WO2011065473A1 - Composite reflective element for use in a road-surface marking material, and road-surface marking material containing said composite reflective element - Google Patents

Composite reflective element for use in a road-surface marking material, and road-surface marking material containing said composite reflective element Download PDF

Info

Publication number
WO2011065473A1
WO2011065473A1 PCT/JP2010/071109 JP2010071109W WO2011065473A1 WO 2011065473 A1 WO2011065473 A1 WO 2011065473A1 JP 2010071109 W JP2010071109 W JP 2010071109W WO 2011065473 A1 WO2011065473 A1 WO 2011065473A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective element
road marking
marking material
composite
composite reflective
Prior art date
Application number
PCT/JP2010/071109
Other languages
French (fr)
Japanese (ja)
Inventor
武司 前場
壽一 北条
Original Assignee
丸尾カルシウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丸尾カルシウム株式会社 filed Critical 丸尾カルシウム株式会社
Priority to JP2011543316A priority Critical patent/JP5719310B2/en
Publication of WO2011065473A1 publication Critical patent/WO2011065473A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F9/00Arrangement of road signs or traffic signals; Arrangements for enforcing caution
    • E01F9/50Road surface markings; Kerbs or road edgings, specially adapted for alerting road users
    • E01F9/506Road surface markings; Kerbs or road edgings, specially adapted for alerting road users characterised by the road surface marking material, e.g. comprising additives for improving friction or reflectivity; Methods of forming, installing or applying markings in, on or to road surfaces
    • E01F9/524Reflecting elements specially adapted for incorporation in or application to road surface markings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F9/00Arrangement of road signs or traffic signals; Arrangements for enforcing caution
    • E01F9/50Road surface markings; Kerbs or road edgings, specially adapted for alerting road users
    • E01F9/506Road surface markings; Kerbs or road edgings, specially adapted for alerting road users characterised by the road surface marking material, e.g. comprising additives for improving friction or reflectivity; Methods of forming, installing or applying markings in, on or to road surfaces
    • E01F9/518Road surface markings; Kerbs or road edgings, specially adapted for alerting road users characterised by the road surface marking material, e.g. comprising additives for improving friction or reflectivity; Methods of forming, installing or applying markings in, on or to road surfaces formed in situ, e.g. by painting, by casting into the road surface or by deforming the road surface

Definitions

  • the present invention relates to a composite reflective element for an all-weather road marking material, a method for producing the same, and a road marking material containing the composite reflective element for a road marking material. More specifically, the visual recognition of a road marking material during night rainy weather is provided.
  • the present invention relates to a composite reflecting element for road marking material capable of improving the property, a manufacturing method capable of easily and inexpensively manufacturing the same, and a road marking material including the composite reflecting element for road marking material.
  • a reflection material such as glass beads is dispersed on the surface of the marking material substrate, and its reflection has been used.
  • the headlight of the car is specularly reflected and not retroreflected.
  • it is necessary to prevent the reflective material from being submerged for example, by attaching irregularities to the road surface marking material base material and dispersing the reflective material (glass beads, etc.) in the irregular portions to prevent submersion, It can be seen even in the rain at night (Patent Documents 1 to 4).
  • a road marking material including a retroreflective element made of a high refractive index bead fixed on a core material and a binder layer provided on the surface thereof has been introduced (Patent Documents 5 and 6).
  • Patent Documents 1 to 4 are uneconomical because the construction is complicated and the material cost increases. Furthermore, noise generated when a vehicle passes through the uneven portion is a problem, and is particularly serious in urban areas.
  • the methods for producing the retroreflective elements of Patent Documents 5 and 6 use a binder based on a solvent-based thermosetting resin, causing adhesion between particles, resulting in poor yield and time for curing. However, tackiness remains and there is a problem in workability. Further, the melt-type road marking material needs to be heated to fix the recursive element to the marking material substrate, but there is a problem that the heating temperature is close to the heat resistance limit of the binder.
  • the substrate viscosity is high, it is necessary to bury and embed with a burner after spraying high-intensity beads, resulting in severe yellowing.
  • solvent resistance is required, but in the retroreflective element, the high refractive index beads on the surface are detached, and the visibility effect is impaired.
  • the retroreflective element requires adhesion to the road marking material serving as a base material, and further requires an adhesive strength between the inorganic particles and the high refractive index glass beads, but it cannot be said to be sufficiently satisfactory.
  • the present inventors As a result of diligent research to solve the problems of the prior art in view of the above circumstances, the present inventors, as a result, combined reflection of glass beads having a high refractive index on the surface of relatively inexpensive inorganic particles with an inorganic binder. It has been found that the device provides a road marking material with excellent visibility even when it rains at night, and can be easily manufactured at low cost, and the present invention has been completed.
  • the present invention has been made to achieve the above object, and the first feature of the present invention is that the surface of the core material is made from a core material and an inorganic binder, and the refractive index is 1.5 to 2.8 and the average particle size is 10
  • a composite reflecting element for road marking material characterized in that glass beads of ⁇ 500 ⁇ m are fixed.
  • the second feature of the present invention is a composite reflective element for road marking material, wherein the core material is at least one selected from ceramic beads, barite, Jacques, silica stone, zinc oxide, alumina, and white silica.
  • a third feature of the present invention is a composite reflecting element for road marking material in which the average particle diameter of the core material is 100 to 5000 ⁇ m.
  • the fourth feature of the present invention is a composite reflecting element for road marking material in which the surface of the core material is coated with an inorganic binder with a coating material made of titanium oxide, mica, or both, or a pearl pigment.
  • the fifth feature of the present invention is a composite reflecting element for road marking material in which the inorganic binder is water glass.
  • the sixth feature of the present invention is a composite reflecting element for road marking materials in which glass beads have a wide particle size distribution of 10 to 100 ⁇ m.
  • the seventh feature of the present invention is a composite reflecting element for road marking material in which the surface of the composite reflecting element is coated with a fluorescent pigment or a phosphorescent pigment.
  • the eighth feature of the present invention is the above-described method for manufacturing a composite reflective element, in which a core material, glass beads, and an inorganic binder are stirred and mixed and baked to fix the glass beads to the surface of the core material with the inorganic binder.
  • Ninth feature of the present invention is a road marking material containing the composite reflective element.
  • the composite reflective element for road marking material of the present invention has high refractive index glass beads firmly fixed to the surface of the core material by an inorganic binder, so that the glass beads are less detached from the surface of the core material, heat resistance, solvent resistance The property is also good. For this reason, it can be suitably used as a retroreflective element for both paint-type and melt-type road marking materials.
  • the binder is solvent-free, the environment is not deteriorated, the workability is good, the curability is good compared to the organic binder, tack is hardly left, and the secondary agglomeration is less, so the yield is also improved. . Also, the manufacturing method is easy and can be manufactured at low cost.
  • FIG. 1 is an optical micrograph (100 ⁇ ) of a composite reflecting element for road marking material produced in Example 1 of the present invention.
  • the composite reflective element for road marking material of the present invention uses an inorganic binder as a binder, and glass beads having a refractive index of 1.5 to 2.8 and an average particle diameter of 10 to 500 ⁇ m are fixed to the core material surface.
  • the glass beads in the present invention have a high refractive index of 1.5 to 2.8. A higher refractive index is better, but it is technically difficult to make the refractive index larger than 2.8.
  • the average particle diameter of the glass beads is 10 to 500 ⁇ m, preferably 10 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and still more preferably 40 to 100 ⁇ m. When the average particle diameter is less than 10 ⁇ m, the reflection luminance is poor, while when it exceeds 500 ⁇ m, it is difficult to adhere to the core material. This is because the contact area between the glass beads and the core material becomes small unless the core material is approximately 1/10 or less.
  • the average particle diameter is a volume-based average particle diameter D50 determined by a laser diffraction particle size distribution analyzer Microtrac-FRA.
  • the composite reflective element for road marking materials of this invention includes the case where not only the whole particle
  • Examples of the core material in the present invention include ceramic beads, barite (barium sulfate), defending, silica stone, zinc oxide, alumina, white silica, glass beads, and the like. These may be used alone or in combination of two or more as necessary. It is done. Preferred are barite, cerven, silica, zinc oxide, alumina and white silica whose particle shape is not spherical. Calcium carbonate cannot be used because it decomposes or melts at high temperatures during baking. In addition, spherical particles such as glass beads and ceramic beads are not very strong in adhesion to glass beads because they have small contact points with the core material and few surface irregularities.
  • Serben is particularly preferable. Serben is a granular material in which the particle size is adjusted by pulverizing a ceramic such as white ceramics. In order to reflect with high luminance, it is necessary that light passes through the glass beads, is reflected by the core material, and returns parallel to the incident direction. Therefore, the reflectivity / refractive index of the core material also greatly affects the luminance. Therefore, arging having a high refractive index is preferable because it is inexpensive.
  • the road marking material base material usually contains a large amount of filler with relatively low hardness such as calcium carbonate, the hardness of the composite reflecting element for road marking material Even if it is high, it does not greatly affect the life of the road marking material.
  • any hardness can be suitably used as long as it has a Mohs hardness of 3 or more.
  • the reflectivity / refractive index of the core material is low, it is preferable to previously coat the surface of the core material with a coating material made of titanium oxide, mica, or both, or a pearl pigment using a binder. More preferably, a color sand obtained by baking these coating materials at a high temperature with an inorganic binder on the surface of the core material is used as the core material.
  • the surface of the core material is preferably covered with a fluorescent pigment or a phosphorescent pigment.
  • a fluorescent pigment or a phosphorescent pigment when using together with the coating material which consists of a titanium oxide, a mica, and a pearl pigment, it is necessary to coat
  • the average particle diameter of the core material is 100 to 5000 ⁇ m, preferably 400 to 1200 ⁇ m, and more preferably 600 to 800 ⁇ m. If the core material is less than 100 ⁇ m, the luminance is poor and the visibility is poor. On the other hand, if it exceeds 5000 ⁇ m, the exposed portion from the labeling material substrate becomes large, and there is fluorescence that is easily detached.
  • the average particle diameter here is on a 50% integrated sieve calculated from a rosin-Rammler distribution prepared using a JIS standard sieve with a low tap shaker.
  • water glass is preferable from the viewpoint of environment and workability, and it is preferable to add a frit that facilitates temperature control during baking and improves surface gloss.
  • the glass beads fixed on the surface of the core material preferably have a wide particle size distribution of 10 to 100 ⁇ m. This is because glass beads can cover the surface of the core material more closely when having a broad particle size distribution.
  • the amount of glass beads added is generally 20 to 50% by weight, although it varies depending on the specific gravity and size of the core material.
  • the composite reflective element of the present invention is preferably further covered with a fluorescent pigment or a phosphorescent pigment. Covering with a fluorescent pigment or a phosphorescent pigment does not contribute much to improving the brightness, but is effective in actual visibility.
  • the method for producing the composite reflecting element for road marking material of the present invention is not particularly limited, but, for example, core material and glass beads are put into a mixer or the like, and an inorganic binder is added and stirred. By baking these mixtures through a rotary kiln or the like, a composite reflecting element for road marking material is obtained. At this time, it is more preferable to use a frit as an additive to smooth the baking and improve the surface gloss. For finishing, it is desirable to exclude aggregated particles on a sieve, and collect and reuse expensive glass beads that are not adhered under the sieve as a product while the sieve is used as a product.
  • the road marking material base material that is suitable for the composite reflecting element for road marking material of the present invention is not particularly limited, but is a melt-type paint, aliphatic resin, rosin ester resin, acrylic resin, alkyd resin, ethylene Solvent-free, solvent-type and emulsion-type paints mainly composed of vinyl acetate copolymer, polyester resin, epoxy resin, urethane resin and the like can be used.
  • Example 1 Commercially available Serbene B (particle size 400 ⁇ m to 800 ⁇ m, average particle size 540 ⁇ m; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.) 100 g, Pearl Mica ME-100R (produced by Yamaguchi Mica Industrial Co., Ltd.), 5 g, Frit VY0144M2 (Japan) 2 g of Frit Co., Ltd.) was put in a 1 L paper cup, 6 g of water glass was added, and the mixture was mixed by hand stirring. It was put into a rotary kiln ( ⁇ 200 mm ⁇ 1800 mm), baked at 700 ° C. and a rotation speed of 9 rpm, and then cooled to obtain a core material.
  • Serbene B particle size 400 ⁇ m to 800 ⁇ m, average particle size 540 ⁇ m; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.
  • Pearl Mica ME-100R produced by Yamaguchi Mica Industrial Co., Ltd.
  • the upper mesh opening was 1700 ⁇ m
  • the lower mesh opening was 250 ⁇ m
  • the inside of the sieve was used as a composite reflecting element for road marking materials.
  • An optical micrograph (100 times) of the obtained composite reflector for road marking material is shown in FIG.
  • Example 2 Commercially available white silica 20-40 mesh product (particle size 400 ⁇ m to 800 ⁇ m, average particle size 570 ⁇ m; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.) 100 g, Pearl Mica ME-100R (produced by Yamaguchi Mika Kogyo Co., Ltd.) 5 g Then, 2 g of frit VY0144M2 (manufactured by Nippon Frit Co., Ltd.) was put into a 1 L paper cup, and 6 g of water glass was then added and mixed by hand stirring. It was put into a rotary kiln ( ⁇ 200 mm ⁇ 1800 mm), baked at 700 ° C.
  • Example 3 20 white (particle diameter 400 ⁇ m to 800 ⁇ m, average particle diameter 610 ⁇ m; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.) and 2 g of frit VY0144M2 (manufactured by Nippon Frit Co., Ltd.) It was put into a 1 L paper cup, then 9 g of water glass was added and mixed by hand stirring. Thereto, 100 g of unibeads UB-56NH (particle size 75 to 90 ⁇ m, average particle size 83 ⁇ m) as glass beads was added and stirred manually. It was put into a rotary kiln ( ⁇ 200 mm ⁇ 1800 mm) and baked at 700 ° C. and a rotation speed of 9 rpm. The residence time was 5 minutes. The upper mesh opening was 1700 ⁇ m, the lower mesh opening was 250 ⁇ m, and the inside of the sieve was used as a composite reflecting element for road marking materials.
  • Example 4 Barite as a core material is crushed with a hammer mill and sieved with a JIS standard sieve (aperture 350 to 710 ⁇ m) to adjust the particle size 100 g of granular barite (particle diameter 350 to 710 ⁇ m, average particle diameter 460 ⁇ m), frit VY0144M2 ( 3 g of Nippon Frit Co., Ltd.) was put in a 1 L paper cup, 9 g of water glass was added, and the mixture was mixed by hand stirring. Thereto, 35 g of uni-beads UB-56NH (particle size 75 to 90 ⁇ m, average particle size 83 ⁇ m) as glass beads were added and stirred manually.
  • a JIS standard sieve aperture 350 to 710 ⁇ m
  • the residence time was 5 minutes.
  • the upper mesh opening was 1700 ⁇ m
  • the lower mesh opening was 250 ⁇ m
  • the inside of the sieve was used as a composite reflecting element for road marking materials.
  • Example 5 67 g of white silica coated with commercially available silica as a core material (particle size 100 ⁇ m to 450 ⁇ m, average particle size 230 ⁇ m; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.), 2 g of frit VY0144M2 (produced by Nippon Frit Co., Ltd.) It was put into a 1 L paper cup, then 15 g of water glass was added and mixed by hand stirring. Thereto, 100 g of glass beads, unibeads UB-12NH (particle size 38-45 ⁇ m, average particle size 43 ⁇ m; refractive index 2.2; manufactured by Union Co., Ltd.) were added and stirred manually.
  • Example 6 100 g of commercially available Serbene B (particle size 400 ⁇ m to 800 ⁇ m, average particle size 540 ⁇ m; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.), 3 g of commercially available luminous pigment Minolva BGL-300FF (manufactured by Nemoto Special Chemical Co., Ltd.), frit VY0144M2 2 g (manufactured by Nippon Frit Co., Ltd.) was put into a 1 L paper cup, then 6 g of water glass was added and mixed by hand stirring. It was put into a rotary kiln ( ⁇ 200 mm ⁇ 1800 mm), baked at 700 ° C.
  • Serbene B particle size 400 ⁇ m to 800 ⁇ m, average particle size 540 ⁇ m; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.
  • 3 g of commercially available luminous pigment Minolva BGL-300FF manufactured by Nemoto Special Chemical Co., Ltd.
  • Example 7 75 g of Senobeads CZS-0120 (particle size 1000 ⁇ m to 1200 ⁇ m, average particle size 1120 ⁇ m; manufactured by CENOTEC CO., LTD), which is a commercially available ceramic bead as a core material, 2 g of frit VY0144M2 (manufactured by Nippon Frit Co., Ltd.) in a 1 L paper cup Then, 7 g of water glass was added and mixed by hand stirring. 25 g of glass beads, Unibeads UB-56NH (particle size 75 to 90 ⁇ m, average particle size 83 ⁇ m), were added and stirred manually, and then put into a rotary kiln and baked in the same manner. The upper mesh opening was 1700 ⁇ m, the lower mesh opening was 250 ⁇ m, and the inside of the sieve was used as a composite reflecting element for road marking materials.
  • Example 8 In Example 1, instead of the three types of glass beads UB-56NH, UB-34NH and UB-12NH, GB-AH (particle size 45 to 90 ⁇ m, average particle size 70 ⁇ m; refractive index 1.5 to 1.53; Potter) A composite reflective element for a road surface reflecting material was obtained in the same manner as in Example 1 except that 100 g was used.
  • a modified silicone two-component binder was prepared with the following composition.
  • ⁇ Curing agent> Neostan U-28 (tin-based curing catalyst; manufactured by Kaneka Corporation): 12 parts Laurylamine (reaction modifier: manufactured by Wako Pure Chemical Industries, Ltd.): 50 parts DINP (plasticizer; manufactured by J Plus Co., Ltd.) ): 14 parts * Mixing ratio; main agent / curing agent 10/1 100 g of commercially available dazzling B (particle size: 400 ⁇ m to 800 ⁇ m, average particle size: 540 ⁇ m; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.) as a core material is placed in a 1 L paper cup, and then 4 g of a modified silicone two-component binder adjusted with the above composition is used.
  • a modified silicone epoxy resin binder was prepared with the following composition.
  • SAT-200 silyl resin modified silicone epoxy resin; manufactured by Kaneka Corporation
  • Neostan U-100 tin-based curing catalyst; manufactured by Nitto Kasei Co., Ltd.
  • KBM-603 adhesion imparting agent; Shin-Etsu Chemical) Industrial Co., Ltd.
  • 2 parts CR-50 titanium oxide; manufactured by Ishihara Sangyo Co., Ltd.
  • Methyl isobutyl ketone plasticizer; Wako Pure Chemical Industries, Ltd.
  • Commercially available glass beads as a core material 5 kg of UB-1719LN particle size: 600 to 850 ⁇ m, average particle size: 720 ⁇ m
  • FS-GS-10J type high speed mixer
  • Comparative Example 4 A polyurethane two-component binder was prepared with the following composition. ⁇ Main agent> Takenate L-1032 (isocyanate; manufactured by Mitsui Chemicals, Inc.): 40 parts ⁇ Curing agent> Actol 87-34 (polyol; manufactured by Mitsui Chemicals, Inc.): 45 parts Nikka Octix lead 17% DINP (curing catalyst; manufactured by Nippon Chemical Industry Co., Ltd.): 4 parts DINP (plasticizer; J.C.
  • main agent / curing agent 1/3 Unibeads UB-56NH (particle size 75-90 ⁇ m, average particle size 83 ⁇ m), UB-34NH (particle size 53-63 ⁇ m, average particle size 57 ⁇ m), UB-12NH (particle size 38-45 ⁇ m, average particle size 43 ⁇ m), UB -02NH (particle size 0 to 45 ⁇ m, average particle size 25 ⁇ m; refractive index 2.2; manufactured by Union Co., Ltd.) 1 kg each was charged into a high speed mixer (FS-GS-10J type), and two polyurethane solutions with the above composition 600 g of binder was added dropwise with stirring, and the mixture was stirred for 5 minutes after completion of the addition to obtain a granulated product of glass beads.
  • FS-GS-10J type high speed mixer
  • Table 1 outlines the composite reflective elements of Examples 1 to 8 and Comparative Examples 1 to 4.
  • X There are many detachment
  • ⁇ Hot water resistance> The composite reflective element was cured in warm water at 80 ° C. for 3 days and then taken out and stirred for 30 minutes. The degree of detachment of the glass beads was observed and evaluated with a magnifying glass (30 times) according to the following criteria.
  • The glass beads are detached from the surface of the composite reflective element, and the coverage is 60% or more and less than 80% of the surface of the core material, or the binder on the surface of the core material is swollen.
  • X There are many detachment
  • the composite reflective element is put into a planetary stirring and defoaming device Mazerustar KK-500 (manufactured by Kurashiki Boseki Co., Ltd.) and stirred under the conditions of revolution 760 rpm, rotation 760 rpm, 120 seconds, and the glass beads are detached according to the following criteria. The degree was observed and evaluated with a magnifying glass (30 times).
  • Although glass beads are somewhat detached from the surface of the composite reflective element, the coverage is 80% or more of the surface of the core material.
  • Glass beads are detached from the surface of the composite reflective element, and the coverage is 60% or more and less than 80% of the surface of the core material.
  • X There are many detachment
  • the composite reflective element for road marking material of the present invention is excellent in heat resistance, solvent resistance, hot water resistance, tackiness and binder adhesion.
  • Examples 9 to 16, Comparative Examples 5 to 10 A solvent-type road marking material commercially available from Nippon Liner under the trade name “Everline White S” (JIS K 5665, 3 types) was prepared as a base material. This base material was stirred with a stainless steel stirring rod until it reached 195 ° C. with an electric heater (1200 W). This was applied to an aluminum plate (150 ⁇ 70 ⁇ 1.5 mm) to a width of 60 mm and a thickness of about 2 mm. Next, the composite reflective elements obtained in Examples 1 to 8 and Comparative Examples 1 to 4 preheated to 220 ° C. were dispersed at a density of 180 g / m 2 , and then glass beads UB-108L (refractive index 1.52).
  • Comparative Example 9 the glass beads UB-56NH used in Example 1 and the like were used instead of the composite reflective element, and in Comparative Example 10, glass beads Uniflash UB-1521 (refractive index 1.93, Using a particle diameter of 425 to 1180 ⁇ m and an average particle diameter of 880 ⁇ m (manufactured by Union Co., Ltd.), spraying was performed at a density of 180 g / m 2 in the same manner as described above to obtain a coated plate of road marking material for road surfaces.
  • Table 3 shows the evaluation results of the retroreflective performance and visibility of the road marking material.
  • Examples 17-24, Comparative Examples 11-16 A solvent-type road marking material marketed under the trade name of “Hardline H250B” (JIS K 5665, two types) from Atomix Co., Ltd. was prepared as a base material. This base material was stirred with a stainless steel stirring rod until it reached 60 ° C. with an electric heater (1200 W). This was applied to an aluminum plate (150 ⁇ 70 ⁇ 1.5 mm) to a width of 60 mm and a thickness of about 2 mm.
  • Hardline H250B JIS K 5665, two types
  • the composite reflective elements obtained in Examples 1 to 8 and Comparative Examples 1 to 4 were dispersed at a density of 180 g / m 2 , and then glass beads UB-108L (refractive index 1.52, particle diameter 106 to 850 ⁇ m, An average particle diameter of 530 ⁇ m (manufactured by Union Co., Ltd.) was sprayed at a density of 400 g / m 2 to obtain a coated plate of road marking material for road surfaces.
  • glass beads UB-108L reffractive index 1.52, particle diameter 106 to 850 ⁇ m, An average particle diameter of 530 ⁇ m (manufactured by Union Co., Ltd.) was sprayed at a density of 400 g / m 2 to obtain a coated plate of road marking material for road surfaces.
  • the composite reflective element for road marking material of the present invention has high retroreflection brightness and excellent visibility even when covered with a water film.
  • the composite reflective element for road marking material of the present invention is superior in heat resistance, solvent resistance, hot water resistance, and binder adhesiveness than using an organic binder, and has a high retroreflection brightness.
  • a road marking material excellent in visibility can be provided.
  • the manufacturing method of the present invention the manufacturing method is easy, the tackiness is low, the handling is improved and the manufacturing time can be shortened, and the composite reflecting element for road marking material can be manufactured efficiently and inexpensively. it can.

Abstract

Provided is a composite reflective element for use in a road-surface marking material. Said composite reflective element is highly resistant to heat, solvents, and hot water and has excellent binder adhesiveness, retroreflectivity, and visibility. The composite reflective element is characterized in that glass beads with an index of refraction between 1.5 and 2.8 and a mean diameter between 10 μm and 500 μm are affixed to the surface of a core material by means of an inorganic binder.

Description

路面標示材用複合反射素子およびそれを含有してなる路面標示材Composite reflective element for road marking material and road marking material containing the same
 本発明は、全天候型路面標示材用複合反射素子及びその製造方法、並びに該路面標示材用複合反射素子を含有してなる路面標示材に関し、更に詳しくは、夜間雨天時における道路標示材の視認性を改善することが出来る路面標示材用複合反射素子及びそれを安価に且つ容易に製造することが出来る製造方法、並びに該路面標示材用複合反射素子を含む路面標示材に関する。 The present invention relates to a composite reflective element for an all-weather road marking material, a method for producing the same, and a road marking material containing the composite reflective element for a road marking material. More specifically, the visual recognition of a road marking material during night rainy weather is provided. The present invention relates to a composite reflecting element for road marking material capable of improving the property, a manufacturing method capable of easily and inexpensively manufacturing the same, and a road marking material including the composite reflecting element for road marking material.
 道路用路面標示材としては、夜間の視認性を向上させるためにガラスビーズ等の反射材を標示材基材表面に散布してその反射が利用されてきた。しかし、夜間雨天時に路面が水没すると車のヘッドライトが鏡面反射して再帰性反射しないために著しく視認性を阻害するという問題を含んでいる。このため、反射材を水没させないようにする必要があり、例えば、路面標示材基材に凹凸を付けて、その凹凸部に反射材(ガラスビーズ等)を分散させて水没を防止することにより、夜間雨天時でも視認できるようにしている(特許文献1~4)。
 また、例えば、コア材とその表面に設けられた結合剤層に固定化された高屈折率ビーズからなる再帰性反射エレメントを含んだ路面標示材が紹介されている(特許文献5,6)。
As a road marking material for roads, in order to improve nighttime visibility, a reflection material such as glass beads is dispersed on the surface of the marking material substrate, and its reflection has been used. However, when the road surface is submerged during rainy weather at night, the headlight of the car is specularly reflected and not retroreflected. For this reason, it is necessary to prevent the reflective material from being submerged, for example, by attaching irregularities to the road surface marking material base material and dispersing the reflective material (glass beads, etc.) in the irregular portions to prevent submersion, It can be seen even in the rain at night (Patent Documents 1 to 4).
Further, for example, a road marking material including a retroreflective element made of a high refractive index bead fixed on a core material and a binder layer provided on the surface thereof has been introduced (Patent Documents 5 and 6).
特許第3091996号公報Japanese Patent No. 3091996 特許第2515478号公報Japanese Patent No. 2515478 特開2000-273831号公報Japanese Unexamined Patent Publication No. 2000-238331 特表2002-527797号公報Special table 2002-527797 gazette 特表2007-510832号公報Special table 2007-510732 gazette 特開2007-212763号公報JP 2007-212763 A
 しかしながら、特許文献1~4の方法は施工が煩雑であり、材料費も大きくなるため不経済である。更に、凹凸部を車両が通った際に発生する騒音が問題であり、特に都市部では深刻である。
 また、特許文献5、6の該再帰性反射エレメントの製造方法は、溶剤系の熱硬化性樹脂による結合剤を使用し、粒子同士の接着が発生するので歩留まりが悪く、また硬化に時間を要する等のコストの面や、更にはタック性が残り作業性に問題がある。
 また、溶融式路面標示材では該再帰性エレメントを標示材基材に固着させるために加熱する必要があるが、その加熱温度は結合剤の耐熱性限界に近く黄変するという問題がある。特に、基材粘度が高い際には、高輝度ビーズ散布後バーナーで炙って埋め込む必要があり黄変が激しくなる。
 一方、ペイント式路面標示材に散布する場合は耐溶剤性が必要となるが、該再帰性反射エレメントでは表面の高屈折率ビーズが離脱してしまい視認性の効果が損なわれる。
 更に、再帰性反射エレメントは基材となる路面標示材との密着性、また更に無機粒子と高屈折率ガラスビーズの接着強度も必要であるが、十分満足できるものとは云い難い。
However, the methods of Patent Documents 1 to 4 are uneconomical because the construction is complicated and the material cost increases. Furthermore, noise generated when a vehicle passes through the uneven portion is a problem, and is particularly serious in urban areas.
In addition, the methods for producing the retroreflective elements of Patent Documents 5 and 6 use a binder based on a solvent-based thermosetting resin, causing adhesion between particles, resulting in poor yield and time for curing. However, tackiness remains and there is a problem in workability.
Further, the melt-type road marking material needs to be heated to fix the recursive element to the marking material substrate, but there is a problem that the heating temperature is close to the heat resistance limit of the binder. In particular, when the substrate viscosity is high, it is necessary to bury and embed with a burner after spraying high-intensity beads, resulting in severe yellowing.
On the other hand, when spraying on a paint-type road marking material, solvent resistance is required, but in the retroreflective element, the high refractive index beads on the surface are detached, and the visibility effect is impaired.
In addition, the retroreflective element requires adhesion to the road marking material serving as a base material, and further requires an adhesive strength between the inorganic particles and the high refractive index glass beads, but it cannot be said to be sufficiently satisfactory.
 本発明者等は、上記実情に鑑み上記従来技術の問題点を解消するべく鋭意研究の結果、比較的安価な無機粒子の表面に高屈折率のガラスビーズを無機バインダーにより固定化してなる複合反射素子が夜間雨天時にも視認性の優れた道路標示材を提供し、しかも低コストで容易に製造できることを見い出し、本発明に完成するに至った。 As a result of diligent research to solve the problems of the prior art in view of the above circumstances, the present inventors, as a result, combined reflection of glass beads having a high refractive index on the surface of relatively inexpensive inorganic particles with an inorganic binder. It has been found that the device provides a road marking material with excellent visibility even when it rains at night, and can be easily manufactured at low cost, and the present invention has been completed.
 本発明は上記目的を達成するためになされたもので、本発明の特徴の第1は、コア材と無機バインダーにより該コア材の表面に屈折率1.5~2.8、平均粒子径10~500μmのガラスビーズを固定化したことを特徴とした路面標示材用複合反射素子である。 The present invention has been made to achieve the above object, and the first feature of the present invention is that the surface of the core material is made from a core material and an inorganic binder, and the refractive index is 1.5 to 2.8 and the average particle size is 10 A composite reflecting element for road marking material, characterized in that glass beads of ˜500 μm are fixed.
 本発明の特徴の第2は、コア材がセラミックビーズ、バライト、セルベン、珪石、酸化亜鉛、アルミナ、ホワイトシリカから選ばれる少なくとも1種である路面標示材用複合反射素子である。 The second feature of the present invention is a composite reflective element for road marking material, wherein the core material is at least one selected from ceramic beads, barite, selben, silica stone, zinc oxide, alumina, and white silica.
 本発明の特徴の第3は、コア材の平均粒子径が100~5000μmである路面標示材用複合反射素子である。 A third feature of the present invention is a composite reflecting element for road marking material in which the average particle diameter of the core material is 100 to 5000 μm.
 本発明の特徴の第4は、コア材の表面が、酸化チタン、マイカのどちらか又は両方、又はパール顔料からなる被覆材で無機バインダーにより被覆されている路面標示材用複合反射素子である。 The fourth feature of the present invention is a composite reflecting element for road marking material in which the surface of the core material is coated with an inorganic binder with a coating material made of titanium oxide, mica, or both, or a pearl pigment.
 本発明の特徴の第5は、無機バインダーが水ガラスである路面標示材用複合反射素子である。 The fifth feature of the present invention is a composite reflecting element for road marking material in which the inorganic binder is water glass.
 本発明の特徴の第6は、ガラスビーズが10~100μmの幅広い粒度分布を有する路面標示材用複合反射素子である。 The sixth feature of the present invention is a composite reflecting element for road marking materials in which glass beads have a wide particle size distribution of 10 to 100 μm.
 本発明の特徴の第7は、上記複合反射素子の表面が蛍光顔料又は蓄光顔料で被覆されている路面標示材用複合反射素子である。 The seventh feature of the present invention is a composite reflecting element for road marking material in which the surface of the composite reflecting element is coated with a fluorescent pigment or a phosphorescent pigment.
 本発明の特徴の第8は、コア材とガラスビーズと無機バインダーを撹拌混合し、焼き付けてコア材の表面に無機バインダーによりガラスビーズを固着させる上記複合反射素子の製造方法である。 The eighth feature of the present invention is the above-described method for manufacturing a composite reflective element, in which a core material, glass beads, and an inorganic binder are stirred and mixed and baked to fix the glass beads to the surface of the core material with the inorganic binder.
 本発明の特徴の第9は、上記複合反射素子を含有してなる路面標示材である。 Ninth feature of the present invention is a road marking material containing the composite reflective element.
 本発明の路面標示材用複合反射素子は、コア材の表面に無機バインダーにより高屈折率ガラスビーズが強固に固着されているのでガラスビーズのコア材表面からの離脱が少なく、耐熱性、耐溶剤性も良好である。このため、ペイント型、溶融式両方の路面標示材の再帰性反射素子として好適に使用できる。
 また、バインダーが無溶剤系なので環境を悪化させることがなく、また作業性が良好で、更には有機系バインダーと比べて硬化性が良くタックが残りにくく、二次凝集も少ないので歩留まりも良くなる。また、製造方法も容易で安価に製造することができる。
The composite reflective element for road marking material of the present invention has high refractive index glass beads firmly fixed to the surface of the core material by an inorganic binder, so that the glass beads are less detached from the surface of the core material, heat resistance, solvent resistance The property is also good. For this reason, it can be suitably used as a retroreflective element for both paint-type and melt-type road marking materials.
In addition, since the binder is solvent-free, the environment is not deteriorated, the workability is good, the curability is good compared to the organic binder, tack is hardly left, and the secondary agglomeration is less, so the yield is also improved. . Also, the manufacturing method is easy and can be manufactured at low cost.
図1は、本発明の実施例1で作製した路面標示材用複合反射素子の光学顕微鏡写真(100倍)である。FIG. 1 is an optical micrograph (100 ×) of a composite reflecting element for road marking material produced in Example 1 of the present invention.
 本発明の路面標示材用複合反射素子は、バインダーとして無機バインダーを用いて、コア材表面に屈折率1.5~2.8、平均粒子径10~500μmのガラスビーズが固着されていることを特徴とする。 The composite reflective element for road marking material of the present invention uses an inorganic binder as a binder, and glass beads having a refractive index of 1.5 to 2.8 and an average particle diameter of 10 to 500 μm are fixed to the core material surface. Features.
 本発明におけるガラスビーズは屈折率は1.5~2.8の高屈折率のものが用いられる。屈折率は高い方が良いが、2.8より大きくするのは技術的に困難であり、また1.5より小さいと再帰性反射しにくくなる。
 ガラスビーズの平均粒子径は10~500μmで、好ましくは10~300μm、より好ましくは10~200μm、更に好ましくは40~100μmである。
 平均粒子径が10μm未満では反射輝度が乏しくなり、一方、500μmを超えるとコア材に固着しにくい。これは、コア材の概ね10分の1以下でないとガラスビーズとコア材との接触面積が小さくなるためである。
 尚、ここでの平均粒子径とは、レーザー回折式粒度分布計Microtrac-FRA によって求められる体積基準平均粒子径D50 である。
 尚、本発明の路面標示材用複合反射素子は、コア材の粒子表面の全体のみならず、一部がガラスビーズで固着されている場合も含む。
The glass beads in the present invention have a high refractive index of 1.5 to 2.8. A higher refractive index is better, but it is technically difficult to make the refractive index larger than 2.8.
The average particle diameter of the glass beads is 10 to 500 μm, preferably 10 to 300 μm, more preferably 10 to 200 μm, and still more preferably 40 to 100 μm.
When the average particle diameter is less than 10 μm, the reflection luminance is poor, while when it exceeds 500 μm, it is difficult to adhere to the core material. This is because the contact area between the glass beads and the core material becomes small unless the core material is approximately 1/10 or less.
Here, the average particle diameter is a volume-based average particle diameter D50 determined by a laser diffraction particle size distribution analyzer Microtrac-FRA.
In addition, the composite reflective element for road marking materials of this invention includes the case where not only the whole particle | grain surface of a core material but one part is adhere | attached with the glass bead.
 本発明におけるコア材としては、セラミックビーズ、バライト(硫酸バリウム)、セルベン、珪石、酸化亜鉛、アルミナ、ホワイトシリカ、ガラスビーズ等が挙げられ、これらは単独で又は必要に応じ2種以上組み合わせて用いられる。好ましくは粒子形が球形でないバライト、セルベン、珪石、酸化亜鉛、アルミナ、ホワイトシリカである。炭酸カルシウムは焼き付け時の高温で分解又は溶融するので使用できない。また、ガラスビーズ、セラミックビーズのような球形の粒子は、コア材との接点が小さく表面の凹凸が少ないのでガラスビーズとの接着性があまり強くない。従って、粉砕品であるバライト、セルベン、珪石、アルミナ、ホワイトシリカがガラスビーズを固着させやすく、且つ低コストであるので好ましい。特に好ましくはセルベンである。セルベンとは、白色の陶器等のセラミックを粉砕して粒子径を整えた粒状物である。高輝度反射させるためには、光がガラスビーズを通過してコア材で反射させて入射した方向と平行に戻るようにする必要がある。したがって、コア材の反射率・屈折率も輝度に大きな影響を与える。そのため、屈折率の高いセルベンが安価で好ましい。コア材の硬度は高い方が好ましいが、路面標示材基材中には通常炭酸カルシウム等の比較的硬度の低い充填材が大量に含まれているため、該路面標示材用複合反射素子の硬度が高くても路面標示材の寿命に大きく関与しない。具体的には、モース硬度3である炭酸カルシウム以上の硬度であれば好適に使用できる。 Examples of the core material in the present invention include ceramic beads, barite (barium sulfate), selben, silica stone, zinc oxide, alumina, white silica, glass beads, and the like. These may be used alone or in combination of two or more as necessary. It is done. Preferred are barite, cerven, silica, zinc oxide, alumina and white silica whose particle shape is not spherical. Calcium carbonate cannot be used because it decomposes or melts at high temperatures during baking. In addition, spherical particles such as glass beads and ceramic beads are not very strong in adhesion to glass beads because they have small contact points with the core material and few surface irregularities. Therefore, barite, selben, silica, alumina, and white silica, which are pulverized products, are preferable because they easily fix glass beads and are low in cost. Serben is particularly preferable. Serben is a granular material in which the particle size is adjusted by pulverizing a ceramic such as white ceramics. In order to reflect with high luminance, it is necessary that light passes through the glass beads, is reflected by the core material, and returns parallel to the incident direction. Therefore, the reflectivity / refractive index of the core material also greatly affects the luminance. Therefore, selben having a high refractive index is preferable because it is inexpensive. Higher hardness of the core material is preferable, but since the road marking material base material usually contains a large amount of filler with relatively low hardness such as calcium carbonate, the hardness of the composite reflecting element for road marking material Even if it is high, it does not greatly affect the life of the road marking material. Specifically, any hardness can be suitably used as long as it has a Mohs hardness of 3 or more.
 コア材の反射率・屈折率が低い場合は予めバインダーを用いてコア材の表面を酸化チタン、マイカのどちらか又は両方、又はパール顔料からなる被覆材で被覆させるのが好ましい。コア材の表面にこれらの被覆材を無機バインダーで高温焼き付けしたカラーサンドをコア材として用いるのが更に好ましい。 When the reflectivity / refractive index of the core material is low, it is preferable to previously coat the surface of the core material with a coating material made of titanium oxide, mica, or both, or a pearl pigment using a binder. More preferably, a color sand obtained by baking these coating materials at a high temperature with an inorganic binder on the surface of the core material is used as the core material.
 また、コア材の表面は、蛍光顔料又は蓄光顔料で被覆されているのが好ましい。ただし、酸化チタン、マイカ、パール顔料からなる被覆材と併用する場合は、予めそれらの被覆材で被覆処理してから蛍光顔料又は蓄光顔料を被覆する必要がある。これは、蛍光顔料、蓄光顔料は着色顔料と混じるとその効果が低下するためである。蛍光顔料、蓄光顔料で被覆することで輝度向上にはあまり寄与しないが実際の視認性には効果がある。 The surface of the core material is preferably covered with a fluorescent pigment or a phosphorescent pigment. However, when using together with the coating material which consists of a titanium oxide, a mica, and a pearl pigment, it is necessary to coat | cover with a fluorescent pigment or a luminous pigment after previously coating-processing with those coating materials. This is because the effect of fluorescent pigments and phosphorescent pigments decreases when mixed with colored pigments. Covering with a fluorescent pigment or a phosphorescent pigment does not contribute much to improving the brightness, but is effective in actual visibility.
 コア材の平均粒子径は100~5000μmであり、好ましくは400~1200μmであり、より好ましくは600~800μmである。コア材が100μm未満では輝度が乏しく視認性に劣り、一方、5000μmを超えると標示材基材からの露出部が大きくなるために離脱しやすくなる蛍光がある。
 尚、ここでの平均粒子径は、ロータップシェーカーでJIS標準篩を用いて作成したロジン・ラムラー分布から算出した50%積算ふるい上である。
The average particle diameter of the core material is 100 to 5000 μm, preferably 400 to 1200 μm, and more preferably 600 to 800 μm. If the core material is less than 100 μm, the luminance is poor and the visibility is poor. On the other hand, if it exceeds 5000 μm, the exposed portion from the labeling material substrate becomes large, and there is fluorescence that is easily detached.
In addition, the average particle diameter here is on a 50% integrated sieve calculated from a rosin-Rammler distribution prepared using a JIS standard sieve with a low tap shaker.
 本発明における無機バインダーとしては、環境性・作業性の観点から水ガラスが好適であり、焼き付け時の温度コントロールを容易にするとともに、表面光沢を向上させるフリットを添加するのが好ましい。 As the inorganic binder in the present invention, water glass is preferable from the viewpoint of environment and workability, and it is preferable to add a frit that facilitates temperature control during baking and improves surface gloss.
 コア材の表面に固定化されるガラスビーズは、10~100μmの幅広い粒度分布を有することが好ましい。ガラスビーズは幅広い粒度分布を有する方が最密的にコア材の表面を覆うことができるからである。コア材表面に最密にガラスビーズを固着させた方が、該複合反射素子が車両等に踏まれた時、その外力でガラスビーズがコア材表面から離脱するのを抑制できる。ガラスビーズの添加量は、コア材の比重、大きさにより異なるが、概ね20~50重量%である。 The glass beads fixed on the surface of the core material preferably have a wide particle size distribution of 10 to 100 μm. This is because glass beads can cover the surface of the core material more closely when having a broad particle size distribution. When the glass beads are fixed on the surface of the core material most closely, when the composite reflective element is stepped on a vehicle or the like, it is possible to suppress the glass beads from being detached from the surface of the core material by the external force. The amount of glass beads added is generally 20 to 50% by weight, although it varies depending on the specific gravity and size of the core material.
 本発明の複合反射素子は、更に、その上から蛍光顔料又は蓄光顔料で被覆されているのが好ましい。蛍光顔料、蓄光顔料で被覆することで輝度向上にはあまり寄与しないが実際の視認性には効果がある。 The composite reflective element of the present invention is preferably further covered with a fluorescent pigment or a phosphorescent pigment. Covering with a fluorescent pigment or a phosphorescent pigment does not contribute much to improving the brightness, but is effective in actual visibility.
 本発明の路面標示材用複合反射素子の製造方法は、特に限定されないが、例えば、コア材、ガラスビーズをミキサー等に投入し、無機バインダーを添加して撹拌する。これらの混合物をロータリーキルン等に通して焼き付けることにより路面標示材用複合反射素子が得られる。この際、フリットを添加剤として使用して焼き付けをスムーズし、且つ表面光沢を向上させるのが更に好ましい。仕上げに篩上で凝集粒子を除外し、篩中を製品として、篩下で未接着の高価なガラスビーズを回収再利用するのが望ましい。 The method for producing the composite reflecting element for road marking material of the present invention is not particularly limited, but, for example, core material and glass beads are put into a mixer or the like, and an inorganic binder is added and stirred. By baking these mixtures through a rotary kiln or the like, a composite reflecting element for road marking material is obtained. At this time, it is more preferable to use a frit as an additive to smooth the baking and improve the surface gloss. For finishing, it is desirable to exclude aggregated particles on a sieve, and collect and reuse expensive glass beads that are not adhered under the sieve as a product while the sieve is used as a product.
 本発明の路面標示材用複合反射素子に適応する路面標示材基材は特に限定されないが、脂肪族系石油樹脂、ロジンエステル樹脂を結合剤とした溶融型塗料、アクリル樹脂、アルキド樹脂、エチレン・酢酸ビニル共重合体、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂等を主成分とした無溶剤、溶剤型及びエマルジョン型塗料が使用できる。 The road marking material base material that is suitable for the composite reflecting element for road marking material of the present invention is not particularly limited, but is a melt-type paint, aliphatic resin, rosin ester resin, acrylic resin, alkyd resin, ethylene Solvent-free, solvent-type and emulsion-type paints mainly composed of vinyl acetate copolymer, polyester resin, epoxy resin, urethane resin and the like can be used.
 以下、本発明を実施例及び比較例により更に具体的に説明するが、本発明はこれらにより何ら限定されないことは云うまでもない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but it is needless to say that the present invention is not limited thereto.
実施例1
 市販のセルベンB(粒子径400μm~800μm、平均粒子径540μm;(株)山森土本鉱業所製)100g、パールマイカME-100R((株)山口雲母工業所製)を5g、フリットVY0144M2(日本フリット(株)製)2gを1Lの紙カップに入れ、次いで水ガラス6gを添加して手撹拌して十分に混合した。それをロータリーキルン(Φ200mm×1800mm)に投入して700℃、回転数9rpmで焼き付けた後、冷却してコア材を得た。
 このコア材を100g、フリットVY0144M2(日本フリット(株)製)2gを1Lの紙カップに入れ、次いで水ガラス15gを添加して手撹拌して十分に混合した。そこにガラスビーズであるユニビーズUB-56NH(粒子径75~90μm、平均粒子径83μm;屈折率2.2;(株)ユニオン製)を50g、UB-34NH(粒子径53~63μm、平均粒子径57μm;屈折率2.2;(株)ユニオン製)を30g、UB-12NH(粒子径38~45μm、平均粒子径43μm;屈折率2.2;(株)ユニオン製)を20g投入して手撹拌した後、ロータリーキルンに投入して焼き付けた。それを上網目開き1700μm、下網目開き250μmで篩中を路面標示材用複合反射素子とした。
 得られた路面標示材用複合反射材の光学顕微鏡写真(100倍)を図1に示す。
Example 1
Commercially available Serbene B (particle size 400 μm to 800 μm, average particle size 540 μm; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.) 100 g, Pearl Mica ME-100R (produced by Yamaguchi Mica Industrial Co., Ltd.), 5 g, Frit VY0144M2 (Japan) 2 g of Frit Co., Ltd.) was put in a 1 L paper cup, 6 g of water glass was added, and the mixture was mixed by hand stirring. It was put into a rotary kiln (Φ200 mm × 1800 mm), baked at 700 ° C. and a rotation speed of 9 rpm, and then cooled to obtain a core material.
100 g of this core material and 2 g of frit VY0144M2 (manufactured by Nippon Frit Co., Ltd.) were placed in a 1 L paper cup, and then 15 g of water glass was added and mixed by hand stirring. 50 g of uni-beads UB-56NH (particle size 75 to 90 μm, average particle size 83 μm; refractive index 2.2; manufactured by Union Co., Ltd.), which are glass beads, and UB-34NH (particle size 53 to 63 μm, average particle size) 30 g of 57 μm; refractive index 2.2; manufactured by Union Co., Ltd.) and 20 g of UB-12NH (particle size 38 to 45 μm, average particle size 43 μm; refractive index 2.2; manufactured by Union Co., Ltd.) After stirring, it was put into a rotary kiln and baked. The upper mesh opening was 1700 μm, the lower mesh opening was 250 μm, and the inside of the sieve was used as a composite reflecting element for road marking materials.
An optical micrograph (100 times) of the obtained composite reflector for road marking material is shown in FIG.
実施例2
 市販のホワイトシリカ20-40メッシュ品(粒子径400μm~800μm、平均粒子径570μm;(株)山森土本鉱業所製)100g、パールマイカME-100R((株)山口雲母工業所製)を5g、フリットVY0144M2(日本フリット(株)製)2gを1Lの紙カップに入れ、次いで水ガラス6gを添加して手撹拌して十分に混合した。それをロータリーキルン(Φ200mm×1800mm)に投入して700℃、回転数9rpmで焼き付けた後、冷却してコア材を得た。
 このコア材を100g、フリットVY0144M2(日本フリット製)2gを1Lの紙カップに入れ、次いで水ガラス15gを添加して手撹拌して十分に混合した。そこにガラスビーズであるユニビーズUB-56NH(粒子径75~90μm、平均粒子径83μm)を100g投入して手撹拌した後、ロータリーキルンに投入して焼き付けた。それを上網目開き1700μm、下網目開き250μmで篩中を路面標示材用複合反射素子とした。
Example 2
Commercially available white silica 20-40 mesh product (particle size 400 μm to 800 μm, average particle size 570 μm; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.) 100 g, Pearl Mica ME-100R (produced by Yamaguchi Mika Kogyo Co., Ltd.) 5 g Then, 2 g of frit VY0144M2 (manufactured by Nippon Frit Co., Ltd.) was put into a 1 L paper cup, and 6 g of water glass was then added and mixed by hand stirring. It was put into a rotary kiln (Φ200 mm × 1800 mm), baked at 700 ° C. and a rotation speed of 9 rpm, and then cooled to obtain a core material.
100 g of this core material and 2 g of frit VY0144M2 (manufactured by Nippon Frit) were placed in a 1 L paper cup, and then 15 g of water glass was added and mixed by hand stirring. 100 g of glass beads uni-beads UB-56NH (particle size 75 to 90 μm, average particle size 83 μm) were added and stirred manually, and then placed in a rotary kiln and baked. The upper mesh opening was 1700 μm, the lower mesh opening was 250 μm, and the inside of the sieve was used as a composite reflecting element for road marking materials.
実施例3
 コア材として市販の珪石に酸化チタンコートされた20ホワイト(粒子径400μm~800μm、平均粒子径610μm;(株)山森土本鉱業所製)100g、フリットVY0144M2(日本フリット(株)製)2gを1Lの紙カップに入れ、次いで水ガラス9gを添加して手撹拌して十分に混合した。そこにガラスビーズであるユニビーズUB-56NH(粒子径75~90μm、平均粒子径83μm)を100g投入して手撹拌した。それをロータリーキルン(Φ200mm×1800mm)に投入して700℃、回転数9rpmで焼き付けた。滞留時間は5分であった。それを上網目開き1700μm、下網目開き250μmで篩中を路面標示材用複合反射素子とした。
Example 3
20 white (particle diameter 400 μm to 800 μm, average particle diameter 610 μm; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.) and 2 g of frit VY0144M2 (manufactured by Nippon Frit Co., Ltd.) It was put into a 1 L paper cup, then 9 g of water glass was added and mixed by hand stirring. Thereto, 100 g of unibeads UB-56NH (particle size 75 to 90 μm, average particle size 83 μm) as glass beads was added and stirred manually. It was put into a rotary kiln (Φ200 mm × 1800 mm) and baked at 700 ° C. and a rotation speed of 9 rpm. The residence time was 5 minutes. The upper mesh opening was 1700 μm, the lower mesh opening was 250 μm, and the inside of the sieve was used as a composite reflecting element for road marking materials.
実施例4
 コア材として重晶石をハンマーミルで粉砕してJIS標準篩(目開き350~710μm)で篩分けて粒度調整した粒状バライト(粒子径350~710μm、平均粒子径460μm)を100g、フリットVY0144M2(日本フリット(株)製)3gを1Lの紙カップに入れ、次いで水ガラス9gを添加して手撹拌して十分に混合した。そこにガラスビーズであるユニビーズUB-56NH(粒子径75~90μm、平均粒子径83μm)を35g投入して手撹拌した。それをロータリーキルン(Φ200mm×1800mm)に投入して700℃、回転数9rpmで焼き付けた。滞留時間は5分であった。それを上網目開き1700μm、下網目開き250μmで篩中を路面標示材用複合反射素子とした。
Example 4
Barite as a core material is crushed with a hammer mill and sieved with a JIS standard sieve (aperture 350 to 710 μm) to adjust the particle size 100 g of granular barite (particle diameter 350 to 710 μm, average particle diameter 460 μm), frit VY0144M2 ( 3 g of Nippon Frit Co., Ltd.) was put in a 1 L paper cup, 9 g of water glass was added, and the mixture was mixed by hand stirring. Thereto, 35 g of uni-beads UB-56NH (particle size 75 to 90 μm, average particle size 83 μm) as glass beads were added and stirred manually. It was put into a rotary kiln (Φ200 mm × 1800 mm) and baked at 700 ° C. and a rotation speed of 9 rpm. The residence time was 5 minutes. The upper mesh opening was 1700 μm, the lower mesh opening was 250 μm, and the inside of the sieve was used as a composite reflecting element for road marking materials.
実施例5
 コア材として市販の珪石に酸化チタンコートされた67ホワイト(粒子径100μm~450μm、平均粒子径230μm;(株)山森土本鉱業所製)100g、フリットVY0144M2(日本フリット(株)製)2gを1Lの紙カップに入れ、次いで水ガラス15gを添加して手撹拌して十分に混合した。そこにガラスビーズであるユニビーズUB-12NH(粒子径38~45μm、平均粒子径43μm;屈折率2.2;(株)ユニオン製)を100g投入して手撹拌した。それをロータリーキルン(Φ200mm×1800mm)に投入して700℃、回転数9rpmで焼き付けた。滞留時間は5分であった。それを目開き1000μmの篩を通し、篩下を路面標示材用複合反射素子とした。
Example 5
67 g of white silica coated with commercially available silica as a core material (particle size 100 μm to 450 μm, average particle size 230 μm; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.), 2 g of frit VY0144M2 (produced by Nippon Frit Co., Ltd.) It was put into a 1 L paper cup, then 15 g of water glass was added and mixed by hand stirring. Thereto, 100 g of glass beads, unibeads UB-12NH (particle size 38-45 μm, average particle size 43 μm; refractive index 2.2; manufactured by Union Co., Ltd.) were added and stirred manually. It was put into a rotary kiln (Φ200 mm × 1800 mm) and baked at 700 ° C. and a rotation speed of 9 rpm. The residence time was 5 minutes. It was passed through a sieve having a mesh size of 1000 μm, and the screen below was used as a composite reflecting element for road marking materials.
実施例6
 市販のセルベンB(粒子径400μm~800μm、平均粒子径540μm;(株)山森土本鉱業所製)100g、市販の蓄光顔料ミノルバBGL-300FF(根本特殊化学(株)製)を3g、フリットVY0144M2(日本フリット(株)製)2gを1Lの紙カップに入れ、次いで水ガラス6gを添加して手撹拌して十分に混合した。それをロータリーキルン(Φ200mm×1800mm)に投入して700℃、回転数9rpmで焼き付けた後、冷却してコア材を得た。
 このコア材を100g、フリットVY0144M2(日本フリット製)2gを1Lの紙カップに入れ、次いで水ガラス12gを添加して手撹拌して十分に混合した。そこにガラスビーズであるユニビーズUB-56NH(粒子径75~90μm、平均粒子径83μm)を100g投入して手撹拌した後、ロータリーキルンに投入して焼き付けた。それを上網目開き1700μm、下網目開き250μmで篩中を路面標示材用複合反射素子とした。
Example 6
100 g of commercially available Serbene B (particle size 400 μm to 800 μm, average particle size 540 μm; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.), 3 g of commercially available luminous pigment Minolva BGL-300FF (manufactured by Nemoto Special Chemical Co., Ltd.), frit VY0144M2 2 g (manufactured by Nippon Frit Co., Ltd.) was put into a 1 L paper cup, then 6 g of water glass was added and mixed by hand stirring. It was put into a rotary kiln (Φ200 mm × 1800 mm), baked at 700 ° C. and a rotation speed of 9 rpm, and then cooled to obtain a core material.
100 g of this core material and 2 g of frit VY0144M2 (manufactured by Nippon Frit) were placed in a 1 L paper cup, and then 12 g of water glass was added and mixed by hand stirring. 100 g of glass beads uni-beads UB-56NH (particle size 75 to 90 μm, average particle size 83 μm) were added and stirred manually, and then placed in a rotary kiln and baked. The upper mesh opening was 1700 μm, the lower mesh opening was 250 μm, and the inside of the sieve was used as a composite reflecting element for road marking materials.
実施例7
 コア材として市販のセラミックビーズであるセノビーズCZS-0120(粒子径1000μm~1200μm、平均粒子径1120μm;CENOTEC CO.,LTD製)を75g、フリットVY0144M2(日本フリット(株)製)2gを1Lの紙カップに入れ、次いで水ガラス7gを添加して手撹拌して十分に混合した。そこにガラスビーズであるユニビーズUB-56NH(粒子径75~90μm、平均粒子径83μm)を25g投入して手撹拌した後、ロータリーキルンに投入して同様に焼き付けた。それを上網目開き1700μm、下網目開き250μmで篩中を路面標示材用複合反射素子とした。
Example 7
75 g of Senobeads CZS-0120 (particle size 1000 μm to 1200 μm, average particle size 1120 μm; manufactured by CENOTEC CO., LTD), which is a commercially available ceramic bead as a core material, 2 g of frit VY0144M2 (manufactured by Nippon Frit Co., Ltd.) in a 1 L paper cup Then, 7 g of water glass was added and mixed by hand stirring. 25 g of glass beads, Unibeads UB-56NH (particle size 75 to 90 μm, average particle size 83 μm), were added and stirred manually, and then put into a rotary kiln and baked in the same manner. The upper mesh opening was 1700 μm, the lower mesh opening was 250 μm, and the inside of the sieve was used as a composite reflecting element for road marking materials.
実施例8
 実施例1において、3種のガラスビーズUB-56NH、UB-34NH、UB-12NHに代えてGB-AH(粒子径45~90μm、平均粒子径70μm;屈折率1.5~1.53;ポッターズ・バロティーニ製)100gを用いた以外は実施例1と同様にして路面反射材用複合反射素子を得た。
Example 8
In Example 1, instead of the three types of glass beads UB-56NH, UB-34NH and UB-12NH, GB-AH (particle size 45 to 90 μm, average particle size 70 μm; refractive index 1.5 to 1.53; Potter) A composite reflective element for a road surface reflecting material was obtained in the same manner as in Example 1 except that 100 g was used.
比較例1
 下記配合でポリウレタン2液バインダーを調整した。
 <主剤>
  タケネートL-1032(イソシアネート;三井化学(株)製):40部
 <硬化剤>
  アクトコール87-34(ポリオール;三井化学(株)製):45部
  ニッカオクチックス鉛17%DINP(硬化触媒;日本化学産業製(株)):4部
  パールマイカME-100R(パール顔料:(株)山口雲母工業所製):50部
  DINP(可塑剤;(株)ジェイ・プラス製):15部
  *混合比率;主剤/硬化剤=1/3
 次いで、コア材としてシリカ(商品名:シルシック粒:粒子径400~800μm、平均粒子径560μm:(株)山森土本鉱業所製)5kgをハイスピードミキサー(FS-GS-10J型;深江工業(株)製)に投入し、上記配合のポリウレタン2液バインダー320gを撹拌しながら添加した。添加終了後、ユニビーズUB-56NH(粒子径75~90μm、平均粒子径83μm)5kgを撹拌しながら投入し、投入終了後5分間撹拌した。それを排出して、50℃のオーブンで2時間養生硬化させた。それを目開き1.7mmのJIS標準篩でメッシュパスさせようとしたが、タックが激しいために2日間養生して硬化させた後にメッシュパスさせて路面標示材用複合反射素子を得た。尚、ミキサーの羽根は円盤型で、アジテータ150rpm、チョッパー600rpmで運転し、ジャケットには50℃のオイルを循環させた。
 得られた路面標示材用複合反射材の光学顕微鏡写真(100倍)を図1に示す。
Comparative Example 1
A polyurethane two-component binder was prepared with the following composition.
<Main agent>
Takenate L-1032 (isocyanate; manufactured by Mitsui Chemicals, Inc.): 40 parts <Curing agent>
Actol 87-34 (polyol; manufactured by Mitsui Chemicals, Inc.): 45 parts Nikka Octix lead 17% DINP (curing catalyst; manufactured by Nippon Chemical Industry Co., Ltd.): 4 parts Pearl Mica ME-100R (pearl pigment: ( (Manufactured by Yamaguchi Mica Industry Co., Ltd.): 50 parts DINP (plasticizer; manufactured by J Plus Co., Ltd.): 15 parts * Mixing ratio; main agent / curing agent = 1/3
Next, 5 kg of silica (trade name: Silsic grain: particle size 400-800 μm, average particle size 560 μm: manufactured by Yamamori Tsuchimoto Mining Co., Ltd.) as a core material is a high-speed mixer (FS-GS-10J type; Fukae Kogyo) ), And 320 g of a polyurethane two-component binder having the above composition was added with stirring. After completion of the addition, 5 kg of Unibeads UB-56NH (particle size 75 to 90 μm, average particle size 83 μm) was added with stirring, and stirred for 5 minutes after the completion of the addition. It was discharged and cured in an oven at 50 ° C. for 2 hours. An attempt was made to pass the mesh with a JIS standard sieve having a mesh opening size of 1.7 mm. However, since the tack was severe, the film was cured and cured for 2 days, and then passed through a mesh to obtain a composite reflective element for road marking material. In addition, the blades of the mixer were disk-shaped and operated with an agitator of 150 rpm and a chopper of 600 rpm, and 50 ° C. oil was circulated through the jacket.
An optical micrograph (100 times) of the obtained composite reflector for road marking material is shown in FIG.
比較例2
 下記配合で変性シリコーン2液バインダーを調整した。
 <主剤>
  S810(変性シリコーン樹脂;(株)カネカ製):50部
  DOP(可塑剤;(株)ジェイ・プラス製):30部
 <硬化剤>
  ネオスタンU-28(スズ系硬化触媒;(株)カネカ製):12部
  ラウリルアミン(反応調整材:和光純薬工業(株)製):50部
  DINP(可塑剤;(株)ジェイ・プラス製):14部
 *混合比率;主剤/硬化剤=10/1
 コア材として市販のセルベンB(粒子径400μm~800μm、平均粒子径540μm;(株)山森土本鉱業所製)100gを1Lの紙カップに入れ、次いで上記配合で調節した変性シリコーン2液バインダーを4g投入し、次いでユニビーズUB-34NH(粒子径53~63μm、平均粒子径57μm)を100g投入して、遊星式撹拌・脱泡装置マゼルスターKK-500)を用いて、(公転500rpm、自転500rpm、60秒)の条件で混合した。それを50℃のオーブンで2時間養生硬化させた。それを目開き1.7mmのJIS標準篩でメッシュパスさせようとしたが、タックが激しいために2日間養生して硬化させた後にメッシュパスさせて路面標示材用複合反射素子とした。
Comparative Example 2
A modified silicone two-component binder was prepared with the following composition.
<Main agent>
S810 (modified silicone resin; manufactured by Kaneka Corporation): 50 parts DOP (plasticizer; manufactured by J. Plus): 30 parts <Curing agent>
Neostan U-28 (tin-based curing catalyst; manufactured by Kaneka Corporation): 12 parts Laurylamine (reaction modifier: manufactured by Wako Pure Chemical Industries, Ltd.): 50 parts DINP (plasticizer; manufactured by J Plus Co., Ltd.) ): 14 parts * Mixing ratio; main agent / curing agent = 10/1
100 g of commercially available selben B (particle size: 400 μm to 800 μm, average particle size: 540 μm; manufactured by Yamamori Tsuchimoto Mining Co., Ltd.) as a core material is placed in a 1 L paper cup, and then 4 g of a modified silicone two-component binder adjusted with the above composition is used. Next, 100 g of uni-beads UB-34NH (particle size 53 to 63 μm, average particle size 57 μm) was added, and using a planetary stirring and deaerator Mazerustar KK-500, (revolution 500 rpm, rotation 500 rpm, 60 Second). It was cured in an oven at 50 ° C. for 2 hours. The mesh was passed through a JIS standard sieve having a mesh opening size of 1.7 mm. However, since the tack was severe, it was cured and cured for 2 days and then passed through a mesh to obtain a composite reflective element for road marking materials.
比較例3
 下記配合で変性シリコーンエポキシ樹脂バインダーを調整した。
  SAT-200サイリル樹脂(変性シリコーンエポキシ樹脂;(株)カネカ製):71部
  ネオスタンU-100(スズ系硬化触媒;日東化成(株)製):4部
  KBM-603(接着付与剤;信越化学工業(株)):2部
  CR-50(酸化チタン;石原産業(株)製):24部
  メチルイソブチルケトン(可塑剤;和光純薬工業(株)):70部
 コア材として市販のガラスビーズUB-1719LN(粒子径600~850μm、平均粒子径720μm)5kgをハイスピードミキサー(FS-GS-10J型)に投入し、上記配合の変性シリコーンエポキシ樹脂バインダー240gを撹拌しながら添加した。添加終了後、ユニビーズUB-56NH(粒子径75~90μm、平均粒子径83μm)5kgを撹拌しながら投入し、投入終了後5分間撹拌した。それを排出して、50℃のオーブンで3時間養生硬化させた。それを目開き1.7mmのJIS標準篩でメッシュパスさせようとしたが、タックが激しいために2日間養生して硬化させた後にメッシュパスさせて路面標示材用複合反射素子を得た。尚、ミキサーの羽根は円盤型で、アジテータ150rpm、チョッパー600rpmで運転し、ジャケットには50℃のオイルを循環させた。
Comparative Example 3
A modified silicone epoxy resin binder was prepared with the following composition.
SAT-200 silyl resin (modified silicone epoxy resin; manufactured by Kaneka Corporation): 71 parts Neostan U-100 (tin-based curing catalyst; manufactured by Nitto Kasei Co., Ltd.): 4 parts KBM-603 (adhesion imparting agent; Shin-Etsu Chemical) Industrial Co., Ltd.): 2 parts CR-50 (titanium oxide; manufactured by Ishihara Sangyo Co., Ltd.): 24 parts Methyl isobutyl ketone (plasticizer; Wako Pure Chemical Industries, Ltd.): 70 parts Commercially available glass beads as a core material 5 kg of UB-1719LN (particle size: 600 to 850 μm, average particle size: 720 μm) was put into a high speed mixer (FS-GS-10J type), and 240 g of the modified silicone epoxy resin binder having the above composition was added with stirring. After completion of the addition, 5 kg of Unibeads UB-56NH (particle size 75 to 90 μm, average particle size 83 μm) was added with stirring, and stirred for 5 minutes after the completion of the addition. It was discharged and cured in an oven at 50 ° C. for 3 hours. An attempt was made to pass the mesh with a JIS standard sieve having a mesh opening size of 1.7 mm. However, since the tack was severe, the film was cured and cured for 2 days, and then passed through a mesh to obtain a composite reflective element for road marking material. In addition, the blades of the mixer were disk-shaped and operated with an agitator of 150 rpm and a chopper of 600 rpm, and 50 ° C. oil was circulated through the jacket.
比較例4
 下記配合でポリウレタン2液バインダーを調整した。
 <主剤>
  タケネートL-1032(イソシアネート;三井化学(株)製):40部
 <硬化剤>
  アクトコール87-34(ポリオール;三井化学(株)製):45部
  ニッカオクチックス鉛17%DINP(硬化触媒;日本化学産業製(株)):4部
  DINP(可塑剤;(株)ジェイ・プラス製):50部
 *混合比率;主剤/硬化剤=1/3
 ユニビーズUB-56NH(粒子径75~90μm、平均粒子径83μm)、UB-34NH(粒子径53~63μm、平均粒子径57μm)、UB-12NH(粒子径38~45μm、平均粒子径43μm)、UB-02NH(粒子径0~45μm、平均粒子径25μm;屈折率2.2;(株)ユニオン製)各1kgをハイスピードミキサー(FS-GS-10J型)に投入し、上記配合のポリウレタン2液バインダー600gを撹拌しながら滴下し、滴下終了後5分間撹拌しガラスビーズの造粒物を得た。それを排出して、50℃のオーブンで2時間養生硬化させた。それを目開き1.7mmのJIS標準篩でメッシュパスさせようとしたが、タックが激しいために2日間養生して硬化させた後にメッシュパスさせて路面標示材用複合反射素子を得た。尚、ミキサーの羽根は円盤型で、アジテータ150rpm、チョッパー600rpmで運転し、ジャケットには50℃のオイルを循環させた。
Comparative Example 4
A polyurethane two-component binder was prepared with the following composition.
<Main agent>
Takenate L-1032 (isocyanate; manufactured by Mitsui Chemicals, Inc.): 40 parts <Curing agent>
Actol 87-34 (polyol; manufactured by Mitsui Chemicals, Inc.): 45 parts Nikka Octix lead 17% DINP (curing catalyst; manufactured by Nippon Chemical Industry Co., Ltd.): 4 parts DINP (plasticizer; J.C. 50 parts * mixing ratio; main agent / curing agent = 1/3
Unibeads UB-56NH (particle size 75-90 μm, average particle size 83 μm), UB-34NH (particle size 53-63 μm, average particle size 57 μm), UB-12NH (particle size 38-45 μm, average particle size 43 μm), UB -02NH (particle size 0 to 45 μm, average particle size 25 μm; refractive index 2.2; manufactured by Union Co., Ltd.) 1 kg each was charged into a high speed mixer (FS-GS-10J type), and two polyurethane solutions with the above composition 600 g of binder was added dropwise with stirring, and the mixture was stirred for 5 minutes after completion of the addition to obtain a granulated product of glass beads. It was discharged and cured in an oven at 50 ° C. for 2 hours. An attempt was made to pass the mesh with a JIS standard sieve having a mesh opening size of 1.7 mm. However, since the tack was severe, the film was cured and cured for 2 days, and then passed through a mesh to obtain a composite reflective element for road marking material. In addition, the blades of the mixer were disk-shaped and operated with an agitator of 150 rpm and a chopper of 600 rpm, and 50 ° C. oil was circulated through the jacket.
 表1に、実施例1~8及び比較例1~4の複合反射素子の概要を示す。 Table 1 outlines the composite reflective elements of Examples 1 to 8 and Comparative Examples 1 to 4.
複合反射素子の物性テスト
 実施例1~8、比較例1~4によって得られた複合反射素子を下記試験項目で評価した。結果を表2に示す。
Test of physical properties of composite reflective element The composite reflective elements obtained in Examples 1 to 8 and Comparative Examples 1 to 4 were evaluated by the following test items. The results are shown in Table 2.
 <耐熱性>
 複合反射素子を適量とり250℃のオーブンで30分間加熱し、下記の基準で変化度合いを肉眼で評価した。
  ◎:加熱前後で色相に変化が無い。
  ○:加熱後やや黄色味を帯びている。
  △:加熱後黄色く変色している。
  ×:加熱後茶褐色に変色している。
<Heat resistance>
An appropriate amount of the composite reflective element was taken and heated in an oven at 250 ° C. for 30 minutes, and the degree of change was evaluated with the naked eye according to the following criteria.
A: There is no change in hue before and after heating.
○: Slightly yellow after heating.
Δ: yellowing after heating
X: Discolored to brown after heating.
 <耐溶剤性>
 300mlのビーカーにトルエン及びキシレンを100gとり、複合反射素子を10g投入して30分間で撹拌し、下記の基準でガラスビーズの離脱度合いをルーペ(30倍)で観察し評価した。
  ◎:複合反射素子表面からガラスビーズの離脱が見当たらない。
  ○:複合反射素子表面から多少ガラスビーズが離脱しているが、被覆率がコア材表面の80%以上である。
  △:複合反射素子表面からガラスビーズの離脱があり、被覆率がコア材表面の60%以上80%未満であるか、又は、コア材表面のバインダーが膨潤している。
  ×:複合反射素子表面からガラスビーズの離脱が多く、被覆率がコア材表面の60未満であるか、又は、コア剤表面からバインダーが剥離している。
<Solvent resistance>
100 g of toluene and xylene were placed in a 300 ml beaker, 10 g of the composite reflective element was added and stirred for 30 minutes, and the degree of detachment of the glass beads was observed and evaluated with a loupe (30 times) according to the following criteria.
A: No separation of glass beads from the surface of the composite reflective element.
○: Although glass beads are somewhat detached from the surface of the composite reflective element, the coverage is 80% or more of the surface of the core material.
Δ: The glass beads are detached from the surface of the composite reflective element, and the coverage is 60% or more and less than 80% of the surface of the core material, or the binder on the surface of the core material is swollen.
X: There are many detachment | desorption of glass beads from the composite reflective element surface, and the coverage is less than 60 of the core material surface, or the binder has peeled from the core agent surface.
 <耐温水性>
  複合反射素子を80℃の温水に3日間養生してから取り出して30分間撹拌し、下記の基準でガラスビーズの離脱度合いをルーペ(30倍)で観察し評価した。
  ◎:複合反射素子表面からガラスビーズの離脱が見当たらない。
  ○:複合反射素子表面から多少ガラスビーズが離脱しているが、被覆率がコア材表面の80%以上である。
  △:複合反射素子表面からガラスビーズの離脱があり、被覆率がコア材表面の60%以上80%未満であるか、又は、コア材表面のバインダーが膨潤している。
  ×:複合反射素子表面からガラスビーズの離脱が多く、被覆率がコア材表面の60未満であるか、又は、コア剤表面からバインダーが剥離している。
<Hot water resistance>
The composite reflective element was cured in warm water at 80 ° C. for 3 days and then taken out and stirred for 30 minutes. The degree of detachment of the glass beads was observed and evaluated with a magnifying glass (30 times) according to the following criteria.
A: No separation of glass beads from the surface of the composite reflective element.
○: Although glass beads are somewhat detached from the surface of the composite reflective element, the coverage is 80% or more of the surface of the core material.
Δ: The glass beads are detached from the surface of the composite reflective element, and the coverage is 60% or more and less than 80% of the surface of the core material, or the binder on the surface of the core material is swollen.
X: There are many detachment | desorption of glass beads from the composite reflective element surface, and the coverage is less than 60 of the core material surface, or the binder has peeled from the core agent surface.
 <タック性>
 複合反射素子をパウダーテスター(ホソカワミクロン(株)製)で3分間(180回)タッピングした後、50℃のオーブンに3日間放置し複合反射素子の凝集性・タック性を下記の基準で評価した。
  ◎:複合反射素子同士の凝集がなく流動性が良好であり、表面ベタツキが無い。
  ○:複合反射素子同士の凝集がなく流動性が良好であるが、若干表面ベタツキがある。
  △:複合反射素子同士が凝集しているが比較的簡単に解れる。又は、表面ベタツキがあるが目開き1.7mmのJIS標準篩をガラスビーズの離脱することなく通過させることができる。
  ×:複合反射素子同士が凝集し容易に解れない。又は、表面ベタツキが強くハンドリングできない。
<Tackiness>
The composite reflective element was tapped with a powder tester (manufactured by Hosokawa Micron Corporation) for 3 minutes (180 times) and then left in an oven at 50 ° C. for 3 days to evaluate the cohesiveness and tackiness of the composite reflective element based on the following criteria.
(Double-circle): There is no aggregation of composite reflective elements, fluidity | liquidity is favorable, and there is no surface stickiness.
◯: There is no aggregation between the composite reflective elements and the fluidity is good, but there is some surface stickiness.
(Triangle | delta): Although composite reflective elements have aggregated, it can be understood comparatively easily. Alternatively, it can pass through a JIS standard sieve having a surface stickiness of 1.7 mm but without detachment of the glass beads.
X: The composite reflective elements aggregate and cannot be easily understood. Or surface stickiness is strong and cannot be handled.
 <バインダー接着性>
 複合反射素子を遊星式撹拌・脱泡装置マゼルスターKK-500(倉敷紡績(株)製)に投入し、公転760rpm、自転760rpm、120秒)の条件で撹拌し、下記の基準でガラスビーズの離脱度合いをルーペ(30倍)で観察し評価した。
  ◎:複合反射素子表面からガラスビーズの離脱が見当たらない。
  ○:複合反射素子表面から多少ガラスビーズが離脱しているが、被覆率がコア材表面の80%以上である。
  △:複合反射素子表面からガラスビーズの離脱があり、被覆率がコア材表面の60%以上80%未満である。
  ×:複合反射素子表面からガラスビーズの離脱が多く、被覆率がコア材表面の60未満である。
<Binder adhesion>
The composite reflective element is put into a planetary stirring and defoaming device Mazerustar KK-500 (manufactured by Kurashiki Boseki Co., Ltd.) and stirred under the conditions of revolution 760 rpm, rotation 760 rpm, 120 seconds, and the glass beads are detached according to the following criteria. The degree was observed and evaluated with a magnifying glass (30 times).
A: No separation of glass beads from the surface of the composite reflective element.
○: Although glass beads are somewhat detached from the surface of the composite reflective element, the coverage is 80% or more of the surface of the core material.
Δ: Glass beads are detached from the surface of the composite reflective element, and the coverage is 60% or more and less than 80% of the surface of the core material.
X: There are many detachment | leaves of a glass bead from the composite reflective element surface, and a coverage is less than 60 of the core material surface.
 表2の結果から明らかなように、本発明の路面標示材用複合反射素子は、耐熱性、耐溶剤性、耐温水性、タック性及びバインダー接着性に優れている。 As is apparent from the results in Table 2, the composite reflective element for road marking material of the present invention is excellent in heat resistance, solvent resistance, hot water resistance, tackiness and binder adhesion.
実施例9~16、比較例5~10
 日本ライナー(株)から「エバーライン白S」(JIS K 5665 3種 適合品)という商品名で市販されている溶剤型の道路標示材を基材として用意した。この基材を電熱器(1200W)で195℃になるまでステンレス製のかき混ぜ棒で撹拌した。これをアルミニウム板(150×70×1.5mm)に幅60mm、厚さ約2mmに塗布した。次いで、予め220℃に加温した実施例1~8、比較例1~4によって得られた複合反射素子を180g/ mの密度で散布した後、ガラスビーズUB-108L(屈折率1.52、粒子径106~850μm、平均粒子径530μm;(株)ユニオン製)を400g/ mの密度で散布し路面用道路標示材の塗板を得た。
 比較例9は、複合反射素子の代わりに実施例1等で用いたガラスビーズUB-56NHを、比較例10は、複合反射素子の代わりにガラスビーズユニフラッシュUB-1521(屈折率1.93、粒子径425~1180μm、平均粒子径880μm;(株)ユニオン製)を用い、上記と同様に180g/ mの密度で散布し路面用道路標示材の塗板を得た。表3にこの路面標示材の再帰性反射性能、視認性の評価結果を示す。
Examples 9 to 16, Comparative Examples 5 to 10
A solvent-type road marking material commercially available from Nippon Liner under the trade name “Everline White S” (JIS K 5665, 3 types) was prepared as a base material. This base material was stirred with a stainless steel stirring rod until it reached 195 ° C. with an electric heater (1200 W). This was applied to an aluminum plate (150 × 70 × 1.5 mm) to a width of 60 mm and a thickness of about 2 mm. Next, the composite reflective elements obtained in Examples 1 to 8 and Comparative Examples 1 to 4 preheated to 220 ° C. were dispersed at a density of 180 g / m 2 , and then glass beads UB-108L (refractive index 1.52). A particle size of 106 to 850 μm, an average particle size of 530 μm; manufactured by Union Co., Ltd.) was sprayed at a density of 400 g / m 2 to obtain a coated plate of road marking material for road surfaces.
In Comparative Example 9, the glass beads UB-56NH used in Example 1 and the like were used instead of the composite reflective element, and in Comparative Example 10, glass beads Uniflash UB-1521 (refractive index 1.93, Using a particle diameter of 425 to 1180 μm and an average particle diameter of 880 μm (manufactured by Union Co., Ltd.), spraying was performed at a density of 180 g / m 2 in the same manner as described above to obtain a coated plate of road marking material for road surfaces. Table 3 shows the evaluation results of the retroreflective performance and visibility of the road marking material.
<再帰性反射性能>
 反射輝度計ミロテックス7(東芝バロティーニ(株)製)による測定した。尚、再帰反射性能における乾燥とは常温で水の影響の無い状態で、湿潤とは複合反射素子が充分水に埋没している(水膜に覆われている)状態でそれぞれ計測したことを示す。
<視認性>
 暗室において、塗板を水に浸漬させた状態でライトを当て、目視での視認性を下記基準で評価した。
 5:非常によく見える。
 4:よく見える。
 3:普通である。
 2:あまり見えない。
 1:見えない。
<Recursive reflection performance>
It was measured with a reflection luminance meter Mirotex 7 (manufactured by Toshiba Barotini Co., Ltd.). In addition, drying in the retroreflective performance is a state in which there is no influence of water at room temperature, and wet means that the composite reflective element is measured in a state where it is sufficiently buried in water (covered by a water film). .
<Visibility>
In a dark room, light was applied in a state where the coated plate was immersed in water, and visual visibility was evaluated according to the following criteria.
5: Looks very good.
4: It looks good.
3: Normal.
2: I can't see much.
1: Invisible.
実施例17~24、比較例11~16
 アトミクス(株)から「ハードラインH250B」(JIS K 5665 2種 適合品)という商品名で市販されている溶剤型の道路標示材を基材として用意した。この基材を電熱器(1200W)で60℃になるまでステンレス製のかき混ぜ棒で撹拌した。これをアルミニウム板(150×70×1.5mm)に幅60mm、厚さ約2mmに塗布した。次いで、実施例1~8、比較例1~4によって得られた複合反射素子を180g/ mの密度で散布し、次いでガラスビーズUB-108L(屈折率1.52、粒子径106~850μm、平均粒子径530μm;(株)ユニオン製)を400g/ mの密度で散布し路面用道路標示材の塗板を得た。
 比較例15は、複合反射素子の代わりに実施例1等で用いたUB-56NHを、比較例16は、複合反射素子の代わりにユニフラッシュUB-1521(屈折率1.93、粒子径425~1180μm、平均粒子径880μm;(株)ユニオン製)を用い、上記と同様に180g/ mの密度で散布し路面用道路標示材の塗板を得た。
 表4にこの路面標示材の再帰性反射性能、視認性の評価結果を示す。尚、評価方法は実施例9~16、比較例5~10と同様に実施した。尚、再帰反射性能における乾燥とは常温で水の影響の無い状態で、湿潤とは複合反射素子が充分水に埋没している(水膜に覆われている)状態でそれぞれ計測したことを示す。
Examples 17-24, Comparative Examples 11-16
A solvent-type road marking material marketed under the trade name of “Hardline H250B” (JIS K 5665, two types) from Atomix Co., Ltd. was prepared as a base material. This base material was stirred with a stainless steel stirring rod until it reached 60 ° C. with an electric heater (1200 W). This was applied to an aluminum plate (150 × 70 × 1.5 mm) to a width of 60 mm and a thickness of about 2 mm. Next, the composite reflective elements obtained in Examples 1 to 8 and Comparative Examples 1 to 4 were dispersed at a density of 180 g / m 2 , and then glass beads UB-108L (refractive index 1.52, particle diameter 106 to 850 μm, An average particle diameter of 530 μm (manufactured by Union Co., Ltd.) was sprayed at a density of 400 g / m 2 to obtain a coated plate of road marking material for road surfaces.
In Comparative Example 15, UB-56NH used in Example 1 or the like was used instead of the composite reflective element, and in Comparative Example 16, Uniflash UB-1521 (refractive index 1.93, particle size 425˜ 1180 μm, average particle size of 880 μm; manufactured by Union Co., Ltd.) was used and sprayed at a density of 180 g / m 2 in the same manner as described above to obtain a coated plate of road marking material for road surfaces.
Table 4 shows the evaluation results of the retroreflective performance and visibility of this road marking material. The evaluation method was the same as in Examples 9 to 16 and Comparative Examples 5 to 10. In addition, drying in the retroreflective performance is a state in which there is no influence of water at normal temperature, and wet means that the composite reflective element is measured in a state where it is sufficiently buried in water (covered by a water film). .
 表3、4の結果から、本発明の路面標示材用複合反射素子は、水膜に覆われた場合でも再帰性反射輝度は高く、また視認性も優れていることがわかる。 From the results of Tables 3 and 4, it can be seen that the composite reflective element for road marking material of the present invention has high retroreflection brightness and excellent visibility even when covered with a water film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 叙上のとおり、本発明の路面標示材用複合反射素子は、有機系バインダーを使用するよりも耐熱性、耐溶剤性、耐温水性、およびバインダー接着性に優れ、再帰性反射輝度が高く、視認性に優れた路面標示材を提供することができる。また、本発明の製造方法によれば、製造方法が容易で、タック性が少ないことによりハンドリングが良くなり製造時間も短縮でき、路面標示材用複合反射素子を効率的且つ安価に製造することができる。 As described above, the composite reflective element for road marking material of the present invention is superior in heat resistance, solvent resistance, hot water resistance, and binder adhesiveness than using an organic binder, and has a high retroreflection brightness. A road marking material excellent in visibility can be provided. In addition, according to the manufacturing method of the present invention, the manufacturing method is easy, the tackiness is low, the handling is improved and the manufacturing time can be shortened, and the composite reflecting element for road marking material can be manufactured efficiently and inexpensively. it can.

Claims (9)

  1.  コア材の表面に、屈折率1.5~2.8、平均粒子径10~500μmのガラスビーズが無機バインダーにより固定化されていることを特徴とする路面標示材用複合反射素子。 A composite reflective element for road marking material, characterized in that glass beads having a refractive index of 1.5 to 2.8 and an average particle diameter of 10 to 500 μm are fixed to the surface of the core material with an inorganic binder.
  2.  コア材が、セラミックビーズ、バライト、セルベン、珪石、酸化亜鉛、アルミナ、ホワイトシリカから選ばれる少なくとも1種であることを特徴とする請求項1記載の路面標示材用複合反射素子。 The composite reflective element for road marking material according to claim 1, wherein the core material is at least one selected from ceramic beads, barite, selben, silica stone, zinc oxide, alumina, and white silica.
  3.  コア材の平均粒子径が100~5000μmであることを特徴とする請求項1又は2記載の路面標示材用複合反射素子。 3. The composite reflecting element for road marking material according to claim 1, wherein the average particle diameter of the core material is 100 to 5000 μm.
  4.  コア材の表面が、酸化チタン、マイカのいずれか又は両方、又はパール顔料からなる被覆材で無機バインダーにより被覆されていることを特徴とする請求項1~3のいずれか1項に記載の路面標示材用複合反射素子。 The road surface according to any one of claims 1 to 3, wherein the surface of the core material is coated with an inorganic binder with a coating material made of titanium oxide, mica, or both, or a pearl pigment. Composite reflective element for marking material.
  5.  無機バインダーが水ガラスであることを特徴とする請求項1~4のいずれか1項に記載の路面標示材用複合反射素子。 The composite reflective element for road marking material according to any one of claims 1 to 4, wherein the inorganic binder is water glass.
  6.  ガラスビーズが10~100μmの幅広い粒度分布を有することを特徴とする請求項1~5のいずれか1項に記載の路面標示材用複合反射素子。 6. The composite reflecting element for a road marking material according to claim 1, wherein the glass beads have a wide particle size distribution of 10 to 100 μm.
  7.  請求項1~6の何れか1項に記載の複合反射素子の表面が、蛍光顔料又は蓄光顔料で被覆されていることを特徴とする路面標示材用複合反射素子。 A composite reflective element for road marking materials, wherein the surface of the composite reflective element according to any one of claims 1 to 6 is coated with a fluorescent pigment or a phosphorescent pigment.
  8.  コア材とガラスビーズと無機バインダーを撹拌混合し、次いで焼き付けてコア材の表面にガラスビーズを固着させることを特徴とする請求項1~7の何れか1項に記載の複路面標示材用合反射素子の製造方法。 The composite for road marking material according to any one of claims 1 to 7, wherein the core material, the glass beads, and the inorganic binder are stirred and mixed, and then baked to fix the glass beads to the surface of the core material. A method for manufacturing a reflective element.
  9.  請求項1~7の何れか1項に記載の路面標示材用複合反射素子を含有してなることを特徴とする路面標示材。 A road marking material comprising the composite reflective element for a road marking material according to any one of claims 1 to 7.
PCT/JP2010/071109 2009-11-27 2010-11-26 Composite reflective element for use in a road-surface marking material, and road-surface marking material containing said composite reflective element WO2011065473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543316A JP5719310B2 (en) 2009-11-27 2010-11-26 Method for producing composite reflective element for road marking material and road marking material comprising composite reflective element for road marking material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009270194 2009-11-27
JP2009-270194 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011065473A1 true WO2011065473A1 (en) 2011-06-03

Family

ID=44066577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071109 WO2011065473A1 (en) 2009-11-27 2010-11-26 Composite reflective element for use in a road-surface marking material, and road-surface marking material containing said composite reflective element

Country Status (2)

Country Link
JP (1) JP5719310B2 (en)
WO (1) WO2011065473A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253165A (en) * 2010-06-04 2011-12-15 Maruo Calcium Co Ltd Combined reflective element for road surface marking and road surface marking material containing the same
KR101546686B1 (en) * 2013-11-27 2015-09-21 주식회사 시명 Reflecting composition adapted to traffic-lane paint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240355A (en) * 2002-02-20 2003-08-27 Guraiko Materials:Kk Heat generator and road marking material
JP2007212763A (en) * 2006-02-09 2007-08-23 Three M Innovative Properties Co Road surface marking material
JP2009516102A (en) * 2005-11-14 2009-04-16 スリーエム イノベイティブ プロパティズ カンパニー Method for producing paved road surface signs, reflective elements and microspheres

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240355A (en) * 2002-02-20 2003-08-27 Guraiko Materials:Kk Heat generator and road marking material
JP2009516102A (en) * 2005-11-14 2009-04-16 スリーエム イノベイティブ プロパティズ カンパニー Method for producing paved road surface signs, reflective elements and microspheres
JP2007212763A (en) * 2006-02-09 2007-08-23 Three M Innovative Properties Co Road surface marking material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011253165A (en) * 2010-06-04 2011-12-15 Maruo Calcium Co Ltd Combined reflective element for road surface marking and road surface marking material containing the same
KR101546686B1 (en) * 2013-11-27 2015-09-21 주식회사 시명 Reflecting composition adapted to traffic-lane paint

Also Published As

Publication number Publication date
JP5719310B2 (en) 2015-05-13
JPWO2011065473A1 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
CN1878914A (en) Retroreflective elements comprising a bonded resin core and pavement markings
EP2844706B1 (en) High solar-reflectivity roofing granules utilizing low absorption components
US3251704A (en) Compositions and pigments
KR20050067189A (en) Powder coating, method for production thereof, method for using said powder coating and coated article
JP2007217586A (en) Heat-insulating coating and heat-insulating material
CN110452601A (en) A kind of road mark paint and preparation method thereof
AU2016213103A1 (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
KR102042203B1 (en) Powder coating composition
KR102196705B1 (en) Eco-friendly acrylic paint composition for road traffic lane with excellent adhesion of glassbeads and wear resistance and the road traffic lane construction method thereof
JP5719310B2 (en) Method for producing composite reflective element for road marking material and road marking material comprising composite reflective element for road marking material
KR101176043B1 (en) Liquid paint composition containing the mixed beads for traffic lane
JP2011248104A (en) Light extraction film and manufacturing method of the same
JPH1088031A (en) Luminous road marking material
JP5204142B2 (en) Thermal barrier coating composition
JP2011253165A (en) Combined reflective element for road surface marking and road surface marking material containing the same
JP6351037B2 (en) Water-based thermal barrier coating for transparent substrate, method for thermal treatment of transparent substrate, and transparent substrate subjected to thermal treatment
KR101232032B1 (en) Method of preparing photoluminescent retroreflective bead for road sign in the rain
JP2008063496A (en) Colorant for road marking material and paint composition for road marking material produced by using colorant for road marking material
JPH0617563B2 (en) Road marking method
KR101889270B1 (en) High functional non-slip packaging composition which improves the water-repellency and resistance to contamination and improves mechanical properties, and construction method using thereof
WO2017044425A1 (en) Durable retroreflective elements with an ionic copolymer core
WO2020195484A1 (en) Aqueous photoluminescent coating composition and photoluminescent resin coating film
JPH07179787A (en) Hot-melt road-marking paint
KR101670998B1 (en) Paint Composition of lane painting with non-slip and painting process using thereof
JP2005060453A (en) Road marking coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543316

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833319

Country of ref document: EP

Kind code of ref document: A1