WO2011068266A1 - Oil-soluble-solvent separating device - Google Patents

Oil-soluble-solvent separating device Download PDF

Info

Publication number
WO2011068266A1
WO2011068266A1 PCT/KR2009/007237 KR2009007237W WO2011068266A1 WO 2011068266 A1 WO2011068266 A1 WO 2011068266A1 KR 2009007237 W KR2009007237 W KR 2009007237W WO 2011068266 A1 WO2011068266 A1 WO 2011068266A1
Authority
WO
WIPO (PCT)
Prior art keywords
soluble solvent
fat
porous plate
separation device
housing
Prior art date
Application number
PCT/KR2009/007237
Other languages
French (fr)
Korean (ko)
Inventor
한창수
백승현
이치성
Original Assignee
한국기계연구원
성균관대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원, 성균관대학교 산학협력단 filed Critical 한국기계연구원
Priority to PCT/KR2009/007237 priority Critical patent/WO2011068266A1/en
Publication of WO2011068266A1 publication Critical patent/WO2011068266A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/06Surface irregularities

Definitions

  • the present invention relates to an apparatus capable of separating a fat-soluble solvent and a water-soluble solvent, and more particularly, to a fat-soluble solvent separation apparatus using carbon nanotubes having hydrophobicity and lipophilic property.
  • Conventionally used oil removal methods include adsorption and suction using an oil-absorbing cloth made of polypropylene or the like.
  • the method of adsorbing oil is not only difficult to use the recovered oil, but also requires a large amount of adsorption cloth in proportion to the amount of spilled oil, and there is a problem in that secondary pollution due to incineration or the like is impossible.
  • suctioning oil using a skimmer which is affected by sea sulfur, thickness of the oil film, viscosity of oil and emulsif ication, and technical skill of the operator. The disadvantage is that the efficiency is relatively low.
  • the present invention is to solve the problems as described above, an object of the present invention to provide a fat-soluble solvent separation device that can easily separate the fat-soluble solvent from the water-soluble solvent.
  • An oil-soluble solvent separation apparatus includes a porous plate having a plurality of through holes formed therein so as to separate the water-soluble solvent and the fat-soluble solvent, and a carbon nano tube layer formed on the substrate. .
  • Carbon nanotubes constituting the carbon nano-leave layer may be installed upright with respect to the porous plate, and the carbon nanotubes may be installed vertically on the porous plate with one end supported by the substrate.
  • the fat-soluble solvent separation device includes a housing forming an outer shape, the housing may be provided with a pressure regulating means for controlling the pressure inside the housing, the pressure regulating means may comprise a piston.
  • the pressure adjusting means may be made of a pump.
  • a blocking plate having a plurality of through holes formed thereon is installed on the carbon nanotube layer to prevent the inflow of foreign substances.
  • a water soluble solvent discharge pipe may be connected to the housing, and a fat soluble solvent discharge pipe may be connected to the housing.
  • the oil-soluble solvent separation device includes a housing forming an outer shape, and a rotary shaft fitted to the housing to rotate the housing, the porous plate and the carbon nanotube layer is to be installed to surround the rotation axis Can be.
  • the fat-soluble solvent separation device is installed in the housing forming the outer shape, and the housing, the impeller is installed on the shaft member, the porous plate and the carbon nanotube layer is installed so as to surround the circumference of the shaft member Can be.
  • the porous plate may be installed standing up against the bottom of the housing.
  • the carbon nanotubes constituting the carbon nanotube layer may include a single-walled carbon nanotube, a multiwall carbon nanotube, and a carbon fiber.
  • the carbon nanotubes constituting the carbon nanotube layer may include a metal, a semiconductor, and a polymer. Any one or more materials selected from the group can be combined.
  • the carbon nano-leave layer may be directly grown on the porous plate by any one method selected from the group consisting of an electric discharge method, a laser deposition method, a pyrolysis deposition method, a thermochemical vapor deposition growth method, and a plasma chemical vapor deposition method.
  • the carbon nanotube layer may be formed by printing a solution or paste containing carbon nanotubes on the porous plate.
  • the carbon nanotube layer may be formed on the surface and the through hole of the porous plate.
  • the water-soluble solvent and the fat-soluble solvent can be easily separated by using the carbon nanotube layer having hydrophobicity and lipophilic property.
  • oil-soluble solvent and the water-soluble solvent can be separated by adjusting the pressure, so that the water-soluble solvent and the fat-soluble solvent can be easily separated.
  • pressure inside the housing can be easily adjusted using a piston or a pump.
  • FIG. 1 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view showing a filter according to a modification to the first embodiment of the present invention.
  • 3 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a third embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a fourth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a fat-soluble solvent separation apparatus according to a fourth embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a fifth embodiment of the present invention.
  • FIGS. 8A to 8F are photographs showing a process for separating a water-soluble solvent and a fat-soluble solvent using the oil-soluble solvent separation apparatus according to the present invention.
  • Block plate 120 Filter
  • shaft member 231 shaft member 234 : impeller
  • fat-soluble solvent is defined as generically referred to as a nonpolar liquid which is not soluble in water
  • water-soluble solvent is defined as generically referring to polar liquids as well as pure water.
  • on means to be located above or below the target member, and does not necessarily mean to be located above the lifting direction.
  • FIG. 1 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a first embodiment of the present invention.
  • the fat-soluble solvent separation apparatus 100 is installed on the porous plate 125, and the porous plate 125 installed in the housing 110 and the housing 110 forming an appearance Carbon nanotube layer 121.
  • the housing 110 has a substantially cylindrical shape, an inlet 112 through which a contaminant 140 is introduced at an upper end thereof, and an outlet 114 through which the fat-soluble solvent 145 passing through the filter 120 is discharged. Is formed.
  • the filter 120 is composed of a porous plate 125 and a carbon nanotube layer 121, which is installed to cross the housing 110, and is installed at right angles to an inner wall of the housing 110.
  • the porous plate 125 is a plate in which a plurality of through holes 125a are formed.
  • the outer periphery of the porous plate 125 is in close contact with the inner surface of the housing 110, and thus the contaminant 140 containing the water-soluble solvent and the fat-soluble solvent is Only through the stencil 125 is discharged to the outlet 114.
  • the through hole 125a has a diameter of 1 or more, because when the diameter of the through hole 125a is smaller than 1, a large pressure may be applied to move the fat-soluble solvent toward the outlet. In order to separate large flow rates in a short time, it is desirable that the fat-soluble solvent 145 can be easily separated even at a small pressure.
  • the carbon nanotube layer 121 is formed on the porous plate 125, and the carbon nanotube layer 121 may be directly grown on the porous plate.
  • the carbon nanotube growth method may include an electric discharge method, a laser deposition method, a pyrolytic deposition method, a thermochemical vapor deposition growth method, a plasma chemical vapor deposition method, or the like.
  • the carbon nanotube worms 121 may be formed by printing a solution or paste containing the grown carbon nanotubes on the porous plate.
  • Carbon nanotubes constituting the carbon nanotube layer 121 is made of a carbon component, and includes a single-walled, multi-walled, carbon fiber having a partially hollow form.
  • various materials such as metals, semiconductors, and polymers may be bonded to the carbon nanotubes.
  • the material doped with impurities in the carbon nanotubes has characteristics that can control the hydrophobicity and hydrophilicity of the carbon nanotubes, which is effective for controlling the efficiency of the filter.
  • the carbon nano-louves are formed in a structure vertically oriented with respect to the porous plate 125, and the carbon nanotubes may be grown to stand, or the printed carbon nanotubes may be pulled out by using a tape or the like.
  • the lipophilic carbon nanotube layer 121 when the lipophilic carbon nanotube layer 121 is formed on the porous plate 125, the water-soluble solvent and the fat-soluble solvent can be easily separated by only applying a constant pressure to the contaminant 140. Pressure may be applied through a separate member, and the fat-soluble solvent may be separated by gravity.
  • the pressure of the fat-soluble solvent 145 passing through the porous plate 125 may be adjusted by adjusting the diameter of the through hole 125a formed in the porous plate 125.
  • FIG. 2 is a cross-sectional view showing a filter 120 'having a relatively large diameter of the through hole 125a formed in the porous plate 125.
  • the carbon nanotube layer 121 may also be positioned on the through hole 125a. .
  • FIG. 3 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a second embodiment of the present invention.
  • the fat-soluble solvent separation device 100 ′ is disposed on the housing 110 and the porous plate 125 and the porous plate 125 fixedly installed. Installed carbon nanotube layer 121, and pressure regulating means 160 for adjusting the internal pressure of the housing (110).
