WO2011067505A1 - Composition utile comme melange-maitre de reticulation comprenant une polyolefine fonctionnelle - Google Patents

Composition utile comme melange-maitre de reticulation comprenant une polyolefine fonctionnelle Download PDF

Info

Publication number
WO2011067505A1
WO2011067505A1 PCT/FR2010/052499 FR2010052499W WO2011067505A1 WO 2011067505 A1 WO2011067505 A1 WO 2011067505A1 FR 2010052499 W FR2010052499 W FR 2010052499W WO 2011067505 A1 WO2011067505 A1 WO 2011067505A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
ethylene
meth
composition
acrylate
Prior art date
Application number
PCT/FR2010/052499
Other languages
English (en)
Inventor
Samuel Devisme
Catherine Corfias-Zuccalli
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to CN2010800535177A priority Critical patent/CN102666615A/zh
Priority to JP2012541554A priority patent/JP2013512984A/ja
Priority to US13/511,054 priority patent/US20120301991A1/en
Priority to CA2782233A priority patent/CA2782233A1/fr
Priority to EP10805263A priority patent/EP2507276A1/fr
Publication of WO2011067505A1 publication Critical patent/WO2011067505A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/06Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a novel composition based on a functional polyolefin and comprising a crosslinking agent in high concentration.
  • This composition can be used as a polymer crosslinking masterbatch. More particularly, this composition can advantageously be used to manufacture films encapsulating photovoltaic cells.
  • Organic peroxides are commonly used for the crosslinking of thermoplastic resins or elastomers, these resins and elastomers being grouped together in the present description under the term "polymers".
  • a peroxide is generally mixed with the polymer to be crosslinked in a first step, then a second polymer forming step is carried out and a third crosslinking step, for example by a heat treatment.
  • the peroxides can be in liquid or solid form.
  • they are mixed at high temperature, that is to say a temperature above the softening point of the polymer, for example by extrusion or kneading; the peroxides are then usually in a liquid form.
  • compositions comprising an additional polymer and peroxides in high concentration, well known under the name of "master batch".
  • master batch comprising an elastomeric polymer such as the ethylene-vinyl acetate copolymer, from 30% to 50% by weight of the composition of an organic peroxide, a plasticizer, a polyoctenamer as well as charges.
  • the described masterbatch is manufactured by a mixer for thermoplastics by melting the polymers with the plasticizer and adding the peroxide and then the fillers.
  • the masterbatch does not include a functional polyolefin.
  • a photovoltaic module includes a "photovoltaic cell", this cell being capable of transforming light energy into electricity.
  • a conventional photovoltaic cell this photovoltaic cell 10 comprises cells 12, a cell containing a photovoltaic sensor 14, generally based on treated silicon in order to obtain photoelectric properties, in contact with electron collectors 16 placed above (upper collectors) and below (lower collectors) of the photovoltaic sensor.
  • the upper collectors 16 of one cell are connected to the lower collectors 16 of another cell 12 by conducting bars 18, generally consisting of a metal alloy. All these cells 12 are connected together, in series and / or in parallel, to form the photovoltaic cell 10.
  • the photovoltaic cell 10 When the photovoltaic cell 10 is placed under a light source, it delivers a continuous electric current, which can be recovered at the terminals 19 of the stack 10.
  • the solar module 20 comprises the photovoltaic cell 10 of FIG. 1 embedded in an "encapsulant" 22.
  • Upper protective layer 24 and a lower protective film 26, also known as “backsheet”, are arranged on both sides of the encapsulated battery.
  • this encapsulant 22 must perfectly match the shape of the space between the photovoltaic cell 10 and the protective layers 24 and 26 to prevent the presence of air, which would limit the efficiency of the solar module.
  • the encapsulant 22 must also prevent the contact of the cells 12 with the water and the oxygen of the air, in order to limit the corrosion.
  • this encapsulant is generally a composition comprising a polyolefin modified with a coupling agent in order to "encapsulate" the photovoltaic cell 10.
  • the coupling agents are added in combination with a crosslinking agent, which also prevents creep of the encapsulant over time.
  • Coupling agents are products generally chosen from organic silanes or titanates; the crosslinking agents are generally chosen from organic peroxides.
  • the components are generally assembled by rolling, and the panel is pulled under vacuum via a silicone membrane.
  • this silicone membrane tends to degrade in contact with these coupling agents. This is a major problem for photovoltaic module manufacturers at the moment because these silicone membranes are expensive and a shutdown of production is necessary for the time of their replacement.
  • coupling agents tend to hydrolyze on contact with moisture and lose their activity over time.
  • EP 1956661 A1 discloses a masterbatch, in admixture with a silane-modified polyethylene, used in photovoltaic cell encapsulants.
  • This masterbatch comprises a metallocene polyethylene of particular density, a UV absorber, a light stabilizer and a thermal stabilizer and does not include peroxide or coupling agent.
  • the subject of the invention is therefore a novel composition
  • a novel composition comprising a mixture of a crosslinking agent and a first polyolefin comprising a functional monomer X chosen from unsaturated carboxylic acid or dicarboxylic acid anhydrides, unsaturated carboxylic acids and epoxides.
  • unsaturated material capable of being cross-linked with a second polyolefin to form a support-supported assembly, said assembly and support forming a two-layered integral structure, characterized in that the amount of crosslinking agent is greater than or equal to 5% of the total mass of the composition.
  • This composition has the advantage of being crosslinkable and adhesive, even in the absence of coupling agents.
  • it is useful as a polymer crosslinking masterbatch, in particular polyolefins, whose adhesion capacity to substrates such as polymers, metals, metal oxides or silicon is to be increased.
  • the amount of crosslinking agent is in the range of from 6 to 30% of the total weight of the composition, preferably from 7 to 16%.
  • the crosslinking agent is, for example, an organic peroxide.
  • the composition may further comprise a coupling agent, which is an agent capable of increasing the adhesive power of the composition.
  • a coupling agent which is an agent capable of increasing the adhesive power of the composition.
  • the polyolefin is preferably a polymer of:
  • the polyolefin comprises, with respect to its total weight:
  • the polyolefin comprises in relation to its total weight:
  • the functional monomer (X) included in the polyolefin may be inserted therein by grafting or by copolymerization.
  • the functional monomer (X) may be maleic anhydride.
  • the support (24) is made of glass, poly (methyl methacrylate) (PMMA) or any other polymer composition combining these characteristics.
  • composition according to the invention comprising:
  • a third step of recovering the composition By using the processes carried out in the molten state, that is to say by mixing the compounds at a temperature above the softening temperature, a phenomenon of premature crosslinking of the composition can be observed because the activation temperature of the peroxide may be less than the processing temperature (as for example by following the process described in the documents US5589526, US3594342 and EP 1956661 A1).
  • An advantage of this preferred method is that, in comparison with the melt processes, the phenomenon of premature crosslinking of the composition is limited and the manufacturing process is simple.
  • composition obtained by this preferred method is also an object of the invention.
  • the composition may advantageously be used as a crosslinking masterbatch of a so-called "second polymer” polymer, preferably a "second polyolefin” polyolefin.
  • Another object of the invention is a film obtained by a manufacturing process comprising a step of mixing a polyolefin with the composition according to the invention and a step of forming a film of said mixture.
  • the film thus obtained is useful as encapsulant of photovoltaic cells.
  • the present invention also relates to the use of a film, consisting of a structure obtained from the composition according to any one of claims 1 to 1 1 having crosslinked with a second polyolefin, as encapsulant of photovoltaic cells.
  • the invention also relates to a photovoltaic module manufacturing method comprising:
  • FIG. 1, already described, represents an example of a photovoltaic cell, parts (a) and (b) being views of 3 ⁇ 4, part (a) showing a cell before connection and part (b) a view after connection of 2 cells; part (c) is a top view of a complete photovoltaic cell.
  • Figure 2 already described, shows a cross section of a solar module.
  • composition according to the invention comprises a mixture of a crosslinking agent and of a polyolefin comprising a functional monomer (X) chosen from unsaturated carboxylic acid or dicarboxylic acid anhydrides, unsaturated carboxylic acids. and unsaturated epoxides.
  • X functional monomer chosen from unsaturated carboxylic acid or dicarboxylic acid anhydrides, unsaturated carboxylic acids. and unsaturated epoxides.
  • Organic peroxides are particularly advantageous crosslinking agents capable of crosslinking polymers such as polyolefins when they are subjected to heat.
  • organic peroxide is meant any hydrocarbon molecule comprising a peroxide type function O-O. These peroxides take a solid or liquid form. The organic peroxide can also be dissolved with an organic solvent. Mixtures of peroxides can also be used.
  • the organic peroxide may advantageously be selected from the families of dialkyl peroxides or peroxyesters.
  • the organic peroxide is preferably selected from tert-butyl 2-ethylperhexanoate, di-t-amyl peroxide, dicumyl peroxide, t-butyl peroxide and cumyl, OO-t-butyl monoperoxycarbonate and O - (2-ethylhexyl), the monoperoxycarbonate of OO-t- 0- (2-ethylhexyl) pentyl e ⁇ , isopropyl carbt-butyl monoperoxycarbonate, dihydrogen hydroperoxide, ditertioamyl hydroperoxide, 2,5-Dimethyl-2 5-di (t-butylperoxy) hexane and 2,2-di (t-amylperoxy) propane.
  • the peroxide may optionally comprise an organic solvent such as alkane, aromatic, alkene, halogenated or alcohol type solvents.
  • the solvent molecules comprise from 1 to 12 carbon atoms.
  • a solvent mention may be made of decane, dodecane, 2,4,4-trimethylpentene, ⁇ -methylstyrene, trichlorethylene, toluene, benzene, ethylbenzene and (1-methylethenyl) benzene, 2-ethylhexanol, isopropanol, t-butyl alcohol or acetone.
  • the amount of solvent is less than or equal to 25% of the total mass of the organic peroxide solution (b), or even less than or equal to 10%.
  • the solvent used is preferably not a solvent of the copolymer, especially when the amount of solvent in the peroxide solution is greater than 20% by weight.
  • solvent of the copolymer is meant a polymer concentration greater than or equal to 0.05 g per ml of solvent when 1 g of copolymer per ml of solvent is brought into contact for one hour at 23 ° C.
  • a polyolefin is a polymer obtained from constituent monomers including olefins. These olefins may be chosen from ethylene, propylene, but-1-ene, pent-1-ene, hexene-1, hept-1-ene, oct-ene or decene. lene.
  • the olefin is ethylene.
  • the polyolefin of the composition according to the invention comprises a functional monomer (X) chosen from among unsaturated carboxylic acid anhydrides, unsaturated dicarboxylic acid anhydrides, unsaturated carboxylic acids and unsaturated epoxides.
  • X functional monomer chosen from among unsaturated carboxylic acid anhydrides, unsaturated dicarboxylic acid anhydrides, unsaturated carboxylic acids and unsaturated epoxides.
  • unsaturated monomer (X) included on the polyolefin trunk these are:
  • Unsaturated epoxides are, for example, aliphatic glycidyl esters and ethers such as glycidyl allyl glycidyl ether, vinyl glycidyl ether, maleate and itaconate, acrylate and glycidyl methacrylate.
  • alicyclic glycidyl esters and ethers such as 2-cyclohexene-1-glycidyl ether, cyclohexene-4,5-diglycidyl carboxylate, cyclohexene-4-glycidyl carboxylate, 5-norbornene-2-methyl-2 glycidyl carboxylate and endocis-bicyclo (2,2,1) -5-heptene-2,3-diglycidyl dicarboxylate. It is preferred to use glycidyl methacrylate as the unsaturated epoxide.
  • the unsaturated carboxylic acids are, for example, acrylic acid or methacrylic acid.
  • the carboxylic acid or dicarboxylic acid anhydrides may be chosen, for example, from maleic, itaconic, citraconic, allylsuccinic, cyclohex-4-ene-1,2-dicarboxylic anhydride, 4-methylenecyclohex-4-ene-l, 2- anhydrides.
  • the polyolefin may also comprise another monomer capable of copolymerizing with the olefin, called "additional monomer".
  • additional monomer a monomer capable of copolymerizing with the olefin
  • a different olefin of the first olefin, the latter may be chosen from those mentioned above;
  • ⁇ dienes such as for example 1, 4-hexadiene, ethylidene norbornene, butadiene;
  • the unsaturated carboxylic acid esters such as for example alkyl acrylates or alkyl methacrylates grouped under the term (meth) acrylates.
  • the alkyl chains of these (meth) acrylates can have up to 30 carbon atoms. Mention may be made, as alkyl chains, of methyl, ethyl, propyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, undecyl or dodecyl.
  • Mefhyl (Mefh) acrylates, Mefhyl and Fefyl are preferred as unsaturated carboxylic acid esters;
  • vinyl esters of carboxylic acid As examples of vinyl esters of carboxylic acid, mention may be made of vinyl acetate, vinyl versatate, vinyl propionate, vinyl butyrate, or vinyl maleate. Vinyl acetate is preferred as the carboxylic acid vinyl ester.
  • the functional monomer (X) may either be grafted or may be polymerized on the polyolefin.
  • the polyolefin can be obtained by polymerization of the monomers (olefin, functional monomer (X) and optional additional monomer). This polymerization can be carried out by a radical high-pressure process in autoclave or tubular reactor, these processes and reactors being well known to those skilled in the art. These polymerization processes are known to those skilled in the art and may be mentioned for example the methods described in documents FR2498609, FR256941 1 and FR2569412. When the unsaturated monomer (X) is not copolymerized in the polyolefin trunk, it is grafted onto the polyolefin trunk. Grafting is also an operation known per se.
  • composition would be in accordance with the invention if different functional monomers (X) were copolymerized and / or grafted onto the polyolefin trunk.
  • graft polymers and these copolymers are marketed for example by the Applicant under the trademark LOTADER ® and Orevac ®.
  • examples that may be mentioned include an ethylene-maleic anhydride copolymer, an ethylene-methyl (meth) acrylate-maleic anhydride copolymer, an ethylene-male copolymer, ethyl (meth) acrylate-maleic anhydride, an ethylene-
  • (meth) acrylate-maleic anhydride an ethylene-vinyl acetate-maleic anhydride copolymer, an ethylene-glycidyl (meth) acrylate copolymer, an ethylene-(meth) acrylate copolymer, glycidyl methyl- (meth) acrylate, an ethylene-ethyl (meth) acrylate-glycidyl (meth) acrylate copolymer, an ethylene-butyl (meth) acrylate-glycidyl (meth) acrylate copolymer and an ethylene- (meth) acrylate copolymer; vinyl acetate - glycidyl (meth) acrylate.
  • polyolefin grafted with a functional monomer (X) mention may be made of polyolefins of ethylene or of propylene grafted with maleic anhydride.
  • polyolefins of ethylene or of propylene grafted with maleic anhydride By way of example, mention may be made of very low density polyethylene having a density ranging from 0.860 to 0.910, or the ethylene-propylene rubbers known under the name EPR (Ethylene Propylene Rubber) and EPDM (Ethylene Propylene Diene Monomer) having a specific gravity. ranging from 0.860 to 0.910.
