WO2011064934A1 - Sound damping component for ultrasonic probe, ultrasonic probe, and ultrasonic probe manufacturing method - Google Patents

Sound damping component for ultrasonic probe, ultrasonic probe, and ultrasonic probe manufacturing method Download PDF

Info

Publication number
WO2011064934A1
WO2011064934A1 PCT/JP2010/006066 JP2010006066W WO2011064934A1 WO 2011064934 A1 WO2011064934 A1 WO 2011064934A1 JP 2010006066 W JP2010006066 W JP 2010006066W WO 2011064934 A1 WO2011064934 A1 WO 2011064934A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic probe
piezoelectric element
electrode
acoustic
drill
Prior art date
Application number
PCT/JP2010/006066
Other languages
French (fr)
Japanese (ja)
Inventor
雅己 浅野
Original Assignee
コニカミノルタエムジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタエムジー株式会社 filed Critical コニカミノルタエムジー株式会社
Priority to JP2011543082A priority Critical patent/JP5348250B2/en
Publication of WO2011064934A1 publication Critical patent/WO2011064934A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4455Features of the external shape of the probe, e.g. ergonomic aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue

Definitions

  • the present invention relates to an acoustic braking component for an ultrasonic probe used in an ultrasonic probe including a plurality of piezoelectric elements.
  • the present invention relates to an ultrasonic probe using the acoustic braking component for an ultrasonic probe.
  • the present invention also relates to an ultrasonic probe manufacturing method for manufacturing such an ultrasonic probe.
  • Ultrasound generally refers to sound waves of 16000 Hz or higher, and can be examined non-destructively, harmlessly, and in real time, so that it is applied to various fields such as defect inspection and disease diagnosis. .
  • One of them is an ultrasound that scans the inside of the subject with ultrasound and images the internal state of the subject based on a received signal generated from the reflected wave (echo) of the ultrasound coming from inside the subject.
  • echo reflected wave
  • ultrasound diagnostic device This ultrasonic diagnostic apparatus is smaller and less expensive for medical use than other medical imaging apparatuses, has no radiation exposure such as X-rays, is highly safe, and has a blood effect using the Doppler effect. It has various features such as the ability to display flow.
  • the ultrasonic diagnostic apparatus includes a circulatory system (eg, coronary artery of the heart), a digestive system (eg, gastrointestinal), an internal system (eg, liver, pancreas, and spleen), and a urinary system (eg, kidney and bladder). Widely used in obstetrics and gynecology.
  • a circulatory system eg, coronary artery of the heart
  • a digestive system eg, gastrointestinal
  • an internal system eg, liver, pancreas, and spleen
  • a urinary system eg, kidney and bladder
  • an ultrasonic probe that transmits and receives an ultrasonic wave (ultrasonic signal) to a subject is used.
  • This ultrasonic probe uses a piezoelectric phenomenon to generate an ultrasonic wave by mechanical vibration based on an electric signal transmitted, and to generate a reflected wave of the ultrasonic wave caused by an acoustic impedance mismatch inside the subject.
  • a plurality of piezoelectric elements that receive and generate received electrical signals are provided, and the plurality of piezoelectric elements are arranged in a two-dimensional array, for example.
  • a member (component) called an acoustic braking member (acoustic load member, backing layer, damper layer, acoustic absorbing member) that absorbs ultrasonic waves is provided on one surface (back surface) of the plurality of piezoelectric elements.
  • a signal line for transmitting and receiving an electrical signal is connected to each of the plurality of piezoelectric elements.
  • the drill has a blurring or eccentricity on the rotating shaft while the through hole is formed in the acoustic braking member. Therefore, at the outlet side of the drill, the position of the outlet is deviated from the position directly opposite to the position of the inlet, and the hole diameter of the outlet becomes larger than the hole diameter of the inlet. .
  • the signal lines inserted through the through holes are irregularly arranged on the exit side of the drill.
  • a relatively hard rubber material is generally used for the acoustic braking member, its machinability is relatively poor and such a phenomenon is likely to occur.
  • the connection when connecting the signal lines penetrating the acoustic braking member to the drive electrodes of the plurality of piezoelectric elements arranged in a two-dimensional array at a fine pitch, the front and back of the acoustic braking member at the time of drilling ( If the connection is performed without managing the drill inlet side and the outlet side, the connection may be made on the drill outlet side. As a result, two piezoelectric element drive electrodes are provided on one signal line. May happen to be connected.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an acoustic brake component for an ultrasonic probe capable of connecting a drive electrode of a piezoelectric element to a signal line on the entrance side of a drill. Is to provide. Another object of the present invention is to provide an ultrasonic probe using the acoustic braking component for an ultrasonic probe. Moreover, this invention is providing the manufacturing method of such an ultrasonic probe.
  • a plurality of through-holes are formed by a drill so as to penetrate the acoustic brake body.
  • Each of the through holes is provided with a plurality of conductors, and each of the conductors is provided with a first electrode portion for connecting a piezoelectric element driving electrode on the entrance side of the drill. Therefore, according to the present invention, it is possible to provide an acoustic braking component, an ultrasonic probe, and a method for manufacturing the same, which can connect the drive electrode of the piezoelectric element to the signal line on the entrance side of the drill.
  • FIG. 2 is a cross-sectional view showing a first manufacturing process of the ultrasonic probe shown in FIG. 1, and FIGS. 2A to 2D are diagrams showing each process.
  • FIG. 3 is a cross-sectional view showing a second manufacturing process of the ultrasonic probe shown in FIG. 1, and FIGS. 3A to 3E are diagrams showing each process.
  • FIG. 4 is a cross-sectional view showing a third manufacturing process of the ultrasonic probe shown in FIG. 1, and FIGS. 4A to 4D are diagrams showing each process.
  • FIG. 2 is a detailed cross-sectional view illustrating a configuration of the ultrasonic probe illustrated in FIG. 1.
  • FIG. 1 is a cross-sectional view showing a configuration of an ultrasonic probe according to the embodiment.
  • the ultrasonic probe 100 according to the present embodiment is roughly a substrate 15, a member 13 provided on the substrate 15, which is an acoustic braking component for an ultrasonic probe, and a member 13 includes a plurality of piezoelectric elements 1a provided on 13 and an acoustic matching layer 50 provided on the plurality of piezoelectric elements 1a, and transmits / receives ultrasonic waves to / from the subject.
  • the member 13 mechanically supports the piezoelectric element 1a, and acoustically brakes the piezoelectric element 1a so as to keep the acoustic characteristics of the piezoelectric element 1a favorable. From the material that absorbs ultrasonic waves (ultrasonic absorber) The ultrasonic wave emitted from the piezoelectric element 1a toward the member 13 is mainly absorbed. More specifically, the member 13 penetrates through the acoustic braking body into each of an acoustic braking body made of resin and a plurality of through holes formed by a drill so as to penetrate the acoustic braking body. And a plurality of conductors provided as described above.
  • the ultrasonic probe 100 is a plurality of two-dimensional arrays arranged in two directions linearly independent in a plan view with a predetermined interval therebetween, for example, m rows ⁇ n columns in two directions orthogonal to each other.
  • the piezoelectric element 1a is provided.
  • Each of the plurality of piezoelectric elements 1a includes a predetermined piezoelectric material, and converts a signal between an electric signal and an ultrasonic signal by using a piezoelectric phenomenon.
  • the ultrasonic probe 100 may be a one-dimensional array of ultrasonic probes having a configuration in which a plurality of piezoelectric elements 1a are arranged in a line.
  • the acoustic matching layer 50 is a member for matching the acoustic impedance of each piezoelectric element 1a and the acoustic impedance of the subject.
  • the acoustic matching layer 50 may include an acoustic lens that converges an ultrasonic wave that is transmitted toward the subject, and has an arcuate shape.
  • FIG. 2 is a cross-sectional view showing a first manufacturing process of the ultrasonic probe according to this embodiment, and FIGS. 2A to 2D are views showing each process.
  • FIG. 3 is a cross-sectional view showing a second manufacturing process of the ultrasonic probe according to the present embodiment, and FIGS. 3A to 3E are views showing each process.
  • FIG. 4 is a cross-sectional view showing a third manufacturing process of the ultrasonic probe according to this embodiment, and FIGS. 4A to 4D are views showing each process.
  • FIG. 5 is a detailed cross-sectional view showing the configuration of the ultrasonic probe according to the present embodiment.
  • a plate-like acoustic braking body 13a made of a sound absorbing material is prepared.
  • the sound absorbing material is made of, for example, a material obtained by mixing ferrite with chloroprene rubber or a material obtained by mixing tungsten powder with a resin such as an epoxy resin.
  • the thickness of the acoustic braking body 13a may be 1.5 to 2.0 mm, for example.
  • the sound absorbing material is not limited to the above.
  • the acoustic braking body 13a is drilled into the acoustic braking body 13a with a ⁇ 150 ⁇ m machining drill from one surface (hereinafter referred to as the surface 131) of the acoustic braking body 13a to the other surface (hereinafter referred to as the following).
  • a plurality of holes 14A (through holes) penetrating to the back surface 132) are formed. Due to the bending and eccentricity of the drill being processed, the variation in the diameter and position of the hole 14A is larger on the back surface 132 than on the front surface 131. Note that a drill for machining ⁇ 105 ⁇ m may be used instead of the drill.
  • the acoustic braking body 13a is adhered to the dicing tape 2 at the back surface 132, and the conductive paste 14 is squeezed from the front surface 131 to the hole 14A in a vacuum. Filled. Then, the acoustic braking body 13a in which the conductive paste 14 is filled in the hole 14A is maintained at a predetermined temperature (135 ° C.) for a predetermined time (2 hours), and the conductive paste 14 is cured.
  • the conductive paste 14 may be any conductive paste that contains no solvent and has a relatively small dispersed metal, and may be a conductive paste in which a conductor such as a metal is dispersed in a resin.
  • the conductive paste 14 is, for example, Dotite XA-874 manufactured by Fujikura Kasei Co., Ltd.
  • Riva Alpha 3196 (trade name) manufactured by Nitto Denko Corporation is used.
  • the dicing tape 2 is peeled from the back surface 132, and both surfaces of the acoustic braking body 13a formed through these steps are polished, so that the acoustic braking body 13a A through electrode 14 corresponding to an example of the conductor is formed.
  • the through electrode 14 has a front electrode surface 141 on the surface 131 of the acoustic braking body 13a and a back electrode surface 142 on the back surface 132 of the acoustic braking body 13a.
  • the variation in the diameter and position of the hole 14 ⁇ / b> A is larger on the back surface 132 than on the front surface 131. Therefore, the variation in the diameter and position of the front electrode surface 141 is smaller than that of the back electrode surface 142.
  • the back-side electrode surface 142 having a large diameter and a large variation in electrode position is used as an electrode for connecting to an electric substrate on which the electrodes are arranged with high accuracy, and has a smaller diameter and a smaller variation in electrode position.
  • the electrode surface 141 is used as an electrode for connection with the piezoelectric element 1a in which an error in position accuracy is likely to occur.
  • the formation of the through electrode 14 is not limited to the above.
  • the through electrode 14 can be formed of a metal such as plating. More specifically, after the metal is deposited on the inner surface of each hole 14A by electroless plating or the like, the through electrode 14 can be formed by filling the resin.
  • the following manufacturing method may be used instead of the manufacturing method of the through electrode 14 described above. That is, in the manufacturing method, before processing (FIG. 2 (A)) to form the holes 14A in the acoustic braking body 13a, the surface 131 of the acoustic braking body 13a and the back surface 132 thereof are made of aluminum having a thickness of 10 to 40 ⁇ m. A step of attaching the metal foil with an adhesive is further included. As the adhesive, for example, temporary fixing adhesive Ecosepara manufactured by Kaken Tech Co., Ltd. is used. After affixing the metal foil, a hole 14A is formed with a drill (FIG. 2B).
  • the adhesive for example, temporary fixing adhesive Ecosepara manufactured by Kaken Tech Co., Ltd. is used. After affixing the metal foil, a hole 14A is formed with a drill (FIG. 2B).
  • the conductive paste 14 is filled from the surface 131 into the holes 14A by squeegeeing in a vacuum, and is maintained at a predetermined temperature (135 ° C.) for a predetermined time (2 hours), thereby curing the conductive paste 14 (FIG. 2 (C)).
  • the metal foils on the front surface 131 and the back surface 132 are peeled off.
  • the remaining adhesive is removed to complete the member 13 in which the through electrode 14 is formed (FIG. 2D).
  • the presence of the metal foil on the front surface 131 and the back surface 132 makes it easier to apply the drill during the forming process of the hole 14A, and the positional accuracy of the hole 14A is improved. More improved.
  • a PZT (PbZr 1-x Ti x O 3 : lead zirconate titanate) plate 1 that is a piezoelectric element having electrodes (films) formed on both upper and lower surfaces, For example, it is bonded to a dicing tape 2 which is a thermal foaming release tape.
  • the thickness of the PZT plate 1 may be 0.3 mm, for example.
  • electrodes are formed on the surface bonded to the dicing tape 2 and the surface facing the surface.
  • the piezoelectric element other than PZT, for example, BaTiO 3 , PbTiO 3, or the like may be used.
  • the PZT plate 1 bonded to the dicing tape 2 is cut by a dicing saw 3.
  • the PZT plate 1 is cut, whereby each piezoelectric element 1a is divided from the PZT plate 1 and formed.
  • the PZT plate 1 is cut so that the piezoelectric elements 1a are two-dimensionally arranged. Since the PZT plate 1 is bonded to the dicing tape 2, the PZT plate 1 is fixed to the dicing tape 2 even after being divided into the piezoelectric elements 1a.
  • the excision width by the dicing saw 3 may be 0.04 mm, for example.
  • a plurality of piezoelectric elements 1a arranged in a two-dimensional array are arranged on the dicing tape 2.
  • the pitch between the piezoelectric elements 1 a is 0.3 mm, and 100 ⁇ 100 piezoelectric elements 1 a are formed on the dicing tape 2.
  • a substrate 4 on which a common electrode 6 is formed is prepared, and an adhesive 5 is applied to the surface of the piezoelectric element 1a facing the surface bonded to the dicing tape 2. Is done.
  • the adhesive 5 is, for example, an epoxy resin that is a thermosetting resin, and the coating thickness is, for example, 10 ⁇ m.
  • Application of the adhesive 5 may be performed using, for example, a flexographic printing machine.
  • Flexographic printing is a printing method in which ink is applied to the surface of a relief printing plate with a roller called an anilox roll, and then the printing plate is pressed against a printing object such as paper. Furthermore, the ink that has adhered to the anilox surface is scraped off by the doctor blade, and a stable amount of ink is always supplied to the surface of the plate.
  • a stable amount of the adhesive 5 can be applied to the electrode surface of the piezoelectric element 1a.
  • a common electrode 6 is formed on the main surface of the substrate 4.
  • the substrate 4 on which the common electrode 6 is formed is produced by forming an aluminum film (common electrode 6) on the substrate 4 that is an acoustic matching layer, for example, by vapor deposition or plating. Then, the piezoelectric element 1a bonded to the dicing tape 2 is pressed against the substrate 4 so that the electrode surface contacts the common electrode 6, and the epoxy adhesive 5 is cured, for example, at 60 degrees. Heat for 15 hours.
