WO2011062158A1 - Power transmitting mechanism - Google Patents

Power transmitting mechanism Download PDF

Info

Publication number
WO2011062158A1
WO2011062158A1 PCT/JP2010/070371 JP2010070371W WO2011062158A1 WO 2011062158 A1 WO2011062158 A1 WO 2011062158A1 JP 2010070371 W JP2010070371 W JP 2010070371W WO 2011062158 A1 WO2011062158 A1 WO 2011062158A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
coil spring
drive plate
annular member
annular
Prior art date
Application number
PCT/JP2010/070371
Other languages
French (fr)
Japanese (ja)
Inventor
三城 鳥居
大介 林
幸久 高士
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to CN201080052641.1A priority Critical patent/CN102639893A/en
Priority to JP2011541923A priority patent/JPWO2011062158A1/en
Publication of WO2011062158A1 publication Critical patent/WO2011062158A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/12353Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations
    • F16F15/1236Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates
    • F16F15/12366Combinations of dampers, e.g. with multiple plates, multiple spring sets, i.e. complex configurations resulting in a staged spring characteristic, e.g. with multiple intermediate plates acting on multiple sets of springs

Definitions

  • a torque fluctuation absorber as a power transmission mechanism disclosed in Patent Document 1 is known.
  • This device comprises a drive side member 18 for rotating and transmitting power, an arc-shaped spring 24 disposed in the rotation direction of the drive side member 18 and capable of rotating integrally with the drive side member 18, and the drive side member 18.
  • the driven side member 20 is coaxially disposed with the rotary shaft of the above-mentioned, and motive power is transmitted by the drive side member 18 and the spring 24, and can rotate integrally with the drive side member 18 and the spring 24.
  • the present invention aims to improve the vibration damping function of a damper mechanism in a power transmission mechanism.
  • a plurality of driving side members for rotating and transmitting power, and a plurality of the driving side members arranged in series in the rotational direction of the driving side member are rotatable in unison with the driving side member.
  • the elastic member is coaxially arranged with the rotation shaft of the drive side member, and the power is transmitted by the drive side member through the elastic member, and can be integrally rotated with the drive side member and the elastic member.
  • a support portion is provided to support the elastic member.
  • the annular member has a first restricting portion which restricts the radial movement of the annular member with respect to the annular member.
  • the first restricting portion be a protrusion that protrudes in the radial direction.
  • one of the drive side member and the driven side member protrudes in the radial direction.
  • the elastic member has a plurality of flanges, and the elastic member is disposed between the adjacent flanges, and the flange controls a second restricting portion that restricts the radial movement of the elastic member with respect to the annular member. It is preferable to have.
  • FIG. 2 is a side cross-sectional view of a clutch disc 100 according to an embodiment of the present invention. It is a top view of the clutch disc 100 of FIG. It is a sectional side view of the power transmission mechanism concerning one embodiment of the present invention.
  • FIG. 4 is a top view when the power transmission mechanism is separated along line XX in FIG. 3; It is a top view of the driven plate 4 in FIG. It is a top view of the annular member 5 in FIG.
  • FIG. 5 is a top view of the first drive plate 2a in FIG. 3; It is a top view of the 2nd drive plate 2b in FIG. It is the partially notched top view which showed typically the structure of the clutch disc containing the power transmission mechanism which concerns on Example 1 of this invention.
  • FIG. 4 is a top view when the power transmission mechanism is separated along line XX in FIG. 3; It is a top view of the driven plate 4 in FIG. It is a top view of the annular member 5 in FIG.
  • FIG. 5 is a top
  • FIG. 10 is a cross-sectional view taken along line XX ′ of FIG. 9 schematically showing a configuration of a clutch disk including a power transmission mechanism according to Embodiment 1 of the present invention. It is the top view which showed typically the structure of the power transmission mechanism (pre-damper part) which concerns on Example 1 of this invention.
  • FIG. 12 is a cross-sectional view taken along line YY ′ of FIG. 11 schematically showing the configuration of the power transmission mechanism (pre-damper portion) according to the first embodiment of the present invention. It is the top view which showed typically the structure of the driven plate in the power transmission mechanism (pre-damper part) which concerns on Example 1 of this invention.
  • FIG. 1 is a side sectional view of a clutch disc 100 according to an embodiment of the present invention
  • FIG. 2 is a top view of the clutch disc 100 of FIG.
  • FIG. 3 is a side cross-sectional view of the torque fluctuation absorbing device 1 according to an embodiment of the present invention
  • FIG. 4 is a top view when the torque fluctuation absorbing device 1 is separated along line XX in FIG. It is.
  • torque fluctuation absorbing device 1 as a power transmission mechanism constitutes a clutch disk 100 and is disposed on a power transmission path between an output shaft of an engine and an input shaft of a transmission. It is A plurality of torque fluctuation absorbing devices 1 are provided in series in the direction of rotation (in the direction of the arrow in FIG.
  • drive plate (drive side member) 2 that transmits rotation and transmits power, and is integral with the drive plate 2 Is arranged coaxially with the rotatable coil spring (elastic member) 3 and the rotation axis O of the drive plate 2, and power is transmitted by the drive plate 2 through the coil spring 3 to drive plate 2 and the coil
  • a driven plate (a driven side member) 4 rotatable integrally with the spring 3 and an annular member 5 coaxially arranged with the rotation axis of the drive plate 2 and arranged rotatably relative to the drive plate 2 and the driven plate 4 Is equipped.
  • the driven plate 4 is connected to an input shaft of a transmission (not shown) and rotates integrally with the input shaft of the transmission.
  • FIG. 5 is a top view of the driven plate 4.
  • the driven plate 4 has an annular portion 4a engaged with the input shaft of the transmission through a hole provided in the central portion thereof, and the outer side in the radial direction of the driven plate 4 from the outer peripheral portion of the annular portion 4a.
  • the flange portion 4b radially protrudes toward the Three flanges 4 b are provided at predetermined intervals in the circumferential direction of the driven plate 4 (or in the rotational direction of the driven plate 4 indicated by the arrow in FIG. 5).
  • FIG. 6 is a top view of the annular member 5.
  • the annular member 5 has an annular main body 5a, a protrusion (first regulating portion) 5b, and a support (support) 5c.
  • the protrusion 5b having an arc shape has a diameter from the inner peripheral surface of the main body 5a at a predetermined interval in the circumferential direction of the annular member 5 (or in the rotational direction of the annular member 5 of the arrow in FIG. 6). Three are formed so as to protrude inward in the direction.
  • the support portions 5c are respectively formed so as to protrude further radially inward from the central portion of the inner side surface of the protrusion 5b.
  • each accommodation part 4c is divided into a first accommodation part 4ca and a second accommodation part 4cb by the support part 5c, and one coil spring 3 is accommodated in the first accommodation part 4ca and the second accommodation part 4cb. Ru. Therefore, two coil springs 3 are accommodated in one accommodation portion 4c.
  • one end of the coil spring 3 abuts on the other side surface facing the circumferential direction of the flange portion 4 b of the driven plate 4. The end is in contact with one side surface of the support portion 5 c of the annular member 5 facing the circumferential direction. Further, by disposing the coil spring 3 in the second housing portion 4 cb, one end of the coil spring 3 abuts on the other side surface facing the circumferential direction of the support portion 5 c of the annular member 5. The other end of the flange 4 abuts on one side surface of the flange portion 4 b of the driven plate 4 facing the circumferential direction.
  • the outer peripheral portion facing the radial direction outer side of the annular member 5 at one end of the coil spring 3 housed in the first housing portion 4 ca can be supported on the inner side surface of the convex portion 4 d of the flange portion 4 b
  • the outer peripheral portion of the annular member 5 facing the radially outer side at the other end can be supported by the inner surface of the support portion 5 b of the annular member 5.
  • an outer peripheral portion facing the radial direction outer side of the annular member 5 at one end of the coil spring 3 accommodated in the second accommodation portion 4 cb is made supportable on the inner side surface of the support portion 5 b of the annular member 5.
  • the outer peripheral portion of the annular member 5 at the other end, which faces radially outward, is supportable by the inner side surface of the convex portion 4 d of the flange portion 4 b.
  • the drive plate 2 is connected to a crankshaft of an engine (not shown) and rotates integrally with the crankshaft, and comprises a first drive plate 2 a and a second drive plate 2 b.
  • the first drive plate 2a and the second drive plate 2b have a coupling shaft 2ab (see FIG. 7) provided on the outer peripheral portion of the first drive plate 2a and a coupling hole 2bb provided on the outer periphery of the second drive plate 2b. Integrated by coupling to (see FIG. 8).
  • FIG. 7 is a top view of the first drive plate 2a
  • FIG. 8 is a top view of the second drive plate 2b.
  • the first drive plate 2a and the second drive plate 2b which are integrally configured, have concave portions 2aa and 2ba for accommodating the coil spring 3, the driven plate 4 and the annular member 5, respectively.
  • Recesses 2aa and 2ba have an annular bottom, and the circumferential direction or rotational direction (arrow direction in FIGS. 7 and 8) corresponds to housing 4d of coil spring 3 of driven plate 4 at the bottom.
  • Three window holes 2a1 and 2b1 are formed at predetermined intervals.
  • the first drive plate 2a and the second drive plate 2b are integrally configured, so that the coil spring 3, the driven plate 4 and the annular member 5 are formed by the respective recesses 2aa and 2ba.
  • the housing space which accommodates is formed, and the coil spring 3, the driven plate 4 and the annular member 5 are arrange
  • two coil springs 3 are accommodated in each of the window holes 2a1 and 2b1.
  • the driven plate 4 and the annular member 5 are disposed coaxially with the rotation axis of the drive plate 2 and are relatively rotatable.
  • the inner diameters of the peripheral portions 2ac and 2bc of the recesses 2aa and 2ba of the first drive plate 2a and the second drive plate 2b of the drive plate 2 are made larger than the outermost diameter of the annular member 5. That is, the peripheral wall portions 2ac and 2bc of the recessed portions 2aa and 2ba are located outside the annular member 5 in the radial direction of the annular member 5.
  • the other end of the compressed coil spring 3 presses the side surface of one side of the support 5 c of the annular member 5 by the restoring force, and the other side of the support 5 c presses one end of the coil spring 3.
  • the other end of the compressed coil spring 3 presses the flange portion 4 d of the driven plate 4 by a restoring force to transmit torque to the driven plate 4. The torque is then input to the input shaft of the transmission.
  • the torque fluctuation absorbing device 1 of the present embodiment in the compression of the coil spring 3 accompanying the relative rotation of the drive plate 2 and the driven plate 4, the coil spring 3 and, in particular, the radial direction of the annular member 5 of the coil spring 3 in particular.
  • the outer peripheral portion facing outward does not contact or slide on the drive plate 2, and the vibration damping function of the damper mechanism of the torque fluctuation absorber 1 can be improved.
  • a predetermined clearance always exists between the outer peripheral surface of the annular member 5 and the peripheral wall portions of the recessed portions 2aa and 2ba of the driven plate 2, and the inner peripheral surface of the main body portion 5a of the annular member 5 is driven
  • a predetermined clearance always exists between the outer peripheral surface of the plate 4 (the outer peripheral surface of the flange portion 4 b), and between the inner side surface of the support portion 5 c of the annular member 5 and the outer peripheral surface of the annular portion 4 a of the driven plate 4.
  • the radially outward extension of the annular member 5 of the middle part of the coil spring 3 is suppressed, for example, the middle of the coil spring 3 It is possible to suppress the contact and sliding of the portion with the annular member 5 and to improve the vibration damping function of the damper mechanism of the torque fluctuation absorbing device 1.
  • Each window hole 2a 1 guides expansion and contraction of the coil spring 3.
  • the three window holes 2a1 are disposed at positions shifted by 120 degrees with respect to the rotation center axis of the first drive plate 2a.
  • the window holes 2a1 are arranged along the same circumference (the radial position is the same).
  • the first drive plate 2a is in contact with the second drive plate 2b at a portion not interfering with the operation of the driven plate 4 and the annular member 5 on the surface on the second drive plate 2b side.
  • the coil spring 3 contracts when the pre-damper portion 101 twists (twist between the drive plates 2a and 2b and the driven plate 4), and absorbs a shock due to a difference in rotation between the drive plates 2a and 2b and the driven plate 4 .
  • the coil spring 3 it is possible to use a coil spring (straightly extending linearly) in the expansion and contraction direction (longitudinal direction).
  • the spring force (spring coefficient) of the coil spring 3 is set smaller than the spring force (spring coefficient) of the coil spring 19 in the main damper portion 102.
  • the driven plate 4 is an annular plate-like member disposed on the outer periphery of the outer spline portion 23b of the hub member 23, and is a component of the pre-damper portion 101 (see FIGS. 9 to 13).
  • the driven plate 4 is disposed rotatably with respect to the first drive plate 2a and the second drive plate 2b between the recess 2aa of the first drive plate 2a and the recess 2ba of the second drive plate 2b.
  • the driven plate 4 is disposed so as to be rotatable in a range of a predetermined angle with respect to the annular member 5 radially inward of the annular member 5.
  • the driven plate 4 has three flange portions 4 b extending radially outward from a predetermined position of the outer peripheral end face of the annular portion 4 a.
  • the three flange portions 4 b are disposed at positions shifted by 120 degrees with respect to the rotation center axis of the driven plate 4.
  • the accommodating part 4c for accommodating the two coil springs 3 and the support part 5c of the annular member 5 is provided.
  • An end face of the housing portion 4 c in the circumferential direction is in contact with the coil spring 3 so as to be capable of coming into and coming out of contact.
  • the housing portion 4c has a first housing portion 4ca for housing the coil spring 3 on one side in the circumferential direction of the support portion 5c, and a second one for housing the other coil spring 3 on the other side in the circumferential direction of the support portion 5c. It has the accommodation part 4cb.
  • the driven plate 4 has two convex portions 4 d circumferentially projecting on both sides in the circumferential direction from a position radially outward of the position where it can contact the coil spring 3 at the end face in the circumferential direction of each flange portion 4 b.
  • the convex portion 4 d regulates movement (movement in the radial direction) of the coil spring 3 in the pre-damper portion 101.
  • the driven plate 4 has an inner spline portion 4e formed at an inner peripheral end. The inner spline portion 4 e is non-rotatably engaged with the outer spline portion 23 b of the hub member 23.
  • the annular member 5 is an annular plate-like member disposed radially outside the driven plate 4 and is a component of the pre-damper portion 101 (see FIGS. 9 to 12 and 14).
  • the annular member 5 is disposed rotatably with respect to the first drive plate 2a and the second drive plate 2b between the recess 2aa of the first drive plate 2a and the recess 2ba of the second drive plate 2b.
  • the annular member 5 is rotatably disposed in a range of a predetermined angle with respect to the driven plate 4 at a radially outer side of the driven plate 4.
  • the annular member 5 has three support parts 5c which protrude inward in the radial direction from a predetermined position of the inner peripheral end of the main body part 5a formed in an annular shape.
  • the three support portions 5 c are disposed at positions shifted by 120 degrees with respect to the rotation center axis of the annular member 5.
  • Each support portion 5 c is disposed between the circumferential direction of the two coil springs 3 accommodated in each accommodation portion 4 c of the driven plate 4. Both sides of the end face of each support 5c in the circumferential direction support the end of the coil spring 3.
  • the annular member 5 has two protrusions 5b that protrude in the circumferential direction from the position radially outward of the position where it can contact the coil spring 3 on the end face in the circumferential direction of each support 5c.
  • the convex portion 5 b restricts the movement (movement in the radial direction outer side) of the coil spring 3 in the pre-damper portion 101.
  • the facing 10 is a friction material that can be frictionally engaged with a flywheel (or any other member) that rotates integrally with a crankshaft (not shown) of the engine (see FIGS. 9 and 10).
  • the facing 10 is annularly formed.
  • the facing 10 is fixed to one axial surface (surface on the left side in FIG. 10) of the disc spring 12 by a plurality of rivets 13.
  • the facing 11 is a friction material that can be frictionally engaged with a pressure plate that rotates integrally with a crankshaft (not shown) of the engine (see FIGS. 9 and 10).
  • the facing 11 is annularly formed.
  • the facing 11 is fixed to the other axial surface (the surface on the right side in FIG. 10) of the disk spring 12 by a plurality of rivets 14.
  • those containing rubber, resin, fibers (short fibers, long fibers), particles for adjusting the coefficient of friction ⁇ , and the like can be used.
  • the disc spring 12 is an annular disc-like member having an elastic force against pressing against the disc surface (see FIGS. 9 and 10).
  • the disc spring 12 has facings 10 and 11 attached by rivets 13 and 14 on both sides of the outer peripheral portion.
  • the disk spring 12 is caulked and fixed to one end portion of the plurality of connecting members 17 together with the side plate 15 at the inner peripheral portion.
  • the disc spring 12 rotates integrally with the side plates 15 and 16.
  • the rivet 13 is a member for fixing the facing 10 to one surface (surface on the left side in FIG. 10) in the axial direction of the disk spring 12 (see FIGS. 9 and 10).
  • the side plate 15 is an annular member disposed on one side (left side in FIG. 10) of the flange member 18 in the axial direction so as to be separated from the flange member 18 (see FIGS. 9 and 10).
  • the side plate 15 is caulked and fixed to one end of the plurality of connecting members 17 together with the disc spring 12 at a portion near the outer peripheral end.
  • the side plate 15 rotates integrally with the connecting member 17, the disc spring 12, and the side plate 16.
  • the side plate 15 has six windows 15 a for accommodating the coil spring 19 in the main damper portion 102 of the middle portion.
  • the circumferential end surface of the window portion 15 a is in contact with and separable from the end of the coil spring 19.
  • the window 15 a guides expansion and contraction of the coil spring 19.
  • the window portion 15a is disposed at a position shifted 50 degrees about the rotation center axis of the side plate 15 with respect to one of the window portions 15a adjacent in the circumferential direction, and the other window adjacent in the circumferential direction It is disposed at a position which is offset by 70 degrees with respect to the portion 15a about the central axis of rotation of the side plate 15.
  • the side plate 15 is slidably in contact with the first drive plate 2 a at the pre-damper portion 101 on the inner peripheral side of the main damper portion 102.
  • the side plate 15 is rotatably supported by the hub member 23 via the thrust member 24 at the inner peripheral end.
  • the side plate 15 is rotationally fixed to the thrust member 24 at the inner peripheral end.
  • the side plate 15 is in contact with the thrust member 24 at the surface on the side of the flange member 18 near the inner peripheral end.
  • the side plate 16 is an annular member disposed on the other side (right side in FIG. 10) of the flange member 18 in the axial direction so as to be separated from the flange member 18 (see FIGS. 9 and 10).
  • the side plate 16 is caulked and fixed to the other end of the plurality of connecting members 17 at a portion near the outer peripheral end.
  • the side plate 16 rotates integrally with the connecting member 17, the disc spring 12, and the side plate 15.
  • the side plate 16 has six windows 16 a for accommodating the coil spring 19 in the main damper portion 102 of the middle portion.
  • the circumferential end surface of the window portion 16 a is in contact with and separable from the end of the coil spring 19.
  • the window portion 16 a guides expansion and contraction of the coil spring 19.
  • the window portion 16a is disposed at a position shifted 50 degrees around the rotation center axis of the side plate 16 with respect to one of the window portions 16a adjacent in the circumferential direction, and the other window adjacent in the circumferential direction It is disposed at a position which is offset by 70 degrees with respect to the portion 16 a about the central axis of rotation of the side plate 16.
  • the side plate 16 is engaged with the detent portion 20 a of the thrust member 20 in a non-rotatable and axially movable manner at a portion which does not conflict with the main damper portion 102.
  • the side plate 16 supports one end of the disc spring 21 at a portion on the inner peripheral side of the anti-rotation portion 20 a of the thrust member 20.
  • the side plate 16 supports one end of the disc spring 26 at a portion on the inner peripheral side of the disc spring 21.
  • the side plate 16 is rotatably supported by the hub member 23 via the thrust member 25 at an inner peripheral end.
  • the side plate 16 is rotationally fixed to the thrust member 25 at an inner peripheral end.
  • the connecting member 17 is a member for connecting the side plates 15 and 16 and the disc spring 12 (see FIGS. 9 and 10). At one end of the connecting member 17, the side plate 15 and the disc spring 12 are fixed by caulking. At the other end of the connecting member 17, a side plate 16 is fixed by caulking.
  • the middle portion (body portion) of the connecting member 17 serves as a spacer for keeping the space between the side plate 16 and the disc spring 12. The middle part of the connecting member 17 is inserted into the notch 18b of the blanking member 18, and when the main damper portion 102 is twisted (twist between the side plates 15 and 16 and the flange member 18), the notch is cut out.
  • connection members 17 are arranged at predetermined intervals in the circumferential direction of the side plates 15 and 16.
  • the flange member 18 is an annular plate-like member disposed on the outer periphery of the outer spline portion 23b of the hub member 23 (see FIGS. 9 and 10).
  • the flange member 18 has six windows 18 a for accommodating the coil spring 19 in the main damper portion 102.
  • the circumferential end surface of the window portion 18 a is in contact with the end portion of the coil spring 19 so as to be able to be separated and attached.
  • the middle portion (body portion) of the connection member 17 is inserted into each notch 18b.
  • the end face of the notch 18b in the circumferential direction contacts the middle portion of the connecting member 17 when the main damper portion 102 is twisted (twist of the side plates 15, 16 and the flange member 18), thereby the main damper It becomes a stopper part which controls excessive twist of section 102.
  • the flange member 18 is sandwiched between the second drive plate 2 b and the thrust member 20 on the surface in the axial direction on the inner peripheral side of the main damper portion 102 and is slidable with the thrust member 20.
  • the flange member 18 has an inner spline portion 18c in which an inner spline is formed at an inner peripheral end. The inner spline portion 18c engages with the outer spline portion 23b of the hub member 23 so that the hub member 23 and the flange member 18 can be twisted within a predetermined angle range.
  • the coil spring 19 is a component of the main damper portion 102, and is an elastic member housed in the windows 15a, 16a, 18a formed in the side plates 15, 16 and the flange member 18 (see FIGS. 9 and 10). ). Both ends of the coil spring 19 are in contact with and separable from the end faces of the windows 15a, 16a, 18a in the circumferential direction.
  • the coil spring 19 contracts when the side plates 15 and 16 and the flange member 18 twist, and absorbs the shock due to the difference in rotation between the side plates 15 and 16 and the flange member 18.
  • a coil spring that is straight (extending linearly) in the expansion and contraction direction (longitudinal direction) can be used.
  • the spring force (spring coefficient) of the coil spring 19 is set larger than the spring force (spring coefficient) of the coil spring 3 in the pre-damper portion 101.
  • the disc spring 21 is a disc-shaped spring which is disposed between the thrust member 20 and the side plate 16 and biases the thrust member 20 toward the flange member 18 (see FIGS. 9 and 10).
  • the hub member 23 is a member that outputs rotational power from the dampers 2 and 3 toward an input shaft (not shown) of the transmission (see FIGS. 9 and 10).
  • the hub member 23 has a flange portion 23a extending radially outward from a predetermined portion of the outer periphery of the cylindrical portion.
  • the hub member 23 splines with an input shaft (not shown) on the inner peripheral surface of the cylindrical portion.
  • the hub member 23 relatively rotatably supports the side plate 15 via the thrust member 24 on the outer periphery, and supports the side plate 16 relatively rotatably via the thrust member 25.
  • the flange portion 23a has an outer spline portion 23b in which an outer spline is formed on the outer peripheral surface.
  • the outer spline portion 23b engages with the inner spline portion 18c of the flange member 18 such that the hub member 23 and the flange member 18 can be twisted within a predetermined angle range.
  • the outer spline portion 23 b is non-rotatably engaged with the inner spline portion (4 e in FIG. 11) of the driven plate 4.
  • the flange portion 23 a is slidably held by the thrust members 24 and 25.
  • the thrust member 25 is an annular member disposed between the side plate 16 and the hub member 23 (see FIGS. 9 and 10).
  • the thrust member 25 is disposed between the disc spring 26 and the flange portion 23a in the axial direction, is urged toward the flange portion 23a by the disc spring 26, and is slidably pressed against the flange portion 23a. There is.
  • the thrust member 25 engages with the side plate 16 so as to be non-rotatable and axially movable.
  • the thrust member 25 is also interposed between the side plate 16 and the hub member 23 in the radial direction, and serves as a slide bearing (bush) for supporting the side plate 16 relatively rotatably on the hub member 23.
  • the coil spring 19 acts until the middle part of the connecting member 17 connected to the side plates 15 and 16 abuts on the circumferential end face of the notch 18 b of the flange member 18. At this time, the coil spring 3 of the pre-damper portion 101 rotates integrally with the flange member 18 in the maximum compression state.
  • a predetermined clearance always exists between the outer peripheral surface of the annular member 5 and the peripheral wall portions of the recessed portions 2aa and 2ba of the driven plate 2, and the inner peripheral surface of the main body portion 5a of the annular member 5 is driven
  • a predetermined clearance always exists between the outer peripheral surface of the plate 4 (the outer peripheral surface of the flange portion 4 b), and between the inner side surface of the support portion 5 c of the annular member 5 and the outer peripheral surface of the annular portion 4 a of the driven plate 4.
  • the coil spring 3 When the device 1 rotates, the coil spring 3 is urged radially outward of the annular member 5 by centrifugal force. However, the radially outward movement of the coil spring 3 with respect to the annular member 5 is restricted by the convex portion 4 d of the flange portion 4 b of the driven plate 4 and the convex portion 5 b of the annular member 5. Thereby, the arrangement position of the coil spring 3 can be always maintained at a good position, and the vibration damping function can be exhibited stably.
  • the radially outward extension of the annular member 5 of the middle part of the coil spring 3 is suppressed, for example, the middle of the coil spring 3 It is possible to suppress the contact and sliding of the portion with the annular member 5 and to improve the vibration damping function of the damper mechanism of the torque fluctuation absorbing device 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