  • the polyolefin comprising a functional monomer (X) is chosen from an ethylene-methyl (meth) acrylate-maleic anhydride copolymer, an ethylene-ethyl (meth) acrylate-maleic anhydride copolymer and an ethylene-(meth) copolymer. butyl acrylate-maleic anhydride, an ethylene-vinyl acetate-maleic anhydride copolymer.
  • composition according to the invention may also comprise coupling agents in order to further improve the adhesion to another support of the composition or the polymer to be crosslinked.
  • It can be organic, mineral and more preferably semi-mineral semi-organic.
  • the amount of coupling agent is in the range from 0 to 2% by weight relative to the total weight of the composition, for example from 0.1 to 1%.
  • the composition may also include additives or inorganic fillers.
  • additives or inorganic fillers By way of example of an additive, mention may be made of plasticizers, antioxidants or anti-ozone agents, antistatic agents, coloring materials, pigments, optical brighteners, heat stabilizers, light stabilizers, retarders of flame.
  • fillers there may be mentioned clay, silica, talc, carbonates such as calcium carbonate, silicates such as sodium silicate.
  • composition according to the invention is manufactured by mixing the crosslinking agent with the polyolefin comprising a functional monomer (X).
  • This composition can be obtained by conventional techniques for mixing thermoplastics such as kneading or extrusion. Those skilled in the art adapt this temperature to the degradation temperature of the crosslinking agent so that the crosslinking does not occur significantly. Preferentially, the temperature at which this mixture is produced is up to 150 ° C., preferably in the range of 70 to 110 ° C. At this temperature, the crosslinking phenomenon of the crosslinking agent is limited.
  • the crosslinking agent is in liquid form and the process comprises:
  • the first contacting step can be carried out in any type of container.
  • the container may be left open or closed after contacting.
  • the container can be closed tightly or not.
  • the container is sealed and is equipped with a valve.
  • the crosslinking agent solution is brought into contact with the copolymer by pouring directly on it or by a drip system or by a spraying system such as a spray.
  • the absorption step is carried out at a temperature at which the crosslinking agent solution remains liquid, that is to say at a temperature greater than or equal to the melting temperature of the crosslinking agent when it is used without solvent. However, it is advantageous that the temperature of the absorption step is lower than the softening temperature of the copolymer (a) measured according to ASTM E 28-99 (2004). Temperature of the absorption step may be in the range of 15 to 50 ° C.
  • the absorption time is generally in the range of 10 to 600 minutes, preferably 20 to 240 minutes.
  • the absorption step can be carried out with stirring. This stirring can be carried out by any stirring system, such as for example a system with pale, helical, screw or ultrasonic or in a rotary type device or drum, such as a dryer.
  • the invention also relates to the composition obtained by such a method.
  • An advantage of using this type of process is that the crosslinking observed during manufacture is lower than when the composition is manufactured using conventional techniques for mixing thermoplastics.
  • This composition is useful as a crosslinking masterbatch of a second polymer, particularly a second polyolefin.
  • this composition according to the invention makes it possible to crosslink the polymer while providing it with properties of adhesion to a support when the polymer is pressed against a support.
  • any polyolefin can be used as the second polyolefin.
  • copolymers of ethylene preferably comprising an amount of ethylene in the range of 50 to 90% by total weight of the copolymer.
  • a copolymer of ethylene mention may be made of copolymers of ethylene and of an olefin other than ethylene, ethylene and vinyl acetate, ethylene and (meth) acrylate alkyl, ethylene and (meth) acrylic acid or copolymers of ethylene already mentioned which are used for the manufacture of the composition according to the invention.
  • the composition is particularly useful for crosslinking copolymers of ethylene and vinyl acetate.
  • the second polyolefin may also be a blend of polyolefins.
  • the polymer to be crosslinked may further comprise a co-crosslinking agent.
  • a peroxide forms during its activation free radicals on the polymer, which allows the cross-linking of the polymer chains, without the peroxide integrating into these chains.
  • a crosslinking co-agent has a different operation of a peroxide: in fact, it is activated using a free radical initiator such as organic peroxides. Thus, activated during the degradation of the peroxide, it then forms crosslinking bridges with the polymer and is therefore integrated in the chain of the crosslinked polymer, unlike peroxides.
  • the co-agent may be monofunctional or polyfunctional. It advantageously carries at least one carbamate, maleimide, acrylate, methacrylate or allyl function. These are substances advantageously having a molar mass less than or equal to 1000 g / mol, preferably less than or equal to 400 g / mol.
  • the allyl carboxylates can be used.
  • the co-agents may be allyl, diallyl and triallyl compounds.
  • the crosslinking co-agent is chosen from triallyl cyanurate, triallyl isocyanurate, ⁇ , ⁇ 'm-phenylene dimaleimide, triallyl trimellitate and trimethylolpropane trimethacrylate, preferentially triallyl cyanurate.
  • the degree of crosslinking of the crosslinked polymer is generally quantified by measuring the level of gel. This rate of freezing can be measured using method A of ASTM D2765-01 (2006).
  • the gel level of the polymer is greater than or equal to 10, preferably greater than or equal to 20, for example greater than or equal to 50.
  • the subject of the invention is also a process for producing a film comprising a step of mixing the composition according to the invention with a second polyolefin, followed by a step of forming a film.
  • conventional mixing techniques are used, in particular in tools for processing thermoplastics, such as extruders or mixers. It can be mixed at a temperature below the degradation temperature of the crosslinking agent.
  • the second forming step is carried out at a temperature below the degradation temperature of the crosslinking agent. Any type of apparatus allowing formatting such as presses, injectors or calenders can be used.
  • We can also perform the shaping simultaneously with the first step, for example by extrusion film by placing a flat die at the end of the extruder.
  • the invention also relates to the film obtained by this method.
  • the film according to the invention may have a thickness ranging from 0.1 to 2 mm.
  • the film is transparent, that is to say that a film of 500 ⁇ thickness has a transmission greater than or equal to 80% when evaluated according to ASTM D1003 for at least one length of wave of the visible range (from 380 to 780 nm), preferably greater than or equal to 85%, or even 90%.
  • Another object of the invention is the use of this film as an encapsulant for photovoltaic cells.
  • the film according to the invention has all the characteristics necessary for its use as an encapsulant, that is to say that it adheres and perfectly matches the photovoltaic cell and the protective layers, which makes it possible to avoid the presence of air that would limit the efficiency of the solar module.
  • the encapsulant layers (and in particular the upper encapsulant layer) are transparent in accordance with the parameters given in the present description.
  • a photovoltaic module a first lower encapsulant layer, a photovoltaic cell, a second upper encapsulant layer and then an upper protective layer ("frontsheet") are successively placed on a backsheet. ").
  • frontsheet an upper protective layer
  • additional layers, and in particular layers of binders or adhesives, can be found. It is specified that the film according to the invention can be used in any photovoltaic structure and that this use is obviously not limited to the modules presented in this description.
  • photovoltaic sensor any type of photovoltaic sensor among which the so-called "conventional” sensors based on doped silicon, monocrystalline or polycrystalline; thin-film sensors formed for example of amorphous silicon, cadibium telluride, copper-indium disilenide or organic materials may also be used.
  • backsheets that can be used in photovoltaic modules include, but are not limited to, monolayer or multilayer films based on polyester, fluoropolymer (PVF polyvinyl fluoride or PVDF polyvinylidene fluoride).
  • fluoropolymer PVDF polyvinyl fluoride or PVDF polyvinylidene fluoride
  • a particular backsheet structure mention may be made, for example, of fluoropolymer / polyethylene terephthalate / fluoropolymer or fluoropolymer / polyethylene terephthalate / EVA multilayer films.
  • the top cover plate has abrasion and impact resistance properties, is transparent and protects the photovoltaic sensors from external moisture.
  • the film according to the invention has a good adhesion with PMMA in comparison with conventional encapsulating films.
  • the invention also relates to a method of manufacturing a photovoltaic module comprising at least:
  • the manufacturing conditions will be readily determined by those skilled in the art by adapting the temperature to the degradation temperature of the crosslinking agent and the melting temperature of the polyolefin of the film.
  • the firing temperature may be in the range of 80 to 160 ° C.
  • those skilled in the art can refer for example to the Handbook of Photovoltaic Science and Engineering, Wiley, 2003. The invention will now be illustrated by the following examples. It should be noted that these examples are not intended in any way to limit the scope of the present invention.
  • organic peroxide An organic peroxide is used.
  • OO-t-butyl monoperoxycarbonate and O- (2-ethylhexyl) monoperoxycarbonate are used as organic peroxide.
  • Vinyltrimethoxysilane is used as the coupling agent.
  • granules of a copolymer of ethylene, vinyl acetate and maleic anhydride comprising, based on the weight of the polymer, 28% of acetate and 0 8% anhydride (copolymer 1).
  • copolymer 2 For carrying out the comparative masterbatches, granules of a copolymer of ethylene and vinyl acetate comprising 33% by weight of acetate (copolymer 2) are used.
  • the masterbatches have, based on the total mass of the masterbatch, the following compositions
  • the organic peroxide (2.2 kg) with the copolymer (19.8 kg) and optionally the coupling agent are brought into contact in a roller stirrer in a closed vessel at 20 ° C., the axis of rotation of the roll being horizontal. and stirred by rotating the container at a speed of 10 rpm.
  • a first half of the peroxide solution is injected at the beginning of the absorption and a second half is added after 30 minutes of absorption.
  • the polymer particles are recovered after 120 minutes. The absorption of the peroxide solution in the particles is complete.
  • the particles were measured after washing for one hour in n-heptane: the amount of peroxide in the copolymer is 10% by total weight of the composition.
  • films of a mixture of 90% by weight of copolymer 2 with 10% by weight of masterbatch (Example 11, 12, CPl or CP2) are prepared. Films of a mixture of 85% by weight of copolymer 1 with 15% by weight of masterbatch 13 and a mixture of 85% by weight of copolymer 2 with 15% by weight of masterbatch are also prepared.
  • CP3 a mixture of 90% by weight of copolymer 2 with 10% by weight of masterbatch
  • a multilayer structure composed of glass (approximately 3 mm) / film (0.32 mm) / backsheet based on polyvinylidene fluoride (0.32 mm) is prepared. to evaluate the adhesion of the 3 types of films. This structure is realized in several stages:
  • test tubes 24h in air-conditioned room
  • the structure with PMMA is prepared according to the same protocol as above except that the support, in place of glass, is a PMMA plate (200 x 80 x 3 mm).
  • the adhesion is measured by evaluating the structures on a ZWIC 1445 brand dynanometer equipped with a force sensor, at a pulling speed of 50 mm / min, for a peel at 90 ° C according to ISO 8510-2: 1990 : Adhesives - peel test for a flexible bonded bond on rigid. The test specimens are cut with a cutter and have a width of 15 mm. The test pieces have the following adhesions:
  • Test 13 shows, when compared to Example CP3, that the masterbatch is particularly advantageous when the support is made of PMMA.
  • the masterbatch is particularly advantageous when the support is made of PMMA.
  • Vinyltrimethoxysilane is used as the coupling agent.
  • ком ⁇ онент 1 For carrying out the comparative masterbatches (CP1), granules of a copolymer of ethylene and of vinyl acetate comprising 33% by weight of acetate (copolymer 2) are used. These masterbatches are then diluted in a matrix (M1, M2 and M3) to make films.
  • the masterbatches have, based on the total mass of the masterbatch, the following compositions Products Example 11 Example CP1 Example 14
  • Copolymer 1 (%) 90 0 86.5
  • Copolymer 2 (%) 0 90 0
  • the organic peroxide (2.2 kg) with the copolymer (19.8 kg) and optionally the coupling agent are brought into contact in a roller stirrer in a closed vessel at 20 ° C., the axis of rotation of the roll being horizontal. and stirred by rotating the container at a speed of 10 rpm.
  • a first half of the peroxide solution is injected at the beginning of the absorption and a second half is added after 30 minutes of absorption.
  • the polymer particles are recovered after 120 minutes. The absorption of the peroxide solution in the particles is complete.
  • the particles were measured after washing for one hour in n-heptane: the amount of peroxide in the copolymer is 10% by total weight of the composition.
  • films are prepared according to the compositions below: Example Example Example Example Example Example Example
  • These films obtained from the 3 masterbatches 11, 14, and CP 1 are made on a counter-rotating twin-screw Haake extruder equipped with a film die.
  • the temperature profile of the extruder is: hopper 20 ° C - Zonel: 75 -Zone 2: 75 -Filter film: 75 ° C, the screw speed of 80 rpm. Films 8 cm wide are obtained.
  • a multilayer structure composed of glass (approximately 3 mm) / film (0.32 mm) / backsheet based on polyvinylidene fluoride (0.32 mm) is prepared to evaluate the adhesion of the three types of film. This structure is realized in several stages:
  • test tubes 24h in air-conditioned room
  • the adhesion is measured by evaluating the structures on a ZWIC 1445 dynamometer equipped with a force sensor, at a pulling speed of 50 mm / min, for a coat at 90 ° C according to ISO 8510-2: 1990 : Adhesives - peel test for a flexible bonded bond on rigid. The test specimens are cut with a cutter and have a width of 15 mm. The test pieces have the following adhesions:
  • Tests 16 and 17 show, when compared to Example CP4, that the masterbatch is particularly advantageous when the support is PMMA (polymethyl methacrylate).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention a pour objet une composition comprenant un mélange d'un agent réticulant et d'une première polyoléfine comprenant un monomère fonctionnel (X) choisi parmi les anhydrides d'acide carboxylique ou de diacide carboxylique insaturés, les acides carboxyliques insaturés et les époxydes insaturés apte à être réticulé avec une seconde polyoléfine pour former un ensemble (22) adhésivé à un support (24), ledit ensemble (22) et le support (24) formant une structure solidaire à deux couches distinctes (22, 24), caractérisée en ce que la quantité d'agent réticulant est supérieure ou égale à 5% de la masse totale de la composition. Ce mélange-maître permet, même en l 'absence de silanes, la réticulation de polymères, en particulier des polyoléfines, dont on veut augmenter la capacité d'adhésion à des supports tels que les polymères, les métaux, les oxydes de métaux ou le silicium. Ce mélange-maître peut être particulièrement utile pour l'encapsulation de cellules photovoltaïques.