  • the adhesive 5 for example, Epo-Tek353ND manufactured by Epoxy Technology is used.
  • the adhesive 5 is hardened in a fillet shape while being pushed out from the gap between the piezoelectric element 1a and the common electrode 6. Thereby, the piezoelectric element 1 a is firmly fixed to the substrate 4.
  • the dicing tape 2 is removed from the piezoelectric element 1a. Then, the first incomplete ultrasonic probe 10 in which one electrode of the piezoelectric element 1a is simply connected to the common electrode 6 is produced.
  • the filler 7 is dropped on the piezoelectric element 1a side of the first incomplete ultrasonic probe 10.
  • the filler 7 is a liquid that can be dropped at the time of dropping, has a curing property such as thermosetting, and is a material having ultrasonic absorption, impact resistance, insulation, and the like after curing. It is preferable. Therefore, as the filler 7, for example, a rubber paste of a silicone rubber agent having a viscosity of tens of thousands of cp, an epoxy resin, or the like is used.
  • the first incomplete ultrasonic probe 10 onto which the filler 7 has been dropped is preferably placed in a vacuum state or a reduced pressure state, such as being housed in a vacuum chamber. Thereby, there exists an effect that the bubble in filler 7 comes out.
  • it is preferable to perform the above-described treatment because it contains bubbles due to stirring during mixing.
  • the pressing member 8 composed of the soft layer 8a and the support layer 8b is installed on the first incomplete ultrasonic probe 10 so as to cover the upper surfaces of all the piezoelectric elements 1a. Is done.
  • the soft layer 8a is disposed so as to be on the piezoelectric element 1a side.
  • a flat plate member 9 is further installed above the pressing member 8, and the flat member 9 presses the filler 7 dropped onto the pressing member 8 and the first incomplete ultrasonic probe 10. More specifically, the pressing member 8 and the filler 7 are sandwiched between the flat plate member 9 and the first incomplete ultrasonic probe 10.
  • the flat plate member 9 has a flat surface and is pressed in a state where this surface is on the pressing member 8 side.
  • the soft layer 8a is made of a material having flexibility and adhesiveness. More specifically, the soft layer 8a is softer than the piezoelectric element 1a, and has a degree of flexibility that can be brought into close contact with the piezoelectric element 1a and deformed into its shape when pressed against the piezoelectric element 1a. The soft layer 8 a is deformed when pressed against the first incomplete ultrasonic probe 10 by the flat plate member 9.
  • the support layer 8b is a member that supports the soft layer 8a.
  • a dicing tape that is a thermal foaming release tape is used as the pressing member 8. In this dicing tape, the glue portion is the soft layer 8a, and the tape portion other than the glue portion is the support layer 8b.
  • the pressing member 8 since the pressing member 8 has the support layer 8b, the pressing member 8 is easy to handle. Moreover, the flat plate member 9 should just have the intensity
  • the piezoelectric element 1 a when the pressing member 8 is pressed by the flat plate member 9, the piezoelectric element 1 a is not deformed, but the filler 7 filled between the piezoelectric elements 1 a has fluidity and the pressing member 8. Is pressed and flows, and is uniformly filled between the piezoelectric elements 1a. Further, the soft layer 8a is pressed to be in close contact with the upper surface of the piezoelectric element 1a, and the filler 7 is pushed out between the upper surface of the piezoelectric element 1a and the soft layer 8a, and the upper surface of the piezoelectric element 1a is filled. The material 7 does not exist. That is, the filler 7 does not remain on the upper surface of the piezoelectric element 1a where the electrodes are formed.
  • the soft layer 8a is deformed so that the piezoelectric element 1a enters the soft layer 8a, and the portion in close contact with the piezoelectric element 1a has a concave shape. It becomes convex. That is, the filler 7 is pushed in by the soft layer 8. Thereby, the upper surface of the filler 7 becomes lower than the upper surface of the piezoelectric element 1a. That is, the upper surface of the filler 7 and the upper surface of the piezoelectric element 1 a are not on the same plane, and the upper surface of the piezoelectric element 1 a is located at a position further away from the substrate 4.
  • the pressure applied to the filler 7 and the like can be adjusted by adjusting the force pressing the flat plate member 9, and the position of the upper surface of the filler 7 can be adjusted.
  • the soft layer 8a preferably has an elastic modulus of 0.1 GPa or less, and the elastic modulus of the support layer is preferably about 1 to 3 GPa.
  • the soft layer 8a may have an adhesive strength of 2 to 10 N / 20 mm.
  • the soft layer 8a is too soft, that is, if the adhesive force of the soft layer 8a is too large, the piezoelectric element 1a enters the soft layer 8a too much, and it becomes difficult to peel the soft layer 8a from the piezoelectric element 1a. If the soft layer 8a is too hard, that is, if the adhesive force of the soft layer 8a is too low, the piezoelectric element 1a does not sufficiently enter the soft layer 8a, and the filler 7 tends to remain on the piezoelectric element 1a.
  • the thickness of the soft layer 8a is preferably about 10 to 100 ⁇ m, and the thickness of the support layer 8b is preferably about 10 to 200 ⁇ m. Accordingly, the soft layer 8a is sufficiently deformed, and the piezoelectric element 1a appropriately enters the soft layer 8a. In addition, when the thickness of the soft layer 8a is too thick, the piezoelectric element 1a enters the soft layer 8a too much, and it becomes difficult to peel the soft layer 8a from the piezoelectric element 1a. If the thickness of the soft layer 8a is too thin, the piezoelectric element 1a does not sufficiently enter the soft layer 8a, and the filler 7 tends to remain on the piezoelectric element 1a. Note that the pressing member 8 is not limited to the thermal foaming release tape. The pressing member 8 should just have the soft layer 8a which has the above properties.
  • the flat plate member 9, the pressing member 8, the filler 7, and the first incomplete ultrasonic probe 10 are heated.
  • the filler 7 is a rubber paste of a silicone rubber agent, it may be heated at 60 degrees for 15 hours. Thereby, the filler 7 is cured.
  • the flat plate member 9 and the pressing member 8 are removed as shown in FIG.
  • the pressing member 8 is bonded to the first incomplete ultrasonic probe 10 when pressed, but since it is a heat-foaming release tape, the adhesive force is reduced by the heating, and the pressing member 8 is easily 1 It can be removed from the incomplete ultrasound probe 10.
  • FIG. 4 (C) by removing the flat plate member 9 and the pressing member 8, as shown in FIG. 4 (D), the second unfinished material in which the filler 7 is installed in the first incomplete ultrasonic probe 10 is used. A completed ultrasonic probe 11 is produced.
  • the second incomplete ultrasonic probe 11 includes a substrate 4 on which the common electrode 6 is formed, and a plurality of substrates 4 fixed to the substrate 4 with the adhesive 5 via the common electrode 6. Piezoelectric element 1a and a filler 7 filled between the piezoelectric elements 1a. The common electrode 6 and each piezoelectric element 1a are electrically connected. Further, the upper surface of each piezoelectric element 1 a is positioned higher than the upper surface of the filler 7. Therefore, the upper surface of the second incomplete ultrasonic probe 11 has an uneven shape with the filler 7 as a recess and the piezoelectric element 1a as a protrusion.
  • the filler 7 is located between the substrate 4 and the surface of the piezoelectric element 1a facing the surface of the piezoelectric element 1a in contact with the substrate 4. Note that the surface of the piezoelectric element 1a facing the surface of the piezoelectric element 1a in contact with the substrate 4 is the upper surface of the piezoelectric element 1a.
  • each piezoelectric element electrode 1A of the plurality of piezoelectric elements 1a is connected to the front electrode surface 141 for connecting the piezoelectric element electrode 1A, and the substrate electrode 15A is connected.
  • Each substrate electrode 15A of the electronic substrate 15 is connected to each of the back electrode surfaces 142 for connection.
  • the ultrasonic probe 100 is completed by installing the member 13 on the upper surface of the second incomplete ultrasonic probe 11 and further installing the substrate 15. More specifically, the surface 131 of the member 13 formed by penetrating the plurality of through-electrodes 14 corresponding to each piezoelectric element 1a corresponds to each front-side electrode surface 141 of each of the plurality of through-electrodes 14 and each corresponding piezoelectric element electrode 1A. Are installed on the upper surface of the second incomplete ultrasonic probe 11 so as to be electrically connected to each other.
  • each back side electrode 142 of each through electrode 14 is such that the surface 132 of the member 13 electrically connects each back side electrode surface 142 of each of the plurality of through electrodes 14 and each corresponding substrate electrode 15A.
  • the piezoelectric element 1a is used when the PZT plate 1 is cut by the dicing saw 3 (FIG. 3B) or when the filler 7 is dropped between the adjacent piezoelectric elements 1a (FIG. 4A). 1a is inclined, and the position of each piezoelectric element 1a may deviate from the design value.
  • FIG. 5 shows a case where variations occur in the positions of the piezoelectric elements 1a.
  • the back electrode surface 142 having a large diameter and large electrode position variation is used as an electrode for connection with the substrate electrode 15A of the electronic substrate 15 on which the electrodes are arranged with high precision, while the diameter is smaller, and
  • the front-side electrode surface 141 having a smaller electrode position variation is used as an electrode for connection with the piezoelectric element electrode 1A of the piezoelectric element 1a in which an error in position accuracy is likely to occur.
  • anisotropic conductive adhesive may be used as the adhesive 12.
  • anisotropic conductive adhesive has a property which has electroconductivity or insulation according to a direction.
  • the adhesive 12 of the anisotropic conductive adhesive has conductivity in the vertical direction, and has insulation in the other directions.
  • each piezoelectric element 1a and each through electrode 14 can be electrically connected.
  • the piezoelectric elements 1a or the through electrodes 14 can be insulated even if the adhesive 12 which is an anisotropic conductive adhesive is interposed therebetween.
  • the upper surface of the second unfinished ultrasonic probe 11 has a concave-convex shape in which the filler 7 is a concave portion and the piezoelectric element 1a is a convex portion.
  • the incomplete ultrasonic probe 11 can reliably connect the wiring without interfering with the filler 7 that is the concave portion.
  • anisotropic conductive adhesive has the property of having conductivity in the direction in which pressure is applied. Therefore, when an anisotropic conductive adhesive is used as the adhesive 12, the adhesive 12 is applied between the surface 131 of the member 13 and the second unfinished ultrasonic probe 11, and the corresponding piezoelectric element is applied. When the pressure is applied so that the adhesive 1 is sandwiched between the 1a and the front electrode surface 141, the opposed piezoelectric element 1a and the through electrode 14 are electrically connected. At this time, since the pressure is more likely to be applied to the adhesive 12 between the piezoelectric element 1a and the through electrode 14 when the piezoelectric element 1a protrudes, the adhesive 12 between them is easily made conductive. This is preferable. Therefore, in this embodiment, since the piezoelectric element 1a is a convex part, it is preferable.
  • the filler 7 is uniformly filled between the piezoelectric elements 1a, and the filler 7 need not be polished. Damages are reduced, and the manufacturing process can be reduced. Moreover, according to this manufacturing method, since it is not necessary to grind the filler 7, the surface of the filler 7 is not formed irregularly. Further, according to this manufacturing method, since the piezoelectric element 1a protrudes from the filler 7, the filler 7 and the like interfere when connecting the wiring to the electrode formed on the piezoelectric element 1a. Therefore, there is a low possibility that the wiring is loaded and the connection with the electrode is lost.
  • the ultrasonic probe 100 has the filler 7 uniformly filled between the piezoelectric elements 1a, and thus has an effect of suppressing crosstalk between the piezoelectric elements 1a. high.
  • the piezoelectric element electrode 1A and the front electrode surface 141 corresponding to the piezoelectric element electrode 1A are connected with high accuracy, the performance variation of each piezoelectric element 1a is small, and the quality of the ultrasonic probe 100 is reduced. Is expensive.
  • the ultrasonic probe 100 is less damaged by wiring. Furthermore, since it is not necessary to polish the filler 7 in the manufacturing process, a soft rubber which is difficult to polish but has a high crosstalk suppressing effect can be used as the filler 7.
  • an ultrasonic diagnostic apparatus may be manufactured using the ultrasonic probe 100 according to the present embodiment.
  • Such an ultrasonic diagnostic apparatus transmits an ultrasonic wave (ultrasound signal) to a subject such as a living body (not shown) and comes from a subject such as a reflected wave of an ultrasonic wave reflected by the subject.
  • An ultrasonic probe 100 that receives ultrasonic waves, and an ultrasonic probe 100 that is connected to the ultrasonic probe 100 and transmits a transmission signal of an electrical signal to the ultrasonic probe 100 to the subject to the ultrasonic probe 100.
  • the ultrasonic wave is transmitted to the inside of the subject based on the received signal of the electrical signal generated by the ultrasonic probe 100 according to the ultrasonic wave received from the inside of the subject received by the ultrasonic probe 100.
  • An ultrasonic diagnostic apparatus main body that images the internal state of the image as an ultrasonic image. As described above, even if the position of the piezoelectric element electrode 1 ⁇ / b> A varies, the ultrasonic probe 100 in which the occurrence of a problem that the two piezoelectric element electrodes 1 ⁇ / b> A are joined to one electrode of the member 13 is reduced. The yield of the ultrasonic diagnostic apparatus is improved.
  • the acoustic brake component for an ultrasonic probe is an acoustic brake component for an ultrasonic probe that is used in an ultrasonic probe that includes a plurality of piezoelectric elements and transmits / receives ultrasonic waves to / from a subject.
  • the acoustic braking body is formed of a resin.
  • the plurality of conductors are made of a conductive material filled in the plurality of through holes.
  • the drive electrode of the piezoelectric element can be connected to the signal line on the entrance side of the drill. As a result, the occurrence of defective products is reduced and the yield is improved.
  • an ultrasonic probe includes any one of the above-described acoustic braking components, a plurality of piezoelectric elements respectively connected to the first electrode portions of the plurality of conductors, and the plurality of the plurality of piezoelectric elements. And an electronic substrate having a plurality of substrate electrodes respectively connected to the second electrode portion of the conductor.
  • an ultrasonic probe in which the drive electrode of the piezoelectric element is connected to the signal line on the entrance side of the drill.
  • An ultrasonic probe manufacturing method for manufacturing an ultrasonic probe that includes a plurality of piezoelectric elements and transmits / receives ultrasonic waves to / from a subject.
  • the step of forming the plurality of conductors by filling each through hole with a conductive paste and then curing the paste. Further prepare.
  • a metal foil is pasted on both surfaces of the acoustic braking body. The process of carrying out is further provided.
  • an acoustic brake component for an ultrasonic probe used in an ultrasonic probe including a plurality of piezoelectric elements, an ultrasonic probe thereof, and a method of manufacturing the ultrasonic probe. Can do.

