WO2011060384A1 - Needleless access connectors and valve elements therefor - Google Patents

Needleless access connectors and valve elements therefor Download PDF

Info

Publication number
WO2011060384A1
WO2011060384A1 PCT/US2010/056749 US2010056749W WO2011060384A1 WO 2011060384 A1 WO2011060384 A1 WO 2011060384A1 US 2010056749 W US2010056749 W US 2010056749W WO 2011060384 A1 WO2011060384 A1 WO 2011060384A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
valve
needleless access
collapsible
housing
Prior art date
Application number
PCT/US2010/056749
Other languages
French (fr)
Inventor
Tim L. Truitt
Alex T. Mazza
Original Assignee
Carefusion 303, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carefusion 303, Inc. filed Critical Carefusion 303, Inc.
Priority to EP23174847.6A priority Critical patent/EP4233981A3/en
Priority to JP2012539059A priority patent/JP6030959B2/en
Priority to CA2779703A priority patent/CA2779703C/en
Priority to EP10779435.6A priority patent/EP2501435B1/en
Priority to EP19192864.7A priority patent/EP3603733B1/en
Priority to BR112012011041A priority patent/BR112012011041A2/en
Priority to MX2012005480A priority patent/MX2012005480A/en
Priority to CN201080051198.6A priority patent/CN102686265B/en
Priority to ES10779435T priority patent/ES2764969T3/en
Priority to RU2012117974/14A priority patent/RU2012117974A/en
Priority to AU2010320036A priority patent/AU2010320036B2/en
Publication of WO2011060384A1 publication Critical patent/WO2011060384A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/24Check- or non-return valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • A61M39/1011Locking means for securing connection; Additional tamper safeties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/26Valves closing automatically on disconnecting the line and opening on reconnection thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/24Check- or non-return valves
    • A61M2039/242Check- or non-return valves designed to open when a predetermined pressure or flow rate has been reached, e.g. check valve actuated by fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • A61M39/26Valves closing automatically on disconnecting the line and opening on reconnection thereof
    • A61M2039/263Valves closing automatically on disconnecting the line and opening on reconnection thereof where the fluid space within the valve is decreasing upon disconnection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture

Definitions

  • This disclosure relates to needleless access connectors and more particularly to positive displacement needleless access connectors that have a small priming volume.
  • a patient may need treatment that requires a medical professional to withdraw urine or blood from the urethra or a vein, respectively.
  • the medical professional may need to introduce drugs or nutrients into the patient's vein (i.e. , intravenously).
  • IV bag intravenous bag
  • Needleless access connectors employ valves that allow a medical practitioner to remove or add devices (e.g. , IV bags) to the catheter without the use of a needle.
  • An example of a needleless access connector is shown in FIGURES 1 A and 1 B.
  • valve 103 Inside valve 103 is a gap (or septum, not shown), that is filled with air.
  • Needleless access connector 100 is a positive displacement device, so that when a new connection is made at female luer fitting 101 , device 100 pulls fluid in from the male side of the valve (i.e. , the side proximate male luer fitting 102). When a disconnection is made at female luer fitting 101 , device 100 pushes fluid in from the female side (i. e. , the side proximate the top
  • DM US 26907448-1.080624. 0936 of female luer fitting 101 The advantage of positive displacement is that when a disconnection is made, device 100 expels fluid out of the male luer fitting 102 and effectively flushes the catheter.
  • some devices on the market today have negative displacement, so that when a male luer (e.g. , male luer 1 06) is disconnected, such devices pull a small amount of liquid from the male luer 102 side.
  • liquid is pulled from the male luer 102 side of a catheter that is attached to the vein of a patient, blood could be pulled into the catheter lumen and if this blood is left in the catheter lumen it may clot and cause health problems for the patient.
  • valve 103 In operation, when the female end of needleless access connector 100 is accessed by a male luer (FIGURE 1 B), valve 103 is sufficiently elastic so that it can bend out of the way to allow flow and then return to its original shape after a disconnection is made at the female end. Thus, needleless access connector 100 re-seals itself and forms a flat surface that can be disinfected at the top surface 1 10 using an alcohol swab,
  • Needleless access connector 100 has a partially annular valve body because it has weakness points on both sides by virtue of duckbills 105. Duckbills 105 encourage the collapse of collapsible valve 103. Furthermore, needleless access connector 100 includes uniform wall thickness in the valve body, even at and around duckbills 105.
  • DMJJS 26907448-1.080624.0936 [0008] After a needleless access connector is primed, the medical practitioner usually connects the male end 102 to a catheter (not shown) The medical practitioner connects a male luer from the IV bag (not shown) to the needleless access connector. For example, a medical practitioner would connect the end of syringe 106 to female luer fitting 1 01 , as shown in FIGURE 1 B.
  • the present disclosure is directed to positive displacement needleless access connectors that have a small priming volume.
  • One embodiment of the invention is a collapsible valve for use in a needleless access connector.
  • the collapsible valve includes a first portion with at least one smiley cut in a section of this first portion.
  • the collapsible valve has a length of 0.62 to 0.82 inches. Further, the collapsible valve is adapted to provide positive
  • Another embodiment of the invention is a positive displacement needleless access connector that includes a housing and a collapsible valve disposed in the housing.
  • the collapsible valve has a length of 0.62 to 0.82 inches.
  • embodiment of the invention is a positive displacement needleless access connector that includes a housing and a collapsible valve disposed in the housing.
  • the housing and the valve cooperate so that a volume of liquid required to expel air from the needleless access connector is about 0.17 to 0.19 milliliters.
  • a method according to one embodiment of the invention is for connecting a first medical device to a second medical device with a needleless access connector.
  • the method includes inserting a male luer of the needleless access connector into the female liter of the second medical device.
  • the method further includes inserting a male luer section of the first medical device into a female luer of the needleless access connector.
  • the needleless access connector is a positive displacement needleless access connector that includes a housing and a collapsible valve disposed in the housing.
  • the collapsible valve has a length of 0.62 to 0.82 inches.
  • FIGURES 1 A and 1 B are cut-away views of a prior art needleless access connector
  • FIGURE 2A shows three exemplary collapsible valves used in tests of needleless access connectors
  • FIGURES 2B— 2C are cut-away, top-down views of different exemplary configurations of a valve according to embodiments of the invention.
  • FIGURES 4A and 4B show flow channels in the housing of an exemplary needleless access connector according to one embodiment of the invention.
  • collapsible valve 200 may have an annular outside surface.
  • collapsible valve 200 includes first portion 200A, second portion 200B and third portion 200C.
  • First portion 200A does not have a significant annular outside surface because it has a smiley cut 200D interrupting the annular characteristic, in contrast, second portion 200B and third portion 200C both have annular outside surfaces.
  • FIGURE 2B shows second portion 200B cut in a plane, x. perpendicular to plane y.
  • the annular outside surface shown in FIGURE 2B relative to plane y is circular.
  • FIGURE 2C shows another possible annular outside surface.
  • FIGURE 2A illustrates that, in various embodiments of the invention, the annular portion of the outside surface of the collapsible valve spans about 30% to 66% of the total axial length of the collapsible valve.
  • Collapsible valves 200 to 202 have a total axial length of 0.72 inches.
  • the amount of axial length of the annular surface varies amongst valves 200 to 202 by virtue of the amount and size of the collapse ass istance structures present in each of these valves.
  • Each of these valves has smiley cuts in first portions 200A to 202A that cause a portion of the axial length of valves 200 to 202 not to have an annular outside surface.
  • first portions 200A to 202A does not have an annular outside surface.
  • First portions 200A to 202A have an axial length of about 0.25 inches or about 34% of the total axial length of valves 200 to 202.
  • at least 34% of the axial lengths of valves 200 to 202 do not have an annular outside surface because of smiley cuts 200D to 202D.
  • FIGURE 3 A is a cut-away view of exemplary needleless access connector 300 according to one embodiment of the invention.
  • Needleless access connector 300 includes housing 301.
  • Housing 301 may be of material including polycarbonate, polystyrene and acrylonitrile butadiene styrene.
  • Housing 301 comprises top threaded part 302. It should be noted that the configuration of top threaded part 302, in some embodiments, meets ISO standard 594. Similarly, the configurations of male luer 303 at the base of needleless access connector 300, in some embodiments, meets ISO standard 594.
  • Collapsible valve 304 is disposed within housing 301.
  • Collapsible valve 304 may be made of elastic material such as silicone rubber, which is deformable and biocompatible. Because collapsible valve 304 is made of deformable material, it will collapse when sufficient force is applied to it.
  • Collapsible valve 304 includes first portion 304A, which is disposed within top threaded part 302 when valve 304 is in its uncollapsed state as depicted in FIGURE 3A.
  • First portion 304 A may be substantially cylindrical in shape and may contain deviations from this cylindrical shape such as smiley cut 304B.
  • Collapsible valve 304 also includes second portion 304C which is disposed in cavity 305 of housing 301.
  • second portion 304C is devoid of duckbills or any other such deviations from its general shape, i.e. , portion 304C's outside surface is annular.
  • second portion 304C is cylindrical and has diameter d2 being greater than diameter d 1 of first portion 304A.
  • Collapsible valve 304 may also include third portion 304D.
  • Third portion 304D may have diameter d3 that is larger than second portion 304C's diameter, d2.
  • Collapsible valve 304 controls fluid flow through needleless access connector 200 and thereby provides a way of connecting devices to a catheter.
  • collapsible valve 304 In its uncollapsed state, as shown in FIGURE 3A, collapsible valve 304 seals top threaded part 302. A further seal is provided at shoulder 307 by collapsible valve 304.
  • collapsible valve 304 When male luer 303 is connected to the catheter 308, in creating a seal at opening 306 and shoulder 307, collapsible valve 304 also seals catheter 308.
  • male luer 309 is inserted in opening 306 as shown in FIGURE 3B.
  • FIGURES 5A - 5C show outside views of exemplary needleless access connectors according to one embodiment of the invention. It should be noted that the specific values given above are for exemplary embodiments and other embodiments may have somewhat different values. Other configurations with different sizes and shapes are within the scope of embodiments. In fact, any of a variety of positive displacement devices (and/or valves) can be adapted according to the concepts illustrated in the examples above,