A power transmitting mechanism wherein the vibration attenuation function of a damper mechanism is improved. A power transmitting mechanism is provided with a drive plate which rotates and transmits power, coiled springs which are provided in series in the rotational direction of the drive plate and can be rotated together with the drive plate, a driven plate which is provided coaxially with the rotation axis of the drive plate and which can be rotated together with the drive plate and the coiled springs by power transmitted to the driven plate by the drive plate through the coiled springs, an annular member which is coaxial with the rotation axis and is provided so as to be rotatable relative to the drive plate and the driven plate. The annular member is provided with support sections disposed between the coiled springs and supporting the coiled springs.

Description

動力伝達機構Power transmission mechanism
 本発明は動力伝達機構に関し、特にエンジン機構側から変速機構側に動力をトルク変動吸収可能に伝達する動力伝達機構に関する。 The present invention relates to a power transmission mechanism, and more particularly to a power transmission mechanism that transmits power from a side of an engine mechanism to a side of a transmission mechanism so as to absorb torque fluctuations.
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2009-264392号(2009年11月19日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 従来の動力伝達機構の例として、特許文献1に開示される動力伝達機構としてのトルク変動吸収装置が知られている。この装置は、回転し動力を伝達する駆動側部材18と、駆動側部材18の回転方向に配設され、駆動側部材18と一体的に回転可能な円弧状のスプリング24と、駆動側部材18の回転軸と同軸に配設され、駆動側部材18およびスプリン24により動力が伝達されて、駆動側部材18およびスプリング24と一体的に回転可能な被動側部材20を備えている。
(Description of related application)
The present invention is based on the claim of priority of Japanese Patent Application No. 2009-264392 (filed on November 19, 2009), and the entire contents of the same application are incorporated and described herein by reference. It shall be.
As an example of a conventional power transmission mechanism, a torque fluctuation absorber as a power transmission mechanism disclosed in Patent Document 1 is known. This device comprises a drive side member 18 for rotating and transmitting power, an arc-shaped spring 24 disposed in the rotation direction of the drive side member 18 and capable of rotating integrally with the drive side member 18, and the drive side member 18. The driven side member 20 is coaxially disposed with the rotary shaft of the above-mentioned, and motive power is transmitted by the drive side member 18 and the spring 24, and can rotate integrally with the drive side member 18 and the spring 24.
独国特許DE19753557A1号German patent DE19753557A1
 なお、上記特許文献の全開示内容はその引用をもって本書に繰込み記載する。以下の分析は、本発明によって与えられたものである。
 しかしながら、このような円弧状のスプリングを配設するタイプのトルク変動吸収装置においては、スプリングの圧縮時にスプリングの中間部分が径方向外方に移動して駆動側部材に接触・摺動するという問題がある。このような場合、摩擦抗が大きくなり、スプリングによるダンパ機構の振動減衰機能が低下してしまう。
The entire disclosure of the above patent documents is incorporated herein by reference thereto. The following analysis is given by the present invention.
However, in the torque fluctuation absorbing device of the type in which such an arc-shaped spring is disposed, when the spring is compressed, the intermediate portion of the spring moves radially outward to contact and slide on the driving side member There is. In such a case, the friction resistance is increased, and the vibration damping function of the damper mechanism by the spring is reduced.
 上記問題点に鑑み、本発明は、動力伝達機構において、ダンパー機構の振動減衰機能の向上を図ることを目的とする。 In view of the above problems, the present invention aims to improve the vibration damping function of a damper mechanism in a power transmission mechanism.
 本発明の一視点においては、動力伝達機構において、回転し動力を伝達する駆動側部材と、前記駆動側部材の回転方向に直列に複数配設され、前記駆動側部材と一体的に回転可能な弾性部材と、前記駆動側部材の回転軸と同軸に配設され、前記弾性部材を介して前記駆動側部材により前記動力が伝達されて、前記駆動側部材および前記弾性部材と一体的に回転可能な被動側部材と、前記回転軸と同軸で、前記駆動側部材および前記被動側部材に対して相対回転可能に配設される環状部材と、を備え、前記環状部材は、前記弾性部材間に配設されて前記弾性部材を支持する支持部を有する。 According to one aspect of the present invention, in the power transmission mechanism, a plurality of driving side members for rotating and transmitting power, and a plurality of the driving side members arranged in series in the rotational direction of the driving side member are rotatable in unison with the driving side member. The elastic member is coaxially arranged with the rotation shaft of the drive side member, and the power is transmitted by the drive side member through the elastic member, and can be integrally rotated with the drive side member and the elastic member. A driven side member, and an annular member coaxially arranged with the rotation shaft and disposed so as to be relatively rotatable with respect to the drive side member and the driven side member, the annular member being interposed between the elastic members A support portion is provided to support the elastic member.
 本発明の前記動力伝達機構において、前記環状部材は、前記弾性部材の前記環状部材に対する前記環状部材の径方向への移動を規制する第1の規制部を有することが好ましい。 In the power transmission mechanism of the present invention, preferably, the annular member has a first restricting portion which restricts the radial movement of the annular member with respect to the annular member.
 本発明の前記動力伝達機構において、第2の技術的手段のいずれかにおいて、前記第1の規制部は、前記径方向に突出する突部としたことが好ましい。 In the power transmission mechanism of the present invention, in any of the second technical means, it is preferable that the first restricting portion be a protrusion that protrudes in the radial direction.
 本発明の前記動力伝達機構において、第1の技術的手段から第3の技術的手段のいずれかにおいて、前記駆動側部材と前記被動側部材の内で一方の部材は、前記径方向に突出するフランジ部を複数有し、前記弾性部材は隣り合う前記フランジ部の間に配設され、前記フランジ部は、前記弾性部材の前記環状部材に対する前記径方向の移動を規制する第2の規制部を有することが好ましい。 In the power transmission mechanism of the present invention, in any one of the first to third technical means, one of the drive side member and the driven side member protrudes in the radial direction. The elastic member has a plurality of flanges, and the elastic member is disposed between the adjacent flanges, and the flange controls a second restricting portion that restricts the radial movement of the elastic member with respect to the annular member. It is preferable to have.
 本発明の前記動力伝達機構において、第1の技術的手段から第4の技術的手段のいずれかにおいて、前記弾性部材は、ストレート状を呈するコイルスプリングとしたことが好ましい。 In the power transmission mechanism of the present invention, in any of the first to fourth technical means, the elastic member is preferably a coil spring exhibiting a straight shape.
 本発明によれば、駆動側部材と被動側部材との相対回転に伴う弾性部材の圧縮において、弾性部材と駆動側部材との接触・摺動を抑制でき、ダンパ機構の振動減衰機能を向上できる。 According to the present invention, in compression of the elastic member caused by relative rotation between the drive side member and the driven side member, contact / sliding between the elastic member and the drive side member can be suppressed, and the vibration damping function of the damper mechanism can be improved. .
本発明の一実施形態に係るクラッチディスク100の側断面図である。FIG. 2 is a side cross-sectional view of a clutch disc 100 according to an embodiment of the present invention. 図1のクラッチディスク100の上面図である。It is a top view of the clutch disc 100 of FIG. 本発明の一実施形態に係る動力伝達機構の側断面図である。It is a sectional side view of the power transmission mechanism concerning one embodiment of the present invention. 図3中のX-X線に沿って動力伝達機構を分離した際の上面図である。FIG. 4 is a top view when the power transmission mechanism is separated along line XX in FIG. 3; 図3中のドリブンプレート4の上面図である。It is a top view of the driven plate 4 in FIG. 図3中の環状部材5の上面図である。It is a top view of the annular member 5 in FIG. 図3中の第1ドライブプレート2aの上面図である。FIG. 5 is a top view of the first drive plate 2a in FIG. 3; 図3中の第2ドライブプレート2bの上面図である。It is a top view of the 2nd drive plate 2b in FIG. 本発明の実施例1に係る動力伝達機構を含むクラッチディスクの構成を模式的に示した部分切欠平面図である。It is the partially notched top view which showed typically the structure of the clutch disc containing the power transmission mechanism which concerns on Example 1 of this invention. 本発明の実施例1に係る動力伝達機構を含むクラッチディスクの構成を模式的に示した図9のX-X´間の断面図である。FIG. 10 is a cross-sectional view taken along line XX ′ of FIG. 9 schematically showing a configuration of a clutch disk including a power transmission mechanism according to Embodiment 1 of the present invention. 本発明の実施例1に係る動力伝達機構(プリダンパ部)の構成を模式的に示した平面図である。It is the top view which showed typically the structure of the power transmission mechanism (pre-damper part) which concerns on Example 1 of this invention. 本発明の実施例1に係る動力伝達機構(プリダンパ部)の構成を模式的に示した図11のY-Y´間の断面図である。FIG. 12 is a cross-sectional view taken along line YY ′ of FIG. 11 schematically showing the configuration of the power transmission mechanism (pre-damper portion) according to the first embodiment of the present invention. 本発明の実施例1に係る動力伝達機構(プリダンパ部)におけるドリブンプレートの構成を模式的に示した平面図である。It is the top view which showed typically the structure of the driven plate in the power transmission mechanism (pre-damper part) which concerns on Example 1 of this invention. 本発明の実施例1に係る動力伝達機構(プリダンパ部)における環状部材の構成を模式的に示した平面図である。It is the top view which showed typically the structure of the annular member in the power transmission mechanism (pre-damper part) which concerns on Example 1 of this invention. 本発明の実施例1に係る動力伝達機構(プリダンパ部)における第1ドライブプレートの構成を模式的に示した平面図である。It is the top view which showed typically the structure of the 1st drive plate in the power transmission mechanism (pre-damper part) which concerns on Example 1 of this invention. 本発明の実施例1に係る動力伝達機構(プリダンパ部)における第2ドライブプレートの構成を模式的に示した平面図である。It is the top view which showed typically the structure of the 2nd drive plate in the power transmission mechanism (pre-damper part) which concerns on Example 1 of this invention.
 以下図面を参照して本発明の一実施形態を詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の一実施形態に係るクラッチディスク100の側断面図であり、図2は、図1のクラッチディスク100の上面図である。図3は、本発明の一実施形態に係るトルク変動吸収装置1の側断面図であり、図4は、図3のX-X線に沿ってトルク変動吸収装置1を分離した際の上面図である。 FIG. 1 is a side sectional view of a clutch disc 100 according to an embodiment of the present invention, and FIG. 2 is a top view of the clutch disc 100 of FIG. FIG. 3 is a side cross-sectional view of the torque fluctuation absorbing device 1 according to an embodiment of the present invention, and FIG. 4 is a top view when the torque fluctuation absorbing device 1 is separated along line XX in FIG. It is.
 図1から図4を参照して、動力伝達機構としてのトルク変動吸収装置1はクラッチディスク100を構成しており、エンジンの出力軸と変速機の入力軸との間の動力伝達経路上に配置されるものである。トルク変動吸収装置1は、回転し動力を伝達するドライブプレート(駆動側部材)2と、ドライブプレート2の回転方向(図4中矢印方向)に直列に複数配設され、ドライブプレート2と一体的に回転可能なストレート状のコイルスプリング(弾性部材)3と、ドライブプレート2の回転軸Oと同軸に配設され、コイルスプリング3を介してドライブプレート2により動力が伝達されてドライブプレート2およびコイルスプリング3と一体的に回転可能なドリブンプレート(被動側部材)4と、ドライブプレート2の回転軸と同軸でドライブプレート2およびドリブンプレート4に対して相対回転可能に配設される環状部材5とを備えている。 Referring to FIGS. 1 to 4, torque fluctuation absorbing device 1 as a power transmission mechanism constitutes a clutch disk 100 and is disposed on a power transmission path between an output shaft of an engine and an input shaft of a transmission. It is A plurality of torque fluctuation absorbing devices 1 are provided in series in the direction of rotation (in the direction of the arrow in FIG. 4) of the drive plate (drive side member) 2 that transmits rotation and transmits power, and is integral with the drive plate 2 Is arranged coaxially with the rotatable coil spring (elastic member) 3 and the rotation axis O of the drive plate 2, and power is transmitted by the drive plate 2 through the coil spring 3 to drive plate 2 and the coil A driven plate (a driven side member) 4 rotatable integrally with the spring 3 and an annular member 5 coaxially arranged with the rotation axis of the drive plate 2 and arranged rotatably relative to the drive plate 2 and the driven plate 4 Is equipped.
 ドリブンプレート4は不図示の変速機の入力軸に接続されて、変速機の入力軸と一体的に回転するものである。図5は、ドリブンプレート4の上面図である。図5に示すように、ドリブンプレート4は、その中心部に設けられた穴で変速機の入力軸と係合する環状部4aと、環状部4aの外周部からドリブンプレート4の径方向の外側に向けて放射状に突出するフランジ部4bを有している。フランジ部4bは、ドリブンプレート4の周方向(或いは図5中の矢印で示されるドリブンプレート4の回転方向)に所定の間隔離間されて、3つ設けられている。 The driven plate 4 is connected to an input shaft of a transmission (not shown) and rotates integrally with the input shaft of the transmission. FIG. 5 is a top view of the driven plate 4. As shown in FIG. 5, the driven plate 4 has an annular portion 4a engaged with the input shaft of the transmission through a hole provided in the central portion thereof, and the outer side in the radial direction of the driven plate 4 from the outer peripheral portion of the annular portion 4a. The flange portion 4b radially protrudes toward the Three flanges 4 b are provided at predetermined intervals in the circumferential direction of the driven plate 4 (or in the rotational direction of the driven plate 4 indicated by the arrow in FIG. 5).
 隣り合うフランジ部4b間には、円周上等分3箇所に、コイルスプリング3を収容する収容部4cが形成されており、図4に示されるように、収容部4cにはコイルスプリング3がそれぞれ2個ずつ、ドライブプレート2の回転方向に直列に収容される。フランジ部4bは、回転方向(図5中矢印方向)に面する両側面において、ドリブンプレート4の周方向に突出する凸部(第2の規制部)4dをそれぞれ有している。凸部4dは、コイルスプリング3の外周部を支持可能とされている。また、図4、図5から分かるように、ドリブンプレート4の環状部4aは、環状部材5よりも環状部材5の径方向の内側に位置される。 Between adjacent flange portions 4b, housing portions 4c for housing the coil springs 3 are formed at three equally divided circumferential positions, and as shown in FIG. 4, the coil springs 3 are provided in the housing portions 4c. Two each are accommodated in series in the rotational direction of the drive plate 2. The flange portions 4 b have convex portions (second restricting portions) 4 d protruding in the circumferential direction of the driven plate 4 on both side surfaces facing in the rotational direction (the arrow direction in FIG. 5). The convex portion 4 d can support the outer peripheral portion of the coil spring 3. Further, as can be seen from FIGS. 4 and 5, the annular portion 4 a of the driven plate 4 is positioned on the inner side in the radial direction of the annular member 5 than the annular member 5.
 図6は環状部材5の上面図である。図6に示すように、環状部材5は、環状の本体部5aと、突部(第1の規制部)5bと、支持部(支持部)5cを有している。円弧状を呈する突部5bは、本体部5aの内周面から、環状部材5の周方向(又は図6中矢印の環状部材5の回転方向)に所定の間隔をおいて環状部材5の径方向の内方に突出するように3つ形成されている。また、支持部5cが、突部5bの内側面の中央部分から更に径方向内方に向けて突出するようにそれぞれ形成されている。 FIG. 6 is a top view of the annular member 5. As shown in FIG. 6, the annular member 5 has an annular main body 5a, a protrusion (first regulating portion) 5b, and a support (support) 5c. The protrusion 5b having an arc shape has a diameter from the inner peripheral surface of the main body 5a at a predetermined interval in the circumferential direction of the annular member 5 (or in the rotational direction of the annular member 5 of the arrow in FIG. 6). Three are formed so as to protrude inward in the direction. Further, the support portions 5c are respectively formed so as to protrude further radially inward from the central portion of the inner side surface of the protrusion 5b.
 図3~図6に示すように、環状部材5の本体部5aの内径はドリブンプレート4の最外径よりも大きくされており、環状部材5の最内径はドリブンプレート4の環状部4aの外径よりも大きくされており、各支持部5cが各収容部4c内に位置するように、環状部材5の内部にドリブンプレート4が配置される。これにより、各収容部4cは支持部5cにより第1収容部4caと第2収容部4cbとに二分割され、第1収容部4ca、第2収容部4cbにコイルスプリング3が一つずつ収容される。したがって、一つの収容部4cにはコイルスプリング3が2つ収容されることになる。 As shown in FIGS. 3 to 6, the inner diameter of the main portion 5a of the annular member 5 is larger than the outermost diameter of the driven plate 4, and the innermost diameter of the annular member 5 is outside the annular portion 4a of the driven plate 4. The driven plate 4 is disposed inside the annular member 5 so as to be larger than the diameter and to position each support portion 5c in each accommodation portion 4c. Thereby, each accommodation part 4c is divided into a first accommodation part 4ca and a second accommodation part 4cb by the support part 5c, and one coil spring 3 is accommodated in the first accommodation part 4ca and the second accommodation part 4cb. Ru. Therefore, two coil springs 3 are accommodated in one accommodation portion 4c.