Abstract

Disclosed are a sound damping component for ultrasonic probe, an ultrasonic probe, and an ultrasonic probe manufacturing method. Multiple through-holes (14A) penetrating a sound dampening body (13a) are formed with a drill, and conductive bodies (14) are formed in each of the through-holes (14A). Then, a first electrode unit (141) for connection to a piezoelectric element drive electrode is formed in each of the conductive bodies (14) on the entry side of the aforementioned drill. By this means, a sound dampening component, an ultrasonic probe and a manufacturing method thereof can be provided such that the piezoelectric element drive electrode can be connected to the signal line, which is on the drill entry side.

Description

超音波探触子用音響制動部品、超音波探触子および超音波探触子の製造方法Acoustic braking component for ultrasonic probe, ultrasonic probe, and method of manufacturing ultrasonic probe
 本発明は、複数の圧電素子を備える超音波探触子に用いられる超音波探触子用音響制動部品に関する。本発明は、この超音波探触子用音響制動部品を用いた超音波探触子に関する。そして、本発明は、このような超音波探触子を製造する超音波探触子の製造方法に関する。 The present invention relates to an acoustic braking component for an ultrasonic probe used in an ultrasonic probe including a plurality of piezoelectric elements. The present invention relates to an ultrasonic probe using the acoustic braking component for an ultrasonic probe. The present invention also relates to an ultrasonic probe manufacturing method for manufacturing such an ultrasonic probe.
 超音波は、通常、16000Hz以上の音波をいい、非破壊、無害および略リアルタイムでその内部を調べることが可能であることから、欠陥の検査や疾患の診断等の様々な分野に応用されている。その一つに、被検体内を超音波で走査し、被検体内から来た超音波の反射波(エコー)から生成された受信信号に基づいて当該被検体内の内部状態を画像化する超音波診断装置がある。この超音波診断装置は、医療用では、他の医療用画像装置に較べて小型で安価であり、そして、X線等の放射線被爆が無く安全性が高いこと、また、ドップラ効果を応用した血流表示が可能であること等の様々な特長を有している。このため、超音波診断装置は、循環器系(例えば心臓の冠動脈等)、消化器系(例えば胃腸等)、内科系(例えば肝臓、膵臓および脾臓等)、泌尿器系(例えば腎臓および膀胱等)および産婦人科系等で広く利用されている。 Ultrasound generally refers to sound waves of 16000 Hz or higher, and can be examined non-destructively, harmlessly, and in real time, so that it is applied to various fields such as defect inspection and disease diagnosis. . One of them is an ultrasound that scans the inside of the subject with ultrasound and images the internal state of the subject based on a received signal generated from the reflected wave (echo) of the ultrasound coming from inside the subject. There is an ultrasound diagnostic device. This ultrasonic diagnostic apparatus is smaller and less expensive for medical use than other medical imaging apparatuses, has no radiation exposure such as X-rays, is highly safe, and has a blood effect using the Doppler effect. It has various features such as the ability to display flow. For this reason, the ultrasonic diagnostic apparatus includes a circulatory system (eg, coronary artery of the heart), a digestive system (eg, gastrointestinal), an internal system (eg, liver, pancreas, and spleen), and a urinary system (eg, kidney and bladder). Widely used in obstetrics and gynecology.
 この超音波診断装置には、被検体に対して超音波(超音波信号)を送受信する超音波探触子が用いられている。この超音波探触子は、圧電現象を利用することによって、送信の電気信号に基づいて機械振動して超音波を発生し、被検体内部で音響インピーダンスの不整合によって生じる超音波の反射波を受けて受信の電気信号を生成する複数の圧電素子を備え、これら複数の圧電素子が例えばアレイ状に2次元配列されて構成される。そして、これら複数の圧電素子における一方面(背面)には、超音波を吸収する音響制動部材(音響負荷部材、バッキング層、ダンパ層、音響吸収部材)と呼ばれる部材(部品)が設けられており、また、これら複数の圧電素子のそれぞれに、電気信号を送受信するための信号線が接続されている。 In this ultrasonic diagnostic apparatus, an ultrasonic probe that transmits and receives an ultrasonic wave (ultrasonic signal) to a subject is used. This ultrasonic probe uses a piezoelectric phenomenon to generate an ultrasonic wave by mechanical vibration based on an electric signal transmitted, and to generate a reflected wave of the ultrasonic wave caused by an acoustic impedance mismatch inside the subject. A plurality of piezoelectric elements that receive and generate received electrical signals are provided, and the plurality of piezoelectric elements are arranged in a two-dimensional array, for example. A member (component) called an acoustic braking member (acoustic load member, backing layer, damper layer, acoustic absorbing member) that absorbs ultrasonic waves is provided on one surface (back surface) of the plurality of piezoelectric elements. In addition, a signal line for transmitting and receiving an electrical signal is connected to each of the plurality of piezoelectric elements.
 この信号線の接続において、複数の圧電素子が微細なピッチで配列されていることから、圧電素子の信号電極(駆動電極)から信号線を引き出す作業が煩雑になりがちであるため、より簡易で確実な信号線の接続技術が要望されている。そのため、例えば、特許文献1ないし特許文献3には、2次元的に配置された複数の圧電振動子片のそれぞれに対する信号線の接続をバッキング材側で成し、前記信号線を前記バッキング材の内部に通す構造が提案されている。 In this connection of signal lines, since a plurality of piezoelectric elements are arranged at a fine pitch, the work of drawing the signal lines from the signal electrodes (drive electrodes) of the piezoelectric elements tends to be complicated, so it is simpler. There is a demand for reliable signal line connection technology. Therefore, for example, in Patent Document 1 to Patent Document 3, signal lines are connected to each of a plurality of two-dimensionally arranged piezoelectric vibrator pieces on the backing material side, and the signal lines are connected to the backing material. An internal structure has been proposed.
 ところで、前記信号線を音響制動部材に通すための貫通孔をドリルによって機械的に形成する場合、ドリルが音響制動部材に貫通孔を形成している間に、ドリルの回転軸にブレや変心が生じてしまうため、ドリルの出口側では、その出口の位置が、その入口の位置と正対する位置からずれてしまい、また、その出口の穴径が、その入口の穴径よりも大きくなってしまう。その結果、前記貫通孔を挿通された信号線は、ドリルの出口側では、不規則な配列になってしまう。特に、音響制動部材には、一般に、比較的硬質なゴム材が用いられるため、その切削性が比較的悪く、このような現象が生じやすい。 By the way, when the through hole for passing the signal line through the acoustic braking member is mechanically formed by a drill, the drill has a blurring or eccentricity on the rotating shaft while the through hole is formed in the acoustic braking member. Therefore, at the outlet side of the drill, the position of the outlet is deviated from the position directly opposite to the position of the inlet, and the hole diameter of the outlet becomes larger than the hole diameter of the inlet. . As a result, the signal lines inserted through the through holes are irregularly arranged on the exit side of the drill. In particular, since a relatively hard rubber material is generally used for the acoustic braking member, its machinability is relatively poor and such a phenomenon is likely to occur.
 このため、2次元アレイ状に微細なピッチで配列された複数の圧電素子の各駆動電極に、音響制動部材を貫通した前記信号線を接続する場合、ドリル加工の際における音響制動部材の表裏(ドリルの入口側と出口側)を管理することなくその接続を行うと、ドリルの出口側で前記接続が行われる場合が生じてしまい、その結果、1つの信号線に2つの圧電素子の駆動電極が接続される事態が生じることがあった。 Therefore, when connecting the signal lines penetrating the acoustic braking member to the drive electrodes of the plurality of piezoelectric elements arranged in a two-dimensional array at a fine pitch, the front and back of the acoustic braking member at the time of drilling ( If the connection is performed without managing the drill inlet side and the outlet side, the connection may be made on the drill outlet side. As a result, two piezoelectric element drive electrodes are provided on one signal line. May happen to be connected.
特開平05-123317号公報Japanese Patent Laid-Open No. 05-123317 特開平07-131895号公報Japanese Patent Application Laid-Open No. 07-131895 特開2001-309493号公報JP 2001-309493 A
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、ドリルの入口側における信号線に圧電素子の駆動電極を接続することができる超音波探触子用音響制動部品を提供することである。また、本発明は、この超音波探触子用音響制動部品を用いた超音波探触子を提供することである。また、本発明は、このような超音波探触子の製造方法を提供することである。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an acoustic brake component for an ultrasonic probe capable of connecting a drive electrode of a piezoelectric element to a signal line on the entrance side of a drill. Is to provide. Another object of the present invention is to provide an ultrasonic probe using the acoustic braking component for an ultrasonic probe. Moreover, this invention is providing the manufacturing method of such an ultrasonic probe.
 本発明にかかる超音波探触子用音響制動部品、超音波探触子および超音波探触子の製造方法は、音響制動体内を貫通するようにドリルによって複数の貫通孔が形成され、これら各貫通孔のそれぞれに複数の導電体が設けられ、そして、これら各導電体のそれぞれに、前記ドリルの入口側で、圧電素子駆動電極接続用の第1電極部が設けられている。このため、本発明によれば、ドリルの入口側における信号線に圧電素子の駆動電極を接続することができる、音響制動部品、超音波探触子およびその製造方法を提供することができる。 In the acoustic brake component for an ultrasonic probe, the ultrasonic probe, and the manufacturing method of the ultrasonic probe according to the present invention, a plurality of through-holes are formed by a drill so as to penetrate the acoustic brake body. Each of the through holes is provided with a plurality of conductors, and each of the conductors is provided with a first electrode portion for connecting a piezoelectric element driving electrode on the entrance side of the drill. Therefore, according to the present invention, it is possible to provide an acoustic braking component, an ultrasonic probe, and a method for manufacturing the same, which can connect the drive electrode of the piezoelectric element to the signal line on the entrance side of the drill.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
実施形態に係る超音波探触子の構成を示す断面図である。It is sectional drawing which shows the structure of the ultrasonic probe which concerns on embodiment. 図1に示す超音波探触子の第1製造工程を示す断面図であって、図2(A)~図2(D)は、各工程を示す図である。FIG. 2 is a cross-sectional view showing a first manufacturing process of the ultrasonic probe shown in FIG. 1, and FIGS. 2A to 2D are diagrams showing each process. 図1に示す超音波探触子の第2製造工程を示す断面図であって、図3(A)~図3(E)は、各工程を示す図である。FIG. 3 is a cross-sectional view showing a second manufacturing process of the ultrasonic probe shown in FIG. 1, and FIGS. 3A to 3E are diagrams showing each process. 図1に示す超音波探触子の第3製造工程を示す断面図であって、図4(A)~図4(D)は、各工程を示す図である。FIG. 4 is a cross-sectional view showing a third manufacturing process of the ultrasonic probe shown in FIG. 1, and FIGS. 4A to 4D are diagrams showing each process. 図1に示す超音波探触子の構成を示す詳細断面図である。FIG. 2 is a detailed cross-sectional view illustrating a configuration of the ultrasonic probe illustrated in FIG. 1.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。また、本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably. Further, in this specification, when referring generically, it is indicated by a reference symbol without a suffix, and when referring to an individual configuration, it is indicated by a reference symbol with a suffix.
 図1は、実施形態に係る超音波探触子の構成を示す断面図である。本実施形態に係る超音波探触子100は、図1に示すように、大略、基板15と、基板15上に設けられた、超音波探触子用音響制動部品である部材13と、部材13上に設けられた複数の圧電素子1aと、複数の圧電素子1a上に設けられた音響整合層50とを備え、被検体に対し超音波を送受信する。部材13は、圧電素子1aを機械的に支持し、また、圧電素子1aの音響特性を良好に保つべく音響的に制動をかけるものであり、超音波を吸収する材料(超音波吸収材)から構成され、主に、圧電素子1aから部材13方向へ放射される超音波を吸収するものである。より具体的には、部材13は、樹脂から構成されて成る音響制動体と、前記音響制動体内を貫通するようにドリルによって形成された複数の貫通孔のそれぞれに、前記音響制動体内を貫通するように設けられた複数の導電体とを備える。 FIG. 1 is a cross-sectional view showing a configuration of an ultrasonic probe according to the embodiment. As shown in FIG. 1, the ultrasonic probe 100 according to the present embodiment is roughly a substrate 15, a member 13 provided on the substrate 15, which is an acoustic braking component for an ultrasonic probe, and a member 13 includes a plurality of piezoelectric elements 1a provided on 13 and an acoustic matching layer 50 provided on the plurality of piezoelectric elements 1a, and transmits / receives ultrasonic waves to / from the subject. The member 13 mechanically supports the piezoelectric element 1a, and acoustically brakes the piezoelectric element 1a so as to keep the acoustic characteristics of the piezoelectric element 1a favorable. From the material that absorbs ultrasonic waves (ultrasonic absorber) The ultrasonic wave emitted from the piezoelectric element 1a toward the member 13 is mainly absorbed. More specifically, the member 13 penetrates through the acoustic braking body into each of an acoustic braking body made of resin and a plurality of through holes formed by a drill so as to penetrate the acoustic braking body. And a plurality of conductors provided as described above.
 この超音波探触子100は、互いに所定の間隔を空けて平面視にて線形独立な2方向に、例えば、互いに直交する2方向にm行×n列で2次元アレイ状に配列された複数の圧電素子1aを備えている。これら複数の圧電素子1aのそれぞれは、所定の圧電材料を備えて成り、圧電現象を利用することによって電気信号と超音波信号との間で相互に信号を変換するものである。なお、この超音波探触子100は、複数の圧電素子1aがライン状に一列に配列された構成である1次元配列の超音波探触子であってもよい。音響整合層50は、各圧電素子1aの音響インピーダンスと被検体の音響インピーダンスとの整合をとるための部材である。そして、音響整合層50は、円弧状に膨出した形状とされる、被検体に向けて送信される超音波を収束する音響レンズを含んでもよい。 The ultrasonic probe 100 is a plurality of two-dimensional arrays arranged in two directions linearly independent in a plan view with a predetermined interval therebetween, for example, m rows × n columns in two directions orthogonal to each other. The piezoelectric element 1a is provided. Each of the plurality of piezoelectric elements 1a includes a predetermined piezoelectric material, and converts a signal between an electric signal and an ultrasonic signal by using a piezoelectric phenomenon. The ultrasonic probe 100 may be a one-dimensional array of ultrasonic probes having a configuration in which a plurality of piezoelectric elements 1a are arranged in a line. The acoustic matching layer 50 is a member for matching the acoustic impedance of each piezoelectric element 1a and the acoustic impedance of the subject. The acoustic matching layer 50 may include an acoustic lens that converges an ultrasonic wave that is transmitted toward the subject, and has an arcuate shape.
 このような本実施形態に係る超音波探触子100の製造方法について、図を用いて説明する。図2は、本実施形態に係る超音波探触子の第1製造工程を示す断面図であって、図2(A)~図2(D)は、各工程を示す図である。図3は、本実施形態に係る超音波探触子の第2製造工程を示す断面図であって、図3(A)~図3(E)は、各工程を示す図である。また、図4は、本実施形態に係る超音波探触子の第3製造工程を示す断面図であって、図4(A)~図4(D)は、各工程を示す図である。また、図5は、本実施形態に係る超音波探触子の構成を示す詳細断面図である。 A method for manufacturing the ultrasonic probe 100 according to this embodiment will be described with reference to the drawings. FIG. 2 is a cross-sectional view showing a first manufacturing process of the ultrasonic probe according to this embodiment, and FIGS. 2A to 2D are views showing each process. FIG. 3 is a cross-sectional view showing a second manufacturing process of the ultrasonic probe according to the present embodiment, and FIGS. 3A to 3E are views showing each process. FIG. 4 is a cross-sectional view showing a third manufacturing process of the ultrasonic probe according to this embodiment, and FIGS. 4A to 4D are views showing each process. FIG. 5 is a detailed cross-sectional view showing the configuration of the ultrasonic probe according to the present embodiment.