Abstract

A collapsible valve (304) for use in a needleless access connector (300) to reduce the priming volume of the needleless access connector. A needleless access connector with a small priming volume, A method of connecting a first medical device to a second medical device with a needleless access connector with a small priming volume.

Description

NEEDLELESS ACCESS CONNECTORS AND VALVE ELEMENTS THEREFOR
TECHNICAL FIELD
[0001 ] This disclosure relates to needleless access connectors and more particularly to positive displacement needleless access connectors that have a small priming volume.
BACKGROUND OF THE INVENTION
[0002] Modern medical treatment often requires medical professionals to introduce fluids into a patient or withdraw fluids from a patient. For example, a patient may need treatment that requires a medical professional to withdraw urine or blood from the urethra or a vein, respectively. Conversely, the medical professional may need to introduce drugs or nutrients into the patient's vein (i.e. , intravenously). To create a path for the flow of fluid into or from the patient, one method requires that the medical practitioner use a catheter where one end of the catheter is inserted into the patient. The other end of the catheter connects to an intravenous bag (IV bag), through an IV line. Needleless access connectors employ valves that allow a medical practitioner to remove or add devices (e.g. , IV bags) to the catheter without the use of a needle. An example of a needleless access connector is shown in FIGURES 1 A and 1 B.
[0003] FIGURE 1A is a cut-away view of a current needleless access connector 100. Needleless access connector 100 includes female luer fitting 101 , male luer fitting 102, and valve 103. When in use, male luer fitting 102 is connected to, e.g. , a catheter or to a female luer, and female luer fitting 101 is connected to a fluid reservoir, e.g.. an IV bag or male luer. Female luer fitting 101 is connected to the fluid reservoir via a second male luer fitting 106, which has a hollow member (as shown in FIGURE I B) and is inserted through the top of female luer fitting 101. The insertion of male luer 106 collapses valve 103 down into volume 104 to break the seal and create a fluid flow path. FIGURE IB shows collapsible valve 103 in the collapsed position after insertion of male luer 106 into female luer 101. Male luer 106 delivers fluid, e.g. , from an IV bag. which flows around valve 103 into channels in male luer fitting 102 and into the catheter or female luer.
[0004] Inside valve 103 is a gap (or septum, not shown), that is filled with air.
Needleless access connector 100 is a positive displacement device, so that when a new connection is made at female luer fitting 101 , device 100 pulls fluid in from the male side of the valve (i.e. , the side proximate male luer fitting 102). When a disconnection is made at female luer fitting 101 , device 100 pushes fluid in from the female side (i. e. , the side proximate the top
DM US 26907448-1.080624. 0936 of female luer fitting 101 ). The advantage of positive displacement is that when a disconnection is made, device 100 expels fluid out of the male luer fitting 102 and effectively flushes the catheter. By contrast, some devices on the market today have negative displacement, so that when a male luer (e.g. , male luer 1 06) is disconnected, such devices pull a small amount of liquid from the male luer 102 side. When liquid is pulled from the male luer 102 side of a catheter that is attached to the vein of a patient, blood could be pulled into the catheter lumen and if this blood is left in the catheter lumen it may clot and cause health problems for the patient. Positive displacement connectors avoid this problem by pushing fluid out when a male luer (e.g. , male luer 106) is disconnected from the needleless access connector and its collapsible valve moves from its collapsed state to its uncollapsed state. The purging of fluid, from positive displacement connectors, helps to prevent blood from entering the tip of the catheter, t hereby preventing blood clotting/contamination and thus, bloodstream infections.
[0005] In operation, when the female end of needleless access connector 100 is accessed by a male luer (FIGURE 1 B), valve 103 is sufficiently elastic so that it can bend out of the way to allow flow and then return to its original shape after a disconnection is made at the female end. Thus, needleless access connector 100 re-seals itself and forms a flat surface that can be disinfected at the top surface 1 10 using an alcohol swab,
[0006] Needleless access connector 100 has a partially annular valve body because it has weakness points on both sides by virtue of duckbills 105. Duckbills 105 encourage the collapse of collapsible valve 103. Furthermore, needleless access connector 100 includes uniform wall thickness in the valve body, even at and around duckbills 105.
[0007] Before needleless access connector 100 is used to connect a device to, for example a catheter, needleless access connector 100 will contain some air. This air is removed before using needleless access connector 100 with a catheter because otherwise it may be pumped into the patient causing harm to the patient. Usually, to remove this air, the medical practitioner inverts the needleless access connector and attaches a syringe containing saline to the needleless access connector. The saline is then pushed through the needleless access connector, thereby expelling the air from the connector. (This process is known as priming, and the minimum volume of liquid required to remove all the air from the needleless access connector is known as the priming volume.) Some medical practitioners prefer needleless access connectors with smaller priming volumes to reduce delay in medication delivery.
DMJJS 26907448-1.080624.0936 [0008] After a needleless access connector is primed, the medical practitioner usually connects the male end 102 to a catheter (not shown) The medical practitioner connects a male luer from the IV bag (not shown) to the needleless access connector. For example, a medical practitioner would connect the end of syringe 106 to female luer fitting 1 01 , as shown in FIGURE 1 B.
[0009] The preferences of medical practitioners, discussed above regarding needleless access connectors, are significant especially in view of the fact that some of these medical practitioners, such as nurses, have to perform connecting of needleless access connectors many times during the course of a day.
BRIEF SUMMARY OF THE INVENTION
[0010] The present disclosure is directed to positive displacement needleless access connectors that have a small priming volume. One embodiment of the invention is a collapsible valve for use in a needleless access connector. The collapsible valve includes a first portion with at least one smiley cut in a section of this first portion. The collapsible valve has a length of 0.62 to 0.82 inches. Further, the collapsible valve is adapted to provide positive
displacement. Another embodiment of the invention is a positive displacement needleless access connector that includes a housing and a collapsible valve disposed in the housing. The collapsible valve has a length of 0.62 to 0.82 inches. An apparatus according to one
embodiment of the invention is a positive displacement needleless access connector that includes a housing and a collapsible valve disposed in the housing. The housing and the valve cooperate so that a volume of liquid required to expel air from the needleless access connector is about 0.17 to 0.19 milliliters.
[0011] Another embodiment of the invention is a positive displacement needleless access connector that includes a housing and a collapsible valve disposed in the housing. A method according to one embodiment of the invention is for connecting a first medical device to a second medical device with a needleless access connector. The method includes inserting a male luer of the needleless access connector into the female liter of the second medical device. The method further includes inserting a male luer section of the first medical device into a female luer of the needleless access connector. The needleless access connector is a positive displacement needleless access connector that includes a housing and a collapsible valve disposed in the housing. The collapsible valve has a length of 0.62 to 0.82 inches. (0012 J The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
[0014] FIGURES 1 A and 1 B are cut-away views of a prior art needleless access connector;
[0015] FIGURE 2A shows three exemplary collapsible valves used in tests of needleless access connectors;
[0016] FIGURES 2B— 2C are cut-away, top-down views of different exemplary configurations of a valve according to embodiments of the invention;
[0017] FIGURES 3 A and 3B illustrate different views of an exemplary needleless access connector according to one embodiment of the invention;
[0018] FIGURES 4A and 4B show flow channels in the housing of an exemplary needleless access connector according to one embodiment of the invention; and
[0019] FIGURES 5A-5C illustrate different views of the housing of an exemplary needleless access connector according to one embodiment of the invention.
DMJJS 26907448-1 .080624.0936 DETAILED DESCRIPTION OF THE INVENTION
