WO2011069317A1 - 一种高速逆流色谱仪分离装置 - Google Patents

一种高速逆流色谱仪分离装置 Download PDF

Info

Publication number
WO2011069317A1
WO2011069317A1 PCT/CN2010/000583 CN2010000583W WO2011069317A1 WO 2011069317 A1 WO2011069317 A1 WO 2011069317A1 CN 2010000583 W CN2010000583 W CN 2010000583W WO 2011069317 A1 WO2011069317 A1 WO 2011069317A1
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
shaft
flow tube
separation
rotating shaft
Prior art date
Application number
PCT/CN2010/000583
Other languages
English (en)
French (fr)
Inventor
陈维之
马力
王奇
Original Assignee
江阴逆流科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴逆流科技有限公司 filed Critical 江阴逆流科技有限公司
Publication of WO2011069317A1 publication Critical patent/WO2011069317A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1807Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using counter-currents, e.g. fluidised beds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/42Flow patterns using counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2215/00Separating processes involving the treatment of liquids with adsorbents
    • B01D2215/02Separating processes involving the treatment of liquids with adsorbents with moving adsorbents
    • B01D2215/029Centrifuge-like arrangements

Definitions

  • the invention relates to a separation and analysis instrument, in particular to a high-speed countercurrent chromatograph separation device for continuous liquid-liquid distribution without a solid phase carrier, belonging to the field of chromatographic separation and analysis instruments.
  • Countercurrent chromatography is a liquid-liquid partitioning technique for solid-free carriers used in the field of separation and analysis.
  • the principle is to separate the difference in partition coefficients of solute molecules in two-phase incompatible solvents.
  • the J-type spiral tube planetary centrifuge high-speed countercurrent chromatograph uses a spiral tube filled with a flowing solvent as a separation unit, and performs synchronous reversing planetary rotation while driving under the driving of the motor; Under the action of the centrifugal force field, the mutually incompatible two-phase solvent flowing through the spiral tube forms a unidirectional two-phase distribution; when the separated mixture passes through the separation unit, the different solute molecules are distributed according to their partition coefficient in the two-phase solvent. The size is eluted sequentially to achieve separation.
  • Countercurrent chromatography is an important separation method and is widely used in the separation of natural and synthetic compounds.
  • the spiral tube separation unit of the high-speed countercurrent chromatograph is connected to the outside of the body through a liquid flow tube, and the solution flows through the spiral tube separation unit through the liquid flow tube, and then the flow tube is led out.
  • the spiral tube separation unit revolves around the revolution axis while relying on synchronous orbiting planetary rotation (J-type spiral tube planetary centrifuge), or synchronization
  • the anisotropic planetary rotation (I-type spiral tube planetary centrifuge) realizes the unwinding of the introduction of the extraction tube.
  • I-type spiral tube planetary centrifuge realizes the unwinding of the connecting pipe between the separation columns.
  • This unwinding configuration of the pipe increases the mechanical complexity, and the soft connecting pipe which is repeatedly twisted and twisted is also prone to leakage under the wear of high speed rotation.
  • this unwinding design limits the revolution speed and the rotation speed of the spiral separation column to be the same, otherwise the liquid flow tube will be wound and twisted.
  • an object of the present invention is to provide a high-speed countercurrent chromatograph separation device, It only solves the problem of communication and unwinding between the two-stage flow tubes with relative rotational motion, which reduces the mechanical complexity of the instrument, and the rotation direction and rotation speed of the separation column are independent of the revolution direction and the rotation speed, and the rotation speed can be freely adjusted.
  • the ratio of the revolution speed to the revolution is to provide a high-speed countercurrent chromatograph separation device
  • a high-speed countercurrent chromatograph separation device characterized in that it comprises a frame on which a hollow main shaft is fixed or connected via a bearing, and the main shaft passes through
  • the bearing is mounted with one or two turntables, and the main shaft is located at the center of the turntable;
  • the turntable is connected with two or more separation columns wound around the flow tube through bearings, and the separation columns are connected to the main shaft through a transmission mechanism a flow tube of each of the separation columns is connected in series to form a uniform flow tube inlet and a flow tube outlet;
  • the flow tube introduced from the outside passes through the rotating shaft and communicates with the flow tube inlet of the separation column, and the flow tube outlet of the separation column passes through the After the main shaft, the outer lead is
