WO2011062713A1 - Apparatuses for posterior surgery - Google Patents
Apparatuses for posterior surgery Download PDFInfo
- Publication number
- WO2011062713A1 WO2011062713A1 PCT/US2010/052740 US2010052740W WO2011062713A1 WO 2011062713 A1 WO2011062713 A1 WO 2011062713A1 US 2010052740 W US2010052740 W US 2010052740W WO 2011062713 A1 WO2011062713 A1 WO 2011062713A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- patient
- support member
- platen
- support
- tube
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G13/00—Operating tables; Auxiliary appliances therefor
- A61G13/02—Adjustable operating tables; Controls therefor
- A61G13/04—Adjustable operating tables; Controls therefor tiltable around transverse or longitudinal axis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G13/00—Operating tables; Auxiliary appliances therefor
- A61G13/0036—Orthopaedic operating tables
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G13/00—Operating tables; Auxiliary appliances therefor
- A61G13/0036—Orthopaedic operating tables
- A61G13/0054—Orthopaedic operating tables specially adapted for back or spinal surgeries
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G13/00—Operating tables; Auxiliary appliances therefor
- A61G13/10—Parts, details or accessories
- A61G13/12—Rests specially adapted therefor; Arrangements of patient-supporting surfaces
- A61G13/1205—Rests specially adapted therefor; Arrangements of patient-supporting surfaces for specific parts of the body
- A61G13/121—Head or neck
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G13/00—Operating tables; Auxiliary appliances therefor
- A61G13/10—Parts, details or accessories
- A61G13/12—Rests specially adapted therefor; Arrangements of patient-supporting surfaces
- A61G13/1205—Rests specially adapted therefor; Arrangements of patient-supporting surfaces for specific parts of the body
- A61G13/122—Upper body, e.g. chest
Definitions
- This patent application is directed to apparatuses for positioning a patient in a prone position for posterior surgery or medical procedures.
- an anesthetized patient assumes "dead weight" which makes that person feel heavier.
- the weight of the patient exposes staff members, such as nurses, assistants, and doctors, to injuries when lifting the patient. Often times a staff member must lean across a gurney or operating room table exposing themselves to lifting injuries. Sometimes, the weight of the patient is not evenly distributed potentially risking injury to a staff member or patient. Accordingly, liability issues arise when patients are dropped or injured while being oriented on the operating table while sedated. Doctors and hospitals are also exposed to liability when operating staff are injured lifting and positioning sedated patients.
- a further potential problem associated with turning the patient from his/her stomach or back involves the potential for patient motion or staff interference with life- support and life-monitoring systems that may be attached to the patient, such as an intravenous line, a catheter, electrode monitoring lines for monitoring the patient's vital signs, and an endotracheal tube for the purposes of administering oxygen and/or anesthesia to the patient. If any one of these life-support or life-monitoring systems is pulled out, crimped, or twisted, it can injure the patient and/or the operating staff.
- Wilson Frame allows the abdomen to hang pendulous and free. It is often difficult to manually manipulate the patient once placed onto the operating table to ensure proper alignment with the Wilson Frame underneath the patient.
- Anthropometric considerations such as patient size, including weight and width, cause the operating staff to ensure that proper padding and elevations are used to support the head, chest, and legs. It is not uncommon to find operating staff stuffing pillows or bedding underneath a patient to adjust for different anthropometric features of a patient.
- Described herein are apparatuses, including systems and several mechanical elements, assemblies and subsystems, for rotating, transferring, positioning, or lifting a patient for purposes of performing a medical procedure where a patient is positioned in a prone or semi-prone position for the procedure.
- the patient may be rotated from a supine position to a prone position, and vice versa.
- a system in one embodiment, includes first and second center-of-gravity (COG) assemblies.
- COG center-of-gravity
- Opposing patient-support platens— an anterior platen (for abutting the front portions of the patient) and a posterior platen (for abutting back portions of the patient) — are coupled to a corresponding end of the first and second COG assemblies.
- the first and second COG assemblies are each coupled to a corresponding one of a pair of floating-spindle heads. Each one of the floating-spindle heads is disposed on a corresponding lift column.
- the COG assemblies provide for an axis of rotation that is outside the plane of platens upon which the patient is disposed. Specifically, the system provides a rotation axis outside the plane of either subjacent or superjacent patient- support platform, and more closely aligned with the center-of-gravity.
- the COG assemblies adjust a separation distance between the axis of rotation and the center-of-gravity defined by a combination of the patient and the supporting platens. Achieving controlled patient-pad compression is a pre-condition to safely clamp, secure, pick up, and rotate a patient 180 degrees from prone to supine position, or supine to prone position.
- a lost-motion-over-travel system prevents the platens from continuing to travel toward the patient when lowering a platen toward the patient, once optimal compression forces exerted on the patient via a platen (and/or the platen's constituent-support padding) is obtained.
- registration plates coupled to the system, conveniently align the attachment mechanisms of each COG assembly with distal ends of one or more platens. For instance, if the anterior platen is placed on the surface of an operating table and is detached from the system, the distal ends of the anterior platen may telescopically extend beyond the ends of the table. When retrieving a patient from the operating table, the registration plates allow for medical staff to align the system so that it straddles the operating table with the attachment mechanisms of the COG assembly in alignment with platen tubes (or other complimentary attachment
- the system eliminates the need for operating room staff to manually lift and place an anesthetized patient in prone or supine positions.
- the system also provides safety for the patient and for medical staff charged with turning the patient.
- the system includes powered-lift columns that lift and lower platens between which a patient is disposed.
- the powered-lift columns in embodiments described herein, are typically electrically powered, but it is appreciated by those skilled in the art having the benefit this disclosure, that these powered-lift columns are not so limited and may be powered by any suitable means including but not limited to hydraulics and pneumatics.
- Various embodiments include several mechanical elements, assemblies and subsystems, such as, but not limited to, dual-rack-and-pinion subsystems, lost motion devices, gas shock absorbers, and ratchet and pawl subsystems. These mechanical elements, assemblies, and subsystems are combined in a unique manner to provide a patient safety transfer system operable to safely rotate a patient from a supine to prone position, and from a prone to supine position.
- each of these allow a top set of racks to extend simultaneously with the lower set of racks. This is used in the COG assembly (described in greater detail below) and provides a self-centering function. With respect to lost-motion devices, in most applications the driven load stops moving when it contacts a fixed stop and the powered device continues to lower in a free state.
- Gas-shock absorbers are used to counter-act large weights in many mechanisms such as a rear hatch door in a vehicle.
- the gas-shock absorbers are sized to each application in order to reduce free energy caused by gravity as well as provide an ergonomic, realistic amount of energy for human beings to safely perform a given manual function, such as, in the embodiments, rotating a patient from supine to prone and vice versa.
- Ratchet-and-pawl systems provide mechanisms with the ability to back-drive in one direction and catch in the opposite direction of rotation as is used in the adjustable frame system.
- the various embodiments are part of an illustrative patient-safety-transfer system that includes a lift-column assembly that is mounted to a portable-caster-base assembly. Each caster-base assembly is tied to the other with a drawbar that has an operating position (as shown Fig. 1) and a collapsed-storage position (not shown).
- a floating-spindle-head assembly is mounted on top of each lift-column assembly.
- a COG assembly is mounted to the inboard side of each floating-spindle-head assembly with a spindle shaft allowing for rotation of the COG assembly.
- the COG assembly adjusts open and shut with a dual-rack-and-pinion device to open both or close both posterior and anterior shafts simultaneously.
- a platen-latch assembly is mounted to each end of the COG assembly to manually lock onto the platen tubes located at the distal ends of each platen.
- Each COG assembly has one platen-latch assembly for the posterior platen and one latch assembly for the anterior platen
- One posterior platen is used for the posterior side of patients and has two telescoping shafts to provide a safety distance (approximately 6.0 inches in one embodiment, but other suitable distances may be implemented) between the COG- platen latches and the patient, while the patient is lying on the platen.
- Platen-tube extensions can be collapsed so as to be flush with an operating table when a transfer or rotation is complete in order to provide patient access during an operating room procedure.
- One anterior platen is used for the anterior side of patients and also has two telescoping devices to provide patients a safe distance away from the COG assembly during the hook-up phase of the transfer.
- a safety-belt system (one or more safety belts) is used to engage the posterior platen and the anterior platens together for the rotate, or patient turning, phase. Padding may be coupled to the safety-belt system to help ensure appendages of the patient are secured while rotated.
- Pre-stage conditions for an illustrative embodiment describe specifics of the lowering function, latching of COG assembly to posterior and anterior platens, COG self centering features, COG assembly-self-centering-ratchet-and pawl-functions, and finally the spindle-lost motion functions. More particularly, the pre-stage conditions are: (1) the posterior platen is manually pre-staged onto the operating room (OR) table and each telescopic end of the platen is advanced into a locked position; (2) a patient is
- the anterior platen assembly is already locked onto its respective COG latches and is rotated in a ready-to-receive position over the top of the patient lying on the posterior platen and operating table; (5) the floor frame system has already been located to the lower platen with a caster-base-mounted registration plate; (6) all casters are locked in-position; and (7) the linear actuator drive is powered-on.
- a staff member of the hospital or similar facility controls a pendant button in order to optionally lift or lower platens onto or off from the operating table.
- the pendant button or other suitable control mechanism for lowering
- both linear actuator devices lower simultaneously with respect to each other.
- the pendant button is depressed and two lift columns lower the COG assemblies.
- the anterior-frame latch mechanism mounted on each of the COG assemblies fully nest over the platen tubes during this downward motion.
- the dual rack and pinion system of the COG assemblies begins to close and the COG-assembly-release-mechanism ratchet-and-pawl device begins to back- drive and the platens adjust themselves to the size of patient (vertical thickness).
- the anterior platen foam pads eventually make contact with the patient and a controlled patient pad compression is reached.
- the anterior platen, the two COG assemblies, and the two spindle assemblies stop lowering while the linear motion columns are free to continue traveling until a limit switch is made (approximately two inches of travel).
- the posterior platen is latched onto the dual-rack-and-pinion shafts of the COG assembly.
- the pad compression system is checked and adjusted by manually pulling the anterior platen down until a safe amount of pad compression is achieved.
- safety belts are attached to the mushroom head pins and belts are cinched to secure the patient.
- lift and rotate functions are achieved.
- system for lifting, positioning, and rotating the patient may be implemented as a dedicated-prone-surgery system without the need to transfer a patient to a separate operating table.
- vertical-lifting towers, alignment assemblies, anterior and/or posterior platens, and COG assembly interact to allow for rotation and inclination or declination of the patient while vertical-lifting towers remain a fixed- horizontal distance from one another; both remaining generally perpendicular with respect to the floor.
- COG assemblies may be configured to releasably attach to anterior and/or posterior platens via platen-latch assemblies located on the rotational system and supportive cross members located on the platen.
- Supportive cross-members may be extendably and retractably connected to one another and may also be connected to extension rods of a platen.
- Vertical-lifting towers may be actuated in tandem or individually, allowing for the patient to be raised, lowered, and placed in a neutral horizontal, inclined, or declined position.
