WO2011061376A2 - Uso de cd98 como marcador de receptividad endometrial - Google Patents

Uso de cd98 como marcador de receptividad endometrial Download PDF

Info

Publication number
WO2011061376A2
WO2011061376A2 PCT/ES2010/070744 ES2010070744W WO2011061376A2 WO 2011061376 A2 WO2011061376 A2 WO 2011061376A2 ES 2010070744 W ES2010070744 W ES 2010070744W WO 2011061376 A2 WO2011061376 A2 WO 2011061376A2
Authority
WO
WIPO (PCT)
Prior art keywords
expression
endometrial
cell
cells
reporter gene
Prior art date
Application number
PCT/ES2010/070744
Other languages
English (en)
French (fr)
Other versions
WO2011061376A3 (es
Inventor
Francisco SÁNCHEZ MADRID
María YÁÑEZ MÓ
Francisco DOMÍNGUEZ HERNÁNDEZ
Carlos SIMÓN VALLÉS
Original Assignee
Fundación Centro Nacional De Investigaciones Cardiovasculares Carlos Iii
Universidad Autónoma de Madrid
Fundación IVI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Centro Nacional De Investigaciones Cardiovasculares Carlos Iii, Universidad Autónoma de Madrid, Fundación IVI filed Critical Fundación Centro Nacional De Investigaciones Cardiovasculares Carlos Iii
Publication of WO2011061376A2 publication Critical patent/WO2011061376A2/es
Publication of WO2011061376A3 publication Critical patent/WO2011061376A3/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/689Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to pregnancy or the gonads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/178Lectin superfamily, e.g. selectins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70596Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Definitions