  • the rotary seal connecting device includes a through-core connecting shaft and a sealing ring, and a flow tube of at least one end of the universal connecting shaft communicates with the through-core connecting shaft through the sealing ring, and the sealing ring and the centring
  • the connecting shaft is a transition fit; the sealing ring is fixedly connected to the rotating shaft, the separating column or the main shaft.
  • the sealing ring is fixedly connected to a connecting seat, and the sealing ring is fixedly connected to the rotating shaft, the separating column or the main shaft through the connecting seat.
  • a high-speed countercurrent chromatograph separation device characterized in that it comprises a frame, the frame is fixedly connected or connected by a bearing with a hollow main shaft, and one or two turntables are mounted on the main shaft through bearings, and The spindle is located at the center of the turntable; the turntable is connected by a bearing to a hollow separation column wound with a flow tube, each of the separation columns being connected to the main shaft by a transmission mechanism; concentric with the main shaft, A hollow rotating shaft is connected to the frame through a bearing, one end of the rotating shaft is fixedly connected to one of the rotating wheels, and the other end is connected to a motor through a transmission mechanism; a flow pipe introduced from the outside passes through the rotating shaft and the separating column a flow tube inlet is connected, the flow tube outlet of the separation column passes through the main shaft, and is taken out to the outside; a pair of rotary sealing connection devices are disposed on the rotating shaft corresponding to the separation column, and/or in the separation Column and corresponding setting on the spindle A
  • the rotary seal connecting device includes a through-core connecting shaft and a sealing ring, and a flow tube of at least one end of the universal connecting shaft communicates with the through-core connecting shaft through the sealing ring, and the sealing ring and the centring
  • the connecting shaft is a transition fit; the sealing ring is fixedly connected to the rotating shaft, the separating column or the main shaft.
  • the sealing ring is fixedly connected to a connecting seat, and the sealing ring is fixedly connected to the rotating shaft, the separating column or the main shaft through the connecting seat.
  • the invention adopts the above technical solutions, and has the following advantages compared with the prior art: 1.
  • the invention connects two-stage flow tubes having relative rotational movements through a rotary sealing connection device, which not only conveniently solves the relative rotational motion.
  • the invention provides a rotary sealing connection device on the main shaft, so that the rotation direction and the rotation speed of the separation column are independent of the revolution direction and the rotation speed, and the ratio of the rotation speed and the revolution speed can be freely adjusted, thereby significantly affecting the separation performance of the high speed countercurrent chromatograph. .
  • the present invention can be widely applied to a high-speed countercurrent chromatograph for continuous liquid-liquid distribution without a solid phase carrier.
  • Embodiment 1 is a schematic view of Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of a rotary seal connecting device of the present invention
  • FIG. 3 is a schematic view of Embodiment 2 of the present invention
  • FIG. 4 is a schematic view of Embodiment 3 of the present invention.
  • FIG. 5 is a schematic view of Embodiment 4 of the present invention.
  • Figure 6 is a graph showing the change of the retention rate of the stationary phase of the three solvent systems under different rotation and revolution ratios.
  • the embodiment includes a frame 1 on which a hollow main shaft 2 is fixed, and two spindles 3 are mounted on the main shaft 2 via bearings (or only one turntable 3 may be installed, and is not limited thereto). And the spindle 1 is located at the center of the turntable 3.
  • At least one separation column 5 for winding the flow tube 4 is connected to the turntable 3 via a bearing, and each of the separation columns 5 is meshed with a gear 7 on the main shaft 2 via a gear 6 respectively, and the flow tubes 4 of the separation columns 5 are connected in series to form a uniform
  • the flow tube is imported and the flow tube is exported.
  • Concentric with the main shaft 2 a hollow flange shaft 8 is connected to the frame 1 by bearings.
  • One end of the flange shaft 8 is fixedly connected to the turntable 3, and the other end is connected to the motor (not shown) through a transmission mechanism.
  • the flow tube 4 introduced from the outside passes through the flange shaft 8 and communicates with the flow tube inlet of the separation column 5, and the flow tube outlet of the separation column 5 passes through the main shaft 2 and is taken out to the outside.
  • a pair of rotary sealing connecting devices 9, 9' are correspondingly arranged on the flange shaft 8 and the separating column 5, and the flow tube 4 introduced from the outside is passed through the rotary sealing connecting device 9 and the direction provided on the flange shaft 8.
