WO2011062142A1 - Sulfur-containing silsesquioxane fine particles and process for preparation thereof - Google Patents

Sulfur-containing silsesquioxane fine particles and process for preparation thereof Download PDF

Info

Publication number
WO2011062142A1
WO2011062142A1 PCT/JP2010/070303 JP2010070303W WO2011062142A1 WO 2011062142 A1 WO2011062142 A1 WO 2011062142A1 JP 2010070303 W JP2010070303 W JP 2010070303W WO 2011062142 A1 WO2011062142 A1 WO 2011062142A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
sulfur
silsesquioxane
group
formula
Prior art date
Application number
PCT/JP2010/070303
Other languages
French (fr)
Japanese (ja)
Inventor
秀晴 森
幸平 高橋
基彦 日高
健太郎 大森
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2011541914A priority Critical patent/JP5687203B2/en
Publication of WO2011062142A1 publication Critical patent/WO2011062142A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/392Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing sulfur

Definitions

  • the present invention relates to sulfur-containing silsesquioxane fine particles and a method for producing the same.
  • the silsesquioxane fine particles can be used as an electronic material, an optical material, an electro-optical material, or a catalyst carrier. Also useful as an additive to enhance the properties of general-purpose organic polymers such as high transparency, high refractive index, flame retardancy, heat resistance, weather resistance, light resistance, electrical insulation, hardness, mechanical strength and chemical resistance It is.
  • the generic name of a condensate obtained by hydrolyzing and condensing a trifunctional hydrolyzable silicon compound is a silsesquioxane. Called.
  • Silsesquioxane is a compound having a siloxane bond that is positioned between silica (SiO 2 ) and silicone (R 2 SiO), and has been studied extensively as an inorganic substance having an affinity for organic substances. ing.
  • a structure of silsesquioxane a ladder structure, a fully condensed structure (cage structure), an incompletely condensed structure (partial cage structure), and an amorphous structure (random structure) are known (Non-patent Document 1).
  • Various properties can be imparted by changing the structure and functional group of the cage. For example, Feher et al.
  • Non-patent Document 2 Obtained silsesquioxane having an incompletely condensed structure by hydrolyzing cyclopentyltrichlorosilane or cyclohexyltrichlorosilane.
  • Non-patent Document 3 Furthermore, Shchegorikhina et al. Obtained a cyclic tetramer silsesquioxane having a terminal -Si-O-Na by hydrolyzing phenyltributoxysilane (Non-patent Document 3).
  • Mori et al. Have obtained water-soluble silsesquioxane that becomes a solution state by adding water as a solvent again even after the solvent is distilled off to obtain a solid state (Non-Patent Documents 4 to 4). 6).
  • silsesquioxane fine particles since they can impart various properties. However, since many of them are liquefied, film formation is difficult, and there is a problem that application locations and application methods are limited. there were.
  • a solid material In the case of a solid material, there are problems in storage stability, such as aggregation in a solution state and solidification due to sol-gel transition.
  • light scattering may occur due to aggregates, which may be inappropriate as an optical material.
  • the solvent is distilled off to make it into a solid state, the cohesiveness is strong, so there are many cases where it does not become a solution state again, and the application range is limited.
  • the conventional compound leaves room for improvement in terms of high refractive index.
  • the present invention has been made in view of the above circumstances, that is, to provide novel silsesquioxane fine particles which are soluble and do not cause aggregation of primary particles and have a high refractive index suitable for optical materials. Objective.
  • the present inventors have found that fine particles obtained by incorporating sulfur atoms into the skeleton of a water-soluble silsesquioxane having a large number of hydroxy groups are converted into conventional silsesquioxanes.
  • the present invention was completed by overcoming the problems caused by the fine particles and finding that the fine particles had the above-mentioned purpose.
  • a silsesquioxane fine particle containing a condensate of trialkoxysilane represented by the following formula (1) or formula (2) contains a sulfur atom represented by formula (3).
  • the present invention relates to sulfur-containing silsesquioxane fine particles obtained by reacting a carboxylic acid or a sulfur atom-containing carboxylic acid halide.
  • each R 1 independently represents a methyl group or an ethyl group
  • each R 2 independently represents a hydrogen atom, a methyl group or an ethyl group
  • Z represents an organic group containing a sulfur atom
  • X represents a hydroxy group, a chlorine atom or a bromine atom.
  • the trialkoxysilane represented by the above formula (2) contains 2 moles of 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 2-hydroxyethyl with respect to 1 mole of ⁇ -aminopropyltrialkoxysilane.
  • the sulfur-containing silsesquioxane fine particles according to the first aspect obtained by adding a material selected from the group consisting of ethacrylate.
  • the present invention relates to a method for producing sulfur-containing silsesquioxane fine particles, which comprises a step performed under a basic catalyst.
  • each R 1 independently represents a methyl group or an ethyl group
  • each R 2 independently represents a hydrogen atom, a methyl group or an ethyl group
  • Z represents an organic group containing a sulfur atom
  • X represents a hydroxy group, a chlorine atom or a bromine atom.
  • the sulfur-containing silsesquioxane fine particles of the present invention have high solubility and dispersibility in various organic solvents and no aggregation of primary particles occurs, they can be added to various materials and applied. It is. Since the fine particles exhibit a high refractive index and a high Abbe number, they are suitable materials for optical applications.
  • various performances of the resulting cured film such as transparency, refractive index, flame retardancy, heat resistance, weather resistance, light resistance, It can be expected to improve electrical insulation, hardness, mechanical strength, chemical resistance, and the like.
  • fine-particles can be manufactured easily. Moreover, it is possible to adjust required optical characteristics such as refractive index and electrical characteristics such as electrical insulation by selecting various substituents and their amounts that can be selected in the fine particles.
  • FIG. 1 (a) 1, 1 H-NMR spectrum of the silsesquioxane particles synthesized in Preparation Example 1 (FIG. 1 (a)), and 1 H-NMR spectrum of the sulfur-containing silsesquioxane particles prepared in Example 1 ( It is a figure which shows FIG.1 (b)).
  • FIG. 2 is a graph showing the results of powder X-ray analysis of the silsesquioxane fine particles obtained in Production Example 1 and the sulfur-containing silsesquioxane fine particles obtained in Example 1.
  • FIG. 3 is a transmission electron micrograph of the sulfur-containing silsesquioxane fine particles obtained in Example 1 (FIG. 3 (a): reference scale 20 nm, FIG. 3 (b): reference scale 5 nm). is there.
  • FIG. 4 is a diagram showing the GPC measurement results of the sulfur-containing silsesquioxane fine particles obtained in Example 1.
  • the sulfur-containing silsesquioxane fine particles of the present invention are represented by the following formula (3) in silsesquioxane fine particles containing a condensate of trialkoxysilane represented by the following formula (1) or formula (2). It is obtained by reacting a sulfur atom-containing carboxylic acid or a sulfur atom-containing carboxylic acid halide.
  • R 1 each independently represents a methyl group or an ethyl group
  • R 2 each independently represents a hydrogen atom, a methyl group or an ethyl group.
  • Z represents the organic group containing a sulfur atom
  • X represents a hydroxy group, a chlorine atom, or a bromine atom.
  • the organic group containing a sulfur atom represented by Z is represented by the formula (4) R 3 -S-R 4 - ( 4) (Wherein R 3 represents an alkyl group having 1 to 18 carbon atoms, a fluoroalkyl group having 1 to 18 carbon atoms, an alkyl group having 1 to 18 carbon atoms which may include an ether bond or a thioether bond, Represents an alkenyl group having 1 to 18 carbon atoms, an alkynyl group having 1 to 18 carbon atoms, an aromatic group, an aromatic group-containing alkyl group, and R 4 represents an alkylene group having 1 to 6 carbon atoms or a carbon atom number 1 to 6 fluoroalkylene groups are represented.) And an organic group, a sulfur-containing aryl group, and a sulfur-containing arylalkyl group
  • the alkyl group having 1 to 18 carbon atoms includes methyl, ethyl, n-propyl, i-propyl, c-propyl, n-butyl, i-butyl, s-butyl, t-butyl, c- Butyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, c-pentyl, 2-methyl-c- Butyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 1,1-dimethyl-n-butyl, 1-ethyl-n-butyl, 1,1,2-trimethyl-n- Propyl, c-hexyl, 1-methyl-c-pentyl, 1-ethyl-c-butyl, 1,2-dimethyl-c-butyl,
  • examples of the fluoroalkyl group having 1 to 18 carbon atoms include —CH 2 F, —CHF 2 , —CF 3 , —CH 2 CH 2 F, —CH 2 CHF 2 , —CH 2 CF 3 , —CH 2 CH 2 CH 2 F, —CH 2 CH 2 CHF 2, —CH 2 CH 2 CF 3 and the like can be mentioned.
  • alkyl group having 1 to 18 carbon atoms which may contain an ether bond or a thioether bond examples include —CH 2 OCH 3 , —CH 2 OCH 2 OCH 3 , —CH 2 OCH 2 OCH 2 OCH 3 , —CH 2 CH 2 OCH 3 , —CH 2 CH 2 OCH 2 CH 2 OCH 3 , —CH 2 CH 2 OCH 2 CH 2 OCH 3 , —CH 2 CH 2 OCH 2 CH 2 OCH 3 , —CH 2 OCH 2 CH 3 , —CH 2 OCH 2 OCH 2 CH 3 , --CH 2 OCH 2 OCH 2 CH 3 , --CH 2 CH 2 OCH 2 CH 3 , --CH 2 CH 2 OCH 2 CH 3 , --CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , --CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , --CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , --CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 ,
  • R 3 as a 1 to 18 alkynyl group carbon atoms, -C ⁇ CMe, -C ⁇ CEt, -CH 2 C ⁇ CH , -CH 2 C ⁇ CMe, -CH 2 C ⁇ CEt, -CH 2 CH 2 C ⁇ CH, —CH 2 CH 2 C ⁇ CMe, —CHMeC ⁇ CH, —CHMeC ⁇ CMe, and the like.
  • the aromatic group includes phenyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyrimidinyl, 4 -Pyrimidinyl, 3-pyrazinyl, 2-imidazolyl, 4-imidazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 1,2,4-thiadiazol-3-yl, 1,2,4- And thiadiazol-5-yl, 1,2,5-thiadiazol-3-yl, 1,3,4-thiadiazol-5-yl and the like.
  • the aromatic group-containing alkyl group includes phenylmethyl, 2-thienylmethyl, 3-thienylmethyl, 2-pyridylmethyl, 3-pyridylmethyl, 4-pyridylmethyl, 2-pyrimidinylmethyl, 4-pyrimidinyl.
  • examples of the alkylene group having 1 to 6 carbon atoms include methylene, ethylene, propylene, butylene, propylene, and hexylene.
  • examples of the fluoroalkylene group having 1 to 6 carbon atoms include —CF 2 , —CF 2 CF 2 , —CF 2 CF 2 CF 2 , —CHF, —CH 2 CHF, —CH 2 CF 2 , —CH 2 CH 2 CHF, —CH 2 CH 2 CF 2 and the like can be mentioned.
  • the sulfur-containing aryl group includes 2-thienyl, 3-thienyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 1,2,4-thiadiazol-3-yl, 1,2,2, Examples include 4-thiadiazol-5-yl, 1,2,5-thiadiazol-3-yl, 1,3,4-thiadiazol-5-yl and the like.
  • the sulfur-containing arylalkyl group includes 2-thienylmethyl, 3-thienylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 5-thiazolylmethyl, 1,2,4-thiadiazole-3 -Ylmethyl, 1,2,4-thiadiazol-5-ylmethyl, 1,2,5-thiadiazol-3-ylmethyl, 1,3,4-thiadiazol-5-ylmethyl and the like.
  • the trialkoxysilane represented by the formula (1) used in the present invention and the method for producing the silsesquioxane fine particles which are the condensates thereof are not particularly limited. It can be efficiently synthesized by the method disclosed in Patent Document 5. For example, 1 mol of ⁇ -aminopropyltriethoxysilane and 2 mol of 1,2-epoxypropyl-3-ol (glycidol) are reacted to give a trialkoxysilane compound (N, N-di (2, 3-dihydroxypropyl)-(aminopropyl) trialkoxysilane), and this trialkoxysilane compound is subjected to a condensation reaction in alcohol using hydrogen fluoride as a catalyst, so that water-soluble silsesquioxane can be obtained in a uniform reaction field.
  • the trialkoxysilane represented by the formula (2) used in the present invention can also be synthesized by, for example, the method disclosed in Non-Patent Document 6, for example, ⁇ -aminopropyltriethoxysilane 1 Is reacted with 2 moles of 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate or 2-hydroxyethyl ethacrylate to synthesize a trialkoxysilane compound having a large number of hydroxy groups. Water-soluble silsesquioxane fine particles can be obtained.
  • the water-soluble silsesquioxane fine particles thus obtained are generally represented by the following schematic diagram (5) or (6).
  • the portion described as SiO 1.5 represents a condensate of —Si (OR 1 ) 3 in the above formula (1) or formula (2).
  • the condensate (center portion) of the silsesquioxane fine particles represented by the above (5) or (6) is represented by (SiO 1.5 ) n, where n indicates the degree of condensation, and the degree of condensation usually obtained is 8 or more.
  • the condensation degree is 10
  • the center is silicon oxide having a molecular formula of Si 10 O 15
  • the number of organic groups that are bonded to Si to modify the condensate is also 10 (C 9 H 20 NO 4 ) 10 .Si 10. It expressed as O 15.
  • silsesquioxane fine particles obtained by condensing trialkoxysilane represented by the formula (1) or formula (2) in the presence of an acid or a base in an organic solvent, and the formula (3)
  • the sulfur-containing silsesquioxane Produces fine particles.
  • the conditions for reacting the water-soluble silsesquioxane fine particles with the sulfur atom-containing carboxylic acid or sulfur atom-containing carboxylic acid halide represented by the formula (3) are as follows.
  • a sulfur atom-containing carboxylic acid is used as the compound represented by the formula (3), it is synthesized under the conditions of esterification with a general alcohol and carboxylic acid, and is not particularly limited.
  • the reaction is carried out at a reaction temperature ranging from room temperature to the boiling point of the solvent used.
  • acids such as hydrochloric acid, sulfuric acid, phosphoric acid, diphenylphosphoryl azide, phosphoric acids such as diethyl cyanophosphate, and sulfonic acids such as methanesulfonic acid or p-toluenesulfonic acid are used.
  • esterification can proceed efficiently by using a condensing agent such as dicyclohexylcarbodiimide in combination with a base such as triethylamine or dimethylaminopyridine.
  • the solvent used here is preferably a solvent having a solubility in water at room temperature of 1% or less, such as benzene, toluene and chloroform.
  • the reaction conditions when a sulfur atom-containing carboxylic acid halide is used as the compound represented by the formula (3) is preferably a reaction temperature in the range of ⁇ 80 ° C. to the boiling point of the solvent in an organic solvent.
  • the reaction is carried out at a reaction temperature ranging from ⁇ 20 ° C. to room temperature.
  • the reaction is carried out under a basic catalyst, and triethylamine, pyridine, 4-dimethylaminopyridine or the like can be used, and these can be used in combination as necessary.
  • a solvent having a solubility in water at room temperature of 1% or less, such as benzene, toluene and chloroform, is preferably used.
  • the sulfur-containing silsesquioxane fine particles thus obtained are generally represented by the following schematic diagram (7) or (8).
  • the portion described as SiO 1.5 is the same as the formula (1) or (2) described above in the schematic diagram (4) or (5).
  • silsesquioxane fine particles which were glassy solid fine particles at room temperature.
  • the 1 H-NMR spectrum of the obtained silsesquioxane fine particles is shown in FIG.
  • the solid fine particles were easily changed to a high-viscosity transparent substance by heating at 60 ° C., for example.
  • the obtained solid fine particles are soluble in water, methanol, N, N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), while insoluble in many organic solvents such as dichloromethane, acetone and dioxane. there were.
  • Example 1 Production of sulfur-containing silsesquioxane fine particles by esterification of silsesquioxane fine particles
  • the sulfur-containing silsesquioxane fine particles obtained in Example 1 are soluble in organic solvents such as acetone, tetrahydrofuran, dimethyl sulfoxide, N, N-dimethylformamide, and chloroform. It showed good solubility.
  • Example 2 Refractive index measurement of sulfur-containing silsesquioxane fine particles
  • a 10 mass% chloroform solution of the sulfur-containing silsesquioxane fine particles obtained in Example 1 was prepared. This chloroform solution was spin-coated on a glass substrate under conditions of 1,500 rpm ⁇ 20 seconds, and then dried at 100 ° C. for 10 minutes to produce a silsesquioxane thin film.
  • the film thickness and refractive index of the obtained thin film were evaluated using a spectroscopic ellipsometer, the refractive index at a wavelength of 589 nm was 1.588 and the refractive index at a wavelength of 633 nm was 1.585 at a film thickness of 1.1 ⁇ m. .
  • the present invention can provide novel sulfur-containing silsesquioxane fine particles that are soluble in various organic solvents and do not cause aggregation of primary particles. As a result, it is possible to provide a material that exhibits a high refractive index and a high Abbe number, and is suitable for optical applications having very high solubility and dispersibility without causing aggregation.