Description

COMPOSITION UTILE COMME MELANGE-MAITRE DE RETICULATION COMPRENANT
UNE POLYOLEFINE FONCTIONNELLE
Domaine de l'invention
La présente invention concerne une nouvelle composition à base d'une polyoléfine fonctionnelle et comprenant un agent réticulant en concentration élevée.
Cette composition peut être utilisée en tant que mélange-maître de réticulation des polymères. Plus particulièrement, cette composition peut avantageusement être utilisée pour fabriquer des films encapsulant de cellules photovoltaïques.
Etat de la technique
Les peroxydes organiques sont couramment utilisés pour la réticulation des résines thermoplastiques ou des élastomères, ces résines et élastomères étant regroupés dans la présente description sous le terme « polymères ». Pour réticuler un polymère, un peroxyde est généralement mélangé au polymère à réticuler dans une première étape, puis on réalise une seconde étape de mise en forme du polymère et une troisième étape de réticulation, par exemple par un traitement thermique.
A température ambiante, les peroxydes peuvent être sous forme liquide ou solide. Lorsque les peroxydes sont mélangés à ces polymères, ils sont mélangés à haute température, c'est-à-dire une température supérieure au point de ramollissement du polymère, par exemple par extrusion ou malaxage ; les peroxydes sont alors généralement sous une forme liquide.
Un problème est que les peroxydes sous cette forme liquide sont difficiles à mélanger avec le polymère et on peut observer un phénomène de demixion du peroxyde. Un second problème est que l'introduction des peroxydes nécessite un équipement sophistiqué pour permettre un dosage précis de la quantité de peroxydes à introduire.
Afin de faciliter le mélange des peroxydes avec le polymère à réticuler, on peut utiliser des compositions comprenant un polymère additionnel et des peroxydes en concentration élevée, bien connues sous le nom de « mélange- maître » (en anglais « master batch »). Le brevet US 5,589,526 décrit par exemple un mélange-maître comprenant un polymère élastomérique tel que le copolymère d'éthylène et d'acétate de vinyle, de 30 à 50% en masse de la composition d'un peroxyde organique, un plastifiant, un polyocténamère ainsi que des charges. Le mélange-maître décrit est fabriqué par un mélangeur pour les thermoplastiques en faisant fondre les polymères avec le plastifiant et en ajoutant le peroxyde puis les charges. Le mélange maître ne comprend pas de polyoléfine fonctionnelle.
Dans le brevet US 3,594,342 est décrit un procédé de fabrication de polyéthylène réticulé dans lequel on mélange un oligomère d'un copolymère d'éthylène et d'acétate de vinyle ou d'un copolymère d'éthylène et d'ester acrylique avec un peroxyde pour former un mélange-maître, qui est ensuite mélangé à un polyéthylène à l'état fondu. Le mélange maître ne comprend pas de polyoléfine fonctionnelle. Un des domaines dans lesquels il est nécessaire de réticuler des polymères est le domaine des modules photovoltaïques, en particulier pour la partie encapsulante des cellules photovoltaïques.
Un module photovoltaïque comprend une « pile photovoltaïque », cette pile étant capable de transformer l'énergie lumineuse en électricité. Sur la Figure 1 , on a représenté une pile photovoltaïque classique ; cette pile photovoltaïque 10 comprend des cellules 12, une cellule contenant un capteur photovoltaïque 14, généralement à base de silicium traité afin d'obtenir des propriétés photoélectriques, en contact avec des collecteurs d'électrons 16 placés au- dessus (collecteurs supérieurs) et au-dessous (collecteurs inférieurs) du capteur photovoltaïque. Les collecteurs 16 supérieurs d'une cellule sont reliés aux collecteurs 16 inférieurs d'une autre cellule 12 par des barres conductrices 18, constituées généralement d'un alliage de métaux. Toutes ces cellules 12 sont connectées entre elles, en série et/ou en parallèle, pour former la pile photovoltaïque 10. Lorsque la pile photovoltaïque 10 est placée sous une source lumineuse, elle délivre un courant électrique continu, qui peut être récupéré aux bornes 19 de la pile 10.
En référence à la Figure 2, le module solaire 20 comprend la pile photovoltaïque 10 de la Figure 1 enrobée dans un « encapsulant » 22. Une couche protectrice supérieure 24 et un film de protection inférieur 26, encore connu sous le nom de « backsheet », sont disposées de part et d'autre la pile encapsulée.
L'encapsulant 22 doit épouser parfaitement la forme de l'espace existant entre la pile photovoltaïque 10 et les couches protectrices 24 et 26 afin d'éviter la présence d'air, ce qui limiterait le rendement du module solaire. L'encapsulant 22 doit également empêcher le contact des cellules 12 avec l'eau et l'oxygène de l'air, afin d'en limiter la corrosion. Pour apporter ces différentes propriétés, cet encapsulant est généralement une composition comprenant une polyoléfine modifiée par un agent de couplage afin « d'encapsuler » la pile photovoltaïque 10. Pour modifier cette polyoléfine de l'encapsulant, on ajoute les agents de couplage en combinaison avec un agent réticulant, ce qui permet également d'empêcher le fluage de l'encapsulant au cours du temps. Les agents de couplage sont des produits généralement choisis parmi les silanes ou les titanates organiques ; les agents réticulant sont généralement choisis parmi les peroxydes organiques.
Par ailleurs, lors de la mise en oeuvre des panneaux photovoltaïques, les composants sont généralement assemblés par laminage, et le panneau est tiré sous vide par l'intermédiaire d'une membrane en silicone. Or, cette membrane en silicone a tendance à se dégrader au contact de ces agents de couplage. Ceci est un problème majeur pour les fabricants de modules photovoltaïques à l'heure actuelle car ces membranes en silicones sont coûteuses et qu'une mise à l 'arrêt de la production est nécessaire le temps de leur remplacement. De plus, les agents de couplage ont tendance à s'hydrolyser au contact de l'humidité et à perdre leur activité au fil du temps.
Le document EP 1956661 Al décrit un mélange-maître, en mélange avec un polyéthylène modifié par un silane, utilisé dans les encapsulants de cellules photovoltaïques. Ce mélange-maître comprend un polyéthylène métallocène de densité particulière, un absorbant UV, un stabilisant lumière et un stabilisant thermique et ne comprend ni peroxyde, ni agent de couplage.
Il est donc également nécessaire de trouver de nouvelles solutions permettant de résoudre au moins un des inconvénients évoqués ci-dessus. Résumé de l'invention
L'invention a ainsi pour objet une nouvelle composition comprenant un mélange d'un agent réticulant et d'une première polyoléfine comprenant un monomère fonctionnel X choisi parmi les anhydrides d'acide carboxylique ou de diacide carboxylique insaturés, les acides carboxyliques insaturés et les époxydes insaturés apte à être réticulé avec une seconde polyoléfine pour former un ensemble adhésivé à un support, ledit ensemble et le support formant une structure solidaire à deux couches distinctes, caractérisée en ce que la quantité d'agent réticulant est supérieure ou égale à 5% de la masse totale de la composition.
Cette composition présente l'avantage d'être réticulable et adhésive, même en l'absence d'agents de couplage. En particulier, elle est utile en tant que mélange-maître de réticulation de polymère, en particulier des polyoléfines, dont on veut augmenter la capacité d'adhésion à des supports tels que les polymères, les métaux, les oxydes de métaux ou le silicium.
Préférentiellement, la quantité d'agent réticulant est comprise dans la gamme allant de 6 à 30 % de la masse totale de la composition, préférentiellement de 7 à 1 6%.
L'agent réticulant est par exemple un peroxyde organique.
Même si sa présence n'est pas obligatoire, la composition peut comprendre en outre un agent de couplage, qui est un agent susceptible d'augmenter le pouvoir adhérent de la composition. La polyoléfine est préférentiellement un polymère de :
• l'éthylène ;
• au moins un monomère fonctionnel (X) choisi parmi l'acide (méth) acrylique, l'anhydride maléique et le (méth)acrylate de glycidyle ; • e† éventuellement un monomère additionnel comprenant de 4 à 20 atomes de carbone choisi parmi les esters vinyliques d'acide carboxylique ou les (méth)acrylates d'alkyle. Préférentiellement, la polyoléfine comprend par rapport à son poids total :
• de 0,01 à 20% en masse du monomère fonctionnel (X) ;
• de 0 à 45% en masse du monomère additionnel ;
• de 99,99 à 35% en masse d'éthylène. Par exemple, la polyoléfine comprend par rapport à son poids total :
• de 0,05 à 10% en masse du monomère fonctionnel (X) ;
• de 10 à 35% en masse du monomère additionnel ;
• de 89,5 à 55% en masse d'éthylène. Le monomère fonctionnel (X) compris dans la polyoléfine peut y être inséré par greffage ou par copolymérisation.
Le monomère fonctionnel (X) peut être l'anhydride maléïque. Selon un aspect de l'invention, le support (24) est en verre, le poly(méthacrylate de méthyle) (PMMA) ou toute autre composition polymère réunissant ces caractéristiques.
Un autre objet de l'invention est un procédé préféré de fabrication de la composition selon l'invention comprenant :
une première étape de mise en contact de l'agent réticulant sous forme d'une solution avec la polyoléfine portant le monomère fonctionnel ; - une seconde étape d'absorption de la solution de peroxyde (b) par la polyoléfine sous agitation et à une température inférieure à la température de ramollissement de la polyoléfine portant le monomère fonctionnel mesurée selon la norme ASTM E 28-99(2004) ;
une troisième étape de récupération de la composition. En utilisant les procédés réalisés à l'état fondu, c'est-à-dire en mélangeant les composés à une température supérieure à la température de ramollissement, on peut observer un phénomène de réticulation prématurée de la composition car la température d'activation du peroxyde peut être inférieure à la température de mise en oeuvre (comme par exemple en suivant le procédé décrit dans les documents US5589526, US3594342 et EP 1956661 Al ). Un avantage de ce procédé préféré est que, en comparaison avec les procédés réalisés à l'état fondu, le phénomène de réticulation prématuré de la composition est limité et que le procédé de fabrication est simple.
La composition obtenue par ce procédé préféré est également un objet de l'invention. La composition peut être avantageusement utilisée en tant que mélange- maître de réticulation d'un polymère dit « second polymère », préférentiellement une polyoléfine dite « seconde polyoléfine ».