  • the flow tube 4 introduced by the separation column 5 is in communication, and then communicates with the flow tube inlet of the separation column 5 through a rotary seal connection device 9' disposed on the separation column 5, thereby having a relative rotational motion through the rotary seal connection means 9, 9' Two-stage flow tube 4.
  • the rotary seal connecting device 9 includes a through-core connecting shaft 10, a sealing ring 11 and a connecting seat 12, and the flow tubes 4 at the two ends of the connecting shaft 10 are connected to the through-core shaft through the sealing ring 11 and the connecting seat 12, respectively.
  • 10 communication it is also possible to provide the sealing ring 11 only at one end, and is not limited thereto, and the sealing ring 11 and the central connecting shaft 10 are in a transitional engagement, thereby ensuring the relative flow of the central connecting shaft 10 and the sealing ring 11 while the flow tube is The liquid in 4 will not leak.
  • the sealing ring 11 is fixedly connected to the connecting seat 12, and the connecting seat 12 and the flange shaft 8 and the shaft hole of the separating column 5 are in an interference fit.
  • the seal ring 11 can also be connected to the flange shaft 8 or the separation column 5 directly or by other means.
  • the difference between this embodiment and the embodiment 1 is that a pair of rotary sealing connecting devices 9, 9' are correspondingly arranged on at least one of the two separating columns 5, 5' connected in series, at this time
  • the flow tube 4 on the separation column 5 communicates with the flow tube 4 leading to the separation column 5 through a rotary seal connection device 9 provided on the separation column 5, and then passes through a rotary seal connection device 9' provided on the separation column 5' and
  • the flow tubes 4 wound around the separation column 5' are connected, and so on to the other separation columns, thereby connecting the two-stage flow tubes 4 having relative rotational movements by means of the rotary sealing connections 9, 9'.
  • a pair of rotary seal connecting means 9 may be provided correspondingly on the flange shaft 8 and the separation column 5.
  • the difference between this embodiment and the first embodiment is that a pair of rotary sealing connecting devices 9, 9' are correspondingly arranged on the separating column 5 and the main shaft 2, and the flow tube outlet of the separating column 5 is disposed at the time.
  • the rotary seal connecting device 9 on the separation column 5 communicates with the flow tube 4 drawn to the separation column 5, Then, the rotary seal connection means 9' provided on the main shaft 2 is in communication with the flow pipe 4 which is led out to the outside, thereby connecting the two-stage flow tubes 4 having the relative rotational movement by the rotary seal connecting means 9, 9'.
  • a pair of rotary sealing connecting devices 9 may be correspondingly arranged on the flange shaft 8 and the separating column 5; at the same time, a pair of rotating seals may be correspondingly arranged on at least one of the two separating columns 5 connected in series. Connecting device 9.
  • the difference between this embodiment and the first embodiment is that the main shaft 2 is connected to the frame 1 through a bearing, and a rotary seal connecting device 9 is provided on one end of the main shaft 2 to the outside of the flow pipe 4, and the spindle is at this time.
  • the motor can be connected through a transmission mechanism (not shown), so that the rotation direction and the rotation speed of the separation column 5 are independent of the revolution direction and the rotation speed, and the ratio of the rotation speed and the revolution speed can be freely adjusted, thereby significantly affecting the high speed reverse flow. Chromatograph separation performance. This is an important indicator of the separation performance of the high-speed countercurrent chromatograph.
  • the retention rate of the stationary phase of the solvent system changes with the change of the autorotation ratio. The increase of the retention rate of the stationary phase can directly improve the resolution and preparation flux. .
  • the separation device of the asynchronous high-speed countercurrent chromatograph adopts a double separation column series mode (300 ml*2); the solvent system is n-hexane-ethyl acetate-methanol.
  • the solvent system is n-hexane-ethyl acetate-methanol.
  • the stationary phase is the upper phase and the mobile phase is the lower phase.
  • the elution mode was reversed (eluting from start to finish); the mobile phase flow rate was 10 ml/min, the separation column temperature was 25 ° C, the revolution angular velocity was 1000 rpm, and the rotational angular velocities were 100 rpm, 250 rpm, 500 rpm, 750 rpm, 1000 rpm, 1250 rpm, respectively. And 1500 rpm ; the corresponding rotation revolution ratio Ratio (Rotation/Revolution) is 0.1, 0.25, 0.5, 0.75, 1, 1.25 and 1.5, respectively.
  • the stationary phase retention rate Sf of the three solvent systems at different rotation ratios is finally obtained (as shown in Fig. 6). It can be seen from the figure that the high-speed countercurrent chromatography is improved by adjusting the rotation revolution ratio.
  • the instrument has a fixed phase retention rate Sf for these three solvent systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

