WO2011058655A1 - Blood property analysis system - Google Patents

Blood property analysis system Download PDF

Info

Publication number
WO2011058655A1
WO2011058655A1 PCT/JP2009/069433 JP2009069433W WO2011058655A1 WO 2011058655 A1 WO2011058655 A1 WO 2011058655A1 JP 2009069433 W JP2009069433 W JP 2009069433W WO 2011058655 A1 WO2011058655 A1 WO 2011058655A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
flow path
flow
microchip
analysis system
Prior art date
Application number
PCT/JP2009/069433
Other languages
French (fr)
Japanese (ja)
Inventor
正彰 高間
福室 郁
貴紀 村山
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to PCT/JP2009/069433 priority Critical patent/WO2011058655A1/en
Publication of WO2011058655A1 publication Critical patent/WO2011058655A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4915Blood using flow cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles

Definitions

  • the present invention relates to a blood characteristic analysis system.
  • blood vessels in a living body are constantly pulsating, and fluctuating stress due to the pulsation is applied to blood in the blood vessels.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a blood characteristic analysis system capable of measuring blood characteristics in a state closer to the living body than in the past.
  • a blood characteristic analysis system for measuring blood characteristics A microchip having at least one flow path through which blood passes; Imaging means for imaging the blood flow in at least one of the internal region, the inlet region, and the outlet region of the flow path; Analysis means capable of calculating blood characteristics by analyzing a blood flow image by the imaging means; A pressure control means capable of changing the blood pressure difference between the upstream side and the downstream side of the flow path at a predetermined cycle or a variable cycle; It is characterized by providing.
  • the invention according to claim 2 is the blood characteristic analysis system according to claim 1,
  • the pressure control means can change a blood pressure difference between the upstream side and the downstream side of the flow path by changing the cross-sectional area of the flow path.
  • the pressure control means generates the blood pressure difference between the upstream side and the downstream side of the flow path by at least one of pressurization and decompression.
  • the blood pressure difference between the upstream side and the downstream side of the flow path through which blood passes can be changed at a predetermined cycle or a variable cycle.
  • Blood characteristics can be measured by simulating pulsation. Therefore, blood characteristics in a state close to the living body can be measured as compared with the conventional measurement in which the pressure difference applied to the blood passing through the flow path is constant.
  • FIG. 1 It is a block diagram which shows the whole structure of the blood characteristic analysis system which concerns on this invention. It is a figure which shows a microchip, (a) is a top view, (b) is an exploded side view, (c) is the elements on larger scale of (a). It is a figure for demonstrating the flow path of a microchip, the upper figure is a top view, and the lower figure is a side view. It is a figure for demonstrating the movable part of the flow path of a microchip. It is a figure which shows the pressure difference of the blood in the upstream and downstream of a flow path, (a) is a figure which is changing with a predetermined period, (b) is a figure which is changing with a variable period. is there.
  • FIG. 1 is a block diagram showing an overall configuration of a blood characteristic analysis system 1 in the present embodiment.
  • the blood characteristic analysis system 1 guides blood from a supply tank 10 to a discharge tank 11 through a microchip (filter) 2 and measures a plurality of types of blood characteristics from information acquired in the process. To do.
  • the blood characteristic analysis system 1 is mainly based on the microchip 2, the TV camera 3 that captures the blood flow in the microchip 2, and the blood flow image captured by the TV camera 3.
  • a personal computer 7 that measures characteristics
  • a display 8 that displays a blood flow image
  • a blood flow control unit 9 that controls blood flow in the microchip 2 are provided.
  • a plurality of liquids such as physiological saline and physiologically active substances are connected to the flow path via the mixer 12 so as to be mixed with blood and guided to the microchip 2.
  • a solution bottle 13 or the like is further provided.
  • the blood mixed with a liquid such as physiological saline or a physiologically active substance is micro-controlled by the differential pressure control unit 91 in the blood flow control unit 9 by controlling the pressurization pump 15 and the decompression pump 16. By adjusting the differential pressure across the chip 2, a desired amount flows through the microchip 2.
  • the valve 10 a of the supply tank 10 and the like are integrated and controlled by the sequence control unit 17.
  • FIG. 2A is a view (plan view) of the microchip as viewed from above
  • FIG. 2B is a side view
  • FIG. 2C is a partially enlarged view of a part of the microchip.