Un autre objet de l'invention est un film obtenu par un procédé de fabrication comprenant une étape de mélange d'une polyoléfine avec la composition selon l'invention et une étape de mise sous forme de film dudit mélange. Le film ainsi obtenu est utile comme encapsulant de cellules photovoltaïques. Ainsi, la présente invention concerne également l'utilisation d'un film, constituée d'une structure obtenue à partir de la composition selon l'une quelconque des revendications 1 à 1 1 ayant réticulé avec une seconde polyoléfine, comme encapsulant de cellules photovoltaïques.
L'invention porte également sur un procédé de fabrication de module photovoltaïque comprenant :
une étape d'assemblage des différentes couches constitutives du module comprenant le film encapsulant et des cellules photovoltaïques ;
une étape de cuisson du module. D'autres avantages sont décrits en détail dans la description de l'invention ci-après.
Brève description des figures
La Figure 1 , déjà décrite, représente un exemple de pile photovoltaïque, les parties (a) et (b) étant des vues de ¾, la partie (a) montrant une cellule avant connexion et la partie (b) une vue après connexion de 2 cellules ; la partie (c) est une vue de dessus d'une pile photovoltaïque complète.
La Figure 2, déjà décrite, représente une coupe transversale d'un module solaire.
Description détaillée de l'invention La composition selon l'invention comprend un mélange d'un agent réticulant et d'une polyoléfine comprenant un monomère fonctionnel (X) choisi parmi les anhydrides d'acide carboxylique ou de diacide carboxylique insaturés, les acides carboxyliques insaturés et les époxydes insaturés.
Les peroxydes organiques sont des agents réticulants particulièrement avantageux, susceptibles de réticuler des polymères tels que les polyoléfines lorsqu'ils sont soumis à la chaleur. Par peroxyde organique, on entend toute molécule hydrocarbonée comprenant une fonction de type peroxy O-O. Ces peroxydes prennent une forme solide ou liquide. Le peroxyde organique peut également être mis en solution avec un solvant organique. On peut également utiliser des mélanges de peroxydes.
Le peroxyde organique peut être avantageusement choisi parmi les familles des peroxydes de dialkyle ou les peroxyesters.
Le peroxyde organique est préférentiellement choisi parmi le 2- éthylperhexanoate de tert-butyle, peroxyde de di-t-amyle, le peroxyde de dicumyle, le peroxyde de t-butyle et de cumyle, le monoperoxycarbonate de OO-t-butyle et de 0-(2-éthylhexyle), le monoperoxycarbonate de OO-t- pentyle e† de 0-(2-éthylhexyle), le monoperoxycarbonate de COtert- butyle e† d'isopropyle, l'hydroperoxyde de di†er†iobu†yle, l'hydroperoxyde de ditertioamyle, le 2,5-Diméthyl-2,5-di(t-butylperoxy)hexane et le 2,2-Di(t- amylperoxy) propane.
Le peroxyde peut éventuellement comprendre un solvant organique tels que les solvants de type alcane, aromatique, alcène, halogéné ou alcool. Préférentiellement les molécules de solvant comprennent de 1 à 12 atomes de carbone. A titre d'exemple de solvant, on peut citer le décane, le dodécane, le 2,4,4-triméthylepentène, le a-méthylestyrène, le trichloroéthylène, le toluène, le benzène, l'éthylebenzène, le (1 - méthylethenyl) benzène, 2-éthylehexanol, l'isopropanol, l'alcool de t-butyle ou l'acétone.
On peut utiliser également un mélange de solvants, par exemple un mélange des solvants listés ci-dessus.
Préférentiellement, la quantité de solvant est inférieure ou égale à 25% de la masse totale de la solution de peroxyde organique (b), voire inférieure ou égale à 10%.
Le solvant utilisé n'est préférentiellement pas un solvant du copolymère, tout particulièrement lorsque la quantité de solvant dans la solution de peroxyde est supérieure à 20% en masse. Par solvant du copolymère, on entend une concentration en polymère supérieure ou égale à 0,05g par mL de solvant lorsqu'on met en contact pendant une heure à 23°C 1 g de copolymère par mL de solvant. Une polyoléfine est un polymère obtenu à partir de monomères constitutifs comprenant des oléfines. Ces oléfines peuvent être choisis parmi l'éthylène, le propylène, le but-l -ène, le pent-l -ène, l'hexène-1 , l'hept-l -ène, l'oct-ène ou le dec-l -ène. Préférentiellement, l'oléfine est l'éthylène.
La polyoléfine de la composition selon l'invention comprend un monomère fonctionnel (X) choisi parmi choisi parmi les anhydrides d'acide carboxylique insaturé, les anhydrides de diacide carboxylique insaturé, les acides carboxyliques insaturés et les époxydes insaturés.
Comme monomère insaturé (X) compris sur le tronc polyoléfine, il s'agit des : Les époxydes insaturés sont par exemple les esters et éthers de glycidyle aliphatiques tels que l'allylglycidyléther, le vinylglycidyléther, le maléate et l'itaconate de glycidyle, l'acrylate et le méthacrylate de glycidyle. Ce sont aussi par exemple les esters et éthers de glycidyle alicycliques tels que le 2- cyclohexène-l -glycidyléther, le cyclohexène-4,5-diglycidylcarboxylate, le cyclohexène-4-glycidyl carboxylate, le 5-norbornène-2-méthyl-2-glycidyl carboxylate et l'endocis-bicyclo(2,2,l )-5-heptène-2,3-diglycidyl dicarboxylate. On préfère utiliser le méthacrylate de glycidyle comme époxyde insaturé.
Les acides carboxyliques insaturés sont par exemple l'acide acrylique ou l'acide méthacrylique.
Les anhydrides d'acide carboxylique ou de diacide carboxylique peuvent être choisis par exemple parmi les anhydrides maléique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène-l ,2-dicarboxylique, 4- méthylènecyclohex-4-ène-l ,2-dicarboxylique, bicyclo(2,2,l )hept-5-ène-2,3- dicarboxylique, et x-méthylbicyclo(2,2,l )hept-5-ène-2,2-dicarboxylique. On préfère utiliser l'anhydride maléique comme anhydride.
La polyoléfine peut également comprendre un autre monomère susceptible de copolymériser avec l'oléfine, dit « monomère additionnel ». A titre d'exemple de monomère additionnel, on peut citer :
une oléfine différente de la première oléfine, celle-ci pouvant être choisie parmi celles citées précédemment ;
les diènes tels que par exemple le 1 ,4-hexadiène, l'éthylidène norbornène, le butadiène ;
les esters d'acide carboxylique insaturé tels que par exemple les acrylates d'alkyle ou les méthacrylates d'alkyle regroupés sous le terme (méth)acrylates d'alkyles. Les chaînes alkyles de ces (méth)acrylates peuvent avoir jusqu'à 30 atomes de carbone. On peut citer comme chaînes alkyles le méthyle, l'éthyle, le propyle, n- butyle, sec-butyle, Isobutyle, tert-butyle, pentyle, hexyle, heptyle, octyle, 2-ethylhexyle, nonyle, decyle, undecyle, dodecyle. On préfère les (méfh)acrylafes de méfhyle, éfhyle ef bufyle comme esters d'acide carboxylique insaturés ;
■ les esters vinyliques d'acide carboxylique. A titre d'exemples d'esters vinyliques d'acide carboxylique, on peut citer l'acétate de vinyle, le versatate de vinyle, le propionate de vinyle, le butyrate de vinyle, ou le maléate de vinyle. On préfère l'acétate de vinyle comme ester vinylique d'acide carboxylique.
Selon deux variantes de l'invention, le monomère fonctionnel (X) peut soit être greffé, soit être polymérisé sur la polyoléfine.
La polyoléfine peut être obtenue par polymérisation des monomères (oléfine, monomère fonctionnel (X) et éventuel monomère additionnel). On peut réaliser cette polymérisation par un procédé radicalaire à haute pression en réacteur autoclave ou tubulaire, ces procédés et réacteurs étant bien connus de l'homme du métier. Ces procédés de polymérisation sont connus de l'homme du métier et on peut citer par exemple les procédés décrits dans les documents FR2498609, FR256941 1 et FR2569412. Lorsque le monomère insaturé (X) n'est pas copolymérisé dans le tronc polyoléfine, il est greffé sur le tronc polyoléfine. Le greffage est également une opération connue en soi. La composition serait conforme à l'invention si différents monomères fonctionnels (X) étaient copolymérisés et/ou greffés sur le tronc polyoléfine. Ces polymères greffés et ces copolymères sont commercialisés par exemple par la demanderesse sous les marques Lotader® et Orevac®.
A titre d'exemple de polyoléfine dont le monomère fonctionnel (X) est copolymérisé avec la polyoléfine, on peut citer comme exemples un copolymère éthylène-anhydride maléique, un copolymère éthylène- (méth)acrylate de méthyle-anhydride maléique, un copolymère éthylène- (méth)acrylate d'éthyle-anhydride maléique, un copolymère éthylène-
(méth)acrylate de butyle-anhydride maléique, un copolymère éthylène- acétate de vinyle-anhydride maléique, un copolymère éthylène- (méth)acrylate de glycidyle, un copolymère éthylène-(méth)acrylate de méthyle-(méth)acrylate de glycidyle, un copolymère éthylène- (méth)acrylate d'éthyle-(méth)acrylate de glycidyle, un copolymère éthylène-(méth)acrylate de butyle-(méth)acrylate de glycidyle et un copolymère éthylène-acétate de vinyle-(méth)acrylate de glycidyle.
A titre d'exemple de polyoléfine greffée par un monomère fonctionnel (X), on peut citer les polyoléfines d'éthylène ou de propylène greffées par de l'anhydride maléique. A titre d'exemple, on peut citer le polyéthylène très basse densité ayant une densité allant de 0,860 à 0,910, ou les caoutchoucs éthylène-propylène connus sous la dénomination EPR (Ethylene Propylene Rubber) et EPDM (Ethylene Propylene Diene Monomer) ayant une densité allant de 0,860 à 0,910.
Avantageusement, la polyoléfine comprenant un monomère fonctionnel (X) est choisie parmi un copolymère éthylène-(méth)acrylate de méthyle- anhydride maléique, un copolymère éthylène-(méth)acrylate d'éthyle- anhydride maléique, un copolymère éthylène-(méth)acrylate de butyle- anhydride maléique, un copolymère éthylène-acétate de vinyle-anhydride maléique.
La composition selon l'invention peut également comprendre des agents de couplage afin d'améliorer encore le pouvoir d'adhérence sur un autre support de la composition ou du polymère à réticuler. Il peut être organique, minéral et plus préférentiellement semi-minéral semi-organique.
Parmi ceux-ci, on peut citer les titanates ou les silanes organiques, comme par exemple les monoalkyl titanates, les trichlorosilanes et les trialkoxysilanes. Préférentiellement, la quantité d'agent de couplage est comprise dans la gamme allant de 0 à 2% en masse par rapport à la masse totale de la composition, par exemple de 0,1 à 1 %.