一种高速逆流色谱仪分离装置
技术领域
本发明涉及一种分离分析仪器, 特别是关于一种无固相载体的连续流液 液分配的高速逆流色谱仪分离装置, 属于色谱分离分析仪器领域。
背景技术
逆流色谱技术是一种应用在分离分析领域中的无固相载体的液液分配色 谱技术, 其原理是利用溶质分子在两相不相容的溶剂中的分配系数差异进行 分离。 其中 J-型螺旋管行星式离心机高速逆流色谱仪利用充满流动溶剂的螺 旋管作为分离单元, 在电机的驱动下进行公转的同时, 做同步同向的行星式 自转; 在这种规律变化的离心力场作用下, 流过螺旋管的互不相溶的两相溶 剂形成单向性的两相分布; 当被分离的混合物通过分离单元时, 不同的溶质 分子按照其在两相溶剂中分配系数的大小被顺序洗脱而实现分离。 逆流色谱 技术是一种重要的分离手段,在天然产物和合成化合物的分离中被广泛应用。 高速逆流色谱仪的螺旋管分离单元通过液体流通管和机体外部相连, 溶液则 通过液体流通管流经螺旋管分离单元, 然后流通管导出。
由于高速逆流色谱仪的螺旋管分离单元围绕中心轴公转的同时进行行星 式自转运动, 不同螺旋管分离单元之间液体流通管之间, 以及螺旋管分离单 元与机体外部的液体流通管之间, 存在相对的旋转运动, 会形成缠绕。 如何 防止引入引出管的相互缠绕是高速逆流色谱仪的一个核心技术问题。 在传统 的螺旋管行星离心式的高速逆流色谱仪中, 螺旋管分离单元围绕公转轴进行 公转的同时, 是依靠同步同向的行星式自转(J-型螺旋管行星式离心机), 或 者同步异向的行星式自转 (I-型螺旋管行星式离心机) 实现引入引出管的解 绕。 在多分离柱设计当中, 需要引入与螺旋管分离柱进行同步异向旋转的空 心解绕轴, 实现分离柱之间连接管路的解绕。 这种管路解绕构造增加了机械 复杂程度, 并且反复扭转解绕的软性连接管路也在高速旋转的磨损下容易产 生渗漏。 另外, 这种解绕设计限制了螺旋管分离柱的公转转速和自转转速必 须一致, 否则液体流通管就会缠绕而绞断。
发明内容
针对以上问题, 本发明的目的是提供一种高速逆流色谱仪分离装置, 不 仅解决了具有相对旋转运动的两段流通管之间的连通和解绕问题, 降低了仪 器机械复杂程度, 而且其分离柱的自转方向和转速与其公转方向和转速相互 独立, 并且可以自由调节自转转速和公转转速的比例。
为了实现上述目的, 本发明采取以下技术方案: 一种高速逆流色谱仪分 离装置, 其特征在于: 它包括一框架, 所述框架上固定或通过轴承连接有一 根中空的主轴, 所述主轴上通过轴承安装有一个或两个转盘, 且所述主轴位 于所述转盘的中心; 所述转盘上通过轴承连接有两个以上缠绕流通管的分离 柱, 各所述分离柱通过传动机构连接所述主轴, 各所述分离柱的流通管串联 连接, 形成一统一的流通管进口和流通管出口; 与所述主轴同心, 在所述框 架上通过轴承连接有一根中空的转轴, 所述转轴的一端与一所述转盘固定连 接, 另一端通过传动机构连接电机; 由外部引入的流通管穿过所述转轴后与 所述分离柱的流通管进口连通, 所述分离柱的流通管出口穿过所述主轴后, 向外部引出; 在所述转轴与所述分离柱对应设置一对旋转密封连接装置, 和 / 或在所述分离柱与所述主轴上对应设置一对旋转密封连接装置,和 /或在至少 一组串联连接的两个所述分离柱上对应设置有一对旋转密封连接装置, 和 / 或在所述主轴向外部引出流通管的一端设置一旋转密封连接装置。
所述旋转密封连接装置包括通心连接轴和密封圈, 所述通心连接轴至少 一端的流通管通过所述密封圈与所述通心连接轴连通, 且所述密封圈与所述 通心连接轴为过渡配合; 所述密封圈与所述转轴、 分离柱或主轴固定连接。
所述密封圈固定连接一连接座, 且所述密封圈通过所述连接座与所述转 轴、 分离柱或主轴固定连接。