  • the porous plate 125 and the carbon nanotube layer 121 form a filter 120 that separates the water-soluble solvent and the fat-soluble solvent.
  • Housing 110 is made of a substantially cylindrical, the pressure adjusting means 160 is installed on the top.
  • the pressure regulating means 160 is installed at the side into which the contaminant 140 flows and includes a piston 162 and a rod 164 connected to the piston.
  • the rod 164 can be used to move the piston 162.
  • the pressure inside the housing 110 can be reduced. Increasing causes the fat-soluble solvent 145 to pass through the filter 120 to the outside, leaving only the water-soluble solvent between the piston 162 and the filter 120.
  • the pressure adjusting means 160 is only an example of the present invention, and the present invention is not limited thereto. Therefore, the pressure adjusting means may be composed of a pressure pump installed on the side into which the contaminant flows, or may be composed of a suction pump installed on the side from which the fat-soluble solvent is discharged. In addition, a pressure adjusting means composed of a piston and a rod may be installed on the side where the fat-soluble solvent is discharged. In this case, the fat-soluble solvent may be controlled to be discharged through the carbon nanotube layer by lowering the pressure at the outlet side by pulling the piston. have.
  • porous plate 125 and the carbon nanotube layer 121 according to the present embodiment have the same structure as the porous plate and the carbon nanotube layer of the first embodiment, detailed description thereof will be omitted.
  • a blocking plate 117 is installed at the front of the filter 120 to prevent the inflow of foreign substances.
  • a plurality of through holes 117a are formed in the blocking plate 117 so that the foreign substances are introduced into the carbon nanotube layer 121. To prevent them.
  • the through hole 117a formed in the blocking plate 117 is formed to have a diameter larger than that of the through hole 125a formed in the porous plate 125 so that agglomerates of foreign matter and the like contained in the contaminant 140 may be formed in the carbon nanotube layer 121. To prevent ingress).
  • the inlet pipe 152 is installed between the blocking plate 117 and the pressure regulating means 160 is connected to the housing 110, the inlet pipe 152 is a contaminant 140 mixed with a water-soluble solvent and a fat-soluble solvent Serves to supply the inside of the housing (110).
  • a fat-soluble solvent discharge pipe 157 is connected to the bottom of the housing 110, the fat-soluble solvent discharge pipe 157 serves to discharge the fat-soluble solvent 145 passed through the filter 120 to the outside.
  • the water-soluble solvent discharge pipe 153 is installed on the filter connected to the housing 110, the water-soluble solvent discharge pipe 153 is provided with a valve 154 for controlling the opening and closing. The water-soluble solvent discharge pipe 153 provides a passage through which the fat-soluble solvent is removed to discharge the water-soluble solvent to the outside.
  • the oil-soluble solvent 145 may be separated from the contaminant 140 by easily adjusting the pressure inside the housing 110 by installing the pressure adjusting means 160.
  • the oil-soluble solvent 145 can be continuously separated from the contaminant 140 using the inflow pipe 152, the water-soluble solvent discharge pipe 153, and the fat-soluble solvent discharge pipe 157.
  • FIG. 8A is a photograph showing a fat-soluble solvent separation apparatus having a structure similar to that of the second embodiment.
  • the oil-soluble solvent separation device shown in FIG. 8A is a model device.
  • the housing is made of acrylic, a hole is formed in a plate made of stainless steel, and a porous plate is formed, and then a carbon nanotube layer is attached to the porous plate to form a filter. It was.
  • the piston made of silicon was installed a bar made of stainless steel, and a plate was installed to apply a load on the bar.
  • the load was transmitted using the A4 paper 310 which measured the mass.
  • a light aqueous ink is used for the water-soluble solvent 320
  • a dark oil ink is used for the fat-soluble solvent 340.
  • FIG. 8B when an appropriate amount of A4 paper 310 is placed on the plate, the dark fat soluble solvent 340 moves down through the porous plate and the carbon nanotube layer. If a larger amount of A4 paper 310 is placed on the plate, as shown in FIG.
  • FIG. 8C is a photograph showing a state in which the water-soluble solvent 320 and the fat-soluble solvent 340 are separated by applying a pressure of 0.837 KPa or more.
  • FIG. 8D when a constant pressure is applied to separate the water-soluble solvent 320 and the fat-soluble solvent 340 and the pressure is removed, the water-soluble solvent 320 and the fat-soluble solvent 340 are separated.
  • FIG. 8E when the housing is tilted to move the water-soluble solvent 320 to the separation vessel, the water-soluble solvent 320 may be separated from the fat-soluble solvent 340.
  • FIG. 4 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a third embodiment of the present invention.
  • the fat-soluble solvent separation device 100 ′′ according to the present embodiment is formed on the carbon nanotube layer 121 and the carbon nanotube layer installed on the housing 110 and the housing 110 forming the outline. And a perforated plate 125 installed.
  • the basic configuration of the housing 110, the carbon nanotube layer 121, and the porous plate 125 according to the present embodiment is the same as the housing and the carbon nanotube layer and the porous plate according to the first embodiment described above. Duplicate explanations are omitted.
  • the porous plate 125 is made of a conductive metal plate, and the porous plate 125 may include a power source 165 installed outside the housing 110. Electrically connected.
  • the power source 165 is inserted into the housing 110 and electrically connected to the electrode 167 contacting the contaminant 140.
  • a voltage may be applied to the porous plate 125 and the contaminant 140 through the power source 165.
  • the voltage is applied to the porous plate 125
  • the carbon nanotube layer formed on the porous plate 125 Voltage 121 is also applied.
  • the degree of lipophilic and hydrophilicity of the carbon nanotube layer 121 can be adjusted, so that the water-soluble solvent and the fat-soluble solvent can be separated more efficiently.
  • the fat-soluble solvent separation apparatus 200 includes a housing 210 and a porous plate 241 and a porous plate 241 installed in the housing 210. And a carbon nanotube layer 243 installed on it.
  • the housing 210 is formed in a substantially cylindrical shape, and a fat-soluble solvent outlet 253 through which the fat-soluble solvent 262 is discharged is formed at the bottom of the outer circumference of the housing 210.
  • the rotating shaft 220 is fitted into the housing 210, and the rotating shaft 220 is connected to a driving unit (not shown) such as a motor to serve to rotate the housing 210.
  • the porous plate 241 is formed in a circular shape surrounding the rotating shaft, and the carbon nanotube layer 243 is formed on the inner surface of the porous plate 241.
  • the porous plate 241 and the carbon nanotube layer 243 form a filter 240.
  • the porous plate 241 has a cylindrical tubular shape, and the carbon nano-leave layer 243 has an inner surface of the porous plate 241. It is formed in.
  • the fat-soluble solvent and the water-soluble solvent are separated by the centrifugal force by rotating the housing 210.
  • the rotation speed of the housing 210 can be adjusted to easily separate the water-soluble solvent and the fat-soluble solvent. have.
  • FIG. 7 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a fifth embodiment of the present invention.
  • the fat-soluble solvent separation device 200 ′ according to the present embodiment is installed on the porous plate 241 and the porous plate 241 installed in the housing 210 and the housing 210 forming an external shape.
  • the housing 210 is formed in a substantially cylindrical shape, and a fat-soluble solvent discharge pipe 252 is fitted to the outer circumference thereof.
  • the porous plate 241 and the carbon nanotube layer 243 form a filter 240. Since the filter 240 has the same structure as the filter of the fourth embodiment, detailed description of the same structure will be omitted.
  • the pressing member 230 is installed inside the housing 210, and the pressing member 230 is installed on the shaft member 231 installed on the inside of the housing 210 and the plurality of impellers 234 installed on the shaft member 231. It includes. In addition, an inflow pipe 251 through which the contaminant 260 flows is installed on the shaft member 231, and a valve plate 251a for controlling opening and closing is installed on the inflow pipe 251.
  • the water-soluble solvent discharge pipe 253 is connected to the bottom of the housing and the water-soluble solvent discharge pipe 253 is provided with a valve 253a for controlling the opening and closing.
  • the fat soluble solvent 262 is relatively above the water soluble solvent, so Only the water-soluble solvent from which the fat-soluble solvent has been removed can be easily discharged through the solvent discharge pipe 253.
  • the contaminant 260 is located inside the filter 240, and as the shaft member 231 rotates, the soluble solvent 262 pushed out of the contaminant 260 and passed out of the filter 240 passes through the filter 240. It is discharged to the outside along the fat-soluble solvent discharge pipe 252.
  • the oil-soluble solvent separation apparatus 200 ′ since the oil-soluble solvent separation apparatus 200 ′ according to the present embodiment pressurizes the contaminant 260 using the impeller 234, the oil-soluble solvent separation apparatus 200 ′ may be more easily controlled to separate the oil-soluble solvent and the water-soluble solvent.
  • the contaminant inflow pipe 251, the fat-soluble solvent discharge pipe 252, and the water-soluble solvent discharge pipe 253, the water-soluble solvent and the fat-soluble solvent can be separated and discharged easily.