[0020] To address the issues of reducing priming volume, different configurations of valves for needleless access connectors are disclosed. Tests were performed to establish operability and priming volume for each positive displacement needleless access connector. Priming volume is the minimum volume of liquid used to purge air from the needleless access connector. The tests were conducted on three needleless access connectors each containing different collapsible valves. The configurations of the three different collapsible valves are shown in FIGURE 2A. It was observed that the amount and size of the duckbills, which are known in the prior art as being an important part of some collapsible valves, and the reduction in length of the collapsible valve, as compared to prior art valves, affects priming volume of a needleless access connector.
[0021 ] In one test where the duckbills were completely removed from the collapsible valve (valve 200) and the valve was reduced to 0.72 inches from a typical length of a prior art valve of 0.92 inches, it was observed that the priming volume for this valve was lower than the two other valves— valve 201 , which had small duckbills and valve 202, which had large duckbills. It should be noted that reducing the compressible valve length from 0.92 inches to 0.72 inches allows for the reduction in total device length from 1.32 inches to 1.12 inches. Some test results are shown in TABLE I below.
TABLE 1
Figure imgf000007_0001
[0022] The results of the tests indicate that the priming volumes of needleless access connectors that employ the configuration of valve 200— miniaturized collapsible valves with a significant portion of the outside surface being annular— may have a priming volume of around 0. 175 milliliters and concomitantly allow good flow rates, though various embodiments may- have different priming volumes. For example, the priming volume may range from 0.1 7 to 0.19 milliliters.
DM_US 26907448-1 080624,0936 [0023] Different configurations of collapsible valve 200 may have an annular outside surface. For example, collapsible valve 200 includes first portion 200A, second portion 200B and third portion 200C. First portion 200A does not have a significant annular outside surface because it has a smiley cut 200D interrupting the annular characteristic, in contrast, second portion 200B and third portion 200C both have annular outside surfaces. FIGURE 2B shows second portion 200B cut in a plane, x. perpendicular to plane y. The annular outside surface shown in FIGURE 2B relative to plane y is circular. FIGURE 2C shows another possible annular outside surface. It should be noted that the axial length of the annular outside surface does not include portions of the outside surface with collapse assistance structures such as smiley cuts and duckbills. For instance, collapsible valve 201 has less axial length of its annular surface than does collapsible valve 200 by virtue of the duckbills on second portion 201 B which interrupt the annular characteristic. Collapsible valve 202 has even less axial length of its annular surface by virtue of its duckbills that dominate second portion 202B.
[0024] FIGURE 2A illustrates exemplary embodiments of the invention. Collapsible valves 200 to 202 are miniaturized valves that may be used in a needleless access connector. Collapsible valves 200 to 202 have smiley cuts, 200D to 202D in first portions 200A to 202A, respectively. Collapsible valves 200 to 202 have a height (axial of 0.72 inches but may be within the range of 0.62 to 0.82 inches in various embodiments. Collapsible valves 200 to 202 are adapted to provide positive displacement, in part, by virtue of voids 200E to 202E. Before the needleless access connectors, in which collapsible valves 200 to 202 are installed, are put in use, voids 200E to 202E contain air.
[0025] FIGURE 2A illustrates that, in various embodiments of the invention, the annular portion of the outside surface of the collapsible valve spans about 30% to 66% of the total axial length of the collapsible valve. Collapsible valves 200 to 202 have a total axial length of 0.72 inches. The amount of axial length of the annular surface varies amongst valves 200 to 202 by virtue of the amount and size of the collapse ass istance structures present in each of these valves. Each of these valves has smiley cuts in first portions 200A to 202A that cause a portion of the axial length of valves 200 to 202 not to have an annular outside surface. In other words, the axial length of first portions 200A to 202A does not have an annular outside surface. First portions 200A to 202A have an axial length of about 0.25 inches or about 34% of the total axial length of valves 200 to 202. Thus, at least 34% of the axial lengths of valves 200 to 202 do not have an annular outside surface because of smiley cuts 200D to 202D.
DM ( IS 26907148-1 080624 0936 [0026] Considering valve 200, second portion 200B and third portion 200C have annular outside surfaces. These annular portions represent the other 66% of the axial length of valve 200 (apart from first portion 200A) that has an annular outside surface. Specifically, second portion 200B has an axial length of about 0.4 inches or about 56% of the total axial length of valve 200. Third portion 200C has an axial length of about 0.07 inches or about 10% of the total axial length of valve 200.
[0027] Collapsible valves 201 and 202 have even less outside annular surface than collapsible valve 200 because of the duckbills in second portions 20 IB and 202B. Collapsible valve 202 for example, with the larger duckbills, may have an annular outside surface that spans about 30% of the axial length of valve 202 (i.e. , 20% provided from second portion 202B and 10% provided by third portion 202C).
[0028] FIGURE 3 A is a cut-away view of exemplary needleless access connector 300 according to one embodiment of the invention. Needleless access connector 300 includes housing 301. Housing 301 may be of material including polycarbonate, polystyrene and acrylonitrile butadiene styrene. Housing 301 comprises top threaded part 302. It should be noted that the configuration of top threaded part 302, in some embodiments, meets ISO standard 594. Similarly, the configurations of male luer 303 at the base of needleless access connector 300, in some embodiments, meets ISO standard 594. Collapsible valve 304 is disposed within housing 301.
[0029] Collapsible valve 304 may be made of elastic material such as silicone rubber, which is deformable and biocompatible. Because collapsible valve 304 is made of deformable material, it will collapse when sufficient force is applied to it. Collapsible valve 304 includes first portion 304A, which is disposed within top threaded part 302 when valve 304 is in its uncollapsed state as depicted in FIGURE 3A. First portion 304 A may be substantially cylindrical in shape and may contain deviations from this cylindrical shape such as smiley cut 304B. Collapsible valve 304 also includes second portion 304C which is disposed in cavity 305 of housing 301. Unlike the prior art as depicted in FIGURE 1 , second portion 304C is devoid of duckbills or any other such deviations from its general shape, i.e. , portion 304C's outside surface is annular. As such, in one embodiment, second portion 304C is cylindrical and has diameter d2 being greater than diameter d 1 of first portion 304A. Collapsible valve 304 may also include third portion 304D. Third portion 304D may have diameter d3 that is larger than second portion 304C's diameter, d2.
DM_US 26907448-1.080624.0936 [0030] Collapsible valve 304 controls fluid flow through needleless access connector 200 and thereby provides a way of connecting devices to a catheter. In its uncollapsed state, as shown in FIGURE 3A, collapsible valve 304 seals top threaded part 302. A further seal is provided at shoulder 307 by collapsible valve 304. When male luer 303 is connected to the catheter 308, in creating a seal at opening 306 and shoulder 307, collapsible valve 304 also seals catheter 308. To connect another device, such as an IV bag, to catheter 308, male luer 309 is inserted in opening 306 as shown in FIGURE 3B. Collapsible valve 304 collapses as a result of the force imparted by male luer 309 and thereby allows fluid to flow from male luer 309 through needleless access connector 300, around valve 304 and into catheter 308, as shown in FIGURE 3B.
[0031 ] In some embodiments of the invention, housing 301 includes flow channels 401 as shown in FIGURES 4A and 4B. When collapsible valve 304 is in a collapsed state, flow channels 401 assist the flow of fluid around collapsible valve 304 and into the catheter. As indicated in FIGURE 4A, flow channels 401 may be disposed in the upper portions of housing 401. FIGURES 4A and 4B show six flow channels 401 on the inside of housing 301 , which promotes fluid flow. In some embodiments, the width of flow channel 401 is half the width of flow channels in typical needleless access connectors.
[0032] FIGURES 5A - 5C show outside views of exemplary needleless access connectors according to one embodiment of the invention. It should be noted that the specific values given above are for exemplary embodiments and other embodiments may have somewhat different values. Other configurations with different sizes and shapes are within the scope of embodiments. In fact, any of a variety of positive displacement devices (and/or valves) can be adapted according to the concepts illustrated in the examples above,
[0033] Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the
DM US 26907448-! .080624.0936 corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims

CLAIMS What is claimed is:
1 . A needleless access connector for connecting medical devices, the connector comprising:
a collapsible valve comprising:
a first portion with at least one smiley cut in a section thereof;
a second portion that is collapsible and provides positive displacement: wherein the collapsible valve has an axial length from 0.62 to 0.82 inches.
2. The connector of claim 1 , wherein the second portion has an axial length than is larger than the first portion.
3. The connector of claim 1 , wherein the second portion of the collapsible valve has an annular outside surface that spans 30% to 66% of the axial length of the collapsible valve.
4. The connector of claim 3, wherein the annular surface is cylindrical.
5. The connector of any of claims 1 -4, wherein the collapsible valve comprises an elastic material.
6. The connector of any of claims 1-5, further comprising:
a housing, wherein the collapsible valve is disposed in the housing; wherein the first portion of the collapsible valve creates a seal at a first opening of the housing.
7. The connector of claim 6, wherein the housing further comprises:
a male Luer fitting at one end; and
a female Luer fitting at the other end.
8. The connector of claims 6 or 7, wherein the housing comprises channels adapted to allow fluid to flow through them when the collapsible valve is collapsed.
9. The connector of any of claims 6-8, wherein the needleless access connector has a length of 1.02 to 1 .13 inches.
10. The connector of any of claims 6-9, wherein the housing and the valve cooperate so that a volume of liquid required to expel air from the connector is 0.1 7 to 0.19 milliliters.
DM US 26907448-! 080624. 0936
1 1. The connector of any of claims 6-10, wherein the housing is made from polycarbonate, polystyrene, or acrylonitrile butadiene styrene.
1 2. A method of connecting a first medical device to a second medical device using the connector of any of claims 7- 1 1 , the method comprising the steps of:
inserting a male Luer of the first medical device into the female Luer of the connector: and
inserting the male Luer of the connector into a female Luer of the second medical device.
13. The method of claim 24 in which the first medical device comprises an IV bag and the second medical device comprises a catheter.
PCT/US2010/056749 2009-11-16 2010-11-15 Needleless access connectors and valve elements therefor WO2011060384A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP23174847.6A EP4233981A3 (en) 2009-11-16 2010-11-15 Needleless access connectors and valve elements therefor
JP2012539059A JP6030959B2 (en) 2009-11-16 2010-11-15 Needleless access connector and valve parts
CA2779703A CA2779703C (en) 2009-11-16 2010-11-15 Needleless access connectors and valve elements therefor
EP10779435.6A EP2501435B1 (en) 2009-11-16 2010-11-15 Needleless access connectors and valve elements therefor
EP19192864.7A EP3603733B1 (en) 2009-11-16 2010-11-15 Needleless access connectors and valve elements therefor
BR112012011041A BR112012011041A2 (en) 2009-11-16 2010-11-15 needleless access connectors and their valve elements
MX2012005480A MX2012005480A (en) 2009-11-16 2010-11-15 Needleless access connectors and valve elements therefor.
CN201080051198.6A CN102686265B (en) 2009-11-16 2010-11-15 Needleless access connectors and valve elements therefor
ES10779435T ES2764969T3 (en) 2009-11-16 2010-11-15 Needleless access connectors and valve elements therefor
RU2012117974/14A RU2012117974A (en) 2009-11-16 2010-11-15 CONNECTORS FOR ACCESSLESS ACCESS AND VALVE ELEMENTS FOR THEM
AU2010320036A AU2010320036B2 (en) 2009-11-16 2010-11-15 Needleless access connectors and valve elements therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/619,598 US8636720B2 (en) 2009-11-16 2009-11-16 Needleless access connectors and valve elements therefor
US12/619,598 2009-11-16