 まず、図2(A)に示すように、音響吸収材料からなる平板状の音響制動体13aが用意される。前記音響吸収材料は、例えば、クロロプレンゴムにフェライトを混合したものやエポキシ樹脂のような樹脂にタングステン粉末を混ぜたものからなる。なお、音響制動体13aの厚さは、例えば1.5~2.0mmとすればよい。なお、前記音響吸収材料は、上記に限定されない。 First, as shown in FIG. 2 (A), a plate-like acoustic braking body 13a made of a sound absorbing material is prepared. The sound absorbing material is made of, for example, a material obtained by mixing ferrite with chloroprene rubber or a material obtained by mixing tungsten powder with a resin such as an epoxy resin. Note that the thickness of the acoustic braking body 13a may be 1.5 to 2.0 mm, for example. The sound absorbing material is not limited to the above.
 次に、図2(B)に示すように、音響制動体13aには、Φ150μm加工用のドリルで、前記音響制動体13aの一方の面(以下、表面131)から、他方の面(以下、裏面132)まで貫通する複数の孔14A(貫通孔)が形成される。加工中のドリルの曲がりや偏心により、孔14Aの径および位置のばらつきは、表面131より、裏面132においてより大きい。なお、上記ドリルに代えて、Φ105μm加工用のドリルを用いても良い。 Next, as shown in FIG. 2 (B), the acoustic braking body 13a is drilled into the acoustic braking body 13a with a φ150 μm machining drill from one surface (hereinafter referred to as the surface 131) of the acoustic braking body 13a to the other surface (hereinafter referred to as the following). A plurality of holes 14A (through holes) penetrating to the back surface 132) are formed. Due to the bending and eccentricity of the drill being processed, the variation in the diameter and position of the hole 14A is larger on the back surface 132 than on the front surface 131. Note that a drill for machining Φ105 μm may be used instead of the drill.
 そして、図2(C)に示すように、音響制動体13aは、ダイシング用テープ2上に、裏面132で接着され、導電性ペースト14が、表面131から孔14Aに、真空中でスキージされて充填される。そして、このような導電性ペースト14が孔14Aに充填された音響制動体13aが所定時間(2時間)、所定温度(135℃)に保たれ、導電性ペースト14が硬化する。導電性ペースト14は、溶剤を含まず、分散された金属が比較的小さなものであればよく、樹脂に金属等の導体を分散した導電性ペーストであれば良い。導電性ペースト14は、例えば、藤倉化成株式会社製のドータイトXA―874である。ダイシング用テープ2として、例えば、日東電工株式会社製のリバアルファ3196(商品名)が用いられる。 Then, as shown in FIG. 2C, the acoustic braking body 13a is adhered to the dicing tape 2 at the back surface 132, and the conductive paste 14 is squeezed from the front surface 131 to the hole 14A in a vacuum. Filled. Then, the acoustic braking body 13a in which the conductive paste 14 is filled in the hole 14A is maintained at a predetermined temperature (135 ° C.) for a predetermined time (2 hours), and the conductive paste 14 is cured. The conductive paste 14 may be any conductive paste that contains no solvent and has a relatively small dispersed metal, and may be a conductive paste in which a conductor such as a metal is dispersed in a resin. The conductive paste 14 is, for example, Dotite XA-874 manufactured by Fujikura Kasei Co., Ltd. As the dicing tape 2, for example, Riva Alpha 3196 (trade name) manufactured by Nitto Denko Corporation is used.
 続いて、図2(D)に示すように、裏面132からダイシング用テープ2が剥離され、これら各工程を経て形成された音響制動体13aの両面を研磨することで、音響制動体13aに、前記導電体の一例に相当する貫通電極14が形成される。貫通電極14は、音響制動体13aの表面131に表側電極面141と、音響制動体13aの裏面132に裏側電極面142とを有する。これによって、音響制動体13aに貫通電極14を備えた部材(音響制動部品)13が作成される。上述のように、孔14Aの径および位置のばらつきが、表面131と比べて裏面132においてより大きい。よって、表側電極面141の径や位置のばらつきは、裏側電極面142より小さい。径が大きく、かつ、電極位置のばらつきが大きな裏側電極面142は、精度よく電極が並んだ電気基板との接続用の電極とされ、径がより小さく、かつ、電極位置のばらつきがより小さい表側電極面141は、位置精度に誤差が生じやすい圧電素子1aとの接続用の電極とされる。 Subsequently, as shown in FIG. 2D, the dicing tape 2 is peeled from the back surface 132, and both surfaces of the acoustic braking body 13a formed through these steps are polished, so that the acoustic braking body 13a A through electrode 14 corresponding to an example of the conductor is formed. The through electrode 14 has a front electrode surface 141 on the surface 131 of the acoustic braking body 13a and a back electrode surface 142 on the back surface 132 of the acoustic braking body 13a. Thereby, the member (acoustic braking component) 13 provided with the through electrode 14 in the acoustic braking body 13a is created. As described above, the variation in the diameter and position of the hole 14 </ b> A is larger on the back surface 132 than on the front surface 131. Therefore, the variation in the diameter and position of the front electrode surface 141 is smaller than that of the back electrode surface 142. The back-side electrode surface 142 having a large diameter and a large variation in electrode position is used as an electrode for connecting to an electric substrate on which the electrodes are arranged with high accuracy, and has a smaller diameter and a smaller variation in electrode position. The electrode surface 141 is used as an electrode for connection with the piezoelectric element 1a in which an error in position accuracy is likely to occur.
 なお、貫通電極14の形成は、上述に限定されない。例えば、一具体例として、部材13の両面をレジストで保護した後、メッキ等の金属により貫通電極14を形成することができる。より具体的に、無電解メッキ等で各孔14Aの内側表面に金属を析出させた後、樹脂を充填し貫通電極14を形成できる。 The formation of the through electrode 14 is not limited to the above. For example, as one specific example, after both surfaces of the member 13 are protected with a resist, the through electrode 14 can be formed of a metal such as plating. More specifically, after the metal is deposited on the inner surface of each hole 14A by electroless plating or the like, the through electrode 14 can be formed by filling the resin.
 上述した貫通電極14の製造方法に代え、以下の製造方法が用いられても良い。すなわち、前記製造方法において、音響制動体13aに孔14Aを形成する加工前(図2(A))に、音響制動体13aの表面131とその裏面132とに厚さ10~40μmのアルミニウムなどの金属箔を接着剤で貼り付ける工程がさらに含まれる。接着剤には、例えば、化研テック社製の仮固定用接着剤エコセパラが用いられる。金属箔を貼り付けた後、ドリルで孔14Aを形成する(図2(B))。続いて、導電性ペースト14を、表面131から孔14Aに、真空中でスキージして充填し、所定時間(2時間)、所定温度(135℃)に保ち、導電性ペースト14を硬化させる(図2(C))。ここで、導電性ペースト14が所定温度に保たれている間に、表面131および裏面132の金属箔が剥離する。続いて、残った接着剤を取り除き、貫通電極14が形成された部材13を完成する(図2(D))。このような製造方法によれば、ドリルで孔14Aを形成する時に、表面131および裏面132の金属箔の存在によって、孔14Aを形成加工中のドリルのかかりがよくなり、孔14Aの位置精度がより向上する。 The following manufacturing method may be used instead of the manufacturing method of the through electrode 14 described above. That is, in the manufacturing method, before processing (FIG. 2 (A)) to form the holes 14A in the acoustic braking body 13a, the surface 131 of the acoustic braking body 13a and the back surface 132 thereof are made of aluminum having a thickness of 10 to 40 μm. A step of attaching the metal foil with an adhesive is further included. As the adhesive, for example, temporary fixing adhesive Ecosepara manufactured by Kaken Tech Co., Ltd. is used. After affixing the metal foil, a hole 14A is formed with a drill (FIG. 2B). Subsequently, the conductive paste 14 is filled from the surface 131 into the holes 14A by squeegeeing in a vacuum, and is maintained at a predetermined temperature (135 ° C.) for a predetermined time (2 hours), thereby curing the conductive paste 14 (FIG. 2 (C)). Here, while the conductive paste 14 is maintained at a predetermined temperature, the metal foils on the front surface 131 and the back surface 132 are peeled off. Subsequently, the remaining adhesive is removed to complete the member 13 in which the through electrode 14 is formed (FIG. 2D). According to such a manufacturing method, when the hole 14A is formed with a drill, the presence of the metal foil on the front surface 131 and the back surface 132 makes it easier to apply the drill during the forming process of the hole 14A, and the positional accuracy of the hole 14A is improved. More improved.
 次に、図3(A)に示すように、上下両面に電極(膜)が形成された、圧電素子であるPZT(PbZr1-xTi:チタン酸ジルコン酸鉛)板1は、例えば熱発泡剥離テープであるダイシング用テープ2に接着される。なお、PZT板1の厚さは、例えば0.3mmとすればよい。また、PZT板1において、ダイシング用テープ2に接着される面およびその面に対向する面には電極が形成されている。圧電素子としては、PZTの他に、例えば、BaTiO、PbTiO等が用いられてもよい。 Next, as shown in FIG. 3A, a PZT (PbZr 1-x Ti x O 3 : lead zirconate titanate) plate 1 that is a piezoelectric element having electrodes (films) formed on both upper and lower surfaces, For example, it is bonded to a dicing tape 2 which is a thermal foaming release tape. The thickness of the PZT plate 1 may be 0.3 mm, for example. In the PZT plate 1, electrodes are formed on the surface bonded to the dicing tape 2 and the surface facing the surface. As the piezoelectric element, other than PZT, for example, BaTiO 3 , PbTiO 3, or the like may be used.
 次に、図3(B)に示すように、ダイシング用テープ2に接着された状態のPZT板1は、ダイシングソー3により切断される。このように、PZT板1が切断されることで、各圧電素子1aがPZT板1から分割され形成されていく。この際に、各圧電素子1aが2次元配列とされるように、PZT板1は、切断される。PZT板1は、ダイシング用テープ2に接着されていることから、各圧電素子1aに分割された後も、ダイシング用テープ2に固定されている。なお、ダイシングソー3による切除幅は、例えば0.04mmとすればよい。 Next, as shown in FIG. 3B, the PZT plate 1 bonded to the dicing tape 2 is cut by a dicing saw 3. In this way, the PZT plate 1 is cut, whereby each piezoelectric element 1a is divided from the PZT plate 1 and formed. At this time, the PZT plate 1 is cut so that the piezoelectric elements 1a are two-dimensionally arranged. Since the PZT plate 1 is bonded to the dicing tape 2, the PZT plate 1 is fixed to the dicing tape 2 even after being divided into the piezoelectric elements 1a. The excision width by the dicing saw 3 may be 0.04 mm, for example.
 こうして、図3(C)に示すように、ダイシング用テープ2上に、2次元配列とされた複数の圧電素子1aが配置された状態となる。例えば、圧電素子1a間のピッチが0.3mmとされ、圧電素子1aは、ダイシング用テープ2上に100×100個作成される。次に、図3(D)に示すように、共通電極6が形成された基板4が用意され、圧電素子1aにおいてダイシング用テープ2に接着されている面と対向する面に接着剤5が塗布される。接着剤5は、例えば熱硬化性樹脂であるエポキシ樹脂とされ、塗布厚みは、例えば10μmとされる。接着剤5の塗布は、例えばフレキソ印刷機を用いて行えばよい。フレキソ印刷とは、凸版の表面に、アニロックスロールと呼ばれるローラーでインキをつけ、さらにその版を紙などの印刷対象物に押し付けて転写する印刷方式である。さらに、アニロックス表面に付き過ぎたインキは、ドクターブレードによりかき落され、常に安定した量のインキが版の表面に供給される。このような、フレキソ印刷機を用い、圧電素子1aを凸版とみなすことで、安定した量の接着剤5を圧電素子1aの電極面に塗布することができる。基板4にはその主面に共通電極6が形成されている。このように、共通電極6が形成された基板4は、例えば、音響整合層である基板4に、蒸着やメッキ等によってアルミニウム膜(共通電極6)を形成することで作製される。そして、ダイシング用テープ2に接着された圧電素子1aは、その電極面が共通電極6に接触するように、基板4に押し付けられ、エポキシ系の接着剤5が硬化するように、例えば60度で15時間加、加熱される。接着剤5は、例えばEpoxy Technology社製のEpo-Tek353NDが用いられる。 Thus, as shown in FIG. 3 (C), a plurality of piezoelectric elements 1a arranged in a two-dimensional array are arranged on the dicing tape 2. For example, the pitch between the piezoelectric elements 1 a is 0.3 mm, and 100 × 100 piezoelectric elements 1 a are formed on the dicing tape 2. Next, as shown in FIG. 3D, a substrate 4 on which a common electrode 6 is formed is prepared, and an adhesive 5 is applied to the surface of the piezoelectric element 1a facing the surface bonded to the dicing tape 2. Is done. The adhesive 5 is, for example, an epoxy resin that is a thermosetting resin, and the coating thickness is, for example, 10 μm. Application of the adhesive 5 may be performed using, for example, a flexographic printing machine. Flexographic printing is a printing method in which ink is applied to the surface of a relief printing plate with a roller called an anilox roll, and then the printing plate is pressed against a printing object such as paper. Furthermore, the ink that has adhered to the anilox surface is scraped off by the doctor blade, and a stable amount of ink is always supplied to the surface of the plate. By using such a flexographic printing machine and regarding the piezoelectric element 1a as a relief, a stable amount of the adhesive 5 can be applied to the electrode surface of the piezoelectric element 1a. A common electrode 6 is formed on the main surface of the substrate 4. In this way, the substrate 4 on which the common electrode 6 is formed is produced by forming an aluminum film (common electrode 6) on the substrate 4 that is an acoustic matching layer, for example, by vapor deposition or plating. Then, the piezoelectric element 1a bonded to the dicing tape 2 is pressed against the substrate 4 so that the electrode surface contacts the common electrode 6, and the epoxy adhesive 5 is cured, for example, at 60 degrees. Heat for 15 hours. As the adhesive 5, for example, Epo-Tek353ND manufactured by Epoxy Technology is used.
 図3(E)に示すように、接着剤5は、圧電素子1aと共通電極6との間の隙間から押し出された状態でフィレット状に固まる。それにより、圧電素子1aが基板4に強固に固定される。次に、ダイシング用テープ2が圧電素子1aから除去される。そして、圧電素子1aの一方の電極が共通電極6と接続されただけの状態である、第1未完成超音波探触子10が作製される。 As shown in FIG. 3E, the adhesive 5 is hardened in a fillet shape while being pushed out from the gap between the piezoelectric element 1a and the common electrode 6. Thereby, the piezoelectric element 1 a is firmly fixed to the substrate 4. Next, the dicing tape 2 is removed from the piezoelectric element 1a. Then, the first incomplete ultrasonic probe 10 in which one electrode of the piezoelectric element 1a is simply connected to the common electrode 6 is produced.
 次に、図4(A)に示すように、第1未完成超音波探触子10の圧電素子1a側に、充填材7が滴下される。充填材7は、滴下の際には滴下可能な液状であり、熱硬化性等の硬化する性質を有し、硬化後は、超音波吸収性、耐衝撃性および絶縁性等を有する材料であることが好ましい。そこで、充填材7として、例えば、粘度が数万cpであるシリコーンゴム剤のゴムペーストやエポキシ樹脂等が用いられる。充填材7が滴下された第1未完成超音波探触子10は、真空チャンバーに収納される等して、真空状態あるいは減圧状態に置かれることが好ましい。これにより、充填材7中の気泡が抜けるという効果を奏する。特に、複数の材料を混合することで作製される充填材7の場合は、混合する際の撹拌により、気泡を含んでいるため上述の処理を行うことが好ましい。 Next, as shown in FIG. 4A, the filler 7 is dropped on the piezoelectric element 1a side of the first incomplete ultrasonic probe 10. The filler 7 is a liquid that can be dropped at the time of dropping, has a curing property such as thermosetting, and is a material having ultrasonic absorption, impact resistance, insulation, and the like after curing. It is preferable. Therefore, as the filler 7, for example, a rubber paste of a silicone rubber agent having a viscosity of tens of thousands of cp, an epoxy resin, or the like is used. The first incomplete ultrasonic probe 10 onto which the filler 7 has been dropped is preferably placed in a vacuum state or a reduced pressure state, such as being housed in a vacuum chamber. Thereby, there exists an effect that the bubble in filler 7 comes out. In particular, in the case of the filler 7 produced by mixing a plurality of materials, it is preferable to perform the above-described treatment because it contains bubbles due to stirring during mixing.