Abstract

The oil-soluble-solvent separating device according to the present invention comprises a porous plate which is formed with a plurality of through holes and a carbon nanotube layer which is formed on the substrate plate such that water-soluble solvents and oil-soluble solvents can easily be separated.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
지용성 용매 분리 장치  Fat-soluble solvent separator
【기술분야】  Technical Field
본 발명은 지용성 용매와 수용성 용매를 분리할 수 있는 장치에 관한 것으로서, 보다 상세하게는 소수성과 친유성을 갖는 탄소 나노 튜브를 이용한 지용성 용매 분리 장치에 관한 것이다.  The present invention relates to an apparatus capable of separating a fat-soluble solvent and a water-soluble solvent, and more particularly, to a fat-soluble solvent separation apparatus using carbon nanotubes having hydrophobicity and lipophilic property.
【배경기술】  Background Art
최근 환경문제가 크게 부각됨에 따라 오염된 물질을 제거하는 분리 장치가 주목을 받고 있으며 , 분리 장치 기능의 고성능화와 응용에 대한 활발한 연구가 이루어지고 있다.  Recently, as environmental problems have been greatly highlighted, a separation device for removing contaminated materials has been attracting attention, and active research on high performance and application of the separation device function has been made.
종래에 사용되는 기름 제거 방법으로는 폴리프로필렌 등으로 만든 유흡착포 등을 이용하여 흡착하는 방법과 흡입하는 방법이 있다. 이와 같이 기름을 흡착하는 방법은 회수된 기름을 사용하기 힘들 뿐만 아니라, 유출된 양에 비례하여 많은 양의 흡착포가 필요하며, 재활용이 불가능하고 소각 등에 따른 2 차 오염을 발생시킨다는 문제가 있다. 또한, 유회수기를 이용하여 기름을 흡입하는 방법이 있는데, 해황, 유막의 두께, 기름의 점도 (viscosity)와 유화 (emulsif ication) 정도, 운용자의 기술 숙련도 등에 따라 분리 작업이 많은 영향을 받으며, 분리 효율이 비교적 낮은 단점이 있다.  Conventionally used oil removal methods include adsorption and suction using an oil-absorbing cloth made of polypropylene or the like. As such, the method of adsorbing oil is not only difficult to use the recovered oil, but also requires a large amount of adsorption cloth in proportion to the amount of spilled oil, and there is a problem in that secondary pollution due to incineration or the like is impossible. In addition, there is a method of suctioning oil using a skimmer, which is affected by sea sulfur, thickness of the oil film, viscosity of oil and emulsif ication, and technical skill of the operator. The disadvantage is that the efficiency is relatively low.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명은 상기한 바와 같은 문제를 해결하기 위한 것으로서 본 발명의 목적은 수용성 용매에서 지용성 용매를 용이하게 분리할 수 있는 지용성 용매 분리 장치를 제공함에 있다. 【기술적 해결방법】 The present invention is to solve the problems as described above, an object of the present invention to provide a fat-soluble solvent separation device that can easily separate the fat-soluble solvent from the water-soluble solvent. Technical Solution
본 발명의 실시예에 따른 지용성 용매 분리 장치는 수용성 용매와 지용성 용매를 분리할 수 있도록 복수 개의 관통 홀이 형성된 다공판과, 상기 기판 상에 형성된 탄소 나노 튜브층 (carbon nano tube layer)을 포함한다.  An oil-soluble solvent separation apparatus according to an embodiment of the present invention includes a porous plate having a plurality of through holes formed therein so as to separate the water-soluble solvent and the fat-soluble solvent, and a carbon nano tube layer formed on the substrate. .
상기 탄소 나노 류브층을 이루는 탄소 나노 튜브들은 상기 다공판에 대하여 세워져 설치될 수 있으며, 상기 탄소 나노 튜브들은 일단이 상기 기판에 지지되어 상기 다공판 상에 수직으로 세워져 설치될 수 있다.  Carbon nanotubes constituting the carbon nano-leave layer may be installed upright with respect to the porous plate, and the carbon nanotubes may be installed vertically on the porous plate with one end supported by the substrate.
상기 지용성 용매 분리 장치는 외형을 이루는 하우징을 포함하고, 상기 하우징에는 상기 하우징 내부의 압력을 제어하는 압력 조절 수단이 설치될 수 있으며, 상기 압력 조절 수단은 피스톤을 포함할 수 있다. 또한, 상기 압력 조절 수단은 펌프로 이루어질 수 있다.  The fat-soluble solvent separation device includes a housing forming an outer shape, the housing may be provided with a pressure regulating means for controlling the pressure inside the housing, the pressure regulating means may comprise a piston. In addition, the pressure adjusting means may be made of a pump.
상기 탄소 나노 튜브층의 위에는 이물질의 유입을 방지할 수 있도록 복수개의 관통 홀이 형성된 차단판이 설치된다.  A blocking plate having a plurality of through holes formed thereon is installed on the carbon nanotube layer to prevent the inflow of foreign substances.
상기 하우징에는 수용성 용매 배출관이 연결 설치될 수 있으며, 상기 하우징에는 지용성 용매 배출관이 연결 설치될 수 있다. 또한, 상기 지용성 용매 분리 장치는 외형을 이루는 하우징과, 상기 하우징에 끼워져 설치되어 상기 하우징을 회전시키는 회전축을 포함하고, 상기 다공판 및 상기 탄소 나노 튜브층은 상기 회전축의 둘레를 감싸도록 이어져 설치될 수 있다.  A water soluble solvent discharge pipe may be connected to the housing, and a fat soluble solvent discharge pipe may be connected to the housing. In addition, the oil-soluble solvent separation device includes a housing forming an outer shape, and a rotary shaft fitted to the housing to rotate the housing, the porous plate and the carbon nanotube layer is to be installed to surround the rotation axis Can be.
또한, 상기 지용성 용매 분리 장치는 외형을 이루는 하우징, 및 상기 하우징에 끼워져 설치되며, 임펠러가 설치된 축부재를 포함하고, 상기 다공판 및 상기 탄소 나노 튜브층은 상기 축부재의 둘레를 감싸도록 이어져 설치될 수 있다. 또한, 상기 다공판은 상기 하우징의 바닥에 대하여 세워져 설치될 수 있다. 상기 탄소 나노 튜브층을 이루는 탄소 나노 튜브는 단일벽 탄 Ϊ 나노 튜브, 다중벽 탄소 나노 류브, 탄소 화이버를 포함할 수 있으며 , 상기 탄소 나노 류브층을 이루는 탄소 나노 튜브에는 금속, 반도체, 폴리머로 이루어진 군에서 선택되는 어느 하나 이상의 물질이 결합될 수 있다. In addition, the fat-soluble solvent separation device is installed in the housing forming the outer shape, and the housing, the impeller is installed on the shaft member, the porous plate and the carbon nanotube layer is installed so as to surround the circumference of the shaft member Can be. In addition, the porous plate may be installed standing up against the bottom of the housing. The carbon nanotubes constituting the carbon nanotube layer may include a single-walled carbon nanotube, a multiwall carbon nanotube, and a carbon fiber. The carbon nanotubes constituting the carbon nanotube layer may include a metal, a semiconductor, and a polymer. Any one or more materials selected from the group can be combined.
상기 탄소 나노 류브층은 전기 방전법, 레이저 증착법, 열분해 증착법, 열화학 기상 증착 성장법, 플라즈마 화학 기상 증착법으로 이루어진 군에서 선택되는 어느 하나의 방법으로 상기 다공판 상에 직접 성장 형성될 수 있다. 또한, 탄소 나노 튜브층은 탄소 나노 튜브를 포함하는 용액이나 페이스트가 상기 다공판 상에 프린팅되어 형성될 수 있다. 또한, 상기 탄소 나노 튜브층은 상기 다공판의 표면과 관통 홀 위에 형성될 수 있다.  The carbon nano-leave layer may be directly grown on the porous plate by any one method selected from the group consisting of an electric discharge method, a laser deposition method, a pyrolysis deposition method, a thermochemical vapor deposition growth method, and a plasma chemical vapor deposition method. In addition, the carbon nanotube layer may be formed by printing a solution or paste containing carbon nanotubes on the porous plate. In addition, the carbon nanotube layer may be formed on the surface and the through hole of the porous plate.
【유리한 효과】  Advantageous Effects
본 발명에 따르면 소수성과 친유성을 갖는 탄소 나노 튜브층을 이용하여 수용성 용매와지용성 용매를 용이하게 분리할 수 있다.  According to the present invention, the water-soluble solvent and the fat-soluble solvent can be easily separated by using the carbon nanotube layer having hydrophobicity and lipophilic property.
또한, 압력을 조절하여 지용성 용매와 수용성 용매를 분리할 수 있어서 능동적으로 수용성 용매와 지용성 용매를 용이하게 분리할 수 있다. 또한, 피스톤이나, 펌프를 이용하여 하우징 내부의 압력을 용이하게 조절할 수 있다.  In addition, the oil-soluble solvent and the water-soluble solvent can be separated by adjusting the pressure, so that the water-soluble solvent and the fat-soluble solvent can be easily separated. In addition, the pressure inside the housing can be easily adjusted using a piston or a pump.
또한, 전압차를 이용하여 탄소 나노 튜브층의 친유성 정도를 조절함으로써, 수용성 용매와 지용성 용매를 용이하게 분리할 수 있다. In addition, by adjusting the lipophilic degree of the carbon nanotube layer using the voltage difference, it is possible to easily separate the water-soluble solvent and the fat-soluble solvent.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1 은 본 발명의 제 1 실시예에 따른 지용성 용매 분리 장치를 도시한 종단면도이다.  1 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a first embodiment of the present invention.
도 2 는 본 발명의 제 1 실시예에의 변형예에 따른 필터를 도시한 종단면도이다. 도 3 은 본 발명의 제 2 실시예에 따른 지용성 용매 분리 장치를 도시한 종단면도이다. 2 is a longitudinal sectional view showing a filter according to a modification to the first embodiment of the present invention. 3 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a second embodiment of the present invention.
도 4 는 본 발명의 제 3 실시예에 따른 지용성 용매 분리 장치를 도시한 종단면도이다.  4 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a third embodiment of the present invention.