  • the invention relates to the identification of suitable markers to determine the state of receptivity of the endometrium thus the use of said markers and inhibitors thereof to modulate the receptivity of the endometrium to implantation of the blastocyst.
  • Endometrial receptivity is a self-limited period in which the endometrial epithelium acquires a functional and transient steroid-dependent ovarian state that allows blastocyst adhesion.
  • the luminal endometrial epithelium acquires this state simultaneously with the development of stromal compartment (Popovici, RM et al. 2000. Endocrinology 141: 3510-3513), which is mainly due to the presence of progesterone after appropriate sensitization with 17P-estradiol.
  • This period called the "implantation window" lasts from days 4-5 until days 9-10 after the production or administration of progesterone.
  • the receptive window in humans is limited in this way to days 19-24 of the menstrual cycle (Navot, D. et al. 1991. J Clin Endocrinol Metab 72: 408-414).
  • the endometrium undergoes structural and biochemical modifications induced by specific gene regulation. Morphological changes include modifications in the plasma membrane and the cytoskeleton. The biochemical changes depend on a cross-communication between the maternal endometrium and the blastocyst that is essential for progress through each phase of implantation (Dominguez, F. et al. 2005. PHASEB J 19: 1056-1060). Knowledge of the molecular basis of endometrial receptivity is essential for the understanding of human reproduction.
  • Embryonic implantation involves the sequential steps of apposition, union and invasion (Dominguez, F. et al. 2005. FASEB J 19: 1056-1060). Similar to the situation with leukocytes during extravasation, the first interaction seems to be based on L-selectin carbohydrate ligands expressed in the luminal epithelium during the implantation period. However, mice deficient in L-selectin have no fertility problems (Robinson, SD et al. 1999. Proc Nati Acad Sci USA 96: 11452-11457).
  • the best characterized cell adhesion molecules on the luminal surface of the endometrium are integrin ⁇ 3 and its osteopontin ligand, which has been repeatedly found in genomic studies of human receptive endometrium. Studies with deficient mice reveal a crucial role for ⁇ integrin in implantation, but deficiency of several ⁇ subunits ( ⁇ 4, ⁇ 5, ⁇ 6 or ⁇ ) does not produce implantation phenotype.
  • Endometrial receptivity is probably not determined exclusively by the expression of selective adhesion molecules, and a series of reorganizations in the cytoskeleton is also likely to be important.
  • Endometrial pinpopods are hormone-dependent structures that appear in the period of implantation in the apical membrane of the epithelial endometrium and represent blastocyst preferential binding sites.
  • Microvilli and specialized adhesive structures such as endothelial coupling structures are enriched in tetraspanin microdomains.
  • the invention relates to the use of CD98 as a marker of endometrial receptivity for embryo implantation.
  • the invention relates to a method for selecting the time window for embryo implantation in a female animal which comprises determining the level of CD98 in an endometrial sample of said animal, wherein said window corresponds to the moment in which that the level of expression of CD98 in said sample is elevated with respect to a reference sample.
  • the invention relates to the use of a CD98 or CD9 activating agent for the preparation of a medicament for increasing endometrial receptivity during embryo implantation.
  • the invention relates to a method for the identification of compounds capable of increasing the receptivity of the endometrium comprising
  • a cell comprising a gene construct comprising a polynucleotide encoding a reporter gene wherein said polynucleotide is operably coupled to the CD98 promoter or the CD9 promoter,
  • the compound is considered adequate to increase endometrial receptivity if it causes an increase in the level of expression of CD98, CD9 or the reporter gene.
  • the invention relates to a method for the identification of contraceptive compounds comprising
  • a cell comprising a gene construct comprising a polynucleotide encoding a reporter gene wherein said polynucleotide is operatively coupled to the CD98 promoter or to the CD9 promoter,
  • the compound is considered suitable as a contraceptive compound if it causes a decrease in the level of CD98, CD9 or the reporter gene.
  • the invention relates to a contraceptive method comprising administration to a subject of a CD98 inhibitor.
  • Figure 1 describes the location of CD98 in micro-domains enriched in tetraspanins on the apical surface of human endometrial cells.
  • A Confocal analysis of the expression of adhesion molecules in cultures of polarized human primary endometrial epithelial cells. Vertical sections were obtained with confocal software from Leica (LASAF).
  • B Confluent EEC monolayers were dyed doubly for the indicated molecules and analyzed by confocal microscopy. The colocalization analysis is shown in the point histogram of fluorescence intensities in both channels.
  • Figure 2 describes the real-time PCR analysis of the mRNA expression of CD147, CD98 and ICAM-1 throughout the menstrual cycle.
  • Endometrial biopsies were distributed in five groups according to the phase of the cycle: group 1, early-middle proliferative (days 1-8); group 2, late proliferative (days 9-14); group 3, early secretor (days 15-18); group 4, middle secretary (days 19-22) and group 5, late secretary (days 23-28).
  • Data are presented as a relative mean value ⁇ SEM of three experiments normalized to the average value of the beta-actin and GAPDH genes in each phase designated the menstrual cycle.
  • Figure 3 describes the induction of CD98 in the implantation window in the human endometrium.
  • A Immunolocation of CD9, ICAM-1 and CDl47 in human endometrium throughout the menstrual cycle.
  • the micrographs show representative immunohistochemical stains of group 4 samples (day 20), corresponding to the implantation window.
  • the graphs represent the expression based on semi-quantitative analysis of staining throughout the menstrual cycle in three endometrial samples per group.
  • the graph represents the expression based on semi-quantitative analysis of the stains throughout the menstrual cycle in three endometrial samples per group, scored and designated as in (A).
  • Figure 4 describes the induction of endometrial expression of CD98 by adhesion and hormones in vitro.
  • A Flow cytometry analysis of the membrane expression of CD98, ICAM-1, CD147 and CD9 in HEC-lA cells after adhesion of JAR steroids or treatment with JAR conditioned medium for 24 hours. The data are the mean ⁇ SD of medium fluorescence intensity (MFI) normalized to untreated cells in six independent experiments.
  • MFI medium fluorescence intensity
  • a-tubulin The expression of a-tubulin is shown as load control.
  • D Immunoblot analysis of CD98 expression in total primary EEC lysates after treatment for 48 hours with ⁇ -estradiol (30 nM), progesterone (1 ⁇ ) or ⁇ -estradiol plus progesterone. GADPH expression is shown as load control.
  • E Flow cytometric analysis of CD98 membrane expression in EEC cells after 48 hours treatment with ILlp (20 ng / ml), LIF (1000 U / ml), TGF (10 ng / ml), NGF (10 ng / ml), EGF (100 ng / ml) or IGF (1 ⁇ g / ml).
  • FIG. 5 shows that overexpression of CD9, CD 147 or CD98 increases the receptivity of HEC-lA cells while silencing of CD98 results in an inhibition of adhesion.
  • HEC-lA were infected with a lentivirus encoding GFP, CD98 plus GFP, or a specific shRNA against CD98 plus GFP.
  • a lentivirus encoding GFP a lentivirus encoding GFP, CD98 plus GFP, or a specific shRNA against CD98 plus GFP.
  • CD98 in the endometrium is restricted to the implantation window.
  • the expression of CD98 is strictly restricted to the implantation window.
  • example 4 of the present invention it is described how CD98 is located on the apical surface of epithelial cells, which is consistent with a role of CD98 in the adhesion of blastocysts. In this way, it is possible to identify the implantation window in a female animal by determining the expression of CD98 in the endometrium throughout the menstrual cycle.
  • CD98 as an endometrial receptivity marker
  • the invention relates to the use of CD98 as a marker of endometrial receptivity for embryo implantation.
  • the invention in a second aspect, relates to a method (hereinafter the first method of the invention) for selecting the time window for embryo implantation in a female animal which comprises determining the level of CD98 expression in an endometrial sample of said animal, wherein said window corresponds to at which point the level of expression of CD98 in said sample is elevated with respect to a reference sample.
  • method for selecting the time window for embryo implantation refers to methods of determining the probability that a female animal is in a receptive period for embryo implantation.
  • Said method comprises determining the level of CD98 expression in an endometrial sample of said animal.
  • regular measurements are made throughout the menstrual cycle, the implantation window being determined at that time throughout the cycle in which the levels of CD98 are higher with respect to the reference sample or with respect to the levels in the rest of samples.
  • the prediction may not be correct for 100% of the patients under study.
  • the prediction method requires that correct results be provided for a statistically significant portion of patients.
  • the determination of whether the method of the invention provides statistically significant predictions can be carried out using standard statistical techniques such as determination of confidence intervals, determination of p-value, Student's t-test, Mann-Whitney test such and as explained in Dowdy and Wearden, Statistics for Research, John Wiley & Sons, New York 1983.
  • Adequate confidence intervals are at least 50%, at least 60%>, at least 70%>, at least 80%>, at minus 90%>, at least 95%>.
  • P values are preferably 0.2, 0.1, 0.05.
  • the term "temporal window for embryo implantation”, as used in the present invention, refers to the time or time interval throughout the menstrual cycle in which the endometrium is receptive to embryo implantation.
  • the implantation window takes place during the secretory phase of the menstrual cycle, specifically, on days 6-8 after the increase in secretion of the lutenizing hormone (LH) and therefore corresponds to days 20 to 24 of an ideal menstrual cycle of 28 days. Similar cycles have been described in other mammals so that the method of the present invention can be adapted to any animal.
  • female animal refers to any mammalian animal including, without limitation, animals belonging to the order Rodentia, (mice); to the order Logomorpha (rabbits), to the order Carnivorous, including felines (cats) and canines (dogs), to the order Artiodactyla, such as bovids (cows) and suidos (pigs); to the order Perissodactyla, such as equidae (horses) and, in particular, to the order Primates, Ceboides and Simoides (monkeys) and Anthropoids (humans and apes).
  • the mammalian animal of the present invention is a human being.
  • the determination of the receptivity to implantation is of particular importance in techniques such as in vitro fertilization, embryo transfer, intrafalopian gamete transfer, tubal embryo transfer, intracytoplasmic sperm injection and intrauterine insemination.
  • the determination of intrauterine receptivity is also important to determine the optimal time to conceive after sexual intercourse in couples who are trying to conceive naturally.
  • CD98 refers to a glycoprotein that corresponds to the heavy chain that forms the various heterodimers responsible for the transport of amino acids across the plasma membrane.
  • a heterodimer of which CD98 acts as a heavy chain is that which is part of the L-type transporter (LAT-1) and is also known as the heavy chain 4F2 (4F2hc) or family 3 of solute transporters (solute carrier family 3 or SLC3A2 ).
  • LAT-1 L-type transporter
  • 4F2 (4F2hc) or family 3 of solute transporters solute carrier family 3 or SLC3A2 .
  • SLC3A2 solute transporters
  • the invention contemplates the determination of the level of expression of CD98 of human origin, as defined in the NCBI database with accession number P08195 (October 21, 2010 version), rat CD98 (Rattus norvegicus) corresponding to the protein described in NCBI with access number Q794F9 (October 21, 2010 version), mouse CD98 (Mus musculus) corresponding to the protein described in the NCBI database with access number P 10852 (version 21 October 2010), rabbit CD98 (Oryctolagus cuniculus) corresponding to the protein described in the NCBI database with accession number Q7YQK3 (version October 21, 2010).
  • CD98 refers to functionally equivalent variants of CD98.
  • functionally equivalent variant is meant all those peptides derived from the CD98 sequence by modification, insertion and / or deletion of one or more amino acids, provided that the function of the aforementioned CD98 proteins is substantially maintained.
  • the functionally equivalent variant shows at least one function related to the ability to promote the adhesion of blastocysts to endometrial cells.
  • Suitable methods for determining the ability of CD98 to promote the adhesion of blastocysts to endometrial cells include the method described in example 5 of the present invention, based on the ability of endometrial cells transfected with CD98 or the variant thereof to promote adhesion. of blastocysts.
  • Variants suitable for use in the present invention include those that show at least 25%, at least 40%>, at least 60%>, at least 70%>, at least 80%), at least 90%>, at at least 95%, at least 96%>, at least 97%, at least 98%> or at least 99% sequence identity with respect to the CD98 sequences indicated above.
  • the degree of identity between two amino acid sequences can be determined by conventional methods, for example, by standard sequence alignment algorithms known in the state of the art, such as, for example, BLAST (Altschul SF et al. Basic local alignment search tool J Mol Biol. 1990 Oct 5; 215 (3): 403-10).
  • BLAST Altschul SF et al. Basic local alignment search tool J Mol Biol. 1990 Oct 5; 215 (3): 403-10.
  • the person skilled in the art will understand that the amino acid sequences referred to in this description can be chemically modified, for example, by chemical modifications that are physiologically relevant, such as phosphorylations, acetylations, etc.
  • the level of expression of CD98 can be determined by measuring the level of the mRNA encoding CD98 or the functionally equivalent variant thereof or by measuring the levels of CD98 protein or the functionally equivalent variant thereof.
  • CD98 expression levels are determined by measuring the mRNA expression levels encoding the CD98 protein.
  • the biological sample can be treated to physically or mechanically disintegrate the structure of the tissue or cell, to release the intracellular components in an aqueous or organic solution to prepare the nucleic acids for further analysis.
  • Nucleic acids are extracted from the sample by methods known to those skilled in the art and commercially available.
  • the RNA is then extracted from frozen or fresh samples by any of the typical methods in the art, for example Sambrook, J., et al, 2001 Molecular Cloning, a Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press , NY, Vol. 1-3.
  • care is taken to avoid the degradation of RNA during the extraction process.
  • the amount of mRNA encoding CD98 in the mRNA preparation obtained from the sample can be determined by hybridization or amplification assays that include, without limitation, Northern and Southern Blot assays and polymerase chain reaction (PCR).
  • a method for the detection of the specific mRNA for CD98 includes the use of probes that are capable of hybridizing specifically with the mRNA or cDNA of CD98.
  • the probe may be a full chain cDNA or a fragment thereof such as an oligonucleotide of at least 7, 15, 30, 50, 100, 250 or 500 nucleotides in length capable of hybridizing with the mRNA or target cDNA under conditions of strict.
  • mRNA detection is carried out after amplification of cDNA obtained from mRNA using known amplification techniques such as polymerase chain reaction (PCR), real time polymerase chain reaction (“RT-PCR” ), ligase chain reaction (“LCR”), self-sustained sequence replication (“3SR”) also known as nucleic acid sequence amplification (“NASBA”), QB-Replicase amplification, rolling circle amplification ( "RCA”), transcription-mediated amplification (“TMA”), linker-assisted amplification (“LADA”), multiple displacement amplification (“MDA”), chain and invader displacement amplification (“SDA”).
  • PCR polymerase chain reaction
  • RT-PCR real time polymerase chain reaction
  • LCR ligase chain reaction
  • 3SR self-sustained sequence replication
  • NASBA nucleic acid sequence amplification
  • RCA rolling circle amplification
  • TMA transcription-mediated amplification
  • LADA linker-assisted amplification
  • MDA multiple displacement amplification
  • the level of expression of the CD98 protein can be quantified by any conventional method that allows detecting and quantifying said protein in a sample of a subject.
  • the levels of said protein can be quantified, for example, by the use of antibodies capable of binding to CD98 (or fragments thereof containing an antigenic determinant) and the subsequent quantification of the complexes formed.
  • the antibodies used in these assays may or may not be labeled.
  • markers that can be used include radioactive isotopes, enzymes, fluorophores, chemiluminescent reagents, enzyme substrates or cofactors, enzyme inhibitors, particles, dyes, etc.
  • Immunoblotting is based on the detection of proteins previously separated by gel electrophoresis under denaturing and immobilized conditions in a membrane, generally nitrocellulose by incubation with a specific antibody and a developing system (eg, chemo luminescence). Immunofluorescence analysis requires the use of a specific antibody to the target protein for expression analysis.
  • the ELISA is based on the use of enzyme-labeled antigens or antibodies so that the conjugates formed between the target antigen and the labeled antibody result in the formation of enzymatically active complexes.
  • the antigen-antibody complexes are immobilized on the support and thus, can be detected by adding a substrate that is converted by the enzyme into a product that is detectable by, for example, spectrophotometry or fluorometry.
  • any antibody or reagent known to bind CD98 with a sufficiently high affinity can be used to detect the amount of target proteins.
  • an antibody is preferred, for example polyclonal sera, hybridoma supernatants or monoclonal antibodies, antibody fragments, Fv, Fab, Fab 'and F (ab') 2, scFv, diabodies, triabodies, tetrabodies and humanized antibodies .
  • the determination of protein expression levels is carried out by immunohistochemical techniques, well known in the state of the art.
  • the sample may be a fresh, frozen or paraffin embedded sample and fixed using a formalin-type protective agent.
  • the sample is stained with an antibody specific for CD98 and the frequency of cells that have been stained and the intensity of staining are determined.
  • the sample is assigned an indicative value of the total expression and is calculated based on the frequency of stained cells (value that varies between 0 and 4) and the intensity in each of the stained cells (variable value between 0 and 4).
  • immunohistochemical detection is carried out in parallel with cell samples that serve as a positive marker and as a negative marker. It is also common to use a background control.
  • tissue microarrays tissue microarrays or TMA
  • TMA tissue microarrays
  • Samples that are part of the microarrays can be analyzed differently including immunohistochemistry, in situ hybridization, in situ PCR, analysis of RNA or DNA, morphological inspection and combinations of any of the above.
  • Methods for processing tissue microarrays have been described, for example, in Konenen, J. et al. , (Nat. Med. 1987, 4: 844-7).
  • Tissue microarrays are prepared from cylindrical cores 0.6 to 2 mm in diameter from tissue samples embedded in paraffin and re-embedded in a single receptor block. In this way, tissue from multiple samples can be inserted into a single paraffin block.
  • High levels of mRNA or protein in relation to mRNA or protein levels in a reference sample means, according to the present invention, an increase in mRNA or protein levels of at least 1.1 times, 1.5 times , 5 times, 10 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times, 100 times or even more with respect to the isolated patient sample.
  • endometrial sample is meant, in the context of the present invention, a set of cells obtained from the endometrium in which it is possible to carry out the detection of CD98.
  • endometrium is meant the mucosa that covers the inside of the uterus and is formed by several layers between which is the layer closest to the myometrium or basal lamina and the one that is closest to the surface that is the functional lamina .
  • the endometrium is a simple prismatic epithelium with or without cilia, glands and a stroma rich in connective and highly vascularized tissue and whose function is to house the blastocyst allowing its implantation, is the place where the placenta develops and presents cyclic alterations in its glands and blood vessels during the menstrual cycle in preparation for implantation of the human embryo.
  • the endometrium is characterized by cyclic alterations during the menstrual cycle (in primates) or during the estrous cycle (in other mammals) in which it modifies to give rise to a highly vascularized and glandular tissue.
  • the endometrial lining that has formed during the menstrual cycle remains forming the decidua that is the maternal portion of the placenta.
  • the endometrial tissue sample can be collected using conventional methods such as biopsy, uterine lavage, uterine curettage or from menstrual fluid. In the event that the sample is obtained by biopsy, it may be incisional or excisional.
  • the determination of the expression levels of CD98 needs to be correlated with the expression value of CD98 in a reference sample.
  • reference sample is meant an endometrial sample obtained from a female animal in the non-fertile period of said animal.
  • the reference sample is typically obtained by combining equal amounts of samples from a population of subjects.
  • typical reference samples will be obtained from subjects that are clinically well documented.
  • normal (reference) concentrations of the biomarker can be determined, for example by providing the average concentration over the reference population.
  • considerations are taken into account. Among such considerations are the type of sample involved (eg tissue or CSF), age, weight, sex, general physical condition of the patient and the like.
  • equal amounts of a group of at least 2, at least 10, at least 100 to preferably more than 1000 subjects are taken as reference group, preferably classified according to the above considerations, for example of various age categories.
  • the reference sample is obtained from the endometrium of a female animal in the non-fertile period of said animal.
  • the method of the invention can be carried out by determining the levels of CD98 with a daily frequency, every two days, every three days, every 4 days, every 5 days, every 6 days, every 7 days, every 8 days, every 9 days etc. so that the expression profile of CD98 is obtained throughout the entire menstrual cycle.
  • endometrial samples can be obtained at each stage of the menstrual cycle, specifically, it is possible to obtain samples in the proliferative phase (days 1-14 of the cycle or before the LH peak), in the early secretory phase of the cycle (days 15-19 or days 1 to 5 after the LH peak); in the intermediate secretory phase (days 20-24 of the cycle or days 6 to 10 after the LH peak) and in the late secretory phase (days 25-28 or days 14 after the LH peak).
  • the optimal implantation window will correspond to the time interval in which the levels of CD98 are the highest throughout the menstrual cycle.
  • the invention relates to the use of a CD98 or CD9 activating agent for the preparation of a medicament for increasing the receptivity of the endometrium during embryo implantation.
  • the invention relates to a method for increasing the receptivity of the endometrium to embryo implantation comprising the administration of a CD98 or CD9 activating agent.
  • the invention relates to a CD98 or CD9 activating agent for use in increasing endometrial receptivity during embryo implantation.
  • CD98 activating agent refers to any compound that is capable of causing an increase in CD98 activity, regardless of whether said increase is due to an increase in the specific activity of the Pre-existing CD98 or an increase in the synthesis in endometrial cells of CD98 or CD98 analogs that substantially share their function with it.
  • the CD98 activating agent is a polynucleotide encoding CD98 or a functionally equivalent variant thereof.
  • CD9 activating agent refers to any compound that is capable of causing an increase in CD9 activity, regardless of whether said increase is due to an increase in the specific activity of the Pre-existing CD9 or an increase in synthesis in endometrial cells of CD9 or of CD9 analogs that substantially share their function with it.
  • the CD9 activating agent is a polynucleotide encoding CD9 or a functionally equivalent variant thereof.
  • CD9 is expressed in human endometrial cells, mainly located on the cell surface of the glandular epithelium, but its expression levels remain unchanged throughout the menstrual cycle (Park, KR et al. 2000. Mol Hum Reprod 6: 252-257 ). CD9 is also expressed on the surface of extravenous trophoblasts and was shown to be important for post-adhesion invasion. Specifically, the treatment of blastocysts with anti-CD9 antibodies or antisense oligonucleotides had no effect on embryo adhesion but greatly increased the number of implanted embryos, but the role of endometrial CD9 was not directly addressed (Liu, WM et al. 2006 J Mol Endocrinol 36: 121-130). On the other hand, its involvement in the fusion of sperm with the ovule, cell adhesion, cell motility and tumor metastasis has been described (Wynne F. Reproduction. 2006, 131: 721-32).
  • polynucleotide refers to a polymeric form of nucleotides of any length and formed by ribonucleotides and / or deoxyribonucleotides.
  • the term includes both single chain and double chain polynucleotides, as well as modified polynucleotides (methylated, protected and the like).
  • Polynucleotides suitable for use as agents capable of inducing CD98 activity in endometrial cells include, without limitation, the polynucleotides described in the databases encoding CD98 of human origin, such as that described in the GenBank / EMBL database with number of access J02939.1 (March 4, 2000 version), rat CD98 ⁇ Rattus norvegicus) corresponding to the polynucleotide described in GenBank / EMBL with access number U59324 (March 4, 2000 version), mouse CD 98 ⁇ Mus musculus) corresponding to the polynucleotide described in GenBank / EMBL with accession number X14309 (April 18, 2005 version), rabbit CD98 ⁇ Oryctolagus cuniculus) corresponding to the polynucleotide described in GenBank / EMBL with accession number AF515773 (version 1 of July 2003).
  • Polynucleotides suitable for use as agents capable of inducing CD9 activity in endometrial cells include, without limitation, the polynucleotides described in the databases encoding CD9 of human origin (accession number P21926 in the September 2, 2009 version) and which is encoded by the polynucleotide described in the GenBank / EMBL database with accession number M38690; CD9 of bovine origin (accession number P30932 in the version of September 2, 2009) and which is encoded by the polynucleotide described in the GenBank / EMBL database with accession number M81720; Mouse CD9 ⁇ Mus musculus) (accession number P40240 in the September 1, 2009 version) and which is encoded by the polynucleotide described in the GenBank / EMBL database with accession number L081 15; Rat CD9 ⁇ Rattus norvegicus) (accession number P40241 in the September 1, 2009 version) and which is encoded
  • agents capable of inducing CD98 and CD9 activity include functionally equivalent variants of the polynucleotides defined above. through its specific sequences.
  • functionally equivalent polynucleotide is meant, in the context of the present invention, all those polynucleotides capable of encoding a polypeptide capable of inducing the activity of CD98 or CD9 and resulting from the polynucleotides defined above by insertion, deletion or substitution of one or more nucleotides with respect to the sequences defined above.
  • the functionally equivalent variant of CD98 shows at least one function related to the ability to promote blastocyst adhesion to endometrial cells.
  • Suitable methods for determining the ability of CD98 to promote the adhesion of blastocysts to endometrial cells include the method described in example 5 of the present invention, based on the ability of endometrial cells transfected with CD98 or the variant thereof to promote adhesion. of blastocysts.
  • the functionally equivalent variant of CD9 shows at least one function related to the ability to promote the adhesion of blastocysts to endometrial cells.
  • Suitable methods for determining the ability of CD9 to promote the adhesion of blastocysts to endometrial cells include the method described in example 5 of the present invention, based on the ability of endometrial cells transfected with CD9 or the variant thereof to promote adhesion. of blastocysts.
  • the polynucleotides encoding functionally equivalent variants of CD98 or CD9 are polynucleotides whose sequence allows them to hybridize under highly restrictive conditions with the polynucleotides defined above.
  • Typical highly restrictive hybridization conditions include incubation in 6 X SSC (1 X SSC: 0.015 M NaCl, 0.015 M sodium citrate) and 40% formamide at 42 ° C for 14 hours, followed by one or more cycles of washed using 0.5 X SSC, 0.1% SDS at 60 ° C.
  • highly restrictive conditions include those comprising a hybridization at a temperature of about 50 ° -55 ° C in 6XSSC and a final wash at a temperature of 68 ° C in 1-3 X SSC.
  • Restrictive conditions include hybridization at a temperature of about 50 ° C to about 65 ° C in 0.2 or 0.3 M NaCl, followed by washing at about 50 ° C to about 55 ° C in 0.2X SSC, SDS 0, 1% (dodecyl sodium sulfate).
  • the agent that is capable of inducing CD98 or CD9 activity is a polynucleotide, it is operatively associated with a regulatory region of expression.
  • the regulatory sequences useful for the present invention may be nuclear promoter sequences or, alternatively, enhancer sequences and / or other regulatory sequences that increase the expression of the heterologous nucleic acid sequence.
  • the promoter can be constitutive or inducible. If constant expression of the heterologous nucleic acid sequence is desired, then a constitutive promoter is used. Examples of well known constitutive promoters include the immediate early cytomegal virus (CMV) promoter, Rous sarcoma virus promoter, and the like. Numerous other examples of constitutive promoters are well known in the art and can be employed in the practice of the invention. If controlled expression of the heterologous nucleic acid sequence is desired, then an inducible promoter must be used.
  • CMV immediate early cytomegal virus
  • Rous sarcoma virus promoter Rous sarcoma virus promoter
  • the inducible promoter In an uninduced state, the inducible promoter is "silent.”
  • the term “silent” refers to the fact that in the absence of an inducer little or no expression of the heterologous nucleic acid sequence is detected; in the presence of an inducer, however, the expression of the heterologous nucleic acid sequence occurs.
  • the level of expression can be controlled by varying the concentration of the inductor. By controlling the expression, for example by varying the concentration of the inducer so that an inducible promoter is stimulated in a stronger or weaker manner, the concentration of the transcribed product of the heterologous nucleic acid sequence can be affected. In the case where the heterologous nucleic acid sequence encodes a gene, the amount of protein that is synthesized can be controlled.
  • tissue specific promoters can be used to achieve expression of the specific nucleic acid heterologous sequence in cells or tissues.
  • tissue-specific promoters include several specific uterus promoters and, more specifically, endometrial-specific promoters such as the uteroglobin promoter.
  • the polynucleotides encoding CD98 or the functionally equivalent variant thereof or CD9 or the functionally equivalent variant can be administered in naked form by the use of microinjection, biobalistic methods or electroporation.
  • the invention contemplates the administration of polynucleotides as part of a vehicle that allows their insertion into endometrial cells.
  • it is possible to use any type of viral vector known in the art such as viral adeno vectors, poxviruses, lentiviral vectors and adeno-associated virus-based vectors.
  • the invention contemplates the administration of said polynucleotides to the uterus through the use of liposomes comprising said polynucleotides as described in patent application US2002177547.
  • the invention relates to a method (hereinafter, the first screening method of the invention) for the identification of compounds capable of increasing the receptivity of the endometrium comprising
  • a cell comprising a gene construct comprising a polynucleotide encoding a reporter gene wherein said polynucleotide is operably coupled to the CD98 promoter or the CD9 promoter,
  • the compound is considered adequate to increase the receptivity of the endometrium if it causes an increase in the level of expression of CD98, CD9 or the reporter gene.
  • the invention relates to a method (hereinafter, second screening method of the invention) for the identification of contraceptive compounds comprising
  • a cell comprising a gene construct comprising a polynucleotide encoding a reporter gene wherein said polynucleotide is operably coupled to the CD98 promoter or the CD9 promoter,
  • Both screening methods of the invention comprise a first step in which a cell expressing CD98, CD9 or comprising a gene construct comprising a polynucleotide encoding a reporter gene wherein said polynucleotide is operably coupled to the CD98 promoter or to the CD9 promoter is contacted with a candidate compound.
  • the cell used in step (i) of the methods described above is derived from a cell line of endometrial origin, such as the ECC-1, Ishikawa, KLE, HIESC-2, HIEEC-22 cell lines, RL95, HEC59, HEC-lA, HEC-1B, HHUA, AN3CA, SKUT1 and SKUT1B.
  • the cell is derived from the HEC-l-A endometrial cell line.
  • the cells used in step (i) of the screening methods of the invention are cells in which a construct comprising a polynucleotide encoding a reporter gene in which said polynucleotide is operatively coupled to the promoter has been introduced from CD98 or the CD9 promoter.
  • the expression of the reporter gene is used as a marker of the increase in the expression of CD98 or CD9.
  • promoter refers to a DNA sequence that regulates the transcription of a particular gene.
  • the promoter of CD98 means the region described by Yan et al. (Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292: G535-G545) or by Gottesdiener et al. (Mol. Cell Biol, 1988, 8: 3809-3819), the contents of which are incorporated in the present invention in its entirety.
  • the CD9 promoter means the region described by Le Naour et al. (Oncogene, 1996, 13: 481-486).
  • the gene constructs that are employed in step (i) of the screening methods of the invention additionally include a reporter gene that is operatively coupled to the promoter regions described above.
  • Genes reporters that can be used in the context of the present invention include luciferase, green fluorescent protein (GFP) and variants thereof that emit fluorescence at different wavelengths (e.g., DS-Red or red fluorescent protein), chloramphenicol acetyltransferase, ⁇ -galactosidase, alkaline phosphatase and horseradish peroxidase.
  • the gene construct comprising the CD98 or CD9 promoter and the reporter gene
  • the DNA construct is introduced into the cells under study using any of the transfection methods known to the person skilled in the art (see sections 9.1 to 9.5 in Ausubel, FM et al., Current Protocols in Molecular Biology, John Wiley & Sons Inc; ringbou edition, 2003).
  • cells can be transfected by co-precipitation of DNA with calcium phosphate, DEAE-dextran, polybrene, electroporation, microinjection, liposome-mediated fusion, lipofection, retrovirus infection and biobalistic transfection.
  • Cells that comprise the gene construct may have been transiently or stably transfected, for which transfection of the gene construct is carried out simultaneously with a gene that provides resistance to a particular antibiotic, so that they can be selected those cell lines that have incorporated the DNA into the genome of those cell lines in which the DNA is in an extrachromosomal position.
  • the gene that allows cells to be selected can be provided as part of the same vector that contains the construct object of the invention or, alternatively, can be provided separately by co-transfection with a second plasmid containing said resistance gene.
  • a suitable cell line for carrying out the assay (either a cell line expressing CD98 or CD9 endogenously or a cell in which a gene construct that comprises a reporter gene operatively coupled to the promoter has been introduced of CD98 or CD9)
  • the cell is contacted with a compound or preparation whose effect on the expression of CD98, CD9 or reporter gene is desired to study.
  • the compounds that can be tested can be any type of compound including low molecular weight compounds or macromolecules of the type of proteins, carbohydrates, nucleic acids or lipids.
  • the methods described above can be adapted for use in multiwell plates where a certain amount of cells can be seeded in each of the wells and then added to each of the wells one or more members of the compound library.
  • the invention contemplates the use of high throughput screening (HTS) methods.
  • HTS assays allow the screening of several thousand candidate compounds per day.
  • each well of a multiwell plate can be used for each candidate compound or, in the case that it is desired to test different times and concentrations, it is possible to use 5-10 wells for each candidate compound.
  • a multiwell plate can be used to test 96 candidate compounds. In the case that 1536 well plates are used, it is possible to screen 100 to 1500 compounds in each plate. If several plates are analyzed every day, it is possible to screen 6,000, 20,000, 50,000 or 100,000 compounds per day.
  • a combinatorial library is a collection of chemical compounds obtained by chemical or biological synthesis by combining different reagents that act as building blocks.
  • combinatorial peptide libraries these can be obtained by combining a series of amino acids in all possible alternatives until the desired length is obtained.
  • Combinatorial libraries that can be used in the context of the present invention are widely known and include peptide libraries such as those described in US Patent US5010175, by Furka et al. (Int. J. Pept. Prot. Res., 1991, 37: 487-493) and by Houghton et al., (Nature, 1991, 354: 84-88).
  • nucleic acid libraries (Ausubel, Berger and Sambrook, all supra), nucleic acid peptide libraries (US5539083), antibody libraries (see, eg, Vaughn et al, Nature Biotechnology, 14 (3): 309-314 (1996) and PCT / US96 / 10287), carbohydrate libraries (eg, Liang et al, Science, 274: 1520-1522 (1996) and US Pat. No 5593853) and the like.