Abstract

Provided are: novel silsesquioxane fine particles which are soluble and do not suffer from agglomeration of primary particles and which exhibit a high reflective index suitable for use as optical material; and a process for preparation thereof. Specifically provided are: sulfur-containing silsesquioxane fine particles obtained by reacting silsesquioxane fine particles that contain a trialkoxysilane condensate with a sulfur-containing carboxylic acid or a sulfur-containing carboxylic acid halide; and a process for the preparation of the same.

Description

含硫黄シルセスキオキサン微粒子およびその製造方法Sulfur-containing silsesquioxane fine particles and method for producing the same
 本発明は、含硫黄シルセスキオキサン微粒子及びその製造方法に関する。該記シルセスキオキサン微粒子は、電子材料、光学材料、電子光学材料又は触媒担持体として用いることができる。また汎用の有機重合体の高透明性、高屈折率、難燃性、耐熱性、耐候性、耐光性、電気絶縁性、硬度、力学的強度及び耐薬品性といった特性を高める添加剤としても有用である。
 なお本発明において、3官能の加水分解性ケイ素化合物を加水分解して縮合させて得られる縮合物((RSiO1.5)nの構造を持つネットワーク型ポリマー、又は多面体クラスター)の総称をシルセスキオキサンと称する。
The present invention relates to sulfur-containing silsesquioxane fine particles and a method for producing the same. The silsesquioxane fine particles can be used as an electronic material, an optical material, an electro-optical material, or a catalyst carrier. Also useful as an additive to enhance the properties of general-purpose organic polymers such as high transparency, high refractive index, flame retardancy, heat resistance, weather resistance, light resistance, electrical insulation, hardness, mechanical strength and chemical resistance It is.
In the present invention, the generic name of a condensate obtained by hydrolyzing and condensing a trifunctional hydrolyzable silicon compound (a network polymer having a structure of (RSiO 1.5 ) n or a polyhedral cluster) is a silsesquioxane. Called.
 シルセスキオキサンはシリカ(SiO2)とシリコーン(R2SiO)の中間的な存在に位置づけられるシロキサン結合を有する化合物で、有機物に親和性を持つ無機物であるとしてこれまで数多くの研究が行われている。シルセスキオキサンの構造として、ラダー構造、完全縮合型構造(かご型構造)、不完全縮合型構造(部分かご型構造)、不定形構造(ランダム構造)が知られており(非特許文献1)、かごの構造や官能基を変化させることでさまざまな性質を付与可能である。
 例えば、Feherらは、シクロペンチルトリクロロシラン又はシクロヘキシルトリクロロシランを加水分解することにより、不完全縮合型構造のシルセスキオキサンを得ている(非特許文献2)。またShchegolikhinaらは、フェニルトリブトキシシランを加水分解することにより、末端が-Si-O-Naとなった環状四量体のシルセスキオキサンを得ている(非特許文献3)。
 また、森らは、溶媒を留去して固体状態にした後でも、再度溶媒となる水を加えることによって、溶液状態になる水溶性のシルセスキオキサンを得ている(非特許文献4~6)。
Silsesquioxane is a compound having a siloxane bond that is positioned between silica (SiO 2 ) and silicone (R 2 SiO), and has been studied extensively as an inorganic substance having an affinity for organic substances. ing. As a structure of silsesquioxane, a ladder structure, a fully condensed structure (cage structure), an incompletely condensed structure (partial cage structure), and an amorphous structure (random structure) are known (Non-patent Document 1). ), Various properties can be imparted by changing the structure and functional group of the cage.
For example, Feher et al. Obtained silsesquioxane having an incompletely condensed structure by hydrolyzing cyclopentyltrichlorosilane or cyclohexyltrichlorosilane (Non-patent Document 2). Further, Shchegorikhina et al. Obtained a cyclic tetramer silsesquioxane having a terminal -Si-O-Na by hydrolyzing phenyltributoxysilane (Non-patent Document 3).
Moreover, Mori et al. Have obtained water-soluble silsesquioxane that becomes a solution state by adding water as a solvent again even after the solvent is distilled off to obtain a solid state (Non-Patent Documents 4 to 4). 6).
 従来よりシルセスキオキサン微粒子は多彩な性質を付与可能であることから種々研究されているが、その多くが液状化物であるために製膜が難しく、適用箇所・適用方法が限られるという問題があった。
 また、固体状のものにあっては、溶液状態にすると凝集したり、ゾル-ゲル転移によって固化が進行してしまうなど、保存安定性に課題を残すものであった。また、他の材料との複合化の際、凝集物が原因で光散乱が起こるなどして光学材料としては不適当である場合があった。さらに溶媒を留去して一旦固体状態にすると凝集性が強いため再度溶液状態にならないものが多く、適用範囲が限定される場合があった。
 さらに、シルセスキオキサン微粒子を光学材料として用いるためには、従来の該化合物では屈折率の高さという点で改善の余地を残すものであった。
Various studies have been conducted on silsesquioxane fine particles since they can impart various properties. However, since many of them are liquefied, film formation is difficult, and there is a problem that application locations and application methods are limited. there were.
In the case of a solid material, there are problems in storage stability, such as aggregation in a solution state and solidification due to sol-gel transition. In addition, when combined with other materials, light scattering may occur due to aggregates, which may be inappropriate as an optical material. Further, once the solvent is distilled off to make it into a solid state, the cohesiveness is strong, so there are many cases where it does not become a solution state again, and the application range is limited.
Furthermore, in order to use silsesquioxane fine particles as an optical material, the conventional compound leaves room for improvement in terms of high refractive index.
 本発明は、上記の事情に鑑みなされたものであって、すなわち、可溶性であり且つ一次粒子の凝集が起きず、また光学材料に適する高い屈折率を有する新規なシルセスキオキサン微粒子の提供を目的とする。 The present invention has been made in view of the above circumstances, that is, to provide novel silsesquioxane fine particles which are soluble and do not cause aggregation of primary particles and have a high refractive index suitable for optical materials. Objective.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、ヒドロキシ基を多数有する水溶性シルセスキオキサンの骨格に硫黄原子に組み込み得られた微粒子が、従来のシルセスキオキサン微粒子で生じた課題を克服し、上記目的の微粒子となることを見い出し、本発明を完成した。 As a result of intensive investigations to achieve the above object, the present inventors have found that fine particles obtained by incorporating sulfur atoms into the skeleton of a water-soluble silsesquioxane having a large number of hydroxy groups are converted into conventional silsesquioxanes. The present invention was completed by overcoming the problems caused by the fine particles and finding that the fine particles had the above-mentioned purpose.
 即ち、本発明は第1観点として、下記式(1)又は式(2)で表されるトリアルコキシシランの縮合物を含むシルセスキオキサン微粒子に、式(3)で表される硫黄原子含有カルボン酸又は硫黄原子含有カルボン酸ハロゲン化物を反応させて得られる含硫黄シルセスキオキサン微粒子に関する。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(上記式中、R1は夫々独立してメチル基又はエチル基を表し、R2は夫々独立して水素原子、メチル基又はエチル基を表し、Zは硫黄原子を含有する有機基を表し、Xはヒドロキシ基、塩素原子又は臭素原子を表す。)
 第2観点として、上記式(1)で表されるトリアルコキシシランが、γ-アミノプロピルトリアルコキシシラン1モルに対し、2モルの1,2-エポキシプロピル-3-オールを付加させて得られる、第1観点に記載の含硫黄シルセスキオキサン微粒子に関する。
 第3観点として、上記式(2)で表されるトリアルコキシシランが、γ-アミノプロピルトリアルコキシシラン1モルに対し、2モルの2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート及び2-ヒドロキシエチルエタクリレートからなる群から選択されるものを付加させて得られる、第1観点に記載の含硫黄シルセスキオキサン微粒子に関する。
 第4観点として、有機溶媒中、酸又は塩基の存在下で下記式(1)又は式(2)で表されるトリアルコキシシランを縮合させることによりシルセスキオキサン微粒子を得る工程、及び該シルセスキオキサン微粒子と下記式(3)で表される硫黄原子含有カルボン酸との脱水反応を行うか、又は該シルセスキオキサン微粒子と硫黄原子含有カルボン酸ハロゲン化物との脱ハロゲン化水素反応を塩基性触媒の下で行う工程を含むことを特徴とする、含硫黄シルセスキオキサン微粒子の製造方法に関する。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(上記式中、R1は夫々独立してメチル基又はエチル基を表し、R2は夫々独立して水素原子、メチル基又はエチル基を表し、Zは硫黄原子を含有する有機基を表し、Xはヒドロキシ基、塩素原子又は臭素原子を表す。)
That is, as a first aspect of the present invention, a silsesquioxane fine particle containing a condensate of trialkoxysilane represented by the following formula (1) or formula (2) contains a sulfur atom represented by formula (3). The present invention relates to sulfur-containing silsesquioxane fine particles obtained by reacting a carboxylic acid or a sulfur atom-containing carboxylic acid halide.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(In the above formula, each R 1 independently represents a methyl group or an ethyl group, each R 2 independently represents a hydrogen atom, a methyl group or an ethyl group, Z represents an organic group containing a sulfur atom, X represents a hydroxy group, a chlorine atom or a bromine atom.)