 次に、図4(B)に示すように、軟質層8aおよび支持層8bからなる押圧部材8がすべての圧電素子1aの上面を覆うように第1未完成超音波探触子10上に設置される。なお、軟質層8aが圧電素子1a側になるように設置される。押圧部材8の上方に平板部材9がさらに設置され、平板部材9により、押圧部材8および第1未完成超音波探触子10に滴下された充填材7が押圧される。より具体的には、押圧部材8および充填材7が平板部材9と第1未完成超音波探触子10との間に挟まれることになる。なお、平板部材9は、平坦な面を有し、この面が押圧部材8側となるような状態で押圧される。 Next, as shown in FIG. 4B, the pressing member 8 composed of the soft layer 8a and the support layer 8b is installed on the first incomplete ultrasonic probe 10 so as to cover the upper surfaces of all the piezoelectric elements 1a. Is done. The soft layer 8a is disposed so as to be on the piezoelectric element 1a side. A flat plate member 9 is further installed above the pressing member 8, and the flat member 9 presses the filler 7 dropped onto the pressing member 8 and the first incomplete ultrasonic probe 10. More specifically, the pressing member 8 and the filler 7 are sandwiched between the flat plate member 9 and the first incomplete ultrasonic probe 10. The flat plate member 9 has a flat surface and is pressed in a state where this surface is on the pressing member 8 side.
 ここで、軟質層8aは、柔軟性および粘着性を有する材料からなる。より具体的には、軟質層8aは、圧電素子1aよりも柔らかく、圧電素子1aに押し付けられた場合に、圧電素子1aに密着してその形状に変形し得る程度の柔軟性を有する。そして、軟質層8aは、平板部材9により第1未完成超音波探触子10に押し当てた場合に変形する。また、支持層8bは、軟質層8aを支持する部材である。押圧部材8として、本実施形態において、例えば、熱発泡剥離テープであるダイシング用テープが用いられた。このダイシング用テープでは、その糊の部分が軟質層8aであり、糊部分以外のテープの部分が支持層8bである。このように、押圧部材8が支持層8bを有することから、押圧部材8は、扱いやすい。また、平板部材9は、押圧部材8等を押圧した場合に、変形することのない程度の強度を有していればよく、圧電素子1a側の面が平坦であればよい。 Here, the soft layer 8a is made of a material having flexibility and adhesiveness. More specifically, the soft layer 8a is softer than the piezoelectric element 1a, and has a degree of flexibility that can be brought into close contact with the piezoelectric element 1a and deformed into its shape when pressed against the piezoelectric element 1a. The soft layer 8 a is deformed when pressed against the first incomplete ultrasonic probe 10 by the flat plate member 9. The support layer 8b is a member that supports the soft layer 8a. As the pressing member 8, in the present embodiment, for example, a dicing tape that is a thermal foaming release tape is used. In this dicing tape, the glue portion is the soft layer 8a, and the tape portion other than the glue portion is the support layer 8b. Thus, since the pressing member 8 has the support layer 8b, the pressing member 8 is easy to handle. Moreover, the flat plate member 9 should just have the intensity | strength which does not deform | transform, when the press member 8 grade | etc., Is pressed, and the surface by the side of the piezoelectric element 1a should just be flat.
 このように、平板部材9により、押圧部材8が押圧された場合に、圧電素子1aは、変形しないが、圧電素子1a間に充填された充填材7は、流動性を有し、押圧部材8により押圧されて流動し、圧電素子1a間に均一に充填される。また、軟質層8aは、押圧されることにより、圧電素子1aの上面に密着して、圧電素子1aの上面と軟質層8a間からは充填材7が押し出され、圧電素子1aの上面には充填材7は存在しない。つまり、電極が形成されている箇所である圧電素子1aの上面に充填材7が残ることがない。さらに、図4(B)に示すように、軟質層8aは、変形して軟質層8aに圧電素子1aが入り込み、圧電素子1aと密着している箇所は、凹状となり、圧電素子1a間においては凸状となる。つまり、充填材7は、軟質層8により押し込まれる。それにより、充填材7の上面は、圧電素子1aの上面よりも低くなる。すなわち、充填材7の上面と圧電素子1aの上面とは、同一面上にはなく、圧電素子1aの上面の方が、より基板4から離れた位置に位置する。なお、平板部材9を押圧する力を調整することで充填材7等にかかる圧力が調整され、充填材7の上面の位置は、調整され得る。 Thus, when the pressing member 8 is pressed by the flat plate member 9, the piezoelectric element 1 a is not deformed, but the filler 7 filled between the piezoelectric elements 1 a has fluidity and the pressing member 8. Is pressed and flows, and is uniformly filled between the piezoelectric elements 1a. Further, the soft layer 8a is pressed to be in close contact with the upper surface of the piezoelectric element 1a, and the filler 7 is pushed out between the upper surface of the piezoelectric element 1a and the soft layer 8a, and the upper surface of the piezoelectric element 1a is filled. The material 7 does not exist. That is, the filler 7 does not remain on the upper surface of the piezoelectric element 1a where the electrodes are formed. Further, as shown in FIG. 4B, the soft layer 8a is deformed so that the piezoelectric element 1a enters the soft layer 8a, and the portion in close contact with the piezoelectric element 1a has a concave shape. It becomes convex. That is, the filler 7 is pushed in by the soft layer 8. Thereby, the upper surface of the filler 7 becomes lower than the upper surface of the piezoelectric element 1a. That is, the upper surface of the filler 7 and the upper surface of the piezoelectric element 1 a are not on the same plane, and the upper surface of the piezoelectric element 1 a is located at a position further away from the substrate 4. The pressure applied to the filler 7 and the like can be adjusted by adjusting the force pressing the flat plate member 9, and the position of the upper surface of the filler 7 can be adjusted.
 ここで、軟質層8aは、弾性率が0.1GPa以下とし、支持層の弾性率は、1~3GPa程度とすることが好ましい。軟質層8aは、粘着力が2~10N/20mmとしてもよい。それにより、圧電素子1aに押圧された場合に、軟質層8aが圧電素子1aの形状に合わせて変形し、かつ後述する軟質層8aを圧電素子1aから剥離する際にも容易に剥離可能である。なお、軟質層8aが軟らかすぎる、すなわち軟質層8aの粘着力が大きすぎると、圧電素子1aが軟質層8aに入り込みすぎて、軟質層8aを圧電素子1aから剥離しにくくなる。また、軟質層8aが硬すぎる、すなわち軟質層8aの粘着力が低すぎると、十分に圧電素子1aが軟質層8aに入り込まず、圧電素子1a上に充填材7が残りやすくなる。 Here, the soft layer 8a preferably has an elastic modulus of 0.1 GPa or less, and the elastic modulus of the support layer is preferably about 1 to 3 GPa. The soft layer 8a may have an adhesive strength of 2 to 10 N / 20 mm. Thereby, when pressed by the piezoelectric element 1a, the soft layer 8a is deformed according to the shape of the piezoelectric element 1a, and can be easily peeled off when the soft layer 8a described later is peeled from the piezoelectric element 1a. . If the soft layer 8a is too soft, that is, if the adhesive force of the soft layer 8a is too large, the piezoelectric element 1a enters the soft layer 8a too much, and it becomes difficult to peel the soft layer 8a from the piezoelectric element 1a. If the soft layer 8a is too hard, that is, if the adhesive force of the soft layer 8a is too low, the piezoelectric element 1a does not sufficiently enter the soft layer 8a, and the filler 7 tends to remain on the piezoelectric element 1a.
 また、軟質層8aの厚みは、10~100μm程度が好ましく、支持層8bの厚みは、10~200μm程度が好ましい。これにより、軟質層8aは、十分に変形し、圧電素子1aが適度に軟質層8aに入り込む。なお、軟質層8aの厚さが厚すぎると、圧電素子1aが軟質層8aに入り込みすぎて、軟質層8aを圧電素子1aから剥離しにくくなる。そして、軟質層8aの厚さが薄すぎると、十分に圧電素子1aが軟質層8aに入り込まず、圧電素子1a上に充填材7が残りやすくなる。なお、押圧部材8は、熱発泡剥離テープに限定されることはない。押圧部材8は、上述のような性質を有する軟質層8aを有するものであればよい。 The thickness of the soft layer 8a is preferably about 10 to 100 μm, and the thickness of the support layer 8b is preferably about 10 to 200 μm. Accordingly, the soft layer 8a is sufficiently deformed, and the piezoelectric element 1a appropriately enters the soft layer 8a. In addition, when the thickness of the soft layer 8a is too thick, the piezoelectric element 1a enters the soft layer 8a too much, and it becomes difficult to peel the soft layer 8a from the piezoelectric element 1a. If the thickness of the soft layer 8a is too thin, the piezoelectric element 1a does not sufficiently enter the soft layer 8a, and the filler 7 tends to remain on the piezoelectric element 1a. Note that the pressing member 8 is not limited to the thermal foaming release tape. The pressing member 8 should just have the soft layer 8a which has the above properties.
 そして、この状態で充填材7を硬化させるために、平板部材9、押圧部材8、充填材7および第1未完成超音波探触子10は、加熱される。例えば、充填材7がシリコーンゴム剤のゴムペーストである場合は、60度で15時間加熱すればよい。それにより、充填材7が硬化する。 Then, in order to cure the filler 7 in this state, the flat plate member 9, the pressing member 8, the filler 7, and the first incomplete ultrasonic probe 10 are heated. For example, when the filler 7 is a rubber paste of a silicone rubber agent, it may be heated at 60 degrees for 15 hours. Thereby, the filler 7 is cured.
 充填材7が硬化した後に、図4(C)に示すように、平板部材9および押圧部材8が取り除かれる。押圧部材8は、上記押圧されている際は第1未完成超音波探触子10に接着されているが、熱発泡剥離テープであることから、上記加熱により接着力が低下し、容易に第1未完成超音波探触子10から除去することができる。 After the filler 7 is cured, the flat plate member 9 and the pressing member 8 are removed as shown in FIG. The pressing member 8 is bonded to the first incomplete ultrasonic probe 10 when pressed, but since it is a heat-foaming release tape, the adhesive force is reduced by the heating, and the pressing member 8 is easily 1 It can be removed from the incomplete ultrasound probe 10.
 図4(C)において、平板部材9および押圧部材8を取り除くことで、図4(D)に示すように、第1未完成超音波探触子10に充填材7が設置された第2未完成超音波探触子11が作製される。 In FIG. 4 (C), by removing the flat plate member 9 and the pressing member 8, as shown in FIG. 4 (D), the second unfinished material in which the filler 7 is installed in the first incomplete ultrasonic probe 10 is used. A completed ultrasonic probe 11 is produced.
 図4(D)に示すように、第2未完成超音波探触子11は、共通電極6が形成された基板4と、基板4に共通電極6を介して接着剤5で固定された複数の圧電素子1aと、各圧電素子1a間に充填された充填材7とを備えている。そして、共通電極6と各圧電素子1aとは電気的に接続されている。また、各圧電素子1aの上面は、充填材7の上面よりも高い位置に位置している。したがって、第2未完成超音波探触子11の上面は、充填材7を凹部とし圧電素子1aを凸部とする凹凸形状を有している。言い換えると、充填材7は、基板4と、基板4と接する圧電素子1aの面に対向する圧電素子1aの面と、の間に位置する。なお、基板4と接する圧電素子1aの面に対向する圧電素子1aの面とは、圧電素子1aの上面である。 As shown in FIG. 4D, the second incomplete ultrasonic probe 11 includes a substrate 4 on which the common electrode 6 is formed, and a plurality of substrates 4 fixed to the substrate 4 with the adhesive 5 via the common electrode 6. Piezoelectric element 1a and a filler 7 filled between the piezoelectric elements 1a. The common electrode 6 and each piezoelectric element 1a are electrically connected. Further, the upper surface of each piezoelectric element 1 a is positioned higher than the upper surface of the filler 7. Therefore, the upper surface of the second incomplete ultrasonic probe 11 has an uneven shape with the filler 7 as a recess and the piezoelectric element 1a as a protrusion. In other words, the filler 7 is located between the substrate 4 and the surface of the piezoelectric element 1a facing the surface of the piezoelectric element 1a in contact with the substrate 4. Note that the surface of the piezoelectric element 1a facing the surface of the piezoelectric element 1a in contact with the substrate 4 is the upper surface of the piezoelectric element 1a.
 そして、前記部材13において、表側電極面141を有する表面131に、または裏側電極面142を有する裏面132に、所定形状のマークが付与される。そして、この表面131および裏面132の区別を参照することによって、圧電素子電極1A接続用の表側電極面141のそれぞれには、複数の圧電素子1aの各圧電素子電極1Aが接続され、基板電極15A接続用の裏側電極面142のそれぞれには、電子基板15の各基板電極15Aが接続される。 In the member 13, a mark having a predetermined shape is given to the front surface 131 having the front electrode surface 141 or the back surface 132 having the back electrode surface 142. Then, by referring to the distinction between the front surface 131 and the back surface 132, each piezoelectric element electrode 1A of the plurality of piezoelectric elements 1a is connected to the front electrode surface 141 for connecting the piezoelectric element electrode 1A, and the substrate electrode 15A is connected. Each substrate electrode 15A of the electronic substrate 15 is connected to each of the back electrode surfaces 142 for connection.
 そして、図5に示すように、この第2未完成超音波探触子11の上面に、部材13を設置し、さらに、基板15を設置することで、超音波探触子100が完成する。より具体的には、各圧電素子1aに対応した複数の貫通電極14を貫通形成した部材13における表面131が、これら複数の貫通電極14における各表側電極面141と各対応する各圧電素子電極1Aとを電気的に接続するように、第2未完成超音波探触子11の上面に設置される。そして、各貫通電極14に対応する複数の基板電極15Aを実装した基板(電子基板)15における電極実装面が、これら複数の基板電極15Aと各対応する各裏側電極面142とを電気的に接続するように、前記部材13における表面132上に設置される。言い換えれば、前記部材13における表面132が、これら複数の貫通電極14における各裏側電極面142と各対応する各基板電極15Aとを電気的に接続するように、各貫通電極14の各裏側電極142に対応する複数の基板電極15Aを実装した基板(電子基板)15の面上に設置される。こうして超音波探触子100が完成する。 And as shown in FIG. 5, the ultrasonic probe 100 is completed by installing the member 13 on the upper surface of the second incomplete ultrasonic probe 11 and further installing the substrate 15. More specifically, the surface 131 of the member 13 formed by penetrating the plurality of through-electrodes 14 corresponding to each piezoelectric element 1a corresponds to each front-side electrode surface 141 of each of the plurality of through-electrodes 14 and each corresponding piezoelectric element electrode 1A. Are installed on the upper surface of the second incomplete ultrasonic probe 11 so as to be electrically connected to each other. And the electrode mounting surface in the board | substrate (electronic board | substrate) 15 which mounted several board | substrate electrode 15A corresponding to each penetration electrode 14 electrically connected these several board | substrate electrodes 15A and each corresponding back side electrode surface 142. As described above, it is installed on the surface 132 of the member 13. In other words, each back side electrode 142 of each through electrode 14 is such that the surface 132 of the member 13 electrically connects each back side electrode surface 142 of each of the plurality of through electrodes 14 and each corresponding substrate electrode 15A. Are mounted on the surface of a substrate (electronic substrate) 15 on which a plurality of substrate electrodes 15A corresponding to the above are mounted. Thus, the ultrasonic probe 100 is completed.
 なお、圧電素子1aは、ダイシングソー3によるPZT板1の切断時(図3(B))や、隣接する圧電素子1a間に充填材7を滴下する時(図4(A))に圧電素子1aが傾き、各圧電素子1aの位置に設計値からズレが生じることがある。図5には、このように各圧電素子1aの位置にばらつきが生じた場合が示されている。しかしながら、径が大きく、かつ、電極位置ばらつきが大きな裏側電極面142が、精度よく電極が並んだ電子基板15の基板電極15Aとの接続用の電極とされる一方、径がより小さく、かつ、電極位置ばらつきがより小さい表側電極面141が、位置精度に誤差が生じやすい圧電素子1aの圧電素子電極1Aとの接続用の電極とされている。このように各電極面142、141を設定することによって、各圧電素子1aの位置にばらつきが生じても、部材13の一つの電極に2つの圧電素子電極1Aが接合されるような不具合の発生を低減することができる。 The piezoelectric element 1a is used when the PZT plate 1 is cut by the dicing saw 3 (FIG. 3B) or when the filler 7 is dropped between the adjacent piezoelectric elements 1a (FIG. 4A). 1a is inclined, and the position of each piezoelectric element 1a may deviate from the design value. FIG. 5 shows a case where variations occur in the positions of the piezoelectric elements 1a. However, the back electrode surface 142 having a large diameter and large electrode position variation is used as an electrode for connection with the substrate electrode 15A of the electronic substrate 15 on which the electrodes are arranged with high precision, while the diameter is smaller, and The front-side electrode surface 141 having a smaller electrode position variation is used as an electrode for connection with the piezoelectric element electrode 1A of the piezoelectric element 1a in which an error in position accuracy is likely to occur. By setting the electrode surfaces 142 and 141 in this way, even if the positions of the piezoelectric elements 1a vary, a problem occurs in which the two piezoelectric element electrodes 1A are joined to one electrode of the member 13. Can be reduced.
