will be omitted. 12 shows the configuration in which the input bit width adjustment unit 20 is added to the wireless device shown in FIG. 1, the input bit width adjustment unit 20 may be added similarly to the wireless device shown in FIG. . In the demodulator 4, the input bit width adjuster 20 may be disposed at least before the signal power / interference power calculator 7.
 本実施の形態3では、スロット毎にパイロット信号の振幅に基づきビット抽出位置を変更することで、ビットのオーバーフローを抑制でき、適正なビット抽出を行うことができる。受信信号が飽和してビットが欠けることによる受信性能の劣化を防ぐとともに、回路規模を小さくすることができ、消費電力も低減できる。また、パイロット信号の振幅に基づき最適なビット抽出位置を決定しているため、少ないビット幅の受信信号を用いているにも関わらず、信号電力及び干渉電力の算出精度が向上し、実施の形態1または実施の形態2と同等の効果を得ることができる。 In Embodiment 3, by changing the bit extraction position based on the amplitude of the pilot signal for each slot, bit overflow can be suppressed and appropriate bit extraction can be performed. It is possible to prevent the reception performance from being deteriorated due to saturation of the received signal and missing bits, to reduce the circuit scale, and to reduce the power consumption. In addition, since the optimum bit extraction position is determined based on the amplitude of the pilot signal, the calculation accuracy of the signal power and the interference power is improved in spite of using a reception signal with a small bit width, and the embodiment The effect equivalent to 1 or Embodiment 2 can be obtained.
実施の形態4.
 現実の無線通信においては、受信信号はある一定の周期を持って振動する周波数オフセットを有する。また、実施の形態3で説明したビット抽出において、万が一、オーバーフローを起こすようなことが避けられない場合にも、同様に信号電力・干渉電力算出部7に入力される受信信号には周波数オフセットが生じる。本実施の形態4は、周波数オフセットが補正された受信信号を用いて信号電力及び干渉電力を算出することにより、信号電力及び干渉電力の算出精度を高めるものである。
Embodiment 4 FIG.
In actual wireless communication, a received signal has a frequency offset that oscillates with a certain period. Also, in the case of bit extraction described in the third embodiment, even if an overflow is unavoidable, the received signal input to the signal power / interference power calculation unit 7 similarly has a frequency offset. Arise. In the fourth embodiment, the calculation accuracy of the signal power and the interference power is improved by calculating the signal power and the interference power using the received signal whose frequency offset is corrected.
 図15は周波数オフセットにより生じる信号電力、干渉電力、及びSIRの誤差を示すグラフである。周波数オフセットが発生した場合、図15に示すようにSIRに誤差が生じてしまうが、周波数オフセットを補正した後に、信号電力及び干渉電力を算出することで両電力の算出精度及びSIRの算出精度を向上できる。 FIG. 15 is a graph showing signal power, interference power, and SIR errors caused by frequency offset. When a frequency offset occurs, an error occurs in the SIR as shown in FIG. 15, but after correcting the frequency offset, the calculation accuracy of both powers and the calculation accuracy of SIR can be improved by calculating the signal power and the interference power. Can be improved.
 図16は本発明の実施の形態4における復調部の構成を示すブロック図である。周波数オフセット補正部30では、入力されたI成分及びQ成分の信号から周波数オフセットを推定し、受信信号の周波数オフセットを補正する。補正された信号は、信号電力・干渉電力算出部7に対して出力される。信号電力・干渉電力算出部7では、実施の形態1または実施の形態2で説明した方法のいずれかにより信号電力及び干渉電力を算出する。また、数式2で表される受信電力を信号電力としてもよい。周波数オフセットを補正された受信信号を用いて信号電力及び干渉電力を算出することにより、信号電力及び干渉電力の算出精度は向上する。また、入力ビット幅調整部20においてビット幅が不足してオーバーフローを起こした場合でも、周波数オフセットを補正することにより、信号電力及び干渉電力の算出精度の劣化を防ぐことができる。 FIG. 16 is a block diagram showing a configuration of a demodulation unit in the fourth embodiment of the present invention. The frequency offset correction unit 30 estimates the frequency offset from the input I component and Q component signals and corrects the frequency offset of the received signal. The corrected signal is output to the signal power / interference power calculation unit 7. The signal power / interference power calculation unit 7 calculates the signal power and the interference power by one of the methods described in the first embodiment or the second embodiment. Also, the received power represented by Equation 2 may be used as the signal power. By calculating the signal power and the interference power using the received signal whose frequency offset is corrected, the calculation accuracy of the signal power and the interference power is improved. Even when the input bit width adjustment unit 20 has an insufficient bit width and an overflow occurs, it is possible to prevent deterioration in calculation accuracy of signal power and interference power by correcting the frequency offset.