As a second aspect, the trialkoxysilane represented by the above formula (1) is obtained by adding 2 moles of 1,2-epoxypropyl-3-ol to 1 mole of γ-aminopropyltrialkoxysilane. The sulfur-containing silsesquioxane fine particles according to the first aspect.
As a third aspect, the trialkoxysilane represented by the above formula (2) contains 2 moles of 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate and 2-hydroxyethyl with respect to 1 mole of γ-aminopropyltrialkoxysilane. The sulfur-containing silsesquioxane fine particles according to the first aspect, obtained by adding a material selected from the group consisting of ethacrylate.
As a fourth aspect, a step of obtaining silsesquioxane fine particles by condensing trialkoxysilane represented by the following formula (1) or formula (2) in an organic solvent in the presence of an acid or a base, and the sil A dehydration reaction between the sesquioxane fine particles and the sulfur atom-containing carboxylic acid represented by the following formula (3) is performed, or a dehydrohalogenation reaction between the silsesquioxane fine particles and the sulfur atom-containing carboxylic acid halide is performed. The present invention relates to a method for producing sulfur-containing silsesquioxane fine particles, which comprises a step performed under a basic catalyst.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(In the above formula, each R 1 independently represents a methyl group or an ethyl group, each R 2 independently represents a hydrogen atom, a methyl group or an ethyl group, Z represents an organic group containing a sulfur atom, X represents a hydroxy group, a chlorine atom or a bromine atom.)
 本発明の含硫黄シルセスキオキサン微粒子は、種々の有機溶媒に対して高い溶解性、分散性を有し、一次粒子の凝集が起こらないことから、様々な材料に添加し適用することが可能である。そして該微粒子は、高屈折率、高アッベ数を示すことから、光学用途に好適な材料となる。
 特に本発明の含硫黄シルセスキオキサン微粒子は、重合性モノマーと共に用いることにより、得られる硬化膜の種々の性能、例えば透明性、屈折率、難燃性、耐熱性、耐候性、耐光性、電気絶縁性、硬度、力学的強度及び耐薬品性等を高めることが期待できる。
 また、本発明によれば、含硫黄シルセスキオキサン微粒子を容易に製造することができる。しかも、該微粒子において選択可能な置換基やその量を種々選択することにより、要求される屈折率などの光学特性や電気絶縁性等の電気特性を調整することが可能である。
Since the sulfur-containing silsesquioxane fine particles of the present invention have high solubility and dispersibility in various organic solvents and no aggregation of primary particles occurs, they can be added to various materials and applied. It is. Since the fine particles exhibit a high refractive index and a high Abbe number, they are suitable materials for optical applications.
In particular, when the sulfur-containing silsesquioxane fine particles of the present invention are used together with a polymerizable monomer, various performances of the resulting cured film, such as transparency, refractive index, flame retardancy, heat resistance, weather resistance, light resistance, It can be expected to improve electrical insulation, hardness, mechanical strength, chemical resistance, and the like.
Moreover, according to this invention, sulfur-containing silsesquioxane microparticles | fine-particles can be manufactured easily. Moreover, it is possible to adjust required optical characteristics such as refractive index and electrical characteristics such as electrical insulation by selecting various substituents and their amounts that can be selected in the fine particles.
図1は、製造例1で合成したシルセスキオキサン微粒子の1H-NMRスペクトル(図1(a))、及び実施例1で製造した含硫黄シルセスキオキサン微粒子の1H-NMRスペクトル(図1(b))を示す図である。1, 1 H-NMR spectrum of the silsesquioxane particles synthesized in Preparation Example 1 (FIG. 1 (a)), and 1 H-NMR spectrum of the sulfur-containing silsesquioxane particles prepared in Example 1 ( It is a figure which shows FIG.1 (b)). 図2は、製造例1で得られたシルセスキオキサン微粒子と実施例1で得られた含硫黄シルセスキオキサン微粒子の粉末X線解析の結果を示す図である。FIG. 2 is a graph showing the results of powder X-ray analysis of the silsesquioxane fine particles obtained in Production Example 1 and the sulfur-containing silsesquioxane fine particles obtained in Example 1. 図3は、実施例1で得られた含硫黄シルセスキオキサン微粒子の透過型電子顕微鏡写真(図3(a):基準となる縮尺20nm、図3(b):基準となる縮尺5nm)である。FIG. 3 is a transmission electron micrograph of the sulfur-containing silsesquioxane fine particles obtained in Example 1 (FIG. 3 (a): reference scale 20 nm, FIG. 3 (b): reference scale 5 nm). is there. 図4は、実施例1で得られた含硫黄シルセスキオキサン微粒子のGPC測定結果を示す図である。FIG. 4 is a diagram showing the GPC measurement results of the sulfur-containing silsesquioxane fine particles obtained in Example 1.
 以下に、本発明の実施形態を詳しく説明する。
 本発明の含硫黄シルセスキオキサン微粒子は、下記式(1)又は式(2)で表されるトリアルコキシシランの縮合物を含むシルセスキオキサン微粒子に、下記式(3)で表される硫黄原子含有カルボン酸又は硫黄原子含有カルボン酸ハロゲン化物を反応させて得られる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Hereinafter, embodiments of the present invention will be described in detail.
The sulfur-containing silsesquioxane fine particles of the present invention are represented by the following formula (3) in silsesquioxane fine particles containing a condensate of trialkoxysilane represented by the following formula (1) or formula (2). It is obtained by reacting a sulfur atom-containing carboxylic acid or a sulfur atom-containing carboxylic acid halide.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 上記式(1)又は式(2)中、R1は夫々独立してメチル基又はエチル基を表し、R2は夫々独立して水素原子、メチル基又はエチル基を表す。 In the above formula (1) or formula (2), R 1 each independently represents a methyl group or an ethyl group, and R 2 each independently represents a hydrogen atom, a methyl group or an ethyl group.
 上記式(3)中、Zは硫黄原子を含有する有機基を表し、Xはヒドロキシ基、塩素原子又は臭素原子を表す。
 上記Zで表される硫黄原子を含有する有機基としては、式(4)
3-S-R4-   (4)
(式中、R3は、炭素原子数1乃至18のアルキル基、炭素原子数1乃至18のフルオロアルキル基、エーテル結合又はチオエーテル結合を含んでいてもよい炭素原子数1乃至18のアルキル基、炭素原子数1乃至18のアルケニル基、炭素原子数1乃至18のアルキニル基、芳香族基、芳香族基含有アルキル基を表し、R4は、炭素原子数1乃至6のアルキレン基、炭素原子数1乃至6のフルオロアルキレン基を表す。)
で表される有機基、含硫黄アリール基、含硫黄アリールアルキル基が挙げられる。
In said formula (3), Z represents the organic group containing a sulfur atom, X represents a hydroxy group, a chlorine atom, or a bromine atom.
The organic group containing a sulfur atom represented by Z is represented by the formula (4)
R 3 -S-R 4 - ( 4)
(Wherein R 3 represents an alkyl group having 1 to 18 carbon atoms, a fluoroalkyl group having 1 to 18 carbon atoms, an alkyl group having 1 to 18 carbon atoms which may include an ether bond or a thioether bond, Represents an alkenyl group having 1 to 18 carbon atoms, an alkynyl group having 1 to 18 carbon atoms, an aromatic group, an aromatic group-containing alkyl group, and R 4 represents an alkylene group having 1 to 6 carbon atoms or a carbon atom number 1 to 6 fluoroalkylene groups are represented.)
And an organic group, a sulfur-containing aryl group, and a sulfur-containing arylalkyl group represented by the formula:
 上記R3において、炭素原子数1乃至18アルキル基としては、メチル、エチル、n-プロピル、i-プロピル、c-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、c-ブチル、n-ペンチル、1-メチル-n-ブチル、2-メチル-n-ブチル、3-メチル-n-ブチル、1,1-ジメチル-n-プロピル、c-ペンチル、2-メチル-c-ブチル、n-ヘキシル、1-メチル-n-ペンチル、2-メチル-n-ペンチル、1,1-ジメチル-n-ブチル、1-エチル-n-ブチル、1,1,2-トリメチル-n-プロピル、c-ヘキシル、1-メチル-c-ペンチル、1-エチル-c-ブチル、1,2-ジメチル-c-ブチル、n-ヘプチル、n-オクチル、n-ノニル又はn-デシル等が挙げられる。
 なお本明細書において、「n」はノルマルを、「i」はイソを、「s」はセカンダリーを、「t」はターシャリーを、「c」はシクロを、「o」はオルトを、「m」はメタを、「p」はパラを意味する。
In the above R 3 , the alkyl group having 1 to 18 carbon atoms includes methyl, ethyl, n-propyl, i-propyl, c-propyl, n-butyl, i-butyl, s-butyl, t-butyl, c- Butyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, c-pentyl, 2-methyl-c- Butyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 1,1-dimethyl-n-butyl, 1-ethyl-n-butyl, 1,1,2-trimethyl-n- Propyl, c-hexyl, 1-methyl-c-pentyl, 1-ethyl-c-butyl, 1,2-dimethyl-c-butyl, n-heptyl, n-octyl, n-nonyl or n-decyl It is done.
