WO2011064929A1 - Vacuum drainage discharging device - Google Patents

Vacuum drainage discharging device Download PDF

Info

Publication number
WO2011064929A1
WO2011064929A1 PCT/JP2010/005619 JP2010005619W WO2011064929A1 WO 2011064929 A1 WO2011064929 A1 WO 2011064929A1 JP 2010005619 W JP2010005619 W JP 2010005619W WO 2011064929 A1 WO2011064929 A1 WO 2011064929A1
Authority
WO
WIPO (PCT)
Prior art keywords
drain
vacuum
tank
pipe
flow path
Prior art date
Application number
PCT/JP2010/005619
Other languages
French (fr)
Japanese (ja)
Inventor
勉 幅田
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2011064929A1 publication Critical patent/WO2011064929A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers
    • F16T1/12Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers with valves controlled by excess or release of pressure
    • F16T1/18Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers with valves controlled by excess or release of pressure involving a vacuum chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers
    • F16T1/20Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers with valves controlled by floats

Definitions

  • the present invention relates to a vacuum drain discharge device that collects and discharges drain generated in vacuum piping of vacuum equipment used in various manufacturing processes.
  • this water-sealed vacuum pump is a vacuum pump that can be operated stably even if there is a drain accompanying it.
  • the power during operation is larger and the running cost is higher than other roots type dry pumps.
  • the vacuum equipment using the dry pump is more cost-effective, but in the vacuum equipment using the dry pump, if the drain accompanies the dry pump, the pump is broken and stable. Since it cannot be operated, it is necessary to discharge the generated drain to the outside of the system.
  • a vacuum drain discharge device is connected to the vacuum equipment to collect and discharge the drain in order to discharge the generated drain out of the system.
  • it has a drain collection tank that separates drain and gas sucked by a vacuum generation device such as a dry pump, and the drain collection tank collects a drain and a drain collection section that collects the drain.
  • a vacuum suction device that includes a drain storage unit that stores drain, and in which the drain collection unit and the drain storage unit are partitioned by a separation plate (see Patent Document 1).
  • the liquid level of drain is detected by an electrical position sensor, and the automatic valve is used to switch to atmospheric pressure for discharge.
  • an instrumentation facility for controlling the operation is also required, and there are problems such as an increase in cost and the inability to downsize the apparatus.
  • the present invention has been made in view of the above-described problems, and can improve the drain discharge capacity and reduce the restrictions on the construction route of piping, thereby making it possible to easily plan the layout of vacuum equipment.
  • An object of the present invention is to provide a vacuum drain discharge device.
  • a vacuum drain discharge device that is connected to a vacuum pipe in a vacuum facility, collects and discharges drain from the vacuum pipe, and stores at least the recovered drain. And a compressed air supply means for sending compressed air into the tank, and the drain stored in the tank is discharged by the compressed air from the compressed air supply means.
  • a vacuum drain discharge device is provided.
  • the tank for storing the collected drain and the compressed air supply means for sending the compressed air into the tank are provided, and the drain stored in the tank is compressed from the compressed air supply means. If it is exhausted by air, the drain discharge capacity can be improved with a simple configuration, and the discharge pipe can be installed above the tank where the drain is stored, that is, the restriction on the construction route of the pipe can be reduced. Become. As a result, it is possible to easily plan the arrangement of vacuum equipment.
  • the drain pipe connected to the vacuum pipe and the tank the drain is collected from the vacuum pipe and stored in the tank, the discharge pipe connected to the tank and discharging the stored drain, and the tank It is arranged on the vacuum flow path between the vacuum pipe and the tank for making the inside vacuum, and on the compressed air flow path between the compressed air supply means and the tank, and the connection flow path to the tank is supplied with the compressed air
  • a flow path switching means for switching to the vacuum pipe or the vacuum pipe, and a liquid level detection means for detecting the liquid level of the drain stored in the tank, and the flow path switching according to the detected liquid level of the drain By switching the connection flow path to the tank by means, the recovery of the drain from the drain pipe and the discharge of the drain to the discharge pipe are switched. Door is preferable.
  • the drain pipe for collecting drain from the vacuum pipe and storing in the tank, the discharge pipe connecting to the tank and discharging the stored drain, It is arranged on the vacuum flow path between the vacuum pipe and the tank for making the inside of the tank in a vacuum state and on the compressed air flow path between the compressed air supply means and the tank, and the connection flow path to the tank
  • a flow path switching means for switching between the supply means and the vacuum pipe; and a liquid level detection means for detecting the liquid level of the drain stored in the tank, and the flow path according to the detected liquid level of the drain.
  • the switching means switches the connection flow path to the tank to switch the recovery of the drain from the drain pipe and the discharge to the discharge pipe.
  • the timing of the discharge of emissions easily and accurately be detected, and that the discharge of the drain recovery of drain to the discharge pipe from the drain pipe can easily switch it at the right time. Therefore, the operation of the vacuum drain discharge device can be easily performed.
  • a switching detection flow path is further provided between the compressed air supply means and the flow path switching means, and the liquid level detection means can be moved up and down by the liquid level of the drain stored in the tank.
  • a mechanical valve that can be opened and closed by the vertical movement of the float and disposed on the switching detection flow path, and the flow path switching means is changed by opening and closing the mechanical valve. It is preferable that the air operation valve switches the connection flow path to the tank according to the pressure of the compressed air from the tank.
  • a switching detection flow path between the compressed air supply means and the flow path switching means and the liquid level detection means can be moved up and down by the liquid level of the drain stored in the tank.
  • a mechanical valve that can be opened and closed by the vertical movement of the float and disposed on the switching detection flow path, and the flow path switching means is changed by opening and closing the mechanical valve. If the air operation valve switches the connection flow path to the tank according to the pressure of the compressed air from the air, the cost is reduced because no electrical equipment or control panel is used. Moreover, it becomes a miniaturized vacuum drain discharge device, and the arrangement plan of the vacuum facility can be more easily performed.
  • the float and the mechanical valve may be provided in two pairs, and the two floats may be installed at different height positions.
  • the drain liquid when using a tank with a high height is used. Therefore, a tank with a large drain storage capacity can be used.
  • the drain pipe has a check valve for stopping the reverse flow from the tank to the vacuum pipe direction
  • the discharge pipe has a check valve for stopping the reverse flow from the discharge pipe to the tank direction. It can be.
  • the drain pipe has a check valve for stopping the reverse flow from the tank to the vacuum pipe direction
  • the discharge pipe has a check valve for stopping the reverse flow from the discharge pipe to the tank direction. Therefore, an on-off valve is provided on the drain pipe and the discharge pipe, and there is no need to operate the on-off valve in accordance with the switching between drain collection and discharge, and the operability is improved and safety is improved. Is also expensive.
  • connection flow path to the tank by the flow path switching means it is possible to automatically switch the recovery of the drain from the drain pipe and the discharge to the discharge pipe. .
  • the connection flow path to the tank by the flow path switching unit is automatically switched, the recovery of the drain from the drain pipe and the discharge to the discharge pipe are automatically switched. It becomes a vacuum drain discharger that can be automated.
  • the vacuum drain discharge device includes at least a tank for storing the recovered drain and compressed air supply means for sending the compressed air into the tank, and the drain stored in the tank is used as the compressed air. Since it is discharged by compressed air from the supply means, the drain discharge capacity can be improved with a simple configuration, and the discharge pipe can be installed above the tank in which the drain is stored. Can be reduced. As a result, it is possible to easily plan the arrangement of vacuum equipment and to reduce the cost.
  • the present invention is not limited to this.
  • the collected drain is discharged by switching the inside of the tank storing the drain from vacuum to atmospheric pressure and flowing the drain downward with a natural gradient. That is, the discharge pipe to which the drain is discharged must be installed below the vacuum drain discharge device. For this reason, there is a problem that the route for constructing the piping is greatly restricted, and the arrangement plan of the facilities becomes complicated. Moreover, since drain flows out downward by gravity, there also existed a problem that discharge efficiency was bad.
  • the present inventor has intensively studied to solve such problems. As a result, if the drain stored in the tank is pushed out by compressed air and discharged, the drain discharge capacity is improved, and the vacuum drain discharge device can be arranged without being restricted by the construction route of the discharge pipe. I came up with what I can do. And the best form for implementing this was examined and the present invention was completed.
  • the vacuum drain discharge device of the present invention is connected to a vacuum pipe in a vacuum facility used in a manufacturing process such as vacuum adsorption of a semiconductor wafer in a wet state or vacuum distillation, and drains generated during the manufacturing process. Is recovered from the vacuum piping and discharged.
  • FIG. 1 is a schematic view showing an example of a vacuum drain discharge device of the present invention.
  • a vacuum drain discharge device 1 of the present invention includes a tank 3 for storing drain recovered from a vacuum pipe 12 in a vacuum facility 11, and compressed air supply means 2 for sending compressed air into the tank 3. have.
  • the compressed air supply means 2 is arranged so as to be connected to the tank 3 through the compressed air flow path 10.
  • the tank 3 can be made of, for example, vinyl chloride having excellent chemical resistance, and if a transparent one is used, the situation in the tank 3 can be visually observed.
  • the invention is not particularly limited to these.
  • the compressed air supply means 2 will not be specifically limited if compressed air is sent into the tank 3 with a predetermined pressure, For example, an air compressor etc. can be used.
  • a drain pipe 5 for collecting drain is connected to a vacuum pipe 12.
  • This drain pipe 5 can be connected by making a hole at an arbitrary position on the vacuum pipe 12.
  • the other end of the drain pipe 5 is connected to the tank 3.
  • the drain pipe 5 and the tank 3 are arranged below the vacuum pipe 12.
  • the tank 3 is connected to a discharge pipe 6 for discharging the stored drain 4.
  • the arrangement location of the discharge pipe 6 is not particularly limited, and may be arranged below the tank 3 in which the drain 4 is stored or may be arranged above. Further, a check valve 17 can be provided to stop the backflow from the discharge pipe 6 toward the tank.
  • a large amount of drain 4 can be discharged when drain 4 stored in the tank 3 is discharged. Capability can be greatly improved. Moreover, since it is a pressure drainage, it is not necessary to make the discharge pipe 6 into a downward slope, and as described above, the discharge pipe 6 may be installed above the vacuum drain discharge device 1 including the tank 3 or the vacuum pipe 12. In other words, the restriction on the construction route of piping can be reduced. As a result, it is possible to reduce restrictions on installation locations of production equipment used in manufacturing processes that require vacuum, vacuum generators such as vacuum pipes and dry pumps, and the arrangement planning of these vacuum equipments can be easily performed. Moreover, such a vacuum drain discharge device 1 can be easily configured.