도 5 는 본 발명의 제 4 실시예에 따른 지용성 용매 분리 장치를 도시한 종단면도이다.  5 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a fourth embodiment of the present invention.
도 6 은 본 발명의 제 4 실시예에 따른 지용성 용매 분리 장치를 도시한 횡단면도이다.  6 is a cross-sectional view showing a fat-soluble solvent separation apparatus according to a fourth embodiment of the present invention.
도 7 은 본 발명의 제 5 실시예에 따른 지용성 용매 분리 장치를 도시한 종단면도이다.  7 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a fifth embodiment of the present invention.
도 8a 내지 도 8f 는 본 발명에 따른 지용성 용매 분리 장치와 이를 이용하여 수용성 용매와 지용성 용매를 분리하는 과정을 나타내는 사진이다.  8A to 8F are photographs showing a process for separating a water-soluble solvent and a fat-soluble solvent using the oil-soluble solvent separation apparatus according to the present invention.
<도면의 주요 부분에 대한 부호의 설명 >  <Explanation of symbols for main parts of the drawings>
100: 지용성 용매 분리 장치 110: 하우징  100: fat-soluble solvent separator 110: housing
112: 요이우 114: 배출구  112 : Yoiwu 114 : Outlet
117: 차단판 120: 필터  117 : Block plate 120 : Filter
121: 탄소 나노 튜브층 125: 다공판  121: carbon nanotube layer 125: porous plate
152: 유입관 140: 오염액  152 : inlet pipe 140: contaminated liquid
145: 지용성 용매 152: 유입관  145: fat-soluble solvent 152: inlet pipe
153: 수용성 용매 배출관 157: 지용성 배출관  153 : Water-soluble solvent discharge pipe 157 : Fat-soluble discharge pipe
160: 압력 조절 수단 167: 전극  160: pressure regulating means 167: electrode
162: 피스톤 164: 로드  162 : piston 164 : rod
165: 전원 220: 회전축  165 : power supply 220 : rotating shaft
231: 축부재 231: 축부재 234: 임펠러 231: shaft member 231: shaft member 234 : impeller
【발명의 실시를 위한 형태】  [Form for implementation of invention]
본 발명에 있어서 "지용성 용매"라 함은 물에 용해되지 않는 무극성 액체를 통칭하는 것으로 정의하며, "수용성 용매"라 함은 순수한 물뿐만 아니라, 물에 용해되는 극성 액체를 통칭하는 것으로 정의한다.  In the present invention, the term "fat-soluble solvent" is defined as generically referred to as a nonpolar liquid which is not soluble in water, and the term "water-soluble solvent" is defined as generically referring to polar liquids as well as pure water.
또한, 본 발명에 있어서 "~상에"라 함은 대상부재의 위 또는 아래에 위치함을 의미하는 것이며, 반드시 증력방향을 기준으로 상부에 위치하는 것을 의미하는 것은 아니다.  In addition, in the present invention, "on" means to be located above or below the target member, and does not necessarily mean to be located above the lifting direction.
이하, 첨부된 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 이하에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
도 1 은 본 발명의 제 1 실시예에 따른 지용성 용매 분리 장치를 도시한 종단면도이다.  1 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a first embodiment of the present invention.
도 1 을 참조하여 설명하면, 본 실시예에 따른 지용성 용매 분리 장치 (100)는 외형을 이루는 하우징 (110)과 하우징 (110) 내에 설치된 다공판 (125), 및 다공판 (125) 상에 설치된 탄소 나노 튜브층 (121)을 포함한다.  Referring to Figure 1, the fat-soluble solvent separation apparatus 100 according to the present embodiment is installed on the porous plate 125, and the porous plate 125 installed in the housing 110 and the housing 110 forming an appearance Carbon nanotube layer 121.
하우징 (110)은 대략 원통형으로 이루어지며, 상단에 오염액 (140)이 유입되는 유입구 (112)가 형성되고, 하단에 필터 (120)를 통과한 지용성 용매 (145)가 배출되는 배출구 (114)가 형성된다. 필터 (120)는 다공판 (125)과 탄소 나노 튜브층 (121)으로 이루어지는데, 하우징 (110)을 가로지르도록 설치되며 , 대략 하우징 (110)의 내벽에 대하여 직각으로 설치된다. The housing 110 has a substantially cylindrical shape, an inlet 112 through which a contaminant 140 is introduced at an upper end thereof, and an outlet 114 through which the fat-soluble solvent 145 passing through the filter 120 is discharged. Is formed. The filter 120 is composed of a porous plate 125 and a carbon nanotube layer 121, which is installed to cross the housing 110, and is installed at right angles to an inner wall of the housing 110.
다공판 (125)은 복수개의 관통 홀 (125a)이 형성된 판으로서, 다공판 (125)의 외주가 하우징 (110)의 내면에 밀착되어 수용성 용매와 지용성 용매를 포함하는 오염액 (140)은 다공판 (125)을 통과하여만 배출구 (114)로 배출된다.  The porous plate 125 is a plate in which a plurality of through holes 125a are formed. The outer periphery of the porous plate 125 is in close contact with the inner surface of the housing 110, and thus the contaminant 140 containing the water-soluble solvent and the fat-soluble solvent is Only through the stencil 125 is discharged to the outlet 114.
관통 홀 (125a)은 직경이 1 이상으로 이루어지는데, 관통 홀 (125a)의 직경이 1 보다 작게 형성되면 큰 압력을 가하여야 지용성 용매가 출구쪽으로 이동할 수 있기 때문이다. 많은 유량을 빠른 시간 내에 분리하기 위해서는 작은 압력에서도 지용성 용매 (145)가 용이하게 분리될 수 있는 것이 바람직하다.  The through hole 125a has a diameter of 1 or more, because when the diameter of the through hole 125a is smaller than 1, a large pressure may be applied to move the fat-soluble solvent toward the outlet. In order to separate large flow rates in a short time, it is desirable that the fat-soluble solvent 145 can be easily separated even at a small pressure.
다공판 (125) 상에는 탄소 나노 튜브층 (121)이 형성되는데, 탄소 나노 튜브층 (121)은 다공판 상에 직접 성장 형성될 수 있다. 탄소 나노 튜브의 성장 방법은 구체적으로 전기 방전법, 레이저 증착법, 열분해 증착법, 열화학 기상 증착 성장법, 플라즈마 화학 기상 증착법 등이 적용될 수 있다. 또한, 탄소 나노 튜브충 (121)은 성장된 탄소 나노 튜브를 포함하는 용액 또는 페이스트를 다공판 상에 프린팅하는 방법으로 형성될 수 있다. 탄소 나노 튜브층 (121)을 이루는 탄소 나노 튜브들은 탄소성분으로 이루어지며, 속이 일부 비어있는 형태를 가진 단일벽, 다중벽, 탄소 화이버를 포함한다. 또한, 탄소 나노 튜브에 금속, 반도체, 폴리머 등의 다양한 물질이 결합될 수도 있다. 이와 같이 탄소 나노 튜브에 불순물이 도핑된 소재는 탄소 나노 튜브의 소수성과 친수성을 조절할 수 있는 특징을 가지고 있어서 필터의 효율을 조절하는데 효과적이다. 탄소 나노 류브들은 다공판 (125)에 대하여 수직으로 세워진 구조로 형성되는데, 탄소 나노 튜브가 세워지도록 성장시키거나, 프린팅된 탄소 나노 튜브들을 테이프 등을 이용하여 당겨서 세워지도록 할 수 있다. The carbon nanotube layer 121 is formed on the porous plate 125, and the carbon nanotube layer 121 may be directly grown on the porous plate. Specifically, the carbon nanotube growth method may include an electric discharge method, a laser deposition method, a pyrolytic deposition method, a thermochemical vapor deposition growth method, a plasma chemical vapor deposition method, or the like. In addition, the carbon nanotube worms 121 may be formed by printing a solution or paste containing the grown carbon nanotubes on the porous plate. Carbon nanotubes constituting the carbon nanotube layer 121 is made of a carbon component, and includes a single-walled, multi-walled, carbon fiber having a partially hollow form. In addition, various materials such as metals, semiconductors, and polymers may be bonded to the carbon nanotubes. As such, the material doped with impurities in the carbon nanotubes has characteristics that can control the hydrophobicity and hydrophilicity of the carbon nanotubes, which is effective for controlling the efficiency of the filter. The carbon nano-louves are formed in a structure vertically oriented with respect to the porous plate 125, and the carbon nanotubes may be grown to stand, or the printed carbon nanotubes may be pulled out by using a tape or the like.
이와 같이 다공판 (125) 상에 친유성을 갖는 탄소 나노 튜브층 (121)이 형성되면 오염액 (140)에 일정한 압력을 가하는 것 만으로 수용성 용매와 지용성 용매를 용이하게 분리할 수 있다. 압력은 별도의 부재를 통해서 가해질 수 있으며, 중력에 의하여 지용성 용매가 분리될 수도 있다.  As such, when the lipophilic carbon nanotube layer 121 is formed on the porous plate 125, the water-soluble solvent and the fat-soluble solvent can be easily separated by only applying a constant pressure to the contaminant 140. Pressure may be applied through a separate member, and the fat-soluble solvent may be separated by gravity.
이때, 다공판 (125)에 형성된 관통 홀 (125a)의 직경을 조절하여 지용성 용매 (145)가 다공판 (125)을 통과하는 압력을 조절할 수 있다.  At this time, the pressure of the fat-soluble solvent 145 passing through the porous plate 125 may be adjusted by adjusting the diameter of the through hole 125a formed in the porous plate 125.
도 2 는 다공판 (125)에 형성된 관통 홀 (125a)의 직경이 상대적으로 큰 필터 (120' )를 나타낸 단면도인데, 탄소 나노 튜브층 (121)은 관통 홀 (125a)의 위에도 위치할 수 있다.  FIG. 2 is a cross-sectional view showing a filter 120 'having a relatively large diameter of the through hole 125a formed in the porous plate 125. The carbon nanotube layer 121 may also be positioned on the through hole 125a. .
도 3 은 본 발명의 제 2 실시예에 따른 지용성 용매 분리 장치를 도시한 종단면도이다.  3 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a second embodiment of the present invention.