- the distance between corresponding platen-latch assemblies will be greater than when the vertical-lifting towers are at the same height.
- the apparatus By providing supportive cross-members which are free to move closer to or further away from the distal end of the platen via extendable and retractable connections, and/or by extension rods incorporated into the platens themselves, the apparatus allows for the platens to be securely attached to the COG assembly at all times while compensating for the changing distance between corresponding platen-latch assemblies, without the need for horizontal angling movement of the vertical lifting towers or the use of complex hinging systems.
- the anterior platen includes a generally radiolucent base.
- the base may be constructed of different shapes and sizes.
- the length of the base may accommodate an adult patient.
- the length of the base may also be configured to accommodate a specific area of a patient's body, such as only the torso.
- the anterior platen may include a pair of pelvic-support members.
- the pelvic-support members extend upwardly from the base, each having an upper portion contoured to support the left-hand or right-hand side of the pelvic area of a patient.
- An upper-torso-support member may also extend upwardly from the base for providing support to the upper-torso area of a patient lying in a prone position.
- the pelvic-support members are movably coupled to the base permitting lateral and longitudinal movement with respect to the base.
- the upper-torso-support member may be immobile with respect to the base, or may be movably coupled to the base. Further, the height of each support member may also be adjusted upward or downward.
- movement of one or more of the support members in the X, Y, and Z directions permits adjustability of the support members to correspond to different anthropometric features of each patient.
- a void created by the elevation of the upper surfaces of the pelvic-support members and upper-torso support member helps to position the spinal column of a patient in a lordotic-curved position with a patient's abdomen hanging pendulous and free above the base.
- a single pelvic-support member with inward-curving (concave) surfaces may be used in place of the pair of pelvic-support members.
- more than two support members may be used to support the pelvic area of a patient.
- multiple support members may be used to support the upper-torso portion of the patient.
- the upper-torso support may include inward-curving (concave) surfaces to abut the upper-torso area of a patient.
- the upper-torso support may also include a curved notch positioned along a vertical axis of the upper-torso support to accommodate the neck and chin area of the patient, when lying prone on the upper- torso support.
- an anterior platen may include plates (i.e., framing or one or more planar substrates) with tracks and/or rails integrated within the plates or attached to inner and/or outer edges of the plates.
- the tracks and/or rails permit differently configured support members to be attached to the posterior platen.
- accessories may be connected to the anterior platen.
- a traction device may be connected to a tube or rail system located at either the head or foot end of the anterior platen.
- a Crutchfield-styled pulley system is connected to a tube located at the head end of the anterior platen.
- Fig. 1 shows a perspective view of an exemplary patient-safety-transfer system.
- Fig. 1A shows a side view a center-of-gravity assembly coupled to a spindle assembly, which is mounted on an inside portion of a powered-lift column.
- Fig. 2 is a top-outline view of a platen.
- Fig. 3 shows a cut-away view of a COG assembly illustrating the dual-rack-and pinion arrangements, gas-shock absorber, and anterior-and-posterior-platen-latch mechanisms.
- Fig. 4 shows a see-through version of a COG assembly.
- Fig. 5 shows placement of the control knobs for the hook latches of the platen latch mechanism.
- Fig. 6 shows an isometric view of the posterior-platen-latch mechanism coupled to the lower rack shafts of the COG assembly and further coupled to the posterior-platen- tube assembly.
- Fig. 7 shows a top view of an exemplary platen.
- Fig. 8 shows a top-perspective view of one end of a platen shown in Fig. 7.
- Fig. 9 shows a side view of a patient-rotation system with lifting towers postioned at different heights relative to each other.
- Fig. 10 shows a top view of an exemplary-anterior platen.
- Fig. 1 shows a top view of a stand alone exemplary-anterior platen dedicated for supporting the torso of a patient, which may be used independently of the lifting/rotation systems as well as other portions of the platen shown in Fig. 10.
- Fig. 12 shows a perspective view of the exemplary-anterior platen depicted in Fig.
- Fig. 13 shows an accessory attached to the head end of the anterior platen shown in Fig. 10.
- center-of-gravity refers to the point at which the resultant gravitational force acts upon an object.
- the center of gravity is not necessarily inside the object.
- the center of gravity of a ring is at the center of symmetry. If the geometry of the object does not change with time, the center of gravity will remain unchanged in relation to the object. In embodiments described herein, the center-of- gravity changes as patients placed in and removed from the system.
- operating table refers to general operating room tables, medical procedural tables, x-ray tables, and potentially other surfaces for performing a medical procedure usually under sedation and/or general anesthesia.
- over travel refers to the distance over which the moving member(s) travel after a platen has come to rest on a support structure.
- platen refers to an assembly having a framework and a patient support area disposed within an area defined by the framework.
- anterior platen generally refers to the platen which is configured to support the anterior side of a patient.
- the term “posterior platen” generally refers to the platen which is configured to support the posterior side of the patient. While specific examples may refer to one or the other, it should be appreciated by those skilled in the art, that either platen is interchangeable with the other, and such terminology is not necessarily intended to limit the scope of the claims.
- prone refers to a patient laying face downward.
- ratchet-and-pawl system refers to a mechanism having the ability to back-drive in one direction and catch in the opposite direction of rotation.
- a patient-safety-transfer system configured to lift, rotate, position and optionally transfer a patient to and from an operating table.
- An embodiment of the patient-safety-transfer system 100 is depicted in Fig. 1.
- Powered-lift columns 102(1), 102(2) are typically electrically powered, but it is appreciated by those skilled in the art having the benefit this disclosure, that these powered-lift columns are not so limited and may be powered by any suitable means including but not limited to hydraulics and pneumatics.
- Powered-lift columns 102(1), 102(2) are located at distal ends of drawbar 112.
- Drawbar 112 may include a first, operating position and a potential second, collapsed-storage position. In the collapsible-storage position, drawbar 112 slidably folds together, which enables storage or transportation of system 100.
- chassis 100 contains no caster base assemblies and is stationary.
- Powered-lift columns 102(1), 102(2) vertically extend and retract allowing for adjustability in height of platens 114 and 122.
- the height of both powered-lift columns 102(1), 102(2) move in unison.
- the height of each powered-lift column 102(1), 102(2) may move independently from the other. As will be explained, when columns 102(1), 102(2) move independently, the length of platen 114 and 122 may expand and contract.
- Powered-lift columns 102 may incorporate actuators (not shown) that telescopically expand and contract each column to control their height.
- Fig. 1A shows a side view a COG assembly 106 coupled to a spindle assembly 108, which is mounted on an inside portion of powered- lift column 102. Still referring to Fig. 1A, each COG assembly 106 includes internal assemblies (to be described) which facilitate the securing of a patient between posterior and anterior platens 114 and 122 (shown in Fig. 1).
- Each COG assembly 106 includes two opposing pairs of latch assemblies 160(1), 60(2) for releasably connecting posterior platen 114 and anterior platen 122 to system 100. Because of the side view, in Fig. 1A, only two out of the four latch assemblies can be seen.
- FIG. 2 is top-outline view of a platens 114/122.
- extension telescoping shafts 202(1), 202(2), 202(3), 202(4) Connected to the telescoping shafts 202 are platen tubes 204(1), 204(2), which are generally perpendicular to the telescoping shafts 202.
- Telescoping (meaning move in/out, but do not necessary physically telescope) shafts 202 slide in and out of platens 114/122.
- COG assemblies 106 Fig. 1
- telescoping shafts 202 are extended several inches.
- telescoping shafts 202 When disconnected from COG assemblies 106, telescoping shafts 202 may be retracted so that these shafts 202 and platen tubes 204 may be coextensive or in the boundaries of the operating-table surface. As will also be explained, the telescoping shafts 202 and/or platen tubes may move to permit the overall length of the frames of platens 114 and 122 to expand or contract when the height of column 102(1) moves above or below the height of column 102(2), such as when the columns do not move in unison.
- each latch assembly 160 releasably attaches to platen tubes 204.
- Each spindle assembly 108 is mounted on a top portion of each column 102.
- COG assembly 106 is mounted to an inboard side of each spindle assembly 108 with a spindle shaft 210 allowing for rotation of the COG assembly 106.
- COG assembly 106 adjusts a latching open and shut with a dual rack and pinion device to open both or close both posterior and anterior shafts simultaneously.
- a platen latch assembly is mounted to each end of the COG assembly in order to manually lock onto the platen tubes.
- Each COG assembly 106 has one platen latch assembly for the posterior platen and one latch assembly for the anterior platen.
- posterior platen 114 is used for the posterior side of patients and may have at least two telescoping shafts (i.e. tubes) 202(1), 202(3) or 202(2), 202(4) to provide a safety distance (approximately 6.0 inches) between the COG platen latches and the patient, while the patient is lying on the platen. Platen tube extensions can be collapsed when a transfer or rotation is complete in order to provide patient access during an operating room procedure.
- One anterior platen 122 is used for the anterior side of patients and also may have at least two telescoping shafts to provide patients a safe distance away from the COG assembly during the hook-up phase of the transfer, as well as adjustability should the height of columns 102 move independently.
- One safety belt system is used to engage the posterior platen and the anterior platens together for the rotate, or patient turning, phase.
- occipital padding 170 and a leg bolster 172 may be attached or placed on a planar surface of posterior platen 122 to support the head and legs respectively when a patient lies on his back on the surface of platen 114, and provide friction support to secure the patient disposed between the platens 114/122, when rotated 180 degrees.
- Anterior platen 122 includes a removable head-support assembly (to be described), a torso support 174, and leg pads 176 and 178 which support the patient while laying in a prone position, and provide friction support to secure the patient disposed between the platens 114/122, when rotated 180 degrees.
- Torso support 174 and leg pads 176, 178 are attached to rails 180(1), 180(2), and can slide longitudinally along rails 180 via brackets 182 that fit around rails 180.
- a groove 184 located on each side of platens 114, 122 may permit a safety-belt system (one or more safety belts 186) to be slidably attached to grooves 184 of both platens 114, 122.
- Each groove 184 may also secure bracket 182 if bracket 182 includes a tongue (not shown).
- Fig. 2A shows a side view of a portion of platens 114, 122 showing an exemplary safety-belt system connected to grooves 184. Because the release latches of each safety belt 186 are attached proximal or directly to at least one groove 184 of a platen (in this example 114), only one portion of the two-piece belts may hang down or be conveniently folded under/over a platen 114/122 and out of the way when not in use. This eliminates medical personnel having to deal with two portions of a safety belt, and reduces overall ease and operation of system 100 when connecting and disconnecting platens 114 to 122 using the safety-belt system. In one embodiment, safety belts use mushroom-head pins. With reference to Fig. 1 , side padding 190 may be attached to portions of one or more safety belts to fasten the arms of a patient and provide redundant security to prevent a patient from falling out of system 100 when rotated 180 degrees.
- torso support 174 may include two pads in the general shape of Wilson-styled chest frame which supports the outer portions of the side of patient. These pads extend from the upper thighs to the shoulders of a patient. The height of the center portion of the torso support is adjustable by a manual or powered crank system.
- system 100 eliminates the need for operating room staff to manually lift and place patient on and off an operating table.