  • the pressure of the compressed air sent from the compressed air supply means 2 is not particularly limited, and may be appropriately determined depending on, for example, the installation location of the discharge pipe 6, the size and pressure resistance of the tank 3, or the amount of drain 4 to be discharged. For example, it can be about 0.2 MPa.
  • FIG. 2 shows a schematic diagram of another example of the vacuum drain discharge device of the present invention.
  • the vacuum drain discharge device 31 is provided with a vacuum pipe 12 for making the inside of the tank 3 in a vacuum state when the drain 4 is recovered and a vacuum flow path 9 between the tank 3 separately from the drain pipe 5. Can do. Then, on this vacuum flow path 9 and on the compressed air flow path 10 between the compressed air supply means 2 and the tank 3, the flow path switching for switching the connection flow path to the tank 3 to the compressed air supply means 2 or the vacuum pipe 12.
  • Means 7 can be provided.
  • the drain recovery from the drain pipe 5 and the drain discharge to the discharge pipe 6 are switched. Can do. That is, when the connection flow path to the tank 3 is switched to the vacuum pipe 12, the compressed air from the compressed air supply means 2 is not supplied into the tank 3, and the tank is passed through the vacuum flow path 9 between the vacuum pipe 12 and the tank 3. The inside of the tank 3 is sucked, the inside of the tank 3 is brought into a vacuum state, and the drain is collected from the vacuum pipe 12 through the drain pipe 5 and stored in the tank 3.
  • the vacuum flow path 9 is shut off and suction in the tank 3 is not performed, and the tank is passed from the compressed air supply means 2 through the compressed air flow path 10. Compressed air is sent into 3 and the drain 4 is discharged from the discharge pipe 6.
  • the drain pipe 5 is provided with a check valve 16 for stopping the reverse flow from the tank 3 toward the vacuum pipe 12 and a check valve 17 for stopping the reverse flow from the discharge pipe 6 toward the tank 3. It is possible to easily operate the vacuum drain discharge device without providing an open / close valve on 5 and the discharge pipe 6 to operate the open / close valve in accordance with the switching between drain recovery and discharge.
  • a liquid level detecting means 8 for detecting the liquid level of the drain 4 stored in the tank 3 can be provided in the vacuum drain discharge device 31. Furthermore, according to the drain liquid level detected by the liquid level detection means 8, the flow path switching means 7 can switch the connection flow path to the tank 3.
  • the vacuum flow path 9 the flow path switching means 7, and the liquid level detection means 8 are provided, and according to the drain liquid level detected by the liquid level detection means 8. If the drain switching from the drain pipe 5 and the drain discharging to the discharge pipe 6 are switched by switching the connection flow path to the tank 3 by the flow path switching means 7, the drain discharge timing is accurate.
  • a switching detection flow path 13 can be provided between the compressed air supply means 2 and the flow path switching means 7 as shown in FIGS.
  • the compressed air can be sent from the compressed air supply means 2 to the flow path switching means 7 through the switching detection flow path 13.
  • the liquid level detection means 8 is, for example, a float 14 that can be moved up and down by the liquid level of the drain stored in the tank 3, and the vertical movement of the float 14. Can be opened and closed, and can be configured with a mechanical valve 15 disposed on the switching detection flow path 13.
  • the float 14 rises as the amount of stored drain increases and the liquid level rises.
  • the mechanical valve 15 When the mechanical valve 15 is opened, the compressed air from the compressed air supply means 2 is sent to the flow path switching means 7 through the switching detection flow path 13, and it is detected that a predetermined amount of drain has been stored. Can be done. Further, when the stored drain 4 is discharged and the liquid level is lowered, the float 14 is lowered. When the float 14 is lowered to a predetermined position, the mechanical valve 15 is closed and the compressed air supply means 2 to the flow path switching means 7. It is possible to detect that the drainage has been completed by stopping the supply of compressed air.
  • the flow path switching means 7 can be an air operation valve that switches the flow path to the tank 3 in accordance with the pressure of the compressed air from the switching detection flow path 13 that changes as the mechanical valve 15 opens and closes.
  • This air operation valve has a plurality of ports, and in the example of the air operation valve shown in FIGS. 3A and 3B, it has four ports.
  • the pressure of the compressed air sent from the compressed air supply means 2 to the air operation valve may be appropriately determined according to the specifications of the air operation valve to be used.
  • the drain can be collected from the vacuum pipe 12 and discharged to the discharge pipe 6 without using an electrical device or control panel, and the cost can be further reduced. .
  • it can be set as the vacuum drain discharge device reduced in size.
  • the vacuum drain discharge device of the present invention although it is necessary to install the drain pipe 5 and the tank 3 below the vacuum pipe 12, the restrictions on the construction route of the discharge pipe 6 can be reduced. There is no major restriction, and further, if it is downsized in this way, the layout planning of the vacuum equipment can be performed more easily. As a result, the vacuum equipment in the entire factory can be centralized.
  • FIG. 4 shows a schematic diagram of another example of the vacuum drain discharge device of the present invention.
  • the vacuum drain discharge device 41 has two pairs of floats 14a and 14b and mechanical valves 15a and 15b, and the two floats 14a and 14b are installed at different height positions. It can be.
  • two switching detection flow paths 13a and 13b are also provided.
  • the mechanical valve 15a side paired with the float 14a installed at a low position is opened in a state where the float 14a is lowered to a predetermined position (see FIG. 5A), and the mechanical valve 15a is opened so that the switching detection flow
  • the flow path switching means 7 switches the connection flow path to the tank 3 to the vacuum pipe 12.
  • the mechanical valve 15b paired with the float 14b installed at a high position is opened in a state where the float 14b is raised to a predetermined position (see FIG. 5B), and the mechanical valve 15b is opened so that the switching detection flow
  • the flow path switching means 7 switches the connection flow path to the tank 3 to the compressed air supply means 2.
  • the float installed at a low position is used.
  • the flow path switching means 7 switches the connection flow path to the tank 3 to the vacuum pipe 12, collects drain, and pairs with the float 14b installed at a high position.
  • the flow switching means 7 switches the connection flow path to the tank 3 to the compressed air supply means 2 so as to discharge the drain, so that the tank 3 having a higher height, that is, more It is possible to cope with the detection of the liquid level when the tank 3 having a large capacity capable of storing a large amount of drain is used. Of course, it is possible to increase the capacity of the tank by increasing the number of float / mechanical valve pairs to three or more.
  • a quick exhaust valve 20 for exhausting the compressed air in the switching detection flow paths 13a and 13b after the mechanical valves 15a and 15b are closed is provided on the switching detection flow paths 13a and 13b. be able to.
  • the quick exhaust valve 20 has three ports, a port connected to the mechanical valves 15a and 15b, a port connected to the flow path switching means 7, and a port for discharging compressed air to the outside. When the pressure of the port connected to the mechanical valve becomes lower than the pressure of the port connected to the flow path switching means 7, the compressed air in the switching detection flow paths 13a and 13b can be discharged to the outside. Is.
  • connection flow path to the tank 3 by the flow path switching means 7 is automatically switched to automatically switch the recovery of the drain from the drain pipe 5 and the discharge to the discharge pipe 6, it is fully automated. It becomes a possible vacuum drain discharge device, and the operability can be further improved.
  • This switching automation can be mechanically performed using a mechanical valve and an air operation valve as in this embodiment.
  • automatic switching may be performed using an electromagnetic valve or the like and using an electrical control circuit.
  • FIG. 3A is a diagram showing a state where the drain is collected from the vacuum pipe 12
  • FIG. 3B is a diagram showing a state where the stored drain 4 is discharged to the discharge pipe 6.
  • FIG. 3A first, in a state where no drain is stored in the tank 3, the float 14 is in a lowered state, and the mechanical valve 15 is closed. In this state, the compressed air from the compressed air supply means 2 does not reach the flow path switching means 7, and the flow path switching means 7 connects the connection flow path to the tank 3 to the vacuum pipe 12.
  • the inside of the tank 3 is sucked through the vacuum flow path 9 to be in a vacuum state, and the drain is collected from the vacuum pipe 12 through the drain pipe 5.
  • the drain is stored in the tank 3.
  • the liquid level of the drain 4 in the tank 3 rises and the float 14 also rises.
  • the mechanical valve 15 opens, and the switching detection flow path 13.
  • Compressed air from the compressed air supply means 2 is sent to the flow path switching means 7, and the flow path switching means 7 switches the connection flow path to the tank 3 to the compressed air supply means 2. Therefore, the suction in the tank 3 through the vacuum channel 9 is shut off, and the backflow from the tank 3 is stopped by the check valve 16, while the compressed air from the compressed air supply means 2 is sent into the tank 3 and sent.
  • the drain 4 is pushed out by the compressed air and discharged to the discharge pipe 6.
  • the pressure of the compressed air supplied to the compressed air flow path 10 from the compressed air supply means 2 or the switching detection flow path 13 is adjusted and stabilized.
  • a pressure reducing valve 18 or a regulator may be provided.
  • the pressure of the compressed air sent to the air operation valve 7 and the pressure of the compressed air sent to the tank 3 can be changed.
  • the pressure of the compressed air can be adjusted as appropriate according to the air operation valve 7 and the tank 3.
  • the pressure of the compressed air sent to the air operation valve 7 can be about 0.5 MPa
  • the pressure of the compressed air sent to the tank 3 can be about 0.2 MPa.
  • a speed controller 19 for adjusting the flow rate of the compressed air flowing on the flow path may be provided.
  • Example 2 Drain was collected and discharged using the vacuum drain discharge device of the present invention having two pairs of floats and mechanical valves as shown in FIG.
  • the discharge pipe finally discharged drain above the vacuum drain discharge device, the pressure of the compressed air sent to the air operation valve was 0.5 MPa, and the pressure of the compressed air sent to the tank was 0.2 MPa.
  • emission of drain were made into one cycle, the cycle was repeated mechanically automatically, and the discharge
  • the drain could be discharged to a pipe installed above the vacuum drain discharge device.
  • the discharge amount per hour was 96.6 L / hour (2.8 L / cycle ⁇ 34.5 cycles / hour).
  • the drain could not be discharged at all to the pipe installed above the vacuum drain discharge device.
  • the vacuum drain discharge device of the present invention can improve the drain discharge capacity with a simple configuration, and the discharge pipe can be installed above the tank in which the drain is stored, that is, the restriction of the pipe construction route is reduced. I was able to confirm that it was possible.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Valves (AREA)
  • Float Valves (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Disclosed is a vacuum drainage discharging device connected to a vacuum pipe in vacuum equipment and collecting drainage from the vacuum pipe and discharging the same. The vacuum drainage discharging device at least includes a tank for storing the collected drainage and a compressed air supplying means for supplying compressed air to the tank, and is characterized in that the drainage stored in the tank is discharged by the compressed air supplied from the compressed air supplying means. It is thus possible to provide a vacuum drainage discharging device having an improved drainage discharging capability, which reduces the constraint on the pipe construction route and thereby facilitates the layout planning of the vacuum equipment.