도 3 을 참조하여 설명하면, 본 실시예에 따른 지용성 용매 분리 장치 (100')는 외형을 이루는 하우징 (110)과 하우징 (110)의 고정 설치된 다공판 (125), 다공판 (125) 상에 설치된 탄소 나노 튜브층 (121), 및 하우징 (110)의 내부 압력을 조절하는 압력 조절 수단 (160)을 포함한다. 다공판 (125)과 탄소 나노 튜브층 (121)은 수용성 용매와 지용성 용매를 분리하는 필터 (120)를 이룬다.  Referring to FIG. 3, the fat-soluble solvent separation device 100 ′ according to the present embodiment is disposed on the housing 110 and the porous plate 125 and the porous plate 125 fixedly installed. Installed carbon nanotube layer 121, and pressure regulating means 160 for adjusting the internal pressure of the housing (110). The porous plate 125 and the carbon nanotube layer 121 form a filter 120 that separates the water-soluble solvent and the fat-soluble solvent.
본 실시예에 따른 하우징 (110)은 대략 원통형으로 이루어지며 , 상부에 압력 조절 수단 (160)이 설치된다. 압력 조절 수단 (160)은 오염액 (140)이 유입되는 측에 설치되며 피스톤 (162)과 피스톤에 연결 설치된 로드 (164)를 포함한다. 따라서 로드 (164)를 이용하여 피스톤 (162)을 이동시킬 수 있는데 피스톤 (162)을 밀어서 하우징 (110) 내부의 압력을 증가시키면 지용성 용매 (145)가 필터 (120)를 통과하여 외부로 배출되고, 피스톤 (162)과 필터 (120) 사이에는 수용성 용매만 잔류하게 된다. Housing 110 according to the present embodiment is made of a substantially cylindrical, the pressure adjusting means 160 is installed on the top. The pressure regulating means 160 is installed at the side into which the contaminant 140 flows and includes a piston 162 and a rod 164 connected to the piston. Thus, the rod 164 can be used to move the piston 162. By pushing the piston 162, the pressure inside the housing 110 can be reduced. Increasing causes the fat-soluble solvent 145 to pass through the filter 120 to the outside, leaving only the water-soluble solvent between the piston 162 and the filter 120.
다만 상기한 압력 조절 수단 (160)은 본 발명의 일 예에 불과하며 본 발명이 이에 제한되는 것은 아니다. 따라서 압력 조절 수단은 오염액이 유입되는 측에 설치된 가압 펌프로 이루어질 수 있으며, 지용성 용매가 배출되는 측에 설치된 흡입 펌프로 이루어질 수도 있다. 또한, 피스톤과 로드로 이루어진 압력 조절 수단이 지용성 용매가 배출되는 측에 설치될 수 있는데, 이 경우 피스톤을 당겨서 출구측의 압력을 낮춤으로써 지용성 용매가 탄소 나노 튜브층을 통과하여 배출되도록 제어할 수 있다.  However, the pressure adjusting means 160 is only an example of the present invention, and the present invention is not limited thereto. Therefore, the pressure adjusting means may be composed of a pressure pump installed on the side into which the contaminant flows, or may be composed of a suction pump installed on the side from which the fat-soluble solvent is discharged. In addition, a pressure adjusting means composed of a piston and a rod may be installed on the side where the fat-soluble solvent is discharged. In this case, the fat-soluble solvent may be controlled to be discharged through the carbon nanotube layer by lowering the pressure at the outlet side by pulling the piston. have.
본 실시예에 따른 다공판 (125)과 탄소 나노 튜브층 (121)은 상기한 제 1 실시예의 다공판과 탄소 나노 튜브층과 동일한 구조로 이루어지므로 이에 대한 자세한 설명은 생략한다.  Since the porous plate 125 and the carbon nanotube layer 121 according to the present embodiment have the same structure as the porous plate and the carbon nanotube layer of the first embodiment, detailed description thereof will be omitted.
필터 (120)의 전방에는 이물질의 유입을 방지하는 차단판 (117)이 설치되는데, 차단판 (117)에는 복수 개의 관통 홀 (117a)이 형성되어 이물질이 탄소 나노 튜브층 (121)으로 유입되는 것을 방지한다. 차단판 (117)에 형성된 관통 홀 (117a)은 다공판 (125)에 형성된 관통 홀 (125a)보다 큰 직경으로 형성되어 오염액 (140)에 포함된 이물질 등의 덩어리가 탄소 나노 튜브층 (121)으로 유입되는 것을 방지한다.  A blocking plate 117 is installed at the front of the filter 120 to prevent the inflow of foreign substances. A plurality of through holes 117a are formed in the blocking plate 117 so that the foreign substances are introduced into the carbon nanotube layer 121. To prevent them. The through hole 117a formed in the blocking plate 117 is formed to have a diameter larger than that of the through hole 125a formed in the porous plate 125 so that agglomerates of foreign matter and the like contained in the contaminant 140 may be formed in the carbon nanotube layer 121. To prevent ingress).
한편, 차단판 (117)과 압력 조절 수단 (160) 사이에는 유입관 (152)이 하우징 (110)에 연결 설치되는데, 유입관 (152)은 수용성 용매와 지용성 용매가 흔합된 오염액 (140)을 하우징 (110) 내부로 공급하는 역할을 한다. 또한, 하우징 (110)의 바닥에는 지용성 용매 배출관 (157)이 연결 설치되는데, 지용성 용매 배출관 (157)은 필터 (120)를 통과한 지용성 용매 (145)를 외부로 배출하는 역할을 한다. 또한, 필터의 위에는 수용성 용매 배출관 (153)이 하우징 (110)과 연결 설치되는데, 수용성 용매 배출관 (153)에는 개폐를 제어하는 벨브 (154)가 설치된다. 수용성 용매 배출관 (153)은 지용성 용매가 제거되어 수용성 용매를 외부로 배출시키는 통로를 제공한다. On the other hand, the inlet pipe 152 is installed between the blocking plate 117 and the pressure regulating means 160 is connected to the housing 110, the inlet pipe 152 is a contaminant 140 mixed with a water-soluble solvent and a fat-soluble solvent Serves to supply the inside of the housing (110). In addition, a fat-soluble solvent discharge pipe 157 is connected to the bottom of the housing 110, the fat-soluble solvent discharge pipe 157 serves to discharge the fat-soluble solvent 145 passed through the filter 120 to the outside. In addition, the water-soluble solvent discharge pipe 153 is installed on the filter connected to the housing 110, the water-soluble solvent discharge pipe 153 is provided with a valve 154 for controlling the opening and closing. The water-soluble solvent discharge pipe 153 provides a passage through which the fat-soluble solvent is removed to discharge the water-soluble solvent to the outside.
이와 같이 본 실시예에 따르면 압력 조절 수단 (160)을 설치하여 하우징 (110) 내부의 압력을 용이하게 조절함으로써 오염액 (140)에서 지용성 용매 (145)를 분리할 수 있다. 또한, 유입관 (152)과 수용성 용매 배출관 (153) 및 지용성 용매 배출관 (157)을 이용하여 연속적으로 오염액 (140)에서 지용성 용매 (145)를 분리할수 있다.  As described above, according to the present exemplary embodiment, the oil-soluble solvent 145 may be separated from the contaminant 140 by easily adjusting the pressure inside the housing 110 by installing the pressure adjusting means 160. In addition, the oil-soluble solvent 145 can be continuously separated from the contaminant 140 using the inflow pipe 152, the water-soluble solvent discharge pipe 153, and the fat-soluble solvent discharge pipe 157.
도 8a 는 본 제 2 실시예와 유사한 구조를 갖는 지용성 용매 분리 장치를 나타낸 사진이다. 도 8a 에 도시된 지용성 용매 분리 장치는 모형 장치인데, 아크릴로 하우징을 만들고, 스테인리스 스틸로 이루어진 판에 구멍을 뚫어 다공판을 형성한 후, 다공판 상에 탄소 나노 튜브층을 부착하여 필터를 형성하였다.  8A is a photograph showing a fat-soluble solvent separation apparatus having a structure similar to that of the second embodiment. The oil-soluble solvent separation device shown in FIG. 8A is a model device. The housing is made of acrylic, a hole is formed in a plate made of stainless steel, and a porous plate is formed, and then a carbon nanotube layer is attached to the porous plate to form a filter. It was.
그리고 실리콘으로 이루어진 피스톤에 스테인리스 스틸로 이루어진 바를 설치하고, 바 위에 하중을 부과할 수 있도록 판을 설치하였다. 하중은 질량을 측정한 A4 용지 (310)를 이용하여 전달하였다. 수용성 용매 (320)와 지용성 용매 (340)의 구별을 쉽게 하기 위해 수용성 용매 (320)에는 연한색의 수성 잉크를, 지용성 용매 (340)에는 진한색의 유성 잉크를 흔합하였다. 도 8b 에 도시된 바와 같이 적당한 양의 A4 용지 (310)를 판 위에 올려 놓으면 진한색의 지용성 용매 (340)가 다공판과 탄소 나노 튜브층을 통과하여 아래로 이동한다. 그리고 이보다 더 많은 양의 A4 용지 (310)를 판 위에 을려 놓으면 도 6c 에 도시한 바와 같이 지용성 용매 (340)뿐만 아니라 수용성 용매 (320)까지 필터를 통과하여 아래로 내려 간다. 본 지용성 용매 분리 장치를 이용해 투과 압력을 측정한 결과 지용성 용매는 0.837KPa 이상에서 투과가 관찰된 반면, 수용성 용매 (320)의 경우에는 28.05KPa 이상에서 투과가 진행됨을 확인하였다. 즉, 0.837KPa 과 28.05KPa 사이에서는 지용성 용매 (340)만이 필터를 통과하는 것이 확인되었다. And the piston made of silicon was installed a bar made of stainless steel, and a plate was installed to apply a load on the bar. The load was transmitted using the A4 paper 310 which measured the mass. In order to make it easy to distinguish the water-soluble solvent 320 and the fat-soluble solvent 340, a light aqueous ink is used for the water-soluble solvent 320, and a dark oil ink is used for the fat-soluble solvent 340. As shown in FIG. 8B, when an appropriate amount of A4 paper 310 is placed on the plate, the dark fat soluble solvent 340 moves down through the porous plate and the carbon nanotube layer. If a larger amount of A4 paper 310 is placed on the plate, as shown in FIG. 6C, not only the fat-soluble solvent 340 but also the water-soluble solvent 320 goes down through the filter. The permeation pressure was measured using the present fat-soluble solvent separator, and the fat-soluble solvent was 0.837 KPa. While permeation was observed in the above, in the case of the water-soluble solvent 320 it was confirmed that the permeation proceeds at 28.05 KPa or more. That is, it was confirmed that only the fat-soluble solvent 340 passed through the filter between 0.837 KPa and 28.05 KPa.