  • the microchip 2 is formed by overlapping a rectangular glass flat plate 20 and a base plate 21 as shown in FIG.
  • the glass flat plate 20 is formed in a flat plate shape and covers the inner side surface of the base plate 21 (the upper surface in FIG. 2B).
  • the base plate 21 has depressions 210 and 211 at both ends, and a plurality of grooves 212 and so on between the depressions 210 and 211.
  • the hollow part 210 has a through-hole 210 a communicating with the supply tank 10 on the bottom surface, and an upstream storage part 22 for storing blood is formed between the glass flat plate 20.
  • the recess 211 has a through hole 211 a communicating with the discharge tank 11 on the bottom surface, and forms a downstream storage 23 for storing blood between the flat glass plate 20.
  • the plurality of grooves 212 are arranged so as to extend in parallel to the direction (X direction in the drawing) connecting the recess 210 and the recess 211, and extend in the X direction described above. It is in a state of being partitioned by the portion 213.
  • the plurality of grooves 212,... Alternately communicate with the depression 210 or the depression 211, whereby the upstream blood circuit 24 that allows blood to flow from the upstream reservoir 22 and the downstream reservoir 23.
  • a downstream blood circuit 25 that allows blood to flow into the glass plate 20 is formed.
  • FIGS. 3A and 3B are diagrams for explaining the flow path of the microchip 2.
  • the upper diagram is a plan view of the terrace portion 213 as viewed from above.
  • the lower diagram is a cross-sectional view of FIGS. 3A and 3B as viewed from the side.
  • a plurality of hexagonal bank portions 214 are arranged in the X direction on the upper end portion of the terrace portion 213, and the glass flat plate 20 is formed on the top surface. Abut.
  • the upstream blood circuit 24, and the downstream blood circuit 25 are cut at the positions indicated by virtual lines AA and BB in FIG.
  • the cross-sectional area is narrower than the inside of the side blood circuit 24 and the downstream blood circuit 25. More specifically, the cross-sectional shape of the flow path 26 is a flat rectangle in accordance with the shape of red blood cells (the shape of a disk with a hollow center and an elliptical shape with a flat cross section). The size is smaller than the size of red blood cells. As a result, it is possible to observe a state in which red blood cells pass through a thin blood vessel such as a capillary blood vessel while deforming its own shape, and it is possible to simulate the degree of dryness of blood in the blood vessel.
  • a thin blood vessel such as a capillary blood vessel while deforming its own shape
  • FIG. 4 is a diagram for explaining the movable part of the microchip 2.
  • the bank portion 214 includes a movable portion 214 a that can move in the X direction and a stationary portion 214 b that is formed integrally with the base plate 21.
  • the movable portion 214a is formed in a square shape including a flow path wall portion 26a at the center in the Y direction among flow path walls parallel to the Y direction forming the flow path 26, and is moved by a predetermined range in the X direction by the actuator 27. It is possible. By the movement of the movable portion 214a, the cross-sectional area of a part of the flow path 26 can be arbitrarily changed.
  • the movable portion 214a is not limited to the above configuration, and may be configured to be movable in the X direction including the flow channel wall in at least a part of the flow channel 26. Furthermore, the cross-sectional shape of the flow channel 26 may be changed. The configuration may be changed. As a configuration for changing the cross-sectional shape, for example, a configuration in which the upper end of the flow path wall portion 26a is inclined in the X direction or a shape in which the flow path wall portion 26a is curved by using a shape memory material or the like can be used. Further, the movable portion 214a, the stationary portion 214b, and the actuator 27 are not shown in FIGS. 2 and 3 for simplification of illustration.
  • Actuators 27 for driving the movable portion 214a are respectively embedded in the base plate 21 corresponding to the movable portion 214a, and are connected to a drive control portion 92, which will be described later, so as to be driven and controlled (FIG. 1). reference).
  • the actuator 27 is not particularly limited, but is a piezoelectric actuator or a piezoelectric ultrasonic linear actuator. As such an actuator 27, for example, those disclosed in JP-A-7-298656, JP-A-2006-66976, or JP-A-2007-57581 can be used.
  • the blood introduced from the supply tank 10 is stored in the upstream storage section 22, and after passing through the flow path 26 and the downstream blood circuit 25 from the upstream blood circuit 24, is stored in the downstream storage section 23 and discharged into the discharge tank 11. It will be discharged from.