Description

真空ドレン排出装置Vacuum drain discharge device
 本発明は、各種製造プロセスで使用している真空設備の真空配管で発生するドレンを回収して排出する真空ドレン排出装置に関する。
 
The present invention relates to a vacuum drain discharge device that collects and discharges drain generated in vacuum piping of vacuum equipment used in various manufacturing processes.
 例えば、半導体の製造において、半導体シリコンウェーハをウェットの状態で移載する場合の真空吸着装置の真空配管や、減圧蒸留を行う場合の真空ポンプ配管中等に、大量の液体(ドレン)が同伴されることが多い。
 従来、ドレンが真空ポンプまで同伴されても真空を維持するために、水封式真空ポンプを採用した真空設備が用いられていた。この場合、真空配管中に液体を溜めない様にするために、配管を常に下がり勾配にする必要があり、配管の施工ルートは限られていた。
For example, in the manufacture of semiconductors, a large amount of liquid (drain) is entrained in the vacuum piping of a vacuum adsorption device when a semiconductor silicon wafer is transferred in a wet state, or in the vacuum pump piping when performing vacuum distillation. There are many cases.
Conventionally, in order to maintain the vacuum even when the drain is accompanied by the vacuum pump, a vacuum facility employing a water ring vacuum pump has been used. In this case, in order to prevent the liquid from accumulating in the vacuum pipe, it is necessary to always make the pipe downwardly inclined, and the construction route of the pipe has been limited.
 また、この水封式真空ポンプは、ドレンの同伴があっても安定して稼働できる真空ポンプであるが、他の例えばルーツ式のドライポンプに比べて運転時の動力が大きくランニングコストが大きい。また、高真空を得るためには温度の低い冷却水を供給する必要があり、その付帯設備の設置にも費用が大きくかかる。 Also, this water-sealed vacuum pump is a vacuum pump that can be operated stably even if there is a drain accompanying it. However, the power during operation is larger and the running cost is higher than other roots type dry pumps. Moreover, in order to obtain a high vacuum, it is necessary to supply cooling water with a low temperature, and installation of the incidental equipment is also expensive.
 このように、ドライポンプを用いた真空設備のほうがコスト的に有利であるが、ドライポンプを用いた真空設備においては、ドレンがドライポンプまで同伴した場合、ポンプが故障する等して安定して稼動出来ないため、発生するドレンを系外に排出することが必要になる。 Thus, the vacuum equipment using the dry pump is more cost-effective, but in the vacuum equipment using the dry pump, if the drain accompanies the dry pump, the pump is broken and stable. Since it cannot be operated, it is necessary to discharge the generated drain to the outside of the system.
 このドライポンプを用いた真空設備において、発生するドレンを系外に排出するために、真空設備に接続してドレンを回収して排出する真空ドレン排出装置が用いられている。
 例えば、ドライポンプなどの真空発生装置によって吸引されたドレンと気体とを分離するドレン捕集タンクを有し、そのドレン捕集タンクが、ドレンを捕集するドレン捕集部とその捕集されたドレンを貯留するドレン貯留部とを備え、ドレン捕集部とドレン貯留部とが分離板により仕切られた真空吸引装置が開示されている(特許文献1参照)。
In vacuum equipment using this dry pump, a vacuum drain discharge device is connected to the vacuum equipment to collect and discharge the drain in order to discharge the generated drain out of the system.
For example, it has a drain collection tank that separates drain and gas sucked by a vacuum generation device such as a dry pump, and the drain collection tank collects a drain and a drain collection section that collects the drain. There is disclosed a vacuum suction device that includes a drain storage unit that stores drain, and in which the drain collection unit and the drain storage unit are partitioned by a separation plate (see Patent Document 1).
 このような真空吸引装置を設置し、ドレンを気体と分離してドレン貯留部に貯留し、その貯留したドレンを排出する際に、ドレン捕集部とドレン貯留部との間の弁を閉じてドレン貯留部内の真空を解除して大気圧へ切り替えることにより、真空設備を止めることなく、ドライポンプへドレンが同伴するのを防止することができる。
 