  • the candidate compound is a low molecular weight molecule
  • the candidate compound is a high molecular weight molecule (for example, biological polymers such as a nucleic acid or a protein)
  • the candidate molecule is a nucleic acid
  • conventional methods for transfection can be used, as described above for the introduction of the DNA construct.
  • the candidate compound is a protein
  • the cell can contact both the protein directly and the nucleic acid that encodes it coupled to elements that allow transcription / translation once they are inside the cell. For this, any of the methods mentioned above can be used to allow entry into the cell interior.
  • a variant of the protein to be studied that has been modified with a peptide that is capable of promoting translocation of the protein into the cell, such as the Tat peptide derived from the TAT protein of HIV-1, the third helix of the home domain of the Antennapedia protein of D.melanogaster, the VP22 protein of herpes simplex virus and arginine oligomers (Lindgren, A. et al., 2000, Trends Pharmacol. Sci, 21: 99 -103, Schwarze, SR et al., 2000, Trends Pharmacol. Sci., 21: 45-48, Lundberg, M et al., 2003, Mol. Therapy 8: 143-150 and Snyder, EX. and Dowdy, SF, 2004, Pharm. Res. 21: 389-393).
  • a peptide that is capable of promoting translocation of the protein into the cell such as the Tat peptide derived from the TAT protein of HIV-1, the third helix of the home domain of the
  • the invention contemplates the possibility that the compound to be tested is not isolated but appears to be part of a more or less complex mixture, either derived from a natural source or part of a library of compounds.
  • libraries of compounds that can be tested according to the method of the present invention include, without limitation, peptide libraries including both peptides and peptide analogs comprising D-amino acids or peptides comprising non-peptide bonds, nucleic acid libraries including acids Nuclei with non-phosphodiester bonds of the phosphorothioate type or peptide nucleic acids, libraries of antibodies, carbohydrates, low molecular weight compounds, preferably organic molecules, peptidomimetics, and the like.
  • the library may have been preselected to contain compounds that can access the cell interior more easily.
  • the compounds can be selected based on certain parameters such as size, lipophilicity, hydrophilicity, ability to form hydrogen bonds.
  • the screening methods of the invention include the determination of the levels of CD98, CD9 or reporter gene according to the type of cell that was used in step (i).
  • step (ii) of the method involves the determination of CD98 or CD9 expression levels. This determination can be carried out using any of the methods described above for the determination of CD98 or CD9 mRNA levels or for the determination of CD98 or CD9 protein levels. In a preferred embodiment, the determination of the level of CD98 or CD9 is carried out by flow cytometry.
  • step (ii) involves the determination of the levels of said reporter gene.
  • reporter genes encode proteins that exhibit enzymatic activities that do not appear endogenously in the cell in which they are expressed, so, preferably, the determination of reporter gene levels is carried out by determining of the activity of the protein encoded by the reporter gene.
  • the determination of reporter gene levels is carried out by determining of the activity of the protein encoded by the reporter gene.
  • it is necessary to make parallel determinations of the baseline transcriptional activity in the presence of only the culture medium and / or the vehicle in which the compound to be tested is dissolved or in which the extracts to be tested have been prepared.
  • transcription activating compounds or extracts will be considered, and therefore potentially useful for promoting the implantation of blastocysts in the endometrium, those in which the activity ratio of the reporter gene is at least 1.5, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100 or higher.
  • transcription repressor compounds or extracts will be considered, and therefore potentially as contraceptive agents, in which the activity ratio of the reporter gene is at least 0.5, 0.4, 0.33, 0.25, 0.20, 0.1, 0.05, 0.04, 0.03, 0.02, 0.01 or less.
  • the method of detecting reporter gene expression involves bringing the cells into contact with a compound that can generate a colored or fluorescent product in the presence of the product encoded by the reporter gene.
  • chromogenic substrates such as p-nitrophenyl phosphate (p-NPP), 5-bromo-4 chloro 3-indolyl phosphate / tetrazolium nitroblue (BCIP / NPT), Fast-Red can be used / naphthol-AS-TS phosphate or fluorogenic substrates of the type 4-methylumbelliferyl phosphate (4-MUP), 2- (5'-chloro-2'-phosphoryloxyphenyl) -6-chloro-4- (3H) -quinazolinone (CPPCQ), 3,6-fluorescein diphosphate (3,6-FDP), Fast Blue BB, Fast Red TR or diazonium salts of Fast Red Violet LB.
  • p-NPP p-nitrophenyl phosphate
  • BCIP / NPT 5-bromo-4 chloro 3-indolyl phosphate / tetrazolium nitroblue
  • Fast-Red can be used / naphthol-AS-
  • chromogenic substrates of the type 2,2-azinobis (3-ethylbenzothiazolin-6-sulfonic acid) (ABTS), o-phenylenediamine (OPT), 3.3 ', 5.5 can be used '-tetramethylbenzidine (TMB), o-dianisidine, 5-amino salicylic acid, 3-dimethylamino benzoic acid (DMAB) and 3-methyl-2-benzothiazolinhydrazone (MBTH), 3-amino-9-ethylcarbazole (AEC) and 3, 3'-diaminobenzidine tetrahydrochloride (DAB) or fluorogenic substrates of the 4-hydroxy-3-methoxyphenylacetic acid type, reduced phenoxazines and reduced benzothiazines, including the Amplex ® Red and Amplex UltraRed reagents and the reduced dihydroxanthenes.
  • ABTS 2,2-azinobis (3-ethylbenzothia
  • the reporter gene encodes a glucosidase
  • chromogenic substrates of the type o-nitrophenyl-PD-galactoside (o-NPG), p-nitrophenyl-PD-galactoside and 4- methylumbelliferyl-PD-galactoside (MUG) can be used for ⁇ -D-galactosidase and fluorogenic substrates of the resorufin type beta-D-galactopyranoside, fluorescein digalactoside (FDG), fluorescein diglucuronide, 4-methylumbelliferyl beta-D-galactopyranoside, carboxybibiferifer beta-D-galactopyranoside and beta-galactopyranoside and beta-galactopyranoside and beta-galactopyranoside and beta-D-galactopyranoside Coumarin
  • the reporter gene encodes luciferase and detection is performed by measuring the luminescence emitted by said enzyme
  • Luminescence is determined using commercial kits, such as the enhanced luciferase assay kit (Analytical Luminescence Laboratory, MI).
  • MI Analytical Luminescence Laboratory
  • the screening methods of the invention can be carried out in parallel with a method in which compounds are used as a positive activation control, that is, compounds known to be capable of causing an increase in the expression of CD98 and CD9.
  • activator compounds will be those whose effect on the expression of CD98 or CD9 is similar or superior to that observed in the presence of the control activator compound.
  • the treatment of cells of endometrial origin with hCG or ⁇ -estradiol is capable of inducing expression of CD98 in both endometrial cell lines and primary cultures.
  • the method of the invention additionally comprises one or more stages (iii) of fractionation of the tested mixture and the repetition of steps (i), (ii) and (iii) with each of the fractions obtained until the compound is isolated in the mixture that is suitable for the treatment of the implantation problem.
  • Methods for fractionation of compounds present in a mixture include chromatography (thin-film, gas or gel molecular exclusion, affinity), crystallization, distillation, filtration, precipitation, sublimation, extraction, evaporation, centrifugation, mass spectrometry, adsorption and the like.
  • the compounds to be tested may be part of an extract obtained from a natural source.
  • the natural source can be animal, vegetable obtained from any environment, including, without limitation, extracts from terrestrial, aerial, marine and similar organisms.
  • the invention relates to a contraceptive method comprising administration to a subject of a CD98 inhibitor.
  • aceptive is meant an agent capable of preventing or reducing the possibility of fertilization or pregnancy.
  • CD98 inhibitor refers to any compound capable of reducing the activity of CD98.
  • CD98 inhibitors can work either by blocking its interaction with its receptor on the surface of the blastocyst or by acting on the endometrial cells causing a decrease in the levels of CD98 protein or mRNA encoding CD98.
  • Suitable methods for the determination of those compounds that are inhibitors or repressors of the Expression of CD98 has been described above and includes both methods based on the determination of levels of CD98 or mRNA encoding CD98 in endometrial cells and those based on the ability of endometrial cells to bind to blastocysts or trophoblasts and which are described in Examples 5 and 6 of the present invention.
  • any of the in vitro and ex vivo models and culture systems to mirnetize the characteristics of the endometrium during the endometrial receptivity window described in the prior art would be useful for the identification of CD98 inhibitors.
  • the assignment of a compound as a CD98 inhibitor can be done using the model described by Lindenberg, S. (Dan Med Bull. 1991, 38: 371-380), the model of Simon, C. et al. (J Clin Endocrinol Metab ,, 199984: 2638-2646) as well as models based on the use of various cell lines and cultures, explants of endometrial tissue or other approaches, including attempts to create an ex vivo uterus (Bulletti, C. et al. 1988. Fertil Sterit 49: 991-996),
  • CD98 expression inhibiting agents suitable for use in, the present invention are, for example, cynaropicrin (Cas number 35730-78-0), as described by Cho et al (Biophysical Research Communications , 2004; 313: 954-961), soluble fragments of CD98 capable of binding to the CD98 receptor present on the surface of the blastocysts and thus preventing their interaction with the CD98 expressed in the endometrial membrane, anti-CD98 antibodies directed specifically against protein epitopes essential to perform their function, or against CD98, nucleic acids capable of causing the silencing of the mRNA encoding CD98 such as antisense oligonucleotides, interference RNAs (siRNAs), catalytic RNAs and specific ribozymes, active polynucleotides "decoy", that is, with the ability to specifically bind to a factor (generally protein) important for gene expression, so that the expression of the gene of interest, in this case CD98 be inhibite
  • soluble fragment of CD98 any fragment from the extracellular domain of CD98 which, lacking a transmembrane region, can be solubilized in aqueous solutions without detergents.
  • the extracellular region is formed by amino acids 206 to 630.
  • the extent of the extracellular domain can be determined by comparison with the human protein by sequence alignment using algorithms widely known to those skilled in the art such as BLASTP, FASTA or CLUSTALW.
  • soluble fragments of CD98 suitable for use as a contraceptive composition of the invention include fragments of at least 20, at least 40, at least 60, at least 80, at least 100.
  • soluble fragments of CD98 capable of acting as inhibitors of CD98 can be carried out by the method described in examples 5 and 6 of the present invention and which consists in contacting a monolayer of HEC-lA endometrial cells transfected with CD98 with Emerging blastocysts and identifying which fragments of CD98 are capable of preventing adhesion of said blastocysts to the monolayer.
  • Soluble fragments of CD98 can be used as is or can be conjugated to a second heterologous molecule that facilitates their solubility, stability or purification.
  • the heterologous sequences may be present at the N-terminal or at the C-terminal end and include, by way of illustration, immunoglobulin constant regions (Fc regions), multimerization domains, signal sequences and tags that allow purification by use of molecules with high affinity for these labels.
  • the CD98 fragments are conjugated to the constant region of an inmiinoglobulin molecule, it may be formed by the CH2 and CH3 domains of human IgGl or other IgG isoforms such as lgG2 or fgG4 or other cyiases of inmnnnglohtilin such as IgM or IgA.
  • the invention also contemplates the use of soluble fragments of modified CD98 by incorporating one or more functional groups such as polyethylene glycol (PEG) moieties to give rise to PEGylated CD98 variants.
  • PEGylation can be carried out using known methods such as the method described in W099 / 55377.
  • inhibitor antibody is meant in the context of the present invention any antibody that is capable of binding CD98 specifically and inhibiting one or more of the functions of CD98, preferably those related to adhesion.
  • Inhibitor antibody is also any antibody that is capable of binding CD98 specifically and blocking the oligomerization of CD98 or the binding sites of CD98 with other proteins.
  • Antibodies can be prepared using any of the methods that are known to the person skilled in the art, some of which have been cited above. Once antibodies with CD98 binding capacity have been identified, those capable of inhibiting the activity of this protein will be selected using an inhibitor agent identification assay (see example 5 of the present invention).
  • Monoclonal antibodies capable of inhibiting CD98 activity include, without limitation, the HBJ127 antibody described by Itoh et al. (Jpn. J. Cancer Res., 2001, 92: 1313-1321) ARNip
  • siRNAs Small interfering RNAs or siRNAs are agents that are capable of inhibiting the expression of a target gene by RNA interference.
  • An siRNA can be chemically synthesized, can be obtained by in vitro transcription or can be synthesized in vivo in the target cell.
  • siRNAs consist of a double strand of RNA between 15 and 40 nucleotides in length and which may contain a 3 'and / or 5' protruding region of 1 to 6 nucleotides. The length of the protuberant region is independent of the total length of the siRNA molecule.
  • SiRNAs act by degradation or post-transcriptional silencing of the target messenger.
  • the siRNAs can be called shRNA (short hairpin RNA), characterized in that the antiparallel chains that form the siRNA are connected by a loop or hairpin region.
  • the shRNAs may be encoded by plasmids or viruses, particularly retroviruses and be under the control of promoters such as the U6 promoter of RNA polymerase III.
  • the siRNAs of the invention are substantially homologous to the mRNA of the gene encoding CD98 or to the genomic sequence encoding said protein. By “substantially homologous” is meant that they have a sequence that is sufficiently complementary or similar to the target mRNA, so that the siRNA is capable of causing degradation of the latter by RNA interference. Suitable siRNAs to cause such interference include siRNAs formed by RNA, as well as siRNAs containing different chemical modifications such as:
  • RNA chain conjugates of the RNA chain with a functional reagent, such as a fluorophore.
  • a functional reagent such as a fluorophore
  • Nucleotides with modified sugars such as O-alkylated moieties in 2 'position such as 2'-0-methylribose p 2'-0-fluorosibose.
  • siRNAs and siRNAs of the invention can be obtained using a series of techniques known to the person skilled in the art.
  • the region of the nucleotide sequence that is taken as the basis for designing the siRNAs is not limiting and may contain a region of the coding sequence (between the initiation codon and the termination codon) or, alternatively, may contain sequences from the 5 'or 3' untranslated region, preferably between 25 and 50 nucleotides in length and in any position in the 3-way position 'with respect to the initiation codon.
  • the shRNA is directed against a CD98 region comprising the sequence SEQ ID NO: 1.
  • the shRNA comprises the sequence SEQ ID NO: 2.
  • a further aspect of the invention relates to the use of isolated "antisense" nucleic acids to inhibit expression, for example by inhibiting the transcription and / or translation of a nucleic acid encoding CD98 whose activity is to be inhibited.
  • Antisense nucleic acids can be linked to the potential target of the drug by conventional base complementarity, or, for example, in the case of binding to double stranded DNA, through specific interactions in the major groove of the double helix. In general, these methods refer to the range of techniques generally employed in the art and include any method that is based on specific binding to oligonucleotide sequences.
  • an antisense construct of the present invention can be distributed, for example, as an expression plasmid which, when transcribed in the cell, produces RNA that is complementary to at least a single part of the cellular mRNA encoding CD98.
  • the antisense construct is an oligonucleotide probe that is generated ex vivo and that, when introduced into the cell, produces inhibition of gene expression by hybridizing with mRNA and / or genomic sequences of a target nucleic acid.
  • oligonucleotide probes are preferably modified oligonucleotides, which are resistant to endogenous nucleases, by example, exonucleases and / or endonucleases, and which are therefore stable in vivo.
  • nucleic acid molecules for use as antisense oligonucleotides are DNA analogs of phosphoramidate, phosphothionate and methylphosphonate (see also U.S. Patent Nos. 5176996; 5264564; and 5256775). Additionally, the general approaches to construct oligomers useful in antisense therapy have been reviewed, for example, in Van der Krol et al, BioTechniques 6: 958-976, 1988; and Stein et al, Cancer Res 48: 2659-2668, 1988.
  • oligodeoxyribonucleotide regions derived from the translation initiation site are preferred, for example, between -10 and +10 of the target gene.
  • Antisense approaches involve the design of oligonucleotides (either DNA or RNA) that are complementary to the mRNA encoding the target polypeptide. Antisense oligonucleotides will bind to mRNA transcripts and prevent translation.
  • Oligonucleotides that are complementary to the 5 'end of the mRNA should work in the most efficient way to inhibit translation. However, it has recently been shown that sequences complementary to the 3 'untranslated sequences of mRNAs are also effective in inhibiting the translation of mRNAs (Wagner, Nature 372: 333, 1994). Therefore, oligonucleotides complementary to the 5 'or 3' untranslated, non-coding regions of a gene in an antisense approach could be used to inhibit the translation of that mRNA. Oligonucleotides complementary to the 5 'untranslated region of the mRNA should include the complement of the AUG initiation codon.
  • Oligonucleotides complementary to mRNA coding regions are less effective translation inhibitors but could also be used according to the invention. If they are designed to hybridize with the 5 ', 3' or mRNA coding region, the antisense nucleic acids should be at least six nucleotides in length and preferably be less than about 100 and more preferably less than about 50, 25, 17 or 10 nucleotides in length. It is preferred that in vitro studies are first performed to quantify the ability of antisense oligonucleotides to inhibit gene expression. It is preferred that these studies use controls that distinguish between antisense gene inhibition and non-specific biological effects of oligonucleotides.
  • these studies compare the levels of the target RNA or protein with that of an internal control of RNA or protein.
  • the results obtained using the antisense oligonucleotides can be compared with those obtained using a control oligonucleotide. It is preferred that the control oligonucleotide be approximately the same length as the oligonucleotide to be tested and that the oligonucleotide sequence differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.
  • the antisense oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single chain or double chain.
  • the oligonucleotide can be modified in the base group, the sugar group or the phosphate skeleton, for example, to improve the stability of the molecule, its hybridization capacity etc.
  • the oligonucleotide may include other bound groups, such as peptides (for example, to direct them to host cell receptors) or agents to facilitate transport across the cell membrane (see, for example, Letsinger et al., Proc. Nati. Acad. Sci. USA 86: 6553-6556, 1989; Lemaitre et al, Proc. Nati. Acad. Sci.
  • the oligonucleotide may be conjugated to another molecule, for example, a peptide, a transport agent, hybridization triggered cutting agent, etc.
  • Antisense oligonucleotides may comprise at least one modified base group.
  • the antisense oligonucleotide may also comprise at least one modified sugar group selected from the group that includes but is not limited to arabinose, 2-fluoroarabinous, xylulose, and hexose.
  • the antisense oligonucleotide may also contain a neutral peptide-like skeleton.
  • Such molecules are called peptide nucleic acid oligomers (ANP) and are described, for example, in Perry- O'Keefe et al, Proc. Nati Acad. Sci. USA 93: 14670, 1996, and in Eglom et al, Nature 365: 566, 1993.
  • the antisense oligonucleotide comprises at least one modified phosphate skeleton. In yet another embodiment, the antisense oligonucleotide is an alpha-anomeric oligonucleotide.
  • antisense oligonucleotides complementary to the coding region of the mRNA target sequence can be used, those complementary to the untranslated transcribed region can also be used.
  • a preferred approach uses a recombinant DNA construct in which the antisense oligonucleotide is placed under the control of a strong pol III or pol II promoter.
  • the expression of the target gene can be reduced by directing deoxyribonucleotide sequences complementary to the regulatory region of the gene (i.e., the promoter and / or enhancers) to form triple helix structures that prevent transcription of the gene in the target cells. in the body (see generally, Helene, Anticancer Drug Des. 6 (6): 569-84, 1991).
  • the antisense oligonucleotides are morpho antisense linens.
  • a further aspect of the invention relates to the use of DNA enzymes to inhibit the expression of the gene encoding the CD98 of the invention.
  • DNA enzymes incorporate some of the mechanistic characteristics of both antisense and ribozyme technologies.
  • the DNA enzymes are designed to recognize a particular nucleic acid target sequence, similar to the antisense oligonucleotide, however ribozyme-like are catalytic and specifically cut the target nucleic acid.
  • Ribozyme molecules designed to catalytically cut transcripts of a target mRNA can also be used to prevent the translation of mRNAs encoding CD98 whose activity is to be inhibited. Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cut of RNA. (For a review, see Rossi, Current Biology 4: 469-471, 1994). The mechanism of action of ribozyme involves sequence-specific hybridization of the ribozyme molecule to a complementary target RNA, followed by an endonucleolytic sheath event.
  • composition of the ribozyme molecules preferably includes one or more sequences complementary to the target mRNA, and the well-known sequence responsible for mRNA cutting or a functionally equivalent sequence (see, for example, U.S. Patent No. 5093246) .
  • Ribozymes used in the compositions of the present invention include hammerhead ribozymes, endoribonuclease RNAs (hereinafter "Cech type ribozymes") (Zaug et al., Science 224: 574-578, 1984). Ribozymes may be composed of modified oligonucleotides (for example to improve stability, targeting, etc.) and should be distributed to cells expressing the target gene in vivo.
  • a preferred method of distribution involves using a DNA construct that "encodes" the ribozyme under the control of a strong constitutive promoter of pol III or pol II, so that the transfected cells will produce sufficient amounts of the ribozyme to destroy the endogenous target messengers. and inhibit translation. Since ribozymes, contrary to other antisense molecules, are catalytic, a lower intracellular concentration is required for their effectiveness.
  • inhibitor peptide refers to those peptides capable of binding to CD98 and inhibiting its activity as explained above, that is, preventing CD98 from acting as an adhesion receptor.
  • aptamers and spheromerers which are single or double stranded D or L nucleic acids that specifically bind to the protein, resulting in a modification of its biological activity.
  • the aptamers and spherochemers have a length of between 15 and 80 nucleotides and, preferably, between 20 and 50 nucleotides.
  • CD98 antagonists can be used locally or systemically for use as contraceptives at the appropriate dose to allow blocking of CD98 activity.
  • the compounds can be administered daily, weekly for the entire or part of the menstrual cycle.
  • CD98 inhibitor compounds may be formulated as sustained release compositions such as, for example, monthly, semi-annual implants and the like.
  • the contraceptive compositions of the invention are formulated suitably for topical application.
  • Formulations suitable for topical administration include vaginal suppositories, intrauterine devices (IUDs), and sustained release gels.
  • topical compositions can be applied with an applicator or can be formulated as coatings of condoms, diaphragms or other contraceptive devices.
  • compositions of the invention can be formulated together or applied together with other types of contraceptive agents, lubricants, spermicides.
  • Contraceptive agents suitable for co-administration with the contraceptive compositions of the invention include one or more of the agents selected from lipoxygenase blockers, synthetic progestins, quinacrine A, levonorgestrel, medroxyprogesterone acetate, norethisterone enanthate, combinations of ethylestradiol and progesteogen, levonorgestrel, ethinyl estradiol, norgestrel or levonorgestrel, combinations of ethinyl estradiol with norethisterone enanthate or norgestrel.
  • HEC-lA human endometrial carcinoma cells (HTB-112), RL95-2 (CRL-1671) cells and JAR trophoblast derived cells (HTB-144) were purchased from the American Type Culture Collection (ATCC; Rockville , MD).
  • HEC-1- A cells were grown in McCoy 5 A medium supplemented with 10% fetal bovine serum (SBF).
  • RL95-2 cells were grown in a 1: 1 mixture of Dulbecco-modified Eagle's medium (DMEM) and F-12K nutrient medium, supplemented with 10% SBF.
  • JAR cells were grown in RPMI-1640 medium supplemented with 10% SBF), sodium pyruvate and glucose.
  • JAR spheroids confluent cultures were trypsinized, labeled with the fluorescent probe CMAC (chloromethyl derivative of aminocoumarin) (Invitrogen), and 1-3 x 10 5 cells were placed in suspension in a 25 ml conical bottle rotating at 110 rpm in C0 2 at 5% and 37 ° C for 24-48 hours.
  • CMAC chloromethyl derivative of aminocoumarin
  • EEC Endometrial epithelial cell
  • Endometrial biopsies were distributed in five groups according to the cycle phase: group 1, early-middle proliferative (days 1-8); group 2, late proliferative (days 9-14); group 3, early secretor (days 15-18); group 4, middle secretary (days 19-22) and group 5, late secretary (days 23-28). Three samples were examined per group.
  • the monoclonal antibodies (mAb) used were as follows: anti-integrin ⁇ (TS2 / 16), anti-integrin al (TS2 / 7), anti-integrin a2 (TEA1 / 41), anti-integrin a3 (VJ1 / 6) , anti-integrin ⁇ 4 (HP1 / 7), anti-integrin a5 (SAM-1), anti-integrin a6 (GOH3), anti-integrin ⁇ 3 (8D6), anti-integrin ⁇ 2 (TS1 / 18), anti-ICAM -1 (HU5 / 3), anti-ICAM-2 (CBR-IC2 / 2), anti-ICAM-3 (HP2 / 19), anti-VCAM-1 (4B9), anti-CD31 (TP1 / 15), anti-CD43 (TP1 / 36), anti-CD44 (HP2 / 9), anti-CD59 (VJ1 / 12), anti-MHC-I (W6.32), anti-E-selectin (TEA2 /
  • the rabbit polyclonal directed against the anti-CD98 heavy chain was from Santa Cruz Biotechnologies (Santa Cruz, CA).
  • the CD9 and ICAM-1-GFP constructs have been previously described (Barreiro, O. et al. 2005. Blood 105: 2852-2861).
  • the CD4 and CD147-GFP constructions were from Dr. M. Davis (Department of Microbiology and Immunology, Stanford University School of Medicine, CA) and Dr. J. Cao (Department of Medicine, Stony Brook, NY), respectively.
  • All HIV-1 derived lentiviral constructs pWPXK transfer vector, pCMVA8.74 auxiliary packaging construction and pMD2G vector encoding the envelope protein
  • Dr. D. Trono Polytechnic School of Lausanne, Switzerland.
  • the pWPXL-CD98 construct directs the human CD98 expression of the EF 1 alpha promoter and also contains a GFP expression cassette.
  • the lentivirus expressing EGFP is a third-generation HIV-1 derived lentivirus of the VSV pseudotype in which EGFP expression is directed by the early promoter / enhancer of the cytomegal virus.
  • the vectors were produced by transient transfection in 293T cells by the calcium phosphate method, using a total of 45 ⁇ g of plasmid DNA in a 150 mm plate. The medium (20 ml) was changed after 14 to 16 hours. After an additional 24 hours, the conditioned medium was collected, clarified by low speed centrifugation and filtered through 0.45 ⁇ pore size PVDF filters.
  • Viral titers were calculated by measuring the transduction units (UT / ml) and using qPCR of the supernatants (particles / mi), and were around 10 7 to 10 8 UT / ml and at a ratio of 1: 100 UT / particle.
  • the construct comprising the AR sh specific for CD98 is directed against the sequence TCGGGACAGAGAATCTGAA (SEQ ID NO: 1) that appears in the CD98 mRNA.
  • the lentivirus comprises the sequence
  • TGCTGTTCAGATTCTCTATGTCCCGAGTTTTGGCCACTGACTGAC TCGGGACAGAGAATCTGAA SEQ ID NO: 2
  • RNA isolation and digestion with DNase I Total RNA was extracted from whole endometrial biopsies and cell cultures. Samples were collected and processed in Trizol (Gibco BRL, Madrid, Spain) according to the manufacturer's instructions. Total RNA (20 ⁇ g) was treated for 30 minutes with 5 ⁇ DNase I (Clontech, Palo Alto, CA, USA) at 37 ° C, followed by a round of phenol / chloroform extraction, and another only with chloroform The RNA was then precipitated overnight at -20 ° C in 0.1 volumes of 2M sodium acetate pH 5.2 and 2.5 volumes of 100% ethanol. After washing with 80% ethanol the precipitate was dissolved in 20 ⁇ of water without RNase.
  • RNA concentrations were determined by optical density on a GeneQuant II spectrophotometer (Pharmacia). The absorbance ratio 260/280 nm for each sample was between 1, 6 and 1.9.
  • RNA (1 ⁇ g) was subjected to reverse transcription and amplified by PCR by means of a single buffer system (Access RT-PCR, Promega). Equivalent aliquots of each amplification reaction were separated on a 1.8% agarose gel (weight / volume) in TAE IX buffer and stained with ethidium bromide.
  • RNA treated with DNase I 50 ng was subjected to reverse transcription and amplified by PCR using the LightCycler-RNA SYBR Green I one-step amplification kit with a LightCycler apparatus (Roche).
  • Beta-actin and GADPH were amplified by RT-PCR in all RNA samples as internal maintenance controls.
  • the relative quantification was by the standard curve method for the SYBR ® Green I dye.
  • the human endometrial cell lines RL95-2 and HEC-l-A and primary EEC were trypsinized, washed and incubated sequentially with the indicated primary mAbs and rabbit anti-mouse IgG conjugated to FITC.
  • the labeled cells were analyzed by flow cytometry in a FACScan (Becton Dickinson).
  • EEC confluents or monolayers of HEC-lA with 2% paraformaldehyde were fixed and stained with the appropriate combination of biotinylated mAbs and mAbs after blocking with mouse serum.
  • Confocal images were obtained with a confocal microscope of Leica TCS-SP5 laser scan and were analyzed with confocal image processing software from Leica and Photoshop 7.0 (Adobe Systems).
  • Immunohistochemistry was performed in endometrial sections of 3-5 ⁇ using a DAKO LSAB peroxidase kit. Briefly, the sections were blocked with 4% BSA for 30 minutes at 37 ° C and incubated with 3% hydrogen peroxide for 5 minutes at room temperature, before incubation (60 minutes, room temperature) with primary antibodies . After 25 minutes of incubation with the spacer, streptavidin peroxidase was added for 15 minutes and the chromogenic substrate solution (DAB) was added for 5 minutes to stain the slides. The slides were counterstained with Mayer's hematoxylin. The slides were mounted with Entellan (Merck, Darmstadt, Germany).
  • Immunostaining intensity was evaluated in at least three different samples and the expression was scored as absent (0), weak (1), moderate (2), or strong (3) by three independent observers using the double-blind system.
  • Transfection and infection of cells The day before the transfection, HEC-lA cells were trypsinized, diluted with medium without antibiotics and seeded in 24-well plates at 5x10 5 cells / well. The cells, at 80-90% confluency, were transfected with plasmid DNA (0.8 ⁇ g per well) mixed in a 1: 5 ratio with lipofectamine 2000 (Invitrogen, Carlsbad, CA).
  • plasmid DNA 0.8 ⁇ g per well
  • lipofectamine 2000 Invitrogen, Carlsbad, CA
  • HEC-lA cultures expanded the day before infection. The cells were then trypsinized and exposed in suspension to the lentivirus in a ratio of 100 MOI before plating. Blastocyst adhesion was performed 24 hours after transfection or 3 days after infection.
  • mice of strain B6C3F1 (6-8 weeks old) were acquired from Elevage Janvier (Le Genest, St. Isle, France). Synchronous follicle development was triggered by intraperitoneal administration of 10 IU of eCG (Sigma-Aldrich) in 100 ⁇ of Dulbecco PBS without Ca 2+ or Mg 2+ (pH 7.4), and was followed 48 hours later by Intraperitoneal administration of 10 IU of hCG (Sigma-Aldrich) in 100 ⁇ of PBS to initiate ovulation. Embryos were collected on day 2 of gestation and cultured for 3 days in S2 medium (Scandinavia IVF Science, Gothenburg, Sweden).
  • 10-week hybrid female mice (DBA x C57BL) were superovulated by 7.5 IU intraperitoneal injections of equine chorionic gonadotropin (eCG, Intervet, Boxmeer, The Netherlands) followed 48 hours later by 5 IU of human chorionic gonadotropin (hCG, Lepori, Farma-Lepori, Barcelona, Spain).
  • eCG equine chorionic gonadotropin
  • hCG human chorionic gonadotropin
  • male mice were mated with male mice of the same strain.
  • the blastocysts were collected 3.5 days after intercourse (dpc) and grown for 24 hours in groups of 20-25 in a drop of 40 ⁇ of simple potassium optimization medium (KSOM), supplemented with amino acids and oil-coated mineral, in a humidified atmosphere with 5% C0 2 at 37 ° C. Degenerated embryos were discarded, and only expanded blastocysts with normal morphology were used. The zona pellucida was not removed artificially. Adhesion of mouse blastocysts to confluent HEC-lA monolayers was measured by a mechanical test: the blastocysts were incubated for 24-48 hours on monolayers confluents (C0 2 at 5% at 37 ° C). The incubation plates were then moved along a 3 cm diameter circular path at 60 rpm for about 10 seconds. Floating embryos were counted and those joined together with an inverted microscope (Nikon Diaphot 300, Nikon Corporation, Tokyo, Japan).
  • KSOM simple potassium
  • both cell lines express the prolactin receptor (PRL-R), estradiol receptors ⁇ and ⁇ (ERa and ERP), and cyclooxygenase-2 (Cox-2).
  • PRL-R prolactin receptor
  • ERa and ERP estradiol receptors ⁇ and ⁇
  • Cox-2 cyclooxygenase-2
  • the cells were negative for the expression of the leucocyte markers ICAM-3, CD43 and PSGL-1, and for the VCAM-1 and CD-31 endothelial molecules.
  • the endometrial cells were also negative for the expression of selectins P, E and L.
  • CD15 selectin ligands were detected on the cell surface of both EEC and RL95- receptive cells. 2, but not in HEC-lA cells.
  • CD98 about 6 times more than in HEC-lA and EEC cells
  • CD147 2.8 times more than in HEC-lA cells and 1.4 times more than in EEC
  • Table 1 Analysis by flow cytometry of the expression of cell adhesion molecules in endometrial epithelial cells and cell lines.
  • MFI mean fluorescence intensity
  • CD98 is polarized to the apical surface of endometrial epithelial cells and is associated with micro-domains enriched in tetraspanins.
  • its subcellular location was first evaluated in polarized primary EEC monolayers (confirmed by intracellular staining of E-caderin; Fig. 1A).
  • CD98 is polarized on the apical surface of the endometrial epithelium, collocating in the apical microvilli with CD9 tetraspanin (Fig. 1A, B).
  • ICAM-1 and CD147 were found in both the apical and basolateral compartments, and only partial colocalization of CD147 with CD9 was observed (Fig. IB).
  • CD98 expression is restricted to the implantation window in human endometrium
  • CD147 expression increased with the progression of the menstrual cycle, with a maximum in the middle secretory phase (group 4) (Fig. 3 A), when implantation takes place, and slightly decreasing in the late secretory phase (Team 5).
  • the intensity of CD147 staining in the luminal and glandular epithelium varied from weak to moderately positive throughout the menstrual cycle, with maximum expression in the implantation window.
  • the stroma and epithelium were negative for CD98 expression in the early stages of the menstrual cycle but, unlike mRNA expression, it increased to moderately positive in the middle secretory phase (group 4), which corresponds to the implantation window (Fig. 3B).
  • CD9 and CD147 occur in the luminal epithelium and its expression is greater in the time of maximum receptivity, but only CD98 could function as a signal of receptivity, since its expression is undetectable outside the implantation window.
  • CD98 is induced in vivo in cultured endometrial epithelial cells
  • adhesion assays were performed with cultures of fluorescently labeled JAR trophoblasts and HEC-l-A; Expression levels of CD147, CD98, ICAM-1 and CD9 in HEC-l-A cells were analyzed by flow cytometry after 24 hours of adhesion. Adhesion of JAR spheroids induced expression of ICAM-1 and CD98 in the plasma membrane of endometrial cells (Fig. 4A), and the same induction was observed using JAR conditioned medium. CD9 levels did not change, while the membrane expression of CD147 decreased slightly.
  • the JAR conditioned medium has been shown to contain human chorionic gonadotropin (hCG) (Hussa, RO et al. J Clin Endocrinol Metab 40: 401-405), and it was found that treatment with hCG was capable of inducing ICAM expression -1 and CD98 in both HEC-lA cells ( Figure 4B) and in primary EEC ( Figure 4B and C). CD98 was also induced in primary endometrial cells by exposure to ⁇ -estradiol ( Figure 4C and D). Progesterone treatment did not significantly alter expression in the CD98 plasma membrane but increased the effect of estrogen treatment (Figure 4C and D). The surface levels of ICAM-1, CD147 and CD9 did not change significantly for these hormones in vitro.
  • hCG human chorionic gonadotropin
  • HEC-l-A endometrial cell line cells were transiently transfected with CD147, ICAM-1 or CD9 constructs with GFP as a label; Exogenous protein expression was confirmed by flow cytometry, PCR and immunoblot. Emerging mouse blastocysts were allowed to adhere to transfected endometrial monolayers and the number of adhered blastocysts was analyzed after 24 hours. The overexpression of ICAM-1 or the negative CD4 control had no significant effect on the adhesion of blastocysts. On the contrary, overexpression of CD147 or CD9 produced a significant increase in blastocyst adhesion (Fig. 5A).
  • HEC-lA cells were infected in parallel with a lentivirus encoding human CD98 together with an indicator of GFP infection and HEC-lA cells with a lentivirus that encodes for a specific cRNA for CD98 along with a GFP infection indicator.
  • CD98 lentiviral overexpression resulted in an increase in blastocyst adhesion as demonstrated in the previous example (Fig. 5B).
  • shRNA expression resulted in a significant inhibition of mouse blastocyst adhesion at 24 hours (Figure 5C).
  • CD98 located in the enriched microdomains of tetraspanins, could be a crucial determinant of human endometrial receptivity during the implantation window.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)