Publications (1)

Publication Number Publication Date
WO2011060384A1 true WO2011060384A1 (en) 2011-05-19

Family

ID=43479373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/056749 WO2011060384A1 (en) 2009-11-16 2010-11-15 Needleless access connectors and valve elements therefor

Country Status (10)

Country Link
US (5) US8636720B2 (en)
EP (3) EP3603733B1 (en)
JP (1) JP6030959B2 (en)
CN (1) CN102686265B (en)
AU (1) AU2010320036B2 (en)
CA (1) CA2779703C (en)
ES (2) ES2764969T3 (en)
MX (1) MX2012005480A (en)
RU (1) RU2012117974A (en)
WO (1) WO2011060384A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012175412A1 (en) * 2011-06-22 2012-12-27 Gambro Lundia Ab Valve automatically opening on connection, and applications therefor
WO2013016077A3 (en) * 2011-07-25 2013-04-11 Carefusion 303, Inc. Dual diaphragm valve for positive displacement
WO2013109586A1 (en) * 2012-01-20 2013-07-25 Carefusion 303, Inc. Piston for a needleless valve system
WO2014074418A1 (en) * 2012-11-09 2014-05-15 Carefusion 303, Inc. Tailless needleless valve system
EP2751459A2 (en) * 2011-09-02 2014-07-09 Carefusion 303 Inc. Self-flushing valve
EP2777756A1 (en) * 2013-03-13 2014-09-17 CareFusion 303, Inc. Needleless connector with folding valve
EP2777759A1 (en) * 2013-03-14 2014-09-17 CareFusion 303, Inc. Needleless connector with flexible valve
WO2014150066A1 (en) * 2013-03-14 2014-09-25 Carefusion 303, Inc. Needleless connector with a tortuous fluid flow path
JP2015505485A (en) * 2012-01-26 2015-02-23 ケアフュージョン 303 インコーポレイテッド Needle-free valve system
US9144672B2 (en) 2013-03-13 2015-09-29 Carefusion 303, Inc. Needleless connector with compressible valve
US9278205B2 (en) 2013-03-13 2016-03-08 Carefusion 303, Inc. Collapsible valve with internal dimples
US9370651B2 (en) 2013-03-13 2016-06-21 Carefusion 303, Inc. Needleless connector with reduced trapped volume
EP3124071A4 (en) * 2014-03-26 2017-09-27 Terumo Kabushiki Kaisha Connector and infusion set
EP3335757A1 (en) * 2013-03-14 2018-06-20 Carefusion 303 Inc. Needleless connector with support member
US10478607B2 (en) 2004-08-09 2019-11-19 Carefusion 303, Inc. Connector for transferring fluid and method of use
US10842984B2 (en) 2004-08-09 2020-11-24 Carefusion 303, Inc. Connector for transferring fluid
AU2022200461B2 (en) * 2013-03-12 2023-10-12 Carefusion 303, Inc. Male luer connector with valve having fluid path and vent path seals