  • blood cells in blood flowing through the flow path 26, such as red blood cells first pass through the inlet region A upstream of the gate 215 and then deform the inner region B of the gate 215.
  • pressure sensors E1 and E2 are provided before and after the microchip 2, and the pressure sensors E1 and E2 output the measured chip upstream pressure P1 and chip downstream pressure P2 to the blood flow control unit 9. (See FIG. 1).
  • these pressure sensors E1 and E2 only need to be able to measure the blood pressure in the vicinity of the inlet and outlet of the microchip 2.
  • pressure adjusting containers are provided before and after the microchip 2, and the pressure in each container is measured. You may make it measure.
  • the TV camera 3 is, for example, a digital CCD camera, and a high-speed camera for photographing a blood flow or a camera capable of photographing a moving image is used.
  • the TV camera 3 is installed facing the glass flat plate 20 in the microchip 2 and photographs the blood flow passing through the flow path 26 through the glass flat plate 20.
  • the imaging range is a range including an entrance area A to an exit area C in the plurality of gates 215. However, this imaging range may be a range including at least one of the entrance area A, the internal area B, and the exit area C in each gate 215 shown in FIGS.
  • the blood flow image obtained by the TV camera 3 is output to the personal computer 7 and displayed on the display 8.
  • the personal computer 7 is connected to the TV camera 3 and includes an arithmetic processing unit 70 capable of calculating a plurality of types of blood characteristics from image information output from the TV camera 3.
  • the blood characteristics are various characteristic values indicating blood properties and the like, and include those related to fluidity such as blood coagulation ability in addition to blood pressure and velocity.
  • Aggregation capacity is a quantitative value indicating the ease of occurrence of the aggregation phenomenon in which blood cells stay and bind together, and the area, number, and area ratio of each blood cell type contained in the blood cell retention part consisting of the retained blood cells. Or the number ratio.
  • an arithmetic processing part 70 a conventionally well-known thing can be used.
  • the display 8 is connected to the personal computer 7 and displays a photographed image output from the TV camera 3 and blood characteristics calculated by the personal computer 7.
  • the blood flow control unit 9 includes a differential pressure control unit 91 that controls the differential pressure across the microchip 2 and a drive control unit 92 that controls the drive of the actuator 27, and according to a control command from the sequence control unit 17.
  • the differential pressure control unit 91 and the drive control unit 92 perform predetermined control.
  • the blood flow control unit 9 and the sequence control unit 17 may be configured integrally with the personal computer 7, and the personal computer 7 may perform the predetermined control.
  • the differential pressure control unit 91 controls the pressurization pump 15 upstream of the microchip 2 and the decompression pump 16 downstream of the microchip 2 so that the chip upstream pressure P1 and the chip downstream pressure P2 become predetermined pressures.
  • the drive control unit 92 controls the drive of the actuator 27 so that the distance w (see FIG. 4) between the opposed flow path wall portions 26a in the flow path 26 of the microchip 2 becomes a predetermined value.
  • the operation of the blood characteristic analysis system 1 when measuring blood characteristics will be described below.
  • the sequence controller 17 adds physiological saline or the like to the solution bottle 13 as necessary while injecting blood to be measured into the supply tank 10.
  • the sequence control unit 17 controls the pressurization pump 15 and the decompression pump 16 via the differential pressure control unit 91 to apply a predetermined differential pressure to the microchip 2 to flow blood through the microchip 2,
  • the TV camera 3 images the blood flow in the flow path 26.
  • the distance w between the flow path wall portions 26a in the microchip 2 shown in FIG. 4 is set by the drive control unit 92 so as to repeatedly change at a predetermined cycle.
  • the cross-sectional area of the flow path 26 is changed by changing the distance w.
  • the predetermined period T at this time for example, a value (60 / 65 ⁇ 0.92 sec) simulating an average pulse rate of 65 times / minute at the time of resting modern people may be used, but it is not limited to this value. It can be set as appropriate according to age, gender, health status, and the like.
  • the blood pressure difference ⁇ P is controlled so that the speed of the blood flowing through the flow path 26 is within a range of 0.1 to 30 mm / sec. This is a condition that mainly depends on the shooting capability of the TV camera 3. For example, if the TV camera 3 is a high-speed camera with a frame rate of 1000 fps or higher, the blood speed may be 10 to 30 mm / sec.