 なお、部材13と第2未完成超音波探触子11とは、例えばエポキシ系の接着剤12により互いに接着固定されている。また、接着剤12として、異方性導電接着剤が用いられてもよい。なお、異方性導電接着剤は、方向に応じて導電性または絶縁性を有する性質を有している。例えば、図5において、異方性導電接着剤の接着剤12は、上下方向には導電性を有し、それ以外の方向は絶縁性を有する。異方性導電接着剤を接着剤12とする場合は、各圧電素子1aに形成された電極とそれに対応する貫通電極14とが直接接触せずに、それらの間に異方性導電接着剤である接着剤12が介在していたとしても、各圧電素子1aと各貫通電極14とを電気的に接続とすることができる。また、同時に、各圧電素子1aまたは貫通電極14どうしは、異方性導電接着剤である接着剤12を間に介していても絶縁とすることが可能である。 The member 13 and the second incomplete ultrasonic probe 11 are bonded and fixed to each other by, for example, an epoxy adhesive 12. An anisotropic conductive adhesive may be used as the adhesive 12. In addition, anisotropic conductive adhesive has a property which has electroconductivity or insulation according to a direction. For example, in FIG. 5, the adhesive 12 of the anisotropic conductive adhesive has conductivity in the vertical direction, and has insulation in the other directions. When the anisotropic conductive adhesive is used as the adhesive 12, the electrodes formed on the piezoelectric elements 1a and the corresponding through electrodes 14 are not in direct contact with each other, and the anisotropic conductive adhesive is interposed between them. Even if an adhesive 12 is present, each piezoelectric element 1a and each through electrode 14 can be electrically connected. At the same time, the piezoelectric elements 1a or the through electrodes 14 can be insulated even if the adhesive 12 which is an anisotropic conductive adhesive is interposed therebetween.
 上述のように、第2未完成超音波探触子11の上面は、充填材7を凹部とし圧電素子1aを凸部とする凹凸形状を有していることから、このような構成の第2未完成超音波探触子11は、凸部である圧電素子1aに配線を接続する場合に、凹部である充填材7が干渉することはなく、配線を確実に接続できる。 As described above, the upper surface of the second unfinished ultrasonic probe 11 has a concave-convex shape in which the filler 7 is a concave portion and the piezoelectric element 1a is a convex portion. When the wiring is connected to the piezoelectric element 1a that is the convex portion, the incomplete ultrasonic probe 11 can reliably connect the wiring without interfering with the filler 7 that is the concave portion.
 また、異方性導電接着剤は、圧力をかけた方向に対して導電性を有するという性質を持つ。そこで、接着剤12として異方性導電接着剤を用いる場合は、部材13の表面131と第2未完成超音波探触子11との間に接着剤12を塗布して、それぞれ対応する圧電素子1aと表側電極面141とを対向させて、接着剤12を挟み込むように圧力をかけることで、対向された圧電素子1aと貫通電極14とが電気的に接続される。この際に、圧電素子1aが突出している方が、圧電素子1aおよび貫通電極14間の接着剤12に、より圧力がかかりやすいため、容易にこれらの間の接着剤12に導電性を持たせることができるので好ましい。したがって、本実施形態においては、圧電素子1aが凸部であるため好ましい。 Also, anisotropic conductive adhesive has the property of having conductivity in the direction in which pressure is applied. Therefore, when an anisotropic conductive adhesive is used as the adhesive 12, the adhesive 12 is applied between the surface 131 of the member 13 and the second unfinished ultrasonic probe 11, and the corresponding piezoelectric element is applied. When the pressure is applied so that the adhesive 1 is sandwiched between the 1a and the front electrode surface 141, the opposed piezoelectric element 1a and the through electrode 14 are electrically connected. At this time, since the pressure is more likely to be applied to the adhesive 12 between the piezoelectric element 1a and the through electrode 14 when the piezoelectric element 1a protrudes, the adhesive 12 between them is easily made conductive. This is preferable. Therefore, in this embodiment, since the piezoelectric element 1a is a convex part, it is preferable.
 また、本実施形態にかかる超音波探触子100の製造方法によれば、充填材7が圧電素子1a間に均一に充填され、かつ充填材7を研磨する必要がないため、圧電素子1aの破損が低減され、製造工程も少なくてすむという効果を奏する。また、この製造方法によれば、充填材7を研磨する必要がないことから、充填材7の表面が不規則に形成されることもない。さらに、この製造方法によれば、充填材7に対して、圧電素子1aが突出した形状となるため、圧電素子1a上に形成された電極に配線を接続する際に充填材7等が干渉することがなく、そのため、配線に負荷がかかって電極との接続がはずれてしまうという可能性が低い。 Further, according to the method of manufacturing the ultrasonic probe 100 according to the present embodiment, the filler 7 is uniformly filled between the piezoelectric elements 1a, and the filler 7 need not be polished. Damages are reduced, and the manufacturing process can be reduced. Moreover, according to this manufacturing method, since it is not necessary to grind the filler 7, the surface of the filler 7 is not formed irregularly. Further, according to this manufacturing method, since the piezoelectric element 1a protrudes from the filler 7, the filler 7 and the like interfere when connecting the wiring to the electrode formed on the piezoelectric element 1a. Therefore, there is a low possibility that the wiring is loaded and the connection with the electrode is lost.
 また、本実施形態にかかる超音波探触子100は、上述のように、充填材7が均一に各圧電素子1a間に充填されていることから、圧電素子1a間のクロストーク抑制効果等が高い。また、圧電素子電極1Aと前記圧電素子電極1Aに対応する表側電極面141とが高精度にそれぞれ接続されていることから、各圧電素子1aの性能ばらつきが小さく、超音波探触子100の品質が高い。また、超音波探触子100は、上述のように、配線の破損が少ない。さらに、製造工程において充填材7を研磨する必要がないことから、研磨が困難であるがクロストーク抑制効果の高い、軟らかいゴムを充填材7として用いることができる。 In addition, as described above, the ultrasonic probe 100 according to the present embodiment has the filler 7 uniformly filled between the piezoelectric elements 1a, and thus has an effect of suppressing crosstalk between the piezoelectric elements 1a. high. In addition, since the piezoelectric element electrode 1A and the front electrode surface 141 corresponding to the piezoelectric element electrode 1A are connected with high accuracy, the performance variation of each piezoelectric element 1a is small, and the quality of the ultrasonic probe 100 is reduced. Is expensive. Further, as described above, the ultrasonic probe 100 is less damaged by wiring. Furthermore, since it is not necessary to polish the filler 7 in the manufacturing process, a soft rubber which is difficult to polish but has a high crosstalk suppressing effect can be used as the filler 7.
 また、本実施形態にかかる超音波探触子100を用いて超音波診断装置を作製してもよい。このような超音波診断装置は、図示していない生体等の被検体に対して超音波(超音波信号)を送信すると共に、被検体で反射した超音波の反射波等の被検体から来た超音波を受信する超音波探触子100と、超音波探触子100に接続され、超音波探触子100へ電気信号の送信信号を送信することによって超音波探触子100に被検体に対して超音波を送信させると共に、超音波探触子100で受信された被検体内からの超音波に応じて超音波探触子100で生成された電気信号の受信信号に基づいて被検体内の内部状態を超音波画像として画像化する超音波診断装置本体とを備える。上述のように、圧電素子電極1Aの位置にばらつきが生じても、部材13の一つの電極に2つの圧電素子電極1Aが接合されるような不具合の発生が低減された超音波探触子100を備えるので、超音波診断装置の歩留りが向上する。 Further, an ultrasonic diagnostic apparatus may be manufactured using the ultrasonic probe 100 according to the present embodiment. Such an ultrasonic diagnostic apparatus transmits an ultrasonic wave (ultrasound signal) to a subject such as a living body (not shown) and comes from a subject such as a reflected wave of an ultrasonic wave reflected by the subject. An ultrasonic probe 100 that receives ultrasonic waves, and an ultrasonic probe 100 that is connected to the ultrasonic probe 100 and transmits a transmission signal of an electrical signal to the ultrasonic probe 100 to the subject to the ultrasonic probe 100. The ultrasonic wave is transmitted to the inside of the subject based on the received signal of the electrical signal generated by the ultrasonic probe 100 according to the ultrasonic wave received from the inside of the subject received by the ultrasonic probe 100. An ultrasonic diagnostic apparatus main body that images the internal state of the image as an ultrasonic image. As described above, even if the position of the piezoelectric element electrode 1 </ b> A varies, the ultrasonic probe 100 in which the occurrence of a problem that the two piezoelectric element electrodes 1 </ b> A are joined to one electrode of the member 13 is reduced. The yield of the ultrasonic diagnostic apparatus is improved.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様に係る超音波探触子用音響制動部品は、複数の圧電素子を備え被検体に対し超音波を送受信する超音波探触子に用いられる超音波探触子用音響制動部品であって、絶縁性の音響制動体と、前記音響制動体内を貫通するようにドリルによって形成された複数の貫通孔のそれぞれに、前記音響制動体内を貫通するように設けられた複数の導電体と、前記複数の導電体のそれぞれに備えられ、前記ドリルの入口側に設けられた、前記圧電素子の駆動電極に接続するための圧電素子駆動電極接続用の第1電極部と、前記複数の導電体のそれぞれに備えられ、前記ドリルの出口側に設けられた第2電極部とを備える。 The acoustic brake component for an ultrasonic probe according to one aspect is an acoustic brake component for an ultrasonic probe that is used in an ultrasonic probe that includes a plurality of piezoelectric elements and transmits / receives ultrasonic waves to / from a subject. An insulating acoustic braking body; and a plurality of conductors provided to penetrate the acoustic braking body in each of a plurality of through holes formed by a drill so as to penetrate the acoustic braking body; A first electrode portion for connecting to a drive electrode of the piezoelectric element, provided on each of the plurality of conductors and provided on the entrance side of the drill, and a plurality of conductors And a second electrode portion provided on the outlet side of the drill.
 そして、他の一態様では、上述の超音波探触子用音響制動部品において、好ましくは、前記音響制動体は、樹脂によって形成される。また、他の一態様では、これら上述の超音波探触子用音響制動部品において、好ましくは、前記複数の導電体は、前記複数の貫通孔にそれぞれ充填された導電性材料によって形成される。 In another aspect, in the above-described acoustic braking component for an ultrasonic probe, preferably, the acoustic braking body is formed of a resin. According to another aspect, in the above-described acoustic braking component for an ultrasonic probe, preferably, the plurality of conductors are made of a conductive material filled in the plurality of through holes.
 この構成によれば、第1電極部が圧電素子駆動電極接続用とされているので、ドリルの入口側における信号線に圧電素子の駆動電極を接続することができる。この結果、不良品の発生が低減され、歩留りが向上する。 According to this configuration, since the first electrode portion is used for connecting the piezoelectric element drive electrode, the drive electrode of the piezoelectric element can be connected to the signal line on the entrance side of the drill. As a result, the occurrence of defective products is reduced and the yield is improved.
 また、他の一態様にかかる超音波探触子は、これら上述のいずれかの音響制動部品と、前記複数の導電体の第1電極部にそれぞれ接続された複数の圧電素子と、前記複数の導電体の第2電極部にそれぞれ接続された複数の基板電極を有する電子基板とを備える。 Further, an ultrasonic probe according to another aspect includes any one of the above-described acoustic braking components, a plurality of piezoelectric elements respectively connected to the first electrode portions of the plurality of conductors, and the plurality of the plurality of piezoelectric elements. And an electronic substrate having a plurality of substrate electrodes respectively connected to the second electrode portion of the conductor.
 この構成によれば、ドリルの入口側における信号線に圧電素子の駆動電極を接続した超音波探触子が提供される。この結果、1つの信号線に2つの圧電素子の駆動電極が接続される事態が防止あるいは低減され、超音波探触子の歩留まりが向上し、生産コストを下げることが可能となる。 According to this configuration, an ultrasonic probe is provided in which the drive electrode of the piezoelectric element is connected to the signal line on the entrance side of the drill. As a result, the situation where the drive electrodes of the two piezoelectric elements are connected to one signal line is prevented or reduced, the yield of the ultrasonic probe is improved, and the production cost can be reduced.
 また、他の一態様にかかる超音波探触子の製造方法は、複数の圧電素子を備え被検体に対し超音波を送受信する超音波探触子を製造する超音波探触子の製造方法であって、例えば樹脂から構成されて成る絶縁性の音響制動体に、ドリルによって複数の貫通孔を形成する工程と、前記複数の貫通孔の前記ドリルの入り口側に位置する端部のそれぞれに、前記音響制動体内を貫通するように複数の導電体を形成する工程と、前記複数の導電体のそれぞれに、前記複数の圧電素子の駆動電極を接続する工程とを備える。 An ultrasonic probe manufacturing method according to another aspect is an ultrasonic probe manufacturing method for manufacturing an ultrasonic probe that includes a plurality of piezoelectric elements and transmits / receives ultrasonic waves to / from a subject. There are, for example, a step of forming a plurality of through holes with a drill in an insulating acoustic braking body made of resin, and each of the end portions of the plurality of through holes located on the entrance side of the drill, Forming a plurality of conductors so as to penetrate through the acoustic braking body, and connecting the driving electrodes of the plurality of piezoelectric elements to each of the plurality of conductors.
 そして、他の一態様では、上述の超音波探触子の製造方法において、好ましくは、前記貫通孔のそれぞれに導電性ペーストを充填した後に硬化させることによって前記複数の導電体を形成する工程をさらに備える。 In another aspect, in the above-described method for manufacturing an ultrasonic probe, preferably, the step of forming the plurality of conductors by filling each through hole with a conductive paste and then curing the paste. Further prepare.
 この構成によれば、ドリルの入口側における信号線に圧電素子の駆動電極が適切に接続されるので、不良品の発生が低減され、歩留りが向上する。 According to this configuration, since the drive electrode of the piezoelectric element is appropriately connected to the signal line on the entrance side of the drill, the occurrence of defective products is reduced and the yield is improved.
 また、他の一態様では、これら上述の超音波探触子の製造方法において、好ましくは、前記ドリルによって複数の貫通孔を形成する工程の前に、前記音響制動体の両面に金属箔を貼付する工程をさらに備える。 In another aspect, in the above-described ultrasonic probe manufacturing method, preferably, before the step of forming a plurality of through holes by the drill, a metal foil is pasted on both surfaces of the acoustic braking body. The process of carrying out is further provided.
 この構成によれば、ドリルの孔開け加工をより精度よく行うことができる。 According to this configuration, drilling can be performed with higher accuracy.
 この出願は、2009年11月30日に出願された日本国特許出願特願2009-272037を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2009-272037 filed on Nov. 30, 2009, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、複数の圧電素子を備える超音波探触子に用いられる超音波探触子用音響制動部品ならびにその超音波探触子およびその超音波探触子の製造方法を提供することができる。 According to the present invention, there is provided an acoustic brake component for an ultrasonic probe used in an ultrasonic probe including a plurality of piezoelectric elements, an ultrasonic probe thereof, and a method of manufacturing the ultrasonic probe. Can do.