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052655A2 (en) 2004-11-05 2006-05-18 Icu Medical, Inc. Soft-grip medical connector
WO2007006055A2 (en) 2005-07-06 2007-01-11 Vascular Pathways Inc. Intravenous catheter insertion device and method of use
US9168366B2 (en) 2008-12-19 2015-10-27 Icu Medical, Inc. Medical connector with closeable luer connector
US8454579B2 (en) 2009-03-25 2013-06-04 Icu Medical, Inc. Medical connector with automatic valves and volume regulator
EP3760180A3 (en) 2009-07-29 2021-01-20 ICU Medical, Inc. Fluid transfer devices and methods of use
US8323249B2 (en) 2009-08-14 2012-12-04 The Regents Of The University Of Michigan Integrated vascular delivery system
USD644731S1 (en) 2010-03-23 2011-09-06 Icu Medical, Inc. Medical connector
US8298196B1 (en) 2010-03-24 2012-10-30 Mansour George M Needleless access connector and method of use
US11925779B2 (en) 2010-05-14 2024-03-12 C. R. Bard, Inc. Catheter insertion device including top-mounted advancement components
US8758306B2 (en) 2010-05-17 2014-06-24 Icu Medical, Inc. Medical connectors and methods of use
WO2011146769A2 (en) 2010-05-19 2011-11-24 Tangent Medical Technologies Llc Integrated vascular delivery system
WO2011146772A1 (en) 2010-05-19 2011-11-24 Tangent Medical Technologies Llc Safety needle system operable with a medical device
EP3563898B1 (en) 2011-02-25 2020-11-11 C.R. Bard, Inc. Medical component insertion device including a retractable needle
WO2013036854A1 (en) 2011-09-09 2013-03-14 Icu Medical, Inc. Medical connectors with fluid-resistant mating interfaces
USD711516S1 (en) 2011-12-09 2014-08-19 John Guest International Limited Fluid connector
USD712014S1 (en) 2011-12-09 2014-08-26 John Guest International Limited Fluid connector
MX352572B (en) 2011-12-22 2017-11-29 Icu Medical Inc Fluid transfer devices and methods of use.
US10359139B2 (en) 2012-04-05 2019-07-23 Medline Industries, Inc. Connector
USD757259S1 (en) * 2012-04-05 2016-05-24 Medline Industries, Inc. Female portion of a connector
AU2013342123B2 (en) 2012-11-12 2018-08-02 Icu Medical, Inc. Medical connector
JP6242823B2 (en) * 2013-01-28 2017-12-06 テルモ株式会社 Tube connection structure
EP2968894B1 (en) * 2013-03-15 2017-07-19 ICU Medical, Inc. Medical connector
EP2862587A1 (en) 2013-10-15 2015-04-22 Becton Dickinson France Tip cap assembly for closing an injection system
WO2015077184A1 (en) 2013-11-25 2015-05-28 Icu Medical, Inc. Methods and system for filling iv bags with therapeutic fluid
CA2932124C (en) 2013-12-11 2023-05-09 Icu Medical, Inc. Check valve
WO2015119940A1 (en) 2014-02-04 2015-08-13 Icu Medical, Inc. Self-priming systems and methods
US11007361B2 (en) 2014-06-05 2021-05-18 Puracath Medical, Inc. Transfer catheter for ultraviolet disinfection
CN105363108A (en) * 2014-08-08 2016-03-02 康尔福盛2200公司 Wash port assemblies for airway adapters
US10364914B2 (en) * 2014-09-29 2019-07-30 B. Braun Medical Inc. Valve device, a delivery system including same and method
USD793551S1 (en) 2014-12-03 2017-08-01 Icu Medical, Inc. Fluid manifold
USD786427S1 (en) 2014-12-03 2017-05-09 Icu Medical, Inc. Fluid manifold
MX2017011956A (en) 2015-03-18 2018-07-06 Puracath Medical Inc Catheter connection system for ultraviolet light disinfection.
CN104815363B (en) * 2015-04-30 2018-11-02 苏州林华医疗器械股份有限公司 A kind of positive pressure connector
JP6709039B2 (en) * 2015-07-09 2020-06-10 川澄化学工業株式会社 Connecting pipe
CN205007361U (en) * 2015-07-29 2016-02-03 佳承精工股份有限公司 Needle injection Y type piecing devices are exempted from to malleation
EP3368142B1 (en) * 2015-10-28 2020-02-19 Carefusion 303 Inc. Closed iv access device with y-port needle-free connector
AU2016365335B2 (en) 2015-12-04 2021-10-21 Icu Medical, Inc. Systems methods and components for transferring medical fluids
JP7198203B2 (en) 2016-07-11 2022-12-28 プラキャス メディカル インコーポレイテッド Ultraviolet sterilization system for clinical practice
USD851745S1 (en) 2016-07-19 2019-06-18 Icu Medical, Inc. Medical fluid transfer system
AU2017302557B2 (en) 2016-07-25 2022-10-13 Icu Medical, Inc. Systems, methods, and components for trapping air bubbles in medical fluid transfer modules and systems
CN116173370A (en) * 2016-09-12 2023-05-30 C·R·巴德股份有限公司 Blood flash indicator for catheterization apparatus
WO2018089643A1 (en) * 2016-11-10 2018-05-17 Puracath Medical, Inc. Needleless connector valve
EP3626283B1 (en) * 2017-05-19 2022-01-19 Advcare Medical, Inc. Sealed medication dispensing and administering device
WO2020198042A1 (en) * 2019-03-22 2020-10-01 Puracath Medical, Inc. Needleless connector valve for uv disinfection
JP2022545447A (en) 2019-08-19 2022-10-27 ベクトン・ディキンソン・アンド・カンパニー Midline catheter placement device
US11857752B2 (en) 2019-12-16 2024-01-02 Rymed Technologies, Llc High flow, needleless connector
US11904131B2 (en) * 2020-01-16 2024-02-20 Carefusion 303, Inc. Needleless connector having check valve with concave flow surface
US11590057B2 (en) 2020-04-03 2023-02-28 Icu Medical, Inc. Systems, methods, and components for transferring medical fluids
CN113558974A (en) * 2020-12-07 2021-10-29 刘云虎 Positive and negative pressure non-needle glue valve joint
US20220355095A1 (en) * 2021-05-04 2022-11-10 Carefusion 303, Inc. Needleless connector with compressible and deflectable valve
US11828388B2 (en) 2022-03-08 2023-11-28 B. Braun Medical Inc. Needle-free connector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060089603A1 (en) * 2004-10-22 2006-04-27 Truitt Tim L Fluid control device with valve and methods of use
US20060163515A1 (en) * 2003-06-17 2006-07-27 Ruschke Ricky R Fluid handling device and method of making same
WO2007008511A2 (en) * 2005-07-06 2007-01-18 Icu Medical, Inc. Medical connector with closeable male luer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569235A (en) * 1994-06-21 1996-10-29 Modern Medical Devices Valve and valved container for use with a syringe fitting
US5782816A (en) * 1995-09-07 1998-07-21 David R. Kipp Bi-directional valve and method of using same
US5730418A (en) * 1996-09-30 1998-03-24 The Kipp Group Minimum fluid displacement medical connector
US6706022B1 (en) * 1999-07-27 2004-03-16 Alaris Medical Systems, Inc. Needleless medical connector with expandable valve mechanism
US20030208165A1 (en) 2002-05-01 2003-11-06 Christensen Kelly David Needless luer access connector
US20050059952A1 (en) * 2003-09-17 2005-03-17 Giuliano Amy S. I.V. solution bag with a needleless port
US7600530B2 (en) * 2004-08-09 2009-10-13 Medegen, Inc. Connector with check valve and method of use
US9695953B2 (en) * 2006-02-14 2017-07-04 B. Braun Medical Inc. Needleless access port valves
US7591449B2 (en) * 2006-02-14 2009-09-22 B. Braun Medical Inc. Needleless access port valves
US20100036330A1 (en) * 2008-08-11 2010-02-11 Baxter International Inc. Needleless connector with displacement correction
US8715247B2 (en) 2009-07-30 2014-05-06 Carefusion 303, Inc. Collapsible valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060163515A1 (en) * 2003-06-17 2006-07-27 Ruschke Ricky R Fluid handling device and method of making same
US20060089603A1 (en) * 2004-10-22 2006-04-27 Truitt Tim L Fluid control device with valve and methods of use
WO2007008511A2 (en) * 2005-07-06 2007-01-18 Icu Medical, Inc. Medical connector with closeable male luer