Abstract

La invención se relaciona con el uso de CD98 como marcador de receptividad endometrial lo que permite el desarrollo de métodos para determinar el momento óptimo para que tenga lugar la implantación del blastocisto basados en la determinación de los niveles de expresión de CD908 en el tejido endometrial a lo largo del ciclo. La invención se refiere también a métodos para aumentar la receptividad del endometrio basados en el aumento de los niveles de CD98, así como a composiciones anticonceptivas basadas en el uso de inhibidores de CD98.

Description

USO DE CD98 COMO MARCADOR DE RECEPTIVIDAD ENDOMETRIAL CAMPO DE LA INVENCIÓN
La invención se relaciona con la identificación de marcadores adecuados para determinar el estado de receptividad del endometrio así el uso de dichos marcadores y de inhibidores de los mismos para modular la receptividad del endometrio a la implantación del blastocisto.
ANTECEDENTES DE LA INVENCIÓN
La receptividad endometrial es un periodo autolimitado en el que el epitelio endometrial adquiere un estado ovárico funcional y transitorio dependiente de esteroides que permite la adhesión del blastocisto. En seres humanos, el epitelio endometrial luminal adquiere este estado simultáneamente con el desarrollo de decidualización en el compartimento estromal (Popovici, R.M. et al. 2000. Endocrinology 141 :3510-3513), que se debe principalmente a la presencia de progesterona después de la sensibilización apropiada con 17P-estradiol. Este periodo, denominado "ventana de implantación", dura desde los días 4-5 hasta los días 9-10 después de la producción o administración de progesterona. La ventana receptiva en seres humanos está limitada de esta manera a los días 19-24 del ciclo menstrual (Navot, D. et al. 1991. J Clin Endocrinol Metab 72:408-414).
Para volverse receptivo, el endometrio sufre modificaciones estructurales y bioquímicas inducidas mediante regulación génica específica. Los cambios morfológicos, incluyen modificaciones en la membrana plasmática y el citoesqueleto. Los cambios bioquímicos dependen de una comunicación cruzada entre el endometrio materno y el blastocisto que es esencial para el progreso a través de cada fase de la implantación (Domínguez, F. et al. 2005. FASEB J 19: 1056-1060). El conocimiento de las bases moleculares de la receptividad endometrial es fundamental para el entendimiento de la reproducción humana.
La implantación embrionaria implica los pasos secuenciales de aposición, unión e invasión (Domínguez, F. et al. 2005. FASEB J 19:1056-1060). Similar a la situación con los leucocitos durante la extravasación, la primera interacción parece basarse en ligandos de hidrato de carbono de L-selectina expresada en el epitelio luminal en el periodo de implantación. Sin embargo, ratones deficientes en L-selectina no tienen problemas de fertilidad (Robinson, S.D. et al. 1999. Proc Nati Acad Sci USA 96: 11452- 11457). Además de L-selectina, las moléculas de adhesión celular mejor caracterizadas en la superficie luminal del endometrio son la integrina ανβ3 y su ligando osteopontina, que se ha encontrado repetidamente en estudios genómicos de endometrio receptivo humano. Los estudios con ratones deficientes revelan un papel crucial para la integrina βΐ en la implantación, pero la deficiencia de varias subunidades α (α4, α5, α6 ó αν) no produce fenotipo de implantación.
La receptividad endometrial probablemente no está determinada exclusivamente por la expresión de moléculas de adhesión selectivas, y también es probable que sean importantes una serie de reorganizaciones en el citoesqueleto. Los pinópodos endometriales son estructuras dependientes de hormonas que aparecen en el periodo de implantación en la membrana apical del endometrio epitelial y representan sitios de unión preferente de blastocistos. Las microvellosidades y estructuras adhesivas especializadas tales como estructuras endoteliales de acoplamiento están enriquecidas en microdominios de tetraspaninas.
A pesar de que se han descrito muchos marcadores bioquímicos para determinar la receptividad endometrial (Giudice, L.C. 1999. Hum Reprod 14 Suppl 2:3-16; Achache, H et al.; Human Reproduction Update, 2006; 12:731-46, Thomas, K et al.; Fértil. Steril. 2003; 80:502-507; WO03062832), existe la necesidad de encontrar un marcador efectivo que tenga aplicación en clínica y que se exprese exclusivamente durante la ventana de implantación.
COMPENDIO DE LA INVENCIÓN En un primer aspecto, la invención se relaciona con el uso de CD98 como marcador de receptividad del endometrio para la implantación del embrión. En un segundo aspecto, la invención se relaciona con un método para seleccionar la ventana temporal para la implantación del embrión en un animal hembra que comprende determinar el nivel de CD98 en una muestra de endometrio de dicho animal, en donde dicha ventana corresponde al momento en el que el nivel de expresión de CD98 en dicha muestra se encuentra elevado con respecto a una muestra de referencia.
En otro aspecto, la invención se relaciona con el uso de un agente activador de CD98 o de CD9 para la preparación de un medicamento para aumentar la receptividad del endometrio durante la implantación del embrión.
En otro aspecto, la invención se relaciona con un método para la identificación de compuestos capaces de aumentar la receptividad del endometrio que comprende
(i) poner en contacto una célula seleccionada del grupo de
a. una célula que expresa CD98 o CD9 y
b. una célula que comprende una construcción génica que comprende un polinucleótido que codifica un gen reportero en donde dicho polinucleótido se encuentra operativamente acoplado al promotor de CD98 o al promotor de CD9,
con un compuesto candidato y
(ii) determinar el nivel de expresión de CD98, de CD9 o del gen reportero en dicha célula
en donde el compuesto se considera adecuado para aumentar la receptividad del endometrio si provoca un aumento en el nivel de expresión de CD98, de CD9 o del gen reportero.
En otro aspecto, la invención se relaciona con un método para la identificación de compuestos anticonceptivos que comprende
(i) poner en contacto una célula seleccionada del grupo de
a. una célula que expresa CD98 o CD9 y
b. una célula que comprende una construcción génica que comprende un polinucleótido que codifica un gen reportero en donde dicho polinucleótido se encuentra operativamente acoplado al promotor de CD98 o al promotor de CD9,
con un compuesto candidato y
(ii) determinar los niveles de expresión de CD98, CD9 o del gen reportero en dicha célula
en donde el compuesto se considera adecuado como compuesto anticonceptivo si provoca una disminución en el nivel de CD98, de CD9 o del gen reportero.
En un último aspecto, la invención se relaciona con un método anticonceptivo que comprende la administración a un sujeto de un inhibidor de CD98.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 describe la localización de CD98 en microdominios enriquecidos en tetraspaninas en la superficie apical de células endometriales humanas. (A) Análisis confocal de la expresión de moléculas de adhesión en cultivos de células epiteliales endometriales primarias humanas polarizadas. Las secciones verticales se obtuvieron con software confocal de Leica (LASAF). (B) Monocapas confluentes de EEC se tiñeron doblemente para las moléculas indicadas y se analizaron mediante microscopía confocal. El análisis de la colocalización se muestra en el histograma de puntos de las intensidades de fluorescencia en ambos canales. (C) Se lisaron monocapas de EEC confluentes en tampón que contenía Brij 96 al 1% y los lisados se inmunoprecipitaron con los mAb anti-CD9 (VJ1/20), anti-ICAM-1 (HU5/3) o anti-CD147 (VJ1/9), o suero anti-CD98. Se incluyó Ig no inmune como control negativo. Las membranas se probaron para CD9 (VJ1/20) y CD98.
La Figura 2 describe el análisis por PCR en tiempo real de la expresión de ARNm de CD147, CD98 e ICAM-1 a lo largo del ciclo menstrual. Se distribuyeron las biopsias endometriales en cinco grupos según la fase del ciclo: grupo 1, proliferativa temprana- media (días 1-8); grupo 2, proliferativa tardía (días 9-14); grupo 3, secretora temprana (días 15-18); grupo 4, secretora media (días 19-22) y grupo 5, secretora tardía (días 23- 28). Los datos se presentan como un valor medio relativo ± EEM de tres experimentos normalizados al valor medio de los genes de la beta-actina y GAPDH en cada fase designada el ciclo menstrual.
La Figura 3 describe la inducción de CD98 en la ventana de implantación en el endometrio humano. (A) Inmunolocalización de CD9, ICAM-1 y CDl47 en endometrio humano a lo largo del ciclo menstrual. Las micrografías muestran tinciones inmunohistoquímicas representativas de muestras del grupo 4 (día 20), correspondientes a la ventana de implantación. Las gráficas representan la expresión basada en análisis semicuantitativos de tinción a lo largo del ciclo menstrual en tres muestras endometriales por grupo. Se observa tinción fuerte para ICAM-1 a lo largo del ciclo menstrual en glándulas epiteliales
Figure imgf000006_0001
y estroma
Figure imgf000006_0003
, mientras que la tinción de CD9 se observa sólo en epitelio glandular
Figure imgf000006_0002
y lurninal
Figure imgf000006_0004
CD147 mostró fuerte tinción estromal de endometrio secretor temprano y medio, y también tinción moderada de epitelio glandular y luminal en la fase secretora media. Se analizó la intensidad del la tinción semi cuantitativamente (ver Métodos), y se designó como sigue: negativa = 0; débilmente positiva = 1; moderadamente positiva = 2 y fuertemente positiva = 3. Los puntos indican las intensidades relativas medias de señales puntuadas independientemente por tres observadores a ciegas. (B) Inmunolocalización de CD98 en endometrio humano a lo largo del ciclo menstrual. Las micrografías muestran los cinco grupos del ciclo menstrual en secuencia: grupo 1 = día 5, grupo 2 = día 9, grupo 3 = día 15, grupo 4 - día 20 y grupo 5 = día 25. No se detectó virtualmente ninguna señal en endometrio proliferativo temprano-medio, y sólo una tinción ligera en glándulas endometriales en la fase secretora temprana. La gráfica representa la expresión basada en análisis semicuantitativos de las tinciones a lo largo del ciclo menstrual en tres muestras endometriales por grupo, puntuadas y designadas como en (A).
La Figura 4 describe la inducción de la expresión endometrial de CD98 mediante adhesión y hormonas in vitro. (A) Análisis de citometría de flujo de la expresión de membrana de CD98, ICAM-1, CD147 y CD9 en células HEC-l-A después de adhesión de esteroides JAR o tratamiento con medio condicionado de JAR durante 24 horas. Los datos son la inedia ± DE de intensidad media de fluorescencia (MFI) normalizada a células sin tratar en seis experimentos independientes. * p<0.02 ** p<0.00001 respecto a células sin tratar (prueba t de Student) (B) Análisis por citometría de flujo de la expresión de membrana de CD98, ICAM-1, CD147 y CD9 en células EEC después del tratamiento durante 48 horas con hCG (100 U/ml), β-estradiol (30 nM), progesterona (1 μΜ) o β-estradiol más progesterona. Los datos son la media ± DE de MFI normalizada a células sin tratar en dos experimentos independientes. (C) Inmunotransferencia de la expresión de CD98 en Usados totales de células de HEC-l-A o EEC después de exposición a hCG (100 U/ml) durante 48 horas. Se muestra la expresión de a-tubulina como control de carga. (D) Análisis por inmunotransferencia de la expresión de CD98 en lisados totales de EEC primarias después del tratamiento durante 48 horas con β- estradiol (30 nM), progesterona (1 μΜ) o β-estradiol más progesterona. Se muestra la expresión de GADPH como control de carga. (E) Análisis por citometría de flujo de la expresión de membrana de CD98 en células EEC después del tratamiento durante 48 horas con ILlp (20 ng/ml), LIF (1000 U/ml), TGF (10 ng/ml), NGF (10 ng/ml), EGF (100 ng/ml) o IGF (1 μg/ml). Los datos son la media ± DE de MFI normalizada a células sin tratar en cuatro experimentos independientes. * p<0.05 ** p<0.02 respecto a células sin tratar (prueba t de Student). (F) Se dejaron adherir blastocistos de ratón a monocapas de HEC-l-A confluentes y las células se fijaron y tiñeron para CD98 (verde), y se analizaron mediante microscopía confocal. Los núcleos se marcaron con Hoechst (azul). Se muestran una imagen en pseudocolor de la intensidad de tinción de CD98 y una imagen de contraste de fase. Barra: 50 um.
La Figura 5 muestra que la sobreexpresión de CD9, CD 147 o CD98 aumenta la receptividad de las células HEC-l-A mientras que el silenciamiento de CD98 resulta en una inhibición de la adhesión. (A) Las células HEC-l-A se transfectaron transitoriamente con versiones de CD4, CD147, ICAM-1 o CD9 con etiqueta GFP en experimentos independientes. Se analizó la adhesión de blastocistos de ratón a las células transfectadas después del co-cultivo durante 24 horas. Los datos son medias ± DE de cuatro experimentos independientes, expresados relativos a la tasa de adhesión en células no transfectadas en cada experimento. El número total de blastocistos evaluado en cada condición fueron, CD4 n=91, CD147 n=149, CD9 n=169 e ICAM-1 n=106. * p<0,02 (prueba t de Student) comparado con el correspondiente experimento control con células sin transfectar. (B) Se infectaron células HEC-l-A con lentivirus que codificaban GFP, CD98 más GFP. Tres días después de la infección las monocapas de HEC-l-A infectadas se cocultivaron con blastocistos de ratón y se cuantificó la adhesión después de 24 horas. Los datos son medias ± DE de dos experimentos independientes realizados en triplicado. El número total de blastocistos evaluados fue, sin infectar n=50, GFP n=61 y CD98 n=56. * p<0,02 (prueba t de Student) frente a células no infectadas. C. Se infectaron HEC-l-A con lentivirus que codificaban GFP, CD98 más GFP, o un shRNA específico frente a CD98 más GFP. Tres días tras la infección, las monocapas de células HEC-l-A infectadas se cultivaron con blastocistos de ratón y se determinó la adhesión tras 48 h. Se muestran los medias ± DS de un experimento realizado por cuadruplicado. El número total de blastocistos que se cuantificaron fue de n=40 (no infectados), n= 39 (GFP), n=31 (CD98) y n=64 (shRNA específco frente a CD98). ** p<0.005 (test de la t de Student) frente GFP.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN Los autores de la presente invención han observado cómo la expresión de CD98 en el endometrio se encuentra restringida a la ventana de implantación. Así, tal y como se ilustra en el ejemplo 3, la expresión de CD98 está estrictamente restringida a la ventana de implantación. Por otro lado, en el ejemplo 4 de la presente invención, se describe cómo CD98 se localiza en la superficie apical de las células epiteliales, lo que es consistente con un papel de CD98 en la adhesión de blastocistos. De esta forma, es posible identificar la ventana de implantación en un animal hembra mediante la determinación de la expresión de CD98 en el endometrio a lo largo del ciclo menstrual.
CD98 como marcador de receptividad endometrial
Así, en un primer aspecto, la invención se relaciona con el uso de CD98 como marcador de receptividad del endometrio para la implantación del embrión.
En un segundo aspecto, la invención se relaciona con un método (en adelante primer método de la invención) para seleccionar la ventana temporal para la implantación del embrión en un animal hembra que comprende determinar el nivel de expresión de CD98 en una muestra de endometrio de dicho animal, en donde dicha ventana corresponde al momento en el que el nivel de expresión de CD98 en dicha muestra se encuentra elevado con respecto a una muestra de referencia.
Por "método para seleccionar la ventana temporal para la implantación del embrión", según se usa aquí, se refiere a métodos de determinar la probabilidad de que un animal hembra se encuentre en periodo receptivo para la implantación del embrión. Dicho método comprende determinar el nivel de expresión de CD98 en una muestra de endometrio de dicho animal. Preferiblemente, se realizan mediciones regulares a lo largo de todo el ciclo menstrual, determinándose la ventana de implantación en aquel momento a lo largo del ciclo en el que los niveles de CD98 sean más elevados con respecto a la muestra de referencia o con respecto a los niveles en el resto de muestras.
El experto en la materia apreciará que la predicción puede no ser correcta para el 100% de los pacientes en estudio. Sin embargo, el método de predicción requiere que se proporcionen resultados correctos para una porción estadísticamente significante de pacientes. La determinación de si el método de la invención proporciona predicciones estadísticamente significantes puede ser llevado a cabo usando técnicas estadísticas estándar tales como la determinación de los intervalos de confianza, determinación del valor p, test de la t de Student, test Mann-Whitney tal y como se explica en Dowdy and Wearden, Statistics for Research, John Wiley & Sons, New York 1983. Intervalos de confianza adecuados son al menos 50%, al menos 60%>, al menos 70%>, al menos 80%>, al menos 90%>, al menos 95%>. Los valores p son, preferiblemente, 0,2, 0,1, 0,05.
La expresión "ventana temporal para la implantación del embrión", según se usa en la presente invención, se refiere al momento o intervalo de tiempo a lo largo del ciclo menstrual en el que el endometrio es receptivo a la implantación del embrión. En humanos, la ventana de implantación tiene lugar durante la fase secretora del ciclo menstrual, en concreto, en los días 6-8 tras el aumento de secreción de la hormona lutenizante (LH) y corresponde, por tanto a los días 20 a 24 de un ciclo menstrual ideal de 28 días. Ciclos similares se han descrito en otros mamíferos de forma que el método de la presente invención puede ser adaptado a cualquier animal. El término "animal hembra", según se entiende en la presente invención, se refiere a cualquier animal mamífero incluyendo, sin limitación, animales pertenecientes al orden Rodentia, (ratones); al orden Logomorpha (conejos), al orden Carnívora, incluyendo felinos (gatos) y caninos (perros), al orden Artiodactyla, tales como bóvidos (vacas) y suidos (cerdos); al orden Perissodactyla, tales como équidos (caballos) y, en particular, al orden Primates, Ceboides y Simoides (monos) y Antropoides (humanos y simios). Preferiblemente, el animal mamífero de la presente invención es un ser humano.
La determinación de la receptividad a la implantación es de particular importancia en técnicas tales como fecundación in vitro, transferencia de embriones, transferencia de gametos intrafalopiana, transferencia de embriones tubal, inyección intracitoplásmica de esperma e inseminación intrauterina. La determinación de la receptividad intrauterina también es importante para determinar el momento óptimo para concebir tras las relaciones sexuales en parejas que están intentando concebir de forma natural.
El término "CD98", según se usa en la presente invención, se refiere a una glicoproteína que corresponde a la cadena pesada que forma los distintos heterodímeros responsables del transporte de aminoácidos a través de la membrana plasmática. Un heterodímero del que CD98 actúa como cadena pesada es el que forma parte del transportador de tipo L (LAT-1) y que se conoce también como cadena pesada 4F2 (4F2hc) o familia 3 de transportadores de soluto (solute carrier family 3 o SLC3A2). El experto en la materia apreciará que es posible usar CD98 de distintas especies dependiendo de la especie en la que se quiera poner en práctica el método de la invención. Así, la invención contempla la determinación del nivel de expresión de CD98 de origen humano, tal y como se define en la base de datos NCBI con número de acceso P08195 (versión de 21 de octubre de 2010), CD98 de rata (Rattus norvegicus) correspondiente a la proteína descrita en NCBI con número de acceso Q794F9 (versión de 21 de octubre de 2010), CD98 de ratón (Mus musculus) correspondiente a la proteína descrita en la base de datos NCBI con número de acceso P 10852 (versión de 21 de octubre de 2010), CD98 de conejo (Oryctolagus cuniculus) correspondiente a la proteína descrita en la base de datos NCBI con número de acceso Q7YQK3 (versión de 21 de octubre de 2010). Asimismo, el término CD98 se refiere a variantes funcionalmente equivalentes de CD98. Por "variante funcionalmente equivalente" se entiende todos aquellos péptidos derivados de la secuencia de CD98 mediante modificación, inserción y/o deleción de uno o más aminoácidos, siempre y cuando se mantenga sustancialmente la función de las proteínas CD98 mencionada anteriormente. En concreto, la variante funcionalmente equivalente muestra al menos una función relacionada con la capacidad de promover la adhesión de blastocistos a células del endometrio. Métodos adecuados para determinar la capacidad de CD98 de promover la adhesión de blastocistos a células del endometrio incluye el método descrito en el ejemplo 5 de la presente invención, basado en la capacidad de células endometriales transfectadas con CD98 o la variante del mismo de promover la adhesión de blastocistos.
Variantes adecuadas para su uso en la presente invención incluyen aquellas que muestran al menos un 25%, al menos 40%>, al menos 60%>, al menos 70%>, al menos 80%), al menos 90%>, al menos 95%, al menos 96%>, al menos 97%, al menos 98%> o al menos 99% de identidad de secuencia con respecto a las secuencias de CD98 arriba indicadas. El grado de identidad entre dos secuencias de aminoácidos puede determinarse por métodos convencionales, por ejemplo, mediante algoritmos estándar de alineamiento de secuencias conocidos en el estado de la técnica, tales como, por ejemplo BLAST (Altschul S.F. et al. Basic local alignment search tool. J Mol Biol. 1990 Oct 5; 215(3):403-10). El experto en la materia entenderá que las secuencias de aminoácidos a las que se hace referencia en esta descripción pueden estar modificadas químicamente, por ej emp lo , mediante modificaciones químicas que son fisiológicamente relevantes, tales como, fosforilaciones, acetilaciones, etc.
Como entiende el experto en la materia, el nivel de expresión de CD98 puede ser determinado midiendo el nivel del ARNm que codifica CD98 o la variante funcionalmente equivalente de la misma o midiendo los niveles de proteína CD98 o de la variante funcionalmente equivalente de la misma.
Así, en una forma de realización particular de la invención, los niveles de expresión de CD98 se determinan midiendo los niveles de expresión del ARNm que codifican la proteína CD98. Para este fin, la muestra biológica se puede tratar para disgregar de forma física o mecánica la estructura del tejido o célula, para liberar los componentes intracelulares en una solución acuosa u orgánica para preparar los ácidos nucleicos para análisis adicionales. Los ácidos nucleicos se extraen de la muestra mediante procedimientos conocidos para el experto en la materia y disponibles comercialmente. El ARN se extrae después a partir de muestras congeladas o recientes mediante cualquiera de los métodos típicos en la técnica, por ejemplo Sambrook, J., et al, 2001 Molecular Cloning, a Laboratory Manual, 3a ed., Cold Spring Harbor Laboratory Press, N.Y., Vol. 1-3. Preferiblemente, se tiene cuidado para evitar la degradación del ARN durante el proceso de extracción.
La cantidad de ARNm que codifica CD98 en la preparación de ARNm obtenida a partir de la muestra puede ser determinada mediante ensayos de hibridación o de amplificación que incluyen, sin limitación, ensayos de Northern y Southern Blot y reacción en cadena de polimerasa (PCR). Un método para la detección del ARNm específico para CD98 incluye el uso de sondas que son capaces de hibridar específicamente con el ARNm o ADNc de CD98. La sonda puede ser un ADNc de cadena completa o un fragmento del mismo como por ejemplo un oligonucleotido de al menos 7, 15, 30, 50, 100, 250 o 500 nucleótidos de longitud capaz de hibiridar con el ARNm o ADNc diana en condiciones de estrictas. Preferiblemente, la detección del ARNm se lleva tras la amplificación del ADNc obtenido a partir del ARNm usando técnicas de amplificación conocidas tales como la reacción en cadena de la polimerasa (PCR), reacción en cadena de polimerasa en tiempo real ("RT-PCR"), reacción en cadena de ligasa ("LCR"), replicación de secuencias auto-sostenida ("3SR") también conocida como amplificación basada en secuencias de ácidos nucleicos ("NASBA"), amplificación Q-B-Replicasa, amplificación por círculo rodante ("RCA"), amplificación mediada por transcripción ("TMA"), amplificación asistida por enlazadores ("LADA"), amplificación por desplazamiento múltiple ("MDA"), amplificación por desplazamiento de la cadena y del invasor ("SDA"). En una realización preferida la cuantificación del ARNm que codifica CD98 se lleva a cabo mediante RT-PCR. El nivel de expresión de la proteína CD98 puede ser cuantificado mediante cualquier método convencional que permita detectar y cuantificar dicha proteína en una muestra de un sujeto. A modo ilustrativo, no limitativo, los niveles de dicha proteína pueden cuantificarse, por ejemplo, mediante el empleo de anticuerpos con capacidad de unirse a CD98 (o a fragmentos de la misma que contenga un determinante antigénico) y la posterior cuantificación de los complejos formados. Los anticuerpos que se emplean en estos ensayos pueden estar marcados o no. Ejemplos ilustrativos de marcadores que se pueden utilizar incluyen isótopos radiactivos, enzimas, fluoróforos, reactivos quimioluminiscentes, sustratos enzimáticos o cofactores, inhibidores enzimáticos, partículas, colorantes, etc. Existe una amplia variedad de ensayos conocidos que se pueden utilizar en la presente invención, que utilizan anticuerpos no marcados (anticuerpo primario) y anticuerpos marcados (anticuerpo secundario); entre estas técnicas se incluyen el Western-blot o transferencia Western, ELISA (ensayo inmunoabsorbente ligado a enzima), RIA (radioinmunoensayo), EIA competitivo (inmunoensayo enzimático competitivo), DAS-ELISA (ELISA sandwich con doble anticuerpo), técnicas inmunocitoquímicas e inmunohistoquímicas, técnicas basadas en el empleo de biochips o microarrays de proteínas que incluyan anticuerpos específicos o ensayos basados en precipitación coloidal en formatos tales como dipsticks. Otras maneras para detectar y cuantificar dicha proteína CD98, incluyen técnicas de cromatografía de afinidad, ensayos de unión a ligando, etc.
La inmunotransferencia se basa en la detección de proteínas previamente separadas mediante electroforesis en gel en condiciones desnaturalizantes e inmovilizadas en una membrana, generalmente nitrocelulosa mediante incubación con un anticuerpo específico y un sistema de revelado (por ejemplo, quimio luminiscencia). El análisis mediante inmunofluorescencia requiere el uso de un anticuerpo específico para la proteína diana para el análisis de la expresión. El ELISA está basado en el uso de antígenos o anticuerpos marcados con enzimas de modo que los conjugados formados entre el antígeno diana y el anticuerpo marcado dan como resultado la formación de complejos enzimáticamente activos. Puesto que uno de los componentes (el antígeno o el anticuerpo marcado) están inmovilizados sobre un soporte, los complejos antígeno- anticuerpo están inmovilizados sobre el soporte y de esta manera, se pueden detectar mediante la adición de un sustrato que es convertido por la enzima en un producto que es detectable mediante, por ejemplo, espectrofotometría o fluorometría.
Cuando se usa un método inmuno lógico, se puede usar cualquier anticuerpo o reactivo que se sabe se une a CD98 con una afinidad suficientemente elevada como para detectar la cantidad de proteínas diana. Sin embargo se prefiere el uso de un anticuerpo, por ejemplo sueros policlonales, sobrenadantes de hibridomas o anticuerpos monoclonales, fragmentos de anticuerpos, Fv, Fab, Fab' y F(ab')2, scFv, diacuerpos, triacuerpos, tetracuerpos y anticuerpos humanizados.
En una realización particular, la determinación de los niveles de expresión de proteínas se leva a cabo mediante técnicas de inmunohistoquímica, bien conocidas en el estado de la técnica. Para llevar a cabo la determinación mediante inmunohistoquímica, la muestra puede ser una muestra fresca, congelada o embebida en parafina y fijada usando un agente protector del tipo de la formalina. Para la determinación inmunohistoquímica, la muestra se tiñe con un anticuerpo específico para CD98 y se determina la frecuencia de células que se han teñido y la intensidad de la tinción. Típicamente, se asigna a la muestra un valor indicativo de la expresión total y que se calcula en función de la frecuencia de células teñidas (valor que varía entre 0 y 4) y de la intensidad en cada una de las células teñidas (valor variable entre 0 y 4). Criterios típicos para asignar valores de expresión a las muestras se han descrito en detalle, por ejemplo, en Handbook of Immunohistochemistry and In Situ Hybridization in Human Carcinomas, M. Hayat Ed., 2004, Academic Press. Preferiblemente, la detección inmunohistoquímica se lleva a cabo en paralelo con muestras de células que sirven como marcador positivo y como marcador negativo. También es frecuente usar un control de fondo.