 周波数オフセット補正部30は、周波数オフセットの推定を以下の手法により行う。以下では、数式3及び数式4で表される値を推定伝送路特性と称する。I成分、Q成分をまとめた推定伝送路特性は次式で表される。
Figure JPOXMLDOC01-appb-M000024
islotはスロット番号を示している。AVE_I[islot]、AVE_Q[islot]はそれぞれ、スロット番号islotにおけるI成分の平均、Q成分の平均であり、数式3、数式4を用いて表される。
The frequency offset correction unit 30 estimates the frequency offset by the following method. Hereinafter, the values expressed by Equation 3 and Equation 4 are referred to as estimated transmission path characteristics. Estimated transmission line characteristics including the I component and the Q component are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000024
islot indicates the slot number. AVE_I [islot] and AVE_Q [islot] are the average of the I component and the average of the Q component in the slot number islot, respectively, and are expressed using Equations 3 and 4.
 周波数オフセット補正部30は、まず、スロット番号islotにおける推定伝送路特定の変化量AVE_dif[islot]を求める。
Figure JPOXMLDOC01-appb-M000025
ここで、AVE[islot-1]はAVE[islot-1]の複素共役である。I成分、Q成分それぞれについての変化量AVE_I_dif[islot]、AVE_Q_dif[islot]は、以下の式で表される。
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
The frequency offset correction unit 30 first obtains the estimated transmission path specific change amount AVE_dif [islot] in the slot number islot.
Figure JPOXMLDOC01-appb-M000025
Here, AVE [islot-1] * is a complex conjugate of AVE [islot-1]. The change amounts AVE_I_dif [islot] and AVE_Q_dif [islot] for each of the I component and the Q component are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
 次に、周波数オフセット補正部30は、数式25~数式27で表される推定伝送路特性の変化量を平均化する。平均化処理は、忘却係数γを用いて以下のように行う。
Figure JPOXMLDOC01-appb-M000028
γは時定数ともいえる。I成分、Q成分それぞれについての平均化処理は以下の式で表される。
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
Next, the frequency offset correction unit 30 averages the amount of change in the estimated transmission path characteristics expressed by Expressions 25 to 27. The averaging process is performed as follows using the forgetting factor γ.
Figure JPOXMLDOC01-appb-M000028
γ can also be said to be a time constant. The averaging process for each of the I component and the Q component is expressed by the following equations.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
 推定伝送路特性の変化量の平均を用いると、周波数オフセットは次式で表される。
Figure JPOXMLDOC01-appb-M000031
周波数オフセット補正部30では、数式31により推定した周波数オフセットを用いて、受信信号の周波数オフセットを補正する。esfoは、1スロットでの位相回転量であるため、図2に示すDPCCHのように1スロットが10シンボルで構成されている場合、1シンボル当たりの周波数オフセットの位相回転量はesfo/10となる。パイロット信号の中央の位置の回転量に基づき、AVE_I[islot]、AVE_Q[islot]を補正する。1スロット当たりのパイロット信号のシンボル数はN_pilotであるため、0-(N_pilot/2)シンボル分だけ回転させて補正する。
Using the average of the estimated amount of change in transmission path characteristics, the frequency offset is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000031
The frequency offset correction unit 30 corrects the frequency offset of the received signal using the frequency offset estimated by Equation 31. Since esfo is a phase rotation amount in one slot, when one slot is composed of 10 symbols as in the DPCCH shown in FIG. 2, the phase rotation amount of the frequency offset per symbol is esfo / 10. . AVE_I [islot] and AVE_Q [islot] are corrected based on the rotation amount at the center position of the pilot signal. Since the number of pilot signal symbols per slot is N_pilot, correction is performed by rotating by 0- (N_pilot / 2) symbols.
 周波数オフセット補正部30は、推定した周波数オフセットを用いて、受信信号を補正する。AVE[islot]を補正した信号AVEcor[islot]は、次式で表される。
Figure JPOXMLDOC01-appb-M000032
また、I成分、Q成分それぞれを補正した信号AVE_Icor[islot]、AVE_Qcor[islot]は、以下のとおり算出される。
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
The frequency offset correction unit 30 corrects the received signal using the estimated frequency offset. A signal AVEcor [islot] obtained by correcting AVE [islot] is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000032