- Various embodiments disclosed herein include several mechanical elements, assemblies and subsystems, such as, but not limited to, dual-rack-and-pinion
- each of these allow a top set of racks to extend simultaneously with a lower set of racks comprising the dual-rack-and-pinions.
- This is used in each COG assembly (described in greater detail below) and provides a self centering function.
- the driven load stops moving when it contacts a fixed stop and the powered device (i.e., columns 102) continue to lower in a free state.
- Gas-shock absorbers are used to counter-act large weights in many mechanisms such as a rear hatch door in a vehicle.
- the gas- shock absorbers are sized to each application in order to reduce free energy caused by gravity as well as provide an ergonomic, realistic amount of energy for human beings to safely perform a given manual function, such as, rotating a patient from supine to prone and vice versa.
- Ratchet-and-pawl systems provide mechanisms with the ability to back-drive in one direction and catch in the opposite direction of rotation as is used in COG
- Pre-stage conditions for an illustrative embodiment of the present invention are set as listed below in order to facilitate detailed descriptions of the specifics of the lowering function, latching of COG to posterior and anterior platens 114/122, COG self centering features, COG assembly self-centering-ratchet-and-pawl functions, and finally the spindle lost motion functions. More particularly, the pre-stage conditions are: (1) posterior platen 114 is manually pre-staged onto the OR table and each telescopic end 202 (Fig. 2) of platen 114 is advanced into a locked position; (2) a patient is positioned on top of posterior platen 114 for rotation into the prone position; (3) the upper and lower dual-rack-and-pinion shafts 302 and 303 (Figs.
- each COG assembly is extended and locked into their fully extended positions; (4) anterior-platen 122 is already locked onto its respective latches 160 (Fig. 1A) and is rotated in a ready-to-receive position over the top of the patient lying on posterior platen 114 and operating table (not shown); (5) portable-caster-base assemblies 110 have already been located to posterior platen 114 with registration plate 126 mounted to inbound portion of columns 102; and (6) casters are locked in-position.
- a staff member of the hospital or similar facility controls a pendant- control panel (not shown) in order to lift or lower platens onto or off from the operating table.
- a pendant button for lowering When the pendant button for lowering is actuated, both columns 102 lift and lower simultaneously with respect to each other. The pendant button is depressed and the two lift columns lower the COG assemblies 106. Latch mechanisms 160 mounted on each of the COG assemblies fully nest over the platen tubes 204 (Fig. 1 A) during this downward motion.
- dual-rack-and- pinion system of COG assemblies 106 begins to close and a release mechanism of a ratchet-and-pawl assembly begins to back drive and platens 114/122 adjust themselves to the size of patient (vertical thickness).
- anterior-platen-foam pads (such as on torso support 174 and leg pads 176, 178
- Fig. 1 eventually make contact with the patient and a controlled patient pad compression is reached.
- Anterior platen 122, COG assemblies 106, and spindles assemblies 108 stop lowering while the linear motion of columns 102 are free to continue traveling until a limit switch (not shown) is made (approximately two inches of travel). This provides a safe and reliable system for patients, and provides staff members with peace of mind that this system can safely perform its function.
- Posterior platen 114 is manually latched onto dual rack and pinion shafts 301, 302 (Figs. 1A and Fig. 3) of the COG assembly 106.
- safety belts 186 (Figs. 1 and 2A) are attached and cinched to redundantly secure the patient (in addition to the
- Spindle assembly 108 mounts on a top portion of lift column 102.
- spindle assemblies 108 stay in contact with the top portion of lift column 102, and therefore COG assemblies (each coupled to the inboard spindle 210 (Fig. 1A) of each of the spindle assembly 108) and platens 114/122 (each coupled to platen-latch mechanisms 160 (Fig. 1A) of COG assemblies 106), are raised.
- spindle assemblies 108 stay in contact with the top portion of their respective lift columns 102, and therefore the COG assemblies 106 and platens 114/122 are lowered.
- An adjustable COG assembly 106 is mounted to the inboard side of each spindle assembly 108 with a spindle 210 allowing for rotation of COG assembly 106.
- an illustrative COG assembly 106 is shown with an upper pair of rack shafts 301a and 301b at least partially disposed within a housing 302 of COG assembly 106.
- Rack shafts 301a and 301b are spaced apart from each other by a first distance, and are also each coupled to an anterior-platen latch 315.
- a lower pair of rack shafts 303a and 303b are at least partially disposed within housing 302.
- Lower pair of rack shafts 303a and 303b are spaced apart from each other by a second distance, and are also each coupled to a posterior-platen latch 316.
- Rack shafts 301a and 303a are each coupled to a pinion gear 306a to form a first dual rack and pinion arrangement.
- Rack shafts 301b and 303b are each coupled to a pinion gear 306b to form a second dual rack and pinion arrangement.
- a gas-shock absorber 314 is disposed in housing 302 and has a piston 310 coupled to anterior platen latch 315.
- a release knob 304 provides a mechanism to release rack shafts 301a, 303a, 301b, 303b in order to expand to their fully extended positions.
- Latch hooks 308 are mounted to anterior platen latch 315, and in operation latch onto the frame of an anterior platen.
- Latch hooks 309 are mounted to posterior-platen latch 316, and in operation latch onto the frame of a posterior platen.
- a latch-and-pawl-system disposed within housing 302 provides a mechanism for the rack and pinion system to collapse and back-drive the pawl mechanism in one direction (i.e., collapse direction of the racks).
- COG assembly 106 adjusts open and shut with a dual-rack-and-pinion device to open both or close both posterior and anterior shafts simultaneously.
- platen latch assemblies 315, 316 are mounted to each end respectively of the COG to manually lock onto the platen frames. There is one latch assembly for the posterior platen and one latch assembly for the anterior platen.
- Gas-shock absorber 310 performs two functions. The first function is to expand the COG assembly 106 to pre-stage for a pick-up condition. The second function is to provide a metered support force onto a platen (usually the upper platen) when columns 102 are lowering and platen pads make contact with the patient. These shock absorbers 310 will support the majority of the weight of spindle assemblies 108, COG assemblies 106, and a portion of the anterior or posterior platens 114/122.
- Each end of COG assembly 106 has a platen-latch assembly (anterior platen latch 315 and posterior platen latch 316 respectively).
- Fig. 4 shows a see-through version of COG assembly 106.
- a system for turning a patient from a supine to prone position and from a prone to supine position includes a first-lifting column having top end and a bottom end; a second-lifting column having a top end and a bottom end; a first-spindle assembly disposed over the top end of the first-lifting column; a second spindle-assembly disposed over the top end of the second-lifting column; a first-COG assembly coupled to the first-spindle assembly; a second-COG assembly coupled to the second-spindle assembly; a posterior platen having a first-frame assembly, the first- frame assembly coupled to a posterior-platen latch assembly of the first-COG assembly, and further coupled to a posterior-platen-latch assembly of the second-COG assembly; an anterior platen having a second frame assembly, the second-frame assembly coupled to an anterior-platen latch assembly of the first-COG assembly, and further coupled
- Some embodiments also include a first-caster base coupled to the bottom end of the first-lifting column; and a second-caster base coupled to the bottom end of the second lifting column.
- Still other embodiments include a drawbar coupled between the first-caster base and the second-caster base, wherein the drawbar is operable to maintain the coupling of the first and the second-lifting columns while changing the distance between the first and the second-lifting columns by telescoping.
- each COG assembly includes a housing; am upper pair of racks, each disposed at least partially within the housing, each coupled to one of a corresponding first pair of pinions, and each of the upper pair of racks spaced apart from each other by a first distance; a lower pair of racks, each disposed at least partially within the housing, each coupled to one of a corresponding second pair of pinions, and each of the lower pair of racks spaced apart from each other by a second distance; wherein the first distance is greater than the second distance.
- an apparatus suitable for forming part of a patient turning system includes a COG assembly coupled to a spindle, thereby allowing the COG assembly to rotate about an axis defined by the spindle; a spindle assembly upon which the spindle is attached; a lifting column having a first end and a second end, with the spindle assembly disposed upon the first end; and a caster base to which the second end of the lifting column is attached.
- the caster base includes an attachment point for a drawbar.
- the lifting column is operable to move the spindle assembly thereby changing the vertical position of the spindle assembly.
- the COG assembly includes a housing; an upper pair of rack shafts, each disposed at least partially within the housing, each coupled to one of a pair of pinion gears, and each of the upper pair of racks spaced apart from each other by a first distance; a lower pair of rack shafts, each disposed at least partially within the housing, each coupled to one of the pair of pinion gears, and each of the lower pair of racks spaced apart from each other by a second distance; and a gas shock absorber, disposed in the housing and mechanically connected to the anterior-platen-latch assembly; wherein the first distance is greater than the second distance; and wherein a first one of the upper pair of rack shafts and a first one of the lower pair of rack shafts are each coupled to a first-pinion gear of the pair of pinion gears in a first-dual-rack
- Fig. 7 shows a top view of a platen 114 or 122 with longitudinal-extending plates 750(1), 750(2) forming a frame for each platen.
- Plates 750(1), 750(2) are generally planar and may be constructed of any suitable thin-radtolucent material such as carbon fiber, or any suitable non-radiolucent materials such as aluminum. Plates 750(1) and 750(2) are generally parallel and positioned in the same plane as each other.
- plates 750 may be generally commensurate in length with an average operating-table surface, and may be positioned apart from each other approximately the distance for the width of an average operating-table surface. It is appreciated by those skilled in the art, that the length and width may vary depending on the implementation and the size of patients.
- Plate 750(1) may include chambers 752(2) and/or 752(4).
- Plate 750(2) may include chamber 752(1) and/or 752(3).
- Each chamber 752(1), 752(2), 752(3), and 754(4) is configured in size and shape to receive extension tubes 754(1), 754(2), 754(3), and 754(4), respectively, therein.
- Each extension tube is configured to slidably extend and retract (i.e. slide) in/out of its respective chamber.
- a tab (not shown) located on the on a proximal end of each tube catches a latch (not shown) on at a distal end of each inside each chamber on one end of the platens, to prevent tubes 754 from sliding beyond the length of tube, and out of the respective chamber.
- tubes 754 may extend longitudinally outward beyond distal ends 760(1) and 760(2) of platens 114/122, or retract to a point that is flush with distal ends 760(1),760(2) of the platens 114/122.
- posterior platen 114 and/or anterior platen 122 may include cross-member tubes 756(1), 756(2) (also referred to supra as platen tubes 204) at the head end and foot end of platens 114/122, which are parallel to each other and perpendicular to a longitudinal axis of platen 114/122 .
- Cross-member tubes 756(1), 756(2) are fastened to extension tubes 754(1), 754(2), 754(3), and 754(4), via fasteners 780(1), 780(2), 780(3), 780(4). That is, the distal ends of tubes 756 are fastened to distal ends of tubes 754 via fasteners 780.
- Stability tubes 758(1) and 758(2) also are connected together via fasteners 780.
- Stability tubes 758 provide strength to platens 114/122. As will be shown stability tubes 758 also provide an anchor for permitting each cross-member tube 756 to move along the longitudinal axis of the frame toward or away from the other cross member tube at the opposite end of the platen.