  • the pressure difference ⁇ P that periodically changes in this way is generated by increasing and / or decreasing the tip upstream pressure P1 and / or the tip downstream pressure P2 by the pressurizing pump 15 and / or the decompressing pump 16. Also good. Furthermore, you may combine the drive of these pressurization pumps 15 and / or the pressure reduction pump 16, and the fluctuation
  • the period of the pressure difference ⁇ P is not limited to a predetermined value, and may be a variable period T ′ as shown in FIG. Although this figure shows a cycle that becomes shorter with the passage of time, for example, it may be a cycle that becomes longer with the passage of time or a cycle that changes randomly.
  • the personal computer 7 calculates blood characteristics by performing image processing on the captured image
  • the calculation result and the captured image itself are displayed on the display 8.
  • the blood pressure difference ⁇ P between the upstream side and the downstream side of the flow path 26 is changed at a predetermined cycle T or a variable cycle T ′. Therefore, blood characteristics can be measured by simulating blood vessel pulsation in a living body. Therefore, blood characteristics in a state close to the living body can be measured as compared with the conventional measurement in which the pressure difference applied to the blood passing through the flow path is constant.
  • blood is allowed to pass through the flow path 26 by applying the pressure difference ⁇ P.
  • the pressure difference is applied to the blood.
  • a method using electrophoresis may be used without providing ⁇ P.
  • Blood characteristic analysis system 2 Microchip 3 TV camera (photographing means) 9 Blood flow control unit (pressure control means) 26 flow path 70 arithmetic processing unit (analysis means) A Inlet area B Inner area C Outlet area T, T 'Period ⁇ P Pressure difference

Abstract

Disclosed is a blood property analysis system which enables the measurement of a property of blood under the conditions which are close to those in living bodies. Specifically disclosed is a blood property analysis system (1) for measuring a property of blood, which comprises: a microchip (2) which has at least one flow path (26) through which blood passes; a TV camera (3) which can take an image of the blood flow in at least one area selected from an inside area (B), an inlet area (A) and an outlet area (C) in the flow path (26); an arithmetic processing unit (70) which can analyze the image of the blood flow taken by the TV camera (3) and calculate the property of the blood; and a blood flow control unit (9) which can alter the difference in pressure of the blood (ΔP) between an upstream side and a downstream side of the flow path (26) at a predetermined cycle (T) or a fluctuating cycle (T').

Description

血液特性解析システムBlood characteristics analysis system
 本発明は、血液特性解析システムに関する。 The present invention relates to a blood characteristic analysis system.
 近年、健康に対する関心の高まりとともに、健康のバロメータとして血液の流動性が注目されるようになっている。この血液の流動性はサラサラ度などとも称され、流動性が高くサラサラであるほど健康であることを意味している。 In recent years, with increasing interest in health, blood fluidity has attracted attention as a health barometer. This fluidity of blood is also called smoothness and the like, and the higher the fluidity, the better the health.
 この血液の流動性を調べる方法としては、圧力差を付与することでマイクロチップ内の微細な流路に血液を通過させ、通過に要する時間を計測する技術が知られている(例えば、特許文献1参照)。この技術では、マイクロチップ上板の透明ガラスを介してカメラでマイクロチップ通過時の血球を観察することにより、血液の流動性を視覚的に捉えることが可能となっている。また、この特許文献1に記載の技術以外にも、同様の装置で撮影した血流画像を解析することにより、流動性を含む様々な血液特性を計測する技術が提案されている(例えば、特許文献2参照)。 As a method for examining the blood fluidity, a technique is known in which blood is passed through a fine flow path in a microchip by applying a pressure difference, and the time required for the passage is measured (for example, patent document). 1). In this technique, blood fluidity can be visually grasped by observing blood cells passing through the microchip with a camera through the transparent glass on the upper plate of the microchip. In addition to the technique described in Patent Document 1, a technique for measuring various blood characteristics including fluidity by analyzing a blood flow image photographed by a similar device has been proposed (for example, patents). Reference 2).