Further, signals AVE_Icor [islot] and AVE_Qcor [islot] obtained by correcting each of the I component and the Q component are calculated as follows.
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000037
 本実施の形態4では、周波数オフセット補正部30において、受信信号の周波数オフセットを補正した後、信号電力、干渉電力を算出するため、信号電力及び干渉電力の算出精度が向上する。なお、本実施の形態4は、オーバーフローを起こさない場合においても使用できる。その場合は、オーバーフロー要因ではない周波数オフセットを補正するので、信号電力及び干渉電力の算出精度の向上に効果がある。 In the fourth embodiment, since the frequency offset correction unit 30 corrects the frequency offset of the received signal and then calculates the signal power and the interference power, the calculation accuracy of the signal power and the interference power is improved. The fourth embodiment can be used even when overflow does not occur. In this case, since the frequency offset that is not the cause of overflow is corrected, it is effective in improving the calculation accuracy of the signal power and the interference power.
実施の形態5.
 移動体通信では、受信信号の振幅は一定ではなく変動する。受信信号の振幅が小さい場合には、信号電力、干渉電力を正しく算出することができず、SIRの算出精度が劣化する。また、受信信号の振幅が大きい場合には、オーバーフローの発生により、信号電力、干渉電力、SIRの算出精度が劣化する。そこで、実施の形態5では、自動利得制御された受信信号を用いて、信号電力及び干渉電力を算出することにより、信号電力及び干渉電力、SIRの算出精度を向上させる。また、実施の形態5では、信号電力・干渉電力算出部7において算出した信号電力、干渉電力、及び自動利得制御に用いる制御値に基づき、精度の高い希望波レベル、干渉波レベルを求める方法を説明する。なお、希望波レベルとは、所定の測定箇所における信号成分の電力であり、干渉波レベルとは、当該所定の測定箇所における干渉成分の電力である。所定の測定箇所とは、例えば、アンテナ端等が考えられる。一方、前述の信号電力、干渉電力はそれぞれ、信号電力・干渉電力算出部7における信号成分の電力、干渉成分の電力である。このように、希望波レベルと信号電力、干渉レベルと干渉電力とでは規定点が異なる。
Embodiment 5 FIG.
In mobile communication, the amplitude of a received signal is not constant but varies. When the amplitude of the received signal is small, the signal power and the interference power cannot be calculated correctly, and the SIR calculation accuracy deteriorates. In addition, when the amplitude of the received signal is large, the calculation accuracy of the signal power, interference power, and SIR deteriorates due to the occurrence of overflow. Therefore, in the fifth embodiment, the calculation accuracy of the signal power, the interference power, and the SIR is improved by calculating the signal power and the interference power using the reception signal subjected to the automatic gain control. In the fifth embodiment, a method for obtaining a desired wave level and interference wave level with high accuracy based on the signal power calculated by the signal power / interference power calculation unit 7, interference power, and control values used for automatic gain control. explain. The desired wave level is the power of the signal component at a predetermined measurement location, and the interference wave level is the power of the interference component at the predetermined measurement location. The predetermined measurement location may be, for example, an antenna end. On the other hand, the signal power and the interference power described above are the signal component power and the interference component power in the signal power / interference power calculation unit 7, respectively. Thus, the specified points differ between the desired wave level and the signal power, and between the interference level and the interference power.
 図17は、本発明の実施の形態5における受信機の構成を示すブロック図である。図17において、AGC制御部40は、後述するゲイン制御量(AGC_GAIN)に基づき可変増幅器60の利得を制御するとともに、当該ゲイン制御量(AGC_GAIN)を希望波・干渉波レベル算出部50へ出力する。希望波・干渉波レベル算出部50では、希望波レベル及び干渉波レベルを算出する。 FIG. 17 is a block diagram showing a configuration of a receiver in the fifth embodiment of the present invention. In FIG. 17, the AGC control unit 40 controls the gain of the variable amplifier 60 based on a gain control amount (AGC_GAIN) described later, and outputs the gain control amount (AGC_GAIN) to the desired wave / interference wave level calculation unit 50. . The desired wave / interference wave level calculation unit 50 calculates the desired wave level and the interference wave level.