- FIG. 8 shows top perspective view of one end of a platen shown in Fig. 7.
- fasteners 780(1), 780(2) are transparent.
- each fastener 780(1), 780(2) is a slot 802(1), 802(2), which permits a cross-member tube 756(1) to move along the longitudinal direction of the platens, which is in the same direction as tubes 754.
- a spring 804(1), 804(2) connect cross-member tube 756(1) to stability tube 758(1 ),which in this embodiment is fixedly attached to tubes 754(1), 754(2) and fasteners 780(1), 780(2).
- extension tubes 754 and/or cross-member tubes 756 helps to compensate for the changing distance when the heights of each powered-lift columns are mismatched.
- posterior platen 114 and/or anterior platen 122 alternates between a neutral-horizontal position to either inclined or declined positions, such as shown in Fig. 9.
- Anterior platen 122 includes head-support member 1002, a torso support 174, and leg pads 176 and 178 which support the patient while laying in a prone position, and provide friction support to secure the patient disposed between the platens 114/122, when rotated 180 degrees.
- Leg pads 176, 178 are attached to plates 750(1), 750(2), and can slide longitudinally along plates 750(1), 750(2) via brackets 182 or other suitable fastening means.
- the length of the base may accommodate an adult patient.
- the length of the base may also be configured to accommodate a specific area of a patient's body, such as only the torso.
- Fig. 11 shows an independent-torso support platen 1122 configured to rest on top of the surface of an operating table. Platen 1122 supports the torso of a patient, when in a prone position.
- a full-length-anterior platen 122 may include a pair of pelvic-support members 1010(1), 1010(2).
- pelvic-support members 1010 extend upwardly from a cross-member base 1202, each pelvic-support members 1010 having an upper portion 1204(1), 1204(2) contoured to support the left-hand or right-hand side of the pelvic area of a patient, respectively.
- An upper-torso-support member 1206 may also extend upwardly from the base for providing support to the upper-torso area of a patient lying in a prone position.
- Pelvic-support members 1010(1), 1010(2) may be movably coupled to cross- member base 1202. That is, pelvic-support members 1010(1), 1010(2) move laterally with respect to cross-member base 1202. And cross-member base 1202 moves longitudinally with respect to plates 750 via inboard rails 1208(1), 1208(2), which cross- member base is connected. Thus, pelvic-support member 1010 may move laterally and longitudinally.
- upper-torso-support member 1206 may be stationary or may be movably coupled to the base. Further, in one embodiment, the height of each support member 1010, 1206 may also be adjusted upward or downward. Thus, movement of one or more of support members 1010, 1206 in the X, Y, and Z directions permits adjustability of the support members 1010, 206 to correspond to different anthropometric features of each patient. Additionally, a void 1212 created by the elevation of upper surfaces 1204 of the pelvic-support members and upper surface 1214 of upper-torso support member 1206, helps to position the spinal column of a patient in a lordotic-curved position with a patient's abdomen hanging pendulous and free.
- pelvic-support member with inward-curving (concave) surfaces may be used in place of the pair of pelvic-support members 1010.
- more than two support members may be used to support the pelvic area of a patient.
- multiple support members may be used to support the upper-torso portion of the patient.
- the upper-torso support 1206 may include inward-curving (concave) surface 1214 to abut the upper-torso area of a patient.
- Upper-torso support 1206 may also include a curved notch 1216 positioned along a vertical axis 1218 of the upper-torso support 1206 to accommodate the neck and chin area of the patient, when lying prone on upper-torso support 1206.
- an anterior platen may include plates (i.e., framing or one or more planar substrates) with tracks (such as 184) and/or rails (1208) integrated within plates 750 or attached to inner edges 1220 and/or outer edges 1222 of plates 750.
- the tracks and/or rails permit differently configured support members to be attached anterior platen 122.
- a head-support assembly 1250 includes an expandable-crisscross arms 1252, which raise or lower a base 1254. Detachably attached or resting on base 1254 is disposable padding 1256 configured to support the front of the patients head and face.
- accessories may be connected to anterior platen 122 .
- a traction device may be connected to a tube or rail system located at either the head or foot end of the posterior platen.
- a Crutchfield-styled pulley system 1304 is connected to tube 756(1), via a clamp 1302, located at the head end of the anterior platen 22.
- the exemplary methods and apparatus illustrated and described herein find application in at least the field of patient safety transport systems.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Neurosurgery (AREA)
- Otolaryngology (AREA)
- Neurology (AREA)
- Accommodation For Nursing Or Treatment Tables (AREA)
Abstract
Various apparatuses for supporting a patient in a prone position are described. In embodiment, an apparatus rotates a person from a supine position to a prone position and vice versa and includes opposing patient support platens each coupled to a corresponding end of a first and a second COG assembly, the first and second COG assemblies each coupled to a corresponding one of a pair of spindles, each one of the spindles disposed on a corresponding lift column. Embodiments described herein provide for an axis of rotation that is adjustable with respect to the plane of either an upper or lower support platen. Embodiments provide for adjusting the separation distance between the axis of rotation and the center of gravity defined by the combination of the person and the supporting platens.
Description
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE UTILITY-PATENT APPLICATION
APPARATUSES FOR POSTERIOR SURGERY
Inventor:
Lewis Sharps
ATTORNEY'S DOCKET NO.: 62073.00024
APPARATUSES FOR POSTERIOR SURGERY
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims benefit of U.S. Provisional Application Serial No.
61/251,515 filed on 14 October 2009, entitled "Dedicated Apparatus For Posterior Surgery." This application is also a continuation-in-part of Application Serial No.
12/753,050, filed 01 April 2010, entitled "Patient-Rotation System with Center-Of-Gravity Assembly." Each of the aforementioned applications is herein incorporated by reference in its entirety.
Field of Art
This patent application is directed to apparatuses for positioning a patient in a prone position for posterior surgery or medical procedures.
Background
Generally, surgeries and procedures performed to the posterior of a patient require the patient to be positioned in a prone position to provide access to a surgical site. Prior to performing the surgery, protocol typically requires that the patient be anesthetized and intubated while lying on their back. For the vast majority of back surgeries performed in the United States today, most patients are still anesthetized on a gurney, and then manually lifted, inverted and deposited on an operating table.
There are many challenges associated with the transfer of the patient to the operating table from the gurney, and vice versa. The manual process of transfer is physically demanding and non-physiologic for the staff, and is potentially unsafe for the anesthetized patient. For instance, an anesthetized patient who is in an unconscious state has absolutely no control over their appendages and head, which all have a tendency to flop-down from gravity. If any appendages are not properly supported, it is possible to break, dislocate, or otherwise injure the patient's neck, shoulder area, and/or appendages while manually lifting and inverting the patient. Additionally, the patient may have a preexisting disease or injury to the spine, which if moved or twisted improperly could cause damage or paralysis to the patient. Thus, the staff must remain vigilant to
properly support the appendages and body of the patient each time the patient is lifted and inverted. There is also a potential to accidentally lose control of or drop a patient incurring injury to the patient and/or staff.
Additionally, an anesthetized patient assumes "dead weight" which makes that person feel heavier. The weight of the patient exposes staff members, such as nurses, assistants, and doctors, to injuries when lifting the patient. Often times a staff member must lean across a gurney or operating room table exposing themselves to lifting injuries. Sometimes, the weight of the patient is not evenly distributed potentially risking injury to a staff member or patient. Accordingly, liability issues arise when patients are dropped or injured while being oriented on the operating table while sedated. Doctors and hospitals are also exposed to liability when operating staff are injured lifting and positioning sedated patients.
A further potential problem associated with turning the patient from his/her stomach or back involves the potential for patient motion or staff interference with life- support and life-monitoring systems that may be attached to the patient, such as an intravenous line, a catheter, electrode monitoring lines for monitoring the patient's vital signs, and an endotracheal tube for the purposes of administering oxygen and/or anesthesia to the patient. If any one of these life-support or life-monitoring systems is pulled out, crimped, or twisted, it can injure the patient and/or the operating staff.
Still another complication associated with manually lifting and inverting a patient onto an operating table for back surgery involves positioning the patient in proper alignment on the table. Some patients are placed on a "Wilson Frame" to properly align the back properly thereby and enhancing proper ventilation. The Wilson Frame allows the abdomen to hang pendulous and free. It is often difficult to manually manipulate the patient once placed onto the operating table to ensure proper alignment with the Wilson Frame underneath the patient.
Other ancillary problems involve positioning of the head, chest, and legs with proper support and access for devices such as the endotracheal tube. Anthropometric considerations, such as patient size, including weight and width, cause the operating staff to ensure that proper padding and elevations are used to support the head, chest,
and legs. It is not uncommon to find operating staff stuffing pillows or bedding underneath a patient to adjust for different anthropometric features of a patient.
Attempts have been made to solve the transfer problems described above including systems which can turn rotate a patient. Unfortunately, many such systems for turning a patient have an axis of rotation and a center of gravity that are different. In such systems the separation of the rotation axis and the center of gravity make the system "top-heavy", or unbalanced, and therefore it is difficult to manually turn a patient. Furthermore, the unbalanced load creates greater stresses on the mechanical equipment and presents greater risk of mechanical failure to the patient.
Summary
Described herein are apparatuses, including systems and several mechanical elements, assemblies and subsystems, for rotating, transferring, positioning, or lifting a patient for purposes of performing a medical procedure where a patient is positioned in a prone or semi-prone position for the procedure. In some instances, the patient may be rotated from a supine position to a prone position, and vice versa.
In one embodiment, a system includes first and second center-of-gravity (COG) assemblies. Opposing patient-support platens— an anterior platen (for abutting the front portions of the patient) and a posterior platen (for abutting back portions of the patient) — are coupled to a corresponding end of the first and second COG assemblies. The first and second COG assemblies are each coupled to a corresponding one of a pair of floating-spindle heads. Each one of the floating-spindle heads is disposed on a corresponding lift column. The COG assemblies provide for an axis of rotation that is outside the plane of platens upon which the patient is disposed. Specifically, the system provides a rotation axis outside the plane of either subjacent or superjacent patient- support platform, and more closely aligned with the center-of-gravity.
In other embodiments, the COG assemblies adjust a separation distance between the axis of rotation and the center-of-gravity defined by a combination of the patient and the supporting platens.
Achieving controlled patient-pad compression is a pre-condition to safely clamp, secure, pick up, and rotate a patient 180 degrees from prone to supine position, or supine to prone position. To achieve optimal compression, in another embodiment, a lost-motion-over-travel system prevents the platens from continuing to travel toward the patient when lowering a platen toward the patient, once optimal compression forces exerted on the patient via a platen (and/or the platen's constituent-support padding) is obtained.
In another embodiment, registration plates, coupled to the system, conveniently align the attachment mechanisms of each COG assembly with distal ends of one or more platens. For instance, if the anterior platen is placed on the surface of an operating table and is detached from the system, the distal ends of the anterior platen may telescopically extend beyond the ends of the table. When retrieving a patient from the operating table, the registration plates allow for medical staff to align the system so that it straddles the operating table with the attachment mechanisms of the COG assembly in alignment with platen tubes (or other complimentary attachment
mechanisms) located at the distal ends of the anterior platen.