La composition peut comprendre également des additifs ou des charges inorganiques. A titre d'exemple d'additif, on peut citer les plastifiants, les anti-oxydants ou agents anti-ozone, les agents antistatiques, les matériaux colorants, les pigments, les azurants optiques, les stabilisants thermiques, les stabilisants lumière, les retardateurs de flamme. A titre de charges, on peut citer l'argile, la silice, le talc, les carbonates comme le carbonate de calcium, les silicates comme le silicate de sodium.
La composition selon l'invention est fabriquée en mélangeant l'agent réticulant avec la polyoléfine comprenant un monomère fonctionnel (X).
Cette composition peut être obtenue par les techniques classiques de mélange des thermoplastiques telles que le malaxage ou l'extrusion. L'homme du métier adapte cette température à la température de dégradation de l'agent réticulant afin que la réticulation ne se produise pas de manière importante. Préférentiellement la température à laquelle est réalisé ce mélange va jusqu'à 150°C, préférentiellement comprise dans la gamme allant de 70 à 1 10°C. A cette température, le phénomène de réticulation de l'agent réticulant est limité.
Selon une alternative du procédé de fabrication de la composition, l'agent réticulant est sous forme liquide et le procédé comprend :
a. une première étape de mise en contact de l'agent réticulant avec la polyoléfine ;
b. une seconde étape d'absorption de l'agent réticulant par la polyoléfine, éventuellement sous agitation ;
c. une troisième étape de récupération de la composition.
La première étape de mise en contact peut être réalisée dans tout type de récipient. Le récipient peut être laissé ouvert ou être clos après la mise en contact. Le récipient peut être fermé de manière étanche ou non. Préférentiellement, le récipient est fermé de manière étanche et est équipé d'une soupape. La solution d'agent réticulant est mise en contact avec le copolymère en le versant directement dessus ou par un système de goutte à goutte ou encore par un système de pulvérisation tel qu'un spray.
L'étape d'absorption est réalisée à une température à laquelle la solution d'agent réticulant reste liquide, c'est-à-dire à une température supérieure ou égale à la température de fusion de l'agent réticulant lorsque celui-ci est utilisé sans solvant. Il est cependant avantageux que la température de l'étape d'absorption soit inférieure à la température de ramollissement du copolymère (a) mesurée selon la norme ASTM E 28-99(2004). La température de l'étape d'absorption peut être comprise dans la gamme allant de 15 à 50°C. La durée d'absorption est généralement comprise dans la gamme allant de 10 à 600 minutes, préférentiellement de 20 à 240 minutes. L'étape d'absorption peut être réalisée sous agitation. Cette agitation peut être réalisée par tout système d'agitation, comme par exemple un système à pâle, à hélice, à vis ou à ultrasons ou dans un dispositif de type rotatif ou à tambour, tel qu'un sécheur.
L'invention porte également sur la composition obtenue par un tel procédé. Un avantage d'utiliser ce type de procédé est que la réticulation observée lors de la fabrication est plus faible que lorsque la composition est fabriquée à partir des techniques classiques de mélange des thermoplastiques.
Un exemple d'un tel procédé est par exemple décrit dans la demande déposée par la demanderesse sous le numéro FR 0953978. Cette composition est utile en tant que mélange-maître de réticulation d'un second polymère, particulièrement une seconde polyoléfine. De manière surprenante et avantageuse, cette composition selon l'invention permet de réticuler le polymère tout en lui apportant des propriétés d'adhésion à un support lorsque le polymère est pressé contre un support.
On peut utiliser toute polyoléfine comme seconde polyoléfine. En particulier, on peut utiliser les copolymères de l'éthylène, comprenant préférentiellement une quantité d'éthylène comprise dans la gamme allant de 50 à 90% en masse totale du copolymère. A titre d'exemple de copolymère de l'éthylène, on peut citer les copolymères d'éthylène et d'une oléfine différente de l'éthylène, d'éthylène et d'acétate de vinyle, d'éthylène et de (méth)acrylate d'alkyle, d'éthylène et d'acide (méth)acrylique ou les copolymères de l'éthylène déjà cités qui sont utilisés pour la fabrication de la composition selon l'invention. La composition est particulièrement utile pour réticuler les copolymères d'éthylène et d'acétate de vinyle. La seconde polyoléfine peut également être un mélange de polyoléfines.
Le polymère à réticuler peut comprendre en outre un co-agent de réticulation. Un peroxyde forme lors de son activation des radicaux libres sur le polymère, ce qui permet la réticulation des chaînes du polymère, sans que le peroxyde s'intègre dans ces chaînes. Un co-agent de réticulation a un fonctionnement différent d'un peroxyde : en effet, il est activé à l'aide d'un initiateur de radicaux libres tel que les peroxydes organiques. Ainsi, activé lors de la dégradation du peroxyde, il forme alors des ponts de réticulation avec le polymère et est donc intégré dans la chaîne du polymère réticulé, contrairement aux peroxydes.
Le co-agent peut être monofonctionnel ou polyfoncionnel. Il porte avantageusement au moins une fonction carbamate, maléimide, acrylate, méthacrylate ou allyle. Ce sont des substances présentant avantageusement une masse molaire inférieure ou égale à 1000 g/mol, préférentiellement inférieure ou égale à 400 g/mol. Les carboxylates d'allyle peuvent être utilisés. Les co-agents peuvent être des composés de type allyle, diallyle et triallyle. Avantageusement, le co-agent de réticulation est choisi parmi le cyanurate de triallyle, l'isocyanurate de triallyle, le Ν,Ν' m- phénylène dimaléimide, le trimellitate de triallyle et le triméthylolpropane triméthacrylate, préférentiellement le cyanurate de triallyle.
Le taux de réticulation du polymère réticulé est généralement quantifié par la mesure du taux de gel. Ce taux de gel peut être mesuré en utilisant la méthode A de la norme ASTM D2765-01 (2006). Avantageusement, le taux de gel du polymère est supérieur ou égal à 10, préférentiellement supérieur ou égal à 20, par exemple supérieur ou égal à 50.
Par ailleurs, l'invention a également pour objet un procédé de fabrication de film comprenant une étape de mélange de la composition selon l'invention avec une seconde polyoléfine, suivie d'une étape de mise en forme de film. Lors de l'étape de mélange, on utilise les techniques classiques de mélange, en particulier dans les outils de mise en oeuvre des thermoplastiques, tels que les extrudeuses ou les mélangeurs. On peut mélanger à une température inférieure à la température de dégradation de l'agent réticulant. On réalise la seconde étape de mise en forme à une température inférieure à la température de dégradation de l'agent réticulant. On peut utiliser tout type d'appareillage permettant la mise en forme tel que les presses, les injecteurs ou les calandreurs. On peut également réaliser la mise en forme simultanément avec la première étape, par exemple par extrusion de film en plaçant une filière plate en bout de l'extrudeuse.
L'invention porte également sur le film obtenu par ce procédé. Le film selon l'invention peut présenter une épaisseur allant de 0,1 à 2mm.
Préférentiellement, le film est transparent, c'est-à-dire qu 'un film de 500 μιτι d'épaisseur présente une transmission supérieure ou égale à 80% lorsqu'il est évalué selon la norme ASTM D1003 pour au moins une longueur d'onde du domaine visible (de 380 à 780 nm), préférentiellement supérieure ou égale à 85%, voire 90%.
Un autre objet de l'invention est l'utilisation de ce film comme encapsulant de cellules photovoltaïques. Le film selon l'invention présente toutes les caractéristiques nécessaires à son utilisation comme encapsulant, c'est-à- dire qu'il adhère et épouse parfaitement à la pile photovoltaïque et aux couches protectrices, ce qui permet d'éviter la présence d'air qui limiterait le rendement du module solaire. Dans une version très avantageuse, les couches d'encapsulant (et en particulier la couche d'encapsulant supérieure) sont transparentes conformément aux paramètres donnés dans la présente description.
Généralement, pour former un module photovoltaïque, on place successivement sur une couche de protection arrière (« backsheet »), une première couche d'encapsulant inférieure, une pile photovoltaïque, une seconde couche d'encapsulant supérieure puis une couche protectrice supérieure (« frontsheet »). On peut trouver en outre des couches additionnelles, et en particulier des couches de liants ou d'adhésifs. Il est précisé que le film selon l'invention peut être utilisée dans toute structure photovoltaïque et que cette utilisation n'est évidemment pas limitée aux modules présentés dans cette description.
Pour former la pile photovoltaïque, on peut utiliser tout type de capteurs photovoltaïques parmi lesquelles les capteurs dits « classiques » à base de silicium dopé, monocristallin ou polycristallin ; les capteurs en couche mince formées par exemple de silicium amorphe, de tellurure de cadnium, de disiléniure de cuivre-indium ou de matériaux organiques peuvent également être utilisés.
Comme exemples de backsheet que l'on peut utiliser dans les modules photovoltaïques, on peut citer de manière non exhaustive des films monocouches ou multicouches à base de polyester, de polymère fluoré (polyfluorure de vinyle PVF ou polyfluorure de vinylidène PVDF). Comme structure particulière de backsheet, on peut citer par exemple les films multicouches polymère fluoré/polyéthylène téréphtalate/polymère fluoré ou encore polymère fluoré/polyéthylène téréphtalate/EVA.
La plaque protectrice supérieure a des propriétés de résistance à l'abrasion et au choc, est transparente et protège les capteurs photovoltaïques de l'humidité extérieure. Pour former cette couche, on peut citer le verre, le poly(méthacrylate de méthyle) (PMMA) ou toute autre composition polymère réunissant ces caractéristiques.
De manière particulièrement avantageuse, le film selon l'invention présente une bonne adhésion avec le PMMA en comparaison avec les films encapsulants classiques.
L'invention a également pour objet un procédé de fabrication d'un module photovoltaïque comprenant au moins :
une étape d'assemblage des différentes couches constitutives du module comprenant le film de l'invention et des cellules photovoltaïques ;
une étape de cuisson du module.