 図18は、本発明の実施の形態5における無線装置の構成を示すブロック図である。図18に示す受信機2では、ミキサ15により受信信号からI成分、Q成分の信号を分離し、I成分、Q成分の信号をそれぞれA/D変換器3でデジタル信号へ変換して、復調部4へ入力する。AGC制御部40及び希望波・干渉波レベル算出部50は、図17に示す受信機2と同様である。なお、図17及び図18に示す入力ビット幅調整部20及び周波数オフセット補正部30は必要に応じて設ければよく、必須の構成要素ではない。 FIG. 18 is a block diagram showing a configuration of a radio apparatus according to Embodiment 5 of the present invention. In the receiver 2 shown in FIG. 18, the I component and the Q component signal are separated from the received signal by the mixer 15, and the I component and the Q component signal are converted into digital signals by the A / D converter 3, respectively. Input to part 4. The AGC control unit 40 and the desired wave / interference wave level calculation unit 50 are the same as those of the receiver 2 shown in FIG. Note that the input bit width adjustment unit 20 and the frequency offset correction unit 30 shown in FIGS. 17 and 18 may be provided as necessary, and are not essential components.
 次に、図18を参照して、動作を説明する。アンテナ1で受信した信号は、増幅器14により増幅され、ミキサ15によりI成分、Q成分に分離される。I成分、Q成分の信号はそれぞれ、AGC制御部40により求められたゲイン制御量(AGC_GAIN)に基づき、可変増幅器60で増幅、または減衰される。増幅、または減衰されたI成分、Q成分の信号は、それぞれA/D変換器3によってデジタル信号に変換され、復調部4に入力される。 Next, the operation will be described with reference to FIG. A signal received by the antenna 1 is amplified by an amplifier 14 and separated into an I component and a Q component by a mixer 15. The I component and Q component signals are each amplified or attenuated by the variable amplifier 60 based on the gain control amount (AGC_GAIN) obtained by the AGC control unit 40. The amplified or attenuated I component and Q component signals are converted into digital signals by the A / D converter 3 and input to the demodulator 4.
 A/D変換器3によりデジタル信号に変換されたI成分、Q成分の信号は、復調部4に入力され、例えばW-CDMA方式であれば、逆拡散される。象限変換部13では、逆拡散された信号に対して、パイロット信号の逆特性をシンボル毎に乗算する。これにより、正負の振幅を持つパイロット信号を、IQ平面の第一象限に移すことができる。信号電力・干渉電力算出部7は、実施の形態1乃至実施の形態4で説明した方法のいずれかを利用して信号電力(SIGPOW)及び干渉電力(ERRPOW)を算出する。また、数式2で表される受信電力を信号電力としてもよい。自動利得制御された受信信号を用いて、信号電力、干渉電力を算出することにより、信号電力、干渉電力の算出精度は向上する。算出された信号電力(SIGPOW)及び干渉電力(ERRPOW)は、SIR算出部8及び希望波・干渉波レベル算出部50へ出力される。 The I component and Q component signals converted into digital signals by the A / D converter 3 are input to the demodulator 4 and despread in the case of, for example, the W-CDMA system. The quadrant conversion unit 13 multiplies the despread signal by the inverse characteristic of the pilot signal for each symbol. Thereby, a pilot signal having positive and negative amplitudes can be shifted to the first quadrant of the IQ plane. The signal power / interference power calculation unit 7 calculates the signal power (SIGPOW) and the interference power (ERRPOW) using any of the methods described in the first to fourth embodiments. Also, the received power represented by Equation 2 may be used as the signal power. By calculating the signal power and the interference power using the reception signal subjected to the automatic gain control, the calculation accuracy of the signal power and the interference power is improved. The calculated signal power (SIGPOW) and interference power (ERRPOW) are output to the SIR calculation unit 8 and the desired wave / interference wave level calculation unit 50.
 AGC制御部40へは、I成分、Q成分の信号が入力される。図18では、A/D変換器3でデジタル信号に変換された直後の信号がAGC制御部40へ入力されているが、AGC制御部40への入力信号はI成分、Q成分を示す信号であればよく、図17に示すように周波数オフセット補正後の信号でもよい。以下では、AGC制御部40で用いるI成分の信号をI、Q成分の信号をQと称する。 The AGC control unit 40 receives I component and Q component signals. In FIG. 18, the signal immediately after being converted into a digital signal by the A / D converter 3 is input to the AGC control unit 40, but the input signal to the AGC control unit 40 is a signal indicating an I component and a Q component. It may be sufficient, and may be a signal after frequency offset correction as shown in FIG. Hereinafter, the I component signal used in the AGC control unit 40 is referred to as I, and the Q component signal is referred to as Q.