In this specification, “n” is normal, “i” is iso, “s” is secondary, “t” is tertiary, “c” is cyclo, “o” is ortho, “ “m” means meta, and “p” means para.
 上記R3において、炭素原子数1乃至18のフルオロアルキル基としては、-CH2F、-CHF2、-CF3、-CH2CH2F、-CH2CHF2、-CH2CF3、-CH2CH2CH2F、-CH2CH2CHF2又は-CH2CH2CF3等が挙げられる。 In the above R 3 , examples of the fluoroalkyl group having 1 to 18 carbon atoms include —CH 2 F, —CHF 2 , —CF 3 , —CH 2 CH 2 F, —CH 2 CHF 2 , —CH 2 CF 3 , —CH 2 CH 2 CH 2 F, —CH 2 CH 2 CHF 2, —CH 2 CH 2 CF 3 and the like can be mentioned.
 上記エーテル結合又はチオエーテル結合を含んでいてもよい炭素原子数1乃至18のアルキル基としては、-CH2OCH3、-CH2OCH2OCH3、-CH2OCH2OCH2OCH3、-CH2CH2OCH3、-CH2CH2OCH2CH2OCH3、-CH2CH2OCH2CH2OCH2CH2OCH3、-CH2OCH2CH3、-CH2OCH2OCH2CH3、-CH2OCH2OCH2OCH2CH3、-CH2CH2OCH2CH3、-CH2CH2OCH2CH2OCH2CH3、-CH2CH2OCH2CH2OCH2CH2OCH2CH3、-CH2SCH3、-CH2SCH2SCH3、-CH2SCH2SCH2SCH3、-CH2CH2SCH3、-CH2CH2SCH2CH2SCH3、-CH2CH2SCH2CH2SCH2CH2SCH3、-CH2SCH2CH3、-CH2SCH2SCH2CH3、-CH2SCH2SCH2SCH2CH3、-CH2CH2SCH2CH3、-CH2CH2SCH2CH2SCH2CH3又は-CH2CH2SCH2CH2SCH2CH2SCH2CH3等が挙げられる。 Examples of the alkyl group having 1 to 18 carbon atoms which may contain an ether bond or a thioether bond include —CH 2 OCH 3 , —CH 2 OCH 2 OCH 3 , —CH 2 OCH 2 OCH 2 OCH 3 , —CH 2 CH 2 OCH 3 , —CH 2 CH 2 OCH 2 CH 2 OCH 3 , —CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 3 , —CH 2 OCH 2 CH 3 , —CH 2 OCH 2 OCH 2 CH 3 , --CH 2 OCH 2 OCH 2 OCH 2 CH 3 , --CH 2 CH 2 OCH 2 CH 3 , --CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3 , --CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 OCH 2 CH 3, -CH 2 SCH 3, -CH 2 SCH 2 SCH 3, -CH 2 SCH 2 SCH 2 SCH 3, -CH 2 CH 2 SCH 3, -CH 2 CH 2 SCH 2 CH 2 SCH 3, -CH 2 C 2 SCH 2 CH 2 SCH 2 CH 2 SCH 3, -CH 2 SCH 2 CH 3, -CH 2 SCH 2 SCH 2 CH 3, -CH 2 SCH 2 SCH 2 SCH 2 CH 3, -CH 2 CH 2 SCH 2 CH 3 , —CH 2 CH 2 SCH 2 CH 2 SCH 2 CH 3 or —CH 2 CH 2 SCH 2 CH 2 SCH 2 CH 2 SCH 2 CH 3 and the like.
 上記R3において、炭素原子数1乃至18のアルケニル基としては、-CH=CH2、-CH=CHMe、-CH=CHEt、-CH=CMe2、-CH=CEt2、-CMe=CH2、-CMe=CHMe、-CMe=CMe2、-CH2CH=CH2、-CH2CH=CHMe、-CH2CH=CHEt、-CH2CMe=CH2、-CH2CH2CH=CH2、-CH2CH2CH=CHMe、-CH2CH=CMe2、-CHMeCH=CH2、-CH2CMe=CHMe、-CHMeCH=CHMe、-CH2CMe=CHEt、-CH2CH2CH=CMe2、-CH2CMe=CMe2又は-CH=C=CH2等が挙げられる。 In the above R 3, Examples of the alkenyl group having a carbon number of 1 to 18, -CH = CH 2, -CH = CHMe, -CH = CHEt, -CH = CMe 2, -CH = CEt 2, -CMe = CH 2 , -CMe = CHMe, -CMe = CMe 2, -CH 2 CH = CH 2, -CH 2 CH = CHMe, -CH 2 CH = CHEt, -CH 2 CMe = CH 2, -CH 2 CH 2 CH = CH 2 , -CH 2 CH 2 CH = CHMe, -CH 2 CH = CMe 2 , -CHMeCH = CH 2 , -CH 2 CMe = CHMe, -CHMeCH = CHMe, -CH 2 CMe = CHEt, -CH 2 CH 2 CH = CMe 2 , -CH 2 CMe = CMe 2, -CH = C = CH 2 and the like.
 上記R3において、炭素原子数1乃至18アルキニル基としては、-C≡CMe、-C≡CEt、-CH2C≡CH、-CH2C≡CMe、-CH2C≡CEt、-CH2CH2C≡CH、-CH2CH2C≡CMe、-CHMeC≡CH又は-CHMeC≡CMe等が挙げられる。 In the above R 3, as a 1 to 18 alkynyl group carbon atoms, -C≡CMe, -C≡CEt, -CH 2 C≡CH , -CH 2 C≡CMe, -CH 2 C≡CEt, -CH 2 CH 2 C≡CH, —CH 2 CH 2 C≡CMe, —CHMeC≡CH, —CHMeC≡CMe, and the like.
 上記R3において、芳香族基としては、フェニル、2-チエニル、3-チエニル、2-ピリジル、3-ピリジル、4-ピリジル、2-ピリミジニル、4-ピリミジニル、5-ピリミジニル、3-ピリミジニル、4-ピリミジニル、3-ピラジニル、2-イミダゾールイル、4-イミダゾールイル、2-チアゾールイル、4-チアゾールイル、5-チアゾールイル、1,2,4-チアジアゾール-3-イル、1,2,4-チアジアゾール-5-イル、1,2,5-チアジアゾール-3-イル、1,3,4-チアジアゾール-5-イル等が挙げられる。 In the above R 3 , the aromatic group includes phenyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyrimidinyl, 4 -Pyrimidinyl, 3-pyrazinyl, 2-imidazolyl, 4-imidazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 1,2,4-thiadiazol-3-yl, 1,2,4- And thiadiazol-5-yl, 1,2,5-thiadiazol-3-yl, 1,3,4-thiadiazol-5-yl and the like.
 上記R3において、芳香族基含有アルキル基としては、フェニルメチル、2-チエニルメチル、3-チエニルメチル、2-ピリジルメチル、3-ピリジルメチル、4-ピリジルメチル、2-ピリミジニルメチル、4-ピリミジニルメチル、5-ピリミジニルメチル、3-ピリミジニルメチル、4-ピリミジニルメチル、3-ピラジニルメチル、2-イミダゾールイルメチル、4-イミダゾールイルメチル、2-チアゾールイルメチル、4-チアゾールイルメチル、5-チアゾールイルメチル、1,2,4-チアジアゾール-3-イルメチル、1,2,4-チアジアゾール-5-イルメチル、1,2,5-チアジアゾール-3-イルメチル、1,3,4-チアジアゾール-5-イルメチル等が挙げられる。 In the above R 3 , the aromatic group-containing alkyl group includes phenylmethyl, 2-thienylmethyl, 3-thienylmethyl, 2-pyridylmethyl, 3-pyridylmethyl, 4-pyridylmethyl, 2-pyrimidinylmethyl, 4-pyrimidinyl. Methyl, 5-pyrimidinylmethyl, 3-pyrimidinylmethyl, 4-pyrimidinylmethyl, 3-pyrazinylmethyl, 2-imidazolylmethyl, 4-imidazolylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 5- thiazolylmethyl 1,2,4-thiadiazol-3-ylmethyl, 1,2,4-thiadiazol-5-ylmethyl, 1,2,5-thiadiazol-3-ylmethyl, 1,3,4-thiadiazol-5-ylmethyl, etc. Can be mentioned.
 上記R4において、炭素原子数1乃至6アルキレン基としては、メチレン、エチレン、プロピレン、ブチレン、プロピレン又はヘキシレン等が挙げられる。
 上記R4において、炭素原子数1乃至6のフルオロアルキレン基としては、-CF2、-CF2CF2、-CF2CF2CF2、-CHF、-CH2CHF、-CH2CF2、-CH2CH2CHF又は-CH2CH2CF2等が挙げられる。
In the above R 4 , examples of the alkylene group having 1 to 6 carbon atoms include methylene, ethylene, propylene, butylene, propylene, and hexylene.
In the above R 4 , examples of the fluoroalkylene group having 1 to 6 carbon atoms include —CF 2 , —CF 2 CF 2 , —CF 2 CF 2 CF 2 , —CHF, —CH 2 CHF, —CH 2 CF 2 , —CH 2 CH 2 CHF, —CH 2 CH 2 CF 2 and the like can be mentioned.
 上記Zにおいて、含硫黄アリール基としては、2-チエニル、3-チエニル、2-チアゾールイル、4-チアゾールイル、5-チアゾールイル、1,2,4-チアジアゾール-3-イル、1,2,4-チアジアゾール-5-イル、1,2,5-チアジアゾール-3-イル、1,3,4-チアジアゾール-5-イル等が挙げられる。
 また上記Zにおいて、含硫黄アリールアルキル基としては、2-チエニルメチル、3-チエニルメチル、2-チアゾールイルメチル、4-チアゾールイルメチル、5-チアゾールイルメチル、1,2,4-チアジアゾール-3-イルメチル、1,2,4-チアジアゾール-5-イルメチル、1,2,5-チアジアゾール-3-イルメチル、1,3,4-チアジアゾール-5-イルメチル等が挙げられる。
In the above Z, the sulfur-containing aryl group includes 2-thienyl, 3-thienyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 1,2,4-thiadiazol-3-yl, 1,2,2, Examples include 4-thiadiazol-5-yl, 1,2,5-thiadiazol-3-yl, 1,3,4-thiadiazol-5-yl and the like.
In Z, the sulfur-containing arylalkyl group includes 2-thienylmethyl, 3-thienylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 5-thiazolylmethyl, 1,2,4-thiadiazole-3 -Ylmethyl, 1,2,4-thiadiazol-5-ylmethyl, 1,2,5-thiadiazol-3-ylmethyl, 1,3,4-thiadiazol-5-ylmethyl and the like.
 本発明で使用される前記式(1)で表されるトリアルコキシシラン、及びその縮合物であるシルセスキオキサン微粒子の製造方法は特に限定されるものではないが、例えば非特許文献4乃至非特許文献5に開示された方法によって効率的に合成することができる。
 例えば、γ-アミノプロピルトリエトキシシラン1モルと1,2-エポキシプロピル-3-オール(グリシドール)2モルとを反応させ、ヒドロキシ基を多数有するトリアルコキシシラン化合物(N,N-ジ(2,3-ジヒドロキシプロピル)-(アミノプロピル)トリアルコキシシラン)を合成し、このトリアルコキシシラン化合物をフッ化水素を触媒としてアルコール中で縮合反応を行うことにより、均一反応場で水溶性シルセスキオキサン微粒子を効率的に得ることができる。
 同様に、本発明で使用される前記式(2)で表されるトリアルコキシシランも、例えば非特許文献6に開示された方法によって合成することができ、例えば、γ-アミノプロピルトリエトキシシラン1モルと、2モルの2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート或いは2-ヒドロキシエチルエタクリレートとを反応させて、ヒドロキシ基を多数有するトリアルコキシシラン化合物を合成し、前記同様に縮合反応によって水溶性シルセスキオキサン微粒子を得ることができる。
The trialkoxysilane represented by the formula (1) used in the present invention and the method for producing the silsesquioxane fine particles which are the condensates thereof are not particularly limited. It can be efficiently synthesized by the method disclosed in Patent Document 5.
For example, 1 mol of γ-aminopropyltriethoxysilane and 2 mol of 1,2-epoxypropyl-3-ol (glycidol) are reacted to give a trialkoxysilane compound (N, N-di (2, 3-dihydroxypropyl)-(aminopropyl) trialkoxysilane), and this trialkoxysilane compound is subjected to a condensation reaction in alcohol using hydrogen fluoride as a catalyst, so that water-soluble silsesquioxane can be obtained in a uniform reaction field. Fine particles can be obtained efficiently.
Similarly, the trialkoxysilane represented by the formula (2) used in the present invention can also be synthesized by, for example, the method disclosed in Non-Patent Document 6, for example, γ-aminopropyltriethoxysilane 1 Is reacted with 2 moles of 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate or 2-hydroxyethyl ethacrylate to synthesize a trialkoxysilane compound having a large number of hydroxy groups. Water-soluble silsesquioxane fine particles can be obtained.