 コイルスプリング3が第1収容部4caに配設されることにより、コイルスプリング3の一端は、ドリブンプレート4のフランジ部4bの周方向に面する他側の側面に当接し、コイルスプリング3の他端は、環状部材5の支持部5cの周方向に面する一側の側面に当接することになる。また、コイルスプリング3が第2収容部4cbに配設されることにより、コイルスプリング3の一端は、環状部材5の支持部5cの周方向に面する他側の側面に当接し、コイルスプリング3の他端は、ドリブンプレート4のフランジ部4bの周方向に面する一側の側面に当接することになる。 By arranging the coil spring 3 in the first housing portion 4 ca, one end of the coil spring 3 abuts on the other side surface facing the circumferential direction of the flange portion 4 b of the driven plate 4. The end is in contact with one side surface of the support portion 5 c of the annular member 5 facing the circumferential direction. Further, by disposing the coil spring 3 in the second housing portion 4 cb, one end of the coil spring 3 abuts on the other side surface facing the circumferential direction of the support portion 5 c of the annular member 5. The other end of the flange 4 abuts on one side surface of the flange portion 4 b of the driven plate 4 facing the circumferential direction.
 更に、第1収容部4caに収容されたコイルスプリング3の一端における環状部材5の径方向外側を向く外周部は、フランジ部4bの凸部4dの内側面に支持可能とされ、コイルスプリング3の他端における環状部材5の径方向外側を向く外周部は、環状部材5の支持部5bの内側面によって支持可能とされる。また、第2収容部4cbに収容されたコイルスプリング3の一端における環状部材5の径方向外側を向く外周部は、環状部材5の支持部5bの内側面に支持可能とされ、コイルスプリング3の他端における環状部材5の径方向外側を向く外周部は、フランジ部4bの凸部4dの内側面によって支持可能とされる。 Furthermore, the outer peripheral portion facing the radial direction outer side of the annular member 5 at one end of the coil spring 3 housed in the first housing portion 4 ca can be supported on the inner side surface of the convex portion 4 d of the flange portion 4 b The outer peripheral portion of the annular member 5 facing the radially outer side at the other end can be supported by the inner surface of the support portion 5 b of the annular member 5. Further, an outer peripheral portion facing the radial direction outer side of the annular member 5 at one end of the coil spring 3 accommodated in the second accommodation portion 4 cb is made supportable on the inner side surface of the support portion 5 b of the annular member 5. The outer peripheral portion of the annular member 5 at the other end, which faces radially outward, is supportable by the inner side surface of the convex portion 4 d of the flange portion 4 b.
 図3に示すように、ドライブプレート2は、不図示のエンジンのクランク軸に接続されてクランク軸と一体的に回転するものであり、第1ドライブプレート2aと第2ドライブプレート2bとから成る。第1ドライブプレート2aと第2ドライブプレート2bは、第1ドライブプレート2aの外周部に設けられた結合軸2ab(図7を参照)を、第2ドライブプレート2bの外周に設けられた結合孔2bb(図8を参照)に結合することにより一体化されている。 As shown in FIG. 3, the drive plate 2 is connected to a crankshaft of an engine (not shown) and rotates integrally with the crankshaft, and comprises a first drive plate 2 a and a second drive plate 2 b. The first drive plate 2a and the second drive plate 2b have a coupling shaft 2ab (see FIG. 7) provided on the outer peripheral portion of the first drive plate 2a and a coupling hole 2bb provided on the outer periphery of the second drive plate 2b. Integrated by coupling to (see FIG. 8).
 図7は、第1ドライブプレート2aの上面図であり、図8は、第2ドライブプレート2bの上面図である。図7、図8に示すように、一体的に構成される第1ドライブプレート2aと第2ドライブプレート2bは、コイルスプリング3と、ドリブンプレート4および環状部材5を収容するための凹部2aa、2baをそれぞれ有している。凹部2aa、2baは、環状の底部を備えており、この底部にドリブンプレート4のコイルスプリング3の収容部4dに対応して、略円周方向或いは回転方向(図7、図8中矢印方向)に延びる窓孔2a1、2b1が所定の間隔をおいてそれぞれ三つ形成されている。 FIG. 7 is a top view of the first drive plate 2a, and FIG. 8 is a top view of the second drive plate 2b. As shown in FIGS. 7 and 8, the first drive plate 2a and the second drive plate 2b, which are integrally configured, have concave portions 2aa and 2ba for accommodating the coil spring 3, the driven plate 4 and the annular member 5, respectively. Respectively. Recesses 2aa and 2ba have an annular bottom, and the circumferential direction or rotational direction (arrow direction in FIGS. 7 and 8) corresponds to housing 4d of coil spring 3 of driven plate 4 at the bottom. Three window holes 2a1 and 2b1 are formed at predetermined intervals.
 図3、図4から分かるように、第1ドライブプレート2aと第2ドライブプレート2bとが一体的に構成されことにより、それぞれの凹部2aa、2baにより、コイルスプリング3、ドリブンプレート4および環状部材5を収容する収容空間が形成されて、この空間にコイルスプリング3、ドリブンプレート4および環状部材5が配置される。これにより、各窓孔2a1、2b1には、それぞれ、コイルスプリング3が二つずつ収容されることになる。ドリブンプレート4と環状部材5は、ドライブプレート2の回転軸と同軸に配設されており、それぞれ相対回転可能とされている。 As can be seen from FIGS. 3 and 4, the first drive plate 2a and the second drive plate 2b are integrally configured, so that the coil spring 3, the driven plate 4 and the annular member 5 are formed by the respective recesses 2aa and 2ba. The housing space which accommodates is formed, and the coil spring 3, the driven plate 4 and the annular member 5 are arrange | positioned in this space. Thus, two coil springs 3 are accommodated in each of the window holes 2a1 and 2b1. The driven plate 4 and the annular member 5 are disposed coaxially with the rotation axis of the drive plate 2 and are relatively rotatable.
 図3~図8に示すように、コイルスプリング3が窓孔2a1、2b1に収容されることにより、コイルスプリング3の一端は、第1ドライブプレート2a、第2ドライブプレート2bの窓孔2a1、2b1を囲む周壁面の一側端面2a2、2b2と当接可能とされ、コイルスプリング3の他端は、第1ドライブプレート2a、第2ドライブプレート2bの窓孔2a1、2b1を囲む周壁面の他側端面2a3、2b3と当接可能とされる。 As shown in FIGS. 3 to 8, the coil spring 3 is accommodated in the window holes 2a1 and 2b1, so that one end of the coil spring 3 is the window holes 2a1 and 2b1 of the first drive plate 2a and the second drive plate 2b. And the other end of the coil spring 3 is on the other side of the peripheral wall surrounding the window holes 2a1 and 2b1 of the first drive plate 2a and the second drive plate 2b. The end faces 2a3 and 2b3 can be abutted.
 ドライブプレート2の第1ドライブプレート2aと第2ドライブプレート2bの凹部2aa、2baの周壁部2ac、2bcの内径は、環状部材5の最外径よりも大きくされている。すなわち、凹部2aa、2baの周壁部2ac、2bcは、環状部材5よりも環状部材5の径方向の外側に位置する。 The inner diameters of the peripheral portions 2ac and 2bc of the recesses 2aa and 2ba of the first drive plate 2a and the second drive plate 2b of the drive plate 2 are made larger than the outermost diameter of the annular member 5. That is, the peripheral wall portions 2ac and 2bc of the recessed portions 2aa and 2ba are located outside the annular member 5 in the radial direction of the annular member 5.
 図4に示されるように、ドライブプレート2、コイルスプリング3、ドリブンプレート4、環状部材5の組み付け完了状態において、コイルスプリング3の各端面を支持する部分、すなわち、フランジ部4bの側面と、支持部5cの側面と、窓孔2a1、2b1を囲む周壁面の端面とは互いに平行となるように構成されている。 As shown in FIG. 4, in the assembled state of drive plate 2, coil spring 3, driven plate 4, and annular member 5, a portion supporting each end face of coil spring 3, that is, the side surface of flange portion 4 b and support The side surface of the portion 5c and the end surface of the peripheral wall surface surrounding the window holes 2a1 and 2b1 are configured to be parallel to each other.
 このように構成されたクラッチディスク100、ひいてはトルク変動吸収装置1のトルク伝達について説明する。自動車の加速時などに、エンジンからフライホイールに伝達されたトルクは、ドライブプレート2に伝達され、ドライブプレート2とドリブンプレート4との間に相対回転が発生し、ドライブプレート2の窓孔2a1、2b1の端面2a2、2b2がコイルスプリング3の一端を押圧しコイルスプリング3を圧縮する。 The torque transmission of the clutch disc 100 configured as described above, and in turn the torque fluctuation absorbing device 1 will be described. During acceleration of a car, etc., the torque transmitted from the engine to the flywheel is transmitted to the drive plate 2 and relative rotation occurs between the drive plate 2 and the driven plate 4, so that the window holes 2 a 1 of the drive plate 2, The end faces 2a2 and 2b2 of 2b1 press one end of the coil spring 3 to compress the coil spring 3.
 圧縮されたコイルスプリング3の他端は復元力により、環状部材5の支持部5cの一側の側面を押圧し、支持部5cの他側の側面がコイルスプリング3の一端を押圧する。圧縮されたコイルスプリング3の他端は復元力により、ドリブンプレート4のフランジ部4dを押圧し、トルクをドリブンプレート4に伝達する。そしてトルクは変速機の入力軸に入力される。 The other end of the compressed coil spring 3 presses the side surface of one side of the support 5 c of the annular member 5 by the restoring force, and the other side of the support 5 c presses one end of the coil spring 3. The other end of the compressed coil spring 3 presses the flange portion 4 d of the driven plate 4 by a restoring force to transmit torque to the driven plate 4. The torque is then input to the input shaft of the transmission.
 すなわち、エンジンのトルクは、ドライブプレート2からスプリング3、環状部材5及びドリブンプレート4を介して変速機へ伝達される。従って、エンジン特有の周期的トルク変動はコイルスプリング3の撓みによって吸収されるため、円滑な回転運動力が伝達される。 That is, the torque of the engine is transmitted from the drive plate 2 to the transmission via the spring 3, the annular member 5 and the driven plate 4. Therefore, since the engine-specific periodic torque fluctuation is absorbed by the deflection of the coil spring 3, smooth rotational motion is transmitted.
 本実施の形態のトルク変動吸収装置1によれば、ドライブプレート2とドリブンプレート4との相対回転に伴うコイルスプリング3の圧縮において、コイルスプリング3、ひいてはコイルスプリング3の特に環状部材5の径方向外側を向く外周部はドライブプレート2に接触・摺動することがなく、トルク変動吸収装置1のダンパ機構の振動減衰機能を向上することができる。 According to the torque fluctuation absorbing device 1 of the present embodiment, in the compression of the coil spring 3 accompanying the relative rotation of the drive plate 2 and the driven plate 4, the coil spring 3 and, in particular, the radial direction of the annular member 5 of the coil spring 3 in particular. The outer peripheral portion facing outward does not contact or slide on the drive plate 2, and the vibration damping function of the damper mechanism of the torque fluctuation absorber 1 can be improved.
 更に、ドライブプレート2とドリブンプレート4の相対回転に伴うコイルスプリング3の圧縮時において、環状部材5の各支持部5cにそれぞれ作用する径方向への分力は略バランスし、回転軸Oに対する環状部材5の径方向への移動が抑制される。すなわち、理想状態では、環状部材5の外周面とドリブンプレート2の凹部2aa、2baの周壁部との間には所定のクリアランスが常に存在し、環状部材5の本体部5aの内周面とドリブンプレート4の外周面(フランジ部4bの外周面)との間には所定のクリアランスが常に存在し、環状部材5の支持部5cの内側面とドリブンプレート4の環状部4aの外周面との間には所定のクリアランスが常に存在する状態となる。 Furthermore, at the time of compression of the coil spring 3 accompanying relative rotation of the drive plate 2 and the driven plate 4, the component forces in the radial direction acting on the respective support portions 5 c of the annular member 5 are substantially balanced. The movement of the member 5 in the radial direction is suppressed. That is, in the ideal state, a predetermined clearance always exists between the outer peripheral surface of the annular member 5 and the peripheral wall portions of the recessed portions 2aa and 2ba of the driven plate 2, and the inner peripheral surface of the main body portion 5a of the annular member 5 is driven A predetermined clearance always exists between the outer peripheral surface of the plate 4 (the outer peripheral surface of the flange portion 4 b), and between the inner side surface of the support portion 5 c of the annular member 5 and the outer peripheral surface of the annular portion 4 a of the driven plate 4. There is always a predetermined clearance in the
 したがって、環状部材5の外周面とドライブプレート2の凹部2aa、2baの周壁部との接触・摺動が抑制され、環状部材5の本体部5aの内周面とドリブンプレート4の外周面との接触・摺動が抑制され、環状部材5の支持部5cの内側面とドリブンプレート4の環状部4aの外周面との接触・摺動が抑制され、トルク変動吸収装置1のダンパ機構の振動減衰機能を向上することができる。 Therefore, contact / sliding between the outer peripheral surface of annular member 5 and the peripheral wall portion of recess 2 aa or 2 ba of drive plate 2 is suppressed, and the inner peripheral surface of main body 5 a of annular member 5 and the outer peripheral surface of driven plate 4 The contact / sliding is suppressed, and the contact / sliding between the inner surface of the support portion 5c of the annular member 5 and the outer peripheral surface of the annular portion 4a of the driven plate 4 is suppressed, and vibration damping of the damper mechanism of the torque fluctuation absorbing device 1 Function can be improved.
 装置1が回転する際、コイルスプリング3は遠心力により環状部材5の半径方向外方に付勢される。しかし、ドリブンプレート4のフランジ部4bの凸部4dと、環状部材5の凸部5bとにより、コイルスプリング3の環状部材5に対する径方向外方への移動が規制される。これにより、コイルスプリング3の配設位置を常に良好な位置に保つことができ、安定して振動減衰機能を発揮することができる。 When the device 1 rotates, the coil spring 3 is urged radially outward of the annular member 5 by centrifugal force. However, the radially outward movement of the coil spring 3 with respect to the annular member 5 is restricted by the convex portion 4 d of the flange portion 4 b of the driven plate 4 and the convex portion 5 b of the annular member 5. Thereby, the arrangement position of the coil spring 3 can be always maintained at a good position, and the vibration damping function can be exhibited stably.
 更に、弾性部材としてストレート上のコイルスプリングを用いたことにより、コイルスプリング3の圧縮において、コイルスプリング3の中間部分の環状部材5の径方向外側への張り出しを抑制し、例えばコイルスプリング3の中間部が環状部材5と接触・摺動することを抑制でき、トルク変動吸収装置1のダンパ機構の振動減衰機能を向上することができる。 Furthermore, by using a coil spring on a straight as an elastic member, in the compression of the coil spring 3, the radially outward extension of the annular member 5 of the middle part of the coil spring 3 is suppressed, for example, the middle of the coil spring 3 It is possible to suppress the contact and sliding of the portion with the annular member 5 and to improve the vibration damping function of the damper mechanism of the torque fluctuation absorbing device 1.
 なお、本実施形態においては、ドライブプレート2を駆動側部材とし、ドリブンプレート4を被動側部材として説明したが、逆の構成としてもよい。 In the present embodiment, the drive plate 2 is described as the drive side member, and the driven plate 4 is described as the driven side member. However, the configuration may be reversed.
 以上、本発明を上記実施の形態に則して説明したが、本発明は上記形態にのみ限定されるものではなく、本発明の原理に準ずる各種態様を含むものである。 As mentioned above, although the present invention was explained according to the above-mentioned embodiment, the present invention is not limited only to the above-mentioned form, and includes various modes according to the principle of the present invention.
 なお、本出願において図面参照符号を付している場合は、それらは、専ら理解を助けるためのものであり、図示の態様に限定することを意図するものではない。 In addition, when drawing reference numerals are attached in the present application, they are only for the purpose of assisting understanding and are not intended to be limited to the illustrated embodiment.