도 8c 는 0.837KPa 이상의 압력을 가하여 수용성 용매 (320)와 지용성 용매 (340)를 분리한 상태를 나타낸 사진이다. 도 8d 에 도시한 바와 같이 일정한 압력을 가하여 수용성 용매 (320)와 지용성 용매 (340)를 분리하고 압력을 제거하면, 수용성 용매 (320)와 지용성 용매 (340)가 분리된다. 이 때, 도 8e 에 도시된 바와 같이 하우징을 기울여서 수용성 용매 (320)를 분리용 용기로 옮기면 수용성 용매 (320)를 지용성 용매 (340)에서 분리할 수 있다. 수용성 용매 (320)와 지용성 용매 (340)를 분리하면 도 8f 에 도시된 바와 같이 하우징에 지용성 용매 (340)만 존재하여 수용성 용매 (320)와 지용성 용매 (340)가 용이하게 분리됨을 확인하였다. 이와 같이 도 8a 내지 도 8f 를 살펴보면, 탄소 나노 튜브와 다공판이 설치된 필터를 이용하여 수용성 용매와 지용성 용매를 용이하게 분리할 수 있음을 확인할 수 있다. 도 4 는 본 발명의 제 3 실시예에 따른 지용성 용매 분리 장치를 도시한 종단면도이다. 도 4를 참조하여 설명하면, 본 실시예에 따른 지용성 용매 분리 장치 (100")는 외형을 이루는 하우징 (110)과 하우징 (110)에 설치된 탄소 나노 튜브층 (121) 및 탄소 나노 튜브층 상에 설치된 다공판 (125)을 포함한다.  8C is a photograph showing a state in which the water-soluble solvent 320 and the fat-soluble solvent 340 are separated by applying a pressure of 0.837 KPa or more. As shown in FIG. 8D, when a constant pressure is applied to separate the water-soluble solvent 320 and the fat-soluble solvent 340 and the pressure is removed, the water-soluble solvent 320 and the fat-soluble solvent 340 are separated. In this case, as shown in FIG. 8E, when the housing is tilted to move the water-soluble solvent 320 to the separation vessel, the water-soluble solvent 320 may be separated from the fat-soluble solvent 340. When the water-soluble solvent 320 and the fat-soluble solvent 340 is separated, it was confirmed that only the fat-soluble solvent 340 is present in the housing, so that the water-soluble solvent 320 and the fat-soluble solvent 340 are easily separated. 8A to 8F, it can be seen that the water-soluble solvent and the fat-soluble solvent can be easily separated using the filter provided with the carbon nanotubes and the porous plate. 4 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a third embodiment of the present invention. Referring to FIG. 4, the fat-soluble solvent separation device 100 ″ according to the present embodiment is formed on the carbon nanotube layer 121 and the carbon nanotube layer installed on the housing 110 and the housing 110 forming the outline. And a perforated plate 125 installed.
본 실시예에 따른 하우징 (110)과 탄소 나노 튜브층 (121) 및 다공판 (125)의 기본적인 구성은 상기한 제 1 실시예에 따른 하우징 및 탄소 나노 튜브층 및 다공판과 동일하므로 동일한 구성에 대한 중복 설명은 생략한다.  The basic configuration of the housing 110, the carbon nanotube layer 121, and the porous plate 125 according to the present embodiment is the same as the housing and the carbon nanotube layer and the porous plate according to the first embodiment described above. Duplicate explanations are omitted.
본 실시예에 다른 다공판 (125)은 도전성을 갖는 금속판으로 이루어지며, 다공판 (125)은 하우징 (110)의 외측에 설치된 전원 (165)과 전기적으로 연결된다. 또한, 전원 (165)은 하우징 (110)의 내부로 삽입되어 오염액 (140)과 접하는 전극 (167)과 전기적으로 연결된다. According to the present embodiment, the porous plate 125 is made of a conductive metal plate, and the porous plate 125 may include a power source 165 installed outside the housing 110. Electrically connected. In addition, the power source 165 is inserted into the housing 110 and electrically connected to the electrode 167 contacting the contaminant 140.
이에 따라 전원 (165)을 통해서 다공판 (125)과 오염액 (140)에 전압을 인가할 수 있는데, 다공판 (125)에 전압을 인가하면 다공판 (125) 상에 형성된 탄소 나노 튜브층 (121)에도 전압이 인가된다. 오염액 (140)과 탄소 나노 튜브층 (121) 사이의 전압을 조절하면 탄소 나노 튜브층 (121)의 친유성 및 친수성의 정도를 조절할 수 있어서 보다 효율적으로 수용성 용매와 지용성 용매를 분리할 수 있다.  Accordingly, a voltage may be applied to the porous plate 125 and the contaminant 140 through the power source 165. When the voltage is applied to the porous plate 125, the carbon nanotube layer formed on the porous plate 125 ( Voltage 121 is also applied. By controlling the voltage between the contaminant 140 and the carbon nanotube layer 121, the degree of lipophilic and hydrophilicity of the carbon nanotube layer 121 can be adjusted, so that the water-soluble solvent and the fat-soluble solvent can be separated more efficiently. .
도 5 는 본 발명의 제 4 실시예에 따른 지용성 용매 분리 장치를 도시한 종단면도이고 도 6 은 본 발명의 제 4 실시예에 따른 지용성 용매 분리 장치를 도시한 횡단면도이다. 도 5 및 도 6 을 참조하여 설명하면, 본 실시예에 따른 지용성 용매 분리 장치 (200)는 외형을 이루는 하우징 (210)과 하우징 (210) 내에 설치된 다공판 (241) 및 다공판 (241) 상에 설치된 탄소 나노 튜브층 (243)을 포함한다.  5 is a longitudinal cross-sectional view showing a fat-soluble solvent separation apparatus according to a fourth embodiment of the present invention, Figure 6 is a cross-sectional view showing a fat-soluble solvent separation apparatus according to a fourth embodiment of the present invention. Referring to FIGS. 5 and 6, the fat-soluble solvent separation apparatus 200 according to the present exemplary embodiment includes a housing 210 and a porous plate 241 and a porous plate 241 installed in the housing 210. And a carbon nanotube layer 243 installed on it.
하우징 (210)은 대략 원통형으로 이루어지며, 하우징 (210)의 외주 하단에는 지용성 용매 (262)가 배출되는 지용성 용매 배출구 (253)가 형성된다. 또한 하우징 (210)에는 회전축 (220)이 끼워져 설치되는데 , 회전축 (220)은 모터 등의 구동부 (미도시 )와 연결되어 하우징 (210)을 회전시키는 역할을 한다.  The housing 210 is formed in a substantially cylindrical shape, and a fat-soluble solvent outlet 253 through which the fat-soluble solvent 262 is discharged is formed at the bottom of the outer circumference of the housing 210. In addition, the rotating shaft 220 is fitted into the housing 210, and the rotating shaft 220 is connected to a driving unit (not shown) such as a motor to serve to rotate the housing 210.
도 6 에 도시된 바와 같이, 다공판 (241)은 회전축을 감싸는 원형으로 이루어지는데, 다공판 (241)의 내측면 상에는 탄소 나노 튜브층 (243)이 형성된다. 다공판 (241)과 탄소 나노 튜브층 (243)은 필터 (240)를 이루는데, 다공판 (241)은 원통형 관 형상으로 이루어지며, 탄소 나노 류브층 (243)은 다공판 (241)의 내면에 형성되어 있다. 그리고 탄소 나노 류브층 (243)의 내측에는 오염액 (260)이 채워지는더 L 회전축 (220)에 의하여 하우징 (210)이 회전하면, 원심력에 의하여 오염액 (260)에 외측으로 압력이 작용하고, 이에 따라 지용성 용매 (262)가 필터 (240)를 통과하여 지용성 용매 배출구 (253)로 배출된다. As shown in FIG. 6, the porous plate 241 is formed in a circular shape surrounding the rotating shaft, and the carbon nanotube layer 243 is formed on the inner surface of the porous plate 241. The porous plate 241 and the carbon nanotube layer 243 form a filter 240. The porous plate 241 has a cylindrical tubular shape, and the carbon nano-leave layer 243 has an inner surface of the porous plate 241. It is formed in. When the housing 210 is rotated by the L rotation shaft 220 in which the contaminant 260 is filled inside the carbon nano-leave layer 243, pressure is applied to the contaminant 260 outward by centrifugal force. In this way, the fat-soluble solvent 262 passes through the filter 240 and is discharged to the fat-soluble solvent outlet 253.
이와 같이 본 실시예에 따르면 하우징 (210)을 회전시켜서 원심력에 의한 압력으로 지용성 용매와 수용성 용매를 분리하는 바, 하우징 (210)의 회전 속도를 조절하여 수용성 용매와 지용성 용매를 용이하게 분리할 수 있다.  As described above, according to the present embodiment, the fat-soluble solvent and the water-soluble solvent are separated by the centrifugal force by rotating the housing 210. The rotation speed of the housing 210 can be adjusted to easily separate the water-soluble solvent and the fat-soluble solvent. have.
도 7 은 본 발명의 제 5 실시예에 따른 지용성 용매 분리 장치를 도시한 종단면도이다. 도 7을 참조하여 설명하면, 본 실시예에 따른 지용성 용매 분리 장치 (200')는 외형을 이루는 하우징 (210)과 하우징 (210) 내에 설치된 다공판 (241) 및 다공판 (241) 상에 설치된 탄소 나노 튜브층 (243)을 포함한다.  7 is a longitudinal sectional view showing a fat-soluble solvent separation apparatus according to a fifth embodiment of the present invention. Referring to FIG. 7, the fat-soluble solvent separation device 200 ′ according to the present embodiment is installed on the porous plate 241 and the porous plate 241 installed in the housing 210 and the housing 210 forming an external shape. Carbon nanotube layer 243.
하우징 (210)은 대략 원통형으로 이루어지며, 외주에 지용성 용매 배출관 (252)이 끼워져 설치된다. 다공판 (241) 및 탄소 나노 튜브층 (243)는 필터 (240)를 형성하는데, 필터 (240)는 상기한 제 4 실시예의 필터와 동일한 구조로 이루어지므로 동일한 구조에 대한 자세한 설명은 생략한다.  The housing 210 is formed in a substantially cylindrical shape, and a fat-soluble solvent discharge pipe 252 is fitted to the outer circumference thereof. The porous plate 241 and the carbon nanotube layer 243 form a filter 240. Since the filter 240 has the same structure as the filter of the fourth embodiment, detailed description of the same structure will be omitted.
하우징 (210)의 내측에는 가압 부재 (230)가 설치되는데, 가압 부재 (230)는 하우징 (210)의 내측에 끼워져 설치된 축부재 (231)와 축부재 (231)에는 설치된 복수개의 임펠러 (234)를 포함한다. 또한, 축부재 (231)의 위에는 오염액 (260)이 유입되는 유입관 (251)이 설치되고 유입관 (251)에는 개폐를 제어하는 밸브판 (251a)이 설치된다.  The pressing member 230 is installed inside the housing 210, and the pressing member 230 is installed on the shaft member 231 installed on the inside of the housing 210 and the plurality of impellers 234 installed on the shaft member 231. It includes. In addition, an inflow pipe 251 through which the contaminant 260 flows is installed on the shaft member 231, and a valve plate 251a for controlling opening and closing is installed on the inflow pipe 251.