 このようにして得られる水溶性シルセスキオキサン微粒子は一般に下記(5)又は(6)の模式図で表される。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
The water-soluble silsesquioxane fine particles thus obtained are generally represented by the following schematic diagram (5) or (6).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 上記模式図(5)又は(6)中、SiO1.5と記載された部分は、前記式(1)又は式(2)における-Si(OR13の縮合体を表す。上記(5)又は(6)で表されるシルセスキオキサン微粒子の縮合体(中心部分)は、(SiO1.5)nで表され、ここでnは縮合度を示し、通常得られる縮合度は8以上である。例えば縮合度10の場合は中心が分子式Si1015の酸化ケイ素となり、Siに結合して該縮合体を修飾する有機基の数も10となり、(C920NO410・Si1015として表される。 In the above schematic diagram (5) or (6), the portion described as SiO 1.5 represents a condensate of —Si (OR 1 ) 3 in the above formula (1) or formula (2). The condensate (center portion) of the silsesquioxane fine particles represented by the above (5) or (6) is represented by (SiO 1.5 ) n, where n indicates the degree of condensation, and the degree of condensation usually obtained is 8 or more. For example, when the condensation degree is 10, the center is silicon oxide having a molecular formula of Si 10 O 15 , and the number of organic groups that are bonded to Si to modify the condensate is also 10 (C 9 H 20 NO 4 ) 10 .Si 10. It expressed as O 15.
 こうして得られた水溶性シルセスキオキサン微粒子と、前記式(3)で表される硫黄原子含有カルボン酸又は硫黄原子含有カルボン酸ハロゲン化物とを反応させることにより、本発明の含硫黄シルセスキオキサン微粒子を製造できる。
 すなわち、有機溶媒中、酸又は塩基の存在下で前記式(1)又は式(2)で表されるトリアルコキシシランを縮合させることにより得られるシルセスキオキサン微粒子と、前記式(3)で表される硫黄原子含有カルボン酸との脱水反応を行うこと、又は、硫黄原子含有カルボン酸ハロゲン化物との脱ハロゲン化水素反応を塩基性触媒の下で行うことにより、該含硫黄シルセスキオキサン微粒子を製造する。
By reacting the water-soluble silsesquioxane fine particles thus obtained with the sulfur atom-containing carboxylic acid or sulfur atom-containing carboxylic acid halide represented by the formula (3), the sulfur-containing silsesquioxane of the present invention is reacted. Sun fine particles can be produced.
That is, silsesquioxane fine particles obtained by condensing trialkoxysilane represented by the formula (1) or formula (2) in the presence of an acid or a base in an organic solvent, and the formula (3) By performing a dehydration reaction with the sulfur atom-containing carboxylic acid represented, or by performing a dehydrohalogenation reaction with a sulfur atom-containing carboxylic acid halide under a basic catalyst, the sulfur-containing silsesquioxane Produces fine particles.
 前記水溶性シルセスキオキサン微粒子と、前記式(3)で表される硫黄原子含有カルボン酸又は硫黄原子含有カルボン酸ハロゲン化物とを反応させる際の条件としては以下の通りである。
 式(3)で表される化合物として硫黄原子含有カルボン酸を用いる場合は、一般的なアルコールとカルボン酸によるエステル化の条件で合成され、特に限定されるものではないが、有機溶媒中にて、室温から使用される溶媒の沸点の範囲の反応温度で実施される。
 また、触媒として塩酸、硫酸、リン酸、ジフェニルホスホリルアジド又はシアノリン酸ジエチル等のリン酸類、メタンスルホン酸又はp-トルエンスルホン酸等のスルホン酸類などの酸が使用される。
 さらに、ジシクロヘキシルカルボジイミドなどの縮合剤をトリエチルアミンやジメチルアミノピリジンなど塩基と組み合わせて使用する事でも効率的にエステル化が進行する。
 ここで使用される溶媒はベンゼンやトルエン、クロロホルムなどの室温での水への溶解度が1%以下の溶媒が好ましく用いられる。
The conditions for reacting the water-soluble silsesquioxane fine particles with the sulfur atom-containing carboxylic acid or sulfur atom-containing carboxylic acid halide represented by the formula (3) are as follows.
When a sulfur atom-containing carboxylic acid is used as the compound represented by the formula (3), it is synthesized under the conditions of esterification with a general alcohol and carboxylic acid, and is not particularly limited. The reaction is carried out at a reaction temperature ranging from room temperature to the boiling point of the solvent used.
Further, acids such as hydrochloric acid, sulfuric acid, phosphoric acid, diphenylphosphoryl azide, phosphoric acids such as diethyl cyanophosphate, and sulfonic acids such as methanesulfonic acid or p-toluenesulfonic acid are used.
Further, the esterification can proceed efficiently by using a condensing agent such as dicyclohexylcarbodiimide in combination with a base such as triethylamine or dimethylaminopyridine.
The solvent used here is preferably a solvent having a solubility in water at room temperature of 1% or less, such as benzene, toluene and chloroform.
 また、式(3)で表される化合物として硫黄原子含有カルボン酸ハロゲン化物を用いる場合の反応条件としては、有機溶媒中にて、-80℃から溶媒の沸点の範囲の反応温度で、好ましくは-20℃~室温の範囲の反応温度で実施される。反応は塩基性触媒下で実施され、トリエチルアミン、ピリジン又は4-ジメチルアミノピリジンなどを使用する事ができ、必要に応じてこれらを組み合わせて用いる事ができる。
 ここで使用される溶媒としてはベンゼンやトルエン、クロロホルムなどの室温での水への溶解度が1%以下の溶媒が好ましく用いられる。
The reaction conditions when a sulfur atom-containing carboxylic acid halide is used as the compound represented by the formula (3) is preferably a reaction temperature in the range of −80 ° C. to the boiling point of the solvent in an organic solvent. The reaction is carried out at a reaction temperature ranging from −20 ° C. to room temperature. The reaction is carried out under a basic catalyst, and triethylamine, pyridine, 4-dimethylaminopyridine or the like can be used, and these can be used in combination as necessary.
As the solvent used here, a solvent having a solubility in water at room temperature of 1% or less, such as benzene, toluene and chloroform, is preferably used.
 このようにして得られる含硫黄シルセスキオキサン微粒子は一般的に下記(7)又は(8)の模式図で表される。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
The sulfur-containing silsesquioxane fine particles thus obtained are generally represented by the following schematic diagram (7) or (8).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 上記模式図(7)又は(8)中、SiO1.5と記載された部分は、前述の模式図(4)又は(5)で説明したのと同様に、前記式(1)又は式(2)における-Si(OR13の縮合体を表し、Zは前述に定義された通りである。 In the above schematic diagram (7) or (8), the portion described as SiO 1.5 is the same as the formula (1) or (2) described above in the schematic diagram (4) or (5). Represents a condensate of —Si (OR 1 ) 3 in which Z is as defined above.
 以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to only these examples.
 なお、実施例にて使用した分析装置及び条件は下記の通りである。
[1]1H-NMR装置
機種:日本電子(株)製 JNM-ECX400
測定溶媒:D2O(a)、CDCl3(b)
基準物質:テトラメチルシラン(0ppm)
[2]粒径測定(X線回折装置)
機種:株式会社リガク製 MicroMax007
X線源:CuαK(λ=1.5418Å)
加速電圧:40kV-20mA
[3]透過型電子顕微鏡(TEM)
機種:株式会社日立製作所製 H-8000
加速電圧:200kV
前処理:試料をTHFに溶解し、炭素メッシュ上に塗布
[4]分子量測定(GPC装置)
機種:東ソー株式会社製 HLC-8220システム
カラム:TSK-GELs(α-M、α-4000、α-3000、α-2500、30cm)、ガードカラム(TSK-guardcolumn α、4.0cm)
測定条件:流速(1.0mL/min.)、溶離液(DMF、10mM LiBr)、カラム温度(40℃)
標準物質:TSK標準ポリスチレン
[5]元素分析
機種:Perkin Elmer(パーキンエルマー)社製 2400II CHNS/O analyzer
[6]膜厚及び屈折率測定(分光エリプソメーター)
機種:J.A.Woollam(ジェーエーウーラム)社製 M-2000
In addition, the analyzers and conditions used in the examples are as follows.
[1] 1 H-NMR apparatus model: JNM-ECX400 manufactured by JEOL Ltd.
Solvent for measurement: D 2 O (a), CDCl 3 (b)
Reference substance: Tetramethylsilane (0 ppm)
[2] Particle size measurement (X-ray diffractometer)
Model: Rigaku Corporation MicroMax007
X-ray source: CuαK (λ = 1.5418Å)
Acceleration voltage: 40kV-20mA
[3] Transmission electron microscope (TEM)
Model: H-8000 manufactured by Hitachi, Ltd.
Accelerating voltage: 200kV
Pretreatment: Dissolve sample in THF and apply on carbon mesh [4] Molecular weight measurement (GPC device)
Model: HLC-8220 manufactured by Tosoh Corporation System columns: TSK-GELs (α-M, α-4000, α-3000, α-2500, 30 cm), guard column (TSK-guardcolumn α, 4.0 cm)
Measurement conditions: flow rate (1.0 mL / min.), Eluent (DMF, 10 mM LiBr), column temperature (40 ° C.)
Standard material: TSK standard polystyrene [5] Elemental analysis model: Perkin Elmer (Perkin Elmer) 2400II CHNS / O analyzer
[6] Film thickness and refractive index measurement (spectral ellipsometer)
Model: J.M. A. M-2000, manufactured by Woollam
[製造例1:シルセスキオキサン微粒子の製造]
 2モルのグリシドール(1,2-エポキシプロピル-3-オール)に氷冷下、撹拌しながら1モルのγ-アミノプロピルトリエトキシシランをゆっくりと滴下し、該混合物を23℃で1時間反応させた。
 得られた混合物(付加物)を200mLのメタノールに溶解し、該溶液を撹拌下で6.727gのHF溶液(3.225%)に加えた。