一种高速逆流色谱仪分离装置, 其特征在于: 它包括一框架, 所述框架 的上固定或通过轴承连接有一根中空的主轴, 所述主轴上通过轴承安装有一 个或两个转盘, 且所述主轴位于所述转盘的中心; 所述转盘上通过轴承连接 有一个中空的缠绕有流通管的分离柱, 各所述分离柱通过传动机构连接所述 主轴; 与所述主轴同心, 在所述框架上通过轴承连接有一根中空的转轴, 所 述转轴的一端与一所述转盘固定连接, 另一端通过传动机构连接一电机; 由 外部引入的流通管穿过所述转轴后与所述分离柱的流通管进口连通, 所述分 离柱的流通管出口穿过所述主轴后, 向外部引出; 在所述转轴与所述分离柱 对应设置一对旋转密封连接装置,和 /或在所述分离柱与所述主轴上对应设置 一对旋转密封连接装置,和 /或在所述主轴向外部引出流通管的一端设置一旋 转密封连接装置。
所述旋转密封连接装置包括通心连接轴和密封圈, 所述通心连接轴至少 一端的流通管通过所述密封圈与所述通心连接轴连通, 且所述密封圈与所述 通心连接轴为过渡配合; 所述密封圈与所述转轴、 分离柱或主轴固定连接。
所述密封圈固定连接一连接座, 且所述密封圈通过所述连接座与所述转 轴、 分离柱或主轴固定连接。
本发明由于采取以上技术方案,与已有技术相比较,其具有以下优点: 1、 本发明通过旋转密封连接装置连接具有相对旋转运动的两段流通管, 不仅方 便地解决了具有相对旋转运动的两段流通管之间的连通和解绕问题, 而且避 免了用于流通管解绕的机械结构, 降低了仪器机械复杂程度。 2、 本发明在主 轴上设置旋转密封连接装置, 使得分离柱的自转方向和转速与公转方向和转 速相互独立, 并且可以自由调节自转转速和公转转速的比例, 进而显著影响 高速逆流色谱仪分离性能。 本发明可以广泛应用于无固相载体的连续流液液 分配的高速逆流色谱仪中。
附图说明
图 1是本发明实施例 1的示意图
图 2是本发明旋转密封连接装置的结构示意图
图 3是本发明实施例 2的示意图
图 4是本发明实施例 3的示意图
图 5是本发明实施例 4的示意图
图 6是不同自转公转比下三种溶剂体系的固定相保留率变化曲线图 具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
实施例 1 :
如图 1所示, 本实施例包括一框架 1, 框架 1 上固定有一根中空的主轴 2, 主轴 2上通过轴承安装有两转盘 3 (也可以只安装一个转盘 3, 并不限于 此), 且主轴 1位于转盘 3的中心。转盘 3上通过轴承连接有至少一个缠绕流 通管 4的分离柱 5, 各分离柱 5分别通过一齿轮 6与主轴 2上的齿轮 7啮合, 且各分离柱 5的流通管 4串联连接, 形成统一的流通管进口和流通管出口。 与主轴 2同心, 在框架 1上通过轴承连接有一根中空的法兰轴 8。 法兰轴 8 的一端与转盘 3固定连接, 另一端通过传动机构连接电机(图中未示出)。 由 外部引入的流通管 4穿过法兰轴 8后与分离柱 5的流通管进口连通, 分离柱 5的流通管出口穿过主轴 2后, 向外部引出。 同时, 在法兰轴 8和分离柱 5 上对应设置一对旋转密封连接装置 9、 9 ' , 此时由外部引入的流通管 4通过 设置在法兰轴 8上的旋转密封连接装置 9与向分离柱 5引入的流通管 4连通, 然后通过设置在分离柱 5上的旋转密封连接装置 9 ' 与分离柱 5的流通管进 口连通, 从而通过旋转密封连接装置 9、 9 ' 连接具有相对旋转运动的两段流 通管 4。