또한, 하우징의 바닥에는 수용성 용매 배출관 (253)이 연결 설치되며 수용성 용매 배출관 (253)에는 개폐를 제어하는 밸브 (253a)가 설치된다. 지용성 용매 (262)는 상대적으로 수용성 용매보다 위에 위치하므로 수용성 용매 배출관 (253)을 통해서 지용성 용매가 제거된 수용성 용매만을 용이하게 배출시킬 수 있다. In addition, the water-soluble solvent discharge pipe 253 is connected to the bottom of the housing and the water-soluble solvent discharge pipe 253 is provided with a valve 253a for controlling the opening and closing. The fat soluble solvent 262 is relatively above the water soluble solvent, so Only the water-soluble solvent from which the fat-soluble solvent has been removed can be easily discharged through the solvent discharge pipe 253.
필터 (240)의 내측에는 오염액 (260)이 위치하는데, 축부재 (231)가 회전함에 따라 오염액 (260)을 밀어내어 외측으로 밀려난 지용성 용매 (262)가 필터 (240)를 통과하여 지용성 용매 배출관 (252)을 따라 외부로 배출된다.  The contaminant 260 is located inside the filter 240, and as the shaft member 231 rotates, the soluble solvent 262 pushed out of the contaminant 260 and passed out of the filter 240 passes through the filter 240. It is discharged to the outside along the fat-soluble solvent discharge pipe 252.
본 실시예에 따른 지용성 용매 분리 장치 (200')는 임펠러 (234)를 이용하여 오염액 (260)을 가압하므로 보다 용이하게 압력을 조절하여 지용성 용매와 수용성 용매를 분리할 수 있다. 또한, 오염액 유입관 (251)과 지용성 용매 배출관 (252) 및 수용성 용매 배출관 (253)을 이용하여 연속적으로 수용성 용매와 지용성 용매를 분리하여 용이하게 배출할 수 있다.  Since the oil-soluble solvent separation apparatus 200 ′ according to the present embodiment pressurizes the contaminant 260 using the impeller 234, the oil-soluble solvent separation apparatus 200 ′ may be more easily controlled to separate the oil-soluble solvent and the water-soluble solvent. In addition, by using the contaminant inflow pipe 251, the fat-soluble solvent discharge pipe 252, and the water-soluble solvent discharge pipe 253, the water-soluble solvent and the fat-soluble solvent can be separated and discharged easily.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것은 아니며 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.  In the above description of the preferred embodiment of the present invention, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the range of.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
복수 개의 관통 홀이 형성된 다공판; 및  A porous plate having a plurality of through holes formed therein; And
상기 다공판 상에 형성된 탄소 나노 류브층 (carbon nano tube 1 ayer );  Carbon nano tube 1 ayer formed on the porous plate;
을 포함하는 지용성 용매 분리 장치 .  Fat-soluble solvent separation device comprising a.
【청구항 2]  [Claim 2]
제 1 항에 있어서,  The method of claim 1,
상기 탄소 나노 튜브층을 이루는 탄소 나노 튜브들은 상기 다공판에 대하여 세워져 설치된 지용성 용매 분리 장치 .  The carbon nanotubes constituting the carbon nanotube layer is a fat-soluble solvent separation device installed upright with respect to the porous plate.
【청구항 3】  [Claim 3]
제 2 항에 있어서,  The method of claim 2,
상기 탄소 나노 튜브들은 일단이 상기 다공판에 지지되어 상기 다공판 상에 수직으로 세워져 설치된 지용성 용매 분리 장치 .  One end of the carbon nanotubes are supported on the porous plate is a fat-soluble solvent separation device installed vertically on the porous plate.
【청구항 4】  [Claim 4]
제 1 항에 있어서 ,  The method of claim 1,
상기 지용성 용매 분리 장치는 외형을 이루는 하우징을 포함하고 , 상기 하우징에는 상기 하우징 내부의 압력을 제어하는 압력 조절 수단이 설치된 지용성 용매 분리 장치  The fat-soluble solvent separation device includes a housing forming an outer shape, the housing is a fat-soluble solvent separation device is provided with a pressure regulating means for controlling the pressure inside the housing
【청구항 5】  [Claim 5]
제 4 항에 있어서 ,  The method of claim 4,
상기 압력 조절 수단은 피스톤을 포함하는 지용성 용매 분리 장치 .  The pressure adjusting means is a fat-soluble solvent separation device comprising a piston.
【청구항 6】 [Claim 6]
제 4 항에 있어서 ,  The method of claim 4,
상기 압력 조절 수단은 펌프를 포함하는 지용성 용매 분리 장치 . The pressure regulating means is a fat-soluble solvent separation device comprising a pump.
【청구항 7] [Claim 7]
제 4 항에 있어서, 상기 하우징에는 수용성 용매 배출관 및 지용성 용매 배출관이 연결 설치된 지용성 용매 분리 장치 .  The oil-soluble solvent separation device of claim 4, wherein the housing is connected to a water-soluble solvent discharge pipe and a fat-soluble solvent discharge pipe.
【청구항 8】  [Claim 8]
제 1 항에 있어서,  The method of claim 1,
상기 탄소 나노 류브층의 위에는 이물질의 유입을 방지할 수 있도록 복수개의 관통 홀이 형성된 차단판이 설치 된 지용성 용매 분리 장치 .  The solvent-soluble solvent separation apparatus is installed on the carbon nano-leave layer is provided with a blocking plate formed with a plurality of through holes to prevent the inflow of foreign matter.
【청구항 9]  [Claim 9]
제 1 항에 있어서, 상기 지용성 용매 분리 장치는 상기 다공판과 상기 탄소 나노 류브층이 내장되며 외 형을 이루는 하우징, 및  According to claim 1, The oil-soluble solvent separation device is a housing in which the porous plate and the carbon nano-leave layer is embedded and forms an appearance, and
상기 하우징 에 끼워져 설치되어 상기 하우징을 회 전시 키는 회 전축을 포함하고,  A rotational shaft installed in the housing to rotate the display key;
상기 다공판 및 상기 탄소 나노 튜브층은 상기 회 전축의 둘레를 감싸도록 이어져 설치된 지용성 용매 분리 장치 .  The porous plate and the carbon nanotube layer is a solvent-soluble solvent separation device is installed so as to surround the circumference of the rotational axis.
【청구항 10] [Claim 10]
제 1 항에 있어서 ,  The method of claim 1,
상기 지용성 용매 분리 장치는 상기 다공판과 상기 탄소 나노 류브층이 내장되며 외 형을 이루는 하우징 , 및  The oil-soluble solvent separation device is a housing in which the porous plate and the carbon nano-leave layer are embedded and form an outer shape, and
상기 하우징에 끼워져 설치되며, 임펠러가 설치된 축부재를 포함하고 상기 다공판 및 상기 탄소 나노 튜브충은 상기 축부재의 둘레를 감싸도록 이어져 설치된 지용성 용매 분리 장치 ᅳ  A fat-soluble solvent separation device installed in the housing and including a shaft member having an impeller installed therein, and the porous plate and the carbon nanotube filling are continuously connected to surround the shaft member.
【청구항 11】 [Claim 11]
제 9 항 또는 제 10 항에 있어서, 상기 다공판은 상기 하우징 의 바닥에 대하여 세워져 설치된 지용성 용매 분리 장치 . The method according to claim 9 or 10, The porous plate is a solvent-soluble solvent separation device installed upright against the bottom of the housing.
【청구항 12]  [Claim 12]
제 1 항에 있어서,  The method of claim 1,
상기 탄소 나노 튜브층을 이루는 탄소 나노 튜브는 단일벽 탄소 나노 튜브, 다중벽 탄소 나노 튜브, 탄소 화이버를 포함하는 지용성 용매 분리 장치 .  The carbon nanotubes forming the carbon nanotube layer include a single-walled carbon nanotube, a multi-walled carbon nanotube, and a carbon fiber.
【청구항 13]  [Claim 13]
제 1 항에 있어서,  The method of claim 1,
상기 탄소 나노 튜브층을 이루는 탄소 나노 튜브에는 금속, 반도체, 폴리머로 이루어진 군에서 선택되는 어느 하나 이상의 물질이 결합된 지용성 용매 분리 장치 .  The carbon nanotube layer constituting the carbon nanotube layer is a fat-soluble solvent separation device combined with at least one material selected from the group consisting of metals, semiconductors, polymers.
【청구항 14]  [Claim 14]
제 1 항에 있어서,  The method of claim 1,
상기 탄소 나노 류브층은 전기 방전법 , 레이저 증착법, 열분해 증착법, 열화학 기상 증착 성장법, 플라즈마 화학 기상 증착법으로 이루어진 군에서 선택되는 어느 하나의 방법으로 상기 다공판 상에 직 접 성 장 형성된 지용성 용매 분리 장치 .  The carbon nano-lube layer is separated from a fat-soluble solvent formed directly on the porous plate by any one method selected from the group consisting of an electric discharge method, a laser deposition method, a pyrolysis deposition method, a thermochemical vapor deposition growth method, and a plasma chemical vapor deposition method. Device .
【청구항 15]  [Claim 15]
제 1 항에 있어서,  The method of claim 1,
탄소 나노 튜브층은 탄소 나노 튜브를 포함하는 용액 또는 페이스트가 상기 다공판 상에 프린팅되어 형성된 지용성 용매 분리 장치 【청구항 16]  The carbon nanotube layer is a fat-soluble solvent separation device formed by printing a solution or paste containing carbon nanotubes on the porous plate.
제 1 항에 있어서, 상기 탄소 나노 류브층은 상기 다공판의 표면과 관통 홀 위에 형성된 지용성 용매 분리 장치 . The method of claim 1, The carbon nano-leave layer is a fat-soluble solvent separation device formed on the surface and the through hole of the porous plate.
PCT/KR2009/007237 2009-12-04 2009-12-04 Oil-soluble-solvent separating device WO2011068266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/007237 WO2011068266A1 (en) 2009-12-04 2009-12-04 Oil-soluble-solvent separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/007237 WO2011068266A1 (en) 2009-12-04 2009-12-04 Oil-soluble-solvent separating device