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10940306B2 (en) 2004-08-09 2021-03-09 Carefusion 303, Inc. Connector for transferring fluid and method of use
US10478607B2 (en) 2004-08-09 2019-11-19 Carefusion 303, Inc. Connector for transferring fluid and method of use
US10842984B2 (en) 2004-08-09 2020-11-24 Carefusion 303, Inc. Connector for transferring fluid
WO2012175412A1 (en) * 2011-06-22 2012-12-27 Gambro Lundia Ab Valve automatically opening on connection, and applications therefor
US9974943B2 (en) 2011-07-25 2018-05-22 Carefusion 303, Inc. Connector with a dual diaphragm valve
US9067049B2 (en) 2011-07-25 2015-06-30 Carefusion 303, Inc. Providing positive displacement upon disconnection using a connector with a dual diaphragm valve
WO2013016077A3 (en) * 2011-07-25 2013-04-11 Carefusion 303, Inc. Dual diaphragm valve for positive displacement
US9555231B2 (en) 2011-07-25 2017-01-31 Carefusion 303, Inc. Providing positive displacement upon disconnection using a connector with a dual diaphragm valve
EP2751459A2 (en) * 2011-09-02 2014-07-09 Carefusion 303 Inc. Self-flushing valve
US11426516B2 (en) 2011-09-02 2022-08-30 Carefusion 303, Inc. Port-flushing control valve
US10561786B2 (en) 2011-09-02 2020-02-18 Carefusion 303, Inc. Port-flushing control valve
US11896802B2 (en) 2011-09-02 2024-02-13 Carefusion 303, Inc. Port-flushing control valve
US9375561B2 (en) 2011-09-02 2016-06-28 Carefusion 303, Inc. Self-flushing valve
EP2751459A4 (en) * 2011-09-02 2015-03-25 Carefusion 303 Inc Self-flushing valve
US9872977B2 (en) 2012-01-20 2018-01-23 Carefusion 303, Inc. Piston for a needleless valve system
WO2013109586A1 (en) * 2012-01-20 2013-07-25 Carefusion 303, Inc. Piston for a needleless valve system
US8801678B2 (en) 2012-01-20 2014-08-12 Carefusion 303, Inc. Piston for a needleless valve system
US10434298B2 (en) 2012-01-20 2019-10-08 Carefusion 303, Inc. Piston for a needleless valve system
EP2809379A4 (en) * 2012-01-20 2015-07-29 Carefusion 303 Inc Piston for a needleless valve system
JP2015505485A (en) * 2012-01-26 2015-02-23 ケアフュージョン 303 インコーポレイテッド Needle-free valve system
US9861804B2 (en) 2012-11-09 2018-01-09 Carefusion 303, Inc. Compressible needleless valve assembly
US9162029B2 (en) 2012-11-09 2015-10-20 Carefusion 303, Inc. Tailless needleless valve system
JP2015533613A (en) * 2012-11-09 2015-11-26 ケアフュージョン 303、インコーポレイテッド Needleless valve system without tail
WO2014074418A1 (en) * 2012-11-09 2014-05-15 Carefusion 303, Inc. Tailless needleless valve system
US11033725B2 (en) 2012-11-09 2021-06-15 Carefusion 303, Inc. Compressible needleless valve assembly
AU2018236704B2 (en) * 2012-11-09 2021-03-11 Carefusion 303, Inc. Tailless needleless valve system
AU2022200461B2 (en) * 2013-03-12 2023-10-12 Carefusion 303, Inc. Male luer connector with valve having fluid path and vent path seals
EP2968899A4 (en) * 2013-03-13 2017-06-07 Carefusion 303 Inc. Zero reflux female valve with small priming volume
US10653879B2 (en) 2013-03-13 2020-05-19 Carefusion 303, Inc. Needleless connector with compressible valve
US9694171B2 (en) 2013-03-13 2017-07-04 Carefusion 303, Inc. Collapsible valve with internal dimples
US9144672B2 (en) 2013-03-13 2015-09-29 Carefusion 303, Inc. Needleless connector with compressible valve
US11602626B2 (en) 2013-03-13 2023-03-14 Carefusion 303, Inc. Needleless connector with compressible valve
US9278205B2 (en) 2013-03-13 2016-03-08 Carefusion 303, Inc. Collapsible valve with internal dimples
EP4011435A1 (en) * 2013-03-13 2022-06-15 Carefusion 303 Inc. Zero reflux female valve with small priming volume
US10016588B2 (en) 2013-03-13 2018-07-10 Carefusion 303, Inc. Needleless connector with compressible valve
JP2018118113A (en) * 2013-03-13 2018-08-02 ケアフュージョン 303、インコーポレイテッド Needleless connector with collapsible valve
AU2014242176B2 (en) * 2013-03-13 2018-09-27 Carefusion 303, Inc. Needleless connector with folding valve
EP3865174A1 (en) * 2013-03-13 2021-08-18 CareFusion 303, Inc. Needleless connector with folding valve
JP2016514014A (en) * 2013-03-13 2016-05-19 ケアフュージョン 303、インコーポレイテッド Needleless connector with folding valve
US9370651B2 (en) 2013-03-13 2016-06-21 Carefusion 303, Inc. Needleless connector with reduced trapped volume
US10322276B2 (en) 2013-03-13 2019-06-18 Carefusion 303, Inc. Collapsible valve with internal dimples
WO2014158503A1 (en) * 2013-03-13 2014-10-02 Carefusion 303, Inc. Needleless connector with folding valve
EP3756723A1 (en) * 2013-03-13 2020-12-30 Carefusion 303 Inc. Zero reflux female valve with small priming volume
EP2777756A1 (en) * 2013-03-13 2014-09-17 CareFusion 303, Inc. Needleless connector with folding valve
EP3335757A1 (en) * 2013-03-14 2018-06-20 Carefusion 303 Inc. Needleless connector with support member
EP2777759A1 (en) * 2013-03-14 2014-09-17 CareFusion 303, Inc. Needleless connector with flexible valve
AU2020210179B2 (en) * 2013-03-14 2021-08-26 Carefusion 303, Inc. Needleless connector with support member
JP7033631B2 (en) 2013-03-14 2022-03-10 ケアフュージョン 303、インコーポレイテッド Needleless connector with support member
AU2014237592B2 (en) * 2013-03-14 2018-11-15 Carefusion 303, Inc. Needleless connector with a tortuous fluid flow path
JP2019030769A (en) * 2013-03-14 2019-02-28 ケアフュージョン 303、インコーポレイテッド Needleless connector with support member
JP2016510652A (en) * 2013-03-14 2016-04-11 ケアフュージョン 303、インコーポレイテッド Needleless connector with flexible valve
US11033726B2 (en) 2013-03-14 2021-06-15 Carefusion 303, Inc. Needleless connector with support member
WO2014150066A1 (en) * 2013-03-14 2014-09-25 Carefusion 303, Inc. Needleless connector with a tortuous fluid flow path
JP2020171849A (en) * 2013-03-14 2020-10-22 ケアフュージョン 303、インコーポレイテッド Needleless connector with support member
WO2014143529A1 (en) * 2013-03-14 2014-09-18 Carefusion 303, Inc. Needleless connector with flexible valve
US10004892B2 (en) 2013-03-14 2018-06-26 Carefusion 303, Inc. Needleless connector with a tortuous fluid flow path
EP4218896A3 (en) * 2013-03-14 2024-01-24 CareFusion 303, Inc. Needleless connector with support member
US8840577B1 (en) 2013-03-14 2014-09-23 Carefusion 303, Inc. Needleless connector with flexible valve
US11730944B2 (en) 2013-03-14 2023-08-22 Carefusion 303, Inc. Needleless connector with support member
CN105188834A (en) * 2013-03-14 2015-12-23 康尔福盛303公司 Needleless connector with flexible valve
EP3124071A4 (en) * 2014-03-26 2017-09-27 Terumo Kabushiki Kaisha Connector and infusion set
US10238858B2 (en) 2014-03-26 2019-03-26 Terumo Kabushiki Kaisha Connector and infusion set

