WO2011065313A1 - Polycarbonate film for laser processing - Google Patents

Polycarbonate film for laser processing Download PDF

Info

Publication number
WO2011065313A1
WO2011065313A1 PCT/JP2010/070756 JP2010070756W WO2011065313A1 WO 2011065313 A1 WO2011065313 A1 WO 2011065313A1 JP 2010070756 W JP2010070756 W JP 2010070756W WO 2011065313 A1 WO2011065313 A1 WO 2011065313A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
bis
laser
polycarbonate resin
carbon atoms
Prior art date
Application number
PCT/JP2010/070756
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 常守
学 松井
Original Assignee
帝人化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人化成株式会社 filed Critical 帝人化成株式会社
Priority to JP2011543238A priority Critical patent/JPWO2011065313A1/en
Publication of WO2011065313A1 publication Critical patent/WO2011065313A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation

Definitions

  • the present invention relates to a polycarbonate film that can be patterned by irradiating laser light having a wavelength in the visible range, and an optical member that uses the polycarbonate film on which a pattern is formed.
  • Laser ablation means that the solid surface of the processing material is irradiated with pulsed laser light whose pulse width is shorter than several tens of nanoseconds and whose light intensity per pulse is several mW / cm 2 or more, and the processing material at the irradiated part is decomposed.
  • a processing method for forming a specific pattern by scattering Conventionally, this laser ablation processing is industrially effective because it can process nano-patterns finely because of its high laser beam condensing capability, and it is non-contact and has high safety and high-speed processing. It is used as a processing method.
  • the solid material to be processed is heated and dissolved with laser light, and then cut or It is possible to perform welding or the like.
  • Such processing with a relatively long wavelength laser beam is a thermal processing based on the thermal effect of the laser beam, and metals and ceramics have been used as processing materials.
  • the processing accuracy is remarkably inferior due to welding traces and thermal decomposition products due to the heat diffusion effect around the irradiated part of the laser beam, etc. Has been.
  • Patent Documents 1 and 2 disclose a method of promoting the generation of ablation by mixing carbon powder or an ultraviolet absorber in a difficult-to-ablate material.
  • the excimer laser is not necessarily non-thermal processing, and heat is instantaneously generated at the laser beam irradiation site, and the accuracy of the processed surface is reduced.
  • Patent Document 3 discloses a polymer material that can be non-thermally ablated by laser light having a wavelength in the visible range.
  • the processed material is composed of two types of polymers, and one component thereof has at least two types of chromophores that generate an excited state by absorbing the irradiated laser beam, and the intermolecular distance is resonant.
  • Patent Document 4 describes a technique in which a laser ablation process is performed by adding a dye that absorbs a wavelength of 0.4 ⁇ m to 11 ⁇ m using polyimide as a heat resistant polymer.
  • a neodymium YAG laser (1.064 ⁇ m in the near infrared region) is used as the laser beam, and there is no description about ablation processing using a laser beam with a wavelength in the visible region.
  • there is still no sufficient polymer material for laser ablation processing that is excellent in processing accuracy with laser light having a wavelength in the visible range.
  • JP 7-16924 A Japanese Patent Laid-Open No. 10-6046 JP-A-5-112727 JP 2002-254184 A
  • An object of the present invention is to provide a film for laser ablation processing excellent in heat resistance, wavelength absorption characteristics in the visible region, and processing accuracy.
  • polycarbonate films have been considered unsuitable for laser ablation because they have low heat resistance and inferior wavelength absorption characteristics in the visible range, but the present inventors surprisingly use specific polycarbonate films.
  • the present inventors have found that the above problems can be solved and are extremely suitable for laser ablation processing with laser light having a wavelength in the visible range. As a result of further investigation based on this finding, the present invention has been completed.
  • the present invention mainly comprises a unit represented by the following formula ( ⁇ ), is formed from a polycarbonate resin having a glass transition temperature of 180 ° C.
  • -W- is at least one linking group selected from the group consisting of the following formulas ( ⁇ -1), ( ⁇ -2), ( ⁇ -3) and a single bond.
  • X and y are Each independently represents an integer of 0 to 4.
  • R 1 and R 2 each independently represent a halogen atom or an alkyl group having 1 to 4 carbon atoms.
  • v and w are each independently an integer of 0 to 2.
  • R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.) (Wherein R 6 and R 7 are each independently (i) when x and y are 0, they are aryl groups having 6 to 10 carbon atoms; and (ii) x or y is an integer of 1 to 4). In this case, it is an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms.)
  • FIG. 1 shows a schematic diagram of laser ablation processing on the surface of a polymer material having a low glass transition temperature.
  • FIG. 2 shows a schematic view of laser ablation processing on the polycarbonate film surface of the present invention.
  • the polycarbonate resin used in the present invention mainly contains units represented by the following formula ( ⁇ ).
  • "mainly” means 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, and most preferably, in 100 mol% of all carbonate units excluding terminals. Indicates a proportion of 100 mol%.
  • -W- is at least one linking group selected from the group consisting of the following formulas ( ⁇ -1), ( ⁇ -2), ( ⁇ -3) and a single bond.
  • x and y are each independently an integer of 0 to 4.
  • R 1 and R 2 are each independently a halogen atom or an alkyl group having 1 to 4 carbon atoms.
  • alkyl group having 1 to 4 carbon atoms examples include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • v and w are each independently an integer of 0 to 2.
  • R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, and a propyl group.
  • R 6 and R 7 are each independently (i) when x and y are 0, an aryl group having 6 to 10 carbon atoms, and (ii) when x or y is 1 to In the case of an integer of 4, it is an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • the aryl group having 6 to 10 carbon atoms include phenyl group, tolyl group, dimethylphenyl group and naphthyl group.
  • Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, and a propyl group.
  • Compounds that derive the unit of formula ( ⁇ -2) include 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) ) Propane, 1-phenyl-1,1-bis (4-hydroxyphenyl) ethane, 4,4′-dihydroxytetraphenylmethane and the like. Of these, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane and 4,4′-dihydroxytetraphenylmethane are preferable.
  • 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is preferable.
  • the compound that induces a structural unit in which W is a single bond include 4,4′-biphenol and 4,4′-bis (2,6-dimethyl) diphenol.
  • aromatic dihydroxy components derived from other dihydric phenols may be copolymerized at a ratio of 30 mol% or less, preferably 20 mol% or less, as long as the object and characteristics of the present invention are not impaired.
  • aromatic dihydroxy components include bis (2-hydroxyphenyl) methane, bis (4-hydroxyphenyl) methane, and bis (4-hydroxy-2,6-dimethyl-3-methoxyphenyl).
  • the polycarbonate resin is 40 to 95 mol%, preferably 45 to 90 mol%, more preferably 50 to 85 mol% of the unit represented by the following formula (I) and 60 to 5 mol%, preferably 55 to 10 mol%. %, More preferably 50 to 15 mol% of units represented by the following formula (II).
  • the unit represented by the formula (I) is less than 40 mol%, the heat resistance is insufficient. On the other hand, if it exceeds 95 mol%, the transparency of the molded product is lowered.
  • Examples of the method for producing the polycarbonate resin of the present invention include an interfacial polycondensation method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • the reaction by the interfacial polycondensation method is usually a reaction between a dihydric phenol and phosgene, and is reacted in the presence of an acid binder and an organic solvent.
  • an acid binder for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used.
  • the organic solvent for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • a catalyst such as a tertiary amine such as triethylamine, tetra-n-butylammonium bromide or tetra-n-butylphosphonium bromide, a quaternary ammonium compound or a quaternary phosphonium compound may be used.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is preferably about 10 minutes to 5 hours
  • the pH during the reaction is preferably maintained at 9 or more.
  • a terminal terminator is usually used.
  • Monofunctional phenols can be used as such end terminators.
  • Monofunctional phenols are commonly used as end terminators for molecular weight control, and the resulting polycarbonate resins are compared to those that do not because the ends are blocked by groups based on monofunctional phenols. Excellent thermal stability.
  • Such monofunctional phenols are generally phenols or lower alkyl-substituted phenols, and monofunctional phenols represented by the following formula ( ⁇ ) can be shown.
  • A is a hydrogen atom, a linear or branched alkyl group having 1 to 9 carbon atoms, or a phenyl-substituted alkyl group, and r is an integer of 1 to 5, preferably 1 to 3.
  • the monofunctional phenols include phenol, phenylphenol, p-tert-butylphenol, p-cumylphenol, tert-octylphenol and isooctylphenol.
  • phenols or benzoic acid chlorides having a long chain alkyl group or an aliphatic ester group as a substituent, or long chain alkyl carboxylic acid chlorides can be used. These end terminators are desirably introduced at at least 5 mol%, preferably at least 10 mol%, and more preferably introduced at 80 mol% or more of the ends of the obtained polycarbonate resin. Is done.
  • the reaction by the melt polymerization method is typically a transesterification reaction between a dihydric phenol and a carbonate ester, and is produced by mixing the dihydric phenol and the carbonate ester with heating in the presence of an inert gas. It is carried out by a method of distilling alcohol or phenol.
  • the reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 350 ° C. In the latter stage of the reaction, the system is evacuated to about 1,300 Pa to 13 Pa (10 to 0.1 Torr) to facilitate the distillation of the alcohol or phenol produced.
  • the reaction time is usually about 1 to 4 hours.
  • Examples of the carbonate ester include esters such as an aryl group having 6 to 10 carbon atoms, an aralkyl group, or an alkyl group having 1 to 4 carbon atoms which may have a substituent.
  • Specific examples include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Of these, diphenyl carbonate is preferred.
  • a polymerization catalyst can be used to increase the polymerization rate.
  • Examples of the polymerization catalyst include alkali metal and alkaline earth metal hydroxides such as sodium hydroxide and potassium hydroxide, boron and aluminum hydroxides, alkali metal salts, alkaline earth metal salts, and quaternary ammonium salts. Alkoxides of alkali metals and alkaline earth metals, organic acid salts of alkali metals and alkaline earth metals, zinc compounds, boron compounds, silicon compounds, germanium compounds, organic tin compounds, lead compounds, antimony compounds, manganese compounds, titanium compounds And catalysts usually used for esterification reactions and transesterification reactions of zirconium compounds and the like. A catalyst may be used independently and may be used in combination of 2 or more types.
  • polymerization catalysts are preferably used in an amount of 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 5 equivalents, more preferably 1 ⁇ 10 ⁇ 8 to 5 ⁇ 10 ⁇ 6 equivalents, relative to 1 mol of dihydric phenol as a raw material. Selected by range.
  • 2-chlorophenylphenyl carbonate, 2-methoxycarbonylphenylphenyl carbonate and 2-ethoxycarbonylphenylphenyl carbonate are added at the later stage or after completion of the polymerization reaction in order to reduce the phenolic end groups.
  • 2-methoxycarbonylphenyl phenyl carbonate is preferably used.
  • a deactivator that neutralizes the activity of the catalyst.
  • the amount of the deactivator is preferably 0.5 to 50 moles per mole of the remaining catalyst. Further, it is used in a proportion of 0.01 to 500 ppm, more preferably 0.01 to 300 ppm, and particularly preferably 0.01 to 100 ppm with respect to the polycarbonate copolymer after polymerization.
  • Preferred examples of the deactivator include phosphonium salts such as tetrabutylphosphonium dodecylbenzenesulfonate and ammonium salts such as tetraethylammonium dodecylbenzyl sulfate.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 2.0 ⁇ 10 4 to 8.0 ⁇ 10 4 , more preferably 2.5 ⁇ 10 4 to 7.0 ⁇ 10 4 , and still more preferably Is 3.0 ⁇ 10 4 to 6.0 ⁇ 10 4 .
  • a polycarbonate resin having a viscosity average molecular weight of less than 2.0 ⁇ 10 4 may not provide a practically sufficient strength.
  • a polycarbonate resin having a viscosity average molecular weight of more than 8.0 ⁇ 10 4 is not preferable because the melt viscosity and the solution viscosity become high and handling becomes difficult.
  • the polycarbonate resin has a glass transition temperature (Tg) of 180 ° C. or higher, preferably 180 ° C. to 260 ° C., more preferably 200 to 250 ° C. If Tg is less than 180 ° C., welding marks and the like due to the heat of the laser beam remain around the irradiation position, and the processing accuracy is lowered. On the other hand, when Tg exceeds 260 ° C., the melt viscosity and the solution viscosity become high, and handling at the time of film production becomes difficult.
  • the glass transition temperature in the present invention can be measured by using a differential scanning calorimeter (DSC) at a heating rate of 20 ° C./min in accordance with JIS K7121.
  • the polycarbonate resin has a light transmittance at a wavelength of 0.4 ⁇ m of 5 to 95%, preferably 5 to 90%, more preferably 5 to 85%, and further preferably 10 to 85%. If the light transmittance exceeds 95%, the absorption characteristics of the irradiated laser beam are inferior, which is not preferable. When the light transmittance is less than 5%, the laser beam is not transmitted, so that it cannot be used for an optical member or an optical element that transmits the laser beam.
  • the light transmittance of the polycarbonate resin is measured as follows.
  • the light transmittance in the visible region with a wavelength of 0.4 ⁇ m can be measured with a UV-visible spectrophotometer using a polycarbonate film having a thickness of 200 ⁇ m.
  • UV-visible spectrophotometer using a polycarbonate film having a thickness of 200 ⁇ m.
  • UV-visible spectrophotometer using a polycarbonate film having a thickness of 200 ⁇ m.
  • UV absorber used in the present invention include benzotriazole-based and / or benzophenone-based and / or triazine-based and / or benzoxazine-based ultraviolet absorbers.
  • the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole and 2- (2′-hydroxy-3 ′-(3,4,5,6-tetrahydrophthalimidomethyl).
  • 2- (2′-hydroxy-5′-methylphenyl) benzotriazole 2- (2′-hydroxy-3 ′-(3,4,5,6-tetrahydrophthalimidomethyl) -5′-methylphenyl) Benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, 2- (3 '-Tert-butyl-5'-methyl-2'-hydroxyphenyl) -5-chlorobenzotriazole is preferred, and 2- (2'-hydroxy-5'-tert-octylphenyl) benzotriazole is more preferred.
  • hydroxyphenyltriazine-based for example, trade name Tinuvin 400 (manufactured by Ciba Specialty Chemicals) is preferable.
  • the benzoxazine-based ultraviolet absorber include 2,2′-bis (3,1-benzoxazin-4-one), 2,2′-p-phenylenebis (3,1-benzoxazin-4-one) 2,2′-m-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one), 2,2 ′-(1,5-naphthalene) bis (3,1-benzoxazin-4-one) ), 2,2 ′-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2-methyl-p-phenylene) bis (3
  • 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one), And 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one) are preferred.
  • 2,2′-p-phenylenebis (3,1-benzoxazin-4-one) is preferable.
  • a compound represented by the following formula ( ⁇ -1) is preferably used, and in particular, a compound represented by the following formula ( ⁇ -1) is represented by the following formula [ ⁇ -2]. It is preferable that it is a compound represented by these.
  • R 8 and R 11 represent a hydrogen atom, an alkyl group or an alkoxy group
  • R 9 and R 10 represent an alkyl group
  • [B] represents a substituted aryl or ethenyl group.
  • R 12 and R 14 are groups having the same meaning as R 9
  • R 13 and R 15 are groups having the same meaning as R 10, and n represents an integer of 1 or 2).
  • a compound represented by the following formula ( ⁇ -3) is preferably used, and among them, 2,2 ′-(thiophene-2) represented by the following formula ( ⁇ -4) , 5-diyl) bis (4H-benzo [d] [1,3-oxazin-4-one].
  • the said ultraviolet absorber can be used individually or in combination of 2 or more types.
  • the blending amount of the ultraviolet absorber is preferably 0.001 to 3.0 parts by weight, more preferably 0.005 to 1.5 parts by weight, and still more preferably 0.001 to 3.0 parts by weight with respect to 100 parts by weight of the polycarbonate resin. 01 to 1.0 part by weight.
  • the blending amount of the UV absorber is less than 0.001 part by weight, the wavelength absorption characteristics will deteriorate, so it will be necessary to increase the irradiation intensity and irradiation time of the laser beam, and it will melt on the processed surface due to the heat of the laser beam Scratches or the like may occur, and the processing accuracy may decrease.
  • the compounding quantity of a ultraviolet absorber exceeds 3.0 weight part, since heat resistance falls, it is unpreferable.
  • a fluorescent dye may be used in combination with the ultraviolet absorber.
  • the fluorescent dye examples include a coumarin fluorescent dye, a benzopyran fluorescent dye, a perylene fluorescent dye, an anthraquinone fluorescent dye, a thioindigo fluorescent dye, a xanthene fluorescent dye, a xanthone fluorescent dye, a thioxanthene fluorescent dye, and a thioxanthone.
  • Fluorescent dyes, thiazine fluorescent dyes, and diaminostilbene fluorescent dyes are preferable.
  • coumarin-based fluorescent dyes that is, fluorescent dyes composed of coumarin derivatives exhibit preferable characteristics.
  • the range of 0.001 to 1 part by weight is preferable with respect to 100 parts by weight of the polycarbonate resin.
  • the method for producing the film of the present invention include a solution casting method and a melt extrusion method.
  • the solution casting method is suitable from the viewpoint of workability.
  • the solution casting method obtains a film that has a good surface property, little variation in thickness, and is extremely flat. It is also excellent in that it can.
  • Solvents that can be used in the solution casting method can be selected from known dissolving solvents, among which methylene chloride, 1,3-dioxolane, and mixtures thereof are suitable solvents. Further, a small amount of a non-solvent of polycarbonate such as alcohol or xylene may be mixed and used as a secondary solvent.
  • the polymer concentration of the solution used for the solution casting method is preferably in the range of 10 to 40% (% by weight, the same applies hereinafter). When the concentration of the polycarbonate in the solution is too low, the amount of the solvent to be volatilized increases, which is not efficient. In addition, the solution viscosity becomes too small to obtain a uniform film.
  • the solution viscosity in the solution becomes high, and it becomes difficult to perform uniform casting. Absent. It is preferable to pass a filter having an average opening of about 1 to 10 ⁇ m before casting the solution in order to prevent foreign matters or gels in the solution from entering the film.
  • a filter having an average opening of about 1 to 10 ⁇ m before casting the solution in order to prevent foreign matters or gels in the solution from entering the film.
  • a conventionally known one can be applied.
  • a polyester film or a steel belt having a very highly polished surface can be used.
  • the surface property expressed by Ra (centerline average surface roughness) of the support surface is preferably 5 nm or less, more preferably 3 nm or less.
  • the thickness of the film of the present invention is preferably in the range of 1 to 600 ⁇ m. If it is less than 1 ⁇ m, the strength is insufficient, such being undesirable. If it exceeds 600 ⁇ m, it is necessary to remarkably slow the film forming speed, which is not preferable because productivity is lowered.
  • the preferred thickness is 10 to 450 ⁇ m, more preferably 50 to 300 ⁇ m.
  • the thickness unevenness of the film of the present invention should be small.
  • the range of the thickness unevenness is preferably 5% or less, more preferably 3% or less, and further preferably 1% or less with respect to the thickness.
  • 5% of thickness unevenness means, for example, that the difference between the maximum value and the minimum value of the thickness is 10 ⁇ m in a film having a thickness of 200 ⁇ m. If the thickness unevenness is larger than 5%, the surface smoothness is impaired.
  • the method for measuring the thickness unevenness of the film can be performed, for example, using a continuous thickness meter (Film Thickness Tester Model KG601A manufactured by Anritsu Co., Ltd.).
  • the in-plane retardation of the film of the present invention is preferably low.
  • the phase difference (Re) is preferably 20 nm or less, more preferably 10 nm or less, still more preferably 8 nm or less, and particularly preferably 5 nm or less at the wavelength of the laser beam to be used. Ideally, this value is as close to zero as possible. If the in-plane retardation exceeds 20 nm, the processing accuracy deteriorates when the film is irradiated with laser light.
  • FIG. 1 schematically shows the steps of a laser ablation method when a polymer material having a low glass transition temperature is used as a processing material.
  • the processing material 3 at the laser beam irradiation site 4 easily generates thermal expansion 5, and the thermal decomposition product 6 is scattered.
  • the accuracy of the processed surface 7 is lowered.
  • the case where the film of the present invention having a high glass transition temperature is used as the processing material 3 is shown in FIG.
  • the laser light irradiation portion 4 undergoes a melting / decomposition reaction while being hardly deformed to form a pattern. As a result, a good processed surface 7 is obtained.
  • the laser light various lasers having a wavelength in the visible range of 0.4 to 0.6 ⁇ m can be used.
  • the second harmonic of Nd YAG laser (wavelength 533 nm), argon laser, krypton laser, dye laser Examples thereof include a titanium sapphire laser, an InGaN / GaN blue semiconductor laser, and a GaN green semiconductor laser.
  • the power (intensity) of the laser light is usually preferably 10 4 W / cm 2 or more (for example, 5 ⁇ 10 5 to 100 ⁇ 10 5 W / cm 2 , more preferably 10 ⁇ at the focal point (focal point). 10 5 to 100 ⁇ 10 5 W / cm 2 , more preferably about 25 ⁇ 10 5 to 100 ⁇ 10 5 W / cm 2 ).
  • the average output of the laser beam is preferably 10 to 1,000 mW, more preferably 20 to 800 mW.
  • the pulse width of the laser beam is preferably 1 picosecond or less (for example, about 10 to 500 femtoseconds, more preferably about 30 to 300 femtoseconds, and further preferably about 50 to 200 femtoseconds).
  • the frequency of the laser beam (pulse laser beam) is preferably 0.1 kHz or more (for example, about 0.5 to 1,000 kHz, more preferably 0.5 to 800 kHz, and further preferably about 0.5 to 500 kHz). is there.
  • the irradiation time of the laser beam is preferably 1 microsecond (10 ⁇ 6 seconds) or less, particularly 100 femtoseconds (10 ⁇ 13 ), in order to prevent the heat generated at the irradiation site from being diffused excessively. Seconds) to 500 nanoseconds (5 ⁇ 10 ⁇ 7 seconds).
  • a mechanical, electrical, or optical shutter may be used individually or in combination with the continuous wave laser, and a pulsed laser is more preferably used.
  • the present invention includes a decorative film obtained by laser processing the film of the present invention and having a pattern formed on the film surface. Moreover, the optical member or optical element using a decorating film is included.
  • Viscosity average molecular weight The viscosity average molecular weight of the resin composition in the present invention is measured and calculated by the following method. First, the polycarbonate resin powder was mixed with 30 times weight of methylene chloride and dissolved, and the soluble component was collected by Celite filtration. Thereafter, the solid obtained after removing the solvent from the obtained solution was sufficiently dried, and the specific viscosity ( ⁇ sp ) of the solution at 20 ° C.
  • the total light transmittance of the sample was measured using a color difference / turbidity measuring machine COH-300A manufactured by Nippon Denshoku Industries Co., Ltd. Five points were measured for each sample, and the average value was taken as the total light transmittance. This measurement was performed according to JIS K7105.
  • (6) Measurement of in-plane retardation value (Re) Retardation values were measured at intervals of 10 mm using a continuous retardation measuring instrument (trade name KOBRA-WFD manufactured by Oji Scientific Instruments Co., Ltd.) with respect to the full width of the sample in the width direction. The wavelength was measured at 0.4 ⁇ m.
  • Pulse laser light was condensed and irradiated on the film surface with a lens.
  • the laser beam used was a titanium sapphire laser.
  • the wavelength was 0.4 ⁇ m
  • the pulse width was 150 femtoseconds
  • the repetition frequency was 200 kHz
  • the irradiation time was 300 nanoseconds.
  • the average output of the laser beam was changed, the processed surface was observed with an optical microscope, and the average output of the laser beam required for ablation was measured. The following raw materials were used.
  • BIS-1 9,9-bis (4-hydroxy-3-methylphenyl) fluorene
  • BIS-2 2,2-bis (4-hydroxyphenyl) propane
  • BIS-A 1,1-bis (4-hydroxyphenyl)
  • BIS-B 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane
  • BIS-C 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane
  • BIS-D 4,4′-dihydroxytetraphenylmethane
  • BIS-E 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane
  • UVA-1 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole (Chemisorb 79 manufactured by Chemipro Kasei Co., Ltd.)
  • UVA-2 2- (3′-tert-butyl-5′-methyl-2′-hydroxyphenyl) -5-chloro
  • a reactor equipped with a thermometer, a stirrer and a reflux condenser was charged with a 48% aqueous sodium hydroxide solution and ion-exchanged water, and bisphenol monomer and hydrosulfite were dissolved therein, and then methylene chloride was added thereto. Phosgene was blown in at about 15 to 25 ° C. over about 60 minutes. After completion of the phosgene blowing, the stirring was stopped, and a 48% aqueous sodium hydroxide solution and p-tert-butylphenol were added. Stirring was resumed, triethylamine was added after emulsification, and the mixture was further stirred at 28 to 33 ° C. for 1 hour to complete the reaction.
  • the product is diluted with methylene chloride, washed with water, acidified with hydrochloric acid, washed with water, and further washed with water until the conductivity of the aqueous phase becomes substantially the same as that of ion-exchanged water. Got. Next, this solution is passed through a filter having an aperture of 0.3 ⁇ m, and further dropped into warm water in a kneader with an isolation chamber having a foreign matter outlet at the bearing, and the polycarbonate resin is flaked while distilling off methylene chloride. The liquid-containing flakes were pulverized and dried to obtain a powder.
  • the membrane was passed through a roll-suspended dryer. Then, it wound up with low conveyance tension.
  • the thickness, thickness unevenness, light transmittance at a wavelength of 0.4 ⁇ m, total light transmittance, and in-plane retardation value of the obtained polycarbonate film were measured and listed in Tables 1 and 2.
  • the ultraviolet absorber was dissolved together when the polycarbonate resin powder was dissolved in methylene chloride.
  • (3) Laser ablation processing The obtained polycarbonate film was cut into a 100 mm square size, the film was placed on a sample stage, and the film surface was subjected to laser ablation processing according to the evaluation method (7) to obtain a decorative film. It was.
  • the polycarbonate film of the present invention can provide a good processed surface for laser ablation, while the useful polymer material having a low glass transition temperature has such useful properties. It can be seen that cannot be obtained.
  • the light transmittance in the laser light of the wavelength used for laser processing can be improved by blending the ultraviolet absorber in a specific range, and the average output during laser ablation processing can be reduced. . That is, according to the polycarbonate film of this invention, it turns out that the favorable laser ablation process which cannot be obtained with the polymeric material with a low glass transition temperature used widely is possible. Effects of the Invention
  • the film of the present invention has high heat resistance, excellent wavelength absorption characteristics in the visible region, and excellent processing accuracy by laser ablation.
  • the film of the present invention can form a pattern by laser light irradiation, it is an optical member or optical element, such as various optical waveguides, nonlinear optical elements, optical switches, optical diffraction elements, light emission It can be used as an element, an amplifying element or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Provided is a polycarbonate film for laser processing which has excellent heat resistance, excellent absorption characteristics at visible-region wavelengths, and excellent processing accuracy. The film for laser processing is a film formed from a polycarbonate resin which mainly comprises specific units and has a glass transition temperature of 180ºC or higher, the film having a light transmittance at a wavelength of 0.4 µm of 5-95%.

Description

レーザー加工用ポリカーボネートフィルムPolycarbonate film for laser processing
 本発明は、可視域の波長のレーザー光を照射することによってパターン形成可能なポリカーボネートフィルム、且つパターンが形成されたポリカーボネートフィルムを用いた光学用部材に関する。 The present invention relates to a polycarbonate film that can be patterned by irradiating laser light having a wavelength in the visible range, and an optical member that uses the polycarbonate film on which a pattern is formed.
 レーザーアブレーションとは、パルス幅が数十ナノ秒より短く、1パルスあたりの光強度が数mW/cm以上であるパルスレーザー光を加工材料の固体表面に照射し、照射部分の加工材料を分解・飛散させることにより、特定のパターンを形成する加工法である。従来、このレーザーアブレーション加工は、レーザー光の高い集光能力からナノパターンの微細加工が可能であること、非接触のため安全性が高く、高速加工が可能であることから、工業的に有効な加工法として利用されている。
 例えば、レーザー光源として、COレーザー(近赤外線域の9~11μm)やYAGレーザー(近赤外線域の1.064μm)を用いた場合は、加工する固体物質をレーザー光により加熱溶解し、切断や溶接等することが可能である。このような比較的長波長のレーザー光による加工は、レーザー光の熱効果による熱加工であり、金属やセラミックスが加工材料として用いられてきた。しかしながら、プラスチックのような高分子材料に適用した場合、レーザー光の照射部分周辺における熱の拡散効果による溶接痕、熱分解物が加工面に付着すること等から、加工精度が著しく劣ることが指摘されている。
 そこで、短波長光源(193、248、308、351nm)を利用するエキシマレーザーを光源として用いる手法が検討されている。エキシマレーザーを用いた場合は、一光子あたりのエネルギーが大きい為、レーザー光によって加工物質分子の電子励起状態を生成し、化学反応を伴う光化学効果による非熱加工が可能である。非熱加工は、前記熱加工に比べて、加工精度の優れた高分子材料の加工法として提案されている。しかしながら、高分子材料を用いた非熱加工において、実際に良好な加工面を得るためには、種々の方策を処方する必要がある。例えば、特許文献1、2では、難アブレーション加工材料中にカーボン粉や紫外線吸収剤を混合して、アブレーションの発生を促進する方法が開示されている。また、エキシマレーザーは、必ずしも非熱加工とはいえず、レーザー光の照射部位に瞬間的に熱が発生しており、加工面の精度低下が生じることも課題として挙げられる。
 これに対して特許文献3では、可視域の波長のレーザー光によっても非熱的なアブレーション加工が可能な高分子材料が開示されている。この発明では、加工材料は2種類の高分子から構成され、その1成分は、少なくとも照射レーザー光を吸収して励起状態を生成する2種類の発色団を有し、その分子間距離が共鳴相互作用範囲であるという複雑な条件を満たす必要があった。
 また、特許文献4では耐熱性高分子としてポリイミドを用いて波長0.4μm~11μmの波長を吸収する色素を添加し、レーザーアブレーション加工する手法が記載されている。しかしながら、実施例にはレーザー光としてネオジウム・YAGレーザー(近赤外線域の1.064μm)を用いており、可視域の波長のレーザー光を用いたアブレーション加工については記載されていない。
 このように、可視域の波長のレーザー光における加工精度に優れるレーザーアブレーション加工用高分子材料については、未だ十分なものがないのが現状である。
特開平7−16924号公報 特開平10−6046号公報 特開平5−112727号公報 特開2002−254184号公報
Laser ablation means that the solid surface of the processing material is irradiated with pulsed laser light whose pulse width is shorter than several tens of nanoseconds and whose light intensity per pulse is several mW / cm 2 or more, and the processing material at the irradiated part is decomposed. A processing method for forming a specific pattern by scattering. Conventionally, this laser ablation processing is industrially effective because it can process nano-patterns finely because of its high laser beam condensing capability, and it is non-contact and has high safety and high-speed processing. It is used as a processing method.
For example, when a CO 2 laser (9 to 11 μm in the near infrared region) or a YAG laser (1.064 μm in the near infrared region) is used as the laser light source, the solid material to be processed is heated and dissolved with laser light, and then cut or It is possible to perform welding or the like. Such processing with a relatively long wavelength laser beam is a thermal processing based on the thermal effect of the laser beam, and metals and ceramics have been used as processing materials. However, when applied to polymer materials such as plastics, it is pointed out that the processing accuracy is remarkably inferior due to welding traces and thermal decomposition products due to the heat diffusion effect around the irradiated part of the laser beam, etc. Has been.
Therefore, a method of using an excimer laser using a short wavelength light source (193, 248, 308, 351 nm) as a light source has been studied. When an excimer laser is used, since the energy per photon is large, an electronically excited state of a processed material molecule is generated by laser light, and non-thermal processing by a photochemical effect accompanied by a chemical reaction is possible. Non-thermal processing has been proposed as a processing method of a polymer material having excellent processing accuracy as compared with the thermal processing. However, in order to actually obtain a good processed surface in non-thermal processing using a polymer material, it is necessary to formulate various measures. For example, Patent Documents 1 and 2 disclose a method of promoting the generation of ablation by mixing carbon powder or an ultraviolet absorber in a difficult-to-ablate material. In addition, the excimer laser is not necessarily non-thermal processing, and heat is instantaneously generated at the laser beam irradiation site, and the accuracy of the processed surface is reduced.
On the other hand, Patent Document 3 discloses a polymer material that can be non-thermally ablated by laser light having a wavelength in the visible range. In this invention, the processed material is composed of two types of polymers, and one component thereof has at least two types of chromophores that generate an excited state by absorbing the irradiated laser beam, and the intermolecular distance is resonant. It was necessary to satisfy the complicated condition of the working range.
Patent Document 4 describes a technique in which a laser ablation process is performed by adding a dye that absorbs a wavelength of 0.4 μm to 11 μm using polyimide as a heat resistant polymer. However, in the examples, a neodymium YAG laser (1.064 μm in the near infrared region) is used as the laser beam, and there is no description about ablation processing using a laser beam with a wavelength in the visible region.
As described above, there is still no sufficient polymer material for laser ablation processing that is excellent in processing accuracy with laser light having a wavelength in the visible range.
JP 7-16924 A Japanese Patent Laid-Open No. 10-6046 JP-A-5-112727 JP 2002-254184 A
 本発明の目的は、耐熱性、可視域の波長吸収特性および加工精度に優れたレーザーアブレーション加工用フィルムを提供することにある。
 従来、ポリカーボネートフィルムは耐熱性が低く、可視域の波長吸収特性に劣るため、レーザーアブレーション加工には不向きであるとされてきたが、本発明者らは、驚くべきことに特定のポリカーボネートフィルムを用いることにより、上記課題がいずれも解決でき、可視域の波長のレーザー光におけるレーザーアブレーション加工に極めて好適であることを見出した。かかる知見に基づき更に検討を進めた結果、本発明を完成するに至った。
 本発明は、下記式(α)で表される単位を主として含有し、ガラス転移温度が180℃以上であるポリカーボネート樹脂から形成され、且つ波長0.4μmの光線透過率が5~95%であるレーザー加工用フィルムである。
Figure JPOXMLDOC01-appb-I000006
(式中、−W−は下記式(α−1)、(α−2)、(α−3)および単結合からなる群より選択される少なくとも1種の結合基である。xおよびyはそれぞれ独立して、0~4の整数である。RおよびRはそれぞれ独立して、ハロゲン原子または炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-I000007
(式中、vおよびwはそれぞれ独立して、0~2の整数である。R、RおよびRはそれぞれ独立して、水素原子または炭素数1~3のアルキル基である。)
Figure JPOXMLDOC01-appb-I000008
(式中、RおよびRはそれぞれ独立して、(i)xおよびyが0の場合、炭素数6~10のアリール基であり、(ii)xまたはyが1~4の整数の場合、炭素数1~3のアルキル基または炭素数6~10のアリール基である。)
Figure JPOXMLDOC01-appb-I000009
An object of the present invention is to provide a film for laser ablation processing excellent in heat resistance, wavelength absorption characteristics in the visible region, and processing accuracy.
Conventionally, polycarbonate films have been considered unsuitable for laser ablation because they have low heat resistance and inferior wavelength absorption characteristics in the visible range, but the present inventors surprisingly use specific polycarbonate films. Thus, the present inventors have found that the above problems can be solved and are extremely suitable for laser ablation processing with laser light having a wavelength in the visible range. As a result of further investigation based on this finding, the present invention has been completed.
The present invention mainly comprises a unit represented by the following formula (α), is formed from a polycarbonate resin having a glass transition temperature of 180 ° C. or higher, and has a light transmittance of 5 to 95% at a wavelength of 0.4 μm. It is a film for laser processing.
Figure JPOXMLDOC01-appb-I000006
(Wherein, -W- is at least one linking group selected from the group consisting of the following formulas (α-1), (α-2), (α-3) and a single bond. X and y are Each independently represents an integer of 0 to 4. R 1 and R 2 each independently represent a halogen atom or an alkyl group having 1 to 4 carbon atoms.)
Figure JPOXMLDOC01-appb-I000007
(In the formula, v and w are each independently an integer of 0 to 2. R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
Figure JPOXMLDOC01-appb-I000008
(Wherein R 6 and R 7 are each independently (i) when x and y are 0, they are aryl groups having 6 to 10 carbon atoms; and (ii) x or y is an integer of 1 to 4). In this case, it is an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms.)
Figure JPOXMLDOC01-appb-I000009
 図1は、ガラス転移温度の低い高分子材料表面におけるレーザーアブレーション加工の概略図を示す。
 図2は、本発明のポリカーボネートフィルム表面におけるレーザーアブレーション加工の概略図を示す。
FIG. 1 shows a schematic diagram of laser ablation processing on the surface of a polymer material having a low glass transition temperature.
FIG. 2 shows a schematic view of laser ablation processing on the polycarbonate film surface of the present invention.
1 レーザー光
2 対物レンズ
3 加工材料
4 レーザー光照射部位
5 熱膨張
6 熱分解物
7 加工面
DESCRIPTION OF SYMBOLS 1 Laser beam 2 Objective lens 3 Processing material 4 Laser beam irradiation site | part 5 Thermal expansion 6 Thermal decomposition material 7 Processed surface
(I)ポリカーボネート樹脂
 本発明で使用されるポリカーボネート樹脂は主として下記式(α)で表される単位を含有する。ここで、“主として”とは、末端を除く全カーボネート単位100モル%中、70モル%以上、好ましくは80モル%以上、より好ましくは90モル%以上、更に好ましくは95モル%以上、最も好ましくは100モル%の割合であることを示す。
Figure JPOXMLDOC01-appb-I000010
 式中、−W−は下記式(α−1)、(α−2)、(α−3)および単結合からなる群より選択される少なくとも1種の結合基である。xおよびyはそれぞれ独立して、0~4の整数である。RおよびRはそれぞれ独立して、ハロゲン原子または炭素数1~4のアルキル基である。炭素数1~4のアルキル基として、メチル基、エチル基、プロピル基、ブチル基が挙げられる。
Figure JPOXMLDOC01-appb-I000011
 式(α−1)中、vおよびwはそれぞれ独立して、0~2の整数である。R、RおよびRはそれぞれ独立して、水素原子または炭素数1~3のアルキル基である。炭素数1~3のアルキル基としてメチル基、エチル基、プロピル基が挙げられる。
 式(α−1)の単位を誘導する化合物としては、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(3,5−ジメチル−4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン等が挙げられる。なかでも1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、および1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサンが好ましい。
Figure JPOXMLDOC01-appb-I000012
 式(α−2)中、RおよびRはそれぞれ独立して、(i)xおよびyが0の場合、炭素数6~10のアリール基であり、(ii)xまたはyが1~4の整数の場合、炭素数1~3のアルキル基または炭素数6~10のアリール基である。
 炭素数6~10のアリール基としてフェニル基、トリル基、ジメチルフェニル基、ナフチル基等が挙げられる。炭素数1~3のアルキル基として、メチル基、エチル基、プロピル基が挙げられる。
 式(α−2)の単位を誘導する化合物としては、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパン、1−フェニル−1,1−ビス(4−ヒドロキシフェニル)エタン、4,4’−ジヒドロキシテトラフェニルメタン等が挙げられる。なかでも2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパンおよび4,4’−ジヒドロキシテトラフェニルメタンが好ましい。
Figure JPOXMLDOC01-appb-I000013
 式(α−3)の単位を誘導する化合物としては、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。
 Wが単結合である構成単位を誘導する化合物としては、4,4’−ビフェノールおよび4,4’−ビス(2,6−ジメチル)ジフェノール等が挙げられる。
 また他の二価フェノールから誘導される芳香族ジヒドロキシ成分を、本発明の目的および特性を損なわない限り、30モル%以下の割合、好ましくは20モル%以下の割合で共重合させてもよい。かかる他の芳香族ジヒドロキシ成分の代表的な例としては、ビス(2−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシフェニル)メタン、ビス(4−ヒドロキシ−2,6−ジメチル−3−メトキシフェニル)メタン、ビス(4−ヒドロキシフェニル)シクロヘキシルメタン、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通常“ビスフェノールA”と称される)、2,2−ビス(3−フェニル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4−ビス(4−ヒドロキシフェニル)ヘプタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、1,1−ビス(4−ヒドロキシフェニル)デカン、1,1−ビス(3−メチル−4−ヒドロキシフェニル)デカン、および1,1−ビス(2,3−ジメチルー4−ヒドロキシフェニル)デカン、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン(通常“ビスフェノールM”と称される)等が例示される。
 ポリカーボネート樹脂が、40~95モル%、好ましくは45~90モル%、より好ましくは50~85モル%の下記式(I)で表される単位および60~5モル%、好ましくは55~10モル%、より好ましくは50~15モル%の下記式(II)で表される単位を含有することが好ましい。式(I)で表される単位が40モル%より少ない場合、耐熱性が不足する。また95モル%を超えると成形品の透明性が低下する。
Figure JPOXMLDOC01-appb-I000014
 本発明のポリカーボネート樹脂の製造方法としては界面重縮合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
 界面重縮合法による反応は、通常、二価フェノールとホスゲンとの反応であり、酸結合剤および有機溶媒の存在下に反応させる。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物またはピリジン等のアミン化合物が用いられる。有機溶媒としては、例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また、反応促進のために例えばトリエチルアミン、テトラ−n−ブチルアンモニウムブロマイド、テトラ−n−ブチルホスホニウムブロマイド等の第三級アミン、第四級アンモニウム化合物、第四級ホスホニウム化合物等の触媒を用いることもできる。その際、反応温度は通常0~40℃、反応時間は10分~5時間程度、反応中のpHは9以上に保つのが好ましい。
 また、かかる重合反応において、通常、末端停止剤が使用される。かかる末端停止剤として単官能フェノール類を使用することができる。単官能フェノール類は末端停止剤として分子量調節のために一般的に使用され、また得られたポリカーボネート樹脂は、末端が単官能フェノール類に基づく基によって封鎖されているので、そうでないものと比べて熱安定性に優れている。かかる単官能フェノール類としては、一般にはフェノールまたは低級アルキル置換フェノールであって、下記式(β)で表される単官能フェノール類を示すことができる。
Figure JPOXMLDOC01-appb-I000015
 式中、Aは水素原子または炭素原子数1~9の直鎖または分岐のアルキル基あるいはフェニル置換アルキル基であり、rは1~5、好ましくは1~3の整数である。
 上記単官能フェノール類の具体例としては、例えばフェノール、フェニルフェノール、p−tert−ブチルフェノール、p−クミルフェノール、tert−オクチルフェノールおよびイソオクチルフェノールが挙げられる。
 また、他の単官能フェノール類としては、長鎖のアルキル基あるいは脂肪族エステル基を置換基として有するフェノール類または安息香酸クロライド類、もしくは長鎖のアルキルカルボン酸クロライド類を使用することができる。
 これらの末端停止剤は、得られたポリカーボネート樹脂の全末端に対して少なくとも5モル%、好ましくは少なくとも10モル%の末端に導入されることが望ましく、更に好ましくは80モル%以上の末端に導入される。また、末端停止剤は単独でまたは2種以上混合して使用してもよい。
 溶融重合法による反応は、通常、二価フェノールとカーボネートエステルとのエステル交換反応が代表的であり、不活性ガスの存在下に二価フェノールとカーボネートエステルとを加熱しながら混合して、生成するアルコールまたはフェノールを留出させる方法により行われる。反応温度は生成するアルコールまたはフェノールの沸点等により異なるが、通常120~350℃の範囲である。反応後期には系を1,300Pa~13Pa(10~0.1Torr)程度に減圧して生成するアルコールまたはフェノールの留出を容易にさせる。反応時間は通常1~4時間程度である。
 カーボネートエステルとしては、置換基を有していてもよい炭素原子数6~10のアリール基、アラルキル基あるいは炭素原子数1~4のアルキル基などのエステルが挙げられる。具体的にはジフェニルカーボネート、ジトリルカーボネート、ビス(クロロフェニル)カーボネート、m−クレジルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられる。なかでもジフェニルカーボネートが好ましい。
 また、重合速度を速めるために重合触媒を用いることができる。重合触媒としては、例えば水酸化ナトリウムや水酸化カリウムなどのアルカリ金属やアルカリ土類金属の水酸化物、ホウ素やアルミニウムの水酸化物、アルカリ金属塩、アルカリ土類金属塩、第4級アンモニウム塩、アルカリ金属やアルカリ土類金属のアルコキシド、アルカリ金属やアルカリ土類金属の有機酸塩、亜鉛化合物、ホウ素化合物、ケイ素化合物、ゲルマニウム化合物、有機錫化合物、鉛化合物、アンチモン化合物、マンガン化合物、チタン化合物、ジルコニウム化合物などの通常エステル化反応やエステル交換反応に使用される触媒が挙げられる。触媒は単独で使用してもよいし、2種以上組み合わせ使用してもよい。これらの重合触媒の使用量は、原料の二価フェノール1モルに対し、好ましくは1×10−9~1×10−5当量、より好ましくは1×10−8~5×10−6当量の範囲で選ばれる。
 また、かかる重合反応において、フェノール性の末端基を減少するために、重合反応の後期あるいは終了後に、例えば2−クロロフェニルフェニルカーボネート、2−メトキシカルボニルフェニルフェニルカーボネートおよび2−エトキシカルボニルフェニルフェニルカーボネートを加えることが好ましく、特に2−メトキシカルボニルフェニルフェニルカーボネートが好ましく使用される。
 さらに溶融エステル交換法では触媒の活性を中和する失活剤を用いることが好ましい。かかる失活剤の量としては、残存する触媒1モルに対して0.5~50モルの割合で用いるのが好ましい。また重合後のポリカーボネート共重合体に対し、0.01~500ppmの割合、より好ましくは0.01~300ppm、特に好ましくは0.01~100ppmの割合で使用する。失活剤としては、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩などのホスホニウム塩、テトラエチルアンモニウムドデシルベンジルサルフェートなどのアンモニウム塩などが好ましく挙げられる。
 ポリカーボネート樹脂の粘度平均分子量(Mv)は、好ましくは2.0×10~8.0×10であり、より好ましくは2.5×10~7.0×10であり、さらに好ましくは3.0×10~6.0×10である。粘度平均分子量が2.0×10未満のポリカーボネート樹脂では、実用上十分な強度が得られない場合がある。一方、粘度平均分子量が8.0×10を超えるポリカーボネート樹脂は、溶融粘度および溶液粘度が高くなり、取扱いが困難になるので好ましくない。
 ポリカーボネート樹脂の粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート樹脂0.7gを夫々溶解した溶液からオストワルド粘度計を用いて求め、
 比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
 求められた比粘度(ηSP)から次の数式により粘度平均分子量(Mv)を算出する。
 ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
 [η]=1.23×10−4Mv0.83
 c=0.7
 ポリカーボネート樹脂は、ガラス転移温度(Tg)が180℃以上であり、好ましくは180℃~260℃であり、さらに好ましくは200~250℃である。Tgが180℃未満では、レーザー光の熱による溶接痕等が照射位置周辺に残り加工精度が低下するため好ましくない。一方、Tgが260℃を超えると溶融粘度、溶液粘度が高くなり、フィルム製造時の取扱いが困難となるので好ましくない。本発明におけるガラス転移温度とは、示差走査熱量分析装置(DSC)を使用し、JIS K7121に準拠した昇温速度20℃/minで測定し得られるものである。
 ポリカーボネート樹脂は、波長0.4μmの光線透過率が5~95%であり、好ましくは5~90%であり、より好ましくは5~85%であり、さらに好ましくは10~85%である。光線透過率が95%を超えると照射したレーザー光の吸収特性が劣るため、好ましくない。光線透過率が5%未満の場合、レーザー光が透過しないため、レーザー光を透過させる光学部材または光学素子に使用することができない。
 ポリカーボネート樹脂における光線透過率の測定は次の要領で行われる。すなわち、厚み200μmのポリカーボネートフィルムを用いて紫外可視分光光度計にて波長0.4μmの可視域における光線透過率を測定し得られるものである。
(II)紫外線吸収剤
 本発明で用いられる紫外線吸収剤としては、ベンゾトリアゾール系および/またはベンゾフェノン系および/またはトリアジン系および/またはベンゾオキサジン系の紫外線吸収剤が挙げられる。
 ベンゾトリアゾール系紫外線吸収剤としては、例えば2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(3,4,5,6−テトラヒドロフタルイミドメチル)−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)、2−(2’−ヒドロキシ−3’,5’−ビス(α,α−ジメチルベンジル)フェニル)−2H−ベンゾトリアゾール、2−(3’,5’−ジ−tert−アミル−2’−ヒドロキシフェニル)ベンゾトリアゾール、5−トリフルオロメチル−2−(2−ヒドロキシ−3−(4−メトキシ−α−クミル)−5−tert−ブチルフェニル)−2H−ベンゾトリアゾール等が挙げられる。なかでも2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−(3,4,5,6−テトラヒドロフタルイミドメチル)−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシフェニル)−5−クロロベンゾトリアゾールが好ましく、更に2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾールが好ましい。
 トリアジン系の紫外線吸収剤としては、ヒドロキシフェニルトリアジン系の例えば商品名チヌビン400(チバスペシャルティーケミカル社製)等が好ましい。
 ベンゾオキサジン系の紫外線吸収剤としては、2,2’−ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−m−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(1,5−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−メチル−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(2−ニトロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−(2−クロロ−p−フェニレン)ビス(3,1−ベンゾオキサジン−4−オン)などが例示される。中でも2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)が好適である。特に2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)が好適である。
 また、上記以外の紫外線吸収剤としては、下記式(γ−1)で表される化合物が好ましく使用され、なかでも下記式(γ−1)で表される化合物が下記式[γ−2]で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-I000016
(式中、RおよびR11は水素原子、アルキル基またはアルコキシ基を表し、RおよびR10はアルキル基を表す。[B]は置換アリールまたはエテニル基を表す。)
Figure JPOXMLDOC01-appb-I000017
(式中、R12およびR14は前記Rと同義の基であり、R13およびR15は前記R10と同義の基である。nは1または2の整数を表す。)
 さらに、上記以外の紫外線吸収剤としては、下記式(γ−3)で表される化合物が好ましく使用され、なかでも下記式(γ−4)で表される2,2’−(チオフェン−2,5−ジイル)ビス(4H−ベンゾ[d][1,3−オキサジン−4−オン]であることが好ましい。
Figure JPOXMLDOC01-appb-I000018
(R、R、R、R、R、R、R、R、RおよびRはお互いに独立して、水素原子または1価の置換基を表す。)
Figure JPOXMLDOC01-appb-I000019
 上記紫外線吸収剤は単独であるいは2種以上を併用して用いることができる。紫外線吸収剤の配合量は、ポリカーボネート樹脂100重量部に対し、好ましくは0.001~3.0重量部であり、より好ましくは0.005~1.5重量部であり、さらに好ましくは0.01~1.0重量部である。紫外線吸収剤の配合量が0.001重量部未満の場合、波長吸収特性が低下するため、レーザー光の照射強度や照射時間を増加する必要があり、レーザー光による熱の影響で加工面に溶融痕等が生じ、加工精度が低下することがある。また、紫外線吸収剤の配合量が3.0重量部を超える場合、耐熱性が低下するため好ましくない。
 紫外線吸収剤に蛍光染料を併用してもよい。蛍光染料としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でもクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。中でもクマリン系蛍光染料、即ちクマリン誘導体からなる蛍光染料が好ましい特性を発揮する。蛍光染料を使用する場合、ポリカーボネート樹脂100重量部に対し、0.001~1重量部の範囲が好ましい。
(III)ポリカーボネートフィルム
 次に、本発明のレーザー加工用フィルムを製造する方法について述べる。本発明のフィルムの製法として、溶液製膜法、溶融押出法等を挙げることができる。本発明においてポリカーボネート樹脂は、ガラス転移温度が高いため、加工性の観点から、溶液製膜法が好適である。溶液製膜法は、単に、フィルム中の異物が少ないこと、位相差の低いフィルムを得やすいというほかに、フィルムの表面性が良好で厚さのばらつきが少なく、そして極めて平坦なフィルムを得ることができる点でも優れている。以下、この溶液製膜法について詳細に記述する。
 溶液製膜法に用いることのできる溶媒は、公知の溶解溶媒から選択することができるが、中でも、塩化メチレンや1,3−ジオキソラン、並びにその混合物などが好適な溶媒である。また、アルコールやキシレンなどのポリカーボネートの非溶媒を少量混合して副溶媒として用いてもよい。
 溶液製膜法に用いる溶液のポリマー濃度としては、10~40%(重量%、以下同様)の範囲が好適である。溶液中の上記ポリカーボネートの濃度が低すぎる場合、揮発すべき溶剤量が多くなるため効率的でない、また、溶液粘度が小さくなりすぎて、均質なフィルムを得られないことがある。一方、溶液中のポリカーボネート濃度が高すぎる場合は、溶液粘度が高くなり、均質な流延が行なわれにくくなるほか、溶液がゲル化しやすくなり、フィルム中の異物の原因となることがあるため好ましくない。溶液を流延する前に平均目開き1~10μm程度のフィルターを通すことが、溶液中の異物やゲル状物をフィルムに混入させないために好ましい。
 溶液製膜法において上記溶液をキャストする支持体としては従来公知のものを適用できる。例えば、ポリエステルフィルムや、極めて高度に研磨した面を持つスチールベルトをあげることができる。本発明の光学用フィルムにおいては表面を超平坦な状態で得るためには後者を用いることが特に好ましい。支持体表面のRa(中心線平均表面粗さ)で表わした表面性は、好ましくは5nm以下、より好ましくは3nm以下である。
 本発明のフィルムの厚みは、1~600μmの範囲が好適である。1μm未満であると、強度不足となるため好ましくない。600μmを超えると、製膜速度を著しく遅くする必要があり、生産性が低下するため好ましくない。好ましい厚さは10~450μmであり、さらに好ましくは50~300μmである。
 本発明のフィルムの厚み斑は小さいほうがよい。厚み斑はフィルムの厚みにより変化するが、厚みに対して、厚み斑の範囲は好ましくは5%以下、より好ましくは3%以下、更に好ましくは1%以下である。ここで、厚み斑が5%とは、例えば厚さ200μmのフィルムにおいて厚さの最大値と最小値の差が10μmであることを意味する。厚み斑が5%より大きくなると表面平滑性が損なわれるため好ましくない。フィルムの厚み斑の測定方法は、例えば、連続厚み計(アンリツ(株)製フィルムシックネステスター型式KG601A)を用いて行うことができる。
 本発明のフィルムの全光線透過率については高い方が望ましく、好ましくは80%以上であり、より好ましくは85%以上であり、さらに好ましくは89%以上である。フィルムの全光線透過率が低くなりすぎると、光学用部材として用いるのが困難となる。
 本発明のフィルムの面内位相差は低いほうが好ましい。位相差(Re)としては、使用するレーザー光の波長において好ましくは20nm以下であり、10nm以下であることがより好ましく、8nm以下であることがさらにより好ましく、5nm以下が特に好ましい。この値は限りなくゼロに近いのが理想である。面内レターデーションが20nmを超えると、フィルム内部にレーザー光を照射した場合、加工精度が悪化するため好ましくない。面内レターデーション値(Re)の測定方法は、エリプソメーター(JASCO製エリプソメーター型式M−220)を用いて行うことができる。
(IV)レーザーアブレーション加工
 以下に、図を用いて、本発明のフィルムにおけるレーザーアブレーション加工法を説明する。図1は、ガラス転移温度の低い高分子材料を加工材料として用いた場合のレーザーアブレーション加工法の工程を模式的に示したものである。レーザー光1を対物レンズ2で集光して加工材料3の固体表面に照射すると、レーザー光照射部位4の加工材料3が容易に熱膨張5を生じ、熱分解物6が飛散する。その際、加工材料3が変形した状態で、溶融・分解が起こるため、加工面7の精度が低下する。
 一方、ガラス転移温度の高い本発明のフィルムを加工材料3として用いた場合を図2に示す。対物レンズ2で集光したレーザー光1の照射時に、レーザー光照射部位4は、ほとんど変形を受けないまま、溶融・分解反応が起こってパターンを形成する。この結果、良好な加工面7が得られる。しかしながら、ガラス転移温度が高いが、使用するレーザー光の波長吸収特性が低い加工材料を用いた場合、パターンを形成するためにレーザー光の照射強度や照射時間の増加が必要なため、結果的に図1と同様に過剰なレーザー光照射により熱膨張、熱分解が生じて、加工面7が大きく乱れてしまう。
 前記レーザー光としては、0.4~0.6μmの可視域の波長の種々のレーザーが利用でき、例えば、Nd:YAGレーザーの第二高調波(波長533nm)、アルゴンレーザー、クリプトンレーザー、色素レーザー、チタンサファイアレーザー、InGaN/GaN青色半導体レーザー、GaN緑色半導体レーザーなどが例示できる。レーザー光としては、通常、パルスレーザーが利用される。
 レーザー光のパワー(強度)は、通常、集光点(焦点)において、好ましくは10W/cm以上(例えば、5×10~100×10W/cm、より好ましくは10×10~100×10W/cm、さらに好ましくは25×10~100×10W/cm程度)である。レーザー光の平均出力は、好ましくは10~1,000mWであり、より好ましくは20~800mWである。
 レーザー光(パルスレーザー光)のパルス幅は、好ましくは1ピコ秒以下(例えば、10~500フェムト秒、より好ましくは30~300フェムト秒、さらに好ましくは50~200フェムト秒程度)である。また、レーザー光(パルスレーザー光)の周波数は、好ましくは0.1kHz以上(例えば、0.5~1,000kHz、より好ましくは0.5~800kHz、さらに好ましくは0.5~500kHz程度)である。
 レーザー光の照射時間は、照射部位で発生した熱が周囲に拡散しすぎることを防止するために、1マイクロ秒(10−6秒)以下であることが好ましく、特に100フェムト秒(10−13秒)~500ナノ秒(5×10−7秒)であることが好ましい。照射時間は、連続発振の上記レーザーに、機械的、電気的、光学的シャッターを個別に、または組み合わせて使用してもよく、パルス発振型レーザーを用いることがより好ましい。
 本発明は、本発明のフィルムをレーザー加工し、フィルム表面にパターンが成形された加飾フィルムを包含する。また、加飾フィルムを用いた光学用部材または光学用素子を包含する。
(I) Polycarbonate resin The polycarbonate resin used in the present invention mainly contains units represented by the following formula (α). Here, "mainly" means 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, and most preferably, in 100 mol% of all carbonate units excluding terminals. Indicates a proportion of 100 mol%.
Figure JPOXMLDOC01-appb-I000010
In the formula, -W- is at least one linking group selected from the group consisting of the following formulas (α-1), (α-2), (α-3) and a single bond. x and y are each independently an integer of 0 to 4. R 1 and R 2 are each independently a halogen atom or an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, and a butyl group.
Figure JPOXMLDOC01-appb-I000011
In the formula (α-1), v and w are each independently an integer of 0 to 2. R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, and a propyl group.
As the compound for deriving the unit of the formula (α-1), 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (3 , 5-dimethyl-4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane and the like. Of these, 1,1-bis (4-hydroxyphenyl) cyclohexane and 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane are preferable.
Figure JPOXMLDOC01-appb-I000012
In formula (α-2), R 6 and R 7 are each independently (i) when x and y are 0, an aryl group having 6 to 10 carbon atoms, and (ii) when x or y is 1 to In the case of an integer of 4, it is an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms.
Examples of the aryl group having 6 to 10 carbon atoms include phenyl group, tolyl group, dimethylphenyl group and naphthyl group. Examples of the alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, and a propyl group.
Compounds that derive the unit of formula (α-2) include 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) ) Propane, 1-phenyl-1,1-bis (4-hydroxyphenyl) ethane, 4,4′-dihydroxytetraphenylmethane and the like. Of these, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane and 4,4′-dihydroxytetraphenylmethane are preferable.
Figure JPOXMLDOC01-appb-I000013
As the compound for deriving the unit of the formula (α-3), 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is preferable.
Examples of the compound that induces a structural unit in which W is a single bond include 4,4′-biphenol and 4,4′-bis (2,6-dimethyl) diphenol.
In addition, aromatic dihydroxy components derived from other dihydric phenols may be copolymerized at a ratio of 30 mol% or less, preferably 20 mol% or less, as long as the object and characteristics of the present invention are not impaired. Representative examples of such other aromatic dihydroxy components include bis (2-hydroxyphenyl) methane, bis (4-hydroxyphenyl) methane, and bis (4-hydroxy-2,6-dimethyl-3-methoxyphenyl). Methane, bis (4-hydroxyphenyl) cyclohexylmethane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) propane (usually referred to as “bisphenol A”), 2 , 2-bis (3-phenyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-bis ( 4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) pentane, 4,4-bis (4-hydroxyphenyl) Butane, 2,2-bis (4-hydroxyphenyl) octane, 1,1-bis (4-hydroxyphenyl) decane, 1,1-bis (3-methyl-4-hydroxyphenyl) decane, and 1,1- Examples thereof include bis (2,3-dimethyl-4-hydroxyphenyl) decane, α, α′-bis (4-hydroxyphenyl) -m-diisopropylbenzene (usually referred to as “bisphenol M”), and the like.
The polycarbonate resin is 40 to 95 mol%, preferably 45 to 90 mol%, more preferably 50 to 85 mol% of the unit represented by the following formula (I) and 60 to 5 mol%, preferably 55 to 10 mol%. %, More preferably 50 to 15 mol% of units represented by the following formula (II). When the unit represented by the formula (I) is less than 40 mol%, the heat resistance is insufficient. On the other hand, if it exceeds 95 mol%, the transparency of the molded product is lowered.
Figure JPOXMLDOC01-appb-I000014
Examples of the method for producing the polycarbonate resin of the present invention include an interfacial polycondensation method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
The reaction by the interfacial polycondensation method is usually a reaction between a dihydric phenol and phosgene, and is reacted in the presence of an acid binder and an organic solvent. As the acid binder, for example, an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or an amine compound such as pyridine is used. As the organic solvent, for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used. In order to accelerate the reaction, a catalyst such as a tertiary amine such as triethylamine, tetra-n-butylammonium bromide or tetra-n-butylphosphonium bromide, a quaternary ammonium compound or a quaternary phosphonium compound may be used. it can. At that time, the reaction temperature is usually 0 to 40 ° C., the reaction time is preferably about 10 minutes to 5 hours, and the pH during the reaction is preferably maintained at 9 or more.
In this polymerization reaction, a terminal terminator is usually used. Monofunctional phenols can be used as such end terminators. Monofunctional phenols are commonly used as end terminators for molecular weight control, and the resulting polycarbonate resins are compared to those that do not because the ends are blocked by groups based on monofunctional phenols. Excellent thermal stability. Such monofunctional phenols are generally phenols or lower alkyl-substituted phenols, and monofunctional phenols represented by the following formula (β) can be shown.
Figure JPOXMLDOC01-appb-I000015
In the formula, A is a hydrogen atom, a linear or branched alkyl group having 1 to 9 carbon atoms, or a phenyl-substituted alkyl group, and r is an integer of 1 to 5, preferably 1 to 3.
Specific examples of the monofunctional phenols include phenol, phenylphenol, p-tert-butylphenol, p-cumylphenol, tert-octylphenol and isooctylphenol.
Further, as other monofunctional phenols, phenols or benzoic acid chlorides having a long chain alkyl group or an aliphatic ester group as a substituent, or long chain alkyl carboxylic acid chlorides can be used.
These end terminators are desirably introduced at at least 5 mol%, preferably at least 10 mol%, and more preferably introduced at 80 mol% or more of the ends of the obtained polycarbonate resin. Is done. Moreover, you may use a terminal terminator individually or in mixture of 2 or more types.
The reaction by the melt polymerization method is typically a transesterification reaction between a dihydric phenol and a carbonate ester, and is produced by mixing the dihydric phenol and the carbonate ester with heating in the presence of an inert gas. It is carried out by a method of distilling alcohol or phenol. The reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 350 ° C. In the latter stage of the reaction, the system is evacuated to about 1,300 Pa to 13 Pa (10 to 0.1 Torr) to facilitate the distillation of the alcohol or phenol produced. The reaction time is usually about 1 to 4 hours.
Examples of the carbonate ester include esters such as an aryl group having 6 to 10 carbon atoms, an aralkyl group, or an alkyl group having 1 to 4 carbon atoms which may have a substituent. Specific examples include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate, dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Of these, diphenyl carbonate is preferred.
A polymerization catalyst can be used to increase the polymerization rate. Examples of the polymerization catalyst include alkali metal and alkaline earth metal hydroxides such as sodium hydroxide and potassium hydroxide, boron and aluminum hydroxides, alkali metal salts, alkaline earth metal salts, and quaternary ammonium salts. Alkoxides of alkali metals and alkaline earth metals, organic acid salts of alkali metals and alkaline earth metals, zinc compounds, boron compounds, silicon compounds, germanium compounds, organic tin compounds, lead compounds, antimony compounds, manganese compounds, titanium compounds And catalysts usually used for esterification reactions and transesterification reactions of zirconium compounds and the like. A catalyst may be used independently and may be used in combination of 2 or more types. These polymerization catalysts are preferably used in an amount of 1 × 10 −9 to 1 × 10 −5 equivalents, more preferably 1 × 10 −8 to 5 × 10 −6 equivalents, relative to 1 mol of dihydric phenol as a raw material. Selected by range.
Further, in the polymerization reaction, for example, 2-chlorophenylphenyl carbonate, 2-methoxycarbonylphenylphenyl carbonate and 2-ethoxycarbonylphenylphenyl carbonate are added at the later stage or after completion of the polymerization reaction in order to reduce the phenolic end groups. In particular, 2-methoxycarbonylphenyl phenyl carbonate is preferably used.
Further, in the melt transesterification method, it is preferable to use a deactivator that neutralizes the activity of the catalyst. The amount of the deactivator is preferably 0.5 to 50 moles per mole of the remaining catalyst. Further, it is used in a proportion of 0.01 to 500 ppm, more preferably 0.01 to 300 ppm, and particularly preferably 0.01 to 100 ppm with respect to the polycarbonate copolymer after polymerization. Preferred examples of the deactivator include phosphonium salts such as tetrabutylphosphonium dodecylbenzenesulfonate and ammonium salts such as tetraethylammonium dodecylbenzyl sulfate.
The viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 2.0 × 10 4 to 8.0 × 10 4 , more preferably 2.5 × 10 4 to 7.0 × 10 4 , and still more preferably Is 3.0 × 10 4 to 6.0 × 10 4 . A polycarbonate resin having a viscosity average molecular weight of less than 2.0 × 10 4 may not provide a practically sufficient strength. On the other hand, a polycarbonate resin having a viscosity average molecular weight of more than 8.0 × 10 4 is not preferable because the melt viscosity and the solution viscosity become high and handling becomes difficult.
First, the viscosity average molecular weight of the polycarbonate resin is determined using an Ostwald viscometer from a solution in which 0.7 g of the polycarbonate resin is dissolved in 100 ml of methylene chloride at 20 ° C., with a specific viscosity (η SP ) calculated by the following formula:
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
From the obtained specific viscosity (η SP ), the viscosity average molecular weight (Mv) is calculated by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 Mv 0.83
c = 0.7
The polycarbonate resin has a glass transition temperature (Tg) of 180 ° C. or higher, preferably 180 ° C. to 260 ° C., more preferably 200 to 250 ° C. If Tg is less than 180 ° C., welding marks and the like due to the heat of the laser beam remain around the irradiation position, and the processing accuracy is lowered. On the other hand, when Tg exceeds 260 ° C., the melt viscosity and the solution viscosity become high, and handling at the time of film production becomes difficult. The glass transition temperature in the present invention can be measured by using a differential scanning calorimeter (DSC) at a heating rate of 20 ° C./min in accordance with JIS K7121.
The polycarbonate resin has a light transmittance at a wavelength of 0.4 μm of 5 to 95%, preferably 5 to 90%, more preferably 5 to 85%, and further preferably 10 to 85%. If the light transmittance exceeds 95%, the absorption characteristics of the irradiated laser beam are inferior, which is not preferable. When the light transmittance is less than 5%, the laser beam is not transmitted, so that it cannot be used for an optical member or an optical element that transmits the laser beam.
The light transmittance of the polycarbonate resin is measured as follows. That is, the light transmittance in the visible region with a wavelength of 0.4 μm can be measured with a UV-visible spectrophotometer using a polycarbonate film having a thickness of 200 μm.
(II) Ultraviolet Absorber Examples of the ultraviolet absorber used in the present invention include benzotriazole-based and / or benzophenone-based and / or triazine-based and / or benzoxazine-based ultraviolet absorbers.
Examples of the benzotriazole ultraviolet absorber include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole and 2- (2′-hydroxy-3 ′-(3,4,5,6-tetrahydrophthalimidomethyl). ) -5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) ) Benzotriazole, 2- (3'-tert-butyl-5'-methyl-2'-hydroxyphenyl) -5-chlorobenzotriazole, 2,2'-methylenebis (4- (1,1,3,3- Tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2′-hydroxy-3 ′, 5′-bis (α, α-dimethylben) L) phenyl) -2H-benzotriazole, 2- (3 ′, 5′-di-tert-amyl-2′-hydroxyphenyl) benzotriazole, 5-trifluoromethyl-2- (2-hydroxy-3- ( 4-methoxy-α-cumyl) -5-tert-butylphenyl) -2H-benzotriazole and the like. Among them, 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′-(3,4,5,6-tetrahydrophthalimidomethyl) -5′-methylphenyl) Benzotriazole, 2- (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole, 2- (3 '-Tert-butyl-5'-methyl-2'-hydroxyphenyl) -5-chlorobenzotriazole is preferred, and 2- (2'-hydroxy-5'-tert-octylphenyl) benzotriazole is more preferred.
As the triazine-based ultraviolet absorber, hydroxyphenyltriazine-based, for example, trade name Tinuvin 400 (manufactured by Ciba Specialty Chemicals) is preferable.
Examples of the benzoxazine-based ultraviolet absorber include 2,2′-bis (3,1-benzoxazin-4-one), 2,2′-p-phenylenebis (3,1-benzoxazin-4-one) 2,2′-m-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one), 2,2 ′-(1,5-naphthalene) bis (3,1-benzoxazin-4-one) ), 2,2 ′-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2-nitro-p-phenylene) bis (3,1- Benzoxazin-4-one), and 2,2 ′-(2-chloro-p-phenylene) bi (3,1-benzoxazin-4-one) and the like. Among them, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one), And 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one) are preferred. In particular, 2,2′-p-phenylenebis (3,1-benzoxazin-4-one) is preferable.
Moreover, as an ultraviolet absorber other than the above, a compound represented by the following formula (γ-1) is preferably used, and in particular, a compound represented by the following formula (γ-1) is represented by the following formula [γ-2]. It is preferable that it is a compound represented by these.
Figure JPOXMLDOC01-appb-I000016
(Wherein R 8 and R 11 represent a hydrogen atom, an alkyl group or an alkoxy group, R 9 and R 10 represent an alkyl group, and [B] represents a substituted aryl or ethenyl group.)
Figure JPOXMLDOC01-appb-I000017
(Wherein R 12 and R 14 are groups having the same meaning as R 9 , R 13 and R 15 are groups having the same meaning as R 10, and n represents an integer of 1 or 2).
Furthermore, as an ultraviolet absorber other than the above, a compound represented by the following formula (γ-3) is preferably used, and among them, 2,2 ′-(thiophene-2) represented by the following formula (γ-4) , 5-diyl) bis (4H-benzo [d] [1,3-oxazin-4-one].
Figure JPOXMLDOC01-appb-I000018
(R a , R b , R c , R d , R e , R f , R g , R h , R i and R j each independently represent a hydrogen atom or a monovalent substituent.)
Figure JPOXMLDOC01-appb-I000019
The said ultraviolet absorber can be used individually or in combination of 2 or more types. The blending amount of the ultraviolet absorber is preferably 0.001 to 3.0 parts by weight, more preferably 0.005 to 1.5 parts by weight, and still more preferably 0.001 to 3.0 parts by weight with respect to 100 parts by weight of the polycarbonate resin. 01 to 1.0 part by weight. If the blending amount of the UV absorber is less than 0.001 part by weight, the wavelength absorption characteristics will deteriorate, so it will be necessary to increase the irradiation intensity and irradiation time of the laser beam, and it will melt on the processed surface due to the heat of the laser beam Scratches or the like may occur, and the processing accuracy may decrease. Moreover, when the compounding quantity of a ultraviolet absorber exceeds 3.0 weight part, since heat resistance falls, it is unpreferable.
A fluorescent dye may be used in combination with the ultraviolet absorber. Examples of the fluorescent dye include a coumarin fluorescent dye, a benzopyran fluorescent dye, a perylene fluorescent dye, an anthraquinone fluorescent dye, a thioindigo fluorescent dye, a xanthene fluorescent dye, a xanthone fluorescent dye, a thioxanthene fluorescent dye, and a thioxanthone. Fluorescent dyes, thiazine fluorescent dyes, and diaminostilbene fluorescent dyes. Among these, coumarin fluorescent dyes, benzopyran fluorescent dyes, and perylene fluorescent dyes are preferable. Of these, coumarin-based fluorescent dyes, that is, fluorescent dyes composed of coumarin derivatives exhibit preferable characteristics. When the fluorescent dye is used, the range of 0.001 to 1 part by weight is preferable with respect to 100 parts by weight of the polycarbonate resin.
(III) Polycarbonate Film Next, a method for producing the film for laser processing of the present invention will be described. Examples of the method for producing the film of the present invention include a solution casting method and a melt extrusion method. In the present invention, since the polycarbonate resin has a high glass transition temperature, the solution casting method is suitable from the viewpoint of workability. In addition to the fact that there are few foreign substances in the film and that it is easy to obtain a film with a low phase difference, the solution casting method obtains a film that has a good surface property, little variation in thickness, and is extremely flat. It is also excellent in that it can. Hereinafter, this solution casting method will be described in detail.
Solvents that can be used in the solution casting method can be selected from known dissolving solvents, among which methylene chloride, 1,3-dioxolane, and mixtures thereof are suitable solvents. Further, a small amount of a non-solvent of polycarbonate such as alcohol or xylene may be mixed and used as a secondary solvent.
The polymer concentration of the solution used for the solution casting method is preferably in the range of 10 to 40% (% by weight, the same applies hereinafter). When the concentration of the polycarbonate in the solution is too low, the amount of the solvent to be volatilized increases, which is not efficient. In addition, the solution viscosity becomes too small to obtain a uniform film. On the other hand, when the polycarbonate concentration in the solution is too high, the solution viscosity becomes high, and it becomes difficult to perform uniform casting. Absent. It is preferable to pass a filter having an average opening of about 1 to 10 μm before casting the solution in order to prevent foreign matters or gels in the solution from entering the film.
As the support for casting the solution in the solution casting method, a conventionally known one can be applied. For example, a polyester film or a steel belt having a very highly polished surface can be used. In the optical film of the present invention, it is particularly preferable to use the latter in order to obtain the surface in an ultra flat state. The surface property expressed by Ra (centerline average surface roughness) of the support surface is preferably 5 nm or less, more preferably 3 nm or less.
The thickness of the film of the present invention is preferably in the range of 1 to 600 μm. If it is less than 1 μm, the strength is insufficient, such being undesirable. If it exceeds 600 μm, it is necessary to remarkably slow the film forming speed, which is not preferable because productivity is lowered. The preferred thickness is 10 to 450 μm, more preferably 50 to 300 μm.
The thickness unevenness of the film of the present invention should be small. Although the thickness unevenness varies depending on the thickness of the film, the range of the thickness unevenness is preferably 5% or less, more preferably 3% or less, and further preferably 1% or less with respect to the thickness. Here, 5% of thickness unevenness means, for example, that the difference between the maximum value and the minimum value of the thickness is 10 μm in a film having a thickness of 200 μm. If the thickness unevenness is larger than 5%, the surface smoothness is impaired. The method for measuring the thickness unevenness of the film can be performed, for example, using a continuous thickness meter (Film Thickness Tester Model KG601A manufactured by Anritsu Co., Ltd.).
The higher the total light transmittance of the film of the present invention is desirable, preferably 80% or more, more preferably 85% or more, and further preferably 89% or more. If the total light transmittance of the film is too low, it will be difficult to use as an optical member.
The in-plane retardation of the film of the present invention is preferably low. The phase difference (Re) is preferably 20 nm or less, more preferably 10 nm or less, still more preferably 8 nm or less, and particularly preferably 5 nm or less at the wavelength of the laser beam to be used. Ideally, this value is as close to zero as possible. If the in-plane retardation exceeds 20 nm, the processing accuracy deteriorates when the film is irradiated with laser light. The in-plane retardation value (Re) can be measured using an ellipsometer (JASCO Ellipsometer Model M-220).
(IV) Laser Ablation Processing Hereinafter, the laser ablation processing method for the film of the present invention will be described with reference to the drawings. FIG. 1 schematically shows the steps of a laser ablation method when a polymer material having a low glass transition temperature is used as a processing material. When the laser beam 1 is condensed by the objective lens 2 and irradiated onto the solid surface of the processing material 3, the processing material 3 at the laser beam irradiation site 4 easily generates thermal expansion 5, and the thermal decomposition product 6 is scattered. At that time, since the melting / decomposition occurs in a state in which the processed material 3 is deformed, the accuracy of the processed surface 7 is lowered.
On the other hand, the case where the film of the present invention having a high glass transition temperature is used as the processing material 3 is shown in FIG. When the laser light 1 collected by the objective lens 2 is irradiated, the laser light irradiation portion 4 undergoes a melting / decomposition reaction while being hardly deformed to form a pattern. As a result, a good processed surface 7 is obtained. However, if a processing material with a high glass transition temperature but low wavelength absorption characteristics of the laser beam used is used, it is necessary to increase the irradiation intensity and irradiation time of the laser beam to form a pattern. As in FIG. 1, thermal expansion and thermal decomposition occur due to excessive laser light irradiation, and the processed surface 7 is greatly disturbed.
As the laser light, various lasers having a wavelength in the visible range of 0.4 to 0.6 μm can be used. For example, the second harmonic of Nd: YAG laser (wavelength 533 nm), argon laser, krypton laser, dye laser Examples thereof include a titanium sapphire laser, an InGaN / GaN blue semiconductor laser, and a GaN green semiconductor laser. As the laser light, a pulse laser is usually used.
The power (intensity) of the laser light is usually preferably 10 4 W / cm 2 or more (for example, 5 × 10 5 to 100 × 10 5 W / cm 2 , more preferably 10 × at the focal point (focal point). 10 5 to 100 × 10 5 W / cm 2 , more preferably about 25 × 10 5 to 100 × 10 5 W / cm 2 ). The average output of the laser beam is preferably 10 to 1,000 mW, more preferably 20 to 800 mW.
The pulse width of the laser beam (pulse laser beam) is preferably 1 picosecond or less (for example, about 10 to 500 femtoseconds, more preferably about 30 to 300 femtoseconds, and further preferably about 50 to 200 femtoseconds). The frequency of the laser beam (pulse laser beam) is preferably 0.1 kHz or more (for example, about 0.5 to 1,000 kHz, more preferably 0.5 to 800 kHz, and further preferably about 0.5 to 500 kHz). is there.
The irradiation time of the laser beam is preferably 1 microsecond (10 −6 seconds) or less, particularly 100 femtoseconds (10 −13 ), in order to prevent the heat generated at the irradiation site from being diffused excessively. Seconds) to 500 nanoseconds (5 × 10 −7 seconds). As for the irradiation time, a mechanical, electrical, or optical shutter may be used individually or in combination with the continuous wave laser, and a pulsed laser is more preferably used.
The present invention includes a decorative film obtained by laser processing the film of the present invention and having a pattern formed on the film surface. Moreover, the optical member or optical element using a decorating film is included.
 以下、本発明のポリカーボネートフィルムの実施例について説明するが、本発明はこれら実施例に限定されるものではない。以下の実施例および比較例において、各特性の測定法は次のとおりである。
 (1)粘度平均分子量
 本発明における樹脂組成物の粘度平均分子量は、以下の方法で測定・算出したものである。
 まず、ポリカーボネート樹脂パウダーを、30倍重量の塩化メチレンと混合して溶解させ、可溶分をセライト濾過により採取した。その後、得られた溶液から溶媒を除去した後の得られた固体を十分に乾燥し、該固体0.7gを塩化メチレン100mlに溶解した溶液から、その溶液の20℃における比粘度(ηsp)を測定した。そして、下記式により算出されるMvを粘度平均分子量とした。
 ηsp/c=[η]+0.45×[η]
 [η]=1.23×10−4Mv0.83
 ηsp:比粘度
 η:極限粘度
 c:定数(=0.7)
 Mv:粘度平均分子量
 (2)ガラス転移温度
 ポリカーボネート樹脂パウダーを測定試料として用い、TAインスツルメント社製の熱分析システムDSC−2910を使用して、JIS K7121に従い窒素雰囲気下(窒素流量:40ml/min)、昇温速度:20℃/minの条件下で測定した。
 (3)光線透過率
 フィルムの光線透過率は、日立ハイテクノロジーズ製分光光度計、型式U−4100にて波長0.4μmの光線透過率を測定した。
 (4)フィルムの厚み、厚み斑
 フィルム全幅の厚みは、連続厚み計(アンリツ(株)製フィルムシックネステスター、型式KG601A)を用いて行った。10mm幅間隔で測定し、平均値をフィルム厚みとし、最大値から最小値の差を厚み斑とした。
 (5)フィルムの全光線透過率
 フィルムの幅方向3箇所(中央箇所と両端面から500mmの2箇所)からサンプル(長さ50mm、幅50mm)を採取した。サンプルの全光線透過率を日本電色工業(株)製の色差・濁度測定機COH−300Aを用いて測定した。各サンプルについて5点測定し、平均値を全光線透過率とした。なおこの測定はJIS K7105に準拠して実施した。
 (6)面内レターデーション値(Re)の測定
 幅方向サンプル全幅についてレターデーション連続測定器(王子計測機器(株)製の商品名KOBRA−WFD)により10mm間隔でレターデーション値を測定した。波長は0.4μmで測定した。
 (7)フィルム表面のレーザーアブレーション加工
 フィルム表面にパルスレーザー光をレンズで集光して照射した。レーザー光はチタンサファイアレーザーを用いた。波長は0.4μm、パルス幅150フェムト秒、繰り返し周波数200kHz、パルスレーザー光をNA=0.4の対物レンズで集光した。照射時間を300ナノ秒とした。レーザー光の平均出力を変えて、加工面を光学顕微鏡で観察し、アブレーションが生じるために必要なレーザー光の平均出力を測定した。
 以下の原料を用いた。
 (ビスフェノールモノマー)
 BIS−1:9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン
 BIS−2:2,2−ビス(4−ヒドロキシフェニル)プロパン
 BIS−A:1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン
 BIS−B:2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン
 BIS−C:2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパン
 BIS−D:4,4’−ジヒドロキシテトラフェニルメタン
 BIS−E:1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン
 (紫外線吸収剤)
 UVA−1:2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール(ケミプロ化成(株)製ケミソーブ79)
 UVA−2:2−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシフェニル)−5−クロロベンゾトリアゾール(チバスペシャリティーケミカルズ社製チヌビン326)
 UVA−3:2,2’−(チオフェン−2,5−ジイル)ビス(4H−ベンゾ[d][1,3−オキサジン−4−オン]
実施例1~13および比較例1~4
 (1)ポリカーボネート樹脂の製造
 表1および表2記載の配合割合からなるポリカーボネート樹脂パウダーを以下の要領で作成した。温度計、撹拌機および還流冷却器の付いた反応器に、48%水酸化ナトリウム水溶液およびイオン交換水を仕込み、これにビスフェノールモノマーおよびハイドロサルファイトを溶解した後、塩化メチレンを加え、撹拌下、15~25℃でホスゲンを約60分かけて吹き込んだ。ホスゲンの吹き込み終了後、攪拌を停止し、48%水酸化ナトリウム水溶液およびp−tert−ブチルフェノールを加えた。撹拌を再開し、乳化後トリエチルアミンを加え、さらに28~33℃で1時間撹拌して反応を終了した。反応終了後、生成物を塩化メチレンで希釈して水洗した後、塩酸酸性にして水洗し、さらに水相の導電率がイオン交換水とほぼ同じになるまで水洗を繰り返し、ポリカーボネート樹脂の塩化メチレン溶液を得た。次いで、この溶液を目開き0.3μmのフィルターに通過させ、さらに軸受け部に異物取出口を有する隔離室付きニーダー中の温水に滴下、塩化メチレンを留去しながらポリカーボネート樹脂をフレーク化し、引続き該含液フレークを粉砕、乾燥してパウダーを得た。該パウダーを用いて粘度平均分子量、ガラス転移温度を測定し、結果を表1~2に記載した。
 (2)ポリカーボネートフィルムの作成
 ポリカーボネート樹脂パウダーを120℃で16時間熱風乾燥し、次いで減湿空気により30℃まで冷却した。これを塩化メチレンに溶解して19重量%の溶液を作成した。この溶液を平均孔径3ミクロンのフィルターに通し異物を除去した。更にこの溶液を1,500mm幅のコートハンガーダイに導入した。続いて、鏡面研磨したスチールベルト支持体上に流延した後、加熱乾燥により溶媒を飛ばし、支持体より剥離した。更に引続き、ロール懸垂型の乾燥機へ通膜した。その後、低搬送張力で巻き取った。得られたポリカーボネートフィルムの厚み、厚み斑、波長0.4μmの光線透過率、全光線透過率、面内レターデーション値を測定し、表1~2に記載した。また、紫外線吸収剤を添加する場合は、ポリカーボネート樹脂パウダーを塩化メチレンに溶解する際に、紫外線吸収剤をともに溶解させた。
 (3)レーザーアブレーション加工
 得られたポリカーボネートフィルムを100mm角サイズにカットし、該フィルムを試料台に載せて、上述した評価方法(7)に従ってフィルム表面のレーザーアブレーション加工を行い、加飾フィルムを得た。加工面を光学顕微鏡で観察し、アブレーションが生じるために必要なレーザー光の平均出力を測定し、表1~2に記載した。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-I000023
 表1および2の結果から明らかなように、本発明のポリカーボネートフィルムでは、レーザーアブレーション加工に対して良好な加工面が得られる一方、汎用されるガラス転移温度の低い高分子材料ではかかる有用な特性が得られないことが分かる。また、レーザー加工に必要とされる使用する波長のレーザー光における光線透過率は、紫外線吸収剤を特定範囲で配合することにより向上し、レーザーアブレーション加工時の平均出力を低下させることが可能である。即ち、本発明のポリカーボネートフィルムによれば、汎用されるガラス転移温度の低い高分子材料では得られない良好なレーザーアブレーション加工が可能であることが分かる。
発明の効果
 本発明のフィルムは、耐熱性が高く、可視域の波長吸収特性に優れ、且つ、レーザーアブレーションによる優れた加工精度を示す。
Examples of the polycarbonate film of the present invention will be described below, but the present invention is not limited to these examples. In the following examples and comparative examples, the measurement methods of the respective characteristics are as follows.
(1) Viscosity average molecular weight The viscosity average molecular weight of the resin composition in the present invention is measured and calculated by the following method.
First, the polycarbonate resin powder was mixed with 30 times weight of methylene chloride and dissolved, and the soluble component was collected by Celite filtration. Thereafter, the solid obtained after removing the solvent from the obtained solution was sufficiently dried, and the specific viscosity (η sp ) of the solution at 20 ° C. was obtained from a solution obtained by dissolving 0.7 g of the solid in 100 ml of methylene chloride. Was measured. And Mv computed by the following formula was made into the viscosity average molecular weight.
η sp /c=[η]+0.45×[η] 2 c
[Η] = 1.23 × 10 −4 Mv 0.83
η sp : specific viscosity η: intrinsic viscosity c: constant (= 0.7)
Mv: Viscosity average molecular weight (2) Glass transition temperature Using polycarbonate resin powder as a measurement sample and using a thermal analysis system DSC-2910 manufactured by TA Instruments, in accordance with JIS K7121, under a nitrogen atmosphere (nitrogen flow rate: 40 ml / min), temperature increase rate: measured at 20 ° C./min.
(3) Light transmittance The light transmittance of the film was measured with a spectrophotometer manufactured by Hitachi High-Technologies, model U-4100, with a wavelength of 0.4 μm.
(4) Thickness of film, thickness variation The thickness of the entire film thickness was measured using a continuous thickness meter (Film Thickness Tester, model KG601A manufactured by Anritsu Co., Ltd.). Measurement was performed at 10 mm width intervals, the average value was the film thickness, and the difference between the maximum value and the minimum value was the thickness unevenness.
(5) Total light transmittance of film Samples (length: 50 mm, width: 50 mm) were collected from three places in the width direction of the film (two places of 500 mm from the central portion and both end faces). The total light transmittance of the sample was measured using a color difference / turbidity measuring machine COH-300A manufactured by Nippon Denshoku Industries Co., Ltd. Five points were measured for each sample, and the average value was taken as the total light transmittance. This measurement was performed according to JIS K7105.
(6) Measurement of in-plane retardation value (Re) Retardation values were measured at intervals of 10 mm using a continuous retardation measuring instrument (trade name KOBRA-WFD manufactured by Oji Scientific Instruments Co., Ltd.) with respect to the full width of the sample in the width direction. The wavelength was measured at 0.4 μm.
(7) Laser ablation processing of film surface Pulse laser light was condensed and irradiated on the film surface with a lens. The laser beam used was a titanium sapphire laser. The wavelength was 0.4 μm, the pulse width was 150 femtoseconds, the repetition frequency was 200 kHz, and the pulsed laser beam was condensed with an objective lens with NA = 0.4. The irradiation time was 300 nanoseconds. The average output of the laser beam was changed, the processed surface was observed with an optical microscope, and the average output of the laser beam required for ablation was measured.
The following raw materials were used.
(Bisphenol monomer)
BIS-1: 9,9-bis (4-hydroxy-3-methylphenyl) fluorene BIS-2: 2,2-bis (4-hydroxyphenyl) propane BIS-A: 1,1-bis (4-hydroxyphenyl) ) Cyclohexane BIS-B: 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane BIS-C: 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane BIS-D: 4,4′-dihydroxytetraphenylmethane BIS-E: 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (UV absorber)
UVA-1: 2- (2′-hydroxy-5′-tert-octylphenyl) benzotriazole (Chemisorb 79 manufactured by Chemipro Kasei Co., Ltd.)
UVA-2: 2- (3′-tert-butyl-5′-methyl-2′-hydroxyphenyl) -5-chlorobenzotriazole (Tinubin 326 manufactured by Ciba Specialty Chemicals)
UVA-3: 2,2 ′-(thiophene-2,5-diyl) bis (4H-benzo [d] [1,3-oxazin-4-one]
Examples 1 to 13 and Comparative Examples 1 to 4
(1) Manufacture of polycarbonate resin The polycarbonate resin powder which consists of a mixture ratio of Table 1 and Table 2 was created in the following ways. A reactor equipped with a thermometer, a stirrer and a reflux condenser was charged with a 48% aqueous sodium hydroxide solution and ion-exchanged water, and bisphenol monomer and hydrosulfite were dissolved therein, and then methylene chloride was added thereto. Phosgene was blown in at about 15 to 25 ° C. over about 60 minutes. After completion of the phosgene blowing, the stirring was stopped, and a 48% aqueous sodium hydroxide solution and p-tert-butylphenol were added. Stirring was resumed, triethylamine was added after emulsification, and the mixture was further stirred at 28 to 33 ° C. for 1 hour to complete the reaction. After completion of the reaction, the product is diluted with methylene chloride, washed with water, acidified with hydrochloric acid, washed with water, and further washed with water until the conductivity of the aqueous phase becomes substantially the same as that of ion-exchanged water. Got. Next, this solution is passed through a filter having an aperture of 0.3 μm, and further dropped into warm water in a kneader with an isolation chamber having a foreign matter outlet at the bearing, and the polycarbonate resin is flaked while distilling off methylene chloride. The liquid-containing flakes were pulverized and dried to obtain a powder. Using this powder, the viscosity average molecular weight and glass transition temperature were measured, and the results are shown in Tables 1 and 2.
(2) Preparation of polycarbonate film The polycarbonate resin powder was dried with hot air at 120 ° C for 16 hours, and then cooled to 30 ° C with dehumidified air. This was dissolved in methylene chloride to prepare a 19% by weight solution. This solution was passed through a filter having an average pore diameter of 3 microns to remove foreign matters. Further, this solution was introduced into a coat hanger die having a width of 1,500 mm. Subsequently, after casting on a mirror-polished steel belt support, the solvent was blown off by heat drying, and the film was peeled off from the support. Further, the membrane was passed through a roll-suspended dryer. Then, it wound up with low conveyance tension. The thickness, thickness unevenness, light transmittance at a wavelength of 0.4 μm, total light transmittance, and in-plane retardation value of the obtained polycarbonate film were measured and listed in Tables 1 and 2. Moreover, when adding an ultraviolet absorber, the ultraviolet absorber was dissolved together when the polycarbonate resin powder was dissolved in methylene chloride.
(3) Laser ablation processing The obtained polycarbonate film was cut into a 100 mm square size, the film was placed on a sample stage, and the film surface was subjected to laser ablation processing according to the evaluation method (7) to obtain a decorative film. It was. The processed surface was observed with an optical microscope, and the average output of laser light necessary for ablation to occur was measured and listed in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-I000023
As is apparent from the results of Tables 1 and 2, the polycarbonate film of the present invention can provide a good processed surface for laser ablation, while the useful polymer material having a low glass transition temperature has such useful properties. It can be seen that cannot be obtained. In addition, the light transmittance in the laser light of the wavelength used for laser processing can be improved by blending the ultraviolet absorber in a specific range, and the average output during laser ablation processing can be reduced. . That is, according to the polycarbonate film of this invention, it turns out that the favorable laser ablation process which cannot be obtained with the polymeric material with a low glass transition temperature used widely is possible.
Effects of the Invention The film of the present invention has high heat resistance, excellent wavelength absorption characteristics in the visible region, and excellent processing accuracy by laser ablation.
 本発明のフィルムは、レーザー光の照射によってパターンを形成することが可能であることから、光学用部材または光学用素子、例えば、各種の光導波路、非線形光学素子、光スイッチ、光回折素子、発光素子、増幅素子などとして利用できる。 Since the film of the present invention can form a pattern by laser light irradiation, it is an optical member or optical element, such as various optical waveguides, nonlinear optical elements, optical switches, optical diffraction elements, light emission It can be used as an element, an amplifying element or the like.

Claims (7)

  1.  下記式(α)で表される単位を主として含有し、ガラス転移温度が180℃以上であるポリカーボネート樹脂から形成され、且つ波長0.4μmの光線透過率が5~95%であるレーザー加工用フィルム。
    Figure JPOXMLDOC01-appb-I000001
    (式中、−W−は下記式(α−1)、(α−2)、(α−3)および単結合からなる群より選択される少なくとも1種の結合基である。xおよびyはそれぞれ独立して、0~4の整数である。RおよびRはそれぞれ独立して、ハロゲン原子または炭素数1~4のアルキル基である。)
    Figure JPOXMLDOC01-appb-I000002
    (式中、vおよびwはそれぞれ独立して、0~2の整数である。R、RおよびRはそれぞれ独立して、水素原子または炭素数1~3のアルキル基である。)
    Figure JPOXMLDOC01-appb-I000003
    (式中、RおよびRはそれぞれ独立して、(i)xおよびyが0の場合、炭素数6~10のアリール基であり、(ii)xまたはyが1~4の整数の場合、炭素数1~3のアルキル基または炭素数6~10のアリール基である。)
    Figure JPOXMLDOC01-appb-I000004
    A film for laser processing, which mainly contains a unit represented by the following formula (α), is formed from a polycarbonate resin having a glass transition temperature of 180 ° C. or higher, and has a light transmittance of 5 to 95% at a wavelength of 0.4 μm. .
    Figure JPOXMLDOC01-appb-I000001
    (Wherein, -W- is at least one linking group selected from the group consisting of the following formulas (α-1), (α-2), (α-3) and a single bond. X and y are Each independently represents an integer of 0 to 4. R 1 and R 2 each independently represent a halogen atom or an alkyl group having 1 to 4 carbon atoms.)
    Figure JPOXMLDOC01-appb-I000002
    (In the formula, v and w are each independently an integer of 0 to 2. R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
    Figure JPOXMLDOC01-appb-I000003
    (Wherein R 6 and R 7 are each independently (i) when x and y are 0, they are aryl groups having 6 to 10 carbon atoms; and (ii) x or y is an integer of 1 to 4). In this case, it is an alkyl group having 1 to 3 carbon atoms or an aryl group having 6 to 10 carbon atoms.)
    Figure JPOXMLDOC01-appb-I000004
  2.  ポリカーボネート樹脂が、40~95モル%の下記式(I)で表される単位および60~5モル%の下記式(II)で表される単位を含有する請求項1記載のフィルム。
    Figure JPOXMLDOC01-appb-I000005
    The film according to claim 1, wherein the polycarbonate resin contains 40 to 95 mol% of a unit represented by the following formula (I) and 60 to 5 mol% of a unit represented by the following formula (II).
    Figure JPOXMLDOC01-appb-I000005
  3.  ポリカーボネート樹脂100重量部に対して紫外線吸収剤を0.001~3重量部含有する請求項1記載のフィルム。 The film according to claim 1, comprising 0.001 to 3 parts by weight of an ultraviolet absorber with respect to 100 parts by weight of the polycarbonate resin.
  4.  ポリカーボネート樹脂の粘度平均分子量が2.0×10~8.0×10の範囲である請求項1記載のフィルム。 2. The film according to claim 1, wherein the polycarbonate resin has a viscosity average molecular weight in the range of 2.0 × 10 4 to 8.0 × 10 4 .
  5.  波長0.4μmの光線透過率が5~85%である請求項1記載のフィルム。 The film according to claim 1, which has a light transmittance of 5 to 85% at a wavelength of 0.4 µm.
  6.  請求項1記載のフィルムをレーザー加工し、フィルム表面にパターンが形成された加飾フィルム。 A decorative film in which the film according to claim 1 is laser processed to form a pattern on the film surface.
  7.  請求項6記載の加飾フィルムを用いた光学用部材または光学用素子。 An optical member or optical element using the decorative film according to claim 6.
PCT/JP2010/070756 2009-11-24 2010-11-16 Polycarbonate film for laser processing WO2011065313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543238A JPWO2011065313A1 (en) 2009-11-24 2010-11-16 Polycarbonate film for laser processing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009266415 2009-11-24
JP2009-266415 2009-11-24
JP2009-266416 2009-11-24
JP2009266416 2009-11-24

Publications (1)

Publication Number Publication Date
WO2011065313A1 true WO2011065313A1 (en) 2011-06-03

Family

ID=44066418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070756 WO2011065313A1 (en) 2009-11-24 2010-11-16 Polycarbonate film for laser processing

Country Status (3)

Country Link
JP (1) JPWO2011065313A1 (en)
TW (1) TW201129607A (en)
WO (1) WO2011065313A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093951A (en) * 2013-11-13 2015-05-18 三菱化学株式会社 Resin material for laser welding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169924A (en) * 1993-12-16 1995-07-04 Matsushita Electric Ind Co Ltd Manufacture of piezo-electric body-semiconductor composite substrate and piezoelectric device using the method
JP2002254184A (en) * 2001-03-01 2002-09-10 Kawamura Inst Of Chem Res Laser abration machining method
JP2006160993A (en) * 2004-12-10 2006-06-22 Nitto Denko Corp Protective sheet for laser beam machining
JP2009126128A (en) * 2007-11-27 2009-06-11 Konica Minolta Opto Inc Method of manufacturing aromatic polycarbonate film, aromatic polycarbonate film obtaned thereby and substrate for organic electroluminescent element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2574013B2 (en) * 1988-11-07 1997-01-22 帝人株式会社 Optical processing of molded products such as polycarbonate
JP3454080B2 (en) * 1997-05-23 2003-10-06 三菱化学株式会社 Aromatic polycarbonate resin composition and optical product member comprising the same
US6060577A (en) * 1999-03-18 2000-05-09 General Electric Company Polycarbonates derived from alicyclic bisphenols

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169924A (en) * 1993-12-16 1995-07-04 Matsushita Electric Ind Co Ltd Manufacture of piezo-electric body-semiconductor composite substrate and piezoelectric device using the method
JP2002254184A (en) * 2001-03-01 2002-09-10 Kawamura Inst Of Chem Res Laser abration machining method
JP2006160993A (en) * 2004-12-10 2006-06-22 Nitto Denko Corp Protective sheet for laser beam machining
JP2009126128A (en) * 2007-11-27 2009-06-11 Konica Minolta Opto Inc Method of manufacturing aromatic polycarbonate film, aromatic polycarbonate film obtaned thereby and substrate for organic electroluminescent element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093951A (en) * 2013-11-13 2015-05-18 三菱化学株式会社 Resin material for laser welding

Also Published As

Publication number Publication date
TW201129607A (en) 2011-09-01
JPWO2011065313A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
US9303120B2 (en) Cross-linked polycarbonate resin with improved chemical and flame resistance
CN101680987B (en) Optical film
US10639851B2 (en) Marked thermoplastic compositions, methods of making and articles comprising the same, and uses thereof
Žukauskas et al. Characterization of photopolymers used in laser 3D micro/nanolithography by means of laser-induced damage threshold (LIDT)
Ferrer et al. Proton-transfer lasers from solid polymeric chains with covalently bound 2-(2′-hydroxyphenyl) benzimidazole groups
CN107075099B (en) Polycarbonate resin, molded article, and optical film
TW201412503A (en) Marked thermoplastic compositions, methods of making and articles comprising the same, and uses thereof
EP2970575B1 (en) Photoactive additive with functionalized benzophenone
WO2011065505A1 (en) Polycarbonate resin and method for producing same
KR20110106841A (en) Optical films
JPWO2008108492A1 (en) Terminal-modified polycarbonate and method for producing the same
KR20160137512A (en) Polycarbonate resin and optical film
KR20220120618A (en) Resin composition and film
Zhang et al. Implementing plant‐derived isosorbide and isomannide as comonomers for polyester synthesis: Effects of crystallization properties on optical properties
JPWO2011096089A1 (en) Polycarbonate resin and method for producing the same
JP2009191227A (en) Polycarbonate resin composition
WO2011065313A1 (en) Polycarbonate film for laser processing
CN105246961A (en) Color-stable thermoplastic composition
EP2935399A1 (en) Processes for enhancing flame retardance and chemical resistance of polymers
WO2002057369A1 (en) Resin and resin compositions for laser marking and molded articles of these
TWI673320B (en) Blend and method for manufacturing the same
CN113227200A (en) Thermoplastic resin composition and optical component using the same
JP2011162632A (en) Heat-resistant polyester resin
JP2005232252A (en) Modified polycarbonate resin
JP5296452B2 (en) Terminal-modified polycarbonate and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833159

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543238

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833159

Country of ref document: EP

Kind code of ref document: A1