 ところで、本来、生体内の血管は常に脈動しており、血管内の血液にはこの脈動による変動的なストレスが加わっている。 By the way, blood vessels in a living body are constantly pulsating, and fluctuating stress due to the pulsation is applied to blood in the blood vessels.
特許第2685544号公報Japanese Patent No. 2685544 特開2006-145345号公報JP 2006-145345 A
 しかしながら、上記特許文献1、2に記載の技術では、流路を通過する血液に付与される圧力差が常に一定であったために、生体内の血管の脈動を十分に模擬できていなかった。 However, in the techniques described in Patent Documents 1 and 2, since the pressure difference applied to the blood passing through the flow path is always constant, the pulsation of the blood vessel in the living body cannot be sufficiently simulated.
 本発明は、上記事情を鑑みてなされたもので、従来に比べ、生体内に近い状態での血液特性の計測を行うことができる血液特性解析システムの提供を課題とする。 The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a blood characteristic analysis system capable of measuring blood characteristics in a state closer to the living body than in the past.
 前記の課題を解決するために、請求項1に記載の発明は、
 血液特性を計測する血液特性解析システムであって、
 血液が通過する少なくとも1つの流路を有するマイクロチップと、
 前記流路の内部領域、入口領域、及び出口領域の少なくとも1つの領域における血液の流れを撮影する撮影手段と、
 前記撮影手段による血流画像を解析して血液特性を算出可能な解析手段と、
 前記流路の上流側と下流側とにおける血液の圧力差を、所定の周期又は変動的な周期で変化させることが可能な圧力制御手段と、
 を備えることを特徴とする。
In order to solve the above-mentioned problem, the invention according to claim 1
A blood characteristic analysis system for measuring blood characteristics,
A microchip having at least one flow path through which blood passes;
Imaging means for imaging the blood flow in at least one of the internal region, the inlet region, and the outlet region of the flow path;
Analysis means capable of calculating blood characteristics by analyzing a blood flow image by the imaging means;
A pressure control means capable of changing the blood pressure difference between the upstream side and the downstream side of the flow path at a predetermined cycle or a variable cycle;
It is characterized by providing.
 請求項2に記載の発明は、請求項1に記載の血液特性解析システムであって、
 前記圧力制御手段は、前記流路の断面積を変化させることにより、当該流路の上流側と下流側とにおける血液の圧力差を変化させることが可能であることを特徴とする。
The invention according to claim 2 is the blood characteristic analysis system according to claim 1,
The pressure control means can change a blood pressure difference between the upstream side and the downstream side of the flow path by changing the cross-sectional area of the flow path.
 請求項3に記載の発明は、請求項1又は2に記載の血液特性解析システムであって、
 前記圧力制御手段は、前記流路の上流側と下流側とにおける血液の圧力差を、加圧及び減圧のうち少なくとも一方により生じさせることを特徴とする。
Invention of Claim 3 is the blood characteristic analysis system of Claim 1 or 2, Comprising:
The pressure control means generates the blood pressure difference between the upstream side and the downstream side of the flow path by at least one of pressurization and decompression.
 本発明によれば、血液が通過する流路の上流側と下流側とにおける当該血液の圧力差を、所定の周期又は変動的な周期で変化させることが可能であるので、生体内の血管の脈動を模擬して血液特性の計測を行うことができる。したがって、流路を通過する血液に付与される圧力差が一定であった従来の計測に比べ、生体内に近い状態での血液特性の計測を行うことができる。 According to the present invention, the blood pressure difference between the upstream side and the downstream side of the flow path through which blood passes can be changed at a predetermined cycle or a variable cycle. Blood characteristics can be measured by simulating pulsation. Therefore, blood characteristics in a state close to the living body can be measured as compared with the conventional measurement in which the pressure difference applied to the blood passing through the flow path is constant.
本発明に係る血液特性解析システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the blood characteristic analysis system which concerns on this invention. マイクロチップを示す図であり、(a)は平面図、(b)は分解側面図、(c)は(a)の部分拡大図である。It is a figure which shows a microchip, (a) is a top view, (b) is an exploded side view, (c) is the elements on larger scale of (a). マイクロチップの流路を説明するための図であり、上側の図は平面図、下側の図は側面図である。It is a figure for demonstrating the flow path of a microchip, the upper figure is a top view, and the lower figure is a side view. マイクロチップの流路の可動部を説明するための図である。It is a figure for demonstrating the movable part of the flow path of a microchip. 流路の上流側と下流側とにおける血液の圧力差を示す図であり、(a)は所定の周期で変化している図であり、(b)変動的な周期で変化している図である。It is a figure which shows the pressure difference of the blood in the upstream and downstream of a flow path, (a) is a figure which is changing with a predetermined period, (b) is a figure which is changing with a variable period. is there.