Claims (7)

  1.  複数の圧電素子を備え被検体に対し超音波を送受信する超音波探触子に用いられる超音波探触子用音響制動部品であって、
     絶縁性の音響制動体と、
     前記音響制動体内を貫通するようにドリルによって形成された複数の貫通孔のそれぞれに、前記音響制動体内を貫通するように設けられた複数の導電体と、
     前記複数の導電体のそれぞれに備えられ、前記ドリルの入口側に設けられた、前記圧電素子の駆動電極に接続するための圧電素子駆動電極接続用の第1電極部と、
     前記複数の導電体のそれぞれに備えられ、前記ドリルの出口側に設けられた第2電極部とを備えること
     を特徴とする超音波探触子用音響制動部品。
    An acoustic braking component for an ultrasonic probe used in an ultrasonic probe that includes a plurality of piezoelectric elements and transmits / receives ultrasonic waves to / from a subject,
    An insulating acoustic brake,
    A plurality of conductors provided so as to penetrate through the acoustic braking body in each of a plurality of through holes formed by a drill so as to penetrate the acoustic braking body;
    A first electrode portion provided on each of the plurality of conductors and provided on an entrance side of the drill, for connecting to a drive electrode of the piezoelectric element, for connecting to a drive electrode of the piezoelectric element;
    An acoustic braking component for an ultrasonic probe, comprising: a second electrode portion provided on each of the plurality of conductors and provided on an outlet side of the drill.
  2.  前記音響制動体は、樹脂によって形成されていること
     を特徴とする請求項1に記載の超音波探触子用音響制動部品。
    The acoustic braking component for an ultrasonic probe according to claim 1, wherein the acoustic braking body is made of resin.
  3.  前記複数の導電体は、前記複数の貫通孔にそれぞれ充填された導電性材料によって形成されていること
     を特徴とする請求項1または請求項2に記載の超音波探触子用音響制動部品。
    The acoustic brake component for an ultrasonic probe according to claim 1 or 2, wherein the plurality of conductors are formed of a conductive material filled in each of the plurality of through holes.
  4.  請求項1ないし請求項3のいずれか1項に記載の音響制動部品と、
     前記複数の導電体の第1電極部にそれぞれ接続された複数の圧電素子と、
     前記複数の導電体の第2電極部にそれぞれ接続された複数の基板電極を有する電子基板とを備えること
     を特徴とする超音波探触子。
    The acoustic braking component according to any one of claims 1 to 3,
    A plurality of piezoelectric elements respectively connected to the first electrode portions of the plurality of conductors;
    An ultrasonic probe comprising: an electronic substrate having a plurality of substrate electrodes respectively connected to the second electrode portions of the plurality of conductors.
  5.  複数の圧電素子を備え被検体に対し超音波を送受信する超音波探触子を製造する超音波探触子の製造方法であって、
     絶縁性の音響制動体に、ドリルによって複数の貫通孔を形成する工程と、
     前記複数の貫通孔のそれぞれに、前記音響制動体内を貫通するように複数の導電体を形成する工程と、
     前記複数の導電体の前記ドリルの入り口側に位置する端部のそれぞれに、前記複数の圧電素子の駆動電極を接続する工程とを備えること
     を特徴とする超音波探触子の製造方法。
    An ultrasonic probe manufacturing method for manufacturing an ultrasonic probe including a plurality of piezoelectric elements and transmitting / receiving ultrasonic waves to / from a subject,
    A step of forming a plurality of through-holes with a drill in an insulating acoustic braking body;
    Forming a plurality of conductors in each of the plurality of through holes so as to penetrate through the acoustic braking body;
    Connecting the drive electrodes of the plurality of piezoelectric elements to each of the end portions of the plurality of conductors positioned on the entrance side of the drill. The method of manufacturing an ultrasound probe, comprising:
  6.  前記貫通孔のそれぞれに導電性ペーストを充填した後に硬化させることによって前記複数の導電体を形成する工程をさらに備えること
     を特徴とする請求項5に記載の超音波探触子の製造方法。
    The method of manufacturing an ultrasonic probe according to claim 5, further comprising forming the plurality of conductors by curing each of the through holes after filling with a conductive paste.
  7.  前記ドリルによって複数の貫通孔を形成する工程の前に、前記音響制動体の両面に金属箔を貼付する工程をさらに備えること
     を特徴とする請求項5または請求項6に記載の超音波探触子の製造方法。
    The ultrasonic probe according to claim 5, further comprising a step of attaching a metal foil to both surfaces of the acoustic braking body before the step of forming a plurality of through holes by the drill. Child manufacturing method.
PCT/JP2010/006066 2009-11-30 2010-10-13 Sound damping component for ultrasonic probe, ultrasonic probe, and ultrasonic probe manufacturing method WO2011064934A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543082A JP5348250B2 (en) 2009-11-30 2010-10-13 Acoustic braking component for ultrasonic probe, ultrasonic probe, and method of manufacturing ultrasonic probe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009272037 2009-11-30
JP2009-272037 2009-11-30