In one embodiment, the system eliminates the need for operating room staff to manually lift and place an anesthetized patient in prone or supine positions. The system also provides safety for the patient and for medical staff charged with turning the patient. The system includes powered-lift columns that lift and lower platens between which a patient is disposed. The powered-lift columns, in embodiments described herein, are typically electrically powered, but it is appreciated by those skilled in the art having the benefit this disclosure, that these powered-lift columns are not so limited and may be powered by any suitable means including but not limited to hydraulics and pneumatics.
Other embodiments described herein provide a solution to achieve an optimum center-of-gravity (i.e., a balanced load) between platens, having a patient sandwiched therein, to the rotation axis of two rotation spindles. With an optimized center-of-gravity relative to the spindle axis, personnel are provided with the optimal-balanced load for manually rotating the patient 180 degrees. This provides a safe condition for both
patient and staff while the patient is rotated from the supine to prone position, or from the prone to supine position.
Various embodiments include several mechanical elements, assemblies and subsystems, such as, but not limited to, dual-rack-and-pinion subsystems, lost motion devices, gas shock absorbers, and ratchet and pawl subsystems. These mechanical elements, assemblies, and subsystems are combined in a unique manner to provide a patient safety transfer system operable to safely rotate a patient from a supine to prone position, and from a prone to supine position.
Regarding the exemplary dual-rack-and-pinions, each of these allow a top set of racks to extend simultaneously with the lower set of racks. This is used in the COG assembly (described in greater detail below) and provides a self-centering function. With respect to lost-motion devices, in most applications the driven load stops moving when it contacts a fixed stop and the powered device continues to lower in a free state.
Gas-shock absorbers are used to counter-act large weights in many mechanisms such as a rear hatch door in a vehicle. The gas-shock absorbers are sized to each application in order to reduce free energy caused by gravity as well as provide an ergonomic, realistic amount of energy for human beings to safely perform a given manual function, such as, in the embodiments, rotating a patient from supine to prone and vice versa.
Ratchet-and-pawl systems provide mechanisms with the ability to back-drive in one direction and catch in the opposite direction of rotation as is used in the adjustable frame system.
The various embodiments are part of an illustrative patient-safety-transfer system that includes a lift-column assembly that is mounted to a portable-caster-base assembly. Each caster-base assembly is tied to the other with a drawbar that has an operating position (as shown Fig. 1) and a collapsed-storage position (not shown). A floating-spindle-head assembly is mounted on top of each lift-column assembly. A COG assembly is mounted to the inboard side of each floating-spindle-head assembly with a spindle shaft allowing for rotation of the COG assembly. The COG assembly adjusts open and shut with a dual-rack-and-pinion device to open both or close both posterior
and anterior shafts simultaneously. A platen-latch assembly is mounted to each end of the COG assembly to manually lock onto the platen tubes located at the distal ends of each platen. Each COG assembly has one platen-latch assembly for the posterior platen and one latch assembly for the anterior platen.
One posterior platen is used for the posterior side of patients and has two telescoping shafts to provide a safety distance (approximately 6.0 inches in one embodiment, but other suitable distances may be implemented) between the COG- platen latches and the patient, while the patient is lying on the platen. Platen-tube extensions can be collapsed so as to be flush with an operating table when a transfer or rotation is complete in order to provide patient access during an operating room procedure.
One anterior platen is used for the anterior side of patients and also has two telescoping devices to provide patients a safe distance away from the COG assembly during the hook-up phase of the transfer. A safety-belt system (one or more safety belts) is used to engage the posterior platen and the anterior platens together for the rotate, or patient turning, phase. Padding may be coupled to the safety-belt system to help ensure appendages of the patient are secured while rotated.
Pre-stage conditions for an illustrative embodiment describe specifics of the lowering function, latching of COG assembly to posterior and anterior platens, COG self centering features, COG assembly-self-centering-ratchet-and pawl-functions, and finally the spindle-lost motion functions. More particularly, the pre-stage conditions are: (1) the posterior platen is manually pre-staged onto the operating room (OR) table and each telescopic end of the platen is advanced into a locked position; (2) a patient is
positioned on top of the posterior platen for rotation into the prone position; (3) the upper and lower dual-rack-and-pinion shafts of each COG assembly are extended and locked into their fully extended positions; (4) the anterior platen assembly is already locked onto its respective COG latches and is rotated in a ready-to-receive position over the top of the patient lying on the posterior platen and operating table; (5) the floor frame system has already been located to the lower platen with a caster-base-mounted registration plate; (6) all casters are locked in-position; and (7) the linear actuator drive
is powered-on.
In practice, a staff member of the hospital or similar facility controls a pendant button in order to optionally lift or lower platens onto or off from the operating table. When the pendant button (or other suitable control mechanism) for lowering is actuated, both linear actuator devices lower simultaneously with respect to each other. The pendant button is depressed and two lift columns lower the COG assemblies. The anterior-frame latch mechanism mounted on each of the COG assemblies fully nest over the platen tubes during this downward motion. Once contact with the platen tubes has occurred, the dual rack and pinion system of the COG assemblies begins to close and the COG-assembly-release-mechanism ratchet-and-pawl device begins to back- drive and the platens adjust themselves to the size of patient (vertical thickness). During this downward self-adjusting motion, the anterior platen foam pads eventually make contact with the patient and a controlled patient pad compression is reached. The anterior platen, the two COG assemblies, and the two spindle assemblies stop lowering while the linear motion columns are free to continue traveling until a limit switch is made (approximately two inches of travel). This provides a safe and reliable system for patients, and provides staff members with peace of mind that this system can safely perform its function.
The posterior platen is latched onto the dual-rack-and-pinion shafts of the COG assembly. The pad compression system is checked and adjusted by manually pulling the anterior platen down until a safe amount of pad compression is achieved. Next, safety belts are attached to the mushroom head pins and belts are cinched to secure the patient. Finally the lift and rotate functions are achieved.
In another embodiment, the system for lifting, positioning, and rotating the patient may be implemented as a dedicated-prone-surgery system without the need to transfer a patient to a separate operating table.
For instance, in one embodiment, vertical-lifting towers, alignment assemblies, anterior and/or posterior platens, and COG assembly interact to allow for rotation and inclination or declination of the patient while vertical-lifting towers remain a fixed- horizontal distance from one another; both remaining generally perpendicular with
respect to the floor. COG assemblies may be configured to releasably attach to anterior and/or posterior platens via platen-latch assemblies located on the rotational system and supportive cross members located on the platen. Supportive cross-members may be extendably and retractably connected to one another and may also be connected to extension rods of a platen. Vertical-lifting towers may be actuated in tandem or individually, allowing for the patient to be raised, lowered, and placed in a neutral horizontal, inclined, or declined position. When vertical-lifting towers are at uneven heights, the distance between corresponding platen-latch assemblies will be greater than when the vertical-lifting towers are at the same height. By providing supportive cross-members which are free to move closer to or further away from the distal end of the platen via extendable and retractable connections, and/or by extension rods incorporated into the platens themselves, the apparatus allows for the platens to be securely attached to the COG assembly at all times while compensating for the changing distance between corresponding platen-latch assemblies, without the need for horizontal angling movement of the vertical lifting towers or the use of complex hinging systems.
With reference to the anterior platen itself, in one embodiment, the anterior platen includes a generally radiolucent base. The base may be constructed of different shapes and sizes. For instance, in one embodiment, the length of the base may accommodate an adult patient. Alternatively, the length of the base may also be configured to accommodate a specific area of a patient's body, such as only the torso.
In one embodiment, the anterior platen may include a pair of pelvic-support members. The pelvic-support members extend upwardly from the base, each having an upper portion contoured to support the left-hand or right-hand side of the pelvic area of a patient. An upper-torso-support member may also extend upwardly from the base for providing support to the upper-torso area of a patient lying in a prone position. The pelvic-support members are movably coupled to the base permitting lateral and longitudinal movement with respect to the base. The upper-torso-support member may be immobile with respect to the base, or may be movably coupled to the base. Further, the height of each support member may also be adjusted upward or downward. Thus, movement of one or more of the support members in the X, Y, and Z directions permits
adjustability of the support members to correspond to different anthropometric features of each patient. Additionally, a void created by the elevation of the upper surfaces of the pelvic-support members and upper-torso support member, helps to position the spinal column of a patient in a lordotic-curved position with a patient's abdomen hanging pendulous and free above the base.
It is appreciated by those skilled in the art after having the benefit of this disclosure that a single pelvic-support member with inward-curving (concave) surfaces may be used in place of the pair of pelvic-support members. Additionally, more than two support members may be used to support the pelvic area of a patient. Further, multiple support members may be used to support the upper-torso portion of the patient.
In one embodiment, the upper-torso support may include inward-curving (concave) surfaces to abut the upper-torso area of a patient. The upper-torso support may also include a curved notch positioned along a vertical axis of the upper-torso support to accommodate the neck and chin area of the patient, when lying prone on the upper- torso support.
In one embodiment, an anterior platen may include plates (i.e., framing or one or more planar substrates) with tracks and/or rails integrated within the plates or attached to inner and/or outer edges of the plates. The tracks and/or rails permit differently configured support members to be attached to the posterior platen.
In one embodiment, accessories may be connected to the anterior platen. For example, a traction device may be connected to a tube or rail system located at either the head or foot end of the anterior platen. More specifically, in one embodiment, a Crutchfield-styled pulley system is connected to a tube located at the head end of the anterior platen.
Further details and advantages will become apparent with reference to the accompanying drawings and the following detailed description.
Brief Description of the Drawings
The detailed description is presented with reference to the accompanying figures. It is emphasized that the various features in the figures are not drawn to scale, and
dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
Fig. 1 shows a perspective view of an exemplary patient-safety-transfer system.
Fig. 1A shows a side view a center-of-gravity assembly coupled to a spindle assembly, which is mounted on an inside portion of a powered-lift column.
Fig. 2 is a top-outline view of a platen.
Fig. 3 shows a cut-away view of a COG assembly illustrating the dual-rack-and pinion arrangements, gas-shock absorber, and anterior-and-posterior-platen-latch mechanisms.
Fig. 4 shows a see-through version of a COG assembly.
Fig. 5 shows placement of the control knobs for the hook latches of the platen latch mechanism.
Fig. 6 shows an isometric view of the posterior-platen-latch mechanism coupled to the lower rack shafts of the COG assembly and further coupled to the posterior-platen- tube assembly.
Fig. 7 shows a top view of an exemplary platen.
Fig. 8 shows a top-perspective view of one end of a platen shown in Fig. 7.
Fig. 9 shows a side view of a patient-rotation system with lifting towers postioned at different heights relative to each other.
Fig. 10 shows a top view of an exemplary-anterior platen.
Fig. 1 shows a top view of a stand alone exemplary-anterior platen dedicated for supporting the torso of a patient, which may be used independently of the lifting/rotation systems as well as other portions of the platen shown in Fig. 10.
Fig. 12 shows a perspective view of the exemplary-anterior platen depicted in Fig.
10.
Fig. 13 shows an accessory attached to the head end of the anterior platen shown in Fig. 10.