Publications (1)

Publication Number Publication Date
WO2011068266A1 true WO2011068266A1 (en) 2011-06-09

Family

ID=44115097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007237 WO2011068266A1 (en) 2009-12-04 2009-12-04 Oil-soluble-solvent separating device

Country Status (1)

Country Link
WO (1) WO2011068266A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2929925A3 (en) * 2014-03-17 2016-04-06 Korea Institute of Science and Technology Oil-water separation structure, method of preparing the same, oil-water separator, and oil-water separation method using oil-water separator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050204920A1 (en) * 2004-03-18 2005-09-22 Jae-Min Hong Efficient 3-D nanostructured membranes
KR100656985B1 (en) * 2004-11-02 2006-12-13 한국에너지기술연구원 Nano-filter media production process and device
WO2007001405A2 (en) * 2004-10-06 2007-01-04 Research Foundation Of Suny High flux and low fouling filtration media
WO2009035415A1 (en) * 2007-09-10 2009-03-19 National University Of Singapore Polymeric membranes incorporating nanotubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050204920A1 (en) * 2004-03-18 2005-09-22 Jae-Min Hong Efficient 3-D nanostructured membranes
WO2007001405A2 (en) * 2004-10-06 2007-01-04 Research Foundation Of Suny High flux and low fouling filtration media
KR100656985B1 (en) * 2004-11-02 2006-12-13 한국에너지기술연구원 Nano-filter media production process and device
WO2009035415A1 (en) * 2007-09-10 2009-03-19 National University Of Singapore Polymeric membranes incorporating nanotubes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2929925A3 (en) * 2014-03-17 2016-04-06 Korea Institute of Science and Technology Oil-water separation structure, method of preparing the same, oil-water separator, and oil-water separation method using oil-water separator
US10000391B2 (en) 2014-03-17 2018-06-19 Korea Institute Of Science And Technology Oil-water separation structure, method of preparing the same, oil-water separator, and oil-water separation method using oil-water separator

Similar Documents

Publication Publication Date Title
US8445889B2 (en) Method of patterning of nanostructures
Wang et al. Extremely efficient and recyclable absorbents for oily pollutants enabled by ultrathin-layered functionalization
CN205347866U (en) Broken deinking device of waste paper
US20150122735A1 (en) Membrane for filtrating water
US10155215B1 (en) Method for removing cyclic hydrocarbons from an aqueous solution using an active adsorptive nanocomposite
CN108136340A (en) A kind of full carbon film based on activated carbon and its preparation method and application
KR101143824B1 (en) Apparatus for separatiing fat soluble solvent
JP2006198530A (en) Method of separating oil from earth/sand for oil-contaminated earth/sand, and apparatus for separating oil from earth/sand for oil-contaminated earth/sand
WO2011068266A1 (en) Oil-soluble-solvent separating device
Zhang et al. Graphene-coated poly (ethylene terephthalate) nonwoven hollow tube for continuous and highly effective oil collection from the water surface
Petridis et al. Graphene aerogels for oil absorption
Li et al. Dual-propelled PDA@ MnO2 nanomotors with NIR light and H2O2 for effective removal of heavy metal and organic dye
WO2017193720A1 (en) Air purifying apparatus
CN100591412C (en) Method for preparing nano film
KR102001031B1 (en) Underground thermal desorption aftertreatment system
CN207645939U (en) Wastewater treatment equipment suitable for water-based acrylic resin production
CN207238281U (en) A kind of bag-pulling centrifuge driving structure with cleaning function
CN216023604U (en) Oil-water separation processing device
CN210764728U (en) Positive pressure single-stage oil-water separator
CN209809668U (en) Multistage precise filtering device
TWI539987B (en) Continuous oil removal device
CN207435100U (en) A kind of oily waste water treatment filter device
JP6852801B2 (en) Nanocarbon separator, nanocarbon separation method, nanocarbon recovery method
CN113683158B (en) Oil-water separation device based on composite material
CN211799117U (en) Filtering device for geothermal recharge well

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851883

Country of ref document: EP

Kind code of ref document: A1