如图 2所示, 旋转密封连接装置 9包括通心连接轴 10、 密封圈 11和连 接座 12, 通心连接轴 10两端的流通管 4分别通过密封圈 11和连接座 12与 通心连接轴 10连通 (也可以仅在一端设置密封圈 11, 并不限于此), 且密封 圈 11与通心连接轴 10为过渡配合, 从而保证通心连接轴 10和密封圈 11相 对旋转的同时流通管 4中的液体不会渗漏。密封圈 11与连接座 12固定连接, 连接座 12与法兰轴 8和分离柱 5的轴孔则为过盈配合。
上述实施例中,密封圈 11也可直接或通过其它方式与法兰轴 8或分离柱 5连接。
实施例 2 :
如图 3所示, 本实施例与实施例 1的差别在于, 在至少一组串联连接的 两个分离柱 5、 5 ' 上对应设置一对旋转密封连接装置 9、 9 ' , 此时缠绕在分 离柱 5上的流通管 4通过设置在分离柱 5上的旋转密封连接装置 9与向分离 柱 5引出的流通管 4连通, 然后通过设置在分离柱 5 ' 上的旋转密封连接装 置 9 ' 和绕在分离柱 5 ' 上的流通管 4连接, 以此类推引向其他的分离柱, 从 而通过旋转密封连接装置 9、 9 ' 连接具有相对旋转运动的两段流通管 4。
上述实施例中, 也可以在法兰轴 8与分离柱 5上对应设置一对旋转密封 连接装置 9。
实施例 3 :
如图 4所示, 本实施例与实施例 1的差别在于, 在分离柱 5和主轴 2上 对应设置一对旋转密封连接装置 9、 9 ' , 此时分离柱 5的流通管出口通过设 置在分离柱 5上的旋转密封连接装置 9与向分离柱 5引出的流通管 4连通, 然后通过设置在主轴 2上的旋转密封连接装置 9' 与向外部引出的流通管 4 连通, 从而通过旋转密封连接装置 9、 9' 连接具有相对旋转运动的两段流通 管 4。
上述实施例中, 也可以在法兰轴 8与分离柱 5上对应设置一对旋转密封 连接装置 9; 同时, 还可以在至少一组串联连接的两个分离柱 5上对应设置 一对旋转密封连接装置 9。
实施例 4:
如图 5所示, 本实施例与实施例 1的差别在于, 主轴 2通过轴承与框架 1连接,且在主轴 2上向外部引出流通管 4的一端设置一旋转密封连接装置 9, 此时主轴 2可以通过传动机构连接电机(图中未示出), 从而使得分离柱 5的 自转方向和转速与公转方向和转速相互独立, 并且可以自由调节自转转速和 公转转速的比例, 进而显著影响高速逆流色谱仪分离性能。 这是由于反应高 速逆流色谱仪分离性能的一个重要指标一溶剂体系的固定相保留率,随自转 公转比的变化而改变, 而固定相保留率的提高, 则能够直接提高分辨率和制 备通量。
下面通过一个实验来具体说明本实施例装置的效果, 在该实验中异步高 速逆流色谱仪的分离装置采用双分离柱串联模式 (300ml*2); 溶剂体系分别 为正己烷-乙酸乙酯-甲醇-水 (1:1:1:1)、 正丁醇-水 (1:1) 和正丁醇 -冰醋 酸-水(4:1:5); 固定相为上相, 流动相为下相, 洗脱模式为反相 (从头至尾 洗脱);流动相流速为 10ml/min,分离柱温度为 25°C,公转角速度为 lOOOrpm, 自转角速度分别为 100rpm、 250rpm、 500rpm、 750rpm、 lOOOrpm, 1250rpm和 1500rpm;对应自转公转比 Ratio (Rotation/Revolution)分别为 0.1、 0.25、 0.5、 0.75、 1、 1.25和 1.5。 通过上述实验最终得到在不同自转公转比下三 种溶剂体系的固定相保留率 Sf 变化曲线图 (如图 6所示), 从图中可以直观 看出通过调节自转公转比, 提高了高速逆流色谱仪针对这三种溶剂体系的固 定相保留率 Sf。
本发明仅以上述实施例进行说明, 各部件的结构、 设置位置、 及其连接 都是可以有所变化的, 在本发明技术方案的基础上, 凡根据本发明原理对个 别部件进行的改进和等同变换, 均不应排除在本发明的保护范围之外。