En aquellos casos en los que se desee analizar un elevado número de muestras (por ejemplo, cuando se desea analizar varias muestras de un mismo paciente o muestras de distintos pacientes), es posible la utilización de formatos matriciales y/o procedimientos automatizados. En una forma de realización, es posible el uso de micromatrices de tejidos (tissue microarrays or TMA) que pueden ser obtenidos usando distintas técnicas. Las muestras que forman parte de las micromatrices pueden ser analizadas de distinta manera incluyendo inmunohistoquímica, hibridación in situ, PCR in situ, análisis de ARN o de ADN, inspección morfológica y combinaciones de cualquiera de las anteriores. Métodos para el procesamiento de micromatrices de tejido han sido descritos, por ej emplo, en Konenen, J. et al. , (Nat. Med. 1987, 4 : 844-7). Las micromatrices de tejido se preparan a partir de núcleos cilindricos de 0,6 a 2 mm de diámetro a partir de muestras de tejido embebidas en parafina y vueltas a embeber en un único bloque receptor. De esta forma, el tejido procedente de múltiples muestras puede ser insertado en un único bloque de parafina.
Por niveles elevados de AR m o proteína en relación con los niveles de ARNm o proteína en una muestra de referencia se entiende, según la presente invención, un aumento en los niveles de ARNm o proteína de al menos 1,1 veces, 1,5 veces, 5 veces, 10 veces, 20 veces, 30 veces, 40 veces, 50 veces, 60 veces, 70 veces, 80 veces, 90 veces, 100 veces o incluso más con respecto a la muestra aislada del paciente.
Por "muestra de endometrio" se entiende, en el contexto de la presente invención, un conjunto de células obtenidas del endometrio en la que es posible llevar a cabo la detección de CD98. Por "endometrio" se entiende la mucosa que recubre el interior del útero y que está formada por varias capas entre las que se encuentra la capa más próxima al miometrio o lámina basal y la que se encuentra más próxima a la superficie que es la lámina funcional. El endometrio es un epitelio simple prismático con o sin cilios, glándulas y un estroma rico en tejido conjuntivo y altamente vascularizado y cuya función es alojar el blastocisto permitiendo su implantación, es el lugar donde se desarrolla la placenta y presenta alteraciones cíclicas en sus glándulas y vasos sanguíneos durante el ciclo menstrual en preparación para la implantación del embrión humano. El endometrio se caracteriza por presentar alteraciones cíclicas durante el ciclo menstrual (en primates) o durante el ciclo estral (en otros mamíferos) en las que modifica para dar lugar a un tejido altamente vascularizado y glandular. En el caso de que se produzca la implantación del blastocisto, el recubrimiento endometrial que se ha formado durante el ciclo menstrual permanece formando la decidua que es la porción maternal de la placenta. La muestra de tejido endometrial puede ser recogida usando métodos convencionales tales como biopsia, lavados uterinos, legrados uterinos o a partir de fluido menstrual. En el caso de que la muestra sea obtenida mediante biopsia, ésta puede ser de tipo incisional o excisional. La determinación de los niveles de expresión de CD98 necesita ser correlacionada con el valor de expresión de CD98 en una muestra de referencia. Por "muestra de referencia", según la presente invención, se entiende una muestra de endometrio obtenida a partir de un animal hembra en el periodo no fértil de dicho animal. Debido a la variabilidad que puede existir entre distintos sujetos en cuanto a la expresión de CD98 en periodo no fértil, la muestra de referencia se obtiene típicamente combinando cantidades iguales de muestras de una población de sujetos. En general, las muestras de referencia típicas se obtendrán de sujetos que están clínicamente bien documentados. En tales muestras, las concentraciones normales (de referencia) del biomarcador se pueden determinar, por ejemplo proporcionando la concentración media sobre la población de referencia. Al determinar la concentración de referencia del marcador se toman en cuenta varias consideraciones. Entre tales consideraciones están el tipo de muestra implicada (por ejemplo tejido o LCR), la edad, peso, sexo, estado físico general del paciente y similares. Por ejemplo, se toman como grupo de referencia cantidades iguales de un grupo de al menos 2, al menos 10, al menos 100 a preferiblemente más de 1000 sujetos, preferiblemente clasificados según las consideraciones anteriores, por ejemplo de varias categorías de edad. En una forma preferida de realización, la muestra de referencia se obtiene a partir del endometrio de un animal hembra en el periodo no fértil de dicho animal.
Alternativamente, si se desea obtener una determinación más fiable de la ventana temporal adecuada para la implantación del blastocisto, es preferible efectuar determinaciones de los niveles de CD98 a lo largo de todo el ciclo menstrual. Así, el método de la invención puede ser llevado a cabo mediante la determinación de los niveles de CD98 con una frecuencia diaria, cada dos días, cada tres días, cada 4 días, cada 5 días, cada 6 días, cada 7 días, cada 8 días, cada 9 días etc. de forma que se obtenga el perfil de expresión de CD98 a lo largo de todo el ciclo menstrual. Típicamente, se pueden obtener muestras endometriales en cada uno de los estadios del ciclo menstrual, en concreto, es posible la obtención de muestras en la fase proliferativa (días 1-14 del ciclo o antes del pico de LH), en la fase secretora temprana del ciclo (días 15-19 o días 1 a 5 tras el pico de LH); en la fase secretora intermedia (días 20-24 del ciclo o días 6 a 10 tras el pico de LH) y en fase secretora tardía (días 25-28 o días l i a 14 tras el pico de LH). De esta forma, la ventana óptima de implantación corresponderá al intervalo de tiempo en el que los niveles de CD98 sean los más elevados a lo largo del ciclo menstrual.
Métodos para aumentar la receptividad endometrial
Los autores de la presente invención han puesto de manifiesto que la expresión de CD98 o de CD9 en células endometriales se correlaciona positivamente con la receptividad de dichas células a la implantación del blastocisto. Así, según se observa en el ejemplo 5 de la presente invención, la sobreexpresión de CD98 o CD9 en líneas celulares de origen endometrial resulta en una mayor adhesividad para células derivadas de trofoblastos y para blastocistos de ratón. De esta forma, es posible el uso de agentes capaces de aumentar la expresión de CD98 o CD9 en el endometrio permitirá aumentar la receptividad del mismo.
Así, en otro aspecto, la invención se relaciona con el uso de un agente activador de CD98 o de CD9 para la preparación de un medicamento para aumentar la receptividad del endometrio durante la implantación del embrión. Alternativamente, la invención se relaciona con un método para aumentar la receptividad del endometrio a la implantación del embrión que comprende la administración de un agente activador de CD98 o de CD9. Alternativamente, la invención se relaciona con un agente activador de CD98 o de CD9 para su uso en el aumento de la receptividad del endometrio durante la implantación del embrión.
El término "agente activador de CD98", según se usa en la presente invención, se refiere a cualquier compuesto que es capaz de provocar un aumento en la actividad de CD98, independientemente de que dicho aumento sea debido a un aumento de la actividad específica del CD98 preexistente o a un aumento en la síntesis en las células endometriales de CD98 o de análogos de CD98 que compartan con éste sustancialmente su función. En una forma preferida de realización, el agente activador de CD98 es un polinucleótido que codifica CD98 o una variante fimcionalmente equivalente del mismo.
El término "agente activador de CD9", según se usa en la presente invención, se refiere a cualquier compuesto que es capaz de provocar un aumento en la actividad de CD9, independientemente de que dicho aumento sea debido a un aumento de la actividad específica del CD9 preexistente o a un aumento en la síntesis en las células endometriales de CD9 o de análogos de CD9 que compartan con éste sustancialmente su función. En una forma preferida de realización, el agente activador de CD9 es un polinucleótido que codifica CD9 o una variante funcionalmente equivalente del mismo. Aunque se ha descrito que ratones deficientes en CD9 muestran una reducción intensa de la fertilidad debido a defectos en la fusión espermatozoide-óvulo (Le Naour, F. et al. 2000. Science 287:319-321) la función de CD9 en la implantación se mantiene poco clara. CD9 se expresa en células endometriales humanas, principalmente localizada en la superficie celular del epitelio glandular, pero sus niveles de expresión se mantienen sin cambiar a lo largo del ciclo menstrual (Park, K.R. et al. 2000. Mol Hum Reprod 6:252-257). CD9 también se expresa en la superficie de trofoblastos extravellosos y se mostró que era importante para la invasión post-adhesión. En concreto, el tratamiento de blastocistos con anticuerpos anti-CD9 u oligonucleótidos antisentido no tuvo efecto en la adhesión del embrión pero aumentó mucho el número de embriones implantados, pero el papel de CD9 endometrial no se abordó directamente (Liu, W.M. et al. 2006. J Mol Endocrinol 36: 121-130). Por otro lado, se ha descrito su implicación en la fusión del espermatozoide con el óvulo, adhesión celular, motilidad celular y metástasis de tumor (Wynne F .Reproduction. 2006, 131 :721-32).
El término "polinucleótido", según se usa en la presente invención, se refiere a una forma polimérica de nucleótidos de cualquier longitud y formada por ribonucleótidos y/o deoxiribonucleótidos. El término incluye tanto polinucleótidos de cadena sencilla como de cadena doble, así como polinucleótidos modificados (metilados, protegidos y similares). Polinucleótidos adecuados para su uso como agentes capaces de inducir la actividad CD98 en células endometriales incluyen, sin limitación, los polinucleótidos descritos en las bases de datos que codifican CD98 de origen humano, como el descrito en la base de datos GenBank/EMBL con número de acceso J02939.1 (versión de 4 de marzo de 2000), CD98 de rata {Rattus norvegicus) correspondiente al polinucleótido descrito en GenBank/EMBL con número de acceso U59324 (versión de 4 de marzo de 2000), C D 98 de ratón {Mus musculus) correspondiente al polinucleótido descrito en GenBank/EMBL con número de acceso X14309 (versión de 18 de abril de 2005), CD98 de conejo {Oryctolagus cuniculus) correspondiente al polinucleótido descrito en GenBank/EMBL con número de acceso AF515773 (versión de 1 de julio de 2003).
Polinucleótidos adecuados para su uso como agentes capaces de inducir la actividad CD9 en células endometriales incluyen, sin limitación, los polinucleótidos descritos en las bases de datos que codifican CD9 de origen humano (número de acceso P21926 en la versión de 2 septiembre de 2009) y que está codificado por el polinucleótido descrito en la base de datos GenBank/EMBL con número de acceso M38690; CD9 de origen bovino (número de acceso P30932 en la versión de 2 septiembre de 2009) y que está codificado por el polinucleótido descrito en la base de datos GenBank/EMBL con número de acceso M81720; CD9 de ratón {Mus musculus) (número de acceso P40240 en la versión de 1 septiembre de 2009) y que está codificado por el polinucleótido descrito en la base de datos GenBank/EMBL con número de acceso L081 15; CD9 de rata {Rattus norvegicus) (número de acceso P40241 en la versión de 1 septiembre de 2009) y que está codificado por el polinucleótido descrito en la base de datos GenBank/EMBL con número de acceso X76489; CD9 de cerdo {Sus scrofa) (número de acceso Q8WMQ3 en la versión de 1 septiembre de 2009) y que está codificado por el polinucleótido descrito en la base de datos GenBank/EMBL con número de acceso AY072785 y CD9 de gato {Felis catus) (número de acceso P40239 en la versión de 1 septiembre de 2009) y que está codificado por el polinucleótido descrito en la base de datos GenBank/EMBL con número de acceso L35275.
Alternativamente, los agentes capaces de inducir la actividad CD98 y de CD9 incluyen variantes funcionalmente equivalentes de los polinucleótidos definidos anteriormente por medio de sus secuencias específicas. Por "polinucleótido funcionalmente equivalente" se entiende, en el contexto de la presente invención, todos aquellos polinucleótidos capaces de codificar un polipéptido capaz de inducir la actividad de CD98 o de CD9 y que resultan de los polinucleótidos definidos anteriormente por medio de la inserción, deleción o substitución de uno o varios nucleótidos con respecto a las secuencias definidas anteriormente.
En concreto, la variante funcionalmente equivalente de CD98 muestra al menos una función relacionada con la capacidad de promover la adhesión de blastocistos a células del endometrio. Métodos adecuados para determinar la capacidad de CD98 de promover la adhesión de blastocistos a células del endometrio incluye el método descrito en el ejemplo 5 de la presente invención, basado en la capacidad de células endometriales transfectadas con CD98 o la variante del mismo de promover la adhesión de blastocistos.
En concreto, la variante funcionalmente equivalente de CD9 muestra al menos una función relacionada con la capacidad de promover la adhesión de blastocistos a células del endometrio. Métodos adecuados para determinar la capacidad de CD9 de promover la adhesión de blastocistos a células del endometrio incluye el método descrito en el ejemplo 5 de la presente invención, basado en la capacidad de células endometriales transfectadas con CD9 o la variante del mismo de promover la adhesión de blastocistos.
Preferiblemente, los polinucleótidos que codifican variantes funcionalmente equivalentes de CD98 o de CD9, de acuerdo con la presente invención, son polinucleótidos cuya secuencia les permite hibridar en condiciones altamente restrictivas con los polinucleótidos definidos anteriormente. Condiciones típicas de hibridación altamente restrictivas incluyen la incubación en 6 X SSC (1 X SSC: NaCl 0, 15 M, citrato de sodio 0,015 M) y formamida al 40% a 42 °C durante 14 horas, seguido de uno o varios ciclos de lavado usando 0,5 X SSC, SDS al 0,1% a 60°C. Alternativamente, condiciones altamente restrictivas incluyen aquellas que comprenden una hibridación a una temperatura de aproximadamente 50°-55° C en 6XSSC y un lavado final a una temperatura de 68° C en 1-3 X SSC. Las condiciones restrictivas moderadas comprenden la hibridación a una temperatura de aproximadamente 50° C hasta unos 65° C en NaCl 0,2 o 0,3 M, seguida de lavado a aproximadamente 50° C hasta unos 55° C en 0,2X SSC, SDS 0,1% (sulfato de dodecilo y sodio). Preferiblemente, cuando el agente que es capaz de inducir la actividad CD98 o de CD9 es un polinucleótido, éste se encuentra operativamente asociado a una región reguladora de la expresión. Las secuencias reguladoras de utilidad para la presente invención pueden ser secuencias promotoras nucleares o, alternativamente, secuencias potenciadoras ("enhancer") y/o otras secuencias reguladoras que aumentan la expresión de la secuencia heteróloga de ácido nucleico. El promotor puede ser constitutivo o inducible. Si se desea expresión constante de la secuencia heteróloga de ácido nucleico, entonces se usa un promotor constitutivo. Ejemplos de promotores constitutivos bien conocidos incluyen el promotor temprano inmediato del citomegalo virus (CMV), promotor del virus del sarcoma de Rous, y similares. Numerosos otros ejemplos de promotores constitutivos son bien conocidos en la técnica y se pueden emplear en la práctica de la invención. Si se desea la expresión controlada de la secuencia heteróloga de ácido nucleico, entonces se debe utilizar un promotor inducible. En un estado no inducido, el promotor inducible está "silencioso". El término "silencioso" se refiere a que en ausencia de un inductor se detecta poca o ninguna expresión de la secuencia heteróloga de ácido nucleico; en presencia de un inductor, sin embargo, se produce la expresión de la secuencia heteróloga de ácido nucleico. Con frecuencia, se puede controlar el nivel de expresión variando la concentración del inductor. Controlando la expresión, por ejemplo variando la concentración del inductor de modo que un promotor inducible se estimula de forma más fuerte o más débil, se puede afectar la concentración del producto transcrito de la secuencia heteróloga de ácido nucleico. En el caso en el que la secuencia heteróloga de ácido nucleico codifica un gen, se puede controlar la cantidad de proteína que se sintetiza. De esta manera, es posible variar la concentración del producto terapéutico. Ejemplos de promotores inducibles bien conocidos son: un promotor de estrógeno o andrógeno, un promotor de metalotioneína, o un promotor que responde a ecdisona. Otros ejemplos numerosos son bien conocidos en la técnica y se pueden utilizar en la práctica de la invención. Además de los promotores constitutivos e inducibles (que suelen funcionar en una gran variedad de tipos de células o tejidos), se pueden utilizar promotores específicos de tejido para alcanzar expresión de la secuencia heteróloga de ácido nucleico específica en células o tejidos. Ejemplos bien conocidos de promotores específicos de tejido incluyen varios promotores específicos de útero y, más en concreto, promotores específicos de endometrio tales como el promotor de uteroglobina.
Los polinucleótidos que codifican CD98 o la variante funcionalmente equivalente del mismo o CD9 o la variante funcionalmente equivalente pueden ser administrados en forma desnuda mediante el uso de microinyección, métodos biobalísticos o electroporación. Alternativamente, la invención contempla la administración de los polinucleótidos formando parte de un vehículo que permita su inserción en las células endometriales. Así, es posible administrar los polinucleótidos de la invención formando parte de liposomas o de cápsulas formadas por polímeros. Alternativamente, es posible el uso de cualquier tipo de vector viral conocido en la técnica tales como vectores adeno virales, poxvirus, vectores lentivirales y vectores basados en virus adenoasociados. A modo ilustrativo, la invención contempla la administración de dichos polinucleótidos al útero mediante el empleo de liposomas que comprenden dichos polinucleótidos tal y como ha sido descrito en la solicitud de patente US2002177547.
Métodos de identificación de compuestos capaces de aumentar o disminuir la receptividad endometrial
Los autores de la presente invención han puesto de manifiesto que es posible reproducir el proceso de implantación del blastocisto empleando cultivos en monocapa de células de origen endometrial y que existe una relación entre los niveles de expresión de CD98 y de CD9 y la eficiencia de la implantación, lo que permite el desarrollo de métodos para la identificación de compuestos capaces de promover la receptividad del endometrio o de agentes capaces de reducir la receptividad del endometrio (y que serían de utilidad como anticonceptivos), estando dichos métodos basados en la determinación de los niveles de CD98 o CD9 en respuesta a la adición del compuesto que se quiere estudiar. Así, en otro aspecto, la invención se relaciona con un método (en adelante, primer método de cribado de la invención) para la identificación de compuestos capaces de aumentar la receptividad del endometrio que comprende
(i) poner en contacto una célula seleccionada del grupo de
a. una célula que expresa CD98 o CD9 y
b. una célula que comprenden una construcción génica que comprende un polinucleótido que codifica un gen reportero en donde dicho polinucleótido se encuentra operativamente acoplado al promotor de CD98 o al promotor de CD9,
con un compuesto candidato y
(ii) determinar el nivel de expresión de CD98, de CD9 o del gen reportero en dicha célula
donde el compuesto se considera adecuado para aumentar la receptividad del endometrio si provoca un aumento en el nivel de expresión de CD98, de CD9 o del gen reportero.
En otro aspecto, la invención se relaciona con un método (en adelante, segundo método de cribado de la invención) para la identificación de compuestos anticonceptivos que comprende
(i) poner en contacto una célula seleccionada del grupo de
a. una célula que expresa CD98 o CD9 y
b. una célula que comprende una construcción génica que comprende un polinucleótido que codifica un gen reportero en donde dicho polinucleótido se encuentra operativamente acoplado al promotor de CD98 o al promotor de CD9,
con un compuesto candidato y
(ii) determinar los niveles de expresión de CD98, CD9 o del gen reportero en dicha célula,
en donde el compuesto se considera adecuado como compuesto anticonceptivo si provoca una disminución en el nivel de expresión de CD98, de CD9 o del gen reportero. Ambos métodos de cribado de la invención comprenden un primer paso en el que una célula que expresa CD98, CD9 o que comprende una construcción génica que comprende un polinucleótido que codifica un gen reportero en donde dicho polinucleótido se encuentra operativamente acoplado al promotor de CD98 o al promotor de CD9 es puesta en contacto con un compuesto candidato.
En el caso de que el gen marcador de la respuesta al agente candidato sea CD98 o CD9, es necesario usar una célula que exprese dichos genes de forma constitutiva. En una forma preferida de realización la célula usada en la etapa (i) de los métodos descritos anteriormente deriva de una línea celular de origen endometrial, tales como las líneas celulares ECC-1, Ishikawa, KLE, HIESC-2, HIEEC-22, RL95, HEC59, HEC-l-A, HEC-1B, HHUA, AN3CA, SKUT1 y SKUT1B. En una forma preferida de realización, la célula procede de la línea celular endometrial HEC-l-A. Alternativamente, las células que se emplean en la etapa (i) de los métodos de cribado de la invención son células en las que se ha introducido una construcción que comprende un polinucleótido que codifica un gen reportero en donde dicho polinucleótido se encuentra operativamente acoplado al promotor de CD98 o al promotor de CD9. En este caso, se emplea la expresión del gen reportero como marcador del aumento de la expresión de CD98 o de CD9.
El término "promotor", según se usa en la presente invención, se refiere a una secuencia de ADN que regula la transcripción de un gen particular. Por promotor de CD98 se entiende la región descrita por Yan et al. (Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 292:G535-G545) o por Gottesdiener et al. (Mol. Cell Biol, 1988, 8:3809-3819), cuyos contenidos se incorporan en la presente invención en su totalidad. Por promotor de CD9 se entiende la región descrita por Le Naour et al. (Oncogene, 1996, 13:481- 486).
Las construcciones génicas que se emplean en la etapa (i) de los métodos de cribado de la invención incluyen, adicionalmente, un gen reportero que se encuentra operativamente acoplado a las regiones promotoras descritas anteriormente. Genes reporteros que se pueden usar en el contexto de la presente invención incluyen luciferasa, proteína verde fluorescente (GFP) y variantes de la misma que emiten fluorescencia a distintas longitudes de onda (por ejemplo, DS-Red o proteína fluorescente roja), cloranfenicol acetiltransferasa, β-galactosidasa, fosfatasa alcalina y peroxidasa de rábano.
Una vez obtenida la construcción génica que comprende el promotor de CD98 o de CD9 y el gen reportero, ésta debe introducirse en una célula hospedadora. La construcción de ADN se introduce en las células objeto de estudio usando cualquiera de los métodos de transfección conocidos para el experto en la materia (véase secciones 9.1 a 9.5 en Ausubel, F.M. et al., Current Protocols in Molecular Biology, John Wiley & Sons Inc; ringbou edition, 2003). En particular, las células se pueden transfectar mediante co-precipitación de ADN con fosfato cálcico, DEAE-dextrano, polibreno, electroporación, microinyección, fusión mediada por liposomas, lipofección, infección por retrovirus y transfección biobalística.
Las células que comprenden la construcción génica pueden haber sido transfectadas de forma transitoria o de forma estable, para lo cual la transfección de la construcción génica se lleva a cabo simultáneamente con un gen que aporte resistencia a un determinado antibiótico, de forma que se puedan seleccionar aquellas líneas celulares que han incorporado el ADN en el genoma de aquellas líneas celulares en las que el ADN se encuentra en posición extracromosómica. El gen que permite seleccionar las células se puede aportar formando parte del mismo vector que contiene la construcción objeto de la invención o, alternativamente, se puede aportar separadamente mediante co -transfección con un segundo plásmido que contiene dicho gen de resistencia.
Una vez que se dispone de una línea celular adecuada para la realización del ensayo (bien una línea celular que exprese CD98 o CD9 de forma endógena o bien una célula en la que se ha introducido una construcción génica que comprende un gen reportero operativamente acoplado al promotor de CD98 o de CD9), la célula se pone en contacto con un compuesto o preparación cuyo efecto sobre la expresión de CD98, de CD9 o del gen reportero se desee estudiar. Los compuestos que pueden ser ensayados pueden ser cualquier tipo de compuesto incluyendo compuestos de bajo peso molecular o macromoléculas del tipo de proteínas, glúcidos, ácidos nucleicos o lípidos. Por "poner en contacto" una célula con el compuesto candidato se incluye, según la presente invención, cualquier posible forma de llevar el compuesto candidato hasta el interior de la célula que expresa la construcción de ADN.
En el caso de que se desee ensayar una librería de compuestos, los métodos descritos anteriormente pueden adaptarse para su uso en placas multipocillo en donde una cantidad determinada de células puede ser sembrada en cada uno de los pocilios para después añadir a cada uno de los pocilios uno o varios miembros de la librería de compuestos. En el caso de que se deseen identificar compuestos a partir de una librería de compuestos combinatoria, la invención contempla el uso de métodos de cribado de alto rendimiento (high throughput screening o HTS). Los ensayos HTS permiten el cribado de varios miles de compuestos candidatos por día. Así, cada pocilio de una placa multipocillo puede ser usado por cada compuesto candidato o, en el caso de que se deseen ensayar distintos tiempos y concentraciones, es posible usar 5-10 pocilios por cada compuesto candidato. Así, una placa multipocillo puede ser usada para ensayar 96 compuestos candidatos. En el caso de que se empleen placas de 1536 pocilios, es posible realizar un cribaje de 100 a 1500 compuestos en cada placa. Si se analizan varias placas cada día, es posible efectuar cribajes de 6.000, 20.000, 50.000 o 100.000 compuestos diarios.
Una librería combinatoria es una colección de compuestos químicos obtenidos mediante síntesis química o biológica mediante la combinación de distintos reactivos que actúan como bloques de construcción. Por ejemplo, en el caso de librerías combinatorias de péptidos, éstas se pueden obtener mediante la combinación de una seria de aminoácidos en todas las posibles alternativas hasta obtener la longitud deseada. Librerías combinatorias que pueden ser usadas en el contexto de la presente invención son ampliamente conocidas e incluyen librerías peptídicas tales como las descritas en la patente en EEUU US5010175, por Furka et al. (Int. J. Pept. Prot. Res., 1991 , 37:487- 493) y por Houghton et al., (Nature, 1991 , 354: 84-88). Métodos alternativos para generar diversidad química son ampliamente conocidos por el experto e incluyen peptoides (e.g., W091/19735), péptidos codificados (WO93/20242), biooligómeros aleatorios (WO92/00091), benzodiazepinas (US5288514), diversómeros tales como hidantoinas, benzodiazepinas y dipéptidos (Hobbs et al., PNAS USA, 90:6909-6913 (1993)), polipéptidos vinílogos (Hagihara et al., J. Amer. Chem. Soc, 1 14 :6568 (1992)), peptidomiméticos no peptídicos con andamiaje de glucosa (Hirschmann et al., J. Amer. Chem. Soc, 1 14:9217-9218 (1992)), síntesis orgánica análoga de librerías de pequeños compuestos (Chen et al. , J. Amer. Chem. Soc, 116:2661 (1994)), oligocarbamatos (Cho et al, Science, 261 : 1303 (1993)), y/o peptidil fosfonatos (Campbell et al, J. Org. Chem., 59:658 (1994)), librerías de ácidos nucleicos (Ausubel, Berger and Sambrook, all supra), librerías de péptidos ácidos nucleicos (US5539083), librerías de anticuerpos (see, e.g., Vaughn et al, Nature Biotechnology, 14(3):309-314 (1996) and PCT/US96/10287), librerías de carbohidratos (e.g., Liang et al, Science, 274: 1520-1522 (1996) and U.S. Pat. No. 5593853) y similares.