 反応混合物をさらに2時間室温にて撹拌し、水、エタノール及びメタノールを真空下で除去し、40℃8mbarで乾燥させて、室温でガラス状の固体微粒子であるシルセスキオキサン微粒子を得た。得られたシルセスキオキサン微粒子の1H-NMRスペクトルを図1(a)に示す。
 なお、該固体微粒子は、例えば60℃での加熱により、高い粘度の透明な物質に簡単に変化した。また得られた固体微粒子は、水、メタノール、N,N-ジメチルホルムアミド(DMF)及びジメチルスルホキシド(DMSO)に可溶であり、一方、ジクロロメタン、アセトン及びジオキサンなどの多くの有機溶媒には不溶であった。
[Production Example 1: Production of silsesquioxane fine particles]
1 mol of γ-aminopropyltriethoxysilane was slowly added dropwise to 2 mol of glycidol (1,2-epoxypropyl-3-ol) with stirring under ice cooling, and the mixture was allowed to react at 23 ° C. for 1 hour. It was.
The resulting mixture (adduct) was dissolved in 200 mL methanol and the solution was added with stirring to 6.727 g HF solution (3.225%).
The reaction mixture was further stirred at room temperature for 2 hours, water, ethanol and methanol were removed under vacuum and dried at 40 ° C. and 8 mbar to obtain silsesquioxane fine particles which were glassy solid fine particles at room temperature. The 1 H-NMR spectrum of the obtained silsesquioxane fine particles is shown in FIG.
The solid fine particles were easily changed to a high-viscosity transparent substance by heating at 60 ° C., for example. The obtained solid fine particles are soluble in water, methanol, N, N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), while insoluble in many organic solvents such as dichloromethane, acetone and dioxane. there were.
[実施例1:シルセスキオキサン微粒子のエステル化による含硫黄シルセスキオキサン微粒子の製造]
 製造例1で得たシルセスキオキサン微粒子1.0g(R-SiO1.5 1unitあたりのモル数=3.95mmol、-OH基:15.8mmol)、ピリジン19ml、クロロホルム10ml、4-ジメチルアミノピリジン100mgを窒素雰囲気下で二口フラスコに加えた。氷冷下、0℃で撹拌しながら3-(メチルチオ)プロピオニルクロリド3.29g(23.7mmol)をゆっくり滴下し、ドラフト内で24時間撹拌し反応させた。反応は均一系で進行した。
 続いて得られた生成物にジクロロメタン20mlを加え、飽和食塩水20ml、飽和重曹水20mlでそれぞれ2回ずつ洗浄して、得られた生成物をジクロロメタン-クロロホルム有機相に抽出し、これをエバポレーターにかけ、有機層の溶媒を除去した。その後、ジクロロメタン-ジエチルエーテルを用いて再沈殿精製を行い、デカンテーション/ジエチルエーテルで洗浄/デカンテーションの手順で固体を得た。生成物をアセトンに溶解させ回収し、エバポレーターを用いてアセトンを減圧除去した後、真空ポンプを用いて40℃で2時間乾燥させ、橙色の固体を得た(収率82%)。得られた含硫黄シルセスキオキサン微粒子の1H-NMRスペクトルの結果を図1(b)に示す。
 また実施例1で得られた含硫黄シルセスキオキサン微粒子は、アセトン、テトラヒドロフラン、ジメチルスルホキシド、N,N-ジメチルホルムアミド及びクロロホルム等の有機溶媒に可溶であり、これら汎用の有機溶媒に対して良好な溶解性を示した。
[Example 1: Production of sulfur-containing silsesquioxane fine particles by esterification of silsesquioxane fine particles]
1.0 g of silsesquioxane fine particles obtained in Production Example 1 (number of moles per unit of R—SiO 1.5 = 3.95 mmol, —OH group: 15.8 mmol), 19 ml of pyridine, 10 ml of chloroform, 4-dimethylamino 100 mg of pyridine was added to the two-necked flask under a nitrogen atmosphere. Under cooling with ice, 3.29 g (23.7 mmol) of 3- (methylthio) propionyl chloride was slowly added dropwise with stirring at 0 ° C., and the mixture was stirred for 24 hours in a fume hood for reaction. The reaction proceeded in a homogeneous system.
Subsequently, 20 ml of dichloromethane was added to the obtained product, washed twice each with 20 ml of saturated brine and 20 ml of saturated aqueous sodium hydrogen carbonate, and the resulting product was extracted into an organic phase of dichloromethane-chloroform, which was subjected to an evaporator. The solvent of the organic layer was removed. Thereafter, reprecipitation purification was performed using dichloromethane-diethyl ether, and a solid was obtained by a procedure of decantation / washing with diethyl ether / decantation. The product was dissolved and recovered in acetone, and acetone was removed under reduced pressure using an evaporator, and then dried at 40 ° C. for 2 hours using a vacuum pump to obtain an orange solid (yield 82%). The result of 1 H-NMR spectrum of the obtained sulfur-containing silsesquioxane fine particles is shown in FIG.
Further, the sulfur-containing silsesquioxane fine particles obtained in Example 1 are soluble in organic solvents such as acetone, tetrahydrofuran, dimethyl sulfoxide, N, N-dimethylformamide, and chloroform. It showed good solubility.
 製造例1で得られたシルセスキオキサン微粒子の1H-NMRスペクトル(図1(a))と実施例1で得られた含硫黄シルセスキオキサン微粒子の1H-NMRスペクトル(図1(b))を比較すると、図1(b)においては、メチルチオプロピル基のピークの存在と、エステル化による3~4ppmのヒドロキシ基に隣接するCH基のピークのシフトがみられた。 1 H-NMR spectrum of silsesquioxane fine particles obtained in Production Example 1 (FIG. 1 (a)) and 1 H-NMR spectrum of sulfur-containing silsesquioxane fine particles obtained in Example 1 (FIG. 1 ( When b)) was compared, in FIG. 1B, the presence of a peak of methylthiopropyl group and a shift of the peak of CH group adjacent to 3 to 4 ppm of hydroxy group due to esterification were observed.
 製造例1で得られたシルセスキオキサン微粒子と実施例1で得られた含硫黄シルセスキオキサン微粒子の粉末X線解析の結果を図2に示す。
 この結果に基づいてブラッグの式(2dsinθ=nλ、d:粒子径、λ=1.5418Å、n=1とした)によって算出されるこれら微粒子の粒径は、原料であるシルセスキオキサン微粒子が約1.8nm(2θ=4.9°)、得られた含硫黄シルセスキオキサン微粒子が約2.1nm(2θ=4.2°)であった。
 また、実施例1で得られた含硫黄シルセスキオキサン微粒子の透過型電子顕微鏡写真を図3に示す。これによると、およそ2nm程度の大きさであることが確認された。
The results of powder X-ray analysis of the silsesquioxane fine particles obtained in Production Example 1 and the sulfur-containing silsesquioxane fine particles obtained in Example 1 are shown in FIG.
Based on this result, the particle size of these fine particles calculated by Bragg's equation (2 dsin θ = nλ, d: particle diameter, λ = 1.5418Å, n = 1) is that of the silsesquioxane fine particles as the raw material. About 1.8 nm (2θ = 4.9 °), and the obtained sulfur-containing silsesquioxane fine particles were about 2.1 nm (2θ = 4.2 °).
A transmission electron micrograph of the sulfur-containing silsesquioxane fine particles obtained in Example 1 is shown in FIG. According to this, it was confirmed that the size was about 2 nm.
 さらに、実施例1で得られた含硫黄シルセスキオキサン微粒子のGPCによる分子量測定結果を図4に示す。これによると、数平均分子量(Mn)は約6,700であるとの結果が得られた。 Furthermore, the molecular weight measurement result by GPC of the sulfur-containing silsesquioxane fine particles obtained in Example 1 is shown in FIG. According to this, the result that the number average molecular weight (Mn) is about 6,700 was obtained.
 また、元素分析によると、得られた含硫黄シルセスキオキサン微粒子における硫黄含有量は16.1%であることが確認された。 Also, according to elemental analysis, it was confirmed that the sulfur content in the obtained sulfur-containing silsesquioxane fine particles was 16.1%.
[実施例2:含硫黄シルセスキオキサン微粒子の屈折率測定]
 実施例1で得られた含硫黄シルセスキオキサン微粒子の10質量%クロロホルム溶液を調製した。このクロロホルム溶液を、ガラス基板上に1,500rpm×20秒の条件でスピンコートした後、100℃で10分間乾燥し、シルセスキオキサン薄膜を作製した。得られた薄膜の膜厚並びに屈折率を分光エリプソメーターを用いて評価したところ、膜厚1.1μmにおいて、波長589nmにおける屈折率は1.588、波長633nmにおける屈折率は1.585であった。
[Example 2: Refractive index measurement of sulfur-containing silsesquioxane fine particles]
A 10 mass% chloroform solution of the sulfur-containing silsesquioxane fine particles obtained in Example 1 was prepared. This chloroform solution was spin-coated on a glass substrate under conditions of 1,500 rpm × 20 seconds, and then dried at 100 ° C. for 10 minutes to produce a silsesquioxane thin film. When the film thickness and refractive index of the obtained thin film were evaluated using a spectroscopic ellipsometer, the refractive index at a wavelength of 589 nm was 1.588 and the refractive index at a wavelength of 633 nm was 1.585 at a film thickness of 1.1 μm. .
 本発明により、種々の有機溶媒に可溶で且つ一次粒子の凝集が起こらない新規硫黄含有シルセスキオキサン微粒子を提供できる。これにより高屈折率、高アッベ数を示し、かつ凝集が起こらずに溶解性、分散性の非常に高い光学用途などに適した材料を提供することが可能となる。 The present invention can provide novel sulfur-containing silsesquioxane fine particles that are soluble in various organic solvents and do not cause aggregation of primary particles. As a result, it is possible to provide a material that exhibits a high refractive index and a high Abbe number, and is suitable for optical applications having very high solubility and dispersibility without causing aggregation.