When installing such a vacuum suction device, separating the drain from the gas and storing it in the drain storage part, and discharging the stored drain, close the valve between the drain collection part and the drain storage part. By releasing the vacuum in the drain storage unit and switching to the atmospheric pressure, it is possible to prevent the drain from being accompanied by the dry pump without stopping the vacuum facility.
特開平9-264496号公報JP-A-9-26496
 このような真空吸引装置と同様に、従来の一般的な真空ドレン排出装置では、ドレンの排出の際、ドレンを貯留したタンク内を真空から大気圧に切り替え、ドレンを自然勾配によって下方に流れ出すようにすることによって排出が行われる。すなわち、ドレンを排出する先の排出配管は、ドレンの貯留タンクの下方に設置しなくてはならない。このため、配管を施工するルートが大幅に制約され、設備の配置計画が複雑となってしまうという問題があった。また、ドレンは重力で下方に流れ出すため、排出効率が悪いという問題もあった。 Similar to such a vacuum suction device, in the conventional general vacuum drain discharge device, when drain is discharged, the inside of the tank storing the drain is switched from vacuum to atmospheric pressure so that the drain flows downward by a natural gradient. By doing so, the discharge is performed. In other words, the discharge pipe to which the drain is discharged must be installed below the drain storage tank. For this reason, there is a problem that the route for constructing the piping is greatly restricted and the arrangement plan of the facilities becomes complicated. Moreover, since drain flows out downward by gravity, there also existed a problem that discharge efficiency was bad.
 また、ドレンの回収及び排出を自動で行うために、ドレンの液位を電気的な位置センサーで検出し、排出のための大気圧への切り替えを自動弁で行っており、この自動弁の切り替え動作を行うためには、それを制御するための計装設備も必要となり、コストが高くなったり、装置の小型化が行えない等の問題もあった。 In addition, in order to automatically collect and discharge drain, the liquid level of drain is detected by an electrical position sensor, and the automatic valve is used to switch to atmospheric pressure for discharge. In order to perform the operation, an instrumentation facility for controlling the operation is also required, and there are problems such as an increase in cost and the inability to downsize the apparatus.
 本発明は前述のような問題に鑑みてなされたもので、ドレンの排出能力を向上し、配管の施工ルートの制約を軽減することによって、真空設備の配置計画を容易に行うことができる低コストの真空ドレン排出装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and can improve the drain discharge capacity and reduce the restrictions on the construction route of piping, thereby making it possible to easily plan the layout of vacuum equipment. An object of the present invention is to provide a vacuum drain discharge device.
 上記目的を達成するために、本発明によれば、真空設備における真空配管に接続し、該真空配管からドレンを回収して排出する真空ドレン排出装置であって、少なくとも、前記回収したドレンを貯留するタンクと、該タンク内に圧縮空気を送る圧縮空気供給手段とを有し、前記タンク内に貯留されたドレンを前記圧縮空気供給手段からの圧縮空気によって排出するものであることを特徴とする真空ドレン排出装置を提供する。 In order to achieve the above object, according to the present invention, there is provided a vacuum drain discharge device that is connected to a vacuum pipe in a vacuum facility, collects and discharges drain from the vacuum pipe, and stores at least the recovered drain. And a compressed air supply means for sending compressed air into the tank, and the drain stored in the tank is discharged by the compressed air from the compressed air supply means. A vacuum drain discharge device is provided.
 このように、少なくとも、前記回収したドレンを貯留するタンクと、該タンク内に圧縮空気を送る圧縮空気供給手段とを有し、前記タンク内に貯留されたドレンを前記圧縮空気供給手段からの圧縮空気によって排出するものであれば、簡単な構成で、ドレンの排出能力を向上でき、及び排出配管をドレンが貯留されたタンクより上方へ設置でき、すなわち配管の施工ルートの制約を軽減できるものとなる。その結果、真空設備の配置計画を容易に行うことができるものとなる。 Thus, at least the tank for storing the collected drain and the compressed air supply means for sending the compressed air into the tank are provided, and the drain stored in the tank is compressed from the compressed air supply means. If it is exhausted by air, the drain discharge capacity can be improved with a simple configuration, and the discharge pipe can be installed above the tank where the drain is stored, that is, the restriction on the construction route of the pipe can be reduced. Become. As a result, it is possible to easily plan the arrangement of vacuum equipment.
 このとき、前記真空配管及び前記タンクに接続し、前記真空配管からドレンを回収して前記タンクに貯留するドレン配管と、前記タンクに接続して前記貯留したドレンを排出する排出配管と、前記タンク内を真空状態にするための前記真空配管と前記タンク間の真空流路上及び前記圧縮空気供給手段と前記タンク間の圧縮空気流路上に配置され、前記タンクへの接続流路を前記圧縮空気供給手段か前記真空配管かに切り替える流路切り替え手段と、前記タンク内に貯留されたドレンの液位を検出する液位検出手段とを有し、該検出したドレンの液位に従って、前記流路切り替え手段により前記タンクへの接続流路を切り替えることによって、前記ドレン配管からの前記ドレンの回収と前記排出配管へのドレンの排出を切り替えるものであることが好ましい。 At this time, the drain pipe connected to the vacuum pipe and the tank, the drain is collected from the vacuum pipe and stored in the tank, the discharge pipe connected to the tank and discharging the stored drain, and the tank It is arranged on the vacuum flow path between the vacuum pipe and the tank for making the inside vacuum, and on the compressed air flow path between the compressed air supply means and the tank, and the connection flow path to the tank is supplied with the compressed air A flow path switching means for switching to the vacuum pipe or the vacuum pipe, and a liquid level detection means for detecting the liquid level of the drain stored in the tank, and the flow path switching according to the detected liquid level of the drain By switching the connection flow path to the tank by means, the recovery of the drain from the drain pipe and the discharge of the drain to the discharge pipe are switched. Door is preferable.
 このように、前記真空配管及び前記タンクに接続し、前記真空配管からドレンを回収して前記タンクに貯留するドレン配管と、前記タンクに接続して前記貯留したドレンを排出する排出配管と、前記タンク内を真空状態にするための前記真空配管と前記タンク間の真空流路上及び前記圧縮空気供給手段と前記タンク間の圧縮空気流路上に配置され、前記タンクへの接続流路を前記圧縮空気供給手段か前記真空配管かに切り替える流路切り替え手段と、前記タンク内に貯留されたドレンの液位を検出する液位検出手段とを有し、該検出したドレンの液位に従って、前記流路切り替え手段により前記タンクへの接続流路を切り替えることによって、前記ドレン配管からの前記ドレンの回収と前記排出配管への排出を切り替えるものであれば、ドレンの排出のタイミングを容易に正確に検出でき、ドレン配管からのドレンの回収と排出配管へのドレンの排出を適切なタイミングで容易に切り替えることができるものとなる。そのため、真空ドレン排出装置の運用を容易に行うことができるものとなる。 Thus, connected to the vacuum pipe and the tank, the drain pipe for collecting drain from the vacuum pipe and storing in the tank, the discharge pipe connecting to the tank and discharging the stored drain, It is arranged on the vacuum flow path between the vacuum pipe and the tank for making the inside of the tank in a vacuum state and on the compressed air flow path between the compressed air supply means and the tank, and the connection flow path to the tank A flow path switching means for switching between the supply means and the vacuum pipe; and a liquid level detection means for detecting the liquid level of the drain stored in the tank, and the flow path according to the detected liquid level of the drain. If the switching means switches the connection flow path to the tank to switch the recovery of the drain from the drain pipe and the discharge to the discharge pipe, The timing of the discharge of emissions easily and accurately be detected, and that the discharge of the drain recovery of drain to the discharge pipe from the drain pipe can easily switch it at the right time. Therefore, the operation of the vacuum drain discharge device can be easily performed.
 またこのとき、さらに、前記圧縮空気供給手段と前記流路切り替え手段間に切り替え検出用流路を有し、前記液位検出手段は、前記タンク内に貯留されたドレンの液位によって上下動可能なフロートと、該フロートの上下動によって開閉可能であり、前記切り替え検出用流路上に配置されるメカバルブとから成り、前記流路切り替え手段は、前記メカバルブの開閉によって変化する前記切り替え検出用流路からの圧縮空気の圧力に従って、前記タンクへの接続流路を切り替えるエアオペレーションバルブであることが好ましい。 Further, at this time, a switching detection flow path is further provided between the compressed air supply means and the flow path switching means, and the liquid level detection means can be moved up and down by the liquid level of the drain stored in the tank. And a mechanical valve that can be opened and closed by the vertical movement of the float and disposed on the switching detection flow path, and the flow path switching means is changed by opening and closing the mechanical valve. It is preferable that the air operation valve switches the connection flow path to the tank according to the pressure of the compressed air from the tank.
 このように、さらに、前記圧縮空気供給手段と前記流路切り替え手段間に切り替え検出用流路を有し、前記液位検出手段は、前記タンク内に貯留されたドレンの液位によって上下動可能なフロートと、該フロートの上下動によって開閉可能であり、前記切り替え検出用流路上に配置されるメカバルブとから成り、前記流路切り替え手段は、前記メカバルブの開閉によって変化する前記切り替え検出用流路からの圧縮空気の圧力に従って、前記タンクへの接続流路を切り替えるエアオペレーションバルブであれば、電気的な機器や制御盤を使用しないため、コストが低減されたものとなる。また、小型化された真空ドレン排出装置となり、真空設備の配置計画をより容易に行うことができるものとなる。 In this way, there is further provided a switching detection flow path between the compressed air supply means and the flow path switching means, and the liquid level detection means can be moved up and down by the liquid level of the drain stored in the tank. And a mechanical valve that can be opened and closed by the vertical movement of the float and disposed on the switching detection flow path, and the flow path switching means is changed by opening and closing the mechanical valve. If the air operation valve switches the connection flow path to the tank according to the pressure of the compressed air from the air, the cost is reduced because no electrical equipment or control panel is used. Moreover, it becomes a miniaturized vacuum drain discharge device, and the arrangement plan of the vacuum facility can be more easily performed.
 またこのとき、前記フロートと前記メカバルブとを2対有し、該2つのフロートがそれぞれの高さ位置を変えて設置されたものとすることができる。
 このように、前記フロートと前記メカバルブとを2対有し、該2つのフロートがそれぞれの高さ位置を変えて設置されたものであれば、高さが高いタンクを用いた場合のドレンの液位の検出に対応することができ、ドレンの貯留容量の大きいタンクを使用できるものとなる。
At this time, the float and the mechanical valve may be provided in two pairs, and the two floats may be installed at different height positions.
Thus, if there are two pairs of the float and the mechanical valve, and the two floats are installed at different height positions, the drain liquid when using a tank with a high height is used. Therefore, a tank with a large drain storage capacity can be used.
 またこのとき、前記ドレン配管に、前記タンクから前記真空配管方向への逆流を止める逆止弁と、前記排出配管に、前記排出配管から前記タンク方向への逆流を止める逆止弁とを有するものとすることができる。
 このように、前記ドレン配管に、前記タンクから前記真空配管方向への逆流を止める逆止弁と、前記排出配管に、前記排出配管から前記タンク方向への逆流を止める逆止弁とを有するものであれば、ドレン配管及び排出配管上に開閉弁を設け、ドレンの回収と排出の切り替えに伴って、その開閉弁を操作する必要もなく、運用性が向上されたものとなるとともに、安全性も高い。
Further, at this time, the drain pipe has a check valve for stopping the reverse flow from the tank to the vacuum pipe direction, and the discharge pipe has a check valve for stopping the reverse flow from the discharge pipe to the tank direction. It can be.
As described above, the drain pipe has a check valve for stopping the reverse flow from the tank to the vacuum pipe direction, and the discharge pipe has a check valve for stopping the reverse flow from the discharge pipe to the tank direction. Therefore, an on-off valve is provided on the drain pipe and the discharge pipe, and there is no need to operate the on-off valve in accordance with the switching between drain collection and discharge, and the operability is improved and safety is improved. Is also expensive.
 またこのとき、前記流路切り替え手段による前記タンクへの接続流路を自動で切り替えることによって、前記ドレン配管からの前記ドレンの回収と前記排出配管への排出を自動で切り替えるものとすることができる。
 このように、前記流路切り替え手段による前記タンクへの接続流路を自動で切り替えることによって、前記ドレン配管からの前記ドレンの回収と前記排出配管への排出を自動で切り替えるものであれば、完全自動化可能な真空ドレン排出装置となる。
Further, at this time, by automatically switching the connection flow path to the tank by the flow path switching means, it is possible to automatically switch the recovery of the drain from the drain pipe and the discharge to the discharge pipe. .
In this way, if the connection flow path to the tank by the flow path switching unit is automatically switched, the recovery of the drain from the drain pipe and the discharge to the discharge pipe are automatically switched. It becomes a vacuum drain discharger that can be automated.
 本発明では、真空ドレン排出装置において、少なくとも、回収したドレンを貯留するタンクと、該タンク内に圧縮空気を送る圧縮空気供給手段とを有し、前記タンク内に貯留されたドレンを前記圧縮空気供給手段からの圧縮空気によって排出するものであるので、簡単な構成で、ドレンの排出能力を向上でき、及び排出配管をドレンが貯留されたタンクより上方へ設置でき、すなわち配管の施工ルートの制約を軽減できる。その結果、真空設備の配置計画を容易に行うことができるとともに、低コスト化が可能である。
 