 本発明の実施例1に係る動力伝達機構について図面を用いて説明する。図9は、本発明の実施例1に係る動力伝達機構を含むクラッチディスクの構成を模式的に示した部分切欠平面図である。図10は、本発明の実施例1に係る動力伝達機構を含むクラッチディスクの構成を模式的に示した図9のX-X´間の断面図である。図11は、本発明の実施例1に係る動力伝達機構(プリダンパ部)の構成を模式的に示した平面図である。図12は、本発明の実施例1に係る動力伝達機構(プリダンパ部)の構成を模式的に示した図11のY-Y´間の断面図である。図13は、本発明の実施例1に係る動力伝達機構(プリダンパ部)におけるドリブンプレートの構成を模式的に示した平面図である。図14は、本発明の実施例1に係る動力伝達機構(プリダンパ部)における環状部材の構成を模式的に示した平面図である。図15は、本発明の実施例1に係る動力伝達機構(プリダンパ部)における第1ドライブプレートの構成を模式的に示した平面図である。図16は、本発明の実施例1に係る動力伝達機構(プリダンパ部)における第2ドライブプレートの構成を模式的に示した平面図である。なお、図11においては第2ドライブプレート(図16の2b)を省略している。 A power transmission mechanism according to a first embodiment of the present invention will be described using the drawings. FIG. 9 is a partially cutaway plan view schematically showing the configuration of a clutch disc including the power transmission mechanism according to Embodiment 1 of the present invention. FIG. 10 is a cross-sectional view taken along line XX ′ of FIG. 9 schematically showing the configuration of a clutch disk including the power transmission mechanism according to the first embodiment of the present invention. FIG. 11 is a plan view schematically showing the configuration of the power transmission mechanism (pre-damper portion) according to the first embodiment of the present invention. FIG. 12 is a cross-sectional view taken along line YY ′ of FIG. 11 schematically showing the configuration of the power transmission mechanism (pre-damper portion) according to the first embodiment of the present invention. FIG. 13 is a plan view schematically showing the configuration of a driven plate in the power transmission mechanism (pre-damper portion) according to the first embodiment of the present invention. FIG. 14 is a plan view schematically showing the configuration of the annular member in the power transmission mechanism (pre-damper portion) according to the first embodiment of the present invention. FIG. 15 is a plan view schematically showing the configuration of the first drive plate in the power transmission mechanism (pre-damper portion) according to the first embodiment of the present invention. FIG. 16 is a plan view schematically showing the configuration of the second drive plate in the power transmission mechanism (pre-damper portion) according to the first embodiment of the present invention. In FIG. 11, the second drive plate (2b in FIG. 16) is omitted.
 図9、図10を参照すると、クラッチディスク100は、エンジンのクランクシャフト(図示せず)と変速機の入力軸(図示せず)との間の動力伝達経路に配設されたクラッチ装置に設けられている。クラッチディスク100は、クランクシャフトと入力軸との間の捩れを緩衝することによりクランクシャフトと入力軸(図示せず)と間の変動トルクを吸収(抑制)する機構(動力伝達機構)を有する。クラッチディスク100は、フェーシング10、11の部分にて、クラッチ装置におけるプレッシャプレートとフライホイールとの間に断接可能に挟み込まれる。クラッチディスク100は、バネ力によって変動トルクを吸収するダンパ部(図9の101、102)を有する。ダンパ部101、102は、クランクシャフトと入力軸との間の初期の捩れを緩衝するプリダンパ部101と、プリダンパ部101で緩衝できなくなったときにクランクシャフトと入力軸との間の捩れを緩衝するメインダンパ部102と、を有する。プリダンパ部101及びメインダンパ部102は、それぞれ略環状をなす。 Referring to FIGS. 9 and 10, clutch disc 100 is provided in a clutch device disposed in a power transmission path between a crankshaft (not shown) of an engine and an input shaft (not shown) of a transmission. It is done. The clutch disc 100 has a mechanism (power transmission mechanism) that absorbs (reduces) fluctuation torque between the crankshaft and an input shaft (not shown) by buffering torsion between the crankshaft and the input shaft. The clutch disc 100 is detachably held between the pressure plate and the flywheel in the clutch device at the facing portions 10 and 11. The clutch disc 100 has damper portions (101 and 102 in FIG. 9) that absorb the fluctuation torque by the spring force. The damper units 101 and 102 buffer the twist between the crankshaft and the input shaft when the pre-damper unit 101 buffers the initial twist between the crankshaft and the input shaft and when the pre-damper unit 101 can not buffer the torque. And a main damper portion 102. The pre-damper portion 101 and the main damper portion 102 each have a substantially annular shape.
 クラッチディスク100は、主な構成部材として、第1ドライブプレート2aと、第2ドライブプレート2bと、コイルスプリング3と、ドリブンプレート4と、環状部材5と、フェーシング10、11と、ディスクスプリング12と、リベット13、14と、サイドプレート15、16と、連結部材17と、フランジ部材18と、コイルスプリング19と、スラスト部材20と、皿ばね21と、ハブ部材23と、スラスト部材24、25と、皿ばね26と、を有する。 The clutch disc 100 includes, as main components, a first drive plate 2a, a second drive plate 2b, a coil spring 3, a driven plate 4, an annular member 5, facings 10 and 11, and a disc spring 12 , Rivets 13 and 14, side plates 15 and 16, coupling member 17, flange member 18, coil spring 19, thrust member 20, disc spring 21, hub member 23, and thrust members 24 and 25. , And a disc spring 26.
 第1ドライブプレート2aは、リング状に形成された部材であり、プリダンパ部101の構成部品である(図9~図12、図15参照)。第1ドライブプレート2aは、サイドプレート15と第2ドライブプレート2bとの間に配置されている。第1ドライブプレート2aは、サイドプレート15側の面にて、サイドプレート15に対してスライド可能に接している。第1ドライブプレート2aは、第2ドライブプレート2b側の面にて、ドリブンプレート4及び環状部材5と抵触しないように凹部2aa(段差部)が形成されている。凹部2aaは、環状に形成されており、径方向外側の端部にて軸方向に沿って形成された円筒状の周壁部2acを有する。第1ドライブプレート2aは、第2ドライブプレート2b及びフランジ部材18と回り止めするための3つの結合軸2abを有する。各結合軸2abは、第2ドライブプレート2bの外周面に形成された凹部2bbに対して回転不能かつ軸方向移動可能に係合している。結合軸2abは、フランジ部材18に形成された貫通穴部に対して回転不能かつ軸方向移動可能に係合(挿入)されている。第1ドライブプレート2aは、第2ドライブプレート2b側の面にて、コイルスプリング3の一部を収容する3つの窓孔2a1を有する。各窓孔2a1は、メインダンパ部102におけるコイルスプリング19よりも内周側の位置に配設されている。各窓孔2a1の周方向にある一側端面2a2は、コイルスプリング3と接離可能に接している。各窓孔2a1の周方向にある他側端面2a3は、一側端面2a2と接するコイルスプリング3とは別のコイルスプリング3と接する。各窓孔2a1は、コイルスプリング3の伸縮をガイドする。3つの窓孔2a1は、互いに第1ドライブプレート2aの回転中心軸を中心として120度ずれた位置に配設されている。各窓孔2a1は、同一円周上に沿って配されている(径方向の位置は同じ)。第1ドライブプレート2aは、第2ドライブプレート2b側の面におけるドリブンプレート4及び環状部材5の動作と抵触しない部位にて第2ドライブプレート2bと接している。 The first drive plate 2a is a member formed in a ring shape, and is a component of the pre-damper portion 101 (see FIGS. 9 to 12 and 15). The first drive plate 2a is disposed between the side plate 15 and the second drive plate 2b. The first drive plate 2 a is slidably in contact with the side plate 15 on the side of the side plate 15. The first drive plate 2 a is formed with a recess 2 aa (step portion) so as not to interfere with the driven plate 4 and the annular member 5 on the surface on the second drive plate 2 b side. The recess 2 aa is formed in an annular shape, and has a cylindrical peripheral wall 2 ac formed at the radially outer end along the axial direction. The first drive plate 2a has three connecting shafts 2ab for locking the second drive plate 2b and the flange member 18. Each coupling shaft 2ab engages with a recess 2bb formed in the outer peripheral surface of the second drive plate 2b in a non-rotatable and axially movable manner. The coupling shaft 2 ab is nonrotatably and axially movably engaged (inserted) with a through hole formed in the flange member 18. The first drive plate 2a has three window holes 2a1 for accommodating a part of the coil spring 3 on the surface on the second drive plate 2b side. Each window hole 2 a 1 is disposed at a position on the inner peripheral side of the coil spring 19 in the main damper portion 102. One side end face 2a2 in the circumferential direction of each window hole 2a1 is in contact with the coil spring 3 so as to be capable of coming into and coming out of contact. The other side end face 2a3 in the circumferential direction of each window hole 2a1 is in contact with a coil spring 3 different from the coil spring 3 in contact with the one side end face 2a2. Each window hole 2 a 1 guides expansion and contraction of the coil spring 3. The three window holes 2a1 are disposed at positions shifted by 120 degrees with respect to the rotation center axis of the first drive plate 2a. The window holes 2a1 are arranged along the same circumference (the radial position is the same). The first drive plate 2a is in contact with the second drive plate 2b at a portion not interfering with the operation of the driven plate 4 and the annular member 5 on the surface on the second drive plate 2b side.
 第2ドライブプレート2bは、リング状に形成された部材であり、プリダンパ部101の構成部品である(図10~図12、図16参照)。第2ドライブプレート2bは、フランジ部材18と第1ドライブプレート2aとの間に配置されている。第2ドライブプレート2bは、フランジ部材18側の面にて、フランジ部材18に接している。第2ドライブプレート2bは、第1ドライブプレート2a側の面にて、ドリブンプレート4及び環状部材5と抵触しないように凹部2ba(段差部)が形成されている。凹部2baは、環状に形成されており、径方向外側の端部にて軸方向に沿って形成された円筒状の周壁部2bcを有する。周壁部2bcは、環状部材5の径方向の移動を規制する。第2ドライブプレート2bは、外周面にて、第1ドライブプレート2aの結合軸2abに対して回転不能かつ軸方向移動可能に係合する凹部2bbを有する。第2ドライブプレート2bは、第1ドライブプレート2aの結合軸2abを介して、第1ドライブプレート2a及びフランジ部材18と一体に回転する。第2ドライブプレート2bは、第1ドライブプレート2a側の面にて、コイルスプリング3の一部を収容する3つの窓孔2b1を有する。各窓孔2b1は、メインダンパ部102におけるコイルスプリング19よりも内周側の位置に配設されている。各窓孔2b1の周方向にある一側端面2b2は、コイルスプリング3と接離可能に接している。各窓孔2b1の周方向にある他側端面2b3は、一側端面2b2と接するコイルスプリング3とは別のコイルスプリング3と接する。各窓孔2b1は、コイルスプリング3の伸縮をガイドする。3つの窓孔2b1は、互いに第2ドライブプレート2bの回転中心軸を中心として120度ずれた位置に配設されている。各窓孔2b1は、同一円周上に沿って配されている(径方向の位置は同じ)。第2ドライブプレート2bは、第1ドライブプレート2a側の面におけるドリブンプレート4及び環状部材5の動作と抵触しない部位にて第1ドライブプレート2aと接している。 The second drive plate 2b is a member formed in a ring shape, and is a component of the pre-damper portion 101 (see FIGS. 10 to 12 and 16). The second drive plate 2b is disposed between the flange member 18 and the first drive plate 2a. The second drive plate 2 b is in contact with the flange member 18 at the surface on the flange member 18 side. The second drive plate 2 b is formed with a recess 2 ba (step portion) so as not to conflict with the driven plate 4 and the annular member 5 on the surface on the first drive plate 2 a side. The recess 2 ba is formed in an annular shape, and has a cylindrical peripheral wall 2 bc formed along the axial direction at the radially outer end. The peripheral wall portion 2 bc restricts the radial movement of the annular member 5. The second drive plate 2 b has a recess 2 bb that engages with the coupling shaft 2 ab of the first drive plate 2 a in a non-rotatable and axially movable manner on the outer peripheral surface. The second drive plate 2 b rotates integrally with the first drive plate 2 a and the flange member 18 via the coupling shaft 2 ab of the first drive plate 2 a. The second drive plate 2 b has three window holes 2 b 1 for housing a part of the coil spring 3 on the surface on the first drive plate 2 a side. Each window hole 2 b 1 is disposed at a position on the inner peripheral side of the coil spring 19 in the main damper portion 102. One side end surface 2b2 in the circumferential direction of each window hole 2b1 is in contact with the coil spring 3 so as to be capable of coming into and coming out of contact. The other side end face 2b3 in the circumferential direction of each window hole 2b1 is in contact with a coil spring 3 different from the coil spring 3 in contact with the one side end face 2b2. Each window hole 2 b 1 guides expansion and contraction of the coil spring 3. The three window holes 2b1 are disposed at positions shifted by 120 degrees with respect to the rotation center axis of the second drive plate 2b. The window holes 2b1 are arranged along the same circumference (the radial position is the same). The second drive plate 2b is in contact with the first drive plate 2a at a portion which does not conflict with the operation of the driven plate 4 and the annular member 5 on the surface on the first drive plate 2a side.
 コイルスプリング3は、プリダンパ部2の構成部品である(図9~図12参照)。コイルスプリング3は、ドライブプレート2a、2bに形成された各窓孔2a1、2b1に円周方向に直列に2つ収容されている。コイルスプリング3は、一端がドライブプレート2a、2bにおける窓孔2a1、2b1の側端面(2a2、2b2又は2a3、2b3)、又は、ドリブンプレート4のフランジ部4bと接離可能に接し、他端が環状部材5の支持部5cと接している。コイルスプリング3は、プリダンパ部101で捩れ(ドライブプレート2a、2bとドリブンプレート4との捩れ)が生じたときに収縮し、ドライブプレート2a、2bとドリブンプレート4との回転差によるショックを吸収する。コイルスプリング3には、伸縮方向(長手方向)にストレートな(直線状に延びた)コイルスプリングを用いることができる。コイルスプリング3のバネ力(バネ係数)は、メインダンパ部102におけるコイルスプリング19のバネ力(バネ係数)よりも小さく設定されている。 The coil spring 3 is a component of the pre-damper portion 2 (see FIGS. 9 to 12). Two coil springs 3 are accommodated in series in the circumferential direction in the window holes 2a1 and 2b1 formed in the drive plates 2a and 2b. The coil spring 3 is in contact with the side end surfaces (2a2, 2b2 or 2a3, 2b3) of the window holes 2a1, 2b1 in the drive plates 2a, 2b or the flange portion 4b of the driven plate 4 so that the other end can It is in contact with the support 5 c of the annular member 5. The coil spring 3 contracts when the pre-damper portion 101 twists (twist between the drive plates 2a and 2b and the driven plate 4), and absorbs a shock due to a difference in rotation between the drive plates 2a and 2b and the driven plate 4 . As the coil spring 3, it is possible to use a coil spring (straightly extending linearly) in the expansion and contraction direction (longitudinal direction). The spring force (spring coefficient) of the coil spring 3 is set smaller than the spring force (spring coefficient) of the coil spring 19 in the main damper portion 102.
 ドリブンプレート4は、ハブ部材23の外スプライン部23bの外周に配された環状かつプレート状の部材であり、プリダンパ部101の構成部品である(図9~図13参照)。ドリブンプレート4は、第1ドライブプレート2aの凹部2aaと第2ドライブプレート2bの凹部2baとの間にて、第1ドライブプレート2a及び第2ドライブプレート2bに対して回転可能に配されている。ドリブンプレート4は、環状部材5よりも径方向内側にて環状部材5に対して所定の角度の範囲で回転可能に配されている。ドリブンプレート4は、環状部4aの外周端面の所定の位置から径方向外側に延在した3つのフランジ部4bを有する。3つのフランジ部4bは、互いにドリブンプレート4の回転中心軸を中心として120度ずれた位置に配設されている。隣合うフランジ部4bの周方向の間には、2つのコイルスプリング3、及び、環状部材5の支持部5cを収容するための収容部4cを有する。収容部4cの周方向にある端面は、コイルスプリング3と接離可能に接している。収容部4cは、支持部5cの周方向の一方にてコイルスプリング3を収容する第1収容部4caを有し、支持部5cの周方向の他方にて他のコイルスプリング3を収容する第2収容部4cbを有する。ドリブンプレート4は、各フランジ部4bの周方向にある端面におけるコイルスプリング3と当接可能な位置よりも径方向外側の位置から周方向両側に突出した2つの凸部4dを有する。凸部4dは、プリダンパ部101におけるコイルスプリング3の移動(径方向の移動)を規制する。ドリブンプレート4は、内周端部において内スプライン部4eが形成されている。内スプライン部4eは、ハブ部材23の外スプライン部23bに対して回転不能に係合している。 The driven plate 4 is an annular plate-like member disposed on the outer periphery of the outer spline portion 23b of the hub member 23, and is a component of the pre-damper portion 101 (see FIGS. 9 to 13). The driven plate 4 is disposed rotatably with respect to the first drive plate 2a and the second drive plate 2b between the recess 2aa of the first drive plate 2a and the recess 2ba of the second drive plate 2b. The driven plate 4 is disposed so as to be rotatable in a range of a predetermined angle with respect to the annular member 5 radially inward of the annular member 5. The driven plate 4 has three flange portions 4 b extending radially outward from a predetermined position of the outer peripheral end face of the annular portion 4 a. The three flange portions 4 b are disposed at positions shifted by 120 degrees with respect to the rotation center axis of the driven plate 4. Between the circumferential direction of the adjacent flange part 4b, the accommodating part 4c for accommodating the two coil springs 3 and the support part 5c of the annular member 5 is provided. An end face of the housing portion 4 c in the circumferential direction is in contact with the coil spring 3 so as to be capable of coming into and coming out of contact. The housing portion 4c has a first housing portion 4ca for housing the coil spring 3 on one side in the circumferential direction of the support portion 5c, and a second one for housing the other coil spring 3 on the other side in the circumferential direction of the support portion 5c. It has the accommodation part 4cb. The driven plate 4 has two convex portions 4 d circumferentially projecting on both sides in the circumferential direction from a position radially outward of the position where it can contact the coil spring 3 at the end face in the circumferential direction of each flange portion 4 b. The convex portion 4 d regulates movement (movement in the radial direction) of the coil spring 3 in the pre-damper portion 101. The driven plate 4 has an inner spline portion 4e formed at an inner peripheral end. The inner spline portion 4 e is non-rotatably engaged with the outer spline portion 23 b of the hub member 23.
