WO2011070448A2 - Système de communication radio sur fibre - Google Patents

Système de communication radio sur fibre Download PDF

Info

Publication number
WO2011070448A2
WO2011070448A2 PCT/IB2010/003537 IB2010003537W WO2011070448A2 WO 2011070448 A2 WO2011070448 A2 WO 2011070448A2 IB 2010003537 W IB2010003537 W IB 2010003537W WO 2011070448 A2 WO2011070448 A2 WO 2011070448A2
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
radio
optical
transmission system
information signal
Prior art date
Application number
PCT/IB2010/003537
Other languages
English (en)
Other versions
WO2011070448A3 (fr
Inventor
Graham Town
Original Assignee
Graham Town
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graham Town filed Critical Graham Town
Publication of WO2011070448A2 publication Critical patent/WO2011070448A2/fr
Publication of WO2011070448A3 publication Critical patent/WO2011070448A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
    • H04B10/25759Details of the reception of RF signal or the optical conversion before the optical fibre

Definitions

  • This invention concerns a communication system design, for the generation,
  • Such systems are intended for optical transmission (over optical fibre) of information modulated onto radio-frequency carriers to points where they are retransmitted or distributed wirelessly as a radio frequency signal, for instance in a local area or mobile communication network.
  • Radio-over-fiber systems require conversion of optical signals to radio-frequency signals (for radiation by antennas), and vice-versa.
  • Existing systems typically rely on complicated (e.g. phase- locked) laser sources and/or complicated modulation and filtering techniques, and usually require expensive microwave oscillators and/or high performance optical modulators designed to operate at the mm-wave carrier frequency.
  • microwave oscillators and/or high performance optical modulators designed to operate at the mm-wave carrier frequency.
  • components do not exist to implement many of the functions required in existing RoF and related system designs.
  • the invention is an optical transmission system for broadband radio frequencies, such as. microwave and above (e.g. for use in Radio over Fibre (RoF) applications), comprising:
  • a source (or sources) of two optical carrier signals separated in frequency by an amount that defines the wireless carrier frequency.
  • a source (or sources) of two optical carrier signals separated in frequency by an amount that defines the wireless carrier frequency.
  • a modulator to modulate the optical carriers with an information signal.
  • An optical detector to receive the transmitted signals and heterodyne them together to generate a radio-frequency carrier modulated by the information signal.
  • a radio frequency transmission system (at a base station) to wirelessly
  • Modulation may involve the use of a Mach-Zehnder (MZM) modulator to modulate the combined optical carriers with the baseband information.
  • MZM Mach-Zehnder
  • the signal may be detected by a PIN photodetector, and then the radio-frequency carrier with the modulated sidebands containing the information may be sent to a base station antenna via an equalising amplifier.
  • a mobile device may receive the mm-wave signal from the wireless transmission system and detect or homodyne that signal to recover the data. Low pass filtering is typically used to extract the information signal.
  • the invention is a method for operating an optical transmission system for broadband radio frequencies, comprising the steps of:
  • a further step involves receiving the radio-frequency signal and converting it to baseband and then retrieving the information signal.
  • the proposed scheme offers simplified and cost-effective implementation of such systems, which has great potential to be competitive with other wireless access technologies . It also makes THz wireless systems much more practical than is possible with the current state of the art.
  • the radio carrier frequency is determined by the separation between two continuous-wave optical carriers, which, for example, may be generated by two separate lasers, or as two longitudinal modes of a single laser cavity.
  • Fig- 1 is a schematic diagram of a millimeter-wave (mm-wave) Radio over Fibre (RoF) system.
  • mm-wave millimeter-wave
  • RoF Radio over Fibre
  • Fig. 2 is a graph of the optical power spectrum of the modulated mm-wave carrier.
  • Fig. 3 is a graph of the back to back Bit-Error-Rate (BER) both before (a) and after optical transmission (b).
  • Fig. 4 is a schematic diagram of an alternative millimeter- wave Radio over Fibre system.
  • Fig. 5 is a graph of the Bit-Error-Rate for different frequency spacing between two laser beams.
  • Fig. 6 is a graph of the power penalty for Relative Intensity Noise (RIN) variation in both the laser beams
  • Fig. 7 is a graph of the Bit-Error-Rate for different data rates after optical transmission.
  • Fig. 1 presents a first RoF system 10 in which two optical tones are generated in a single laser cavity, these are heterodyned together. After optical and wireless transmission they arc self mixed/homodyned to recover the baseband data in a mobile device.
  • System 10 comprises, a laser source 12 realized using a Fabry-Perot cavity incorporating a short length of highly doped erbium-fibre amplifier 14 with a gold mirror 16 butt-coupled at one end, and a dual-channel Bragg grating comb-filter 18 spliced to the other end to select the lasing modes around 1550 nm.
  • the resulting modulated signal is then transmitted over forty kilometers of single- mode fibre (SMF) 28 to base station 30.
  • SMS single- mode fibre
  • the signal is detected by a PIN photodetector 32, and then the muo-wave carrier with the modulated sidebands containing information data are sent to the base station antenna 34 via equalising amplifier 36.
  • the signal After reception at a user's mobile unit 40, via antenna 42, the signal is heterodyned at mixer 44 to extract the baseband, which then passes another equalizing amplifier 46 before low pass filtering 48 to extract the data 25.
  • Fig. 2 presents the modulated dual- wavelength laser power spectrum with 25 GHz mm-wave carrier separation after the MZM in our system.
  • BTB BTB connection (a) and after transmission over 40 km of SMF (b), respectively are shown in Fig. 3.
  • Photodetector 32' senses the signal output from the optical fibre, that is an RF carrier at. 40 GHz along with the data, and after passing equalizing amplifier 36" they are wirelessly transmitted vja antenna 34'.
  • Fig. 5 shows the Bit-Error-Rate (BER) penalty for the recovered signals for both back-to-back (BTB) cases (a), (b) and (c) and after transmission over 25 km of SMF (d) at a BER of lO 9 which is 0.1 dB in our simulation.
  • Fig. 5 also presents the BTB BER for different frequency separations between two lasers. It can be seen that power penalty is increased as frequency difference between two lasers is decreased from 40 GHz to 10 GHz due to spectral overlapping at lower frequency separations.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