Así, en caso de que el compuesto candidato sea una molécula de bajo peso molecular, es suficiente con añadir dicha molécula al medio de cultivo. En caso de que el compuesto candidato sea una molécula de alto peso molecular (por ejemplo, polímeros biológicos tales como un ácido nucleico o una proteína), es necesario aportar los medios para que esa molécula pueda acceder al interior celular. En caso de que la molécula candidata sea un ácido nucleico, pueden usarse métodos convencionales para transfección, según se ha descrito anteriormente para la introducción de la construcción de ADN. En caso de que el compuesto candidato sea una proteína, la célula puede ponerse en contacto tanto con la proteína directamente como con el ácido nucleico que la codifica acoplado a elementos que permitan su transcripción /traducción una vez que se encuentren en el interior celular. Para ello, se pueden usar cualquiera de los métodos mencionados anteriormente para permitir su entrada al interior celular. Alternativamente, es posible poner en contacto la célula con una variante de la proteína que se desea estudiar que ha sido modificada con un péptido que sea capaz de promover la translocación de la proteína al interior celular, tales como el péptido Tat derivado de la proteína TAT de HIV-1 , la tercera hélice del homeodominio de la proteína Antennapedia de D.melanogaster, la proteína VP22 del virus del herpes simplex y oligómeros de arginina (Lindgren, A. et al., 2000, Trends Pharmacol. Sci, 21 :99-103, Schwarze, S.R. et al. , 2000, Trends Pharmacol. Sci., 21 :45-48, Lundberg, M et al., 2003, Mol. Therapy 8: 143-150 y Snyder, EX. y Dowdy, S.F., 2004, Pharm. Res. 21 :389-393).
La invención contempla la posibilidad de que el compuesto a ensayar no se encuentre aislado sino que se aparezca formando parte de una mezcla más o menos compleja, bien derivada de una fuente natural o bien formando parte de una biblioteca de compuestos. Ejemplos de bibliotecas de compuestos que pueden ser ensayadas según el método de la presente invención incluyen, sin limitación, bibliotecas de péptidos incluyendo tanto péptidos como análogos peptídicos que comprenden D-amino ácidos o péptidos que comprenden enlaces no peptídicos, bibliotecas de ácidos nucleicos incluyendo ácidos nucleicos con enlaces no fosfodiester del tipo de fosforotioato o ácidos nucleicos peptídicos, bibliotecas de anticuerpos, de carbohidratos, de compuestos de bajo peso molecular, preferiblemente moléculas orgánicas, de peptidomiméticos, y similares. En el caso de que se use una biblioteca de compuestos orgánicos de bajo peso molecular, la biblioteca puede haber sido preseleccionada para que contengan compuestos que puedan acceder al interior celular con mayor facilidad. Así, los compuestos de pueden seleccionar en base a determinados parámetros tales como tamaño, lipofilicidad, hidrofilicidad, capacidad de formar puentes de hidrógeno. En una segunda etapa, los métodos de cribado de la invención incluyen la determinación de los niveles de CD98, de CD9 o del gen reportero según el tipo de célula que haya sido empleada en la etapa (i).
En el caso de células que expresan CD98 o CD9, la etapa (ii) del método implica la determinación de los niveles de expresión de CD98 o de CD9. Esta determinación puede llevarse a cabo usando cualquiera de los métodos descritos anteriormente para la determinación de los niveles de ARNm de CD98 o de CD9 o para la determinación de los niveles de proteína de CD98 o CD9. En una forma preferida de realización, la determinación del nivel de CD98 o de CD9 se lleva a cabo mediante citometría de flujo.
En caso de que la etapa (i) haya sido llevada a cabo usando células que comprenden una construcción génica que comprende el promotor de CD98 y CD9 acoplado operativamente a un gen reportero, la etapa (ii) implica la determinación de los niveles de dicho gen reportero. Típicamente, los genes reporteros codifican proteínas que presentan actividades enzimáticas que no aparecen de forma endógena en la célula en la que éstos se expresan, por lo que, de forma preferida, la determinación de los niveles del gen reportero se lleva a cabo mediante la determinación de la actividad de la proteína codificada por el gen reportero. Preferiblemente, a la vez que se lleva a cabo la determinación de la actividad del gen reportero en presencia de los compuestos a ensayar, es necesario efectuar determinaciones en paralelo de la actividad transcripcional basal en presencia de únicamente el medio de cultivo y/o del vehículo en el que se encuentra disuelto el compuesto a ensayar o en el que se han preparado los extractos a ensayar. Generalmente, aquellos compuestos o extractos con actividad promotora de la transcripción se manifestarán porque darán valores superiores a 1 de la relación entre actividad transcripcional en presencia del compuesto o del extracto candidato y en presencia de vehículo. Por el contrario, aquellos compuestos o extractos con actividad represora de la transcripción se manifestarán porque darán valores inferiores a 1 de la relación entre actividad transcripcional en presencia del compuesto o del extracto candidato y en presencia de vehículo. Preferiblemente, se considerarán compuestos o extractos activadores de la transcripción, y por tanto potencialmente útiles para promover la implantación de blastocistos en el endometrio, aquellos en los que la relación de actividad del gen reportero sea de al menos 1,5, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100 o superior. Preferiblemente, se considerarán compuestos o extractos represores de la transcripción, y por tanto potencialmente como agentes anticonceptivos aquellos en los que la relación de actividad del gen reportero sea de al menos 0,5, 0,4, 0,33, 0,25, 0,20, 0,1, 0,05, 0,04, 0,03, 0,02, 0,01 o inferior. El método de detección de la expresión del gen reportero implica la puesta en contacto de las células con un compuesto que puede generar un producto coloreado o fluorescente en presencia del producto codificado por el gen reportero. Así, si la enzima es la fosfatasa alcalina, se pueden usar substratos cromogénicos del tipo del p-nitrofenil fosfato (p-NPP), 5-bromo-4 cloro 3-indolil fosfato/tetrazolio nitroblue (BCIP/NPT), Fast-Red/naftol-AS-TS fosfato o substratos fluorogénicos del tipo de 4-metilumbeliferil fosfato (4-MUP), 2-(5 '-cloro-2'-fosforiloxifenil)-6-cloro-4-(3H)-quinazolinona (CPPCQ), 3,6-fluoresceína difosfato (3,6-FDP), Fast Blue BB, Fast Red TR o sales de diazonio de Fast Red Violet LB.
Si el gen reportero codifica una peroxidasa, se pueden usar substratos cromogénicos del tipo de 2,2-azinobis (ácido 3-etilbenzotiazolin-6-sulfónico) (ABTS), o-fenilenediamina (OPT), 3,3',5,5'-tetrametilbenzidina (TMB), o-dianisidina, ácido 5-amino salicílico, ácido 3-dimetilamino benzoico (DMAB) y 3-metil-2-benzotiazolinhidrazona (MBTH), 3-amino-9-etilcarbazol (AEC) y 3 ,3'-diaminobenzidina tetrahidrocloruro (DAB) o substratos fluorogénicos del tipo del ácido 4-hidroxi-3-metoxifenilacetico, fenoxazines reducidas y benzotiazines reducidas, incluyendo los reactivos Amplex® Red y Amplex UltraRed y los dihidroxantenos reducidos.
Si el gen reportero codifica una glucosidasa, se pueden usar substratos cromogénicos del tipo de o-nitrofenil-P-D-galactosido (o-NPG), p-nitrofenil-P-D-galactosido y 4- metilumbeliferil-P-D-galactosido (MUG) para la β-D-galactosidasa y substratos fluorogénicos del tipo de la resorufina beta-D-galactopiranosido, digalactosido de fluoresceína (FDG), diglucurónido de fluoresceína, 4-metilumbeliferil beta-D- galactopiranosido, carboxiumbeliferil beta-D-galactopiranosido y beta-D- galactopiranosido de cumarina. En una forma preferida de realización, el gen reportero codifica para la luciferasa y la detección se efectúa midiendo la luminiscencia emitida por dicha enzima en presencia de ATP. La luminiscencia se determina usando kits comerciales, como por ejemplo, el kit de enhanced luciferase assay (Analytical Luminescence Laboratory, MI). El experto en la materia apreciará que los métodos de cribado de la invención pueden llevarse a cabo en paralelo con un método en el que se usan compuestos como control positivo de activación, es decir, compuestos que se sabe que son capaces de provocar un aumento en la expresión de CD98 y de CD9. De esta manera, compuestos activadores serán aquellos cuyo efecto en la expresión de CD98 o CD9 sea similar o superior al observado en presencia del compuesto activador control. Según se demuestra en el ejemplo 4 de la presente invención, se ha observado que el tratamiento de células de origen endometrial con hCG o β-estradiol es capaz de inducir la expresión de CD98 tanto en líneas células de origen endometrial como en cultivos primarios. Por tanto, es posible el uso de hCG o β-estradiol como controles de activación de expresión de CD98. En caso de que el compuesto candidato se encuentre formando parte de una mezcla de mayor o menor complejidad, el método de la invención comprende adicionalmente una o varias etapas (iii) de fraccionamiento de la mezcla ensayada y la repetición de los pasos (i), (ii) y (iii) con cada una de las fracciones obtenidas hasta que se aisla el compuesto en la mezcla que es adecuado para el tratamiento del problema implantacional. Métodos para el fraccionamiento de compuestos presentes en una mezcla incluyen cromatografía (en capa fina, de gases o de exclusión molecular en gel, de afinidad), cristalización, destilación, filtración, precipitación, sublimación, extracción, evaporación, centrifugación, espectrometría de masas, adsorción y similares. Alternativamente, los compuestos a ensayar pueden estar formando parte de un extracto obtenido de una fuente natural. La fuente natural puede ser animal, vegetal obtenido de cualquier entorno, incluyendo, sin limitación, extractos de organismos terrestres, aéreos, marinos y similares.
Métodos y composiciones anticonceptivas de la invención
Así, en otro aspecto, la invención se relaciona con un método anticonceptivo que comprende la administración a un sujeto de un inhibidor de CD98.
Por "anticonceptivo", según se usa en la presente invención, se entiende un agente capaz de prevenir o reducir la posibilidad de que ocurra la fecundación o el embarazo.
El término "inhibidor de CD98", según se usa en la presente invención, se refiere a cualquier compuesto capaz de reducir la actividad de CD98. Inhibidores de CD98 pueden actuar bien bloqueando la interacción de éste con su receptor en la superficie del blastocisto o bien actuando en las células del endometrio provocando una disminución de los niveles de proteína CD98 o del ARNm que codifica CD98. Métodos adecuados para la determinación de aquellos compuestos que son inhibidores o represores de la expresión de CD98 han sido descritos anteriormente y comprenden tanto los métodos basados en la determinación de los niveles de CD98 o de ARNm que codifica CD98 en células endometriales como aquellos basados en la capacidad de células endometriales de unirse a blastocistos o a trofoblastos y que se describen en los ejemplos 5 y 6 de la presente invención. En principio, cualquiera de los modelos in vitro y ex vivo y sistemas de cultivo para mirnetizar las características del endometrio durante la ventana de receptividad endometrial descritos en el estado de la técnica serían de utilidad para la identificación de inhibidores de CD98. A modo ilustrativo, la asignación de un compuesto como inhibidor de CD98 se puede hacer usando el modelo descrito por Lindenberg, S.(Dan Med Bull. 1991, 38:371-380), el modelo de Simon, C. et al. (J Clin Endocrinol Metab,, 199984:2638-2646) así como los modelos basados en el uso de varias líneas celulares y cultivos, explantes de tejido endometrial u otras aproximaciones, incluyendo intentos para crear un útero ex vivo (Bulletti, C. et al. 1988. Fertil Sterit 49:991-996),
A modo ilustrativo, agentes inhibidores de la expresión de CD98 adecuados para su uso en, la presente invención son, por ejemplo, cinaropicrina (Cas number 35730-78-0), tal y como ha sido descrito por Cho et al (Biophysical Research Communications, 2004; 313: 954-961), fragmentos solubles de CD98 con capacidad de unirse al receptor de CD98 presente en la superficie de los blastocistos e impedir así la interacción de estos con el CD98 expresado en la membrana del endometrio, anticuerpos anti-CD98 dirigidos específicamente contra epítopos de la proteína esenciales para desempeñar su función, o contra CD98, ácidos nucleicos capaces de provocar el silenciamiento del ARNm que codifica CD98 tales como oligonucleótidos antisentido, ARNs de interferencia (ARNips), ARNs catalíticos y ribozimas específicos, polinucleótidos con actividad "decoy", es decir, con capacidad para unirse específicamente a un factor (proteico generalmente) importante para la expresión del gen, de manera que la expresión del gen de interés, en este caso CD98 sea inhibida, etc. Asimismo, tal y como se muestra en el ejemplo 4 de la presente invención, al tratamiento con ΤGFβ es capaz de reducir de forma significativa los niveles de expresión en membrana de CD98. por lo que TGFβ puede ser un inhibidor adicional de CD98.
Fragmentos solubles de CD98 Por "fragmento soluble de CD98" se entiende todo aquel fragmento procedente del dominio extracelular de CD98 que, al carecer de región transmembrana, puede solubilizarse en soluciones acuosas sin necesidad de detergentes. En el caso de CD98 de origen humano, la región extracelular está formada por los aminoácidos 206 a 630. En el caso de las proteínas CD98 de otros mamíferos, la extensión del dominio extracelular puede ser determinada por comparación con la proteína humana mediante alineamiento de secuencias empleando algoritmos ampliamente conocidos para el experto en la materia tales como BLASTP, FASTA o CLUSTALW. Así, fragmentos solubles de CD98 adecuados para su uso como composición anticonceptiva de la invención incluyen fragmentos de al menos 20, al menos 40, al menos 60, al menos 80, al menos 100. al menos 120, al menos 140, al menos 160, al menos 180, al menos 200, al menos 220, al menos 240, al menos 260, al menos 280, al menos 300, al menos 320, al menos 340, al menos 360, al menos 380, al menos 400 o al menos 420 aminoácidos derivados de la región formada por los aminoácidos 206 a 630 del polipéptido indicado en la base de datos NCBI con el número de acceso P08195 (versión de 21 de octubre de 2010). La determinación de los fragmentos solubles de CD98 capaces de actuar como inhibidores de CD98 puede llevarse mediante el método descrito en los ejemplos 5 y 6 de la presente invención y que consiste en poner en contacto una monocapa de células endometriales HEC-l-A transfectadas con CD98 con blastocistos emergentes e identificar que fragmentos de CD98 son capaces de impedir la adhesión de dichos blastocistos a la monocapa.
Los fragmentos solubles de CD98 pueden ser usados tal cual o pueden ser conjugados a una segunda molécula heteróloga que facilita su solubilidad, estabilidad o su purificación. Las secuencias héterólogas pueden estar presentes en el extremo N- terminal o en el extremo C-terminal e incluyen, a modo ilustrativo, regiones constantes de inmunoglobulina (regiones Fc), dominios de multimerización, secuencias señales y etiquetas que permitan su purificación mediante el uso de moléculas con alta afinidad por dichas etiquetas. En el caso de que los fragmentos de CD98 sean conjugados a la región constante de una molécula de inmiinoglobulina, esta puede estar formada por los dominios CH2 y CH3 de la IgGl de origen humano o de otras isoformas de IgG tales lgG2 o fgG4 u otras ciases de inmnnnglohtilina tales como IgM o IgA. La invención también contempla el uso de fragmentos solubles de CD98 modificados mediante la incorporación de uno o más grupos funcionales tales como restos de polietilenglicol (PEG) para dar lugar a variantes de CD98 PEGiladas. La PEGilación puede llevarse a cabo usando métodos conocidos tales como el método descrito en W099/55377.
Anticuerpos inhibidores
Por "anticuerpo inhibidor" se entiende en el contexto de la presente invención todo aquel anticuerpo que es capaz de unirse a CD98 de manera específica e inhibir una o más de las funciones de CD98, preferiblemente las relacionadas con la adhesión. "Anticuerpo inhibidor" es también todo aquel anticuerpo que es capaz de unirse a CD98 de manera específica y bloquear la oligomerización de CD98 o los sitios de unión de CD98 con otras proteínas. Los anticuerpos pueden ser preparados usando cualquiera de los métodos que son conocidos para el experto en la materia, algunos de los cuales han sido citados anteriormente. Una vez identificados anticuerpos con capacidad de unión a CD98, se seleccionarán aquellos capaces de inhibir la actividad de esta proteína usando un ensayo de identificación de agentes inhibidores (véase el ejemplo 5 de la presente invención).
Anticuerpos monoclonales con capacidad de inhibir la actividad de CD98 incluyen, sin limitación, el anticuerpo HBJ127 descrito por Itoh et al. (Jpn. J. Cáncer Res., 2001 , 92: 1313-1321) ARNip
Los ARN de interferencia pequeños o ARNip (siRNA en su denominación en inglés) son agentes que son capaces de inhibir la expresión de un gen diana mediante interferencia de ARN. Un ARNip se puede sintetizar químicamente, se puede obtener mediante transcripción in vitro o se puede sintetizar in vivo en la célula diana. Típicamente, los ARNip consisten en una cadena doble de ARN de entre 15 y 40 nucleótidos de longitud y que puede contener una región protuberante 3' y/o 5' de 1 a 6 nucleótidos. La longitud de la región protuberante es independiente de la longitud total de la molécula de ARNip. Los ARNip actúan mediante la degradación o el silenciamiento post-transcripcional del mensajero diana.
Los ARNip pueden ser los llamados shRNA (short hairpin RNA), caracterizados por que las cadenas antiparalelas que forman el ARNip están conectadas por una región bucle u horquilla. Los shRNAs pueden estar codificados por plásmidos o virus, particularmente retrovirus y estar bajo el control de promotores tales como el promotor U6 de la ARN polimerasa III. Los ARNip de la invención son sustancialmente homólogos al ARNm del gen que codifica CD98 o a la secuencia genómica que codifica dicha proteína. Por "sustancialmente homólogos" se entiende que tienen una secuencia que es suficientemente complementaria o similar al ARNm diana, de forma que el ARNip sea capaz de provocar la degradación de éste por interferencia de ARN. Los ARNip adecuados para provocar dicha interferencia incluyen ARNip formados por ARN, así como ARNip que contienen distintas modificaciones químicas tales como:
- ARNip en los que los enlaces entre los nucleótidos son distintos a los que aparecen en la naturaleza, tales como enlaces fosforotioato.
- conjugados de la cadena de ARN con un reactivo funcional, tal como un fluoróforo.
- Modificaciones de los extremos de las cadenas de ARN, en particular el extremo 3' mediante la modificación con distintos grupos funcionales del hidroxilo en posición 2'.
- Nucleótidos con azúcares modificados tales como restos O-alquilados en posición 2' tales como 2'-0-metilribosa p 2'-0-fluorosibosa.
- Nucleótidos con bases modificadas tales como bases halogenadas (por ejemplo 5-bromouracilo y 5-iodouracilo), bases alquiladas (por ejemplo 7-metilguanosina) . Los ARNip y ARNsh de la invención se pueden obtener usando una serie de técnicas conocidas para el experto en la materia. La región de la secuencia de nucleótidos que se toma como base para diseñar los ARNip no es limitante y puede contener una región de la secuencia codificante (entre el codón de iniciación y el codón de terminación) o, alternativamente, puede contener secuencias de la región no traducida 5 ' o 3 ' , preferentemente de entre 25 y 50 nucleótidos de longitud y en cualquier posición en posición sentido 3 ' con respecto al codón de iniciación. Una forma de diseñar un A Nip implica la identificación de los motivos AA(N19)TT, en donde N puede ser cualquier nucleótido en la secuencia que codifica CD98, y la selección de aquellos que presenten un alto contenido en G/C. Si no se encuentra dicho motivo, es posible identificar el motivo NA (N21), en donde N puede ser cualquier nucleótido. En una forma preferida de realización, el shRNA está dirigido contra una región de CD98 que comprende la secuencia SEQ ID NO: l . en una forma de realización aún más preferida, el shRNA comprende la secuencia SEQ ID NO:2.
Oligonucleótidos antisentido
Un aspecto adicional de la invención se refiere al uso de ácidos nucleicos "antisentido" aislados para inhibir la expresión, por ejemplo inhibiendo la transcripción y/o traducción de un ácido nucleico que codifica CD98 cuya actividad se desea inhibir. Los ácidos nucleicos antisentido se pueden unir a la diana potencial de la droga mediante complementariedad de bases convencional, o, por ejemplo, en el caso de unirse a ADN bicatenario, a través de interacciones específicas en el surco mayor de la doble hélice. En general, estos métodos se refieren al rango de técnicas generalmente empleadas en la técnica e incluyen cualquier método que se basa en la unión específica a secuencias de oligonucleótidos. Una construcción antisentido de la presente invención se puede distribuir, por ejemplo, como un plásmido de expresión que, cuando se transcribe en la célula, produce ARN que es complementario a al menos una parte única del ARNm celular que codifica CD98. De forma alternativa, la construcción antisentido es una sonda de oligonucleótidos que se genera ex vivo y que, cuando se introduce en la célula, produce inhibición de la expresión génica hibridando con el ARNm y/o secuencias genómicas de un ácido nucleico diana. Tales sondas de oligonucleótidos son preferiblemente oligonucleótidos modificados, que son resistentes a las nucleasas endógenas, por ejemplo, exonucleasas y/o endonucleasas, y que son por lo tanto estables in vivo. Moléculas de ácidos nucleicos ejemplares para su uso como oligonucleótidos antisentido son análogos de ADN de fosforamidato, fosfotionato y metilfosfonato (ver también las patentes de EE.UU. Nos. 5176996; 5264564; y 5256775). Adicionalmente, se han revisado las aproximaciones generales para construir oligómeros útiles en la terapia antisentido, por ejemplo, en Van der Krol et al, BioTechniques 6: 958-976, 1988; y Stein et al, Cáncer Res 48: 2659-2668, 1988.
Respecto al oligonucleótido antisentido, son preferidas las re gione s de oligodesoxirribonucleótidos derivadas del sitio de inicio de la traducción, por ejemplo, entre -10 y +10 del gen diana. Las aproximaciones antisentido implican el diseño de oligonucleótidos (bien ADN bien ARN) que son complementarios al ARNm que codifica el polipéptido diana. Los oligonucleótidos antisentido se unirán a los transcritos de ARNm y prevendrán la traducción.
Los oligonucleótidos que son complementarios al extremo 5' del ARNm, por ejemplo la secuencia 5 ' no traducida hasta e incluyendo el codón de iniciación AUG, deberían funcionar de la forma más eficaz para inhibir la traducción. Sin embargo, se ha mostrado recientemente que las secuencias complementarias a las secuencias 3 ' no traducidas de los ARNm también son eficaces para inhibir la traducción de los ARNms (Wagner, Nature 372: 333, 1994). Por lo tanto, se podrían usar oligonucleótidos complementarios bien a las regiones 5' ó 3' no traducidas, no codificantes de un gen en una aproximación antisentido para inhibir la traducción de ese ARNm. Los oligonucleótidos complementarios a la región 5 ' no traducida del ARNm deberían incluir el complemento del codón de iniciación AUG. Los oligonucleótidos complementarios a las regiones codificantes del ARNm son inhibidores de la traducción menos eficaces pero también se podrían usar según la invención. Si están diseñados para hibridar con la región 5 ' , 3 ' o codificante del ARNm, los ácidos nucleicos antisentido deberían tener al menos seis nucleótidos de longitud y tener preferiblemente menos de alrededor de 100 y más preferiblemente menos de alrededor de 50, 25, 17 ó 10 nucleótidos de longitud. Se prefiere que se realicen primero estudios in vitro para cuantificar la capacidad de los oligonucleótidos antisentido de inhibir la expresión génica. Se prefiere que estos estudios utilicen controles que distingan entre inhibición génica antisentido y efectos biológicos no específicos de los oligonucleótidos. También se prefiere que esos estudios comparen los niveles del ARN o proteína diana con el de un control interno de ARN o proteína. Los resultados obtenidos usando los oligonucleótidos antisentido se pueden comparar con los obtenidos usando un oligonucleótido control. Se prefiere que el oligonucleótido control sea aproximadamente de la misma longitud que el oligonucleótido a ensayar y que la secuencia del oligonucleótido difiera de la secuencia antisentido no más de lo que sea necesario para prevenir la hibridación específica al secuencia diana.
Los oligonucleótidos antisentido pueden ser de ADN o ARN o mezclas quiméricas o derivados o versiones modificadas de los mismos, de cadena sencilla o de cadena doble. El oligonucleótido se puede modificar en el grupo de la base, el grupo del azúcar o el esqueleto de fosfato, por ejemplo, para mejorar la estabilidad de la molécula, su capacidad de hibridación etc. El oligonucleótido puede incluir otros grupos unidos, tales como péptidos (por ejemplo, para dirigirlos a receptores de células huésped) o agentes para facilitar el transporte a través de la membrana celular (ver, por ejemplo, Letsinger et al., Proc. Nati. Acad. Sci. U.S.A. 86: 6553-6556, 1989; Lemaitre et al, Proc. Nati. Acad. Sci. 84: 648-652, 1987; Publicación de PCT No. WO88/09810), agentes intercalantes (ver, por ejemplo, Zon, Pharm. Res. 5 : 539-549, 1988). Para este fin, el oligonucleótido puede estar conjugado a otra molécula, por ejemplo, un péptido, un agente transportador, agente de corte desencadenado por hibridación, etc.
Los oligonucleótidos antisentido pueden comprender al menos un grupo de base modificada. El oligonucleótido antisentido también puede comprender al menos un grupo azúcar modificado seleccionado del grupo que incluye pero no está limitado a arabinosa, 2-fluoroarabinosa, xilulosa, y hexosa. El oligonucleótido antisentido también puede contener un esqueleto semejante a péptido neutro. Tales moléculas se denominan oligómeros ácido nucleico peptídico (ANP) y se describen, por ejemplo, en Perry- O'Keefe et al, Proc. Nati. Acad. Sci. U.S.A. 93: 14670, 1996, y en Eglom et al, Nature 365: 566, 1993.
En aún otra forma de realización, el oligonucleótido antisentido comprende al menos un esqueleto de fosfato modificado. En todavía una forma de realización más, el oligonucleótido antisentido es un oligonucleótido alfa-anomérico.
Mientras que se pueden usar oligonucleótidos antisentido complementarios a la región codificante del la secuencia diana de ARNm, también se pueden usar aquellos complementarios a la región transcrita no traducida.
En algunos casos, puede ser difícil alcanzar las concentraciones intracelulares del antisentido suficientes para suprimir la traducción de los ARNms endógenos. Por lo tanto, una aproximación preferida usa una construcción de ADN recombinante en la que se coloca el oligonucleótido antisentido bajo el control de un promotor fuerte de pol III o pol II.
De forma alternativa, se puede reducir la expresión del gen diana dirigiendo secuencias de desoxirribonucleótidos complementarias a la región reguladora del gen (es decir, el promotor y/o potenciadores) para formar estructuras de triple hélice que previenen la transcripción del gen en las células diana en el cuerpo (ver en general, Helene, Anticancer Drug Des. 6(6): 569-84, 1991 ). En ciertas formas de realización, los oligonucleótidos antisentido son morfo linos antisentido. Enzimas de ADN
Un aspecto más de la invención se refiere a uso de enzimas de ADN para inhibir la expresión del gen que codifica la CD98 de la invención. Las enzimas de ADN incorporan algunas de las características mecanísticas tanto de las tecnologías de antisentido como de las de ribozimas. Las enzimas de ADN se diseñan de modo que reconozcan una secuencia diana de ácido nucleico particular, parecido al oligonucleótido antisentido, sin embargo parecido a la ribozima son catalíticas y cortan específicamente el ácido nucleico diana. Ribozimas