 AGC制御部40では、まずRMS測定値としてΣ(I2+Q2)を演算する。Σ(I2+Q2)が、予め設定された上限値(AGC_UP)を超えた場合は、I成分の信号、Q成分の信号をそれぞれ減衰するようなゲイン制御量(AGC_GAIN)が求められ、Σ(I2+Q2)が、予め設定された下限値(AGC_DN)を下回った場合は、I成分の信号、Q成分の信号をそれぞれ増幅するようなゲイン制御量(AGC_GAIN)が求められる。 The AGC control unit 40 first calculates Σ (I 2 + Q 2 ) as the RMS measurement value. When Σ (I 2 + Q 2 ) exceeds a preset upper limit value (AGC_UP), a gain control amount (AGC_GAIN) that attenuates the I component signal and the Q component signal is obtained, and Σ When (I 2 + Q 2 ) falls below a preset lower limit (AGC_DN), a gain control amount (AGC_GAIN) that amplifies the I component signal and the Q component signal, respectively, is obtained.
 ゲイン制御量(AGC_GAIN)、上限値(AGC_UP)及び下限値(AGC_DN)は、AGC制御部40から希望波レベル・干渉波レベル算出部50へ入力される。また、上限値及び下限値の代わりに、上限値と下限値との中間値であるRMS収束値(RMSconv)を希望波レベル・干渉波レベル算出部50に入力してもよい。RMS収束値(RMSconv)は次式で表される。
Figure JPOXMLDOC01-appb-M000038
なお、AGC制御部40は、RMS測定値がRMS収束値(RMSconv)に収束するように、可変増幅器60の利得を制御する。RMS収束値(RMSconv)は、自動利得制御の収束値である。ゲイン制御量(AGC_GAIN)は、RMS測定値が上限値(AGC_UP)を超えた場合に、可変増幅器60の利得を小さくする値に設定され、RMS測定値が下限値(AGC_DN)を下回った場合に、可変増幅器60の利得を大きくする値に設定される。
The gain control amount (AGC_GAIN), the upper limit value (AGC_UP), and the lower limit value (AGC_DN) are input from the AGC control unit 40 to the desired wave level / interference wave level calculation unit 50. Instead of the upper limit value and the lower limit value, an RMS convergence value (RMSconv) that is an intermediate value between the upper limit value and the lower limit value may be input to the desired wave level / interference wave level calculation unit 50. The RMS convergence value (RMSconv) is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000038
The AGC control unit 40 controls the gain of the variable amplifier 60 so that the RMS measurement value converges to the RMS convergence value (RMSconv). The RMS convergence value (RMSconv) is a convergence value for automatic gain control. The gain control amount (AGC_GAIN) is set to a value that decreases the gain of the variable amplifier 60 when the RMS measurement value exceeds the upper limit value (AGC_UP), and when the RMS measurement value falls below the lower limit value (AGC_DN). The gain of the variable amplifier 60 is set to a value that increases.
 希望波・干渉波レベル算出部50は、信号電力・干渉電力算出部7において算出された信号電力(SIGPOW)及び干渉電力(ERRPOW)、AGC制御部40において算出されたゲイン制御量(AGC_GAIN)、予め設定されたRMS収束値(RMSconv)及び所定の測定箇所から信号電力・干渉電力算出部7までの利得(GAIN_sp)に基づき、希望波レベル、干渉波レベルを算出する。希望波レベル、干渉波レベルは以下の数式で表される。
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
なお、GAIN_spは、厳密には、所定の測定箇所から信号電力・干渉電力算出部7までの間において、可変増幅器60を除いた部分の利得を示すものである。
The desired wave / interference wave level calculation unit 50 includes the signal power (SIGPOW) and interference power (ERRPOW) calculated by the signal power / interference power calculation unit 7, the gain control amount (AGC_GAIN) calculated by the AGC control unit 40, Based on a preset RMS convergence value (RMSconv) and a gain (GAIN_sp) from a predetermined measurement location to the signal power / interference power calculation unit 7, the desired wave level and the interference wave level are calculated. The desired wave level and the interference wave level are expressed by the following equations.
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
Strictly speaking, GAIN_sp indicates the gain of the portion excluding the variable amplifier 60 between the predetermined measurement location and the signal power / interference power calculation unit 7.
 SIR算出部8において算出したSIRを希望波・干渉波レベル算出部50へ入力する構成とすれば、干渉波レベルは、次式のように算出してもよい。
Figure JPOXMLDOC01-appb-M000041
数式39~数式41の計算は、演算に用いられる各種パラメータが全て真値である場合を仮定したが、各種パラメータがdB変換された値である場合は、乗算(×)の替わりに加算(+)を、除算(÷)の替わりに減算(-)を用いて計算する。
If the SIR calculated by the SIR calculating unit 8 is configured to be input to the desired wave / interference wave level calculating unit 50, the interference wave level may be calculated as follows.
Figure JPOXMLDOC01-appb-M000041
The calculations of Expressions 39 to 41 are based on the assumption that all the various parameters used in the calculation are true values. However, if the various parameters are values obtained by dB conversion, addition (+) instead of multiplication (×) is performed. ) Is calculated using subtraction (−) instead of division (÷).
 上記計算方法により、AGC制御部40において算出されたゲイン制御量(AGC_GAIN)と、信号電力・干渉電力算出部7において算出された信号電力(SIGPOW)とを用いて、精度の高い希望波レベルを求めることができる。希望波レベルの算出には、信号電力SIGPOW、ゲイン制御量(AGC_GAIN)、及び固定値(RMSconv及びGAIN_sp)のみが用いられ、干渉電力(ERRPOW)が用いられない。干渉電力(ERRPOW)は、分散を用いて求められるため、十分なサンプル数がない限り精度が劣化する。このため、希望波レベルの算出精度は、干渉電力(ERRPOW)を用いない方が、用いて希望波レベルを算出する場合よりも高くなる。 By using the gain control amount (AGC_GAIN) calculated by the AGC control unit 40 and the signal power (SIGPOW) calculated by the signal power / interference power calculation unit 7 by the above calculation method, a desired wave level with high accuracy is obtained. Can be sought. In calculating the desired wave level, only the signal power SIGPOW, the gain control amount (AGC_GAIN), and the fixed values (RMSconv and GAIN_sp) are used, and the interference power (ERRPOW) is not used. Since the interference power (ERRPOW) is obtained using dispersion, the accuracy deteriorates unless there is a sufficient number of samples. For this reason, the calculation accuracy of the desired wave level is higher when the interference power (ERRPOW) is not used than when the desired wave level is calculated using it.
 なお、希望波レベルの算出に干渉電力(ERRPOW)を用いる場合は、ゲイン制御量(AGC_GAIN)、RMS収束値(RMSconv)及びRMS測定値(Σ(I2+Q2))を用いて次式のように希望波レベルを算出する。
Figure JPOXMLDOC01-appb-M000042
ここで、εは測定対象チャネルの振幅比である。詳説すれば、εは、信号電力算出に用いるチャネルに多重されたチャネルに対する信号電力算出に用いるチャネルの振幅比である。例えば、W-CDMA方式において、信号電力算出に用いるチャネルをDPCCHとし、DPCCHに多重されるチャネルをDPDCH(Dedicated Physical Data Channel)とすると、ε=DPDCHの振幅/DPCCHの振幅となる。自動利得制御に用いるチャネルと、信号電力、干渉電力の算出に用いるチャネルとが異なる場合は、両チャネルの電力比を考慮に入れることで、希望波レベルの算出精度を向上させることができる。
When the interference power (ERRPOW) is used to calculate the desired wave level, the gain control amount (AGC_GAIN), the RMS convergence value (RMSconv), and the RMS measurement value (Σ (I 2 + Q 2 )) are used to calculate The desired wave level is calculated as follows.
Figure JPOXMLDOC01-appb-M000042
Here, ε is the amplitude ratio of the measurement target channel. More specifically, ε is the amplitude ratio of the channel used for signal power calculation with respect to the channel multiplexed with the channel used for signal power calculation. For example, in the W-CDMA system, if a channel used for signal power calculation is DPCCH and a channel multiplexed on DPCCH is DPDCH (Dedicated Physical Data Channel), ε = DPDCH amplitude / DPCCH amplitude. When the channel used for automatic gain control is different from the channel used for calculation of signal power and interference power, the calculation accuracy of the desired wave level can be improved by taking into account the power ratio of both channels.
 本実施の形態5では、自動利得制御に用いる値(AGC_GAIN、RMSconv等)と、信号電力・干渉電力算出部7において算出された信号電力(SIGPOW)とを用いて、希望波・干渉波レベル算出部50は希望波レベルを求める。希望波レベルの算出に干渉電力(ERRPOW)を用いないため、希望波レベルの算出精度が向上する。また、希望波レベルの算出に干渉電力(ERRPOW)を用いる場合であっても、測定対象チャネルの振幅比を考慮することにより、希望波レベルの算出精度が向上する。 In the fifth embodiment, a desired wave / interference wave level is calculated using values (AGC_GAIN, RMSconv, etc.) used for automatic gain control and the signal power (SIGPOW) calculated by the signal power / interference power calculator 7. The unit 50 obtains a desired wave level. Since the interference power (ERRPOW) is not used for calculating the desired wave level, the calculation accuracy of the desired wave level is improved. Even when the interference power (ERRPOW) is used for calculation of the desired wave level, the calculation accuracy of the desired wave level is improved by considering the amplitude ratio of the measurement target channel.
 本発明に係る無線装置は、SIR算出の精度を向上させる構成としたので、移動体通信分野における無線装置に用いるのに適している。 Since the radio apparatus according to the present invention is configured to improve the accuracy of SIR calculation, it is suitable for use in a radio apparatus in the mobile communication field.

Claims (11)

  1.  既知の所定の受信信号を用いてSIRを測定する無線装置において、
     入力された信号を増幅または減衰する可変増幅器と、
     前記可変増幅器の利得を制御して受信信号を自動利得制御するAGC制御部と、
     自動利得制御された所定の受信信号を用いて信号電力及び干渉電力を算出する信号電力・干渉電力算出部と、
     前記信号電力・干渉電力算出部が算出した前記信号電力及び前記干渉電力に基づき前記SIRを算出するSIR算出部と、
    を備えた無線装置。
    In a wireless device that measures SIR using a known predetermined received signal,
    A variable amplifier that amplifies or attenuates the input signal;
    An AGC control unit for controlling a gain of the variable amplifier to automatically control a received signal;
    A signal power / interference power calculation unit that calculates signal power and interference power using a predetermined reception signal that is automatically gain controlled; and
    An SIR calculation unit for calculating the SIR based on the signal power and the interference power calculated by the signal power / interference power calculation unit;
    A wireless device comprising:
  2.  前記信号電力・干渉電力算出部は、前記所定の受信信号における受信電力から雑音電力を減算した値を前記信号電力として算出することを特徴とする請求項1記載の無線装置。 The radio apparatus according to claim 1, wherein the signal power / interference power calculation unit calculates a value obtained by subtracting noise power from reception power in the predetermined reception signal as the signal power.
  3.  受信信号の周波数オフセットを補正する周波数オフセット補正部を備え、
     前記信号電力・干渉電力算出部は、自動利得制御された所定の受信信号であり、かつ前記周波数オフセット補正部により前記周波数オフセットを補正された所定の受信信号を用いて、前記信号電力及び前記干渉電力を算出することを特徴とする請求項1記載の無線装置。
    A frequency offset correction unit for correcting the frequency offset of the received signal is provided.
    The signal power / interference power calculation unit is a predetermined reception signal subjected to automatic gain control, and the signal power and the interference using the predetermined reception signal whose frequency offset is corrected by the frequency offset correction unit. The radio apparatus according to claim 1, wherein power is calculated.
  4.  前記信号電力・干渉電力算出部は、前記所定の受信信号の標本分散を前記干渉電力として算出することを特徴とする請求項1記載の無線装置。 The radio apparatus according to claim 1, wherein the signal power / interference power calculation unit calculates a sample variance of the predetermined received signal as the interference power.
  5.  前記信号電力・干渉電力算出部は、前記所定の受信信号の不偏分散を前記干渉電力として算出することを特徴とする請求項1記載の無線装置。 The radio apparatus according to claim 1, wherein the signal power / interference power calculation unit calculates an unbiased variance of the predetermined received signal as the interference power.
  6.  前記信号電力・干渉電力算出部は、前記干渉電力を前記所定の受信信号のシンボル数で除算した値を前記雑音電力とすることを特徴とする請求項2記載の無線装置。 3. The radio apparatus according to claim 2, wherein the signal power / interference power calculation unit sets a value obtained by dividing the interference power by the number of symbols of the predetermined reception signal as the noise power.
  7.  受信信号をアナログ信号からデジタル信号に変換するA/D変換器と、
     入力信号から、前記デジタル信号のビット幅より小さいビット幅を抽出する入力ビット幅調整部と、
    を備え、
     前記信号電力・干渉電力算出部は、自動利得制御された所定の受信信号であり、かつ前記入力ビット幅調整部が抽出したデジタル信号を用いて、前記信号電力及び前記干渉電力を算出することを特徴とする請求項1記載の無線装置。
    An A / D converter for converting a received signal from an analog signal to a digital signal;
    An input bit width adjustment unit that extracts a bit width smaller than the bit width of the digital signal from the input signal;
    With
    The signal power / interference power calculation unit calculates the signal power and the interference power using a digital signal extracted by the input bit width adjustment unit, which is a predetermined reception signal subjected to automatic gain control. The wireless device according to claim 1, wherein:
  8.  前記入力ビット幅調整部は、前記所定の受信信号の振幅に基づき、抽出するビット位置を決定することを特徴とする請求項7記載の無線装置。 The radio apparatus according to claim 7, wherein the input bit width adjustment unit determines a bit position to be extracted based on an amplitude of the predetermined reception signal.
  9.  所定の測定箇所での希望波レベル及び干渉波レベルを算出する希望波・干渉波レベル算出部を備え、
     前記AGC制御部は、自動利得制御の収束値に受信信号の電力が収束するように、前記可変増幅器の利得をゲイン制御値に基づき制御し、
     前記希望波・干渉波レベル算出部は、前記ゲイン制御値と、前記自動利得制御の収束値と、前記信号電力と、前記所定の測定箇所から前記信号電力・干渉電力算出部までの利得とを用いて前記希望波レベルを算出することを特徴とする請求項1記載の無線装置。
    A desired wave / interference wave level calculation unit for calculating a desired wave level and an interference wave level at a predetermined measurement location,
    The AGC control unit controls the gain of the variable amplifier based on the gain control value so that the power of the received signal converges to the convergence value of the automatic gain control;
    The desired wave / interference wave level calculation unit includes the gain control value, the convergence value of the automatic gain control, the signal power, and the gain from the predetermined measurement location to the signal power / interference power calculation unit. The radio apparatus according to claim 1, wherein the desired wave level is calculated.
  10.  既知の所定の受信信号を用いてSIRを測定するSIR測定方法において、
     受信信号を自動利得制御するAGC制御ステップと、
     前記AGC制御ステップで自動利得制御された所定の受信信号を用いて信号電力及び干渉電力を算出する信号電力・干渉電力算出ステップと、
     前記信号電力及び前記干渉電力に基づき前記SIRを測定するステップと、
    を備えたSIR測定方法。
    In a SIR measurement method for measuring SIR using a known predetermined received signal,
    An AGC control step for automatically gain-controlling the received signal;
    A signal power / interference power calculation step of calculating signal power and interference power using a predetermined received signal that has been automatically gain-controlled in the AGC control step;
    Measuring the SIR based on the signal power and the interference power;
    SIR measurement method comprising:
  11.  前記信号電力・干渉電力算出ステップは、前記自動利得制御された所定の受信信号の分散を干渉電力として算出し、前記自動利得制御された所定の受信信号における受信電力から雑音電力を減算した値を前記信号電力として算出することを特徴とする請求項10記載のSIR測定方法。 The signal power / interference power calculation step calculates a variance of the predetermined reception signal subjected to the automatic gain control as interference power, and subtracts noise power from the reception power in the predetermined reception signal subjected to the automatic gain control. The SIR measurement method according to claim 10, wherein the SIR measurement method is calculated as the signal power.
PCT/JP2009/006710 2009-12-09 2009-12-09 Wireless apparatus and sir measurement method WO2011070614A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/006710 WO2011070614A1 (en) 2009-12-09 2009-12-09 Wireless apparatus and sir measurement method
JP2010507754A JP4525867B1 (en) 2009-12-09 2009-12-09 Wireless device and SIR measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006710 WO2011070614A1 (en) 2009-12-09 2009-12-09 Wireless apparatus and sir measurement method