La présente invention concerne un système destiné à la transmission par fibres optiques de signaux radio modulés dans le but de communiquer des informations sans utiliser d'oscillateur local de radiofréquence ni de modulateur électro-optique de radiofréquence.
PCT/IB2010/003537 2009-11-30 2010-11-30 Système de communication radio sur fibre WO2011070448A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26503409P 2009-11-30 2009-11-30
US61/265,034 2009-11-30

Publications (2)

Publication Number Publication Date
WO2011070448A2 true WO2011070448A2 (fr) 2011-06-16
WO2011070448A3 WO2011070448A3 (fr) 2011-10-27

Family

ID=44145979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/003537 WO2011070448A2 (fr) 2009-11-30 2010-11-30 Système de communication radio sur fibre

Country Status (1)

Country Link
WO (1) WO2011070448A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042765A (ja) * 2013-07-23 2015-03-05 Jx日鉱日石金属株式会社 表面処理銅箔、キャリア付銅箔、基材、プリント配線板、プリント回路板、銅張積層板及びプリント配線板の製造方法
EP2876824A1 (fr) * 2013-11-25 2015-05-27 Deutsche Telekom AG Agencement de transfert de données ayant une onde porteuse dans la plage térahertz
US9343797B2 (en) 2011-05-17 2016-05-17 3M Innovative Properties Company Converged in-building network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292142A1 (en) * 2004-03-22 2007-12-20 Sumitomo Osaka Cement Co., Ltd. Method for Generating Carrier Residual Signal and Its Device
US20090214224A1 (en) * 2007-04-03 2009-08-27 Celight, Inc. Method and apparatus for coherent analog rf photonic transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292142A1 (en) * 2004-03-22 2007-12-20 Sumitomo Osaka Cement Co., Ltd. Method for Generating Carrier Residual Signal and Its Device
US20090214224A1 (en) * 2007-04-03 2009-08-27 Celight, Inc. Method and apparatus for coherent analog rf photonic transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISLAM, A.H.M.R. ET AL.: 'A NOVEL RADIO OVER FIBRE SYSTEM USING A DUAL- WAVELENGTH LASER' PHOTONICS 13 December 2008 - 17 December 2008, DELHI, INDIA, *
ISLAM, A.H.M.R. ET AL.: 'Simplified Millimeter-wave Radio-over-fiber System Using Optical Heterodyning of Low-cost Independent Light Sources and RF Homodyning at the Receiver' MWP '09 14 October 2009 - 16 October 2009, VALENCIA, SPAIN, *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343797B2 (en) 2011-05-17 2016-05-17 3M Innovative Properties Company Converged in-building network
JP2015042765A (ja) * 2013-07-23 2015-03-05 Jx日鉱日石金属株式会社 表面処理銅箔、キャリア付銅箔、基材、プリント配線板、プリント回路板、銅張積層板及びプリント配線板の製造方法
EP2876824A1 (fr) * 2013-11-25 2015-05-27 Deutsche Telekom AG Agencement de transfert de données ayant une onde porteuse dans la plage térahertz

Also Published As

Publication number Publication date
WO2011070448A3 (fr) 2011-10-27

Similar Documents

Publication Publication Date Title
Chen et al. A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection
Hofstetter et al. Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation
Yu et al. A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection
Smith et al. Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects
US7761012B2 (en) Optical communication system and method for generating dark return-to zero and DWDM optical MM-Wave generation for ROF downstream link using optical phase modulator and optical interleaver
Mandal et al. Bidirectional and simultaneous transmission of baseband and wireless signals over RSOA based WDM radio-over-fiber passive optical network using incoherent light injection technique
Hsueh et al. A novel bidirectional 60-GHz radio-over-fiber scheme with multiband signal generation using a single intensity modulator
Lin et al. Millimeter-wave carrier embedded dual-color laser diode for 5G MMW of link
Li et al. Generation and transmission of BB/MW/MMW signals by cascading PM and MZM
Shin et al. Optical microwave frequency up-conversion via a frequency-doubling optoelectronic oscillator
US10181909B2 (en) Method and apparatus for optical wireless architecture
Jia et al. Bidirectional ROF links using optically up-converted DPSK for downstream and remodulated OOK for upstream
Khawaja et al. Wireless hybrid mode locked lasers for next generation radio-over-fiber systems
WO2011070448A2 (fr) Système de communication radio sur fibre
Zhang Development of millimeter-wave radio-over-fiber technology
Chang et al. Architectures and enabling technologies for super-broadband radio-over-fiber optical-wireless access networks
Mandal et al. A long-reach optically powered multi-band radio-over-fiber network by employing PolM-to-IM converter with enhanced fault-protection ability and less Rayleigh backscattering noise effect
Kuri et al. Long-term stabilized millimeter-wave generation using a high-power mode-locked laser diode module
Qasim et al. Dual-ring radio over fiber system with centralized light sources and local oscillator for millimeter-wave transmission
Singh et al. Techniques of millimeter-wave signal generation in RoF systems: A review
Ma et al. Full duplex fiber link for alternative wired and wireless access based on SSB optical millimeter-wave with 4-PAM signal
Taniguchi et al. Full-duplex 1.0 Gbit/s data transmission over 60 GHz radio-on-fiber access system based on the loop-back optical heterodyne technique
Kaur et al. Radio over Fiber (RoF) for future generation networks
Islam et al. Simplified millimeter-wave radio-over-fiber system using optical heterodyning of low-cost independent light sources and RF homodyning at the receiver
Wiberg Generation, modulation, and detection of signals in microwave photonic systems

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE