WO2011070434A1 - Integrated shielding gas and magnetic field device and welding system for deep groove welding - Google Patents
Integrated shielding gas and magnetic field device and welding system for deep groove welding Download PDFInfo
- Publication number
- WO2011070434A1 WO2011070434A1 PCT/IB2010/003187 IB2010003187W WO2011070434A1 WO 2011070434 A1 WO2011070434 A1 WO 2011070434A1 IB 2010003187 W IB2010003187 W IB 2010003187W WO 2011070434 A1 WO2011070434 A1 WO 2011070434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- welding
- shielding gas
- magnetic
- probe
- magnetic field
- Prior art date
Links
- 238000003466 welding Methods 0.000 title claims abstract description 179
- 239000000523 sample Substances 0.000 claims abstract description 88
- 239000007789 gas Substances 0.000 claims description 54
- 239000002826 coolant Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 8
- 238000004382 potting Methods 0.000 claims description 7
- 229910000976 Electrical steel Inorganic materials 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 230000002745 absorbent Effects 0.000 claims description 2
- 239000002250 absorbent Substances 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000003381 stabilizer Substances 0.000 description 9
- 230000035515 penetration Effects 0.000 description 7
- 239000011324 bead Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000005465 channeling Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LJHFUFVRZNYVMK-CYBMUJFWSA-N [3-[4-(aminomethyl)-6-(trifluoromethyl)pyridin-2-yl]oxyphenyl]-[(3R)-3-hydroxypyrrolidin-1-yl]methanone Chemical compound NCC1=CC(=NC(=C1)C(F)(F)F)OC=1C=C(C=CC=1)C(=O)N1C[C@@H](CC1)O LJHFUFVRZNYVMK-CYBMUJFWSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- QBYJBZPUGVGKQQ-SJJAEHHWSA-N aldrin Chemical compound C1[C@H]2C=C[C@@H]1[C@H]1[C@@](C3(Cl)Cl)(Cl)C(Cl)=C(Cl)[C@@]3(Cl)[C@H]12 QBYJBZPUGVGKQQ-SJJAEHHWSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005493 welding type Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/02—Seam welding; Backing means; Inserts
- B23K9/0213—Narrow gap welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/08—Arrangements or circuits for magnetic control of the arc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/167—Arc welding or cutting making use of shielding gas and of a non-consumable electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/32—Accessories
Definitions
- Devices, systems, and methods consistent with the invention relate to an apparatus and method for welding and manipulating the welding arc when welding in deep groove applications.
- Thicknesses can be as high as 4 inches or more. Thick work piece welding requires that a filler weld be made for the entire depth of the work pieces to be welded together. Moreover, the work pieces to be welded often have an angled face - that is two angled faces are welded to each other - and the filler weld is to fill the entire gap between the work pieces created by the angled faces of the work pieces. Because larger gaps between work pieces require more time to fill in the welding process they are less desirable and it is desired to make the gap between work pieces as narrow as possible.
- a welding arc manipulation unit according to claim 1 or a welding system according to claim 10 is proposed.
- Preferable features may be taken from claims 2 to 9 as far as the welding arc manipulation unit is concerned, and from claims 2 to 9 as far as the welding arc manipulation unit is concerned.
- said magnetic probe is magnetically coupled to said shielding gas tube 105 and/or said magnetic probe comprises a plurality of laminate plates secured to each other and/or at least some of said laminate plates have different lengths from other of said laminate plates and/or the welding system further comprising a housing which encloses said coil and/or if at least one of said housing and said support structure comprises a coolant manifold structure to allow for the flow of a coolant through said coolant manifold structure and/or if at least one of said magnetic probe and said shielding gas tube is made from a high silicon steel and/or said magnetic coil is at least partially encased in a thermally absorbent potting material and/or if at least some of said laminate plates are made from a high silicon steel and/or said magnetic probe has a thickness near said support structure which is larger than a thickness at a point away from said support structure and/or said support structure comprises a coolant manifold structure to allow for the flow of a coolant through said coolant
- An exemplary embodiment of the present invention is a welding arc manipulation unit, and a system containing the welding arc manipulation unit, where the unit has a support structure which supports a magnetic coil which generates a magnetic field in response to an electrical current and a magnetic probe magnetically coupled to the magnetic coil and extending below the support structure such that the magnetic probe can extend into a welding gap to deliver a magnetic field to a welding arc.
- the unit also has a shielding gas tube coupled to and extending below the support structure such that the shielding gas tube can extend into the welding gap to deliver shielding gas to the welding arc.
- FIG. 1 illustrates a diagrammatical representation of a narrow gap thick walled weld joint and work piece
- FIG. 2 illustrates a diagrammatical representation of a magnetic field generation unit in accordance with an exemplary embodiment of the present invention
- FIG. 3 illustrates a diagrammatical representation of a side view of the unit of FIG. 2;
- FIG. 3A illustrates a diagrammatical representation of a shape of a shielding gas and tube of an exemplary embodiment of the present invention
- FIG. 4 illustrates a diagrammatical representation of an exploded view of the unit of FIG. 2;
- FIG. 5 illustrates a diagrammatical representation of an exemplary embodiment of the present invention in a welding operation
- FIG. 6 illustrates a diagrammatical representation of another view of the welding operation of FIG. 5;
- FIG. 7 illustrates a diagrammatical representation of a welding system in accordance with an exemplary embodiment of the present invention.
- FIG. 1 is a representative diagrammatical cross-section of a narrow gap thick walled weld as discussed in the present application.
- two adjacent work pieces have a facing side walls, each having an angled face.
- the side walls are angled to allow for welding at the deepest part of the gap.
- welding is considered thick walled when the gap has a depth of 1 inch or more.
- welding is typically considered narrow gap welding when the angle between the facing sidewalls is 20 degrees or less. It should be noted that embodiments of the present invention are not limited to welding applications of these respective dimensions, but rather can be used in any appropriate welding application so long as the desired welding results are achieved.
- TIG welding tungsten inert gas welding process
- the arc manipulation unit 100 is comprised of a number of components including a magnetic coil housing 101 , a magnetic coil support 103, a shielding gas tube 105 and nozzle 106, and a magnetic field probe 107.
- the housing 101 has a bracket structure 1 13 used to secure the unit 100 to a welding head assembly (not shown).
- the bracket 113 can be positioned and configured as desired based on the structure of the welding head assembly to which it is secured to. This will be discussed further below.
- gas inlet 109 Inserted into the housing 101 is gas inlet 109, which is coupled to the gas tube 105, an electrical conduit inlet 111 , and coolant tube inlet 115 and coolant tube outlet 1 16.
- the arc manipulation unit 100 employs both magnetic field control and proximate shielding gas delivery to achieve optimal weld quality in narrow gap - thick walled welds. This will be discussed more fully below.
- the unit 100 provides shielding gas delivery and magnetic field control and/or manipulation of a welding arc.
- the shielding gas is provided to the arc via the gas inlet 109, gas tube 105 and nozzle 106.
- the shielding gas is provided from a gas source (not shown) to the inlet 109.
- the inlet 109 is coupled to the gas tube 105 which extends down through the housing 101 and extends below the housing 101 and support 103.
- the tube 105 ends with a nozzle 106 that directs the shielding gas to the welding arc so as to provide adequate shielding.
- the gas delivery structure can be formed integrally as a single unit. That is, in other exemplary embodiments, the tube, inlet and nozzle are formed as a single unit, so long as the shielding gas is delivered remotely to the welding arc. As shown in the embodiment depicted in Figs. 3 and 4 the nozzle 106 is angled so as to point away from the housing and down towards a weld bead during welding. However, in other exemplary embodiments of the present invention, the nozzle 106 has an adjustable orientation. This adjustability allows the nozzle 106 to be oriented by a user to provide optimal shielding gas delivery during a welding operation.
- the operator has the flexibility to orient the nozzle 106 to a desired position to provide the desired shielding gas delivery.
- the adjustability can be achieved by any known means, including using a latching, cam type or gearing structure, which permits the angle of the nozzle 06 to be adjusted and held steady after adjustment.
- the cross-section of the internal area of the tube 105 and nozzle 106 are to be such to ensure sufficient delivery of shielding gas to the welding arc.
- the cross-section of the tube 05 and nozzle 106 is rectangular, oval, elliptical or rectangular with rounded edges (or similarly shaped). This shaping permits the nozzle 106 and tube 105 to be inserted deeper into a weld gap.
- the shaping of the nozzle 106 and tube 105 are optimized to allow for the deepest penetration possible in a weld gap. This ensures that the shielding gas is delivered to the welding arc as close as possible to optimize shielding.
- the tube 105 and/or nozzle 106 have a trapezoidal shape when viewed from the front or back of the unit 100. That is, the tube 105 and/or nozzle 106 are wider at the top (nearer the unit) and narrower at the bottom (near the weld). This can be seen in Figure 3A. This shape allows for the optimization of structural stability, while at the same time ensures as deep a penetration as possible into a weld gap.
- the length of the tube 105, below the housing 101 and plate or support 103 is determined to provide optimal shielding gas delivery to a weld. That is, for welding with deeper gaps a longer tube 105 may be needed or used.
- the nozzle 106 is to have a shape which provides adequate shielding to the arc, and the shape is not limited to that shown in Figures 2-4 of the present application. Further, although not shown, it is also contemplate that nozzle 106 and/or tube 105 has an additional port or nozzle opposite the nozzle 106 shown in the figures to provide for trailing shielding gas. In some applications it may be desirable to provide additional trailing shielding gas to continue to shield the weld pool during cooling. Thus embodiments of the present invention may have an additional nozzle or port on the nozzle 106 or tube 105 to provide this shielding.
- the tube 105 and/or nozzle 106 is easily replaceable, allowing for replacement due to damage or wear or due to different tooling requirements. That is, it is contemplated that tubes 105 of different length can be provided to a user who can easily replace the tube 105 and/or nozzle 106 depending on the depth and/or shape of the gap to be welded. In fact, it is contemplated that tubes can be replaced for welding of the same gap. For example, as the gap gets shallower different nozzles/tubes can be employed to optimize welding.
- the tube 105 can be threaded into the plate 103, such that it can be easily screwed out to be replaced with a new part or a different part depending on the welding operation.
- the tube 105 is secured to the plate 103 and/or housing 101 via known means, such as fasteners, etc. to allow for its replaceability.
- the tube 105 and/or the nozzle 106 are made from steel which is magnetic. This ensures that the components can withstand the high temperatures associated with being close to a welding operation and will aid in the delivery of a magnetic field - which will be discussed in more detail below.
- the tube 105 and/or the nozzle 106 can be made from high silicon steel.
- the present invention is not limited to the use of steel, as other materials can be suitable for this application. However, the materials selected should be of a type that can withstand high temperatures without losing significant structural integrity or shape, and of a type that propagates magnetic fields, or at least does not interfere with magnetic fields.
- the magnetic field probe 107 is also to be made from steel, or other materials, which can withstand high temperatures while also emitting a magnetic field.
- the probe 107 can be made from high silicon steel, of the type often employed in electrical transformers.
- the probe 107 provides a magnetic field close to the welding arc that is used to stabilize the welding arc and manipulate the movement of the arc from side-to-side to ensure that the each sidewall of the work pieces has sufficient and consistent penetration during welding.
- the probe 107 is secured to the tube 105 via welding or other suitable means, and an upper portion of the probe 107 extends into the housing 101 a sufficient distance so as to engage a magnetic coil 117.
- the probe 107 has a trapezoidal shape when viewed from the front of the unit 100. That is, the probe 107 is narrowest at its lowest end and its width increases as it nears the housing 101. In some exemplary embodiments, the probe 107 has a constant cross-section within the housing 101 , or has a constant cross-section at the portion which is engaged by the coil 1 7. In other exemplary embodiments, the probe has a constant cross-section throughout its length. The overall shape of the probe 107 should be optimized to deliver the desired magnetic field to manipulate the welding arc.
- the probe 107 is comprised of a plurality of magnetic laminates 120, 121 , 122 (for example high silicon steel), rectangular in shape and having different lengths, such that when they are assembled the probe 107 has essentially a trapezoidal shape with a thicker cross-section near the housing 101 than at its proximal end (near the nozzle 106). These laminates are secured to each, for example via welding, so as to create a near solid probe 107.
- the probe 107 can be machined from a single stock of magnetic material. The present invention is not limited by the specific method of construction of the probe 107 in this regard.
- the length of the probe 107 is to be such that it penetrates into the weld gap significantly so as to allow a generated magnetic field
- the probe 107 has a shorter length than the tube 105 and nozzle 106.
- the probe 107 does not extend below the bottom of the nozzle 106. In any event, the probe 107 should have a length such that the probe 107 ' does not impact with the weld bead in the gap during operation.
- the size or mass of the probe 107 can also be varied to enhance the gauss strength of a magnetic field of the probe 107. For example, when welding with higher amperages (for example in the range of 400 to 500 amps) a stronger magnetic field is usually required to manipulate the arc, thus it may be necessary to have a probe with a larger size.
- the overall shape and sizing of the probe 107 is to be a function of the desired operational parameters of the probe 107 and the unit 100 as a whole.
- the probe 107 is shown behind the tube 105 and nozzle 106, the present invention is not limited to this configuration. In alternative embodiments of the present invention, the probe 107 is positioned closer to the welding arc than the tube 105 so as to move the magnetic field of the probe 107 closer to the arc. However, in such an embodiment the nozzle 106 should be positioned and configured to ensure sufficient and adequate delivery of shielding gas to the welding arc.
- the probe 107 can be removable from the housing 101 to allow for replacement due to damage and to allow for probes 107 of varying lengths to be installed to facilitate welding in gaps of different depths.
- the probe 107 can be installed via bolts, screws or other similar fasteners that can allow for the probe 107 to be easily removed.
- the probe 107 is secured to the tube 105 so as to create an integral unit.
- the probe 107 and the tube 105 can be welded together along their length extending below the support 103.
- the tube 105 and the probe 107 are welded to each other along a length sufficient to effectively magnetically couple the tube 105 to the probe 105 so that the tube 105 acts as part of the probe 107 in delivering the magnetic field to the arc.
- the entire probe/tube unit can be made removable and replaceable.
- the tube 105 becomes an extension of the probe 107 for purposes of emitting a magnetic field to stabilize and manipulate the welding arc.
- the tube 105 and probe 107 can be magnetically coupled via coupling devices (not shown) which aid in magnetically coupling the tube 105 to the probe 107.
- coupling devices include, metallic clips or fasteners.
- unit stabilizers 130 coupled to either the tube 105 and/or the probe 107 are unit stabilizers 130.
- the stabilizers 130 are secured to either the tube 105 and/or the probe 107 and have an extension which extends between the tube 105 and/or the probe 107 and make contact with the sidewalls of the weld gap.
- the stabilizers 130 help stabilize and/or center the unit 100 during a welding operation. This is particularly advantageous when welding metals which are magnetic. Because of the generation of a magnetic field by the probe 107, it is possible (when welding magnetic materials) that the unit 100 may move towards one of the sidewalls.
- the stabilizers 130 will help maintain the unit 100 in a stable or centralized position.
- the stabilizers 130 are made of a rigid, yet flexible, material to ensure that the unit remains stable, while at the same time accommodating the varying widths of a welding gap during a welding process.
- the stabilizers 130 are non-metallic, but resistant to high heat. In other embodiments, metallic stabilizers may be employed.
- the stabilizers 130 are not limited to flexible members, but be of any configuration to provide stabilization and positional security, such as wheels or bearings, etc. [35] As stated above, the upper end of the probe 107 is inserted into a magnetic coil 117 which is located within the housing 101.
- the probe 107 is inserted into a central portion of the coil 117 such that when a magnetic field is generated by the coil 117 (via the use of an electrical current in the coil) the magnetic field is transferred from the coil 117 into the probe 107 such that a magnetic field is generated at the proximate end of the probe 107 (near the nozzle 106). It is this magnetic field which is used to manipulate and stabilize the arc.
- the structure and construction of the coil 1 17 is such that it is sufficient to create the needed magnetic field for arc control and manipulation.
- the coil 1 17 contains at least 1 ,100 wraps of 22 gauge high-temperature wire.
- the construction and parameters of the coil 117 are driven by the application and desired performance of the magnetic field to be generated and the properties discussed above are merely exemplary.
- the upper end of the probe 07 is inserted into the coil 117 such that sufficient magnetic coupling occurs between the coil 117 and the probe 107.
- the coil 117 is then covered or wrapped with an electrical insulator (not specifically shown) so that the coil 117 is sufficiently electrically insulated. Any sufficient means of electrical insulation may be used, including tape, silicon, etc.
- the magnetic coil 1 17 (including the upper end of the probe 107 in some embodiments) is potted in a thermally insulative potting compound 118. As can be expected, the probe
- the coil 117 will be exposed to very high temperatures during the welding operation.
- a high temperature environment can affect both the structural integrity and the performance of the coil 117 and the probe 107.
- the presence of the thermally conductive potting compound 1 18 mitigates the affects of the high temperature environment by dissipating the heat from the coil 117 and/or probe 107. This aids in extending the life of the coil 117 and the probe 107.
- the present invention is not limited by the type of compound or thermal epoxy that can be used. Further, in additional exemplary embodiments of the present invention, the potting compound 1 18 fully fills the interior cavity of the housing 101. This further enhances the thermal protection of the coil 117 and the unit 100 as a whole.
- the housing 101 contains a cavity (not shown) in which a camera or other sensor devices (such as a temperature sensor) can be secured.
- a camera or other sensors allows for the unit 100 to also provide data regarding the welding operation.
- at least some openings in the housing 101 must be provided to allow the camera and/or sensors to function properly.
- these cavities may be closed or covered with a material to allow the sensors/camera to work, such as weld shield glass.
- the camera/sensors can be placed in a cavity within the housing, or can be located in a separate housing structure secured to the unit 100 or other structure on the welding carriage (not shown).
- the coil 117 is located on the coil support 103, through which each of the tube 105 and probe 107 pass through.
- the support 103 has a recess portion 124 in which the coil 117 is placed.
- the coil 117 can be secured to the support 103 via some mechanical means or can simply be retained in the support via the recess portion 124.
- the support has at least two holes to allow for the probe 107 and the tube 105 to pass though.
- the support 103 has a manifold structure 126 for the flow of a coolant through the manifold structure 126.
- a coolant such as water
- the coolant is passed through the manifold structure 103 so as to cool the support 103, the coil 1 17 and the probe 107.
- the coolant can be of any type, including water, oil or other thermally conductive fluids.
- the manifold structure 126 may be configured as needed to allow for the flow of the coolant through the support 103.
- the manifold structure 26 in the support 103 can also be throughout the housing 101 to provide further thermal dissipation.
- the manifold structure 126 can be formed integrally with the support 03/housing 101 or can be a separate structure which is thermally coupled to the support 103 and/or the housing 101. It is also contemplated in other embodiments of the present invention that at least some manifold structure 126 is thermally coupled to the coil 117 and/or the upper portions of the probe 107 so as to provide further heat dissipation for these components. It is noted that the use of a coolant system as described above is not necessary to various embodiments of the present invention, but is desirable in many applications so as to lengthen the operational life of the components. The exact configuration, routing and structure of the coolant system and manifold structure 126 is a function of the heat dissipation needs in the unit 100 and can be configured as needed for specific applications and uses.
- the probe 107 has channeling internal to its structure which is coupled to the manifold structure 126 such that the coolant is passed down into the probe 107 during operation. This provides additional thermal dissipation for high heat applications.
- the tube 105 is coupled to coolant channeling or manifold structure that aids in the removal of heat from the tube 105 and/or the probe 107 during operation.
- an electrical conduit inlet 111 which is used as an inlet for electrical connections, such as those needed for the coil 117.
- the housing 101 , inlet 11 1 and support 103 can be made from any suitable material, including aluminum and steel.
- the embodiment shown in Figures 3 and 4 shows the support 103 and housing 101 as separate components, the present invention is not limited in this regard as these components can be integrally formed, or configured in other ways to perform the same function.
- Bracket 113 Mounted to the housing 101 is a bracket 113 using fasteners 119.
- the bracket is employed to secure the unit 100 to a weld head assembly (not shown) and can be configured as needed to secure the unit 100.
- the welding head 200 comprises a tungsten welding electrode
- a shielding gas cup 203 provides additional shielding gas to the weld zone.
- the power supply 152, torch head 201 , electrode 205, connection 207, cup 203 and filler wire W are of types known by those skilled in the art, and the present invention is not limited in this regard.
- a weld head carriage (not shown) has both the weld head 200 and unit 100 secured to it and they are inserted into the gap of the weld to an appropriate height above the weld bead to be created.
- a welding power supply 152 provides a welding waveform to the torch head 201 and the electrode 205 which creates a welding arc between the electrode 205 and the work pieces to be welded.
- pulse welding is employed.
- the welding waveform is controlled by the welding power supply 152 in accordance with known methods and need not be described in detail herein.
- embodiments of the present invention employ a magnetic field, generated by the coil 117, to stabilize and manipulate the arc.
- an electrical signal is generated by a magnetic field control device 153 which contains a magnetic arc control system.
- a magnetic field control device 153 which contains a magnetic arc control system.
- This device 153 is integral with the welding power supply 152.
- the device 153 can be a separate operational device.
- the magnetic arc control system within the device 153 provides the proper magnetic field to the probe 107 to manipulate the arc.
- the device provides an electrical current to the coil 1 7 to generate a magnetic field in the coil 117 which is also provided to the probe 107 and/or the tube 105 and nozzle 106 by virtue of the connection to the probe.
- This magnetic field can affect the stability and positioning of the welding arc.
- the intensity, frequency and polarity of the magnetic field are employed to manipulate the arc to achieve the desired weld parameters. For example, by varying both the intensity and polarity of the magnetic field of the probe 107 the welding arc can be moved from side to side in the welding gap. This control allows for the system to manipulate the arc such that consistent sidewall penetration is achieved during welding.
- the frequency and intensity can be controlled to stabilize the arc to provide a consistent and well controlled welding operation. Prior to this invention, this could not be consistently achieved in narrow gap thick walled welding operations.
- embodiments of the present invention can provide various types of welding arc manipulation to optimize a welding operation.
- embodiments of the present invention can provide arc stabilization, arc oscillation and/or a high frequency magnetic stir of the welding arc.
- arc stabilization embodiments of the present invention employ a magnetic field to maintain the welding arc in one location or position to prevent arc blow, or otherwise to provide a consistent weld and to prevent the arc from wandering in the welding operation.
- embodiments of the present invention employ the magnetic field is used to manipulate the arc from side-to-side within the weld gap to ensure consistent sidewall penetration and controlling the distribution of heat during welding.
- embodiments of the present invention employ magnetic fields agitate and stir the weld puddle to create a more fluid weld puddle during welding. This agitation can aid in floating out impurities and porosity from the weld puddle. This magnetic stirring can also enable a higher wire feed speed and deposition rate during welding.
- the unit 100 and weld head 200 traveling along a single path during welding, for example to make a single pass.
- the unit 100 and weld head 200 can be mechanically oscillated during welding. This can be done to further enhance the weld pool stirring discussed above.
- embodiments of the present invention are not limited to the relative positioning of the unit 100 and the weld head 200.
- the unit 100 is on the leading side of the weld head 200 (that is on the upstream side of the welding arc), while in other exemplary embodiments the unit 100 is on the trailing side of the weld head 200.
- the operation of the device 153 can be manual, such that an operator can control the magnetic field to manipulate the welding arc, or it can be automatic based on data/information from the welding power source. That is, it is within the scope of the present invention that the welding power supply 152 and the magnetic field control device 153 work together, via the use of programming, etc., to move the welding arc as desired and/or stabilize the arc during welding.
- FIG. 7 depicts a welding system 300 in accordance with an embodiment of the present invention, in which a welding power supply 152 provides a welding waveform to the weld head 200, and a magnetic field control device 153 provides an electrical signal to the unit 100 which generates a magnetic field near the arc to manipulate and stabilize it.
- the welding power supply 152 can be of any known configuration. Additionally, the present invention can be utilized in either an automatic, robotic or semi-automatic welding cell. The present invention is not limited in this regard.
- a process controller 154 can be employed to control, manage and synchronize the overall operation of the system 300. Specifically, the process controller 154
- the magnetic field control device 153 controlled by the process controller 154 synchronizes magnetic arc deflection with all other welding processes. Specifically, arc current, arc voltage and wire feed speed (for example) are all synchronized with magnetic arc oscillation. This control, management and synchronization can be done either manually, with the user controlling various aspects of welding operation, including the welding arc and the magnetic field, or it can be done automatically where the process controller 154 manages the power supply 153 and magnetic field control device 153 autonomously.
- the process controller 154 can also control the travel of the unit 100 and weld head 200. In addition to controlling aspects of the welding process, the process controller 154 can also monitor various aspects of the welding operation, including: properties of the welding arc; coolant flow and level; shielding gas flow and levels; the unit 100; the magnetic field generated by the probe 107; etc.
- a shielding gas supply system 150 which provides a shielding gas (under the appropriate pressure and flow rate) to the unit 100 which delivers the shielding gas to the arc zone via the nozzle 106.
- the shielding gas system 150 can contain a source of shielding gas, such as a tank, and a flow regulation monitoring system, such as through a flow regulator known in the welding industry.
- a coolant supply system 151 is provided.
- the coolant supply system 151 provides a coolant, such as water, oil, or other thermally conductive liquid to the unit 100 where it provides for the cooling of the unit 100 and components therein.
- the coolant supply system 151 can contain a supply tank and a pump mechanism.
- the system 151 contains a cooling stage (not shown) which actively cools the coolant as it returns from the unit 100 to enhance the thermal exchange properties of the coolant.
- the shielding gas and the magnetic field are provided very near the arc and thus sufficiently shield, stabilize and manipulate the arc when welding narrow gap thick work pieces, unlike in prior systems.
- the present invention is not limited to the use of TIG welding, but can be used with in any industry or application requiring a controlled and shielded welding arc.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
- Arc Welding Control (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012124793/02A RU2012124793A (en) | 2009-12-09 | 2010-12-09 | BUILT-IN DEVICE AND SYSTEM FOR SUPPLY OF PROTECTIVE GAS AND MAGNETIC FIELD FOR WELDING WITH DEEP MEASURING AND EDGING |
CN201080062360.4A CN102725091B (en) | 2009-12-09 | 2010-12-09 | For integrated protective gas and magnetic field device and the welding system of deep groove welding |
AU2010329623A AU2010329623B2 (en) | 2009-12-09 | 2010-12-09 | Integrated shielding gas and magnetic field device and welding system for deep groove welding |
BR112012013648A BR112012013648A2 (en) | 2009-12-09 | 2010-12-09 | magnetic field device and integrated shielding gas and welding system for deep groove welding. |
CA2782507A CA2782507A1 (en) | 2009-12-09 | 2010-12-09 | Integrated shielding gas and magnetic field device and welding system for deep groove welding |
MX2012006558A MX2012006558A (en) | 2009-12-09 | 2010-12-09 | Integrated shielding gas and magnetic field device and welding system for deep groove welding. |
EP10813074.1A EP2509737B1 (en) | 2009-12-09 | 2010-12-09 | Integrated shielding gas and magnetic field device and welding system for deep groove welding |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26796009P | 2009-12-09 | 2009-12-09 | |
US61/267,960 | 2009-12-09 | ||
US12/954,076 US20110132877A1 (en) | 2009-12-09 | 2010-11-24 | Integrated shielding gas and magnetic field device for deep groove welding |
US12/954,076 | 2010-11-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011070434A1 true WO2011070434A1 (en) | 2011-06-16 |
Family
ID=44081005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2010/003187 WO2011070434A1 (en) | 2009-12-09 | 2010-12-09 | Integrated shielding gas and magnetic field device and welding system for deep groove welding |
Country Status (9)
Country | Link |
---|---|
US (1) | US20110132877A1 (en) |
EP (1) | EP2509737B1 (en) |
CN (1) | CN102725091B (en) |
AU (1) | AU2010329623B2 (en) |
BR (1) | BR112012013648A2 (en) |
CA (1) | CA2782507A1 (en) |
MX (1) | MX2012006558A (en) |
RU (1) | RU2012124793A (en) |
WO (1) | WO2011070434A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104428095A (en) * | 2012-06-27 | 2015-03-18 | 林肯环球股份有限公司 | Arc welding system with power converter, magnetic field system and controller for synchronising both |
US10183351B2 (en) | 2012-06-27 | 2019-01-22 | Lincoln Global, Inc. | Parallel state-based controller for a welding power supply |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102357722B (en) * | 2011-10-26 | 2013-05-22 | 上海交通大学 | Combined multi-parameter adjustable narrow-gap TIG (Tungsten Inert Gas) welding torch |
US9969025B2 (en) | 2011-11-18 | 2018-05-15 | Lincoln Global, Inc. | System for mounting a tractor unit on a guide track |
US10239145B2 (en) | 2012-04-03 | 2019-03-26 | Lincoln Global, Inc. | Synchronized magnetic arc steering and welding |
US9527153B2 (en) | 2013-03-14 | 2016-12-27 | Lincoln Global, Inc. | Camera and wire feed solution for orbital welder system |
US10086465B2 (en) | 2013-03-15 | 2018-10-02 | Lincoln Global, Inc. | Tandem hot-wire systems |
US10035211B2 (en) | 2013-03-15 | 2018-07-31 | Lincoln Global, Inc. | Tandem hot-wire systems |
US9770775B2 (en) | 2013-11-11 | 2017-09-26 | Lincoln Global, Inc. | Orbital welding torch systems and methods with lead/lag angle stop |
US9731385B2 (en) | 2013-11-12 | 2017-08-15 | Lincoln Global, Inc. | Orbital welder with wire height adjustment assembly |
US9517524B2 (en) | 2013-11-12 | 2016-12-13 | Lincoln Global, Inc. | Welding wire spool support |
US10464168B2 (en) | 2014-01-24 | 2019-11-05 | Lincoln Global, Inc. | Method and system for additive manufacturing using high energy source and hot-wire |
CN104923895B (en) * | 2015-06-26 | 2018-01-09 | 武汉纳瑞格智能设备有限公司 | A kind of semi-automatic ultra-narrow gap MAG/MIG welderings welding gun |
CN105312739B (en) * | 2015-11-03 | 2017-11-28 | 中国科学院长春光学精密机械与物理研究所 | A kind of TIG weld device and its welding method suitable for Narrow sloping-glot |
US10730130B2 (en) * | 2016-09-20 | 2020-08-04 | Illinois Tool Works Inc. | Field former for use in welding applications |
US11027362B2 (en) | 2017-12-19 | 2021-06-08 | Lincoln Global, Inc. | Systems and methods providing location feedback for additive manufacturing |
CN107971604A (en) * | 2017-12-30 | 2018-05-01 | 昆山华恒焊接股份有限公司 | Welding gun with excitation unit |
CN108637440B (en) * | 2018-04-28 | 2021-04-27 | 武汉纳瑞格智能设备有限公司 | Ultra-narrow gap MAG/MIG automatic welding gun metal nozzle insulated from contact nozzle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58181472A (en) * | 1982-04-16 | 1983-10-24 | Nippon Kokan Kk <Nkk> | Tig welding method of narrow groove |
JPS58205679A (en) * | 1982-05-26 | 1983-11-30 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for deflecting arc pillar in arc welding |
JPS59143577U (en) * | 1983-03-18 | 1984-09-26 | 日立精工株式会社 | Narrow gap TIG welding equipment |
JPS60191677A (en) * | 1984-03-13 | 1985-09-30 | Babcock Hitachi Kk | Narrow gap tig arc welding torch |
JPH10249522A (en) * | 1997-03-10 | 1998-09-22 | Nippon Steel Weld Prod & Eng Co Ltd | Arc welding equipment |
CN201295811Y (en) * | 2008-12-04 | 2009-08-26 | 重庆大学 | Water-cool excitation coil device for reproducing mould with electromagnetic composite gas shielding resurfacing welding |
Family Cites Families (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123702A (en) * | 1964-03-03 | Deep groove arc welding apparatus | ||
US1243589A (en) * | 1916-04-05 | 1917-10-16 | Electric Metal Working Company | Art of arc welding, heating, and metal-working. |
US1981629A (en) * | 1930-10-07 | 1934-11-20 | Ajax Electrothermic Corp | Method and apparatus for inductive heating |
US2176602A (en) * | 1933-02-02 | 1939-10-17 | American Rolling Mill Co | Process for preparing iron or steel sheets such as silicon steel sheets for magnetic uses |
US2057091A (en) * | 1933-08-04 | 1936-10-13 | Youngstown Sheet And Tube Co | Method of and apparatus for magnetic testing |
US2725505A (en) * | 1953-11-30 | 1955-11-29 | Rca Corp | Semiconductor power devices |
US2859328A (en) * | 1954-04-29 | 1958-11-04 | Air Reduction | Gas shielded arc welding |
US3167450A (en) * | 1960-07-05 | 1965-01-26 | Koibuchi Masao | Coated arc welding electrode |
US3142116A (en) * | 1961-04-14 | 1964-07-28 | Yawata Iron & Steel Co | Method of welding silicon steel |
US3102946A (en) * | 1961-07-24 | 1963-09-03 | Fonberg Zygmunt | Electric arc torch |
US3132235A (en) * | 1961-08-22 | 1964-05-05 | Air Reduction | Pilot operated control device |
US3294948A (en) * | 1964-06-02 | 1966-12-27 | Western Electric Co | Automatic resistance welding machine |
US3336462A (en) * | 1964-08-26 | 1967-08-15 | Jack W Fuller | Electric soldering iron having a thermally insulated handle |
US3414705A (en) * | 1965-10-24 | 1968-12-03 | Texas Instruments Inc | Component oven |
US3878357A (en) * | 1965-02-25 | 1975-04-15 | Texas Instruments Inc | Component oven |
US3483354A (en) * | 1965-03-01 | 1969-12-09 | Union Carbide Corp | Method for depositing metal with a tig arc |
US3328556A (en) * | 1965-10-20 | 1967-06-27 | Battelle Development Corp | Process for narrow gap welding |
US3395267A (en) * | 1966-03-21 | 1968-07-30 | Lincoln Mfg Company | Sealed and removable electrical heater assembly |
US3576966A (en) * | 1967-03-27 | 1971-05-04 | Air Reduction | Arc-welding in narrow gap |
US3485983A (en) * | 1967-09-25 | 1969-12-23 | Ajax Magnethermic Corp | Apparatus for induction heating of slabs |
US3551637A (en) * | 1968-04-01 | 1970-12-29 | Data Science Corp | Magnetic control of a welding arc |
US3621177A (en) * | 1968-12-09 | 1971-11-16 | Ca Atomic Energy Ltd | Method and apparatus for tig tube welding |
US3626145A (en) * | 1970-02-02 | 1971-12-07 | Armco Steel Corp | Magnetic control of arc environment |
US3617690A (en) * | 1970-03-12 | 1971-11-02 | Kawasaki Heavy Ind Ltd | Automatic narrow-gap joint welding method with multiple electrodes |
JPS5032055B2 (en) * | 1972-01-19 | 1975-10-17 | ||
US3825712A (en) * | 1972-08-03 | 1974-07-23 | Kaiser Aluminium Chem Corp | Welding process |
US3826888A (en) * | 1973-03-05 | 1974-07-30 | Mc Donnell Douglas Corp | Deep narrow gap welding torch |
US3857010A (en) * | 1973-03-27 | 1974-12-24 | Mitsubishi Heavy Ind Ltd | Method for welding multi-layer laminated work pieces |
US4182950A (en) * | 1973-10-11 | 1980-01-08 | Boros Lawrence A | Deep fill welding joint configuration and welding method |
US3924095A (en) * | 1974-05-29 | 1975-12-02 | Babcock & Wilcox Co | Narrow-groove welding |
US3992603A (en) * | 1974-05-31 | 1976-11-16 | Welding Research, Inc. | Narrow gap welding torch |
US4110590A (en) * | 1974-07-09 | 1978-08-29 | Reyrolle Parsons Limited | Inert gas welding |
US3967036A (en) * | 1974-07-11 | 1976-06-29 | The International Nickel Company, Inc. | Flux-coated arc welding electrode |
US4041274A (en) * | 1974-07-11 | 1977-08-09 | The International Nickel Company, Inc. | Maraging stainless steel welding electrode |
US4019011A (en) * | 1975-01-27 | 1977-04-19 | Coast Metals, Inc. | Method of and apparatus for hard facing poppet valves |
US4095085A (en) * | 1975-09-29 | 1978-06-13 | Kobe Steel, Limited | High efficiency arc welding process and apparatus |
US4145593A (en) * | 1976-02-03 | 1979-03-20 | Merrick Welding International, Inc. | Automatic pipe welding system |
AT347207B (en) * | 1976-12-21 | 1978-12-11 | Voest Ag | PROCESS FOR VERTICAL BUTT WELDING OF SHEET METALS, IN PARTICULAR VERTICAL JOINTS OF LARGE CONTAINERS |
US4091260A (en) * | 1977-05-02 | 1978-05-23 | Grumman Aerospace Corporation | Stress wave generating coil |
CA1106453A (en) * | 1977-12-21 | 1981-08-04 | Nixon B. Breen | Reduction of arc blow in multi-electrode welding |
US4373430A (en) * | 1978-10-02 | 1983-02-15 | Oscar Lucks Company | Humidifier for a proof box |
US4336441A (en) * | 1978-10-27 | 1982-06-22 | Kobe Steel, Ltd. | Welding process |
US4202482A (en) * | 1978-11-22 | 1980-05-13 | Kulicke & Soffa Industries, Inc. | Solenoid actuated wire feed and tearing apparatus |
DE2936364C2 (en) * | 1979-09-08 | 1982-06-03 | Messer Griesheim Gmbh, 6000 Frankfurt | Welding powder for submerged arc welding of light metals such as aluminum alloys |
US4356372A (en) * | 1979-12-03 | 1982-10-26 | Foster Wheeler Energy Corporation | Sheiled-arc tube welder with intermediate gas supply |
US4292496A (en) * | 1980-01-17 | 1981-09-29 | Aluminum Company Of America | Vertical plate welding using double bevel joint |
US4309590A (en) * | 1980-02-29 | 1982-01-05 | Westinghouse Electric Corp. | Narrow groove welding torch |
US4346279A (en) * | 1980-04-24 | 1982-08-24 | Westinghouse Electric Corp. | Narrow gap welding torch with replacement tip |
DE3021826A1 (en) * | 1980-06-11 | 1981-12-17 | Schloemann-Siemag AG, 4000 Düsseldorf | ALIGNMENT AND MEASURING DEVICE FOR ROLLER SHEETS |
US4504729A (en) * | 1980-11-05 | 1985-03-12 | Babcock-Hitachi Kabushiki Kaisha | Three o'clock welding method in narrow groove |
DE3050653C1 (en) * | 1980-11-28 | 1984-10-11 | Nauchno-proizvodstvennoe obedinenie po tekhnologii mashinostroeniya "TSNIITMASH", Moskau/Moskva | Torch for arc welding in a narrow, deep seam |
JPS5948704B2 (en) * | 1981-12-26 | 1984-11-28 | 岡野バルブ製造株式会社 | Automatic overlay welding equipment for Y-type main steam isolation valves for nuclear power generation equipment |
US4581516A (en) * | 1983-07-20 | 1986-04-08 | Thermal Dynamics Corporation | Plasma torch with a common gas source for the plasma and for the secondary gas flows |
US4591685A (en) * | 1983-10-12 | 1986-05-27 | The Boeing Company | Narrow gap welding torch |
US4588872A (en) * | 1984-03-22 | 1986-05-13 | Bollinger John G | Self-guided welding machine |
DE3413102A1 (en) * | 1984-04-06 | 1985-10-17 | Kraftwerk Union AG, 4330 Mülheim | TIG WELDING TORCH |
US4558201A (en) * | 1984-12-10 | 1985-12-10 | Thermal Dynamics Corporation | Plasma-arc torch with gas cooled blow-out electrode |
US4620086A (en) * | 1985-09-30 | 1986-10-28 | General Electric Company | Dual coated radiant electrical heating element |
US4652726A (en) * | 1986-01-13 | 1987-03-24 | Femino John A | Waterbed mattress heater |
JPH0690964B2 (en) * | 1986-03-31 | 1994-11-14 | 日本メクトロン株式会社 | Method for manufacturing PTC element |
US4822980A (en) * | 1987-05-04 | 1989-04-18 | Gte Products Corporation | PTC heater device |
US5245151A (en) * | 1989-04-07 | 1993-09-14 | Minnesota Mining And Manufacturing Company | Method and article for microwave bonding of splice closure |
CN2066784U (en) * | 1989-12-26 | 1990-12-05 | 东方汽轮机厂 | Magnetic pendulum arc tungsten electrode argon arc automatic surfacing welding machine |
JP2558584B2 (en) * | 1991-04-05 | 1996-11-27 | メトカル・インコーポレーテッド | Instruments for cutting, coagulating and removing body tissue |
US5844212A (en) * | 1991-10-23 | 1998-12-01 | Gas Research Institute | Dual surface heaters |
US5528020A (en) * | 1991-10-23 | 1996-06-18 | Gas Research Institute | Dual surface heaters |
US5345058A (en) * | 1992-08-05 | 1994-09-06 | Newport News Shipbuilding And Dry Dock Company | Magnetic field negating system for weldments |
US5681441A (en) * | 1992-12-22 | 1997-10-28 | Elf Technologies, Inc. | Method for electroplating a substrate containing an electroplateable pattern |
US5580636A (en) * | 1993-09-17 | 1996-12-03 | Alusutsse-Lonza Services Ltd. | Welded composite panels |
US5446262A (en) * | 1994-04-19 | 1995-08-29 | Wahl Clipper Corporation | Soldering iron and soldering iron tip with spaced heatable shell member |
US5670072A (en) * | 1994-04-22 | 1997-09-23 | General Electric Company | Method and apparatus for joining metal components with mitigation of residual stresses |
US5611798A (en) * | 1995-03-02 | 1997-03-18 | Eggers; Philip E. | Resistively heated cutting and coagulating surgical instrument |
US5710413A (en) * | 1995-03-29 | 1998-01-20 | Minnesota Mining And Manufacturing Company | H-field electromagnetic heating system for fusion bonding |
US5756966A (en) * | 1995-09-22 | 1998-05-26 | General Electric Company | Method for joining metal components with improved arc voltage sensing and control |
US6072160A (en) * | 1996-06-03 | 2000-06-06 | Applied Materials, Inc. | Method and apparatus for enhancing the efficiency of radiant energy sources used in rapid thermal processing of substrates by energy reflection |
US5793009A (en) * | 1996-06-20 | 1998-08-11 | General Electric Company | Apparatus for joining metal components using broad, thin filler nozzle |
DE19654123C2 (en) * | 1996-12-23 | 2001-07-19 | Mtu Aero Engines Gmbh | Friction welding process and inert gas shower to carry out the process |
JP3101221B2 (en) * | 1997-01-23 | 2000-10-23 | 日鐵溶接工業株式会社 | Two-electrode single-sided gas shielded arc welding method |
US5889251A (en) * | 1997-04-11 | 1999-03-30 | Framatome Technologies, Inc. | Apparatus for narrow groove welding |
US5900167A (en) * | 1997-09-12 | 1999-05-04 | Rudnicki; James L. | Narrow prep MIG welding |
GB2325982B (en) * | 1998-05-20 | 1999-08-04 | Valro Mfg Ltd | Portable induction heater |
US6450088B1 (en) * | 1998-05-29 | 2002-09-17 | Harwil Corporation | Heat sealing apparatus for plastic bags |
US6005221A (en) * | 1998-08-03 | 1999-12-21 | Cusick, Iii; Joseph B. | Pressurized air cooled tungsten inert gas welding apparatus |
TR199902411A2 (en) * | 1998-11-02 | 2000-06-21 | Lincoln Global, Inc. | Output coil and usage method for direct current welding machine |
US6211490B1 (en) * | 1999-06-21 | 2001-04-03 | Lincoln Global, Inc. | Nozzle for shielded arc welding gun |
US6267291B1 (en) * | 1999-06-21 | 2001-07-31 | Lincoln Global, Inc. | Coded and electronically tagged welding wire |
US7032814B2 (en) * | 1999-06-21 | 2006-04-25 | Lincoln Global, Inc. | Coded welding consumable |
DE19948819C2 (en) * | 1999-10-09 | 2002-01-24 | Airbus Gmbh | Heating conductor with a connection element and / or a termination element and a method for producing the same |
DE19956767A1 (en) * | 1999-11-25 | 2001-05-31 | Nanogate Gmbh | Silicon carbide ceramic heating element for igniting combustible mixture has negative temperature characteristic in circuit with segment whose resistance saturates quasi-asymptotically |
US6271495B1 (en) * | 2000-02-04 | 2001-08-07 | The United States Of America As Represented By The Department Of Energy | Narrow groove welding gas diffuser assembly and welding torch |
US6495798B1 (en) * | 2000-09-21 | 2002-12-17 | Lincoln Global, Inc. | Radial tube torch head |
US20030026604A1 (en) * | 2001-06-20 | 2003-02-06 | Hollyday Thomas J. | Water heating device for use with portable power supplies and methods related thereto |
US7875836B2 (en) * | 2004-04-28 | 2011-01-25 | Mamoru Imura | Tag assembly for radio frequency identification controlled heatable objects |
US6982400B1 (en) * | 2004-11-03 | 2006-01-03 | Texas Instruments Incorporated | Electrical heater apparatus |
CN1321771C (en) * | 2004-11-05 | 2007-06-20 | 北京工业大学 | Magnetic control heavy current MAG welding method useful for deep groove welding and equipment thereof |
US20060186110A1 (en) * | 2005-02-22 | 2006-08-24 | Mark Campello | Electric heater with resistive carbon heating elements |
US7442904B2 (en) * | 2005-02-25 | 2008-10-28 | Tutco, Inc. | Metal sheathed heater and thermostat assembly and method of use |
US7972441B2 (en) * | 2005-04-05 | 2011-07-05 | Applied Materials, Inc. | Thermal oxidation of silicon using ozone |
GB0518458D0 (en) * | 2005-09-09 | 2005-10-19 | Boc Group Plc | Arc welding |
US8552341B2 (en) * | 2005-09-19 | 2013-10-08 | Lincoln Global, Inc. | Torch for arc welding gun |
US7389662B2 (en) * | 2005-09-30 | 2008-06-24 | General Electric Company | Method and apparatus for self indexing portable automated tenon peening |
US7507933B2 (en) * | 2005-11-23 | 2009-03-24 | General Electric Company | Method for fabricating a rotor shaft |
US20070164001A1 (en) * | 2006-01-18 | 2007-07-19 | General Electric Company | Narrow groove gas shielding and related method |
US20080169336A1 (en) * | 2007-01-11 | 2008-07-17 | Spiegel Lyle B | Apparatus and method for deep groove welding |
US8026456B2 (en) * | 2007-02-20 | 2011-09-27 | Illinois Tool Works Inc. | TIG welding system and method |
US7928342B2 (en) * | 2007-04-03 | 2011-04-19 | Tutco, Inc. | Metal sheathed heater with solid state control device |
CN101143401B (en) * | 2007-10-19 | 2010-10-20 | 重庆大学 | Moderate and high strength large-thickness component narrow gap or ultra-narrow gap magnetic control jet molten welding method |
-
2010
- 2010-11-24 US US12/954,076 patent/US20110132877A1/en not_active Abandoned
- 2010-12-09 WO PCT/IB2010/003187 patent/WO2011070434A1/en active Application Filing
- 2010-12-09 CA CA2782507A patent/CA2782507A1/en not_active Abandoned
- 2010-12-09 RU RU2012124793/02A patent/RU2012124793A/en not_active Application Discontinuation
- 2010-12-09 BR BR112012013648A patent/BR112012013648A2/en not_active IP Right Cessation
- 2010-12-09 AU AU2010329623A patent/AU2010329623B2/en not_active Expired - Fee Related
- 2010-12-09 CN CN201080062360.4A patent/CN102725091B/en active Active
- 2010-12-09 EP EP10813074.1A patent/EP2509737B1/en not_active Not-in-force
- 2010-12-09 MX MX2012006558A patent/MX2012006558A/en not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58181472A (en) * | 1982-04-16 | 1983-10-24 | Nippon Kokan Kk <Nkk> | Tig welding method of narrow groove |
JPS58205679A (en) * | 1982-05-26 | 1983-11-30 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for deflecting arc pillar in arc welding |
JPS59143577U (en) * | 1983-03-18 | 1984-09-26 | 日立精工株式会社 | Narrow gap TIG welding equipment |
JPS60191677A (en) * | 1984-03-13 | 1985-09-30 | Babcock Hitachi Kk | Narrow gap tig arc welding torch |
JPH10249522A (en) * | 1997-03-10 | 1998-09-22 | Nippon Steel Weld Prod & Eng Co Ltd | Arc welding equipment |
CN201295811Y (en) * | 2008-12-04 | 2009-08-26 | 重庆大学 | Water-cool excitation coil device for reproducing mould with electromagnetic composite gas shielding resurfacing welding |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Week 200962, Derwent World Patents Index; AN 2009-N26283, XP002635320 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104428095A (en) * | 2012-06-27 | 2015-03-18 | 林肯环球股份有限公司 | Arc welding system with power converter, magnetic field system and controller for synchronising both |
US10183351B2 (en) | 2012-06-27 | 2019-01-22 | Lincoln Global, Inc. | Parallel state-based controller for a welding power supply |
Also Published As
Publication number | Publication date |
---|---|
EP2509737B1 (en) | 2017-04-12 |
CN102725091A (en) | 2012-10-10 |
EP2509737A1 (en) | 2012-10-17 |
BR112012013648A2 (en) | 2016-04-12 |
AU2010329623A1 (en) | 2012-06-21 |
CN102725091B (en) | 2015-09-16 |
CA2782507A1 (en) | 2011-06-16 |
RU2012124793A (en) | 2014-01-20 |
AU2010329623B2 (en) | 2014-02-13 |
US20110132877A1 (en) | 2011-06-09 |
MX2012006558A (en) | 2012-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010329623B2 (en) | Integrated shielding gas and magnetic field device and welding system for deep groove welding | |
US12090584B2 (en) | Welding head and welding head assembly for an arc-welding system | |
EP2379271B1 (en) | Double wire gmaw welding torch assembly and process | |
US20210245290A1 (en) | Arc welding head and a welding arrangement | |
US5714735A (en) | Method and apparatus for joining components with multiple filler materials | |
US20080169336A1 (en) | Apparatus and method for deep groove welding | |
EP3206825B1 (en) | Hybrid induction heating/welding assembly | |
US9216470B2 (en) | Method and apparatus for twin wire arc welding | |
JP5905074B2 (en) | Thick plate joining method and apparatus using hybrid laser submerged arc welding process | |
US9035221B2 (en) | Tandem gas metal arc welding system | |
US20060201923A1 (en) | Method and system of determining wire feed speed | |
JP2012531314A (en) | Welding apparatus, welding rod head and method | |
CN108372343B (en) | Arc welding device, arc welding method, and magnetic control device for arc welding | |
CN108971806A (en) | A kind of adjustable electric arc increasing material device and method of feed direction | |
US5977504A (en) | Method and apparatus for guiding multiple filler wires in welding groove | |
JP2015523217A (en) | Adjustable rotary arc welding method and system | |
KR20160054487A (en) | Narrow groove welding method and system | |
AU2015272005A1 (en) | Welding apparatus having a wire pulser | |
CN113099568A (en) | System and method for interchangeable induction heating systems | |
US4591685A (en) | Narrow gap welding torch | |
EP2308630B1 (en) | Narrow groove gas metal arc welding torch | |
KR20150126679A (en) | Orbital welding system with cooled drive housing | |
EP3342523B1 (en) | Welding methods and arc welding device | |
US20140175076A1 (en) | Welding head | |
US4035605A (en) | Narrow groove welding method, and welding apparatus for practicing the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080062360.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10813074 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2010329623 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2782507 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/006558 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2010329623 Country of ref document: AU Date of ref document: 20101209 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2010813074 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010813074 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012124793 Country of ref document: RU |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012013648 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012013648 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120606 |