In the present invention, the vacuum drain discharge device includes at least a tank for storing the recovered drain and compressed air supply means for sending the compressed air into the tank, and the drain stored in the tank is used as the compressed air. Since it is discharged by compressed air from the supply means, the drain discharge capacity can be improved with a simple configuration, and the discharge pipe can be installed above the tank in which the drain is stored. Can be reduced. As a result, it is possible to easily plan the arrangement of vacuum equipment and to reduce the cost.
本発明の真空ドレン排出装置の一例を示す概略図である。It is the schematic which shows an example of the vacuum drain discharge device of this invention. 本発明の真空ドレン排出装置の別の一例を示す概略図である。It is the schematic which shows another example of the vacuum drain discharge apparatus of this invention. ドレンの回収及び排出を行う際の本発明の真空ドレン排出装置の別の一例を説明する説明図である。(A)ドレンの回収を行う状態。(B)ドレンの排出を行う状態。It is explanatory drawing explaining another example of the vacuum drain discharge device of the present invention at the time of drain collection and discharge. (A) A state where drain is collected. (B) A state in which drainage is discharged. 本発明の真空ドレン排出装置の別の一例を示す概略図である。It is the schematic which shows another example of the vacuum drain discharge apparatus of this invention. 本発明の真空ドレン排出装置の液位検出手段の一例を示す概略図である。It is the schematic which shows an example of the liquid level detection means of the vacuum drain discharge device of this invention.
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 従来の一般的な真空ドレン排出装置において、回収したドレンの排出は、ドレンを貯留したタンク内を真空から大気圧に切り替え、ドレンを自然勾配によって下方に流れ出すことによって行われる。すなわち、ドレンを排出する先の排出配管は、真空ドレン排出装置の下方に設置しなくてはならない。このため、配管を施工するルートが大幅に制約され、設備の配置計画が複雑となってしまうという問題があった。また、ドレンは重力によって下方に流れ出すため、排出効率が悪いという問題もあった。
Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.
In the conventional general vacuum drain discharge device, the collected drain is discharged by switching the inside of the tank storing the drain from vacuum to atmospheric pressure and flowing the drain downward with a natural gradient. That is, the discharge pipe to which the drain is discharged must be installed below the vacuum drain discharge device. For this reason, there is a problem that the route for constructing the piping is greatly restricted, and the arrangement plan of the facilities becomes complicated. Moreover, since drain flows out downward by gravity, there also existed a problem that discharge efficiency was bad.
 そこで、本発明者はこのような問題を解決すべく鋭意検討を重ねた。その結果、タンク内に貯留されたドレンを圧縮空気によって押し出して排出するものであれば、ドレンの排出能力が向上し、排出配管の施工ルートに制約されずに真空ドレン排出装置を配置することができることに想到した。そして、これを実施するための最良の形態について検討し、本発明を完成させた。 Therefore, the present inventor has intensively studied to solve such problems. As a result, if the drain stored in the tank is pushed out by compressed air and discharged, the drain discharge capacity is improved, and the vacuum drain discharge device can be arranged without being restricted by the construction route of the discharge pipe. I came up with what I can do. And the best form for implementing this was examined and the present invention was completed.
 本発明の真空ドレン排出装置は、例えば半導体ウェーハをウェットな状態で真空吸着したり、減圧蒸留を行うなどの製造プロセス等で用いる真空設備における真空配管に接続し、その製造プロセス中に発生するドレンを真空配管から回収して排出するものである。 The vacuum drain discharge device of the present invention is connected to a vacuum pipe in a vacuum facility used in a manufacturing process such as vacuum adsorption of a semiconductor wafer in a wet state or vacuum distillation, and drains generated during the manufacturing process. Is recovered from the vacuum piping and discharged.
 図1は本発明の真空ドレン排出装置の一例を示した概略図である。
 図1に示すように、本発明の真空ドレン排出装置1は、真空設備11における真空配管12から回収したドレンを貯留するタンク3と、そのタンク3内に圧縮空気を送る圧縮空気供給手段2とを有している。この圧縮空気供給手段2は圧縮空気流路10を通じてタンク3に接続するように配置されている。
FIG. 1 is a schematic view showing an example of a vacuum drain discharge device of the present invention.
As shown in FIG. 1, a vacuum drain discharge device 1 of the present invention includes a tank 3 for storing drain recovered from a vacuum pipe 12 in a vacuum facility 11, and compressed air supply means 2 for sending compressed air into the tank 3. have. The compressed air supply means 2 is arranged so as to be connected to the tank 3 through the compressed air flow path 10.
 ここで、タンク3は、例えば耐薬品性に優れた塩化ビニル製とすることができ、また、透明のものを用いれば、タンク3内の状況を目視することができるので運用上好ましいが、本発明においては特にこれらに限定されない。
 また、圧縮空気供給手段2は所定の圧力で圧縮空気をタンク3内に送るものであれば特に限定されず、例えば、エアーコンプレッサ等を用いることができる。
Here, the tank 3 can be made of, for example, vinyl chloride having excellent chemical resistance, and if a transparent one is used, the situation in the tank 3 can be visually observed. The invention is not particularly limited to these.
Moreover, the compressed air supply means 2 will not be specifically limited if compressed air is sent into the tank 3 with a predetermined pressure, For example, an air compressor etc. can be used.
 また、図1に示すように、ドレンを回収するためのドレン配管5が真空配管12へと接続している。このドレン配管5は真空配管12上の任意の位置に穴を開けて接続することができる。また、このドレン配管5の他方の一端はタンク3に接続される。
 この場合、真空配管12からのドレンの回収の際には、ドレン配管5を通じてタンク3内が吸引され、タンク3内が真空状態となる。ここで、ドレン配管5及びタンク3は真空配管12の下方に配置される。このように配置することで、真空配管12からドレンを自然勾配によってドレン配管5で回収し、タンク3内に貯留することができる。
Further, as shown in FIG. 1, a drain pipe 5 for collecting drain is connected to a vacuum pipe 12. This drain pipe 5 can be connected by making a hole at an arbitrary position on the vacuum pipe 12. The other end of the drain pipe 5 is connected to the tank 3.
In this case, when collecting the drain from the vacuum pipe 12, the inside of the tank 3 is sucked through the drain pipe 5, and the inside of the tank 3 is in a vacuum state. Here, the drain pipe 5 and the tank 3 are arranged below the vacuum pipe 12. By arranging in this way, the drain can be collected from the vacuum pipe 12 by the natural pipe with the natural gradient and stored in the tank 3.
 また、タンク3には貯留したドレン4を排出するための排出配管6が接続されている。この排出配管6の配置場所は特に限定されず、ドレン4が貯留されたタンク3の下方に配置しても良いし、上方に配置しても良い。また、排出配管6からタンク方向への逆流を止める逆止弁17を設けることができる。
 そして、このタンク3内に貯留されたドレン4を排出する際には、例えば、ドレン配管5に設置した開閉弁21を閉じる等して真空配管12とタンク3間を遮断した後、圧縮空気流路10に設置した開閉弁22を開ける等してから、圧縮空気供給手段2からタンク3内に圧縮空気を送り、送られた圧縮空気によってタンク3内のドレン4が押し出されて、排出配管6へ排出するようになっている。
The tank 3 is connected to a discharge pipe 6 for discharging the stored drain 4. The arrangement location of the discharge pipe 6 is not particularly limited, and may be arranged below the tank 3 in which the drain 4 is stored or may be arranged above. Further, a check valve 17 can be provided to stop the backflow from the discharge pipe 6 toward the tank.
When discharging the drain 4 stored in the tank 3, for example, by closing the on-off valve 21 installed in the drain pipe 5 to shut off the vacuum pipe 12 and the tank 3, the compressed air flow After opening the on-off valve 22 installed in the passage 10, compressed air is sent into the tank 3 from the compressed air supply means 2, and the drain 4 in the tank 3 is pushed out by the sent compressed air, and the discharge pipe 6. To be discharged.
 このような真空ドレン排出装置1であれば、タンク3内に貯留されたドレン4の排出時に、ドレン4を大量に排出することができ、従来の自然勾配によって排出する場合と比べ、ドレンの排出能力を大幅に向上できるものとなる。また、有圧排水であるため、排出配管6を下がり勾配にする必要もなく、前記したように、排出配管6をタンク3を含む真空ドレン排出装置1や真空配管12より上方へ設置することもでき、すなわち配管の施工ルートの制約を軽減できるものとなる。その結果、真空を必要とする製造プロセスで用いる生産設備、真空配管及びドライポンプなどの真空発生装置等の設置場所についての制約を軽減でき、これら真空設備の配置計画を容易に行うことができる。しかも、このような真空ドレン排出装置1は簡単に構成できる。 With such a vacuum drain discharge device 1, a large amount of drain 4 can be discharged when drain 4 stored in the tank 3 is discharged. Capability can be greatly improved. Moreover, since it is a pressure drainage, it is not necessary to make the discharge pipe 6 into a downward slope, and as described above, the discharge pipe 6 may be installed above the vacuum drain discharge device 1 including the tank 3 or the vacuum pipe 12. In other words, the restriction on the construction route of piping can be reduced. As a result, it is possible to reduce restrictions on installation locations of production equipment used in manufacturing processes that require vacuum, vacuum generators such as vacuum pipes and dry pumps, and the arrangement planning of these vacuum equipments can be easily performed. Moreover, such a vacuum drain discharge device 1 can be easily configured.
 ここで、圧縮空気供給手段2から送る圧縮空気の圧力は特に限定されず、例えば排出配管6の設置場所やタンク3の大きさや耐圧性、或いは排出するドレン4の量などによって適宜決定することができるが、例えば0.2MPa程度とすることができる。 Here, the pressure of the compressed air sent from the compressed air supply means 2 is not particularly limited, and may be appropriately determined depending on, for example, the installation location of the discharge pipe 6, the size and pressure resistance of the tank 3, or the amount of drain 4 to be discharged. For example, it can be about 0.2 MPa.
 また、図2に本発明の真空ドレン排出装置の別の一例の概略図を示す。図2に示すように、真空ドレン排出装置31に、ドレン4の回収時にタンク3内を真空状態にするための真空配管12とタンク3間の真空流路9をドレン配管5とは別に設けることができる。そして、この真空流路9上及び圧縮空気供給手段2とタンク3間の圧縮空気流路10上に、タンク3への接続流路を圧縮空気供給手段2か真空配管12かに切り替える流路切り替え手段7を設けることができる。 FIG. 2 shows a schematic diagram of another example of the vacuum drain discharge device of the present invention. As shown in FIG. 2, the vacuum drain discharge device 31 is provided with a vacuum pipe 12 for making the inside of the tank 3 in a vacuum state when the drain 4 is recovered and a vacuum flow path 9 between the tank 3 separately from the drain pipe 5. Can do. Then, on this vacuum flow path 9 and on the compressed air flow path 10 between the compressed air supply means 2 and the tank 3, the flow path switching for switching the connection flow path to the tank 3 to the compressed air supply means 2 or the vacuum pipe 12. Means 7 can be provided.
 この流路切り替え手段7でタンク3への接続流路を圧縮空気供給手段2か真空配管12かに切り替えることによって、ドレン配管5からのドレンの回収と排出配管6へのドレンの排出を切り替えることができる。すなわち、タンク3への接続流路を真空配管12に切り替えた場合、圧縮空気供給手段2からの圧縮空気がタンク3内に供給されず、真空配管12とタンク3間の真空流路9を通じてタンク3内が吸引され、タンク3内が真空状態となり、ドレン配管5を通じて真空配管12からドレンが回収され、タンク3内に貯留される。 By switching the connection flow path to the tank 3 to the compressed air supply means 2 or the vacuum pipe 12 by the flow path switching means 7, the drain recovery from the drain pipe 5 and the drain discharge to the discharge pipe 6 are switched. Can do. That is, when the connection flow path to the tank 3 is switched to the vacuum pipe 12, the compressed air from the compressed air supply means 2 is not supplied into the tank 3, and the tank is passed through the vacuum flow path 9 between the vacuum pipe 12 and the tank 3. The inside of the tank 3 is sucked, the inside of the tank 3 is brought into a vacuum state, and the drain is collected from the vacuum pipe 12 through the drain pipe 5 and stored in the tank 3.
 一方、タンク3への接続流路を圧縮空気供給手段2に切り替えた場合、真空流路9が遮断されてタンク3内の吸引が行われず、圧縮空気供給手段2から圧縮空気流路10を通じてタンク3内に圧縮空気が送られてドレン4が排出配管6から排出される。
 ここで、ドレン配管5に、タンク3から真空配管12方向への逆流を止める逆止弁16と、排出配管6からタンク3方向への逆流を止める逆止弁17とを設けることによって、ドレン配管5及び排出配管6上に開閉弁を設けてドレンの回収と排出の切り替えに伴って、その開閉弁を操作するなどを行う必要もなく、真空ドレン排出装置の運用を容易に行うことができる。
On the other hand, when the connection flow path to the tank 3 is switched to the compressed air supply means 2, the vacuum flow path 9 is shut off and suction in the tank 3 is not performed, and the tank is passed from the compressed air supply means 2 through the compressed air flow path 10. Compressed air is sent into 3 and the drain 4 is discharged from the discharge pipe 6.
Here, the drain pipe 5 is provided with a check valve 16 for stopping the reverse flow from the tank 3 toward the vacuum pipe 12 and a check valve 17 for stopping the reverse flow from the discharge pipe 6 toward the tank 3. It is possible to easily operate the vacuum drain discharge device without providing an open / close valve on 5 and the discharge pipe 6 to operate the open / close valve in accordance with the switching between drain recovery and discharge.
 また、図2に示すように、真空ドレン排出装置31にタンク3内に貯留されたドレン4の液位を検出する液位検出手段8を設けることができる。さらに、この液位検出手段8によって検出したドレンの液位に従って、流路切り替え手段7によりタンク3への接続流路を切り替えるものとすることができる。
 このように、図1に示す真空ドレン排出装置1に加え、真空流路9、流路切り替え手段7、及び液位検出手段8を設け、この液位検出手段8によって検出したドレンの液位に従って、流路切り替え手段7によりタンク3への接続流路を切り替えることによって、ドレン配管5からのドレンの回収と排出配管6へのドレンの排出を切り替えるものであれば、ドレンの排出のタイミングを正確かつ容易に検出でき、ドレンの回収と排出を適切なタイミングで容易に切り替えることができるものとなる。そのため運用性が向上された真空ドレン排出装置となる。また、このような構成であれば自動運転への対応も容易に行うことができる。
In addition, as shown in FIG. 2, a liquid level detecting means 8 for detecting the liquid level of the drain 4 stored in the tank 3 can be provided in the vacuum drain discharge device 31. Furthermore, according to the drain liquid level detected by the liquid level detection means 8, the flow path switching means 7 can switch the connection flow path to the tank 3.
Thus, in addition to the vacuum drain discharge device 1 shown in FIG. 1, the vacuum flow path 9, the flow path switching means 7, and the liquid level detection means 8 are provided, and according to the drain liquid level detected by the liquid level detection means 8. If the drain switching from the drain pipe 5 and the drain discharging to the discharge pipe 6 are switched by switching the connection flow path to the tank 3 by the flow path switching means 7, the drain discharge timing is accurate. In addition, it can be easily detected, and drain recovery and discharge can be easily switched at an appropriate timing. Therefore, it becomes a vacuum drain discharge device with improved operability. Moreover, if it is such a structure, the response | compatibility to an automatic driving | operation can be performed easily.