Pour réaliser l'étape de cuisson du module, on peut utiliser tous les types de techniques de pressage comme par exemple le pressage à chaud, le pressage sous vide ou le laminage, en particulier le thermolaminage. Les conditions de fabrication seront aisément déterminées par l'homme du métier en adaptant la température à la température de dégradation de l'agent réticulant et la température de fusion de la polyoléfine du film. Par exemple, la température de cuisson peut être comprise dans la gamme allant de 80 à 1 60°C. Pour fabriquer les modules photovoltaïques selon l 'invention, l' homme du métier peut se référer par exemple au Handbook of Photovoltaic Science and Engineering, Wiley, 2003. L'invention va maintenant être illustrée par les exemples suivants. Il est précisé que ces exemples ne visent en aucun cas à limiter la portée de la présente invention.
Exemple 1 :
Produits utilisés :
On utilise un peroxyde organique. On utilise comme peroxyde organique le monoperoxycarbonate de OO-t-butyle et de 0-(2-éthylhexyle) .
On utilise du vinyltriméthoxysilane comme agent de couplage.
Pour réaliser le mélange-maîtres selon l'invention, on utilise des granulés d' un copolymère d 'éthylène, d 'acétate de vinyle et d 'anhydride maléique comprenant, par rapport à la masse du polymère, 28% d'acétate et 0,8% d'anhydride (copolymère 1 ) .
Pour réaliser les mélange-maîtres comparatifs, on utilise des granulés d'un copolymère d 'éthylène et d'acétate de vinyle comprenant 33% en masse d'acétate (copolymère 2) .
Composition des mélanges-maîtres :
Les mélanges-maîtres présentent, par rapport à la masse totale du mélange-maître, les compositions suivantes
Exemple Exemple Exemple Exemple Exemple Exemple
Produits
11 CP1 12 CP2 13 CP3
Copolymère
90 0 89,7 0 90 0 1 (%)
Copolymère
0 90 0 89,7 0 89,7 2 (%)
Peroxyde (%) 10 10 10 10 10 10
Agent de
0 0 0,3 0,3 0 0,3 couplage (%) Préparation des mélanges-maîtres :
On réalise une absorption sur les granulés de copolymère pour chacune des solutions de peroxyde.
On met en contact dans un agitateur à rouleaux le peroxyde organique (2,2kg) avec le copolymère (19,8kg) et éventuellement l'agent de couplage dans un récipient clos à 20°C, l'axe de rotation du cylindre étant horizontal, et agité par rotation du récipient à une vitesse de 10 tours par minute.
Une première moitié de la solution de peroxyde est injectée au début de l'absorption et une seconde moitié est ajoutée au bout de 30 minutes d'absorption.
On récupère les particules de polymère au bout des 120 minutes. L'absorption de la solution de peroxyde dans les particules est totale.
Les particules ont été dosées après lavage pendant une heure dans le n- heptane : la quantité de peroxyde dans le copolymère est de 10% en masse totale de la composition.
Préparation des éprouvettes
Pour évaluer le mélange-maître selon l'invention, on prépare des films d'un mélange de 90% en masse de copolymère 2 avec 10% en masse de mélange-maître (exemple 11 , 12, CPl ou CP2). On prépare également des films d'un mélange de 85% en masse de copolymère 1 avec 15% en masse de mélange-maître 13 ainsi que d'un mélange de 85% en masse de copolymère 2 avec 15% en masse de mélange-maître CP3.
Ces films obtenus à partir des 4 mélanges-maîtres 11 , 12, 13, CPl , CP2 ou CP3 sont réalisés sur une extrudeuse Haake 1 bivis contra rotative équipée d'une filière film. Le profil de température de l'extrudeuse est: trémie 20°C - Zonel : 75 -Zone 2 : 75 -Filière film : 75 °C, la vitesse de vis de 80 tr/mn. On obtient des films de 8 cm de largeur. Mesure de l'adhésion
Evaluation des mélanges-maîtres I I, 12, CP l et CP2 : adhésion sur verre
On prépare une structure multicouche composée de verre (environ 3 mm) / film (0,32 mm) / Backsheet à base de polyfluorure de vinylidene (0,32 mm) pour évaluer l'adhésion des 3 types de films. Cette structure est réalisée en plusieures étapes :
- Nettoyage du support verre (200 x 80 x 3 mm) à l'alcool.
- Superposition des couches de la structure avec des cales pour ajuster l'épaisseur du film.
- Préchauffage de la structure pendant 3 min sous une masse de 5 kg en étuve à 1 10°C puis pressage sous 5 bars de la structure dans une presse à 150°C pendant 15 minutes.
- Refroidissement à l'ambiante.
- Conditionnement des éprouvettes 24h en salle climatisée.
Evaluation des mélanges-maîtres 13 et CP3 : adhésion sur PMMA
La structure avec le PMMA est préparée selon le même protocole que ci- dessus à la différence près que le support, à la place du verre, est une plaque de PMMA (200 x 80 x 3 mm).
L'adhésion est mesurée en évaluant les structures sur un dynanomètre de marque ZWIC 1445 équipé d'un capteur de force, à une vitesse de traction 50 mm/min, pour un pelage à 90°C selon la norme ISO 8510-2: 1990 : Adhésifs - Essai de pelage pour un assemblage collé flexible sur rigide. Les éprouvettes de test sont découpées au cutter et ont une largeur de 15 mm. Les éprouvettes présentent les adhésions suivantes :
Force de pelage
Film Type structure
(N/1 5 mm)
11 75 verre
12 >90 verre
13 30 PMMA
CP 1 55 verre
CP2 90 verre
CP3 0 PMMA Les essais montrent que le mélange-maître selon l'invention permet de fabriquer des films présentant une très bonne adhésion sur des supports tels que le verre, même en l'absence d'agent de couplage.
L'essai 13 montre, lorsqu'il est comparé à l'exemple CP3, que le mélange- maître est particulièrement avantageux lorsque le support est en PMMA. Ainsi, un des avantages de ce mélange-maître est qu'il permet une adhésion à des supports nombreux.
Exemple 2
Produits utilisés :
On utilise comme peroxyde organique le monoperoxycarbonate de OO-t- butyle et de 0-(2-éthylhexyle) (PEROX 1 ) et 2-éthylperhexanoate de tert- butyle (PEROX 2).
On utilise du vinyltriméthoxysilane comme agent de couplage.
Pour réaliser le mélange-maîtres selon l'invention (11 ), on utilise des granulés d'un copolymère d'éthylène, d'acétate de vinyle et d'anhydride maléique comprenant, par rapport à la masse du polymère, 28% d'acétate et 0,8% d'anhydride (copolymère 1 ).
Pour réaliser les mélange-maîtres comparatifs (CP1 ), on utilise des granulés d'un copolymère d'éthylène et d'acétate de vinyle comprenant 33% en masse d'acétate (copolymère 2). Ces mélanges maîtres sont ensuite dilués dans une matrice (Ml , M2 et M3) pour réaliser des films.
M l : copolymère d'éthylène et d'acétate de vinyle comprenant 33% en masse d'acétate, melt flow index = 45 (190°C, 2.1 6kg)
M2 : copolymère d'éthylène, d'acétate de vinyle et d'anhydride maléique comprenant, par rapport à la masse du polymère, 28% d'acétate et 0,6% d'anhydride, Ml = 80
M3 : copolymère d'éthylène, d'acétate de vinyle et d'anhydride maléique comprenant, par rapport à la masse du polymère, 28% d'acétate et 0,5% d'anhydride, Ml = 45
Composition des mélanges-maîtres :
Les mélanges-maîtres présentent, par rapport à la masse totale du mélange-maître, les compositions suivantes Produits Exemple 11 Exemple CP1 Exemple 14
Copolymère 1 (%) 90 0 86,5
Copolymère 2 (%) 0 90 0
PEROX 1 (%) 10 10 0
PEROX 2 (%) 10
Coagent
(cyanurate de 3,5
triallyle)
Préparation des mélanges-maîtres :
On réalise une absorption sur les granulés de copolymère pour chacune des solutions de peroxyde.
On met en contact dans un agitateur à rouleaux le peroxyde organique (2,2kg) avec le copolymère (19,8kg) et éventuellement l'agent de couplage dans un récipient clos à 20°C, l'axe de rotation du cylindre étant horizontal, et agité par rotation du récipient à une vitesse de 10 tours par minute.
Une première moitié de la solution de peroxyde est injectée au début de l'absorption et une seconde moitié est ajoutée au bout de 30 minutes d'absorption.
On récupère les particules de polymère au bout des 120 minutes. L'absorption de la solution de peroxyde dans les particules est totale.
Les particules ont été dosées après lavage pendant une heure dans le n- heptane : la quantité de peroxyde dans le copolymère est de 10% en masse totale de la composition.
Préparation des éprouvettes
Pour évaluer le mélange-maître selon l'invention, on prépare des films selon les compositions ci dessous : Exemple Exemple Exemple Exemple Exemple Exemple
Produits
CP4 14 15 16 17 18
MM 11 (%) 15 15 15
MM 14 (%) 15 15
MM CPl (%) 15
Agent de
0.3
couplage
M l 84.7 85
M2 85 85
M3 85 85
Ces films obtenus à partir des 3 mélanges-maîtres 11 , 14, et CP l sont réalisés sur une extrudeuse Haake 1 bivis contra rotative équipée d'une filière film. Le profil de température de l'extrudeuse est: trémie 20°C - Zonel : 75 -Zone 2 : 75 -Filière film : 75 °C, la vitesse de vis de 80 tr/mn. On obtient des films de 8 cm de largeur.
Mesure de l'adhésion sur verre
On prépare une structure multicouche composée de verre (environ 3 mm) / film (0,32 mm) / Backsheet à base de polyfluorure de vinylidene (0,32 mm) pour évaluer l'adhésion des 3 types de films. Cette structure est réalisée en plusieurs étapes :
- Nettoyage du support verre (200 x 80 x 3 mm) à l'alcool.
- Superposition des couches de la structure avec des cales pour ajuster l'épaisseur du film.
- Préchauffage de la structure pendant 3 min sous une masse de 5 kg en étuve à 1 10°C puis pressage sous 5 bars de la structure dans une presse à 150°C pendant 15 minutes.
- Refroidissement à l'ambiante.
- Conditionnement des éprouvettes 24h en salle climatisée. Mesure de l'adhésion sur PMMA
- Nettoyage du support PMMA (200 x 80 x 3 mm)
- Superposition des couches de la structure avec des cales pour ajuster l'épaisseur du film.
- Préchauffage de la structure pendant 3 min sous une masse de 5 kg en étuve à 85°C puis pressage sous 5 bars de la structure dans une presse à 1 15°C pendant 15 minutes.
- Refroidissement à l'ambiante.
- Conditionnement des éprouvettes 24h en salle climatisée.
L'adhésion est mesurée en évaluant les structures sur un dynamomètre de marque ZWIC 1445 équipé d'un capteur de force, à une vitesse de traction 50 mm/min, pour un pelage à 90°C selon la norme ISO 8510-2:1990 : Adhésifs - Essai de pelage pour un assemblage collé flexible sur rigide. Les éprouvettes de test sont découpées au cutter et ont une largeur de 15 mm. Les éprouvettes présentent les adhésions suivantes :
Figure imgf000025_0001
Les essais montrent que le mélange-maître selon l'invention permet de fabriquer des films présentant une très bonne adhésion sur des supports tels que le verre, même en l'absence d'agent de couplage.
Les essais 16 et 17 montrent, lorsqu'ils sont comparés à l'exemple CP4, que le mélange-maître est particulièrement avantageux lorsque le support est en PMMA (Polyméthacrylate de Méthyle).