Claims

权 利 要 求
1、 一种高速逆流色谱仪分离装置, 其特征在于: 它包括一框架, 所述框架上 固定或通过轴承连接有一根中空的主轴, 所述主轴上通过轴承安装有一个或两个 转盘, 且所述主轴位于所述转盘的中心; 所述转盘上通过轴承连接有两个以上缠 绕流通管的分离柱, 各所述分离柱通过传动机构连接所述主轴, 各所述分离柱的 流通管串联连接, 形成一统一的流通管进口和流通管出口; 与所述主轴同心, 在 所述框架上通过轴承连接有一根中空的转轴, 所述转轴的一端与一所述转盘固定 连接, 另一端通过传动机构连接电机; 由外部引入的流通管穿过所述转轴后与所 述分离柱的流通管进口连通, 所述分离柱的流通管出口穿过所述主轴后, 向外部 引出; 在所述转轴与所述分离柱对应设置一对旋转密封连接装置, 和 /或在所述分 离柱与所述主轴上对应设置一对旋转密封连接装置, 和 /或在至少一组串联连接的 两个所述分离柱上对应设置有一对旋转密封连接装置, 和 /或在所述主轴向外部引 出流通管的一端设置一旋转密封连接装置。
2、 如权利要求 1所述的一种高速逆流色谱仪分离装置, 其特征在于: 所述旋 转密封连接装置包括通心连接轴和密封圈, 所述通心连接轴至少一端的流通管通 过所述密封圈与所述通心连接轴连通, 且所述密封圈与所述通心连接轴为过渡配 合; 所述密封圈与所述转轴、 分离柱或主轴固定连接。
3、 如权利要求 2所述的一种高速逆流色谱仪分离装置, 其特征在于: 所述密 封圈固定连接一连接座, 且所述密封圈通过所述连接座与所述转轴、 分离柱或主 轴固定连接。
4、 一种高速逆流色谱仪分离装置, 其特征在于: 它包括一框架, 所述框架的 上固定或通过轴承连接有一根中空的主轴, 所述主轴上通过轴承安装有一个或两 个转盘, 且所述主轴位于所述转盘的中心; 所述转盘上通过轴承连接有一个中空 的缠绕有流通管的分离柱, 各所述分离柱通过传动机构连接所述主轴; 与所述主 轴同心, 在所述框架上通过轴承连接有一根中空的转轴, 所述转轴的一端与一所 述转盘固定连接, 另一端通过传动机构连接电机; 由外部引入的流通管穿过所述 转轴后与所述分离柱的流通管进口连通, 所述分离柱的流通管出口穿过所述主轴 后, 向外部引出; 在所述转轴与所述分离柱对应设置一对旋转密封连接装置, 和 / 或在所述分离柱与所述主轴上对应设置一对旋转密封连接装置, 和 /或在所述主轴 向外部引出流通管的一端设置一旋转密封连接装置。
5、 如权利要求 4所述的一种高速逆 置, 其特征在于: 所述旋 转密封连接装置包括通心连接轴和密封圈, 所述通心连接轴至少一端的流通管通 过所述密封圈与所述通心连接轴连通, 且所述密封圈与所述通心连接轴为过渡配 合; 所述密封圈与所述转轴、 分离柱或主轴固定连接。
6、 如权利要求 5所述的一种高速逆流色谱仪分离装置, 其特征在于: 所述密 封圈固定连接一连接座, 且所述密封圈通过所述连接座与所述转轴、 分离柱或主 轴固定连接。
PCT/CN2010/000583 2009-12-09 2010-04-28 一种高速逆流色谱仪分离装置 WO2011069317A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910311091 2009-12-09
CN200910311091X 2009-12-09

Publications (1)