 このとき、さらに、図3(A)(B)に示すように、圧縮空気供給手段2と流路切り替え手段7間に切り替え検出用流路13を設けることができる。この切り替え検出用流路13を通して圧縮空気供給手段2から流路切り替え手段7へ圧縮空気を送ることができるようになっている。
 また、図3(A)(B)に示すように、液位検出手段8を、例えば、タンク3内に貯留されたドレンの液位によって上下動可能なフロート14と、そのフロート14の上下動によって開閉可能であり、切り替え検出用流路13上に配置されるメカバルブ15とで構成することができる。
At this time, a switching detection flow path 13 can be provided between the compressed air supply means 2 and the flow path switching means 7 as shown in FIGS. The compressed air can be sent from the compressed air supply means 2 to the flow path switching means 7 through the switching detection flow path 13.
As shown in FIGS. 3A and 3B, the liquid level detection means 8 is, for example, a float 14 that can be moved up and down by the liquid level of the drain stored in the tank 3, and the vertical movement of the float 14. Can be opened and closed, and can be configured with a mechanical valve 15 disposed on the switching detection flow path 13.
 このような液位検出手段8では、貯留されるドレン量が増えて液位が上昇することによってフロート14が上昇し、所定の液位、すなわちフロート14が所定位置まで上昇した際にメカバルブ15が開くようになっており、メカバルブ15が開くことによって、切り替え検出用流路13を通じて圧縮空気供給手段2からの圧縮空気が流路切り替え手段7に送られ、ドレンが所定量貯留されたことを検出することができるようになっている。また、貯留されたドレン4が排出されて液位が下降することによってフロート14が下降し、フロート14が所定位置まで下降した際にメカバルブ15が閉じ、圧縮空気供給手段2から流路切り替え手段7への圧縮空気の供給が止まることによってドレンの排出が完了したことを検出することができるようになっている。 In such a liquid level detection means 8, the float 14 rises as the amount of stored drain increases and the liquid level rises. When the liquid level rises, that is, when the float 14 rises to a predetermined position, the mechanical valve 15 When the mechanical valve 15 is opened, the compressed air from the compressed air supply means 2 is sent to the flow path switching means 7 through the switching detection flow path 13, and it is detected that a predetermined amount of drain has been stored. Can be done. Further, when the stored drain 4 is discharged and the liquid level is lowered, the float 14 is lowered. When the float 14 is lowered to a predetermined position, the mechanical valve 15 is closed and the compressed air supply means 2 to the flow path switching means 7. It is possible to detect that the drainage has been completed by stopping the supply of compressed air.
 そして、流路切り替え手段7を、メカバルブ15の開閉によって変化する切り替え検出用流路13からの圧縮空気の圧力に従って、タンク3への接続流路を切り替えるエアオペレーションバルブとすることができる。このエアオペレーションバルブは複数のポートを有し、図3(A)(B)に示すエアオペレーションバルブの例の場合には、4つのポートを有している。ここで、圧縮空気供給手段2からエアオペレーションバルブへ送る圧縮空気の圧力は、使用するエアオペレーションバルブの仕様に従って、適宜決定すれば良い。 The flow path switching means 7 can be an air operation valve that switches the flow path to the tank 3 in accordance with the pressure of the compressed air from the switching detection flow path 13 that changes as the mechanical valve 15 opens and closes. This air operation valve has a plurality of ports, and in the example of the air operation valve shown in FIGS. 3A and 3B, it has four ports. Here, the pressure of the compressed air sent from the compressed air supply means 2 to the air operation valve may be appropriately determined according to the specifications of the air operation valve to be used.
 このような構成とすれば、電気的な機器や制御盤を使用せずに、真空配管12からドレンを回収して排出配管6へ排出することができるものとなり、よりコストを低減することができる。また、小型化された真空ドレン排出装置とすることができる。本発明の真空ドレン排出装置では、ドレン配管5及びタンク3を真空配管12の下方に設置する必要はあるものの、排出配管6の施工ルートの制約を軽減できるので、真空ドレン排出装置自体の配置には大きな制約はなく、さらに、このように小型化されたものであれば、真空設備の配置計画をより容易に行うことができるものとなる。その結果、工場全体の真空設備を集中化することができる。 With such a configuration, the drain can be collected from the vacuum pipe 12 and discharged to the discharge pipe 6 without using an electrical device or control panel, and the cost can be further reduced. . Moreover, it can be set as the vacuum drain discharge device reduced in size. In the vacuum drain discharge device of the present invention, although it is necessary to install the drain pipe 5 and the tank 3 below the vacuum pipe 12, the restrictions on the construction route of the discharge pipe 6 can be reduced. There is no major restriction, and further, if it is downsized in this way, the layout planning of the vacuum equipment can be performed more easily. As a result, the vacuum equipment in the entire factory can be centralized.
 また、図4に本発明の真空ドレン排出装置の別の一例の概略図を示す。図4に示すように、真空ドレン排出装置41は、フロート14a、14bとメカバルブ15a、15bとを2対有し、その2つのフロート14a、14bがそれぞれの高さ位置を変えて設置されたものとすることができる。この場合、切り替え検出用流路13a、13bも2つ設ける。そして、低い位置に設置したフロート14aと対になるメカバルブ15a側を、フロート14aが所定位置まで下降した状態(図5の(A)参照)で開くようにし、メカバルブ15aが開いて切り替え検出用流路13aを通じて圧縮空気供給手段2からの圧縮空気が流路切り替え手段7に送られた際に、流路切り替え手段7によりタンク3への接続流路を真空配管12に切り替えるようにする。 FIG. 4 shows a schematic diagram of another example of the vacuum drain discharge device of the present invention. As shown in FIG. 4, the vacuum drain discharge device 41 has two pairs of floats 14a and 14b and mechanical valves 15a and 15b, and the two floats 14a and 14b are installed at different height positions. It can be. In this case, two switching detection flow paths 13a and 13b are also provided. Then, the mechanical valve 15a side paired with the float 14a installed at a low position is opened in a state where the float 14a is lowered to a predetermined position (see FIG. 5A), and the mechanical valve 15a is opened so that the switching detection flow When compressed air from the compressed air supply means 2 is sent to the flow path switching means 7 through the path 13a, the flow path switching means 7 switches the connection flow path to the tank 3 to the vacuum pipe 12.
 一方、高い位置に設置したフロート14bと対になるメカバルブ15b側を、フロート14bが所定位置まで上昇した状態(図5の(B)参照)で開くようにし、メカバルブ15bが開いて切り替え検出用流路13bを通じて圧縮空気供給手段2からの圧縮空気が流路切り替え手段7に送られた際に、流路切り替え手段7によりタンク3への接続流路を圧縮空気供給手段2に切り替えるようにする。 On the other hand, the mechanical valve 15b paired with the float 14b installed at a high position is opened in a state where the float 14b is raised to a predetermined position (see FIG. 5B), and the mechanical valve 15b is opened so that the switching detection flow When the compressed air from the compressed air supply means 2 is sent to the flow path switching means 7 through the path 13b, the flow path switching means 7 switches the connection flow path to the tank 3 to the compressed air supply means 2.
 このように、フロート14a、14bとメカバルブ15a、15bとを2対有し、その2つのフロート14a、14bがそれぞれの高さ位置を変えて設置されたものであれば、低い位置に設置したフロート14aと対になるメカバルブ15aが開いた際に、流路切り替え手段7によりタンク3への接続流路を真空配管12に切り替えてドレンの回収を行い、高い位置に設置したフロート14bと対になるメカバルブ15bが開いた際に、流路切り替え手段7によりタンク3への接続流路を圧縮空気供給手段2に切り替えてドレンの排出を行うようにすることで、高さの高いタンク3、すなわちより多くのドレンを貯留できる容量の大きいタンク3を用いた場合の液位の検出に対応することができる。もちろん、フロートとメカバルブの対を3つ以上にし、更にタンクの容量を大きくすることも可能である。 Thus, if there are two pairs of the floats 14a and 14b and the mechanical valves 15a and 15b and the two floats 14a and 14b are installed at different height positions, the float installed at a low position is used. When the mechanical valve 15a paired with 14a is opened, the flow path switching means 7 switches the connection flow path to the tank 3 to the vacuum pipe 12, collects drain, and pairs with the float 14b installed at a high position. When the mechanical valve 15b is opened, the flow switching means 7 switches the connection flow path to the tank 3 to the compressed air supply means 2 so as to discharge the drain, so that the tank 3 having a higher height, that is, more It is possible to cope with the detection of the liquid level when the tank 3 having a large capacity capable of storing a large amount of drain is used. Of course, it is possible to increase the capacity of the tank by increasing the number of float / mechanical valve pairs to three or more.
 ここで、図4に示すように、切り替え検出用流路13a、13b上に、メカバルブ15a、15bが閉じた後に切り替え検出用流路13a、13b内の圧縮空気を排気するクイックエキゾーストバルブ20を設けることができる。このクイックエキゾーストバルブ20は、メカバルブ15a、15bに接続する側のポート、流路切り替え手段7に接続する側のポート、及び外部に圧縮空気を排出するポートの3つのポートを有しており、メカバルブが閉じてメカバルブに接続する側のポートの圧力が流路切り替え手段7に接続する側のポートの圧力より低くなると、切り替え検出用流路13a、13b内の圧縮空気を外部に排出することができるものである。 Here, as shown in FIG. 4, a quick exhaust valve 20 for exhausting the compressed air in the switching detection flow paths 13a and 13b after the mechanical valves 15a and 15b are closed is provided on the switching detection flow paths 13a and 13b. be able to. The quick exhaust valve 20 has three ports, a port connected to the mechanical valves 15a and 15b, a port connected to the flow path switching means 7, and a port for discharging compressed air to the outside. When the pressure of the port connected to the mechanical valve becomes lower than the pressure of the port connected to the flow path switching means 7, the compressed air in the switching detection flow paths 13a and 13b can be discharged to the outside. Is.
 またこのとき、流路切り替え手段7によるタンク3への接続流路を自動で切り替えることによって、ドレン配管5からのドレンの回収と排出配管6への排出を自動で切り替えるものとすれば、完全自動化可能な真空ドレン排出装置となり、運用性をさらに向上することができる。この切り替えの自動化は、本態様のように、メカバルブとエアオペレーションバルブを用いて機械的に行うことができる。もちろん、電磁弁等を用い、電気的制御回路を用いて自動切り替えを行ってもよい。 Further, at this time, if the connection flow path to the tank 3 by the flow path switching means 7 is automatically switched to automatically switch the recovery of the drain from the drain pipe 5 and the discharge to the discharge pipe 6, it is fully automated. It becomes a possible vacuum drain discharge device, and the operability can be further improved. This switching automation can be mechanically performed using a mechanical valve and an air operation valve as in this embodiment. Of course, automatic switching may be performed using an electromagnetic valve or the like and using an electrical control circuit.
 このような本発明の真空ドレン排出装置を用いてドレンを回収して排出する方法について、図3(A)(B)を用いて以下に説明する。図3(A)はドレンを真空配管12から回収する状態を示す図であり、図3(B)は貯留されたドレン4を排出配管6へ排出する状態を示す図である。
 図3(A)に示すように、まず、タンク3内にドレンが貯留されていない状態では、フロート14は下降した状態であり、メカバルブ15は閉じている。この状態では、圧縮空気供給手段2からの圧縮空気が流路切り替え手段7に到達せず、流路切り替え手段7はタンク3への接続流路を真空配管12に接続している。そのため、逆止弁17によって排出配管6からの逆流が止められつつ、真空流路9を通じてタンク3内が吸引されてタンク3内は真空状態となり、真空配管12からドレン配管5を通じてドレンを回収し、タンク3にドレンを貯留する。
A method for recovering and discharging the drain using the vacuum drain discharge device of the present invention will be described below with reference to FIGS. FIG. 3A is a diagram showing a state where the drain is collected from the vacuum pipe 12, and FIG. 3B is a diagram showing a state where the stored drain 4 is discharged to the discharge pipe 6.
As shown in FIG. 3A, first, in a state where no drain is stored in the tank 3, the float 14 is in a lowered state, and the mechanical valve 15 is closed. In this state, the compressed air from the compressed air supply means 2 does not reach the flow path switching means 7, and the flow path switching means 7 connects the connection flow path to the tank 3 to the vacuum pipe 12. Therefore, while the backflow from the discharge pipe 6 is stopped by the check valve 17, the inside of the tank 3 is sucked through the vacuum flow path 9 to be in a vacuum state, and the drain is collected from the vacuum pipe 12 through the drain pipe 5. The drain is stored in the tank 3.
 そして、タンク3内のドレン4の液位が上昇すると共にフロート14も上昇し、図3(B)に示すように、フロート14が所定位置まで上昇するとメカバルブ15が開き、切り替え検出用流路13を通じて圧縮空気供給手段2からの圧縮空気が流路切り替え手段7に送られ、流路切り替え手段7はタンク3への接続流路を圧縮空気供給手段2に切り替える。そのため、真空流路9を通じたタンク3内の吸引が遮断され、逆止弁16によってタンク3からの逆流が止められつつ、圧縮空気供給手段2からの圧縮空気がタンク3内に送られ、送られた圧縮空気によってドレン4が押し出されて排出配管6へ排出する。 Then, the liquid level of the drain 4 in the tank 3 rises and the float 14 also rises. As shown in FIG. 3B, when the float 14 rises to a predetermined position, the mechanical valve 15 opens, and the switching detection flow path 13. Compressed air from the compressed air supply means 2 is sent to the flow path switching means 7, and the flow path switching means 7 switches the connection flow path to the tank 3 to the compressed air supply means 2. Therefore, the suction in the tank 3 through the vacuum channel 9 is shut off, and the backflow from the tank 3 is stopped by the check valve 16, while the compressed air from the compressed air supply means 2 is sent into the tank 3 and sent. The drain 4 is pushed out by the compressed air and discharged to the discharge pipe 6.
 このようにしてドレンが排出され液位が下降すると、フロート14が所定位置まで下降してメカバルブ15が閉じ、図3(A)の状態となって、再びドレンの回収を行う。これらを繰り返すことによって、高価で複雑な制御回路等を用いずとも、機械的に自動でドレンの回収及び排出を効率的に行うことができる。 When the drain is discharged in this way and the liquid level is lowered, the float 14 is lowered to a predetermined position, the mechanical valve 15 is closed, and the state shown in FIG. By repeating these steps, it is possible to mechanically and automatically collect and discharge the drain efficiently without using an expensive and complicated control circuit.
 ここで、図3(A)(B)に示すように、圧縮空気供給手段2からの圧縮空気流路10上、或いは切り替え検出用流路13上に供給する圧縮空気の圧力を調整して安定させるための、減圧弁18或いはレギュレータを設けても良い。例えば、図3、図4に示すように、圧縮空気流路10上に減圧弁18を設けることにより、エアオペレーションバルブ7へ送る圧縮空気の圧力と、タンク3に送る圧縮空気の圧力を変えることができ、圧縮空気の圧力をエアオペレーションバルブ7やタンク3に応じて適宜調整できる。ここで、例えば、エアオペレーションバルブ7へ送る圧縮空気の圧力を0.5MPa程度、タンク3に送る圧縮空気の圧力を0.2MPa程度とすることができる。また、圧縮空気内の油分、水分、ゴミなどを除去するフィルタ機能を有するものを用いることもできる。また、図3(A)(B)に示すように、流路上を流れる圧縮空気の流量を調整するためのスピードコントローラー19を設けても良い。
 