Claims

REVENDICATIONS Composition comprenant un mélange d'un agent réticulant et d'une première polyoléfine comprenant un monomère fonctionnel (X) choisi parmi les anhydrides d'acide carboxylique ou de diacide carboxylique insaturés, les acides carboxyliques insaturés et les époxydes insaturés apte à être réticulé avec une seconde polyoléfine pour former un ensemble (22) adhésivé à un support (24), ledit ensemble (22) et le support (24) formant une structure solidaire à deux couches distinctes
(22, 24), caractérisée en ce que la quantité d'agent réticulant est supérieure ou égale à 5% de la masse totale de la composition.
Composition selon la revendication 1 dans laquelle la quantité d'agent réticulant est comprise dans la gamme allant de 6 à 30 % de la masse totale de la composition, préférentiellement de 7 à 16%.
Composition selon l'une des revendications précédentes dans laquelle l'agent réticulant est un peroxyde organique.
Composition selon l'une des revendications précédentes comprenant en outre un agent de couplage.
Composition selon l'une des revendications précédentes dans laquelle la polyoléfine fonctionnelle est un polymère de :
l'éthylène ;
au moins un monomère fonctionnel (X) choisi parmi l'acide (méth)acrylique, l'anhydride maléique et le (méth)acrylate de glycidyle et éventuellement un monomère additionnel comprenant de 4 à 20 atomes de carbone choisi parmi les esters vinyliques d'acide carboxylique ou les (méth)acrylates d'alkyle.
6. Composition selon la revendication 4 dans laquelle la polyoléfine comprenant un monomère fonctionnel (X) comprend par rapport à son poids total :
de 0,01 à 20% en masse du monomère fonctionnel (X) ;
■ de 0 à 45% en masse du monomère additionnel ;
de 99,99 à 35% en masse d'éthylène.
7. Composition selon la revendication précédente dans laquelle la polyoléfine comprenant un monomère fonctionnel (X) comprend par rapport à son poids total :
de 0,1 à 10% en masse du monomère fonctionnel (X) ;
de 10 à 35% en masse du monomère additionnel ;
de 89,9 à 55% en masse d'éthylène.
8. Composition selon l'une des revendications précédentes dans laquelle le monomère fonctionnel (X) qui est compris dans la polyoléfine y est inséré par greffage ou par copolymérisation.
9. Composition selon l'une des revendications 1 à 8 dans laquelle la polyoléfine comprenant un monomère fonctionnel (X) est choisi parmi un polyéthylène de densité allant de 0,860 à 0,910 greffé par l'anhydride maléique, un copolymère éthylène-anhydride maléique, un copolymère éthylène-(méth)acrylate de méthyle-anhydride maléique, un copolymère éthylène-(méth)acrylate d'éthyle-anhydride maléique, un copolymère éthylène-(méth)acrylate de butyle-anhydride maléique, un copolymère éthylène-acétate de vinyle-anhydride maléique, un copolymère éthylène-(méth)acrylate de glycidyle, un copolymère éthylène-(méth)acrylate de méthyle-(méth)acrylate de glycidyle, un copolymère éthylène-(méth)acrylate d'éthyle-(méth)acrylate de glycidyle, un copolymère éthylène-(méth)acrylate de butyle-
(méth)acrylate de glycidyle et un copolymère éthylène-acétate de vinyle-(méth)acrylate de glycidyle.
10. Composition selon l'une des revendications précédentes dans laquelle le monomère fonctionnel (X) est l'anhydride maléique.
1 1 . Composition selon l'une quelconque des revendications précédentes dans laquelle le support (24) est en verre, le poly(méthacrylate de méthyle) (PMMA) ou toute autre composition polymère réunissant ces caractéristiques.
12. Procédé de fabrication de la composition selon l'une des revendications précédentes caractérisé en ce qu'il comprend :
une première étape de mise en contact de l'agent réticulant sous forme d'une solution avec la polyoléfine portant le monomère fonctionnel ;
une seconde étape d'absorption de la solution de peroxyde (b) par la polyoléfine sous agitation et à une température inférieure à la température de ramollissement de la polyoléfine portant le monomère fonctionnel mesurée selon la norme ASTM E 28-99(2004) ;
une troisième étape de récupération de la composition.
13. Utilisation de la composition selon l'une des revendications 1 à 1 1 ou la composition obtenue par le procédé selon la revendication 12 en tant que mélange-maître de réticulation d'une seconde polyoléfine.
14. Procédé de fabrication d'un film comprenant :
■ une étape de fabrication d'un mélange d'une polyoléfine avec la composition selon l'une des revendications 1 à 1 1 ou la composition obtenue par le procédé selon la revendication 12 et ;
■ une étape de mise sous forme de film dudit mélange.
15. Utilisation d'un film, constituée d'une structure obtenue à partir de la composition selon l'une quelconque des revendications 1 à 1 1 ayant réticulé avec une seconde polyoléfine, comme encapsulant de cellules photovoltaïques.
16. Procédé de fabrication d'un module photovoltaïque comprenant au moins :
une étape d'assemblage des différentes couches constitutives du module comprenant le film obtenu selon la revendication 14 et des cellules photovoltaïques ;
une étape de cuisson du module.
PCT/FR2010/052499 2009-12-03 2010-11-24 Composition utile comme melange-maitre de reticulation comprenant une polyolefine fonctionnelle WO2011067505A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800535177A CN102666615A (zh) 2009-12-03 2010-11-24 包括功能聚烯烃的适合用作为交联母料的组合物
JP2012541554A JP2013512984A (ja) 2009-12-03 2010-11-24 官能性ポリオレフィンを含む架橋性マスターバッチとしての使用に適した組成物
US13/511,054 US20120301991A1 (en) 2009-12-03 2010-11-24 Composition suitable for use as a cross-linking masterbatch including a functional polyolefin
CA2782233A CA2782233A1 (fr) 2009-12-03 2010-11-24 Composition utile comme melange-maitre de reticulation comprenant une polyolefine fonctionnelle
EP10805263A EP2507276A1 (fr) 2009-12-03 2010-11-24 Composition utile comme melange-maitre de reticulation comprenant une polyolefine fonctionnelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0958622A FR2953525B1 (fr) 2009-12-03 2009-12-03 Composition utile comme melange-maitre de reticulation comprenant une polyolefine fonctionnelle
FR0958622 2009-12-03