Publications (1)

Publication Number Publication Date
WO2011064934A1 true WO2011064934A1 (en) 2011-06-03

Family

ID=44066049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006066 WO2011064934A1 (en) 2009-11-30 2010-10-13 Sound damping component for ultrasonic probe, ultrasonic probe, and ultrasonic probe manufacturing method

Country Status (2)

Country Link
JP (1) JP5348250B2 (en)
WO (1) WO2011064934A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147452A (en) * 2013-01-31 2014-08-21 Konica Minolta Inc Ultrasonic probe, ultrasonic image diagnostic apparatus, and method for manufacturing ultrasonic probe
JP2016092439A (en) * 2014-10-29 2016-05-23 株式会社東芝 Ultrasonic probe
KR20190080038A (en) * 2017-12-28 2019-07-08 주식회사 베프스 A piezoelectric element, method for manufacturing the same, a piezoelectric sensor and method for manufacturing with thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07327299A (en) * 1994-05-31 1995-12-12 Toshiba Corp Ultrasonic transducer
JPH08197496A (en) * 1995-01-25 1996-08-06 Mitsubishi Gas Chem Co Inc Printed circuit board drilling method
JP2002142294A (en) * 2000-11-06 2002-05-17 Matsushita Electric Ind Co Ltd Ultrasonic probe and its manufacturing method
JP2004056504A (en) * 2002-07-19 2004-02-19 Aloka Co Ltd Ultrasonic probe and its manufacturing method
JP2006253958A (en) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd Ultrasonic probe, and manufacturing method of ultrasonic probe
JP2010136807A (en) * 2008-12-10 2010-06-24 Konica Minolta Medical & Graphic Inc Method of manufacturing ultrasonic probe and ultrasonic probe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004088056A (en) * 2002-07-02 2004-03-18 Sumitomo Electric Ind Ltd Piezoelectric vibrator, mounting method for it, mounting device, ultrasonic probe using it, and three-dimensional ultrasonic diagnostic device using it
JP2004363746A (en) * 2003-06-03 2004-12-24 Fuji Photo Film Co Ltd Ultrasonic probe and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07327299A (en) * 1994-05-31 1995-12-12 Toshiba Corp Ultrasonic transducer
JPH08197496A (en) * 1995-01-25 1996-08-06 Mitsubishi Gas Chem Co Inc Printed circuit board drilling method
JP2002142294A (en) * 2000-11-06 2002-05-17 Matsushita Electric Ind Co Ltd Ultrasonic probe and its manufacturing method
JP2004056504A (en) * 2002-07-19 2004-02-19 Aloka Co Ltd Ultrasonic probe and its manufacturing method
JP2006253958A (en) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd Ultrasonic probe, and manufacturing method of ultrasonic probe
JP2010136807A (en) * 2008-12-10 2010-06-24 Konica Minolta Medical & Graphic Inc Method of manufacturing ultrasonic probe and ultrasonic probe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147452A (en) * 2013-01-31 2014-08-21 Konica Minolta Inc Ultrasonic probe, ultrasonic image diagnostic apparatus, and method for manufacturing ultrasonic probe
US9427209B2 (en) 2013-01-31 2016-08-30 Konica Minolta, Inc. Ultrasound probe, ultrasound diagnostic imaging apparatus and manufacturing method of ultrasound probe
JP2016092439A (en) * 2014-10-29 2016-05-23 株式会社東芝 Ultrasonic probe
KR20190080038A (en) * 2017-12-28 2019-07-08 주식회사 베프스 A piezoelectric element, method for manufacturing the same, a piezoelectric sensor and method for manufacturing with thereof
KR102029559B1 (en) 2017-12-28 2019-10-07 주식회사 베프스 A piezoelectric element, method for manufacturing the same, a piezoelectric sensor and method for manufacturing with thereof

Also Published As

Publication number Publication date
JPWO2011064934A1 (en) 2013-04-11
JP5348250B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP6199076B2 (en) Ultrasonic vibrator and method for manufacturing ultrasonic vibrator
JP4408974B2 (en) Ultrasonic transducer and manufacturing method thereof
US6822376B2 (en) Method for making electrical connection to ultrasonic transducer
KR101080576B1 (en) Ultrasonic probe, ultrasonic diagnosis apparatus, and ultrasonic probe manufacturing method
JP5643667B2 (en) Ultrasonic transducer, ultrasonic probe, and method of manufacturing ultrasonic transducer
US8647280B2 (en) Ultrasonic probe and method for manufacturing ultrasonic probe
EP1944095A3 (en) Device, system, and method for structural health monitoring
JP2011152303A (en) Ultrasonic transducer, ultrasonic probe and method for manufacturing ultrasonic transducer
US20130085396A1 (en) Ultrasonic probe and ultrasonic display device
JP5348250B2 (en) Acoustic braking component for ultrasonic probe, ultrasonic probe, and method of manufacturing ultrasonic probe
JP5038808B2 (en) Ultrasonic transducer and ultrasonic probe with ultrasonic transducer
JP5543178B2 (en) Probe for ultrasonic diagnostic apparatus and manufacturing method thereof
JP2004363746A (en) Ultrasonic probe and its manufacturing method
WO2018047585A1 (en) Device, method for manufacture of devce, and method for manufacture of array-type ultrasound probe
WO2010092908A1 (en) Ultrasonic probe and ultrasonic diagnostic device
KR101387187B1 (en) Method of Manufacture for Multi-dimensional Transducer
JP5408144B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP2015228932A (en) Ultrasonic probe and manufacturing method of the same
JP4591635B1 (en) Method for manufacturing piezoelectric element array, piezoelectric element array, and ultrasonic probe
WO2011033271A1 (en) Wire bond free connection of high frequency piezoelectric ultrasound transducer arrays
KR101133462B1 (en) Probe for ultrasonic diagnostic apparatus and manufacturing method thereof
JP5338389B2 (en) Ultrasonic probe manufacturing method, ultrasonic probe, ultrasonic diagnostic apparatus
JPH05123317A (en) Two-dimensional array ultrasonic probe
JP5349141B2 (en) Ultrasonic probe
JP2015185871A (en) ultrasonic probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543082

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832790

Country of ref document: EP

Kind code of ref document: A1