Detailed Description
Reference herein to "one embodiment", "an embodiment", or similar formulations, means that a particular feature, structure, operation, or characteristic described in connection with the embodiment, is included in at least one embodiment. Thus, the appearances of such phrases or formulations herein are not necessarily all referring to the same embodiment. Furthermore, various particular features, structures, operations, or characteristics may be combined in any suitable manner in one or more
embodiments.
Terminology
The expression "center-of-gravity" refers to the point at which the resultant gravitational force acts upon an object. The center of gravity is not necessarily inside the object. For example, the center of gravity of a ring is at the center of symmetry. If the geometry of the object does not change with time, the center of gravity will remain unchanged in relation to the object. In embodiments described herein, the center-of- gravity changes as patients placed in and removed from the system.
As used herein the expression "operating table" refers to general operating room tables, medical procedural tables, x-ray tables, and potentially other surfaces for performing a medical procedure usually under sedation and/or general anesthesia. The term "gurney" and "gurney-like," refers to a mobile platform used in a facility, such as a hospital, to move a patient that is lying down.
Forms of the terms "attach," "couple," "connect" and "fasten" may imply a direct or an indirect means of attaching, coupling, connecting, and fastening elements to each other.
The term "over travel", as used herein refers to the distance over which the moving member(s) travel after a platen has come to rest on a support structure.
The term "platen", as used herein refers to an assembly having a framework and a patient support area disposed within an area defined by the framework. The term
"anterior platen" generally refers to the platen which is configured to support the anterior
side of a patient. The term "posterior platen" generally refers to the platen which is configured to support the posterior side of the patient. While specific examples may refer to one or the other, it should be appreciated by those skilled in the art, that either platen is interchangeable with the other, and such terminology is not necessarily intended to limit the scope of the claims.
The term "prone" refers to a patient laying face downward.
The term "supine" refers to a patient laying face upward.
The expression "ratchet-and-pawl system" refers to a mechanism having the ability to back-drive in one direction and catch in the opposite direction of rotation.
System Overview
Described herein is a patient-safety-transfer system configured to lift, rotate, position and optionally transfer a patient to and from an operating table. An embodiment of the patient-safety-transfer system 100 is depicted in Fig. 1.
Powered-lift columns 102(1), 102(2), in embodiments described herein, are typically electrically powered, but it is appreciated by those skilled in the art having the benefit this disclosure, that these powered-lift columns are not so limited and may be powered by any suitable means including but not limited to hydraulics and pneumatics. Powered-lift columns 102(1), 102(2) are located at distal ends of drawbar 112. Drawbar 112 may include a first, operating position and a potential second, collapsed-storage position. In the collapsible-storage position, drawbar 112 slidably folds together, which enables storage or transportation of system 100. In an alternate embodiment of the apparatus, chassis 100 contains no caster base assemblies and is stationary.
Powered-lift columns 102(1), 102(2) vertically extend and retract allowing for adjustability in height of platens 114 and 122. In one embodiment, the height of both powered-lift columns 102(1), 102(2) move in unison. In another embodiment, the height of each powered-lift column 102(1), 102(2) may move independently from the other. As will be explained, when columns 102(1), 102(2) move independently, the length of platen 114 and 122 may expand and contract.
Powered-lift columns 102 may incorporate actuators (not shown) that
telescopically expand and contract each column to control their height.
Attached to the powered-lift columns 102 are a pair of rotation systems including COG assemblies 106(1), 106(2) each coupled to respective spindle assemblies 108(1), 108(2) (which are obstructed in Fig. 1). Fig. 1A shows a side view a COG assembly 106 coupled to a spindle assembly 108, which is mounted on an inside portion of powered- lift column 102. Still referring to Fig. 1A, each COG assembly 106 includes internal assemblies (to be described) which facilitate the securing of a patient between posterior and anterior platens 114 and 122 (shown in Fig. 1). Each COG assembly 106 includes two opposing pairs of latch assemblies 160(1), 60(2) for releasably connecting posterior platen 114 and anterior platen 122 to system 100. Because of the side view, in Fig. 1A, only two out of the four latch assemblies can be seen.
Referring to Fig. 2, is top-outline view of a platens 114/122. At the distal ends 200(1), 200(2) of platen 114/122 are extension telescoping shafts 202(1), 202(2), 202(3), 202(4). Connected to the telescoping shafts 202 are platen tubes 204(1), 204(2), which are generally perpendicular to the telescoping shafts 202. Telescoping (meaning move in/out, but do not necessary physically telescope) shafts 202 slide in and out of platens 114/122. When connected to COG assemblies 106 (Fig. 1), telescoping shafts 202 are extended several inches. When disconnected from COG assemblies 106, telescoping shafts 202 may be retracted so that these shafts 202 and platen tubes 204 may be coextensive or in the boundaries of the operating-table surface. As will also be explained, the telescoping shafts 202 and/or platen tubes may move to permit the overall length of the frames of platens 114 and 122 to expand or contract when the height of column 102(1) moves above or below the height of column 102(2), such as when the columns do not move in unison.
Referring back to Fig. 1A, each latch assembly 160 releasably attaches to platen tubes 204. Each spindle assembly 108 is mounted on a top portion of each column 102. COG assembly 106 is mounted to an inboard side of each spindle assembly 108 with a spindle shaft 210 allowing for rotation of the COG assembly 106. COG assembly 106 adjusts a latching open and shut with a dual rack and pinion device to open both or close both posterior and anterior shafts simultaneously. A platen latch assembly is
mounted to each end of the COG assembly in order to manually lock onto the platen tubes. Each COG assembly 106 has one platen latch assembly for the posterior platen and one latch assembly for the anterior platen.
With reference to Figs. 1 A and 2, posterior platen 114 is used for the posterior side of patients and may have at least two telescoping shafts (i.e. tubes) 202(1), 202(3) or 202(2), 202(4) to provide a safety distance (approximately 6.0 inches) between the COG platen latches and the patient, while the patient is lying on the platen. Platen tube extensions can be collapsed when a transfer or rotation is complete in order to provide patient access during an operating room procedure. One anterior platen 122 is used for the anterior side of patients and also may have at least two telescoping shafts to provide patients a safe distance away from the COG assembly during the hook-up phase of the transfer, as well as adjustability should the height of columns 102 move independently. One safety belt system is used to engage the posterior platen and the anterior platens together for the rotate, or patient turning, phase.
Referring back to Fig. 1, occipital padding 170 and a leg bolster 172 may be attached or placed on a planar surface of posterior platen 122 to support the head and legs respectively when a patient lies on his back on the surface of platen 114, and provide friction support to secure the patient disposed between the platens 114/122, when rotated 180 degrees.
Anterior platen 122 includes a removable head-support assembly (to be described), a torso support 174, and leg pads 176 and 178 which support the patient while laying in a prone position, and provide friction support to secure the patient disposed between the platens 114/122, when rotated 180 degrees. Torso support 174 and leg pads 176, 178 are attached to rails 180(1), 180(2), and can slide longitudinally along rails 180 via brackets 182 that fit around rails 180.
A groove 184 located on each side of platens 114, 122 may permit a safety-belt system (one or more safety belts 186) to be slidably attached to grooves 184 of both platens 114, 122. Each groove 184 may also secure bracket 182 if bracket 182 includes a tongue (not shown).
Fig. 2A shows a side view of a portion of platens 114, 122 showing an exemplary
safety-belt system connected to grooves 184. Because the release latches of each safety belt 186 are attached proximal or directly to at least one groove 184 of a platen (in this example 114), only one portion of the two-piece belts may hang down or be conveniently folded under/over a platen 114/122 and out of the way when not in use. This eliminates medical personnel having to deal with two portions of a safety belt, and reduces overall ease and operation of system 100 when connecting and disconnecting platens 114 to 122 using the safety-belt system. In one embodiment, safety belts use mushroom-head pins. With reference to Fig. 1 , side padding 190 may be attached to portions of one or more safety belts to fasten the arms of a patient and provide redundant security to prevent a patient from falling out of system 100 when rotated 180 degrees.
In one embodiment, torso support 174 may include two pads in the general shape of Wilson-styled chest frame which supports the outer portions of the side of patient. These pads extend from the upper thighs to the shoulders of a patient. The height of the center portion of the torso support is adjustable by a manual or powered crank system.
Generally, system 100 eliminates the need for operating room staff to manually lift and place patient on and off an operating table.
COG Systems
Various embodiments disclosed herein include several mechanical elements, assemblies and subsystems, such as, but not limited to, dual-rack-and-pinion
subsystems, lost-motion devices, gas-shock absorbers, and ratchet-and-pawl subsystems. These mechanical elements, assemblies, and subsystems are combined in a unique manner to provide a patient-safety-transfer system 100 operable to safely rotate a patient from a supine to prone position, and from a prone to supine position.
Regarding the dual-rack-and-pinions in embodiments to be described, each of these allow a top set of racks to extend simultaneously with a lower set of racks comprising the dual-rack-and-pinions. This is used in each COG assembly (described in greater detail below) and provides a self centering function. With respect to lost motion devices, in most application the driven load stops moving when it contacts a fixed stop and the
powered device (i.e., columns 102) continue to lower in a free state.
Gas-shock absorbers (described in greater detail below) are used to counter-act large weights in many mechanisms such as a rear hatch door in a vehicle. The gas- shock absorbers are sized to each application in order to reduce free energy caused by gravity as well as provide an ergonomic, realistic amount of energy for human beings to safely perform a given manual function, such as, rotating a patient from supine to prone and vice versa.
Ratchet-and-pawl systems provide mechanisms with the ability to back-drive in one direction and catch in the opposite direction of rotation as is used in COG
assemblies 106.
Pre-stage conditions for an illustrative embodiment of the present invention are set as listed below in order to facilitate detailed descriptions of the specifics of the lowering function, latching of COG to posterior and anterior platens 114/122, COG self centering features, COG assembly self-centering-ratchet-and-pawl functions, and finally the spindle lost motion functions. More particularly, the pre-stage conditions are: (1) posterior platen 114 is manually pre-staged onto the OR table and each telescopic end 202 (Fig. 2) of platen 114 is advanced into a locked position; (2) a patient is positioned on top of posterior platen 114 for rotation into the prone position; (3) the upper and lower dual-rack-and-pinion shafts 302 and 303 (Figs. 1 A and 3) (to be described) of each COG assembly are extended and locked into their fully extended positions; (4) anterior-platen 122 is already locked onto its respective latches 160 (Fig. 1A) and is rotated in a ready-to-receive position over the top of the patient lying on posterior platen 114 and operating table (not shown); (5) portable-caster-base assemblies 110 have already been located to posterior platen 114 with registration plate 126 mounted to inbound portion of columns 102; and (6) casters are locked in-position.