 環状部材5は、ドリブンプレート4よりも径方向外側に配された環状かつプレート状の部材であり、プリダンパ部101の構成部品である(図9~図12、図14参照)。環状部材5は、第1ドライブプレート2aの凹部2aaと第2ドライブプレート2bの凹部2baとの間にて、第1ドライブプレート2a及び第2ドライブプレート2bに対して回転可能に配されている。環状部材5は、ドリブンプレート4よりも径方向外側にてドリブンプレート4に対して所定の角度の範囲で回転可能に配されている。環状部材5は、環状に形成された本体部5aの内周端部の所定の位置から径方向内側に突出した3つの支持部5cを有する。3つの支持部5cは、互いに環状部材5の回転中心軸を中心として120度ずれた位置に配設されている。各支持部5cは、ドリブンプレート4の各収容部4cに収容された2つのコイルスプリング3の周方向の間に配されている。各支持部5cの周方向にある端面の両側は、コイルスプリング3の端部を支持する。環状部材5は、各支持部5cの周方向にある端面におけるコイルスプリング3と当接可能な位置よりも径方向外側の位置から周方向両側に突出した2つの突部5bを有する。凸部5bは、プリダンパ部101におけるコイルスプリング3の移動(径方向外側の移動)を規制する。 The annular member 5 is an annular plate-like member disposed radially outside the driven plate 4 and is a component of the pre-damper portion 101 (see FIGS. 9 to 12 and 14). The annular member 5 is disposed rotatably with respect to the first drive plate 2a and the second drive plate 2b between the recess 2aa of the first drive plate 2a and the recess 2ba of the second drive plate 2b. The annular member 5 is rotatably disposed in a range of a predetermined angle with respect to the driven plate 4 at a radially outer side of the driven plate 4. The annular member 5 has three support parts 5c which protrude inward in the radial direction from a predetermined position of the inner peripheral end of the main body part 5a formed in an annular shape. The three support portions 5 c are disposed at positions shifted by 120 degrees with respect to the rotation center axis of the annular member 5. Each support portion 5 c is disposed between the circumferential direction of the two coil springs 3 accommodated in each accommodation portion 4 c of the driven plate 4. Both sides of the end face of each support 5c in the circumferential direction support the end of the coil spring 3. The annular member 5 has two protrusions 5b that protrude in the circumferential direction from the position radially outward of the position where it can contact the coil spring 3 on the end face in the circumferential direction of each support 5c. The convex portion 5 b restricts the movement (movement in the radial direction outer side) of the coil spring 3 in the pre-damper portion 101.
 フェーシング10は、エンジンのクランクシャフト(図示せず)と一体に回転するフライホイール(その他の部材でも可)と摩擦係合可能な摩擦材である(図9、図10参照)。フェーシング10は、環状に形成されている。フェーシング10は、複数のリベット13によりディスクスプリング12の軸方向の一方の面(図10の左側の面)に固定されている。フェーシング10には、ゴム、樹脂、繊維(短繊維、長繊維)、摩擦係数μ調整用の粒子などを含むものを用いることができる。 The facing 10 is a friction material that can be frictionally engaged with a flywheel (or any other member) that rotates integrally with a crankshaft (not shown) of the engine (see FIGS. 9 and 10). The facing 10 is annularly formed. The facing 10 is fixed to one axial surface (surface on the left side in FIG. 10) of the disc spring 12 by a plurality of rivets 13. As the facing 10, those including rubber, resin, fibers (short fibers, long fibers), particles for adjusting the friction coefficient μ, and the like can be used.
 フェーシング11は、エンジンのクランクシャフト(図示せず)と一体に回転するプレッシャプレートと摩擦係合可能な摩擦材である(図9、図10参照)。フェーシング11は、環状に形成されている。フェーシング11は、複数のリベット14によりディスクスプリング12の軸方向の他方の面(図10の右側の面)に固定されている。フェーシング11には、ゴム、樹脂、繊維(短繊維、長繊維)、摩擦係数μ調整用の粒子などを含むものを用いることができる。 The facing 11 is a friction material that can be frictionally engaged with a pressure plate that rotates integrally with a crankshaft (not shown) of the engine (see FIGS. 9 and 10). The facing 11 is annularly formed. The facing 11 is fixed to the other axial surface (the surface on the right side in FIG. 10) of the disk spring 12 by a plurality of rivets 14. As the facing 11, those containing rubber, resin, fibers (short fibers, long fibers), particles for adjusting the coefficient of friction μ, and the like can be used.
 ディスクスプリング12は、ディスク面への押付けに対して弾性力を有する環状かつディスク状の部材である(図9、図10参照)。ディスクスプリング12は、外周部分の両面に、複数のリベット13、14によってフェーシング10、11が取り付けられている。ディスクスプリング12は、内周部分にて、サイドプレート15とともに複数の連結部材17の一端部にかしめ固定されている。ディスクスプリング12は、サイドプレート15、16と一体に回転する。 The disc spring 12 is an annular disc-like member having an elastic force against pressing against the disc surface (see FIGS. 9 and 10). The disc spring 12 has facings 10 and 11 attached by rivets 13 and 14 on both sides of the outer peripheral portion. The disk spring 12 is caulked and fixed to one end portion of the plurality of connecting members 17 together with the side plate 15 at the inner peripheral portion. The disc spring 12 rotates integrally with the side plates 15 and 16.
 リベット13は、フェーシング10をディスクスプリング12の軸方向の一方の面(図10の左側の面)に固定するための部材である(図9、図10参照)。 The rivet 13 is a member for fixing the facing 10 to one surface (surface on the left side in FIG. 10) in the axial direction of the disk spring 12 (see FIGS. 9 and 10).
 リベット14は、フェーシング11をディスクスプリング12の軸方向の他方の面(図10の右側の面)に固定するための部材である(図9、図10参照)。 The rivet 14 is a member for fixing the facing 11 to the other axial surface (the surface on the right side in FIG. 10) of the disc spring 12 (see FIGS. 9 and 10).
 サイドプレート15は、フランジ部材18の軸方向の一方の側(図10の左側)にフランジ部材18と離間して配設された環状の部材である(図9、図10参照)。サイドプレート15は、外周端部近傍の部分にて、ディスクスプリング12とともに複数の連結部材17の一端にかしめ固定されている。サイドプレート15は、連結部材17、ディスクスプリング12、及びサイドプレート16と一体に回転する。サイドプレート15は、中間部分のメインダンパ部102にて、コイルスプリング19を収容するための6つの窓部15aを有する。窓部15aの周方向端面は、コイルスプリング19の端部と接離可能に接している。窓部15aは、コイルスプリング19の伸縮をガイドする。窓部15aは、円周方向に隣合う一方の窓部15aに対してサイドプレート15の回転中心軸を中心として50度ずれた位置に配設されており、円周方向に隣合う他方の窓部15aに対してサイドプレート15の回転中心軸を中心として70度ずれた位置に配設されている。サイドプレート15は、メインダンパ部102より内周側のプリダンパ部101にて、第1ドライブプレート2aとスライド可能に接している。サイドプレート15は、内周端部にて、スラスト部材24を介してハブ部材23に相対回転可能に支持されている。サイドプレート15は、内周端部にて、スラスト部材24に回り止めされている。サイドプレート15は、内周端部近傍のフランジ部材18側の面にて、スラスト部材24と接している。 The side plate 15 is an annular member disposed on one side (left side in FIG. 10) of the flange member 18 in the axial direction so as to be separated from the flange member 18 (see FIGS. 9 and 10). The side plate 15 is caulked and fixed to one end of the plurality of connecting members 17 together with the disc spring 12 at a portion near the outer peripheral end. The side plate 15 rotates integrally with the connecting member 17, the disc spring 12, and the side plate 16. The side plate 15 has six windows 15 a for accommodating the coil spring 19 in the main damper portion 102 of the middle portion. The circumferential end surface of the window portion 15 a is in contact with and separable from the end of the coil spring 19. The window 15 a guides expansion and contraction of the coil spring 19. The window portion 15a is disposed at a position shifted 50 degrees about the rotation center axis of the side plate 15 with respect to one of the window portions 15a adjacent in the circumferential direction, and the other window adjacent in the circumferential direction It is disposed at a position which is offset by 70 degrees with respect to the portion 15a about the central axis of rotation of the side plate 15. The side plate 15 is slidably in contact with the first drive plate 2 a at the pre-damper portion 101 on the inner peripheral side of the main damper portion 102. The side plate 15 is rotatably supported by the hub member 23 via the thrust member 24 at the inner peripheral end. The side plate 15 is rotationally fixed to the thrust member 24 at the inner peripheral end. The side plate 15 is in contact with the thrust member 24 at the surface on the side of the flange member 18 near the inner peripheral end.
 サイドプレート16は、フランジ部材18の軸方向の他方の側(図10の右側)にフランジ部材18と離間して配設された環状の部材である(図9、図10参照)。サイドプレート16は、外周端部近傍の部分にて、複数の連結部材17の他端にかしめ固定されている。サイドプレート16は、連結部材17、ディスクスプリング12、及びサイドプレート15と一体に回転する。サイドプレート16は、中間部分のメインダンパ部102にて、コイルスプリング19を収容するための6つの窓部16aを有する。窓部16aの周方向端面は、コイルスプリング19の端部と接離可能に接している。窓部16aは、コイルスプリング19の伸縮をガイドする。窓部16aは、円周方向に隣合う一方の窓部16aに対してサイドプレート16の回転中心軸を中心として50度ずれた位置に配設されており、円周方向に隣合う他方の窓部16aに対してサイドプレート16の回転中心軸を中心として70度ずれた位置に配設されている。サイドプレート16は、メインダンパ部102と抵触しない部分にて、スラスト部材20の回り止め部20aと回転不能かつ軸方向移動可能に係合している。サイドプレート16は、スラスト部材20の回り止め部20aよりも内周側の部分にて皿ばね21の一端を支持する。サイドプレート16は、皿ばね21よりも内周側の部分にて皿ばね26の一端を支持する。サイドプレート16は、内周端部にて、スラスト部材25を介してハブ部材23に相対回転可能に支持されている。サイドプレート16は、内周端部にて、スラスト部材25に回り止めされている。 The side plate 16 is an annular member disposed on the other side (right side in FIG. 10) of the flange member 18 in the axial direction so as to be separated from the flange member 18 (see FIGS. 9 and 10). The side plate 16 is caulked and fixed to the other end of the plurality of connecting members 17 at a portion near the outer peripheral end. The side plate 16 rotates integrally with the connecting member 17, the disc spring 12, and the side plate 15. The side plate 16 has six windows 16 a for accommodating the coil spring 19 in the main damper portion 102 of the middle portion. The circumferential end surface of the window portion 16 a is in contact with and separable from the end of the coil spring 19. The window portion 16 a guides expansion and contraction of the coil spring 19. The window portion 16a is disposed at a position shifted 50 degrees around the rotation center axis of the side plate 16 with respect to one of the window portions 16a adjacent in the circumferential direction, and the other window adjacent in the circumferential direction It is disposed at a position which is offset by 70 degrees with respect to the portion 16 a about the central axis of rotation of the side plate 16. The side plate 16 is engaged with the detent portion 20 a of the thrust member 20 in a non-rotatable and axially movable manner at a portion which does not conflict with the main damper portion 102. The side plate 16 supports one end of the disc spring 21 at a portion on the inner peripheral side of the anti-rotation portion 20 a of the thrust member 20. The side plate 16 supports one end of the disc spring 26 at a portion on the inner peripheral side of the disc spring 21. The side plate 16 is rotatably supported by the hub member 23 via the thrust member 25 at an inner peripheral end. The side plate 16 is rotationally fixed to the thrust member 25 at an inner peripheral end.
 連結部材17は、サイドプレート15、16、及びディスクスプリング12を連結するための部材である(図9、図10参照)。連結部材17の一端には、サイドプレート15及びディスクスプリング12がかしめ固定されている。連結部材17の他端には、サイドプレート16がかしめ固定されている。連結部材17の中間部分(胴体部分)は、サイドプレート16とディスクスプリング12との間隔を保つためのスペーサとなる。また、連結部材17の中間部分は、ブランジ部材18の切欠部18bに挿通されており、メインダンパ部102に捩れ(サイドプレート15、16とフランジ部材18との捩れ)が生じたときに、切欠部18bの周方向にある端面と当たることで、メインダンパ部102の過剰な捩れを規制するストッパ部となる。連結部材17は、サイドプレート15、16の円周方向に所定の間隔をおいて複数個(図9では3個)配置されている。 The connecting member 17 is a member for connecting the side plates 15 and 16 and the disc spring 12 (see FIGS. 9 and 10). At one end of the connecting member 17, the side plate 15 and the disc spring 12 are fixed by caulking. At the other end of the connecting member 17, a side plate 16 is fixed by caulking. The middle portion (body portion) of the connecting member 17 serves as a spacer for keeping the space between the side plate 16 and the disc spring 12. The middle part of the connecting member 17 is inserted into the notch 18b of the blanking member 18, and when the main damper portion 102 is twisted (twist between the side plates 15 and 16 and the flange member 18), the notch is cut out. By coming into contact with the end face in the circumferential direction of the portion 18 b, it becomes a stopper portion that restricts excessive twisting of the main damper portion 102. A plurality of (three in FIG. 9) connection members 17 are arranged at predetermined intervals in the circumferential direction of the side plates 15 and 16.
 フランジ部材18は、ハブ部材23の外スプライン部23bの外周に配された環状かつプレート状の部材である(図9、図10参照)。フランジ部材18は、メインダンパ部102にて、コイルスプリング19を収容するための6つの窓部18aを有する。窓部18aの周方向端面は、コイルスプリング19の端部と接離可能に接している。窓部18aは、円周方向に隣合う一方の窓部18aに対してフランジ部材18の回転中心軸を中心として50度ずれた位置に配設されており、円周方向に隣合う他方の窓部18aに対してフランジ部材18の回転中心軸を中心として70度ずれた位置に配設されている。フランジ部材18は、窓部18aと抵触しない位置にて、フランジ部材18の外周端面から内周側に切り欠いた3つの切欠部18bを有する。3つの切欠部18bは、互いにフランジ部材18の回転中心軸を中心として120度ずれた位置に配設されている。各切欠部18bには、連結部材17の中間部分(胴体部分)が挿通されている。切欠部18bの周方向にある端面は、メインダンパ部102に捩れ(サイドプレート15、16とフランジ部材18との捩れ)が生じたときに、連結部材17の中間部分と当たることで、メインダンパ部102の過剰な捩れを規制するストッパ部となる。フランジ部材18は、メインダンパ部102より内周側の軸方向の面にて、第2ドライブプレート2bとスラスト部材20とによって挟み込まれており、スラスト部材20とスライド可能とされている。フランジ部材18は、内周端部において内スプラインが形成された内スプライン部18cを有する。内スプライン部18cは、ハブ部材23とフランジ部材18とが所定の角度の範囲で捩れが許容されるようにハブ部材23の外スプライン部23bと係合する。 The flange member 18 is an annular plate-like member disposed on the outer periphery of the outer spline portion 23b of the hub member 23 (see FIGS. 9 and 10). The flange member 18 has six windows 18 a for accommodating the coil spring 19 in the main damper portion 102. The circumferential end surface of the window portion 18 a is in contact with the end portion of the coil spring 19 so as to be able to be separated and attached. The window 18a is disposed at a position shifted 50 degrees around the rotation center axis of the flange member 18 with respect to one of the windows 18a adjacent in the circumferential direction, and the other window adjacent in the circumferential direction It is disposed at a position which is offset by 70 degrees with respect to the portion 18a around the central axis of rotation of the flange member 18. The flange member 18 has three notches 18 b cut out on the inner peripheral side from the outer peripheral end face of the flange member 18 at a position not interfering with the window 18 a. The three notches 18 b are disposed at positions shifted by 120 degrees with respect to the rotation center axis of the flange member 18. The middle portion (body portion) of the connection member 17 is inserted into each notch 18b. The end face of the notch 18b in the circumferential direction contacts the middle portion of the connecting member 17 when the main damper portion 102 is twisted (twist of the side plates 15, 16 and the flange member 18), thereby the main damper It becomes a stopper part which controls excessive twist of section 102. The flange member 18 is sandwiched between the second drive plate 2 b and the thrust member 20 on the surface in the axial direction on the inner peripheral side of the main damper portion 102 and is slidable with the thrust member 20. The flange member 18 has an inner spline portion 18c in which an inner spline is formed at an inner peripheral end. The inner spline portion 18c engages with the outer spline portion 23b of the hub member 23 so that the hub member 23 and the flange member 18 can be twisted within a predetermined angle range.
 コイルスプリング19は、メインダンパ部102の構成部品であり、サイドプレート15、16及びフランジ部材18に形成された窓部15a、16a、18aに収容された弾性部材である(図9、図10参照)。コイルスプリング19両端部は、窓部15a、16a、18aの周方向にある端面と接離可能に接している。コイルスプリング19は、サイドプレート15、16とフランジ部材18とが捩れが生じたときに収縮し、サイドプレート15、16とフランジ部材18の回転差によるショックを吸収する。コイルスプリング19には、伸縮方向(長手方向)にストレートな(直線状に延びた)コイルスプリングを用いることができる。コイルスプリング19のバネ力(バネ係数)は、プリダンパ部101におけるコイルスプリング3のバネ力(バネ係数)よりも大きく設定されている。 The coil spring 19 is a component of the main damper portion 102, and is an elastic member housed in the windows 15a, 16a, 18a formed in the side plates 15, 16 and the flange member 18 (see FIGS. 9 and 10). ). Both ends of the coil spring 19 are in contact with and separable from the end faces of the windows 15a, 16a, 18a in the circumferential direction. The coil spring 19 contracts when the side plates 15 and 16 and the flange member 18 twist, and absorbs the shock due to the difference in rotation between the side plates 15 and 16 and the flange member 18. As the coil spring 19, a coil spring that is straight (extending linearly) in the expansion and contraction direction (longitudinal direction) can be used. The spring force (spring coefficient) of the coil spring 19 is set larger than the spring force (spring coefficient) of the coil spring 3 in the pre-damper portion 101.