Publications (1)

Publication Number Publication Date
WO2011070614A1 true WO2011070614A1 (en) 2011-06-16

Family

ID=42767851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006710 WO2011070614A1 (en) 2009-12-09 2009-12-09 Wireless apparatus and sir measurement method

Country Status (2)

Country Link
JP (1) JP4525867B1 (en)
WO (1) WO2011070614A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910430A (en) * 2021-01-15 2021-06-04 北京格润海泰科技有限公司 Control method and device for automatically adjusting power gain of radio frequency signal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264514A (en) * 2002-03-07 2003-09-19 Hitachi Kokusai Electric Inc Circuit for measuring receiving level

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264514A (en) * 2002-03-07 2003-09-19 Hitachi Kokusai Electric Inc Circuit for measuring receiving level

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910430A (en) * 2021-01-15 2021-06-04 北京格润海泰科技有限公司 Control method and device for automatically adjusting power gain of radio frequency signal
CN112910430B (en) * 2021-01-15 2024-03-12 北京格润海泰科技有限公司 Control method and device for automatically adjusting power gain of radio frequency signal

Also Published As

Publication number Publication date
JP4525867B1 (en) 2010-08-18
JPWO2011070614A1 (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5746979B2 (en) Automatic gain control based on bandwidth and delay spread
US7190748B2 (en) Digital front-end for wireless communication system
US7254496B2 (en) Estimator for determining signal-to-interference ratio with reduced bias effect
KR101294021B1 (en) Apparatus and method for receiving data in wireless communication system
US7796709B2 (en) Method and system for signal quality measurement based on mean phase error magnitude of a signal
JP4924201B2 (en) Reception quality measuring apparatus and reception quality measuring method
US20040202133A1 (en) Power detection techniques and discrete gain state selection for wireless networking
US6667965B1 (en) Communication method, transmission power control method and mobile station
JP2009065312A (en) Radio receiver
WO2004032352A1 (en) Improved link estimation in a communication system
US20120076189A1 (en) Estimation of signal and interference power
JPWO2011148779A1 (en) Receiver and signal-to-noise ratio estimation method
JP4780239B2 (en) Wireless device and SIR measurement method
JP4525867B1 (en) Wireless device and SIR measurement method
KR20110073071A (en) Apparatus and method for estimating the channel in mobile communication system
JP4737458B2 (en) Reception amplitude correction circuit, reception amplitude correction method, and receiver using the same
JP2008053895A (en) Radio signal receiver, and gain control method thereof
EP1065802A1 (en) Transmission power control method by measuring the Eb/No of a weighted signals&#39; combination
JP2006295766A (en) Nonlinear distortion equalization system
WO2014089819A1 (en) Automatic gain control in a heterogeneous mobile communication network
WO2008092299A1 (en) Power control apparatus and method
KR100737746B1 (en) Method and apparatus for automatic gain control
JP5372163B2 (en) Gain control apparatus and method for mobile communication system
JP4779523B2 (en) Received electric field strength detection circuit and method, and receiver using the same
KR20070097941A (en) Apparatus and method for controlling a quantization in digital communication system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010507754

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852011

Country of ref document: EP

Kind code of ref document: A1