In practice, a staff member of the hospital or similar facility controls a pendant- control panel (not shown) in order to lift or lower platens onto or off from the operating table. When the pendant button for lowering is actuated, both columns 102 lift and lower simultaneously with respect to each other. The pendant button is depressed and the two lift columns lower the COG assemblies 106. Latch mechanisms 160 mounted
on each of the COG assemblies fully nest over the platen tubes 204 (Fig. 1 A) during this downward motion. Once contact with platen tubes 204 has occurred, dual-rack-and- pinion system of COG assemblies 106 begins to close and a release mechanism of a ratchet-and-pawl assembly begins to back drive and platens 114/122 adjust themselves to the size of patient (vertical thickness). During this downward self adjusting motion, anterior-platen-foam pads (such as on torso support 174 and leg pads 176, 178
depicted in Fig. 1) eventually make contact with the patient and a controlled patient pad compression is reached. Anterior platen 122, COG assemblies 106, and spindles assemblies 108 stop lowering while the linear motion of columns 102 are free to continue traveling until a limit switch (not shown) is made (approximately two inches of travel). This provides a safe and reliable system for patients, and provides staff members with peace of mind that this system can safely perform its function.
Posterior platen 114 is manually latched onto dual rack and pinion shafts 301, 302 (Figs. 1A and Fig. 3) of the COG assembly 106. Next, safety belts 186 (Figs. 1 and 2A) are attached and cinched to redundantly secure the patient (in addition to the
compression of the padding against the front and back of the patient). Finally the lift and rotate functions are achieved.
Lost Motion System
Spindle assembly 108 mounts on a top portion of lift column 102. In a first case, when lift columns 102 are raised, spindle assemblies 108 stay in contact with the top portion of lift column 102, and therefore COG assemblies (each coupled to the inboard spindle 210 (Fig. 1A) of each of the spindle assembly 108) and platens 114/122 (each coupled to platen-latch mechanisms 160 (Fig. 1A) of COG assemblies 106), are raised.
In a second case, when powered-lift columns 102 are lowered, spindle assemblies 108 stay in contact with the top portion of their respective lift columns 102, and therefore the COG assemblies 106 and platens 114/122 are lowered.
In a third case, when the powered-lift columns 102 are lowered, (i) the platen-latch assemblies 160 are nested on the platen-tube extensions 204, (ii) each COG assembly 106 begins to collapse on itself, (Hi) patient-pad contact is made and (iv) platens
114/122, COG assemblies 106, and spindle assemblies 108 stop lowering when
columns 102 lower and stop based on contacting an internal limit switch (not shown).
Adjustable COG Assembly
An adjustable COG assembly 106 is mounted to the inboard side of each spindle assembly 108 with a spindle 210 allowing for rotation of COG assembly 106.
Referring to Fig. 3, an illustrative COG assembly 106 is shown with an upper pair of rack shafts 301a and 301b at least partially disposed within a housing 302 of COG assembly 106. Rack shafts 301a and 301b are spaced apart from each other by a first distance, and are also each coupled to an anterior-platen latch 315. A lower pair of rack shafts 303a and 303b are at least partially disposed within housing 302. Lower pair of rack shafts 303a and 303b are spaced apart from each other by a second distance, and are also each coupled to a posterior-platen latch 316. Rack shafts 301a and 303a are each coupled to a pinion gear 306a to form a first dual rack and pinion arrangement. Rack shafts 301b and 303b are each coupled to a pinion gear 306b to form a second dual rack and pinion arrangement. A gas-shock absorber 314 is disposed in housing 302 and has a piston 310 coupled to anterior platen latch 315. A release knob 304 provides a mechanism to release rack shafts 301a, 303a, 301b, 303b in order to expand to their fully extended positions. Latch hooks 308 are mounted to anterior platen latch 315, and in operation latch onto the frame of an anterior platen. Latch hooks 309 are mounted to posterior-platen latch 316, and in operation latch onto the frame of a posterior platen. A latch-and-pawl-system disposed within housing 302 provides a mechanism for the rack and pinion system to collapse and back-drive the pawl mechanism in one direction (i.e., collapse direction of the racks).
COG assembly 106 adjusts open and shut with a dual-rack-and-pinion device to open both or close both posterior and anterior shafts simultaneously. As noted above, platen latch assemblies 315, 316 are mounted to each end respectively of the COG to manually lock onto the platen frames. There is one latch assembly for the posterior platen and one latch assembly for the anterior platen.
Gas-shock absorber 310 performs two functions. The first function is to expand the COG assembly 106 to pre-stage for a pick-up condition. The second function is to
provide a metered support force onto a platen (usually the upper platen) when columns 102 are lowering and platen pads make contact with the patient. These shock absorbers 310 will support the majority of the weight of spindle assemblies 108, COG assemblies 106, and a portion of the anterior or posterior platens 114/122.
Each end of COG assembly 106 has a platen-latch assembly (anterior platen latch 315 and posterior platen latch 316 respectively). After each column 103 is completely lowered and located onto the tube 204 of the posterior platen and the lost-motion limit switch is made, staff members, or operators, manually turn either one of knobs 502 (Fig. 5) on either side of the posterior-platen latch to engage and clamp onto the lower platen tube assembly 602 (Fig. 6). Final patient compression is validated by pressing down on both sides of the anterior platen and attaching belt systems between the posterior and anterior platens.
Fig. 4 shows a see-through version of COG assembly 106.
In one illustrative embodiment, a system for turning a patient from a supine to prone position and from a prone to supine position, includes a first-lifting column having top end and a bottom end; a second-lifting column having a top end and a bottom end; a first-spindle assembly disposed over the top end of the first-lifting column; a second spindle-assembly disposed over the top end of the second-lifting column; a first-COG assembly coupled to the first-spindle assembly; a second-COG assembly coupled to the second-spindle assembly; a posterior platen having a first-frame assembly, the first- frame assembly coupled to a posterior-platen latch assembly of the first-COG assembly, and further coupled to a posterior-platen-latch assembly of the second-COG assembly; an anterior platen having a second frame assembly, the second-frame assembly coupled to an anterior-platen latch assembly of the first-COG assembly, and further coupled to an anterior-platen latch assembly of the second-COG assembly; and a safety-belt system coupled between the anterior-platen and the posterior platen.
Some embodiments also include a first-caster base coupled to the bottom end of the first-lifting column; and a second-caster base coupled to the bottom end of the second lifting column.
Still other embodiments include a drawbar coupled between the first-caster base
and the second-caster base, wherein the drawbar is operable to maintain the coupling of the first and the second-lifting columns while changing the distance between the first and the second-lifting columns by telescoping.
In some of these embodiments, each COG assembly includes a housing; am upper pair of racks, each disposed at least partially within the housing, each coupled to one of a corresponding first pair of pinions, and each of the upper pair of racks spaced apart from each other by a first distance; a lower pair of racks, each disposed at least partially within the housing, each coupled to one of a corresponding second pair of pinions, and each of the lower pair of racks spaced apart from each other by a second distance; wherein the first distance is greater than the second distance.
In another illustrative embodiment, an apparatus suitable for forming part of a patient turning system, includes a COG assembly coupled to a spindle, thereby allowing the COG assembly to rotate about an axis defined by the spindle; a spindle assembly upon which the spindle is attached; a lifting column having a first end and a second end, with the spindle assembly disposed upon the first end; and a caster base to which the second end of the lifting column is attached.
In some embodiments, the caster base includes an attachment point for a drawbar. The lifting column is operable to move the spindle assembly thereby changing the vertical position of the spindle assembly. The COG assembly includes a housing; an upper pair of rack shafts, each disposed at least partially within the housing, each coupled to one of a pair of pinion gears, and each of the upper pair of racks spaced apart from each other by a first distance; a lower pair of rack shafts, each disposed at least partially within the housing, each coupled to one of the pair of pinion gears, and each of the lower pair of racks spaced apart from each other by a second distance; and a gas shock absorber, disposed in the housing and mechanically connected to the anterior-platen-latch assembly; wherein the first distance is greater than the second distance; and wherein a first one of the upper pair of rack shafts and a first one of the lower pair of rack shafts are each coupled to a first-pinion gear of the pair of pinion gears in a first-dual-rack-and-pinion arrangement, and a second one of the upper pair of rack shafts and a second one of the lower pair of rack shafts are each coupled to a
second pinion gear of the pair of pinion gears in a second-dual-rack-and-pinion arrangement. It is noted that the ends of the first-dual-rack-and-pinion arrangement and the ends of the second dual rack and pinion arrangement all expand and collapse simultaneously with each other.
Trendelenburg System
Fig. 7 shows a top view of a platen 114 or 122 with longitudinal-extending plates 750(1), 750(2) forming a frame for each platen. Plates 750(1), 750(2) are generally planar and may be constructed of any suitable thin-radtolucent material such as carbon fiber, or any suitable non-radiolucent materials such as aluminum. Plates 750(1) and 750(2) are generally parallel and positioned in the same plane as each other. In one embodiment, plates 750 may be generally commensurate in length with an average operating-table surface, and may be positioned apart from each other approximately the distance for the width of an average operating-table surface. It is appreciated by those skilled in the art, that the length and width may vary depending on the implementation and the size of patients.
Plate 750(1) may include chambers 752(2) and/or 752(4). Plate 750(2) may include chamber 752(1) and/or 752(3). Each chamber 752(1), 752(2), 752(3), and 754(4) is configured in size and shape to receive extension tubes 754(1), 754(2), 754(3), and 754(4), respectively, therein. Each extension tube is configured to slidably extend and retract (i.e. slide) in/out of its respective chamber. A tab (not shown) located on the on a proximal end of each tube catches a latch (not shown) on at a distal end of each inside each chamber on one end of the platens, to prevent tubes 754 from sliding beyond the length of tube, and out of the respective chamber. Those skilled in the art appreciate that there various other suitable ways of preventing tubes 754 from sliding beyond the length of each chamber. Thus, tubes 754 may extend longitudinally outward beyond distal ends 760(1) and 760(2) of platens 114/122, or retract to a point that is flush with distal ends 760(1),760(2) of the platens 114/122.
In one embodiment, posterior platen 114 and/or anterior platen 122 may include cross-member tubes 756(1), 756(2) (also referred to supra as platen tubes 204) at the head end and foot end of platens 114/122, which are parallel to each other and
perpendicular to a longitudinal axis of platen 114/122 . Cross-member tubes 756(1), 756(2) are fastened to extension tubes 754(1), 754(2), 754(3), and 754(4), via fasteners 780(1), 780(2), 780(3), 780(4). That is, the distal ends of tubes 756 are fastened to distal ends of tubes 754 via fasteners 780. Stability tubes 758(1) and 758(2) also are connected together via fasteners 780. Stability tubes 758 provide strength to platens 114/122. As will be shown stability tubes 758 also provide an anchor for permitting each cross-member tube 756 to move along the longitudinal axis of the frame toward or away from the other cross member tube at the opposite end of the platen.
For instance, Fig. 8 shows top perspective view of one end of a platen shown in Fig. 7. Specifically, in Fig. 8 fasteners 780(1), 780(2) are transparent. As shown in each fastener 780(1), 780(2) is a slot 802(1), 802(2), which permits a cross-member tube 756(1) to move along the longitudinal direction of the platens, which is in the same direction as tubes 754. A spring 804(1), 804(2) connect cross-member tube 756(1) to stability tube 758(1 ),which in this embodiment is fixedly attached to tubes 754(1), 754(2) and fasteners 780(1), 780(2).