También se pueden usar moléculas de ribozimas diseñadas para cortar de forma catalítica transcritos de un ARNm diana para prevenir la traducción de los ARNms que codifican CD98 cuya actividad se desea inhibir. Las ribozimas son moléculas enzimáticas de ARN capaces de catalizar el corte específico de ARN. (Para una revisión, ver, Rossi, Current Biology 4: 469-471 , 1994). El mecanismo de acción de la ribozima implica hibridación específica de secuencia de la molécula de ribozima a un ARN diana complementario, seguido por un suceso de corte endonucleolítico. La composición de las moléculas de ribozima preferiblemente incluye una o más secuencias complementarias al ARNm diana, y la bien conocida secuencia responsable del corte del ARNm o una secuencia funcionalmente equivalente (ver, por ejemplo, la patente de EE.UU. No. 5093246). Las ribozimas usadas en las composiciones de la presente invención incluyen las ribozimas de cabeza de martillo, las ARN endorribonucleasa (de aquí en adelante "ribozimas de tipo Cech") (Zaug et al., Science 224:574-578, 1984). Las ribozimas pueden estar compuestas de oligonucleótidos modificados (por ejemplo para mejorar la estabilidad, direccionamiento, etc.) y se deberían distribuir a células que expresan el gen diana in vivo. Un método preferido de distribución implica usar una construcción de ADN que "codifica" la ribozima bajo el control de un promotor constitutivo fuerte de pol III ó pol II, de modo que las células transfectadas producirán cantidades suficientes de la ribozima para destruir los mensajeros diana endógenos e inhibir la traducción. Puesto que las ribozimas, contrariamente a otras moléculas antisentido, son catalíticas, se requiere una concentración intracelular menor para su eficacia.
Péptidos inhibidores
El término "péptido inhibidor", tal como aquí se utiliza, hace referencia a aquellos péptidos capaces de unirse a CD98 e inhibir su actividad según se ha explicado anteriormente, es decir, impedir que CD98 actúe como receptor de adhesión.
Otros compuestos inhibidores de la actividad de CD98 Otros compuestos con capacidad de inhibición de la expresión de una CD98 incluyen aptámeros y espieguélmeros, que son ácidos nucleicos D o L de cadena sencilla o doble que se unen específicamente a la proteína, lo que resulta en una modificación de la actividad biológica de ésta. Los aptámeros y espieguélmeros tienen una longitud de entre 15 y 80 nucleótidos y, preferiblemente, de entre 20 y 50 nucleótidos.
Los antagonistas de CD98 se pueden usar de forma local o sistémica para su uso como anticonceptivos en la dosis adecuada para permitir el bloqueo de la actividad de CD98. Los compuestos se pueden administrar de forma diaria, semanal durante la totalidad o durante parte del ciclo menstrual. Los compuestos inhibidores de CD98 pueden ser formulados como composiciones de liberación sostenida como, por ejemplo, implantes mensuales, semi-anuales y similares. Preferiblemente, las composiciones anticonceptivas de la invención se formulan de forma adecuada para su aplicación tópica. Formulaciones adecuadas para la administración tópica incluyen supositorios vaginales, dispositivos intrauterinos (DIU), y geles de liberación sostenida. Alternativamente, las composiciones tópicas pueden aplicarse con un aplicador o pueden formularse como recubrimientos de preservativos, diafragmas u otros dispositivos anticonceptivos.
En este caso, las composiciones de la invención pueden formularse conjuntamente o aplicarse conjuntamente con otro tipo de agentes anticonceptivos, lubricantes, espermicidas. Agentes anticonceptivos adecuados para su administración conjunta con las composiciones anticonceptivas de la invención incluyen uno o más de los agentes seleccionados de bloqueantes de la lipoxigenasa, progestinas sintéticas, quinacrina A, levonorgestrel, acetato de medroxiprogesterona, enantato de noretisterona, combinaciones de etinilestradiol y progesteogen, levonorgestrel, etinilestradiol, norgestrel o levonorgestrel, combinaciones de etinilestradiol con enantato de noretisterone o norgestrel.
Los siguientes ejemplos sirven para ilustrar la invención y no deben ser considerados como limitativos del alcance de la misma. EJEMPLOS
MATERIALES Y MÉTODOS
Cultivo de células y reactivos
Las células de carcinoma endometrial humano HEC-l-A (HTB-112), las células RL95- 2 (CRL-1671) y las células derivadas de trofoblastos JAR (HTB-144) se adquirieron de la Colección Americana de Cultivos Tipo (ATCC; Rockville, MD). Las células HEC-1- A se hicieron crecer en medio McCoy 5 A suplementado con suero bovino fetal (SBF) al 10%. Las células RL95-2 se hicieron crecer en una mezcla 1 : 1 de medio de Eagle modificado por Dulbecco (DMEM) y medio nutriente F-12K, suplementado con SBF al 10%. Las células JAR se cultivaron en medio RPMI-1640 suplementado con SBF al 10%), piruvato de sodio y glucosa. Para obtener esferoides JAR, se tripsinizaron cultivos confluentes, se marcaron con la sonda fluorescente CMAC (derivado clorometilo de aminocumarina) (Invitrogen), y se colocaron 1-3 x 105 células en suspensión en una botella cónica de 25 mi rotando a 110 rpm en C02 al 5% y 37°C durante 24-48 horas.
Los cultivos de células primarias de células epiteliales endometriales (EEC) humanas se derivaron de biopsias de endometrios humanos como se ha descrito (Bentin-Ley, U. et al. 1994. J Reprod Fértil 101 :327-332). Las muestras se obtuvieron en la fase lútea de pacientes fértiles sometidas a biopsia de endometrio (edades 23-39 años). El β-estradiol, la progesterona y la hCG se adquirieron de Sigma-Aldrich. Biopsias endometriales
Las muestras endometriales humanas se obtuvieron para investigación tras el consentimiento escrito de pacientes, y la investigación fue aprobada por el comité de ética médica sobre el uso de sujetos humanos en investigación en el Instituto Valenciano de Infertilidad, y se ajusta a la ley española de Tecnologías de Reproducción Asistida (35/1988). Para investigar la expresión de proteínas in vivo de moléculas de adhesión, se obtuvieron muestras endometriales de diferentes fases del ciclo menstrual (ver más adelante) de 15 pacientes (edades 23-39 años). También se obtuvieron biopsias endometriales de 15 pacientes adicionales para el análisis de la expresión génica mediante PCR en tiempo real. Las biopsias endometriales se distribuyeron en cinco grupos según la fase en ciclo: grupo 1 , proliferativa temprana- media (días 1-8); grupo 2, proliferativa tardía (días 9-14); grupo 3, secretora temprana (días 15-18); grupo 4, secretora media (días 19-22) y grupo 5, secretora tardía (días 23- 28). Se examinaron tres muestras por grupo.
Anticuerpos
Los anticuerpos monoclonales (mAb) usados fueron como sigue: anti-integrina βΐ (TS2/16), anti-integrina al (TS2/7), anti-integrina a2 (TEA1/41), anti-integrina a3 (VJ1/6), anti-integrina α4 (HP1/7), anti-integrina a5 (SAM-1), anti-integrina a6 (GOH3), anti-integrina ανβ3 (8D6), anti-integrina β2 (TS1/18), anti-ICAM-1 (HU5/3), anti-ICAM-2 (CBR-IC2/2), anti-ICAM-3 (HP2/19), anti-VCAM-1 (4B9), anti-CD31 (TP1/15), anti-CD43 (TP1/36), anti-CD44 (HP2/9), anti-CD59 (VJ1/12), anti-MHC-I (W6.32), anti-E-selectina (TEA2/1), anti-P-selectina (Gl), anti-L-selectina (Dreg55), anti-CD15 (MY1), anti-PSGLl(PLl), anti-CD147 (VJ1/9), anti-CD98 (FG1/10), anti- CD9 (VJ1/20), anti-CD81 (1.33.2.2), y anti-CD151 (LIA1/1).
El policlonal de conejo dirigido frente a la cadena pesada anti-CD98 era de Santa Cruz Biotechnologies (Santa Cruz, CA).
Construcciones de ADN y lentivirus
Las construcciones CD9 e ICAM-1-GFP se han descrito previamente (Barreiro, O. et al. 2005. Blood 105:2852-2861). Las construcciones CD4 y CD147-GFP eran del Dr. M. Davis (Departamento de Microbiología e Inmunología, Facultad de Medicina de la Universidad de Stanford, CA) y el Dr. J. Cao (Departamento de Medicina, Stony Brook, NY), respectivamente. Todas las construcciones lentivirales derivadas del VIH-1 (vector de transferencia pWPXK, construcción auxiliar de empaquetamiento pCMVA8,74 y vector pMD2G que codifica la proteína de la envoltura) fueron suministradas por el Dr. D. Trono (Escuela Politécnica de Lausana, Suiza). La construcción pWPXL-CD98 dirige la expresión de CD98 humana del promotor EF 1 alfa y también contiene un cásete de expresión de GFP. El lentivirus que expresa EGFP es un lentivirus derivado de VIH-1 de tercera generación de pseudotipo VSV en el que la expresión de EGFP está dirigida por el promotor/potenciador temprano del citomegalo virus. Los vectores se produjeron mediante transfección transitoria en células 293T por el método del fosfato de calcio, usando un total de 45 μg de ADN de plásmido en una placa de 150 mm. El medio (20 mi) se cambió después de 14 a 16 horas. Después de 24 horas más, se recogió el medio condicionado, se clarificó mediante centrifugación de baja velocidad y se filtró a través de filtros de PVDF de tamaño de poro de 0,45 μιη. Se calcularon los títulos virales midiendo las unidades de transducción (UT/ml) y mediante qPCR de los sobrenadantes (partículas /mi), y fueron alrededor de 107 a 108 UT/ml y a una relación de 1 :100 UT/partícula. La construcción que comprende el AR sh específico para CD98 está dirigida contra la secuencia TCGGGACAGAGAATCTGAA (SEQ ID NO: l) que aparece en el ARNm de CD98. El lentivirus comprende la secuencia
TGCTGTTCAGATTCTCTATGTCCCGAGTTTTGGCCACTGACTGAC TCGGGACAGAGAATCTGAA (SEQ ID NO:2), en donde la región subrayada corresponde a la secuencia diana en el ARNm de CD98.
Aislamiento de ARN y digestión con DNasa I Se extrajo el ARN total de biopsias de endometriales enteras y cultivos de células. Las muestras se recogieron y procesaron en Trizol (Gibco BRL, Madrid, España) según las instrucciones del fabricante. Se trató el ARN total (20 μg) durante 30 minutos con 5 μΐ de DNasa I (Clontech, Palo Alto, CA, EE.UU.) a 37°C, seguido por una ronda de extracción con fenol/cloroformo, y otra solamente con cloroformo. El ARN se precipitó después durante la noche a -20°C en 0,1 volúmenes de acetato de sodio 2 M pH 5,2 y 2,5 volúmenes de etanol al 100%. Después de lavar con etanol al 80% el precipitado se disolvió en 20 μΐ de agua sin RNasa. La integridad del ARN se evaluó en un gel de agarosa al 1% (peso/volumen) con isotiocianato de guanidinio. Las concentraciones de ARN se determinaron mediante densidad óptica en un espectrofotómetro GeneQuant II (Pharmacia). La relación de absorbancia 260/280 nm para cada muestra fue entre 1 ,6 y 1,9.
RT-PCR y PCR en tiempo real
El ARN total (1 μg) se sometió a transcripción inversa y se amplificó por PCR por medio de un sistema de un solo tampón (Access RT-PCR, Promega). Se separaron alícuotas equivalentes de cada reacción de amplificación en un gel de agarosa al 1,8% (peso/volumen) en tampón TAE IX y se tiñeron con bromuro de etidio.
Para la PCR en tiempo real, el ARN tratado con DNasa I (50 ng) se sometió a transcripción inversa y se amplificó por PCR usando el kit de amplificación en un paso LightCycler-RNA SYBR Green I con un aparato LightCycler (Roche). Se amplificaron beta-actina y GADPH mediante RT-PCR en todas las muestras de ARN como controles internos de mantenimiento. La cuantificación relativa fue mediante el método de la curva patrón para el colorante SYBR® Green I. Análisis de citometría de flujo
Se tripsinizaron las líneas celulares endometriales humanas RL95-2 y HEC-l-A, y EEC primarias, se lavaron y se incubaron secuencialmente con los mAb primarios indicados y las IgG de conejo anti-ratón conjugadas con FITC. Las células marcadas se analizaron mediante citometría de flujo en un FACScan (Becton Dickinson).
Inmunofluorescencia y análisis confocal
Se fijaron EEC confluentes o monocapas de HEC-l-A con paraformaldehído al 2% y se tiñeron con la combinación apropiada de mAb y mAb biotinilados después de bloquear con suero de ratón. Se obtuvieron imágenes confocales con un microscopio confocal de barrido láser Leica TCS-SP5 y se analizaron con el software confocal de procesamiento de imágenes de Leica y Photoshop 7.0 (Adobe Systems).
Inmunoprecipitación
Se lisaron monocapas de EEC confluentes en solución salina tamponada con Tris que contenía Brij 96 al 1 %, CaCl2 1 mM, MgCl2 1 mM e inhibidores de proteasas (Complete; Roche Applied Science). Los lisados celulares se inmunoprecipitaron con el anticuerpo indicado acoplado a proteína G-sepharosa. Después de lavar seis veces con tampón de lisis, las proteínas unidas a las bolas de sepharosa se eluyeron hirviendo en tampón de carga, se separaron mediante SDS-PAGE al 1 0% en condiciones no reductoras y se transfirieron a una membrana de nitrocelulosa (medio de transferencia Trans-Blot; Bio-Rad). Inmunohistoq uímica
La inmunohistoquímica se realizó en secciones endometriales de 3-5 μιη usando un kit de peroxidasa DAKO LSAB. Brevemente, las secciones se bloquearon con BSA al 4% durante 30 minutos a 37°C y se incubaron con peróxido de hidrógeno al 3% durante 5 minutos a temperatura ambiente, antes de la incubación (60 minutos, temperatura ambiente) con los anticuerpos primarios. Después de 25 minutos de incubación con el espaciador, se añadió estreptavidina-peroxidasa durante 15 minutos y se añadió la solución de sustrato cromógeno (DAB) durante 5 minutos para teñir los portaobjetos. Los portaobjetos se contratiñeron con hematoxilina de Mayer. Los portaobjetos se montaron con Entellan (Merck, Darmstadt, Alemania). Se evaluó la intensidad de la inmunotinción en al menos tres muestras diferentes y se puntuó la expresión como ausente (0), débil ( 1 ), moderada (2), o fuerte (3) mediante tres observadores independientes usando el sistema de doble ciego. Transfección e infección de células El día anterior a la transfección, se tripsinizaron células HEC-l-A, se diluyeron con medio sin antibióticos y se sembraron en placas de 24 pocilios a 5x105 células/pocilio. Las células, al 80-90% de confluencia, se transfectaron con ADN de plásmido (0,8 μg por pocilio) mezclado en un relación 1 :5 con lipofectamina 2000 (Invitrogen, Carlsbad, CA). Para la infección con lentivirus, los cultivos de HEC-l-A se expandieron el día antes de la infección. Las células se tripsinizaron entonces y se expusieron en suspensión al lentivirus en un relación de 100 MOI antes de plaquear. La adhesión de blastocistos se realizó 24 horas después de la transfección ó 3 días después de la infección.
Ensayos de adhesión de blastocistos de ratón
Se adquirieron ratones hembra de la cepa B6C3F1 (6-8 semanas de edad) de Elevage Janvier (Le Genest, St. Isle, Francia). Se desencadenó el desarrollo sincrónico de folículos mediante administración intraperitoneal de 10 UI de eCG (Sigma-Aldrich) en 100 μΐ de PBS de Dulbecco sin Ca2+ ni Mg2+ (pH 7,4), y fue seguido 48 horas después por la administración intraperitoneal de 10 UI de hCG (Sigma-Aldrich) en 100 μΐ de PBS para iniciar la ovulación. Se recogieron los embriones en el día 2 de gestación y se cultivaron durante 3 días en medio S2 (Scandinavia IVF Science, Gotemburgo, Suecia). De forma alternativa, se hicieron superovular ratones hembra híbridos (DBA x C57BL) de 10 semanas mediante inyecciones intraperitoneales de 7,5 UI de gonadotropina coriónica equina (eCG, Intervet, Boxmeer, Holanda) seguido 48 horas después por 5 UI de gonadotropina coriónica humana (hCG, Lepori, Farma-Lepori, Barcelona, España). El mismo día de la inyección de hCG, los ratones hembra se aparearon con ratones macho de la misma cepa. Los blastocistos se recogieron 3,5 días después del coito (dpc) y se cultivaron durante 24 horas en grupos de 20-25 en una gota de 40 μΐ de medio de optimización simple de potasio (KSOM), suplementado con aminoácidos y recubierto con aceite mineral, en una atmosfera humidificada con C02 al 5% a 37°C. Se desecharon los embriones degenerados, y solo se usaron los blastocistos expandidos con una morfología normal. La zona pelúcida no se eliminó artificialmente. Se midió la adhesión de blastocistos de ratón a monocapas de HEC-l-A confluentes mediante un ensayo mecánico: los blastocistos se incubaron durante 24-48 horas sobre monocapas confluentes (C02 al 5% a 37°C). Las placas de incubación se movieron después a lo largo de un camino circular de 3 cm de diámetro a 60 rpm durante alrededor de 10 segundos. Se contaron los embriones que flotaban y los unidos con un microscopio invertido (Nikon Diaphot 300, Nikon Corporation, Tokio, Japón).
EJEMPLO 1
Determinación del perfil de receptores de adhesión de líneas celulares epiteliales endometriales RL95-2 y HEC-l-A y células epiteliales endometriales primarias. Los experimentos de adhesión con blastocistos de ratón mostraron un fenotipo receptivo pronunciado par las células RL95-2 (81% de adhesión de blastocistos) y un fenotipo no receptivo para las células HEC-l-A (46%); las EEC primarias cultivadas sobre matriz extracelular muestran una receptividad intermedia del 67%. Para validar estas líneas celulares como un modelo adecuado de receptividad endometrial, se analizó la expresión de receptores hormonales mediante RT-PCR en ambas líneas celulares así como en cultivos de células epiteliales endometriales humanas primarias y en endometrio total de biopsias endometriales. De forma similar a las EEC humanas y al endometrio, ambas líneas celulares expresan el receptor de prolactina (PRL-R), receptores de estradiol α y β (ERa y ERP), y ciclooxigenasa-2 (Cox-2). La expresión del receptor de progesterona (PR) faltaba en ambas líneas celulares endometriales, mientras que RL95-2 retenía la expresión del receptor de la hormona lútea (LHR) y el receptor de relaxina (LGR7).
A continuación se analizó la expresión de un conjunto de moléculas de adhesión de la superficie celular mediante citometría de flujo. Como se muestra en la Tabla 1, todos los cultivos epiteliales endometriales expresaron niveles altos de integrinas βΐ, α3 y α6 que se unen a laminina, niveles intermedios de integrinas a2 y ανβ3, niveles muy bajos o indetectables de integrinas al y a5, y niveles indetectables de integrinas β2 ó a4. Las dos líneas celulares mostraron una expresión mayor de integrina a6 comparadas con células primarias. Además, todos los cultivos endometriales expresaron ICAM-1, CD44, CD59 y las tetraspaninas CD9, CD81 y CD151. Las células fueron negativas para la expresión de los marcadores de leucocitos ICAM-3 , CD43 y PSGL-1, y para las moléculas endoteliales VCAM-1 y CD-31. Las células endometriales también fueron negativas para la expresión de selectinas P, E y L. Por el contrario, consistente con su relevancia en receptividad endometrial, se detectaron ligandos de selectina CD15 en la superficie celular tanto de las EEC como de las células receptivas RL95-2, pero no en células HEC-l-A. De todas las moléculas ensayadas, los únicos otros receptores de adhesión que se expresaban más abundantemente en las células RL95-2 fueron CD98 (alrededor de 6 veces más que en HEC-l-A y células EEC) y CD147 (2,8 veces más que en células HEC-l-A y 1,4 veces más que en las EEC).
Figure imgf000050_0001
Tabla 1: Análisis por citometría de flujo de la expresión de moléculas de adhesión celular en células epiteliales endometriales y líneas celulares. Los datos mostrados son medias ± D.E. de intensidad media de fluorescencia (MFI) de n=2 para integrinas a4 y βΐ, ICAM-2 y 3; VCAM-1, CD43, selectmas, PSGL-1; n=5 para integrinas βΐ, al y a3, ICAM-1, CD15, CD147 y CD98. n=4 para las moléculas restantes. * p<0,005 **p<0,001, ANOVA prueba de comparación múltiple de Newman-Keuls. EJEMPLO 2
CD98 está polarizada a la superficie apical de células epiteliales endometriales y se asocia con microdominios enriquecidos en tetraspaninas Con el fin de comprender mejor la función de CD147 y CD98 en adhesión embrionaria, se evaluó primero su localización subcelular en monocapas de EEC primarias polarizadas (confirmado mediante tinción intracelular de E-caderina; Fig. 1A). Al contrario que en células epiteliales intestinales, CD98 está polarizada en la superficie apical del epitelio endometrial, colocalizando en las microvellosidades apicales con tetraspanina CD9 (Fig. 1A, B). ICAM-1 y CD147 se encontraron tanto en el compartimento apical como el basolateral, y se observó sólo colocalización parcial de CD147 con CD9 (Fig. IB).
La colocalización de CD98 con CD9 indujo a explorar la posible inserción de CD98 en microdominios enriquecidos en tetraspaninas. El análisis de inmunoprecipitación en condiciones moderadamente restrictivas (Brij 96 al 1%) mostró una fuerte asociación de ICAM-1 con CD9 en monocapas de células epiteliales endometriales primarias, como se ha descrito previamente para células endoteliales humanas (Barreiro, O et al. 2005. Blood 105:2852-2861). También se pudo observar una señal más débil para CD98, mientras que no se encontró asociación con CD9 para CD 147. El anticuerpo monoclonal anti-CD147 fue capaz de coinmunoprecipitar débilmente CD98, como se había descrito previamente (Xu, D. et al. 2005. Mol Cell Proteomics 4: 1061-1071). Estos resultados sugieren que CD98 forma dos complejos independientes, con CD147 y con tetraspaninas y que la inserción en microdominios enriquecidos en tetraspaninas podría regular la polaridad de CD98 en tipos de células epiteliales.
EJEMPLO 3
La expresión de CD98 está restringida a la ventana de implantación en endometrio humano
La localización subcelular en cultivos de EEC in vitro sugería una función para CD98 en la adhesión embrionaria. Para examinar esta posibilidad, se analizó la expresión in vivo de moléculas de adhesión a lo largo del ciclo menstrual. Se analizó la expresión de A N mensajero mediante PCR en tiempo real en muestras endometriales humanas (n=15) divididas en cinco grupos según las fases del ciclo menstrual. La expresión del ARNm de CD147 estaba en su mínimo durante la ventana de implantación (grupo 4 en la Fig. 2). Comparado con esto, la expresión era 4 veces mayor en las fases proliferativas y 7 veces mayor en la fase secretora temprana. Después de la ventana de implantación, la expresión aumentó de nuevo en la fase secretora tardía (grupo 5) más de 10 veces (Fig. 2). La expresión de ICAM-1 mostró poca variación entre los grupos 1, 2 y 4, pero fue 20 veces mayor en el grupo 3 y hasta 55 veces mayor en el grupo 5 (Fig. 2). Los niveles del ARNm de CD98 permanecieron bajos en todas las fases del ciclo menstrual.
En experimentos paralelos, se analizó la expresión de proteínas en tejido endometrial humano mediante inmunohistoquímica. Como se ha descrito previamente, se detectaron ICAM-1, CD9 y CD147 en el endometrio humano (Figura 3 A). La tinción de CD9 estaba restringida al epitelio glandular y luminal, sin expresión en el compartimento estromal. No se observaron diferencias significativas en los diferentes grupos del ciclo menstrual, mostrando CD9 una expresión débil-media que disminuía sólo ligeramente al final de la fase lútea. La tinción de ICAM-1 mostró una expresión muy alta que era máxima en la fase secretora tardía tanto en estroma como en epitelio. CD147 también tiñó tanto células estromales como epiteliales. En células del estroma, la expresión de CD147 aumentó con la progresión del ciclo menstrual, con un máximo en la fase secretora media (grupo 4) (Fig. 3 A), cuando tiene lugar la implantación, y descendiendo ligeramente en la fase secretora tardía (grupo 5). La intensidad de la tinción de CD147 en el epitelio luminal y glandular varió desde débil a moderadamente positiva a lo largo del ciclo menstrual, con expresión máxima en la ventana de implantación. De forma interesante, el estroma y el epitelio fueron negativos para la expresión de CD98 en las fases tempranas del ciclo menstrual pero, al contrario que la expresión del ARNm, aumentó a moderadamente positivo en la fase secretora media (grupo 4), que corresponde a la ventana de implantación (Fig. 3B). De esta manera, CD9 y CD147 se dan en el epitelio luminal y su expresión es mayor en el tiempo de máxima receptividad, pero sólo CD98 podría funcionar como señal de receptividad, ya que su expresión es indetectable fuera de la ventana de implantación.
EJEMPLO 4
CD98 se induce in vivo en células epiteliales endometriales cultivadas
Para mimetizar el proceso de adhesión durante la implantación, se realizaron ensayos de adhesión con cultivos de HEC-l-A y esferoides de trofoblastos JAR fluorescentemente marcados; se analizaron los niveles de expresión de CD147, CD98, ICAM-1 y CD9 en células HEC-l-A mediante citometría de flujo después de 24 horas de adhesión. La adhesión de esferoides JAR indujo expresión de ICAM-1 y CD98 en la membrana plasmática de células endometriales (Fig. 4A), y se observó la misma inducción usando medio condicionado de JAR. Los niveles de CD9 no cambiaron, mientras que la expresión en membrana de CD147 disminuyó ligeramente.
Se ha mostrado que el medio condicionado de JAR contiene gonadotropina coriónica humana (hCG) (Hussa, R.O et al. J Clin Endocrinol Metab 40:401-405), y se encontró que el tratamiento con hCG era capaz de inducir la expresión de ICAM-1 y CD98 tanto en células HEC-l-A (Figura 4B) como en EEC primarias (Figura 4B y C). CD98 también se indujo en células endometriales primarias mediante exposición a β-estradiol (Figura 4C y D). El tratamiento con progesterona no alteró significativamente la expresión en la membrana plasmática de CD98 pero aumentó el efecto del tratamiento con estrógeno (Figura 4C y D). Los niveles de superficie de ICAM-1, CD147 y CD9 no cambiaron significativamente por estas hormonas in vitro. La inducción del fenotipo receptivo en el epitelio luminar del endometrio viene dictado por múltiples factores paracrinos secretados por células del estroma. Por ello analizamos la expresión en membrana de CD98hc por citometría de flujo tras estimulación de células endometriales humanas con distintos factores solubles que se encuentran in vivo durante la ventana de implantación. En estos estudios se observó un marcado incremento de la expresión de CD98 tras tratamiento de los cultivos primarios con LIF, NGF y EGF. No se detectaron cambios tras la estimulación con IL-Ιβ, mientras que el tratamiento con TGF redujo de forma significativa los niveles de expresión en membrana de CD98 (Figura 4D). A continuación se examinó la localización de CD98 en células endometriales mediante microscopía confocal. Puesto que los esferoides JAR se tiñeron fuertemente para la expresión de CD98, se realizaron estas tinciones con un sistema de adhesión de blastocistos murinos, en el que se deja que blastocistos de ratón se adhieran a células HEC-l-A confluentes. Las muestras se tiñeron con anti-CD98 humana para visualizar sólo la CD98 endometrial. La expresión de CD98 aumentó claramente en las células endometriales que estaban en contacto directo con el blastocisto de ratón (Figura 4E). En conjunto, estos datos demuestran la expresión de CD98 paracrino dependiente en células endometriales y la inducción de la molécula por adhesión de blastocistos.
EJEMPLO 5
La sobreexpresión endometrial de CD98, CD147 o CD9 confiere mayor receptividad a la adhesión de blastocisto de ratón
Para valorar directamente la función de las diferentes moléculas de adhesión en la adhesión de blastocistos durante la implantación, células de la línea celular endometrial poco adhesiva HEC-l-A se transfectaron transitoriamente con construcciones de CD147, ICAM-1 ó CD9 con GFP como etiqueta; se confirmó la expresión de la proteína exógena mediante citometría de flujo, PCR e inmunotransferencia. Se dejaron adherir blastocistos emergentes de ratón a monocapas endometriales transfectadas y se analizó el número de blastocistos adheridos después de 24 horas. La sobreexpresión de ICAM-1 o el control negativo CD4 no tuvieron efecto significativo en la adhesión de blastocistos. Por el contrario, la sobreexpresión de CD147 o CD9 produjo un aumento significativo en la adhesión de blastocistos (Fig. 5A).
La transfección de HEC-l-A con plásmidos que codifican CD98 con etiqueta myc, si bien aumentaban la expresión del ARNm de CD98, no cambiaban significativamente la expresión de proteína en la membrana plasmática analizada mediante citometría de flujo (no mostrado). Para salvar este problema, se infectaron células con un lentivirus que codifica CD98 humana junto con un indicador de infección GFP; este sistema alcanzó sobreexpresión de CD98 de 2-10 veces en la membrana plasmática de células HEC-l-A. La sobreexpresión lentiviral de CD98 produjo adhesión casi completa de blastocistos de ratón a las 24 horas (Figura 5B).
EJEMPLO 6
El silenciamiento endometrial de CD98 provoca una disminución en la receptividad a la adhesión de blastocisto de ratón
Con el fin de determinar si el silenciamiento de CD98 en las células endometriales tiene algún efecto sobre la implantación de los embriones, se infectaron en paralelo células HEC-l-A con lentivirus que codifica CD98 humana junto con un indicador de infección GFP y células HEC-l-A con un lentivirus que codifica para un ARNsh específico para CD98 junto con un indicador de infección GFP. La sobreexpresión lentiviral de CD98 resultó en un aumento de la adhesión de blastocistos tal y como se había demostrado en el ejemplo anterior (Fig. 5B). Sin embargo, la expresión del ARNsh resultó en una inhibición significativa de la adhesión del blastocistos de ratón a las 24 horas (Figura 5C).
Todos estos resultados sugieren que CD98, localizada en los microdominios enriquecidos de tetraspaninas, podría ser un determinante crucial de la receptividad endometrial humana durante la ventana de implantación.