 スラスト部材20は、サイドプレート16とフランジ部材18との間に配された環状の部材である(図9、図10参照)。スラスト部材20は、サイドプレート16に形成された貫通穴部に対して回転不能かつ軸方向移動可能に係合する回り止め部20aを有する。スラスト部材20は、皿ばね21によってフランジ部材18側に付勢されており、フランジ部材18とスライド可能に圧接している。スラスト部材20は、内周に配されたスラスト部材25に対しても回転不能かつ軸方向移動可能に係合している。 The thrust member 20 is an annular member disposed between the side plate 16 and the flange member 18 (see FIGS. 9 and 10). The thrust member 20 has a detent portion 20a that engages with a through hole formed in the side plate 16 in a non-rotatable and axially movable manner. The thrust member 20 is biased toward the flange member 18 by the disc spring 21 and is in pressure contact with the flange member 18 in a slidable manner. The thrust member 20 is also engaged with the thrust member 25 disposed on the inner periphery so as to be non-rotatable and axially movable.
 皿ばね21は、スラスト部材20とサイドプレート16との間に配され、スラスト部材20をフランジ部材18側に付勢する皿状のばねである(図9、図10参照)。 The disc spring 21 is a disc-shaped spring which is disposed between the thrust member 20 and the side plate 16 and biases the thrust member 20 toward the flange member 18 (see FIGS. 9 and 10).
 ハブ部材23は、ダンパ部2、3からの回転動力を変速機の入力軸(図示せず)に向けて出力する部材である(図9、図10参照)。ハブ部材23は、円筒部の外周の所定の部位から径方向外側に延在したフランジ部23aを有する。ハブ部材23は、円筒部の内周面にて入力軸(図示せず)とスプライン係合する。ハブ部材23は、外周にて、スラスト部材24を介してサイドプレート15を相対回転可能に支持しており、スラスト部材25を介してサイドプレート16を相対回転可能に支持している。フランジ部23aは、外周面にて外スプラインが形成された外スプライン部23bを有する。外スプライン部23bは、ハブ部材23とフランジ部材18とが所定の角度の範囲で捩れが許容されるようにフランジ部材18の内スプライン部18cと係合する。外スプライン部23bは、ドリブンプレート4の内スプライン部(図11の4e)に対して回転不能に係合している。フランジ部23aは、スラスト部材24、25によってスライド可能に挟持されている。 The hub member 23 is a member that outputs rotational power from the dampers 2 and 3 toward an input shaft (not shown) of the transmission (see FIGS. 9 and 10). The hub member 23 has a flange portion 23a extending radially outward from a predetermined portion of the outer periphery of the cylindrical portion. The hub member 23 splines with an input shaft (not shown) on the inner peripheral surface of the cylindrical portion. The hub member 23 relatively rotatably supports the side plate 15 via the thrust member 24 on the outer periphery, and supports the side plate 16 relatively rotatably via the thrust member 25. The flange portion 23a has an outer spline portion 23b in which an outer spline is formed on the outer peripheral surface. The outer spline portion 23b engages with the inner spline portion 18c of the flange member 18 such that the hub member 23 and the flange member 18 can be twisted within a predetermined angle range. The outer spline portion 23 b is non-rotatably engaged with the inner spline portion (4 e in FIG. 11) of the driven plate 4. The flange portion 23 a is slidably held by the thrust members 24 and 25.
 スラスト部材24は、サイドプレート15とハブ部材23との間に配された環状の部材である(図9、図10参照)。スラスト部材24は、軸方向において、サイドプレート15とフランジ部23aとの間に配されており、サイドプレート15と相対回転不能かつ軸方向移動可能に係合しており、フランジ部23aとスライド可能に圧接している。スラスト部材24は、径方向において、サイドプレート15とハブ部材23との間にも介在しており、サイドプレート15をハブ部材23に相対回転可能に支持するための滑り軸受(ブッシュ)となる。 The thrust member 24 is an annular member disposed between the side plate 15 and the hub member 23 (see FIGS. 9 and 10). The thrust member 24 is disposed between the side plate 15 and the flange portion 23a in the axial direction, is engaged with the side plate 15 so as to be not relatively rotatable and axially movable, and is slidable with the flange portion 23a. It is in pressure contact with The thrust member 24 is also interposed between the side plate 15 and the hub member 23 in the radial direction, and serves as a slide bearing (bush) for supporting the side plate 15 relatively rotatably on the hub member 23.
 スラスト部材25は、サイドプレート16とハブ部材23との間に配された環状の部材である(図9、図10参照)。スラスト部材25は、軸方向において、皿ばね26とフランジ部23aとの間に配されており、皿ばね26によってフランジ部23a側に付勢されており、フランジ部23aとスライド可能に圧接している。スラスト部材25は、サイドプレート16と相対回転不能かつ軸方向移動可能に係合している。スラスト部材25は、径方向において、サイドプレート16とハブ部材23との間にも介在しており、サイドプレート16をハブ部材23に相対回転可能に支持するための滑り軸受(ブッシュ)となる。 The thrust member 25 is an annular member disposed between the side plate 16 and the hub member 23 (see FIGS. 9 and 10). The thrust member 25 is disposed between the disc spring 26 and the flange portion 23a in the axial direction, is urged toward the flange portion 23a by the disc spring 26, and is slidably pressed against the flange portion 23a. There is. The thrust member 25 engages with the side plate 16 so as to be non-rotatable and axially movable. The thrust member 25 is also interposed between the side plate 16 and the hub member 23 in the radial direction, and serves as a slide bearing (bush) for supporting the side plate 16 relatively rotatably on the hub member 23.
 皿ばね26は、スラスト部材25とサイドプレート16との間に配され、スラスト部材25をフランジ部23a側に付勢する皿状のばねである(図9、図10参照)。皿ばね26は、スラスト部材25に回り止めされている。 The disc spring 26 is a disc-shaped spring which is disposed between the thrust member 25 and the side plate 16 and biases the thrust member 25 toward the flange portion 23a (see FIGS. 9 and 10). The disc spring 26 is rotationally locked to the thrust member 25.
 次に、本発明の実施例1に係る捩れ緩衝装置の動作について説明する。 Next, the operation of the torsional shock absorber according to the first embodiment of the present invention will be described.
 図9、図10を参照すると、エンジンのクランクシャフトの回転動力は、フェーシング10、11、リベット13、14、ディスクスプリング12、連結部材17、サイドプレート15、16、コイルスプリング19、フランジ部材18、ドライブプレート2a、2b、コイルスプリング3、環状部材5、コイルスプリング3、ドリブンプレート4、ハブ部材23の順に伝達されて、変速機の入力軸に伝達される。 9 and 10, the rotational power of the crankshaft of the engine is represented by facings 10 and 11, rivets 13 and 14, disc spring 12, connecting member 17, side plates 15 and 16, coil spring 19, flange member 18, The drive plates 2a and 2b, the coil spring 3, the annular member 5, the coil spring 3, the driven plate 4, and the hub member 23 are sequentially transmitted and transmitted to the input shaft of the transmission.
 このとき、フェーシング10、11とハブ部材23との間で捩れが生ずると、プリダンパ部101にて初期の捩れによる変動トルクを吸収し、さらに捩れが生じてプリダンパ部101で吸収できなくなったときにメインダンパ部102にて変動トルクを吸収する。 At this time, if twisting occurs between the facings 10 and 11 and the hub member 23, the pre-damper portion 101 absorbs the fluctuation torque due to the initial twist, and further twisting occurs and the pre-damper portion 101 can not absorb it. The main damper unit 102 absorbs the fluctuating torque.
 プリダンパ部101では、フェーシング10、11とハブ部材23との間で捩れが生じ、ハブ部材23の外スプライン部23bの歯がフランジ部材18の内スプライン部18cの歯に当接するまでは、プリダンパ部101においてコイルスプリング3のみが作用する。 In the pre-damper portion 101, a twist occurs between the facings 10 and 11 and the hub member 23, and until the teeth of the outer spline portion 23b of the hub member 23 contact the teeth of the inner spline portion 18c of the flange member 18, the pre-damper portion At 101, only the coil spring 3 acts.
 ハブ部材23の外スプライン部23bの歯がフランジ部材18の内スプライン部18cの歯に当接し、さらにフェーシング10、11とハブ部材23との間で捩れが生じると、プリダンパ部101において捩れなくなるので、メインダンパ部102が捩れる。すなわち、ハブ部材23が捩れることで、ハブ部材23の外スプライン部23bの歯がフランジ部材18の内スプライン部18cの歯を押付けてフランジ部材18とサイドプレート15、16との間に捩れが生じ、サイドプレート15、16に連結された連結部材17の中間部分がフランジ部材18の切欠部18bの周方向にある端面に当接するまでコイルスプリング19が作用する。このとき、プリダンパ部101のコイルスプリング3は、最大圧縮状態のままフランジ部材18と一体となって回転する。 When the teeth of the outer spline portion 23b of the hub member 23 abut against the teeth of the inner spline portion 18c of the flange member 18 and further twisting occurs between the facings 10 and 11 and the hub member 23, the predamper portion 101 is not twisted. , The main damper portion 102 is twisted. That is, when the hub member 23 is twisted, the teeth of the outer spline portion 23b of the hub member 23 press the teeth of the inner spline portion 18c of the flange member 18 and twist is caused between the flange member 18 and the side plates 15, 16. As a result, the coil spring 19 acts until the middle part of the connecting member 17 connected to the side plates 15 and 16 abuts on the circumferential end face of the notch 18 b of the flange member 18. At this time, the coil spring 3 of the pre-damper portion 101 rotates integrally with the flange member 18 in the maximum compression state.
 以上の動作は、フェーシング10、11に対してハブ部材23が時計回り(図1の時計回り)に回転した場合を説明したが、フェーシング10、11に対してハブ部材23が逆時計回りに回転したときも同様である。 The above operation has described the case where the hub member 23 rotates clockwise (clockwise in FIG. 1) with respect to the facings 10 and 11, but the hub member 23 rotates counterclockwise with respect to the facings 10 and 11. The same is true when you
 実施例1によれば、ドライブプレート2a、2bとドリブンプレート4との相対回転に伴うコイルスプリング3の圧縮において、コイルスプリング3、特にコイルスプリング3の特に環状部材5の径方向外側を向く外周部とドライブプレート2a、2bの接触・摺動を抑制でき、ダンパ機構の振動減衰機能を向上できる。また、ドリブンプレート4の凸部4d、及び、環状部材5の凸部5bにより、コイルスプリング3の移動を規制できる。さらに、コイルスプリング3をストレート状のものを用いることにより、コイルスプリング3が他の部材と接触・摺動することを更に抑制でき、ダンパ機構の振動減衰機能を向上できる。 According to the first embodiment, in compression of the coil spring 3 due to relative rotation between the drive plates 2 a and 2 b and the driven plate 4, the outer peripheral portion of the coil spring 3, in particular, the coil spring 3 facing the radially outer side of the annular member 5. As a result, the contact / sliding of the drive plates 2a and 2b can be suppressed, and the vibration damping function of the damper mechanism can be improved. Further, the movement of the coil spring 3 can be restricted by the convex portion 4 d of the driven plate 4 and the convex portion 5 b of the annular member 5. Furthermore, by using the coil spring 3 in a straight shape, contact and sliding of the coil spring 3 with other members can be further suppressed, and the vibration damping function of the damper mechanism can be improved.
 更に、ドライブプレート2とドリブンプレート4の相対回転に伴うコイルスプリング3の圧縮時において、環状部材5の各支持部5cにそれぞれ作用する径方向への分力は略バランスし、回転軸Oに対する環状部材5の径方向への移動が抑制される。すなわち、理想状態では、環状部材5の外周面とドリブンプレート2の凹部2aa、2baの周壁部との間には所定のクリアランスが常に存在し、環状部材5の本体部5aの内周面とドリブンプレート4の外周面(フランジ部4bの外周面)との間には所定のクリアランスが常に存在し、環状部材5の支持部5cの内側面とドリブンプレート4の環状部4aの外周面との間には所定のクリアランスが常に存在する状態となる。 Furthermore, at the time of compression of the coil spring 3 accompanying relative rotation of the drive plate 2 and the driven plate 4, the component forces in the radial direction acting on the respective support portions 5 c of the annular member 5 are substantially balanced. The movement of the member 5 in the radial direction is suppressed. That is, in the ideal state, a predetermined clearance always exists between the outer peripheral surface of the annular member 5 and the peripheral wall portions of the recessed portions 2aa and 2ba of the driven plate 2, and the inner peripheral surface of the main body portion 5a of the annular member 5 is driven A predetermined clearance always exists between the outer peripheral surface of the plate 4 (the outer peripheral surface of the flange portion 4 b), and between the inner side surface of the support portion 5 c of the annular member 5 and the outer peripheral surface of the annular portion 4 a of the driven plate 4. There is always a predetermined clearance in the
 したがって、環状部材5の外周面とドライブプレート2の凹部2aa、2baの周壁部との接触・摺動が抑制され、環状部材5の本体部5aの内周面とドリブンプレート4の外周面との接触・摺動が抑制され、環状部材5の支持部5cの内側面とドリブンプレート4の環状部4aの外周面との接触・摺動が抑制され、トルク変動吸収装置1のダンパ機構の振動減衰機能を向上することができる。 Therefore, contact / sliding between the outer peripheral surface of annular member 5 and the peripheral wall portion of recess 2 aa or 2 ba of drive plate 2 is suppressed, and the inner peripheral surface of main body 5 a of annular member 5 and the outer peripheral surface of driven plate 4 The contact / sliding is suppressed, and the contact / sliding between the inner surface of the support portion 5c of the annular member 5 and the outer peripheral surface of the annular portion 4a of the driven plate 4 is suppressed, and vibration damping of the damper mechanism of the torque fluctuation absorbing device 1 Function can be improved.
 装置1が回転する際、コイルスプリング3は遠心力により環状部材5の半径方向外方に付勢される。しかし、ドリブンプレート4のフランジ部4bの凸部4dと、環状部材5の凸部5bとにより、コイルスプリング3の環状部材5に対する径方向外方への移動が規制される。これにより、コイルスプリング3の配設位置を常に良好な位置に保つことができ、安定して振動減衰機能を発揮することができる。 When the device 1 rotates, the coil spring 3 is urged radially outward of the annular member 5 by centrifugal force. However, the radially outward movement of the coil spring 3 with respect to the annular member 5 is restricted by the convex portion 4 d of the flange portion 4 b of the driven plate 4 and the convex portion 5 b of the annular member 5. Thereby, the arrangement position of the coil spring 3 can be always maintained at a good position, and the vibration damping function can be exhibited stably.
 更に、弾性部材としてストレート上のコイルスプリングを用いたことにより、コイルスプリング3の圧縮において、コイルスプリング3の中間部分の環状部材5の径方向外側への張り出しを抑制し、例えばコイルスプリング3の中間部が環状部材5と接触・摺動することを抑制でき、トルク変動吸収装置1のダンパ機構の振動減衰機能を向上することができる。 Furthermore, by using a coil spring on a straight as an elastic member, in the compression of the coil spring 3, the radially outward extension of the annular member 5 of the middle part of the coil spring 3 is suppressed, for example, the middle of the coil spring 3 It is possible to suppress the contact and sliding of the portion with the annular member 5 and to improve the vibration damping function of the damper mechanism of the torque fluctuation absorbing device 1.
 なお、本発明の全開示(請求の範囲及び図面を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲及び図面を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。 Within the scope of the entire disclosure (including the claims and drawings) of the present invention, changes and adjustments of the embodiments or examples are possible based on the basic technical concept of the invention. In addition, various combinations or selections of various disclosed elements are possible within the scope of the claims of the present invention. That is, the present invention of course includes the entire disclosure including the claims and the drawings, various modifications and modifications that can be made by those skilled in the art according to the technical concept.
 1 トルク変動吸収装置(動力伝達機構)
 2 ドライブプレート(駆動側部材)
 2a 第1ドライブプレート
 2a1 窓孔
 2a2 一側端面
 2a3 他側端面
 2aa 凹部
 2ab 結合軸
 2ac 周壁部
 2b 第2ドライブプレート
 2b1 窓孔
 2b2 一側端面
 2b3 他側端面
 2ba 凹部
 2bb 結合孔
  周壁部2bc
 3 コイルスプリング(弾性部材)
 4 ドリブンプレート(被動側部材)
 4a 環状部
 4b フランジ部
 4c 収容部
 4ca 第1収容部
 4cb 第2収容部
 4d 凸部(第2の規制部)
 4e 内スプライン部
 5 環状部材
 5a 本体部
 5b 突部(第1の規制部)
 5c 支持部
 100 クラッチディスク
 O 回転軸
 101 プリダンパ部
 102 メインダンパ部
 10、11 フェーシング
 12 ディスクスプリング
 13、14 リベット
 15 サイドプレート
 15a 窓部
 16 サイドプレート
 16a 窓部
 17 連結部材
 18 フランジ部材
 18a 窓部
 18b 切欠部
 18c 内スプライン部
 19 コイルスプリング
 20 スラスト部材
 20a 回り止め部
 21 皿ばね
 23 ハブ部材
 23a フランジ部
 23b 外スプライン部
 24、25 スラスト部材
 26 皿ばね
1 Torque fluctuation absorber (power transmission mechanism)
2 Drive plate (drive side member)
2a 1st drive plate 2a1 window hole 2a2 one side end face 2a3 other side end face 2aa recess 2ab joint shaft 2ac peripheral wall portion 2b second drive plate 2b1 window hole 2b2 one side end face 2b3 other side end face 2ba recess 2bb joint hole peripheral wall portion 2bc
3 Coil spring (elastic member)
4 Driven plate (driven side member)
4a annular portion 4b flange portion 4c accommodation portion 4ca first accommodation portion 4cb second accommodation portion 4d convex portion (second regulating portion)
4e inner spline portion 5 annular member 5a main body portion 5b protrusion (first regulating portion)
5c Support part 100 Clutch disc O Rotary shaft 101 Pre-damper part 102 Main damper part 10, 11 Facing 12 Disc spring 13, 14 Rivet 15 Side plate 15a Window part 16 Side plate 16a Window part 17 Connection member 18 Flange member 18a Window part 18b Notch Part 18c Inner spline part 19 Coil spring 20 Thrust member 20a Detent part 21 Disc spring 23 Hub member 23a Flange part 23b Outer spline part 24 and 25 Thrust member 26 Disc spring