Also Published As

Publication number Publication date
US8636720B2 (en) 2014-01-28
CA2779703A1 (en) 2011-05-19
US20120310179A1 (en) 2012-12-06
EP3603733A1 (en) 2020-02-05
US9061130B2 (en) 2015-06-23
RU2012117974A (en) 2013-12-27
AU2010320036A1 (en) 2012-05-24
EP2501435B1 (en) 2019-10-23
JP6030959B2 (en) 2016-11-24
US20190232043A1 (en) 2019-08-01
CN102686265B (en) 2014-11-19
ES2764969T3 (en) 2020-06-05
US20240001100A1 (en) 2024-01-04
CA2779703C (en) 2020-09-08
US20140142519A1 (en) 2014-05-22
EP3603733B1 (en) 2023-08-02
US10258786B2 (en) 2019-04-16
EP4233981A2 (en) 2023-08-30
EP2501435A1 (en) 2012-09-26
MX2012005480A (en) 2012-08-01
JP2013510690A (en) 2013-03-28
US20150265829A1 (en) 2015-09-24
EP4233981A3 (en) 2023-09-27
CN102686265A (en) 2012-09-19
US11759619B2 (en) 2023-09-19
AU2010320036B2 (en) 2016-01-21
ES2961721T3 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
US11759619B2 (en) Needleless access connectors and valve elements therefor
AU2016201947B2 (en) New needleless access connector and method of use
JP2013510690A5 (en)
EP3479868B1 (en) Collapsible valve
NZ533341A (en) Medical valve with positive flow characteristics
EP1304128A1 (en) Valve disc and combination filling device using the valve disc, and tube, pipe jointing device, connection port manufacturing device, and pipe jointing system
TWI565493B (en) Needleless access connectors and valve elements therefor
TWI603752B (en) Needleless access connector and method of controlling fluid
TWI565489B (en) New needleless access connector and method of use
TWI626063B (en) Positive-displacement needleless access connector and method for manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051198.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10779435

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010320036

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3858/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2779703

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010779435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/005480

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012539059

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010320036

Country of ref document: AU

Date of ref document: 20101115

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012117974

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012011041

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012011041

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120510