Publications (1)

Publication Number Publication Date
WO2011067505A1 true WO2011067505A1 (fr) 2011-06-09

Family

ID=41720862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052499 WO2011067505A1 (fr) 2009-12-03 2010-11-24 Composition utile comme melange-maitre de reticulation comprenant une polyolefine fonctionnelle

Country Status (8)

Country Link
US (1) US20120301991A1 (fr)
EP (1) EP2507276A1 (fr)
JP (1) JP2013512984A (fr)
KR (1) KR20120102737A (fr)
CN (1) CN102666615A (fr)
CA (1) CA2782233A1 (fr)
FR (1) FR2953525B1 (fr)
WO (1) WO2011067505A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016012718A1 (fr) 2014-07-25 2016-01-28 Arkema France Utilisation des mélanges des peroxydes monoperoxycarbonate pour la réticulation et composition de polymères réticulables

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953524B1 (fr) * 2009-12-03 2012-12-14 Arkema France Systeme de reticulation a haute vitesse
FR2966463B1 (fr) 2010-10-22 2013-03-22 Arkema France Compositions thermoplastiques transparentes a haute tenue thermomecanique et ignifugees sans halogene, en particulier pour l'encapsulation dans les modules photovoltaiques
FR3001832B1 (fr) * 2013-02-06 2015-02-20 Arkema France Utilisation d'une composition polymerique fluide pour l'encapsulation de modules photovoltaiques
JP6232139B2 (ja) * 2013-09-11 2017-11-15 アクゾ ノーベル ケミカルズ インターナショナル ベスローテン フエンノートシャップAkzo Nobel Chemicals International B.V. エチレン系ポリマーの架橋過程
WO2015171575A1 (fr) 2014-05-09 2015-11-12 E. I. Du Pont De Nemours And Company Composition d'agent d'encapsulation comportant un copolymère d'éthylène, d'acétate de vinyle et d'un troisième comonomère
KR101806230B1 (ko) 2015-06-10 2017-12-08 (주)이지켐 폴리프로필렌 개질 방법 및 이를 적용한 전극탭
WO2019151011A1 (fr) * 2018-01-31 2019-08-08 Mcppイノベーション合同会社 Composition d'élastomère modifié, composition d'élastomère réticulé et article moulé associé
EP3762973B1 (fr) 2018-03-08 2023-03-29 Dow Global Technologies LLC Module photovoltaïque et composition d'encapsulation présentant une résistance améliorée à la dégradation induite par un potentiel
BR112020023768A2 (pt) * 2018-05-23 2021-02-09 Borealis Ag composição de poliolefina reticulável que compreende um primeiro e um segundo polímeros de olefina
EP3739597A1 (fr) * 2019-05-16 2020-11-18 Borealis AG Composition
CN112048115B (zh) * 2019-06-06 2023-09-26 神华(北京)新材料科技有限公司 金属与聚烯烃的复合材料及其制备方法和容器
KR102204944B1 (ko) * 2020-09-18 2021-01-21 이경윤 내연성이 강화된 전선 케이블용 조성물
CN114057944B (zh) * 2021-11-04 2024-04-05 浙江祥邦科技股份有限公司 一种反应型环氧接枝聚烯烃树脂及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR953978A (fr) 1947-09-16 1949-12-16 Lunettes à verres interchangeables perfectionnées
US3594342A (en) 1967-09-22 1971-07-20 Leuna Werke Veb Process for the introduction of additives into plastic and wax melts
EP0030757A1 (fr) * 1979-12-13 1981-06-24 Akzo N.V. Procédé pour la préparation de mélanges mères de peroxydes dans des polymères
FR2498609A1 (fr) 1981-01-27 1982-07-30 Charbonnages Ste Chimique Terpolymeres de l'ethylene, leur procede de fabrication et leur application a la fabrication de films
FR2569412A1 (fr) 1984-08-23 1986-02-28 Charbonnages Ste Chimique Nouveau procede de fabrication de terpolymeres radicalaires de l'ethylene et de copolymeres radicalaires de l'ethylene
FR2569411A1 (fr) 1984-08-23 1986-02-28 Charbonnages Ste Chimique Nouveau procede de fabrication de terpolymeres radicalaires de l'ethylene et de copolymeres radicalaires de l'ethylene
US5589526A (en) 1994-10-19 1996-12-31 Peroxid-Chemie Gmbh Master batch compositions containing organic peroxides
WO2001004200A1 (fr) * 1999-07-07 2001-01-18 Akzo Nobel N.V. Melanges maitre de reticulation hautement concentres
US20050051204A1 (en) * 2003-09-10 2005-03-10 Kasumi Oi Encapsulant layer for photovoltaic module, photovoltaic module and method for manufacturing regenerated photovoltaic cell and regenerated transparent front face substrate
EP1956661A1 (fr) 2005-11-29 2008-08-13 Dainippon Printing Co., Ltd. Bourrage pour module de cellules solaires, module de cellules solaires l'utilisant, et procede de production d'un bourrage pour module de cellule solaire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087588A (en) * 1975-09-22 1978-05-02 Chemplex Company Adhesive blends

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR953978A (fr) 1947-09-16 1949-12-16 Lunettes à verres interchangeables perfectionnées
US3594342A (en) 1967-09-22 1971-07-20 Leuna Werke Veb Process for the introduction of additives into plastic and wax melts
EP0030757A1 (fr) * 1979-12-13 1981-06-24 Akzo N.V. Procédé pour la préparation de mélanges mères de peroxydes dans des polymères
FR2498609A1 (fr) 1981-01-27 1982-07-30 Charbonnages Ste Chimique Terpolymeres de l'ethylene, leur procede de fabrication et leur application a la fabrication de films
FR2569412A1 (fr) 1984-08-23 1986-02-28 Charbonnages Ste Chimique Nouveau procede de fabrication de terpolymeres radicalaires de l'ethylene et de copolymeres radicalaires de l'ethylene
FR2569411A1 (fr) 1984-08-23 1986-02-28 Charbonnages Ste Chimique Nouveau procede de fabrication de terpolymeres radicalaires de l'ethylene et de copolymeres radicalaires de l'ethylene
US5589526A (en) 1994-10-19 1996-12-31 Peroxid-Chemie Gmbh Master batch compositions containing organic peroxides
WO2001004200A1 (fr) * 1999-07-07 2001-01-18 Akzo Nobel N.V. Melanges maitre de reticulation hautement concentres
US20050051204A1 (en) * 2003-09-10 2005-03-10 Kasumi Oi Encapsulant layer for photovoltaic module, photovoltaic module and method for manufacturing regenerated photovoltaic cell and regenerated transparent front face substrate
EP1956661A1 (fr) 2005-11-29 2008-08-13 Dainippon Printing Co., Ltd. Bourrage pour module de cellules solaires, module de cellules solaires l'utilisant, et procede de production d'un bourrage pour module de cellule solaire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Handbook of Photovoltaic Science and Engineering", 2003, WILEY

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016012718A1 (fr) 2014-07-25 2016-01-28 Arkema France Utilisation des mélanges des peroxydes monoperoxycarbonate pour la réticulation et composition de polymères réticulables
FR3024151A1 (fr) * 2014-07-25 2016-01-29 Arkema France Utilisation d'un peroxyde monoperoxycarbonate pour la reticulation et composition de polymere reticulable
US11111357B2 (en) 2014-07-25 2021-09-07 Arkema France Use of mixtures of monoperoxycarbonate peroxides for the cross-linking and composition of cross-linkable polymers

Also Published As

Publication number Publication date
EP2507276A1 (fr) 2012-10-10
FR2953525A1 (fr) 2011-06-10
JP2013512984A (ja) 2013-04-18
CN102666615A (zh) 2012-09-12
KR20120102737A (ko) 2012-09-18
US20120301991A1 (en) 2012-11-29
FR2953525B1 (fr) 2013-01-25
CA2782233A1 (fr) 2011-06-09

Similar Documents

Publication Publication Date Title
WO2011067505A1 (fr) Composition utile comme melange-maitre de reticulation comprenant une polyolefine fonctionnelle
EP2242647B1 (fr) Liant a base de copolymere ethylene-ester vinylique d'acide carboxylique et de polyolefine contenant un monomere fonctionnel
EP2285869B1 (fr) Composition a base de polymere greffe polyamide et son utilisation dans les modules photovoltaiques
US10566480B2 (en) Sealing material for solar cell modules, and manufacturing method thereof
EP2358808B1 (fr) Utilisation d'un film composé de polyéthyléne dans un module photovoltaique
EP2358807A1 (fr) Utilisation d'un film a base de polyethylene dans un module photovoltaique
EP2673809B1 (fr) Film bi-couches d'un module photovoltaïque
EP2507304B1 (fr) Systeme de reticulation a haute vitesse
EP2700103B1 (fr) Film bi-couches d'un module photovoltaique
EP2954560B1 (fr) Utilisation d'une composition polymerique fluide pour l'encapsulation de modules photovoltaïques
EP2673137A1 (fr) Encapsulant d'un module photovoltaïque
EP3049461A1 (fr) Composition thermoplastique, notamment pour les modules photovoltaïques
CN111435688A (zh) 一种光伏背板及包含所述光伏背板的光伏组件
EP2681251B1 (fr) Polyolefines modifiees, reticulables apres transformation, et procede de fabrication desdites polyolefines
WO2011033232A1 (fr) Composition melange-maitre utile dans les modules photovoltaiques

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080053517.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10805263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010805263

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2782233

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012541554

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5301/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127017223

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13511054

Country of ref document: US