Claims (5)

  1.  回転し動力を伝達する駆動側部材と、
     前記駆動側部材の回転方向に直列に複数配設され、前記駆動側部材と一体的に回転可能な弾性部材と、
     前記駆動側部材の回転軸と同軸に配設され、前記弾性部材を介して前記駆動側部材により前記動力が伝達されて、前記駆動側部材および前記弾性部材と一体的に回転可能な被動側部材と、
     前記回転軸と同軸で、前記駆動側部材および前記被動側部材に対して相対回転可能に配設される環状部材と、を備え、
     前記環状部材は、前記弾性部材間に配設されて前記弾性部材を支持する支持部を有する動力伝達機構。
    A driving side member that rotates and transmits power;
    A plurality of elastic members disposed in series in the direction of rotation of the drive side member and capable of rotating integrally with the drive side member;
    A driven side member disposed coaxially with the rotary shaft of the drive side member, the power being transmitted by the drive side member via the elastic member, and integrally rotatable with the drive side member and the elastic member When,
    And an annular member coaxially arranged with the rotation shaft and disposed rotatably relative to the drive side member and the driven side member,
    A power transmission mechanism having a support portion disposed between the elastic members and supporting the elastic members;
  2.  前記環状部材は、前記弾性部材の前記環状部材に対する前記環状部材の径方向への移動を規制する第1の規制部を有する請求項1記載の動力伝達機構。 The power transmission mechanism according to claim 1, wherein the annular member has a first restricting portion that restricts the radial movement of the annular member with respect to the annular member.
  3.  前記第1の規制部は、前記径方向に突出する突部である請求項2記載の動力伝達機構。 The power transmission mechanism according to claim 2, wherein the first restricting portion is a protrusion that protrudes in the radial direction.
  4.  前記駆動側部材と前記被動側部材の内で一方の部材は前記径方向に突出するフランジ部を複数有し、
     前記弾性部材は隣り合う前記フランジ部の間に配設され、
     前記フランジ部は、前記弾性部材の前記環状部材に対する前記環状部材の前記径方向への移動を規制する第2の規制部を有する請求項1乃至3のいずれか一に記載の動力伝達機構。
    Of the drive side member and the driven side member, one member has a plurality of radially projecting flange portions,
    The elastic member is disposed between the adjacent flanges,
    The power transmission mechanism according to any one of claims 1 to 3, wherein the flange portion includes a second restricting portion that restricts the radial movement of the annular member with respect to the annular member.
  5.  前記弾性部材は、ストレート状を呈するコイルスプリングである請求項1乃至4のいずれか一に記載の動力伝達機構。 The power transmission mechanism according to any one of claims 1 to 4, wherein the elastic member is a straight coil spring.
PCT/JP2010/070371 2009-11-19 2010-11-16 Power transmitting mechanism WO2011062158A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080052641.1A CN102639893A (en) 2009-11-19 2010-11-16 Power transmitting mechanism
JP2011541923A JPWO2011062158A1 (en) 2009-11-19 2010-11-16 Power transmission mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-264392 2009-11-19
JP2009264392 2009-11-19