Claims (4)

  1. 下記式(1)又は式(2)で表されるトリアルコキシシランの縮合物を含むシルセスキオキサン微粒子に、式(3)で表される硫黄原子含有カルボン酸又は硫黄原子含有カルボン酸ハロゲン化物を反応させて得られる含硫黄シルセスキオキサン微粒子。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (上記式中、R1は夫々独立してメチル基又はエチル基を表し、R2は夫々独立して水素原子、メチル基又はエチル基を表し、Zは硫黄原子を含有する有機基を表し、Xはヒドロキシ基、塩素原子又は臭素原子を表す。)
    The sulfur atom-containing carboxylic acid or sulfur atom-containing carboxylic acid halide represented by the formula (3) is added to the silsesquioxane fine particles containing the condensate of trialkoxysilane represented by the following formula (1) or formula (2). Sulfur-containing silsesquioxane fine particles obtained by reacting with.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (In the above formula, each R 1 independently represents a methyl group or an ethyl group, each R 2 independently represents a hydrogen atom, a methyl group or an ethyl group, Z represents an organic group containing a sulfur atom, X represents a hydroxy group, a chlorine atom or a bromine atom.)
  2. 上記式(1)で表されるトリアルコキシシランが、γ-アミノプロピルトリアルコキシシラン1モルに対し、2モルの1,2-エポキシプロピル-3-オールを付加させて得られる、請求項1に記載の含硫黄シルセスキオキサン微粒子。 The trialkoxysilane represented by the formula (1) is obtained by adding 2 moles of 1,2-epoxypropyl-3-ol to 1 mole of γ-aminopropyltrialkoxysilane. The sulfur-containing silsesquioxane fine particles described.
  3. 上記式(2)で表されるトリアルコキシシランが、γ-アミノプロピルトリアルコキシシラン1モルに対し、2モルの2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート及び2-ヒドロキシエチルエタクリレートからなる群から選択されるものを付加させて得られる、請求項1に記載の含硫黄シルセスキオキサン微粒子。 The trialkoxysilane represented by the above formula (2) comprises 2 moles of 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxyethyl ethacrylate for 1 mole of γ-aminopropyltrialkoxysilane. The sulfur-containing silsesquioxane fine particles according to claim 1, obtained by adding a material selected from the group.
  4. 有機溶媒中、酸又は塩基の存在下で下記式(1)又は式(2)で表されるトリアルコキシシランを縮合させることにより得られるシルセスキオキサン微粒子を得る工程、及び該シルセスキオキサン微粒子と下記式(3)で表される硫黄原子含有カルボン酸との脱水反応を行うか、又は該シルセスキオキサン微粒子と硫黄原子含有カルボン酸ハロゲン化物との脱ハロゲン化水素反応を塩基性触媒の下で行う工程を含むことを特徴とする、含硫黄シルセスキオキサン微粒子の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (上記式中、R1は夫々独立してメチル基又はエチル基を表し、R2は夫々独立して水素原子、メチル基又はエチル基を表し、Zは硫黄原子を含有する有機基を表し、Xはヒドロキシ基、塩素原子又は臭素原子を表す。)
    A step of obtaining silsesquioxane fine particles obtained by condensing trialkoxysilane represented by the following formula (1) or formula (2) in the presence of an acid or a base in an organic solvent, and the silsesquioxane A dehydration reaction between the fine particles and the sulfur atom-containing carboxylic acid represented by the following formula (3) is performed, or a dehydrohalogenation reaction between the silsesquioxane fine particles and the sulfur atom-containing carboxylic acid halide is a basic catalyst. The manufacturing method of sulfur-containing silsesquioxane microparticles | fine-particles characterized by including the process performed under this.
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (In the above formula, each R 1 independently represents a methyl group or an ethyl group, each R 2 independently represents a hydrogen atom, a methyl group or an ethyl group, Z represents an organic group containing a sulfur atom, X represents a hydroxy group, a chlorine atom or a bromine atom.)
PCT/JP2010/070303 2009-11-18 2010-11-15 Sulfur-containing silsesquioxane fine particles and process for preparation thereof WO2011062142A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011541914A JP5687203B2 (en) 2009-11-18 2010-11-15 Sulfur-containing silsesquioxane fine particles and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-263195 2009-11-18
JP2009263195 2009-11-18