Claims

REIVINDICACIONES
1. Uso de CD98 como marcador de receptividad del endometrio para la implantación del embrión.
2. Método para seleccionar la ventana temporal para la implantación del embrión en un animal hembra que comprende determinar el nivel de expresión de CD98 en una muestra de endometrio de dicho animal, en donde dicha ventana corresponde al momento en el que el nivel de expresión de CD98 en dicha muestra se encuentra elevado con respecto a una muestra de referencia.
3. Método según la reivindicación 2 en donde la muestra de referencia es una muestra de endometrio de un animal hembra obtenida en el periodo no fértil de dicho animal.
4. Método según las reivindicaciones 2 ó 3 en donde la determinación del nivel de expresión de CD98 se determina mediante la cuantificación del ARNm que codifica CD98 o mediante la cuantificación de la proteína CD98.
5. Método según la reivindicación 4 en donde la cuantificación del ARNm que codifica CD98 se lleva a cabo mediante RT-PCR.
6. Método según la reivindicación 4 en donde la cuantificación de la proteína CD98 se lleva a cabo mediante inmunohistoquímica.
7. Uso de un agente activador de CD98 o de CD9 para la preparación de un medicamento para aumentar la receptividad del endometrio durante la implantación del embrión.
8. Uso según la reivindicación 7 en donde el agente activador de CD98 o de CD9 es un polinucleótido que codifica CD98 o CD9.
9. Un método para la identificación de compuestos capaces de aumentar la receptividad del endometrio que comprende (i) poner en contacto una célula seleccionada del grupo de
a. una célula que expresa CD98 o CD9 y
b. una célula que comprende una construcción génica que comprende un polinucleótido que codifica un gen reportero en donde dicho polinucleótido se encuentra operativamente acoplado al promotor de CD98 o al promotor de CD9,
con un compuesto candidato y
(ii) determinar el nivel de expresión de CD98, de CD9 o del gen reportero en dicha célula,
en donde el compuesto se considera adecuado para aumentar la receptividad del endometrio si provoca un aumento en el nivel de expresión de CD98, de CD9 o del gen reportero.
Un método para la identificación de compuestos anticonceptivos que comprende
(i) poner en contacto una célula seleccionada del grupo de
a. una célula que expresa CD98 o CD9 y
b. una célula que comprende una construcción génica que comprende un polinucleótido que codifica un gen reportero en donde dicho polinucleótido se encuentra operativamente acoplado al promotor de CD98 o al promotor de CD9,
con un compuesto candidato y
(ii) determinar los niveles de expresión de CD98, CD9 o del gen reportero en dicha célula,
en donde el compuesto se considera adecuado como compuesto anticonceptivo si provoca una disminución en el nivel de expresión de CD98, de CD9 o del gen reportero.
Método según cualquiera de las reivindicaciones 9 ó 10 en donde la célula que expresa CD98 o CD9 es una célula de endometrio o una línea celular de origen endometrial.
12. Método según la reivindicación 11 en donde la célula de endometrio es una célula HEC-l-A.
13. Método según cualquiera de las reivindicaciones 9 a 11 en donde la determinación del nivel de expresión de CD98 se lleva a cabo mediante citometría de flujo.
14. Un método anticonceptivo que comprende la administración a un sujeto de un inhibidor de CD98.
15. Método según la reivindicación 14, en donde el inhibidor de CD98 se selecciona del grupo de:
(i) un anticuerpo dirigido frente a CD98,
(ii) un ácido nucleico capaz de provocar el silenciamiento del AR m que codifica CD98, y
(iii) un fragmento soluble de CD98.
16. Método según la reivindicación 15 en donde el ácido nucleico capaz de provocar el silenciamiento del ARNm que codifica CD98 es un shRNA.
17. Método según la reivindicación 16 en donde dicho shRNA está dirigido contra una región de CD98 que comprende la secuencia SEQ ID NO: l .
18. Método según la reivindicación 17 en donde el shRNA comprende la secuencia SEQ ID NO:2.
PCT/ES2010/070744 2009-11-19 2010-11-18 Uso de cd98 como marcador de receptividad endometrial WO2011061376A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200902193 2009-11-19
ES200902193A ES2365343B1 (es) 2009-11-19 2009-11-19 Uso de cd98 como marcador de receptividad endometrial.

Publications (2)

Publication Number Publication Date
WO2011061376A2 true WO2011061376A2 (es) 2011-05-26
WO2011061376A3 WO2011061376A3 (es) 2011-07-14

Family

ID=43805755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070744 WO2011061376A2 (es) 2009-11-19 2010-11-18 Uso de cd98 como marcador de receptividad endometrial

Country Status (2)

Country Link
ES (1) ES2365343B1 (es)
WO (1) WO2011061376A2 (es)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009810A1 (en) 1987-06-11 1988-12-15 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
US5010175A (en) 1988-05-02 1991-04-23 The Regents Of The University Of California General method for producing and selecting peptides with specific properties
WO1991019735A1 (en) 1990-06-14 1991-12-26 Bartlett Paul A Libraries of modified peptides with protease resistance
WO1992000091A1 (en) 1990-07-02 1992-01-09 Bioligand, Inc. Random bio-oligomer library, a method of synthesis thereof, and a method of use thereof
US5093246A (en) 1986-12-03 1992-03-03 University Patents, Inc. Rna ribozyme polymerases, dephosphorylases, restriction endoribo-nucleases and methods
US5176996A (en) 1988-12-20 1993-01-05 Baylor College Of Medicine Method for making synthetic oligonucleotides which bind specifically to target sites on duplex DNA molecules, by forming a colinear triplex, the synthetic oligonucleotides and methods of use
WO1993020242A1 (en) 1992-03-30 1993-10-14 The Scripps Research Institute Encoded combinatorial chemical libraries
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5539083A (en) 1994-02-23 1996-07-23 Isis Pharmaceuticals, Inc. Peptide nucleic acid combinatorial libraries and improved methods of synthesis
US5593853A (en) 1994-02-09 1997-01-14 Martek Corporation Generation and screening of synthetic drug libraries
WO1999055377A2 (en) 1998-04-28 1999-11-04 Applied Research Systems Ars Holding N.V. Polyol-ifn-beta conjugates
US20020177547A1 (en) 2001-01-16 2002-11-28 Karin Molling Pharmaceutical compositions for treating or preventing cancer
WO2003062832A1 (en) 2002-01-21 2003-07-31 Isis Innovation Limited Fertility screening method and kit
US9610287B2 (en) 2011-06-20 2017-04-04 H. Lundbeck A/S Method of administration of 4-((1R,3S)-6-chloro-3-phenyl-indan-1-yl)-1,2,2-trimethyl-piperazine and the salts thereof in the treatment of schizophrenia

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131568A1 (en) * 2008-04-21 2009-10-29 Cythera, Inc. Methods for purifying endoderm and pancreatic endoderm cells derived from human embryonic stem cells

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093246A (en) 1986-12-03 1992-03-03 University Patents, Inc. Rna ribozyme polymerases, dephosphorylases, restriction endoribo-nucleases and methods
WO1988009810A1 (en) 1987-06-11 1988-12-15 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
US5010175A (en) 1988-05-02 1991-04-23 The Regents Of The University Of California General method for producing and selecting peptides with specific properties
US5176996A (en) 1988-12-20 1993-01-05 Baylor College Of Medicine Method for making synthetic oligonucleotides which bind specifically to target sites on duplex DNA molecules, by forming a colinear triplex, the synthetic oligonucleotides and methods of use
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
WO1991019735A1 (en) 1990-06-14 1991-12-26 Bartlett Paul A Libraries of modified peptides with protease resistance
WO1992000091A1 (en) 1990-07-02 1992-01-09 Bioligand, Inc. Random bio-oligomer library, a method of synthesis thereof, and a method of use thereof
WO1993020242A1 (en) 1992-03-30 1993-10-14 The Scripps Research Institute Encoded combinatorial chemical libraries
US5288514A (en) 1992-09-14 1994-02-22 The Regents Of The University Of California Solid phase and combinatorial synthesis of benzodiazepine compounds on a solid support
US5593853A (en) 1994-02-09 1997-01-14 Martek Corporation Generation and screening of synthetic drug libraries
US5539083A (en) 1994-02-23 1996-07-23 Isis Pharmaceuticals, Inc. Peptide nucleic acid combinatorial libraries and improved methods of synthesis
WO1999055377A2 (en) 1998-04-28 1999-11-04 Applied Research Systems Ars Holding N.V. Polyol-ifn-beta conjugates
US20020177547A1 (en) 2001-01-16 2002-11-28 Karin Molling Pharmaceutical compositions for treating or preventing cancer
WO2003062832A1 (en) 2002-01-21 2003-07-31 Isis Innovation Limited Fertility screening method and kit
US9610287B2 (en) 2011-06-20 2017-04-04 H. Lundbeck A/S Method of administration of 4-((1R,3S)-6-chloro-3-phenyl-indan-1-yl)-1,2,2-trimethyl-piperazine and the salts thereof in the treatment of schizophrenia

Non-Patent Citations (55)

* Cited by examiner, † Cited by third party
Title
"Handbook of Immunohistochemistry and In Situ Hybridization in Human Carcinomas", 2004, ACADEMIC PRESS
ACHACHE, H ET AL., HUMAN REPRODUCTION UPDATE, vol. 12, 2006, pages 731 - 46
ALTSCHUL S.F. ET AL.: "Basic local alignment search tool", J MOL BIOL., vol. 215, no. 3, 5 October 1990 (1990-10-05), pages 403 - 10, XP002949123, DOI: doi:10.1006/jmbi.1990.9999
AUSUBEL, F.M. ET AL.: "Current Protocols in Molecular Biology", 2003, JOHN WILEY & SONS INC
BARREIRO, 0 ET AL., BLOOD, vol. 105, 2005, pages 2852 - 2861
BARREIRO, 0. ET AL., BLOOD, vol. 105, 2005, pages 2852 - 2861
BENTIN-LEY, U. ET AL., J REPROD FERTIL, vol. 101, 1994, pages 327 - 332
BULLETTI, C. ET AL., FERTIL STERIL, vol. 49, 1988, pages 991 - 996
CAMPBELL ET AL., J. ORG. CHEM., vol. 59, 1994, pages 658
CHEN ET AL., J. AMER. CHEM. SOC., vol. 116, 1994, pages 2661
CHO ET AL., BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 313, 2004, pages 954 - 961
CHO ET AL., SCIENCE, vol. 261, 1993, pages 1303
DOMINGUEZ, F. ET AL., FASEB J, vol. 19, 2005, pages 1056 - 1060
DOWDY; WEARDEN: "Statistics for Research", 1983, JOHN WILEY & SONS
EGLOM ET AL., NATURE, vol. 365, 1993, pages 566
FURKA ET AL., INT. J. PEPT. PROT. RES., vol. 37, 1991, pages 487 - 493
GIUDICE, L.C., HUM REPROD 14 SUPPL, vol. 2, 1999, pages 3 - 16
GOTTESDIENER ET AL., MOL. CELL BIOL., vol. 8, 1988, pages 3809 - 3819
HAGIHARA ET AL., J. AMER. CHEM. SOC., vol. 114, 1992, pages 6568
HELENE, ANTICANCER DRUG DES, vol. 6, no. 6, 1991, pages 569 - 84
HIRSCHMANN ET AL., J. AMER. CHEM. SOC., vol. 114, 1992, pages 9217 - 9218
HOBBS ET AL., PNAS USA, vol. 90, 1993, pages 6909 - 6913
HOUGHTON ET AL., NATURE, vol. 354, 1991, pages 84 - 88
HUSSA, R.O ET AL., J CLIN ENDOCRINOL METAB, vol. 40, pages 401 - 405
ITOH ET AL., JPN. J. CANCER RES., vol. 92, 2001, pages 1313 - 1321
KONENEN, J. ET AL., NAT. MED., vol. 4, 1987, pages 844 - 7
LE NAOUR ET AL., ONCOGENE, vol. 13, 1996, pages 481 - 486
LE NAOUR, F. ET AL., SCIENCE, vol. 287, 2000, pages 319 - 321
LEMAITRE ET AL., PROC. NATL. ACAD. SCI., vol. 84, 1987, pages 648 - 652
LETSINGER ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 86, 1989, pages 6553 - 6556
LIANG ET AL., SCIENCE, vol. 274, 1996, pages 1520 - 1522
LINDENBERG, S., DAN MED BULL., vol. 38, 1991, pages 371 - 380
LINDGREN, A. ET AL., TRENDS PHARMACOL. SCI, vol. 21, 2000, pages 99 - 103
LIU, W.M. ET AL., J MOL ENDOCRINOL, vol. 36, 2006, pages 121 - 130
LUNDBERG, M ET AL., MOL. THERAPY, vol. 8, 2003, pages 143 - 150
NAVOT, D. ET AL., J CLIN ENDOCRINOL METAB, vol. 72, 1991, pages 408 - 414
PARK, K.R. ET AL., MOL HUM REPROD, vol. 6, 2000, pages 252 - 257
PERRY-O'KEEFE ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 93, 1996, pages 14670
POPOVICI, R.M ET AL., ENDOCRINOLOGY, vol. 141, 2000, pages 3510 - 3513
ROBINSON, S.D. ET AL., PROC NATL ACAD SCI USA, vol. 96, 1999, pages 11452 - 11457
ROSSI, CURRENT BIOLOGY, vol. 4, 1994, pages 469 - 471
SAMBROOK, J. ET AL.: "Molecular Cloning, a Laboratory Manual", vol. 1-3, 2001, COLD SPRING HARBOR LABORATORY PRESS
SCHWARZE, S.R. ET AL., TRENDS PHARMACOL. SCI., vol. 21, 2000, pages 45 - 48
SIMON, C. ET AL., J CLIN ENDOCRINOL METAB., vol. 199984, pages 2638 - 2646
SNYDER, E.L.; DOWDY, S.F., PHARM. RES., vol. 21, 2004, pages 389 - 393
STEIN ET AL., CANCER RES, vol. 48, 1988, pages 2659 - 2668
THOMAS, K ET AL., FERTIL. STERIL., vol. 80, 2003, pages 502 - 507
VAN DER KROL ET AL., BIOTECHNIQUES, vol. 6, 1988, pages 958 - 976
VAUGHN ET AL., NATURE BIOTECHNOLOGY, vol. 14, no. 3, 1996, pages 309 - 314
WAGNER, NATURE, vol. 372, 1994, pages 333
WYNNE F., REPRODUCTION, vol. 131, 2006, pages 721 - 32
XU, D. ET AL., MOL CELL PROTEOMICS, vol. 4, 2005, pages 1061 - 1071
YAN ET AL., AM. J. PHYSIOL. GASTROINTEST. LIVER PHYSIOL., vol. 292, 2007, pages G535 - G545
ZAUG ET AL., SCIENCE, vol. 224, 1984, pages 574 - 578
ZON, PHARM. RES., vol. 5, 1988, pages 539 - 549

Also Published As

Publication number Publication date
ES2365343A1 (es) 2011-09-30
ES2365343B1 (es) 2012-07-10
WO2011061376A3 (es) 2011-07-14

Similar Documents

Publication Publication Date Title
US20030224467A1 (en) AIB1 as a prognostic marker and predictor of resistance to endocrine therapy
Grzmil et al. Expression and functional analysis of Bax inhibitor‐1 in human breast cancer cells
JP2010029189A (ja) 卵巣子宮内膜症の診断法
Critchley et al. Regulation of bcl-2 gene family members in human endometrium by antiprogestin administration in vivo
Liu et al. GLI1 is increased in ovarian endometriosis and regulates migration, invasion and proliferation of human endometrial stromal cells in endometriosis
Chen et al. Integrin-linked kinase improves uterine receptivity formation by activating Wnt/β-catenin signaling and up-regulating MMP-3/9 expression
US20230258641A1 (en) Methods and compositions for sirt1 expression as a marker for endometriosis and subfertility
JP6684263B2 (ja) 子癇前症の早期検出
Shan et al. Effect of angiotensin-(1-7) and angiotensin II on the proliferation and activation of human endometrial stromal cells in vitro
Palomino et al. The endometria of women with endometriosis exhibit dysfunctional expression of complement regulatory proteins during the mid secretory phase
Sorokina et al. An acidic peptide sequence of nucleolin-related protein can mediate the attachment of calcium oxalate to renal tubule cells
US10877045B2 (en) Compositions and methods for diagnosing and treating endometriosis-related infertility
Su et al. Role of hCG in vasculogenic mimicry in OVCAR-3 ovarian cancer cell line
ES2944259T3 (es) Procedimiento para activar la respuesta antitumoral de linfocitos T CD8+ de un paciente afectado con un cáncer
WO2011151321A1 (en) Asf1b as a prognosis marker and therapeutic target in human cancer
US7465553B2 (en) Psoriasin expression by breast epithelial cells
ES2365343B1 (es) Uso de cd98 como marcador de receptividad endometrial.
US11474105B2 (en) Methods and compositions for SIRT1 expression as a marker for endometriosis and subfertility
Telleria et al. Involvement of nuclear factor kappa B in the regulation of rat luteal function: potential roles as survival factor and inhibitor of 20α-hydroxysteroid dehydrogenase
EP2852688B1 (en) Compositions and methods relating to dennd1a variant 2 and polycystic ovary syndrome
US20100150930A1 (en) Mage-11 as a marker for endometrial receptivity to embryo transplantation and a marker and therapeutic target in castration-recurrent prostate cancer
US9663789B2 (en) PME-1 as a biomarker to predict and diagnose endometrial and breast cancer and gene silencing of PME-1 to inhibit epithelial to mesenchymal transition
KR102396763B1 (ko) 혈관내피세포 유래 cxcl11을 유효성분으로 포함하는 삼중음성유방암 치료 예후 예측용 바이오마커 조성물
US20110256633A1 (en) Secretory Granules and Granulogenic Factors as a Target for Cancer Treatment
Wang et al. FTO attenuates the cytotoxicity of cisplatin on KGN cells by regulating the Hippo/YAP1 signaling pathway

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10810848

Country of ref document: EP

Kind code of ref document: A2