Publications (1)

Publication Number Publication Date
WO2011062158A1 true WO2011062158A1 (en) 2011-05-26

Family

ID=44059636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070371 WO2011062158A1 (en) 2009-11-19 2010-11-16 Power transmitting mechanism

Country Status (3)

Country Link
JP (1) JPWO2011062158A1 (en)
CN (1) CN102639893A (en)
WO (1) WO2011062158A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126245A1 (en) * 2013-02-18 2014-08-21 株式会社エフ・シ-・シ- Torque damper device
WO2017052223A1 (en) * 2015-09-25 2017-03-30 주식회사 토룩 Arc-type compression spring module for series elastic actuator
WO2018043528A1 (en) * 2016-08-30 2018-03-08 ヴァレオトランスミッションジャパン株式会社 Damper device
JP2019052727A (en) * 2017-09-15 2019-04-04 アイシン精機株式会社 Damper device
DE202020102264U1 (en) 2019-04-24 2020-06-09 Aisin Seiki Kabushiki Kaisha Damper device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108953414B (en) * 2017-05-18 2021-11-16 舍弗勒技术股份两合公司 Clutch driven plate and clutch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316521A (en) * 1988-06-17 1989-12-21 Atsugi Unisia Corp Torsional vibration damping device
JPH0462443U (en) * 1990-09-28 1992-05-28
JPH0552365U (en) * 1991-12-16 1993-07-13 株式会社大金製作所 Damper disk
DE19753557A1 (en) * 1996-12-11 1998-06-18 Luk Lamellen & Kupplungsbau Torsional vibration damper
JP2009019745A (en) * 2007-07-13 2009-01-29 Exedy Corp Damper mechanism

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053774Y2 (en) * 1984-12-26 1993-01-29
DE68926933T2 (en) * 1988-06-17 1997-02-20 Unisia Jecs Corp Torsional vibration damper for motor vehicle drive
EP0756104B1 (en) * 1995-07-24 2005-05-25 Exedy Corporation Improved spring seats in a damper disc
DE19654970C2 (en) * 1996-08-05 2002-02-21 Mannesmann Sachs Ag torsional vibration damper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316521A (en) * 1988-06-17 1989-12-21 Atsugi Unisia Corp Torsional vibration damping device
JPH0462443U (en) * 1990-09-28 1992-05-28
JPH0552365U (en) * 1991-12-16 1993-07-13 株式会社大金製作所 Damper disk
DE19753557A1 (en) * 1996-12-11 1998-06-18 Luk Lamellen & Kupplungsbau Torsional vibration damper
JP2009019745A (en) * 2007-07-13 2009-01-29 Exedy Corp Damper mechanism

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126245A1 (en) * 2013-02-18 2014-08-21 株式会社エフ・シ-・シ- Torque damper device
JP2014156923A (en) * 2013-02-18 2014-08-28 F C C:Kk Torque damper
US9677642B2 (en) 2013-02-18 2017-06-13 Kabushiki Kaisha F.C.C. Torque damper apparatus
WO2017052223A1 (en) * 2015-09-25 2017-03-30 주식회사 토룩 Arc-type compression spring module for series elastic actuator
KR101785067B1 (en) 2015-09-25 2017-10-12 주식회사 토룩 Arc-shaped compression spring module for series elasitic actuator
WO2018043528A1 (en) * 2016-08-30 2018-03-08 ヴァレオトランスミッションジャパン株式会社 Damper device
JP2019052727A (en) * 2017-09-15 2019-04-04 アイシン精機株式会社 Damper device
DE202020102264U1 (en) 2019-04-24 2020-06-09 Aisin Seiki Kabushiki Kaisha Damper device
JP2020180632A (en) * 2019-04-24 2020-11-05 アイシン精機株式会社 Damper device
JP7314601B2 (en) 2019-04-24 2023-07-26 株式会社アイシン damper device

Also Published As

Publication number Publication date
CN102639893A (en) 2012-08-15
JPWO2011062158A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5772098B2 (en) Torque fluctuation absorber
JP5272853B2 (en) Torque fluctuation absorber
WO2011062158A1 (en) Power transmitting mechanism
KR101080103B1 (en) Damper mechanism
JP5376061B2 (en) Torque fluctuation absorber
JP7014909B2 (en) Torsion vibration damper
JP6965566B2 (en) Torque fluctuation absorber
US20100243404A1 (en) Torque fluctuation absorber
CN111386409B (en) Torsional vibration damper with main damper and additional damper
KR101195945B1 (en) Torsional vibration damper having the feature of nonlinear
JP4932926B2 (en) Damper mechanism
US20210025459A1 (en) Torsional vibration, clutch disk and clutch
WO2012060263A1 (en) Torsional shock absorber
JP2009150471A (en) Damper device
CN111263866A (en) Torsion damping device with activatable friction means
JP5388628B2 (en) Damper mechanism
US7252593B2 (en) Torsional-vibration damper
EP3636955B1 (en) Damper device
JP2012067876A (en) Torque variation absorbing device
US20070099710A1 (en) Flexible flywheel
CN112833111B (en) Clutch driven disc and clutch
JP6708566B2 (en) Power transmission device
CN114286902B (en) Vibration damping structure with two-stage damping, vehicle vibration damper and clutch driven disc
CN117739068A (en) Vibration damper
CN117739067A (en) Vibration damper

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052641.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831552

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541923

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1201002253

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5268/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10831552

Country of ref document: EP

Kind code of ref document: A1