Publications (1)

Publication Number Publication Date
WO2011062142A1 true WO2011062142A1 (en) 2011-05-26

Family

ID=44059620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070303 WO2011062142A1 (en) 2009-11-18 2010-11-15 Sulfur-containing silsesquioxane fine particles and process for preparation thereof

Country Status (2)

Country Link
JP (1) JP5687203B2 (en)
WO (1) WO2011062142A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500292A (en) * 2004-05-26 2008-01-10 デンツプライ デトレイ ゲー.エム.ベー.ハー. Dental cement containing grafted polyacid composite particles
JP2008308541A (en) * 2007-06-13 2008-12-25 Toray Fine Chemicals Co Ltd Silicone copolymer having sulfur functional group and method for producing the same
JP2008309766A (en) * 2007-06-18 2008-12-25 National Institute Of Advanced Industrial & Technology Chromatographic carrier having alkylsulfinyl group or alkylsulfonyl group, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008500292A (en) * 2004-05-26 2008-01-10 デンツプライ デトレイ ゲー.エム.ベー.ハー. Dental cement containing grafted polyacid composite particles
JP2008308541A (en) * 2007-06-13 2008-12-25 Toray Fine Chemicals Co Ltd Silicone copolymer having sulfur functional group and method for producing the same
JP2008309766A (en) * 2007-06-18 2008-12-25 National Institute Of Advanced Industrial & Technology Chromatographic carrier having alkylsulfinyl group or alkylsulfonyl group, and its manufacturing method

Also Published As

Publication number Publication date
JP5687203B2 (en) 2015-03-18
JPWO2011062142A1 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
RU2293745C2 (en) Method for formation of polyhedral oligomer silsesquioxanes
EP1770096B1 (en) Preparation of sulfide chain-bearing organosilicon compounds
EP2001816A2 (en) Sandstone having a modified wettability and a method for modifying the surface energy of sandstone
JP2003523422A (en) Polyorganosilsesquioxane and method for producing the same
EP1873189A1 (en) Silicone copolymer having condensed polycyclic hydrocarbon group
KR20090087448A (en) Organic-inorganic hybrid nanomaterials and method for synthesizing same
Xu et al. Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups: facile synthesis and enhancement of hydrophobicity of their polymer blends
JP2007091678A (en) Method for producing sulfide chain-containing organosilicon compound
JP5687203B2 (en) Sulfur-containing silsesquioxane fine particles and method for producing the same
JP4655789B2 (en) Silicon compounds
JP2009126836A (en) Method for producing sulfide chain-containing organosilicon compound
JP4655790B2 (en) Silicon compounds
JP2011098939A (en) Completely condensed oligosilsesquioxane and method for producing the same
Cao et al. Synthesis and characterization of ladder-like copolymethyl-epoxysilsesquioxane
JP2008088415A (en) Acyloxy group-containing silicone copolymer, and manufacturing method thereof
EP1539771A1 (en) Silyl alkyl esters of anthracene- and phenanthrene carboxylic acids
JP2007051122A (en) omega-[2-(POLYALKYLENEOXY)ETHYLTHIO]ALKYLALKOXYSILANE DERIVATIVE AND METHOD FOR PRODUCING THE SAME
Jennings et al. Synthesis of fluorinated silica nanoparticles containing latent reactive groups for post-synthetic modification and for tunable surface energy
JP2007031327A (en) Perfluoroalkyl silsesquioxane derivative having silanol group and method for producing the same
JP2003531942A (en) Curable silicone resin composition and reactive silicon compound
JP4061132B2 (en) Fluorine-containing polysilane compound
CN115279819B (en) Fluorine-containing ether compound and method for producing same, fluorine-containing ether composition, coating liquid, article and method for producing same
JP4743467B2 (en) Dendrimers with alkoxysilyl groups at the branch ends
WO2018101213A1 (en) Method for producing silsesquioxane having reactive substituent
KR20190007274A (en) Fluoro monomer and oligomer compounds, photopolymerized composition, and hydrophobic film using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541914

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831536

Country of ref document: EP

Kind code of ref document: A1