Here, as shown in FIGS. 3A and 3B, the pressure of the compressed air supplied to the compressed air flow path 10 from the compressed air supply means 2 or the switching detection flow path 13 is adjusted and stabilized. For this purpose, a pressure reducing valve 18 or a regulator may be provided. For example, as shown in FIGS. 3 and 4, by providing a pressure reducing valve 18 on the compressed air flow path 10, the pressure of the compressed air sent to the air operation valve 7 and the pressure of the compressed air sent to the tank 3 can be changed. The pressure of the compressed air can be adjusted as appropriate according to the air operation valve 7 and the tank 3. Here, for example, the pressure of the compressed air sent to the air operation valve 7 can be about 0.5 MPa, and the pressure of the compressed air sent to the tank 3 can be about 0.2 MPa. Moreover, what has the filter function which removes the oil component in a compressed air, a water | moisture content, dust, etc. can also be used. Further, as shown in FIGS. 3A and 3B, a speed controller 19 for adjusting the flow rate of the compressed air flowing on the flow path may be provided.
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these.
(実施例)
 図4に示すようなフロートとメカバルブを2対有した本発明の真空ドレン排出装置を用い、ドレンの回収及び排出を行った。ここで、排出配管は最終的に真空ドレン排出装置より上方にドレンを排出し、エアオペレーションバルブへ送る圧縮空気の圧力を0.5MPa、タンクに送る圧縮空気の圧力を0.2MPaとした。そして、ドレンの回収及び排出を1つのサイクルとし、そのサイクルを機械的に自動で繰り返し行い、ドレンの排出量を測定した。
 その結果、ドレンを真空ドレン排出装置より上方に設置した配管に排出することができた。また、1時間当たりの排出量は96.6L/時間(2.8L/サイクル×34.5サイクル/時間)であった。また、真空配管の圧力変動は一切なくドレンの回収及び排出を行うことができた。
 一方、後述する比較例では、真空ドレン排出装置より上方に設置した配管にドレンを全く排出することが出来なかった。
(Example)
Drain was collected and discharged using the vacuum drain discharge device of the present invention having two pairs of floats and mechanical valves as shown in FIG. Here, the discharge pipe finally discharged drain above the vacuum drain discharge device, the pressure of the compressed air sent to the air operation valve was 0.5 MPa, and the pressure of the compressed air sent to the tank was 0.2 MPa. And the collection | recovery and discharge | emission of drain were made into one cycle, the cycle was repeated mechanically automatically, and the discharge | emission amount of the drain was measured.
As a result, the drain could be discharged to a pipe installed above the vacuum drain discharge device. The discharge amount per hour was 96.6 L / hour (2.8 L / cycle × 34.5 cycles / hour). Moreover, there was no pressure fluctuation in the vacuum piping, and the drain could be collected and discharged.
On the other hand, in the comparative example which will be described later, the drain could not be discharged at all to the pipe installed above the vacuum drain discharge device.
 このように、本発明の真空ドレン排出装置は、簡単な構成で、ドレンの排出能力を向上でき、排出配管をドレンが貯留されたタンクより上方へ設置でき、すなわち配管の施工ルートの制約を軽減できることが確認できた。
 