Publication Number Publication Date
WO2011069317A1 true WO2011069317A1 (zh) 2011-06-16

Family

ID=43119247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000583 WO2011069317A1 (zh) 2009-12-09 2010-04-28 一种高速逆流色谱仪分离装置

Country Status (2)

Country Link
CN (1) CN201654003U (zh)
WO (1) WO2011069317A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806786A (zh) * 2009-12-09 2010-08-18 江阴逆流科技有限公司 一种高速逆流色谱仪分离装置
CN103267815B (zh) * 2013-05-06 2015-02-11 汕头大学 正交轴逆流色谱仪
CN104569211B (zh) * 2015-01-22 2016-05-25 山东省分析测试中心 一种非同步多分离柱高速逆流色谱仪
CN104941251B (zh) * 2015-05-19 2016-10-12 汕头大学 一种正交轴逆流色谱仪

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86203547U (zh) * 1986-05-30 1987-08-12 中国科学院生物物理研究所 用端面旋转密封的离心逆流色谱仪
US5024758A (en) * 1988-12-20 1991-06-18 The United States Of America As Represented By The Department Of Health And Human Services Horizontal flow-through coil planet centrifuge with multilayer plural coils in eccentric synchronous rotation, suitable for counter-current chromatography
CN2466653Y (zh) * 2000-04-05 2001-12-19 深圳市同田生化技术有限公司 多分离柱高速逆流色谱仪
WO2004078309A1 (ja) * 2003-03-05 2004-09-16 Nihon University 非同期型コイル・プラネット遠心機によるタンパク質分離法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86203547U (zh) * 1986-05-30 1987-08-12 中国科学院生物物理研究所 用端面旋转密封的离心逆流色谱仪
US5024758A (en) * 1988-12-20 1991-06-18 The United States Of America As Represented By The Department Of Health And Human Services Horizontal flow-through coil planet centrifuge with multilayer plural coils in eccentric synchronous rotation, suitable for counter-current chromatography
CN2466653Y (zh) * 2000-04-05 2001-12-19 深圳市同田生化技术有限公司 多分离柱高速逆流色谱仪
WO2004078309A1 (ja) * 2003-03-05 2004-09-16 Nihon University 非同期型コイル・プラネット遠心機によるタンパク質分離法

Also Published As

Publication number Publication date
CN201654003U (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
CN104569211B (zh) 一种非同步多分离柱高速逆流色谱仪
WO2011069317A1 (zh) 一种高速逆流色谱仪分离装置
CN100522764C (zh) 一次性卫生纸品生产的吸附旋转换向装置
CN106370761A (zh) 倾角可调式逆流色谱仪
CN106153787B (zh) 一种多柱正交轴逆流色谱仪
CN109011695A (zh) 一种双旋向多功能倾斜式逆流色谱仪
CN208805495U (zh) 一种β值可变式高速逆流色谱仪
CN107441769A (zh) 一种多公转轴分离柱高效分流色谱仪
CN108254477B (zh) 多功能混合结构型逆流色谱仪
CN104941251B (zh) 一种正交轴逆流色谱仪
WO2018149038A1 (zh) 一种齿环解绕的高速逆流色谱仪
CN205749409U (zh) 一种可串并联分离柱的正交轴高速逆流色谱仪
CN101806786A (zh) 一种高速逆流色谱仪分离装置
CN106523740A (zh) 一种用于引导液体流向的多通旋转阀
Ito The toroidal coll planet centrifuge without rotating seals applied to countercurrent chromatography
CN201170778Y (zh) 非同步多分离柱逆流色谱仪
US4182678A (en) Micro-scale countercurrent chromatograph
CN206557166U (zh) 一种齿环旋转的液‑液分配色谱仪
Shinomiya et al. Design of a coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with polar organic–aqueous two-phase solvent systems
CN204807519U (zh) 一种高速逆流色谱仪
CN214714520U (zh) 逆流色谱仪的辅助管路旋转机构
CN201676558U (zh) 单柱自动平衡高效逆流色谱仪
CN106645524B (zh) 一种组合式高速逆流色谱仪
CN206431102U (zh) 一种锥齿轮和齿环解绕的高速逆流色谱仪
CN206248621U (zh) 一种锥齿轮解绕的非同步高速逆流色谱仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835355

Country of ref document: EP

Kind code of ref document: A1