The extendibility of extension tubes 754 and/or cross-member tubes 756 helps to compensate for the changing distance when the heights of each powered-lift columns are mismatched. For example, posterior platen 114 and/or anterior platen 122 alternates between a neutral-horizontal position to either inclined or declined positions, such as shown in Fig. 9.
Exemplary Anterior Platens
A top view of a full-length-anterior platen 122 is shown in Fig. 10. Anterior platen 122 includes head-support member 1002, a torso support 174, and leg pads 176 and 178 which support the patient while laying in a prone position, and provide friction support to secure the patient disposed between the platens 114/122, when rotated 180 degrees. Leg pads 176, 178 are attached to plates 750(1), 750(2), and can slide longitudinally along plates 750(1), 750(2) via brackets 182 or other suitable fastening means.
In one embodiment, the length of the base may accommodate an adult patient. Alternatively, the length of the base may also be configured to accommodate a specific
area of a patient's body, such as only the torso. For example, Fig. 11 shows an independent-torso support platen 1122 configured to rest on top of the surface of an operating table. Platen 1122 supports the torso of a patient, when in a prone position.
Referring back to Fig. 10, a full-length-anterior platen 122 may include a pair of pelvic-support members 1010(1), 1010(2).
As shown in a perspective view of Fig. 12, pelvic-support members 1010 extend upwardly from a cross-member base 1202, each pelvic-support members 1010 having an upper portion 1204(1), 1204(2) contoured to support the left-hand or right-hand side of the pelvic area of a patient, respectively. An upper-torso-support member 1206 may also extend upwardly from the base for providing support to the upper-torso area of a patient lying in a prone position.
Pelvic-support members 1010(1), 1010(2) may be movably coupled to cross- member base 1202. That is, pelvic-support members 1010(1), 1010(2) move laterally with respect to cross-member base 1202. And cross-member base 1202 moves longitudinally with respect to plates 750 via inboard rails 1208(1), 1208(2), which cross- member base is connected. Thus, pelvic-support member 1010 may move laterally and longitudinally.
In one embodiment, upper-torso-support member 1206 may be stationary or may be movably coupled to the base. Further, in one embodiment, the height of each support member 1010, 1206 may also be adjusted upward or downward. Thus, movement of one or more of support members 1010, 1206 in the X, Y, and Z directions permits adjustability of the support members 1010, 206 to correspond to different anthropometric features of each patient. Additionally, a void 1212 created by the elevation of upper surfaces 1204 of the pelvic-support members and upper surface 1214 of upper-torso support member 1206, helps to position the spinal column of a patient in a lordotic-curved position with a patient's abdomen hanging pendulous and free.
It is appreciated by those skilled in the art after having the benefit of this disclosure that a single pelvic-support member with inward-curving (concave) surfaces may be used in place of the pair of pelvic-support members 1010. Additionally, more than two
support members may be used to support the pelvic area of a patient. Further, multiple support members may be used to support the upper-torso portion of the patient.
In one embodiment, the upper-torso support 1206 may include inward-curving (concave) surface 1214 to abut the upper-torso area of a patient. Upper-torso support 1206 may also include a curved notch 1216 positioned along a vertical axis 1218 of the upper-torso support 1206 to accommodate the neck and chin area of the patient, when lying prone on upper-torso support 1206.
In one embodiment, an anterior platen may include plates (i.e., framing or one or more planar substrates) with tracks (such as 184) and/or rails (1208) integrated within plates 750 or attached to inner edges 1220 and/or outer edges 1222 of plates 750. The tracks and/or rails permit differently configured support members to be attached anterior platen 122.
As shown in Fig. 12, a head-support assembly 1250 includes an expandable-crisscross arms 1252, which raise or lower a base 1254. Detachably attached or resting on base 1254 is disposable padding 1256 configured to support the front of the patients head and face.
In one embodiment, accessories may be connected to anterior platen 122 . For example, a traction device may be connected to a tube or rail system located at either the head or foot end of the posterior platen. More specifically, in one embodiment, a Crutchfield-styled pulley system 1304 is connected to tube 756(1), via a clamp 1302, located at the head end of the anterior platen 22.
Conclusion
The exemplary methods and apparatus illustrated and described herein find application in at least the field of patient safety transport systems.
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the subjoined Claims and their equivalents.
Claims
1. An apparatus for positioning a patient in a prone position:
a cross member;
a first-support member extending upwardly from the cross member, the first- support member having an upper portion contoured to support a peripheral-pelvic portion of a left-hand side of a patient;
a second-support member extending upwardly from the cross member, the second-support member having an upper portion contoured to support a peripheral- pelvic portion of a right-hand side of a patient, wherein the first-support member and the second-support member are movably coupled to the cross member permitting each support member to move laterally with respect to a longitudinal-center axis of the cross member,
a base, having a first rail and a second rail positioned apart from each other, wherein the cross member has a first end movably attached to the first rail, and a second end movably attached to the second rail, wherein movement of the cross member along the first and second rails permits adjustment of the first-support member and the second-support member to move longitudinally with respect to the base, which is parallel to the longitudinal-center axis of the cross member.
2. The apparatus of Claim 1 , further comprising: a third-support member coupled to the frame, the third support member extending upwardly from the frame.
3. The apparatus of Claim 2, wherein the third-support member includes a concave surface contoured to abut an upper-torso area of a patient.
4. The apparatus of Claim 2, wherein the third-support member and the first and second-support members are positioned an adjustable distance from each other.
5. The apparatus of Claim 2, wherein the upper portion of the third-support member includes padding.
6. The apparatus of Claim 2, wherein the upper portion of the third-support member includes a curved notch centered about a central-longitudinal axis of the third-support member and extending along a portion of a vertical wall of the third-support member to accommodate the neck and chin area of a patient when lying prone on the third-support member.
7. The apparatus of Claim 2, wherein a height of an upper-most surface of at least one of the first, second, and third-support members with respect to the base is adjustable.
8. An apparatus for positioning a patient in a prone position:
a base;
a first-support member extending upwardly from the base, the first-support member having an upper portion contoured to support a pelvic portion of a left-hand side of the patient; a second-support member extending upwardly from the base, the second-support member having an upper portion contoured to support a pelvic portion of a right-hand side of the patient;
wherein the first-support member and the second-support member are movably coupled to the base permitting each support member to move laterally relative to a patient.
9. The apparatus of Claim 8, further comprising a third-support member coupled to the base, the third support member extending upwardly from the base, the third-support member having an upper portion contoured to support an upper-torso portion of the patient.
10. The apparatus of Claim 9, wherein at least one of the first-support member, the second-support member, and the third-support member are movably coupled to the base so that a distance between the third-support member and the first and second- support members is adjustable to match anthropometric features of the patient.
11. The apparatus of Claim 9, wherein the upper portion of the third-support member is curved in shape corresponding to contours of an upper-torso portion of the patient.
12. The apparatus of Claim 9, wherein the upper portion of the third-support member includes a notch centered about a central-longitudinal axis of the base.
13. A platen for supporting a patient, comprising:
a planar frame having a head end and foot end, the frame including a first plate and second plate extending along a longitudinal axis of the planar frame, the first and second plates positioned parallel to each other;
first and second tubes, each positioned parallel to each other at the head end and foot end of the frame perpendicular to the longitudinal axis of the planar frame;
a third tube movably attached to the first plate along the longitudinal axis at the head end;
a fourth tube, in parallel to the third tube and the first plate, the fourth tube movably attached to the second plate along the longitudinal axis at the head end;
a first pair of fasteners, Interconnecting ends of the first tube to the third and fourth tubes, wherein the first pair of fasteners each include a slot in which the first tube is configured to move along the longitudinal axis of the frame toward or away from the second tube at the foot end.
14. The platen of Claim 13, further comprising:
a fifth tube movably attached to the first plate along the longitudinal axis at the foot end;
a sixth tube, in parallel to the fifth tube and the first plate, the sixth tube movably attached to the second plate along the longitudinal axis at the foot end; and
a second pair of fasteners, interconnecting ends of the second tube to the fifth and sixth tubes, wherein the second pair of fasteners each include a slot in which the second tube is configured to move along the longitudinal axis of the frame toward or away from the first tube at the head end.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25151509P | 2009-10-14 | 2009-10-14 | |
US61/251,515 | 2009-10-14 | ||
US12/753,050 | 2010-04-01 | ||
US12/753,050 US8381331B2 (en) | 2009-04-01 | 2010-04-01 | Patient-rotation system with center-of-gravity assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011062713A1 true WO2011062713A1 (en) | 2011-05-26 |
Family
ID=44059917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/052740 WO2011062713A1 (en) | 2009-10-14 | 2010-10-14 | Apparatuses for posterior surgery |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011062713A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110292279A (en) * | 2019-05-23 | 2019-10-01 | 黄国龙 | Storage equipment is used in a kind of retail of computer fittings |
IT202000007522A1 (en) * | 2020-04-08 | 2021-10-08 | Pro Medicare S R L | Support system for a patient in the prone position |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5131106A (en) * | 1990-08-30 | 1992-07-21 | Jackson Roger P | Spinal surgery table |
US20060242765A1 (en) * | 2004-11-10 | 2006-11-02 | Skripps Thomas K | Accessory frame for spinal surgery |
-
2010
- 2010-10-14 WO PCT/US2010/052740 patent/WO2011062713A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5131106A (en) * | 1990-08-30 | 1992-07-21 | Jackson Roger P | Spinal surgery table |
US20060242765A1 (en) * | 2004-11-10 | 2006-11-02 | Skripps Thomas K | Accessory frame for spinal surgery |
Non-Patent Citations (1)
Title |
---|
ALLEN MEDICAL SYSTEMS: "Intraoperative Adjustment from Kyphosis to Lordosis", ANNOUNCEMENT ALLEN MEDICAL SYSTEMS,, 6 February 2006 (2006-02-06), pages 1 - 4, XP007916925 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110292279A (en) * | 2019-05-23 | 2019-10-01 | 黄国龙 | Storage equipment is used in a kind of retail of computer fittings |
IT202000007522A1 (en) * | 2020-04-08 | 2021-10-08 | Pro Medicare S R L | Support system for a patient in the prone position |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8707476B2 (en) | Apparatuses for posterior surgery | |
US8381331B2 (en) | Patient-rotation system with center-of-gravity assembly | |
US7496980B2 (en) | Operating table conversion platform | |
US7197778B2 (en) | Patient transfer system | |
US9265680B2 (en) | Surgical table | |
US8046851B2 (en) | Patient single surface system | |
US8176584B2 (en) | Patient-support apparatus with movable top | |
US4937901A (en) | Apparatus for turning a patient from a supine to a prone position and vice-versa | |
US6266831B1 (en) | Storable trauma board support | |
US8261380B2 (en) | Stretcher accessory for turning a patient | |
US9474671B2 (en) | Surgical table | |
CN109718023A (en) | It is multifunction nursing bed | |
WO2011062713A1 (en) | Apparatuses for posterior surgery | |
CA2626491C (en) | Patient transfer system with operating table conversion platform | |
MX2008006974A (en) | Patient single surface system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10768352 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10768352 Country of ref document: EP Kind code of ref document: A1 |