As described above, the vacuum drain discharge device of the present invention can improve the drain discharge capacity with a simple configuration, and the discharge pipe can be installed above the tank in which the drain is stored, that is, the restriction of the pipe construction route is reduced. I was able to confirm that it was possible.
(比較例)
 本発明の圧縮空気供給手段を有さず、自然勾配でドレンを排出する従来の真空ドレン排出装置を用いて、ドレンの回収及び排出を行った。
 その結果、1時間当たりの排出量は15L/時間であり、効率が悪く、度々排出配管がドレンでつまりを生じた。しかも、比較例では排出配管は実施例のように真空ドレン排出装置より上方に設置することはできず、真空ドレン排出装置より上方に設置したならば排出配管にドレンを全く排出することが出来ない。
(Comparative example)
Drain was collected and discharged using a conventional vacuum drain discharge device that does not have the compressed air supply means of the present invention and discharges the drain with a natural gradient.
As a result, the discharge amount per hour was 15 L / hour, the efficiency was poor, and the discharge pipe was often clogged with drainage. Moreover, in the comparative example, the discharge pipe cannot be installed above the vacuum drain discharge device as in the embodiment, and if it is installed above the vacuum drain discharge device, no drain can be discharged to the discharge pipe. .
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (6)

  1.  真空設備における真空配管に接続し、該真空配管からドレンを回収して排出する真空ドレン排出装置であって、少なくとも、前記回収したドレンを貯留するタンクと、該タンク内に圧縮空気を送る圧縮空気供給手段とを有し、前記タンク内に貯留されたドレンを前記圧縮空気供給手段からの圧縮空気によって排出するものであることを特徴とする真空ドレン排出装置。
     
    A vacuum drain discharge device that is connected to a vacuum pipe in a vacuum facility and collects and discharges drain from the vacuum pipe, and at least a tank that stores the collected drain, and compressed air that sends compressed air into the tank A vacuum drain discharge device characterized by having a supply means for discharging the drain stored in the tank by the compressed air from the compressed air supply means.
  2.  前記真空配管及び前記タンクに接続し、前記真空配管からドレンを回収して前記タンクに貯留するドレン配管と、前記タンクに接続して前記貯留したドレンを排出する排出配管と、前記タンク内を真空状態にするための前記真空配管と前記タンク間の真空流路上及び前記圧縮空気供給手段と前記タンク間の圧縮空気流路上に配置され、前記タンクへの接続流路を前記圧縮空気供給手段か前記真空配管かに切り替える流路切り替え手段と、前記タンク内に貯留されたドレンの液位を検出する液位検出手段とを有し、該検出したドレンの液位に従って、前記流路切り替え手段により前記タンクへの接続流路を切り替えることによって、前記ドレン配管からの前記ドレンの回収と前記排出配管へのドレンの排出を切り替えるものであることを特徴とする請求項1に記載の真空ドレン排出装置。
     
    A drain pipe connected to the vacuum pipe and the tank, collecting drain from the vacuum pipe and storing it in the tank, a discharge pipe connecting to the tank and discharging the stored drain, and a vacuum in the tank Arranged on the vacuum flow path between the vacuum pipe and the tank for making a state and on the compressed air flow path between the compressed air supply means and the tank, and the connection flow path to the tank is the compressed air supply means or the A flow path switching means for switching to a vacuum pipe; and a liquid level detection means for detecting the liquid level of the drain stored in the tank, and according to the detected drain liquid level, the flow path switching means By switching the connection flow path to the tank, the drain recovery from the drain pipe and the drain discharge to the discharge pipe are switched. Vacuum drainage system according to claim 1 that.
  3.  さらに、前記圧縮空気供給手段と前記流路切り替え手段間に切り替え検出用流路を有し、前記液位検出手段は、前記タンク内に貯留されたドレンの液位によって上下動可能なフロートと、該フロートの上下動によって開閉可能であり、前記切り替え検出用流路上に配置されるメカバルブとから成り、前記流路切り替え手段は、前記メカバルブの開閉によって変化する前記切り替え検出用流路からの圧縮空気の圧力に従って、前記タンクへの接続流路を切り替えるエアオペレーションバルブであることを特徴とする請求項1又は請求項2に記載の真空ドレン排出装置。
     
    Further, there is a switching detection flow path between the compressed air supply means and the flow path switching means, the liquid level detection means is a float that can be moved up and down by the liquid level of the drain stored in the tank, The mechanical valve disposed on the switching detection flow path can be opened and closed by the vertical movement of the float, and the flow path switching means includes compressed air from the switching detection flow path that changes by opening and closing of the mechanical valve. The vacuum drain discharge device according to claim 1, wherein the vacuum drain discharge device is an air operation valve that switches a connection flow path to the tank according to the pressure of the tank.
  4.  前記フロートと前記メカバルブとを2対有し、該2つのフロートがそれぞれの高さ位置を変えて設置されたものであることを特徴とする請求項3に記載の真空ドレン排出装置。
     
    4. The vacuum drain discharge device according to claim 3, wherein the float and the mechanical valve have two pairs, and the two floats are installed at different height positions.
  5.  前記ドレン配管に、前記タンクから前記真空配管方向への逆流を止める逆止弁と、前記排出配管に、前記排出配管から前記タンク方向への逆流を止める逆止弁とを有するものであることを特徴とする請求項2乃至請求項4のいずれか1項に記載の真空ドレン排出装置。
     
    The drain pipe has a check valve for stopping the back flow from the tank to the vacuum pipe direction, and the discharge pipe has a check valve for stopping the back flow from the discharge pipe to the tank direction. The vacuum drain discharge device according to any one of claims 2 to 4, wherein the vacuum drain discharge device is characterized.
  6.  前記流路切り替え手段による前記タンクへの接続流路を自動で切り替えることによって、前記ドレン配管からの前記ドレンの回収と前記排出配管への排出を自動で切り替えるものであることを特徴とする請求項2乃至請求項5のいずれか1項に記載の真空ドレン排出装置。
     
    The automatic switching of the connection flow path to the tank by the flow path switching means automatically switches the recovery of the drain from the drain pipe and the discharge to the discharge pipe. The vacuum drain discharge device according to any one of claims 2 to 5.
PCT/JP2010/005619 2009-11-27 2010-09-15 Vacuum drainage discharging device WO2011064929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-270183 2009-11-27
JP2009270183A JP5493775B2 (en) 2009-11-27 2009-11-27 Vacuum drain discharge device

Publications (1)

Publication Number Publication Date
WO2011064929A1 true WO2011064929A1 (en) 2011-06-03

Family

ID=44066044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005619 WO2011064929A1 (en) 2009-11-27 2010-09-15 Vacuum drainage discharging device

Country Status (2)

Country Link
JP (1) JP5493775B2 (en)
WO (1) WO2011064929A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453308A (en) * 2013-09-12 2013-12-18 苏州市红日生物设备有限公司 Automatic vacuum drainage device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079691B2 (en) * 2013-06-14 2017-02-15 Jfeスチール株式会社 Method for recovering light oil from coke oven gas
JP6789754B2 (en) * 2016-10-19 2020-11-25 三菱造船株式会社 Fuel gas supply device and ship and fuel gas supply method
JP6192796B1 (en) * 2016-12-07 2017-09-06 日機装株式会社 Leak detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959055A (en) * 1957-07-09 1960-11-08 Jersey Prod Res Co Fluid meter
JPS50147228U (en) * 1974-05-22 1975-12-06
JPH02221800A (en) * 1989-02-23 1990-09-04 Samuson:Kk Vacuum drain exhauster
JPH04366092A (en) * 1991-06-11 1992-12-17 Smc Corp Draining device
JPH0914145A (en) * 1995-07-03 1997-01-14 Spirax Sarco Ltd Pressure pump
DE102007002164A1 (en) * 2007-01-15 2008-07-17 Herbert Bauer GmbH & Co. Oberflächentechnik-Stahlbau-Rohrwerk KG Sump pump for seepage liquid has compressed air line ending in upper part of collection cavity and venting valve in compressed air line to close venting line
US7506659B2 (en) * 2005-09-19 2009-03-24 Tamko Roofing Products, Inc. System for liquid removal in a vacuum environment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959055A (en) * 1957-07-09 1960-11-08 Jersey Prod Res Co Fluid meter
JPS50147228U (en) * 1974-05-22 1975-12-06
JPH02221800A (en) * 1989-02-23 1990-09-04 Samuson:Kk Vacuum drain exhauster
JPH04366092A (en) * 1991-06-11 1992-12-17 Smc Corp Draining device
JPH0914145A (en) * 1995-07-03 1997-01-14 Spirax Sarco Ltd Pressure pump
US7506659B2 (en) * 2005-09-19 2009-03-24 Tamko Roofing Products, Inc. System for liquid removal in a vacuum environment
DE102007002164A1 (en) * 2007-01-15 2008-07-17 Herbert Bauer GmbH & Co. Oberflächentechnik-Stahlbau-Rohrwerk KG Sump pump for seepage liquid has compressed air line ending in upper part of collection cavity and venting valve in compressed air line to close venting line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103453308A (en) * 2013-09-12 2013-12-18 苏州市红日生物设备有限公司 Automatic vacuum drainage device

Also Published As

Publication number Publication date
JP5493775B2 (en) 2014-05-14
JP2011112176A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5493775B2 (en) Vacuum drain discharge device
CN108333279A (en) Dissolved gases in insulating oil on-Line Monitor Device and gases dissolved in insulation oil escape method
JP2009114855A (en) Vacuum station
JP2014513259A (en) Condensate discharge device for compressed gas systems
CN101963070B (en) Drain device for mine gas extraction system
CN110454137A (en) A kind of blowdown apparatus of natural gas air inlet separator mesolow liquid
CN103103015A (en) Special engine oil filter with electromagnetic filtration device and oil filtration method
CN216619358U (en) Compressed air purification device and compressed air equipment
CN102564820B (en) Full-automatic sample gas safe processing device
CN111810070B (en) Core collecting method for gas lift reverse circulation coring process
CN108331735B (en) Energy-saving intelligent vacuum station
JP2014062567A (en) Drain discharge device in vacuum system
US11624480B2 (en) Petroleum production process system and method of operation
KR101157139B1 (en) Liquid separation and Auto-drain devices
KR101475418B1 (en) Removal of moisture device for power transformer
CN211144463U (en) Separation system
CN201087441Y (en) Relay pressurization non-negative pressure secondary water supply equipment for super high-rise building
KR101315034B1 (en) Liquid separation and Auto-drain devices improving valve closing
JP2004022692A (en) Apparatus for extracting gas dissolved in oil
JP6185284B2 (en) Pump equipment
KR20110035795A (en) Drain trap
CN100496774C (en) Cavity cleaning method for semiconductor etching equipment
CN114110430A (en) Compressed air purification device and compressed air equipment
RU2714027C1 (en) Condensate discharge device
JP2015020086A (en) Floating oil recovery facility in power plant, and floating oil recovery method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832785

Country of ref document: EP

Kind code of ref document: A1