 以下、本発明の実施の形態について、図を参照して説明する。図1は、本実施の形態における血液特性解析システム1の全体構成を示すブロック図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an overall configuration of a blood characteristic analysis system 1 in the present embodiment.
 この図に示すように、血液特性解析システム1は、血液を供給槽10からマイクロチップ(フィルタ)2に通して排出槽11へ導き、その過程で取得される情報から複数種類の血液特性を計測するものである。 As shown in this figure, the blood characteristic analysis system 1 guides blood from a supply tank 10 to a discharge tank 11 through a microchip (filter) 2 and measures a plurality of types of blood characteristics from information acquired in the process. To do.
 具体的には、血液特性解析システム1は、主に、マイクロチップ2と、マイクロチップ2内の血液の流れを撮影するTVカメラ3と、TVカメラ3で撮影された血流画像に基づいて血液特性を計測するパソコン7と、血流画像を表示するディスプレイ8と、マイクロチップ2内の血流を制御する血流制御部9とを備えている。なお、本実施の形態における血液特性解析システム1には、生理食塩水や生理活性物質などの液体を血液と混合してマイクロチップ2に導けるよう、ミクサー12を介して流路に連結された複数の溶液びん13等が更に具備されている。そして、生理食塩水や生理活性物質などの液体と混合した血液(以下、血液という)は、血流制御部9内の差圧制御部91が加圧ポンプ15及び減圧ポンプ16を制御してマイクロチップ2前後の差圧を調整することにより、マイクロチップ2内を所望量だけ流れるようになっている。また、上述の血流制御部9やミクサー12の他,供給槽10のバルブ10a等は、シーケンス制御部17によって統合制御されている。 Specifically, the blood characteristic analysis system 1 is mainly based on the microchip 2, the TV camera 3 that captures the blood flow in the microchip 2, and the blood flow image captured by the TV camera 3. A personal computer 7 that measures characteristics, a display 8 that displays a blood flow image, and a blood flow control unit 9 that controls blood flow in the microchip 2 are provided. In the blood characteristic analysis system 1 according to the present embodiment, a plurality of liquids such as physiological saline and physiologically active substances are connected to the flow path via the mixer 12 so as to be mixed with blood and guided to the microchip 2. A solution bottle 13 or the like is further provided. The blood mixed with a liquid such as physiological saline or a physiologically active substance (hereinafter referred to as blood) is micro-controlled by the differential pressure control unit 91 in the blood flow control unit 9 by controlling the pressurization pump 15 and the decompression pump 16. By adjusting the differential pressure across the chip 2, a desired amount flows through the microchip 2. In addition to the blood flow control unit 9 and the mixer 12 described above, the valve 10 a of the supply tank 10 and the like are integrated and controlled by the sequence control unit 17.
 図2(a)(b)(c)は、図1に示されたマイクロチップ2を図示したものである。図2(a)はマイクロチップを上面から見た図(平面図)であり、図2(b)は側面図、図2(c)はマイクロチップの一部を拡大した部分拡大図である。 2 (a), 2 (b) and 2 (c) illustrate the microchip 2 shown in FIG. 2A is a view (plan view) of the microchip as viewed from above, FIG. 2B is a side view, and FIG. 2C is a partially enlarged view of a part of the microchip.
 マイクロチップ2は、図2に示すように、矩形状のガラス平板20及びベース板21を重ね合わせて形成されている。ガラス平板20は、平板状に形成されており、ベース板21の内側面(図2(b)では上側の面)を覆っている。 The microchip 2 is formed by overlapping a rectangular glass flat plate 20 and a base plate 21 as shown in FIG. The glass flat plate 20 is formed in a flat plate shape and covers the inner side surface of the base plate 21 (the upper surface in FIG. 2B).
 ベース板21は、両端部に窪み部210,211を、これら窪み部210,211の間に複数の溝部212,…を有している。 The base plate 21 has depressions 210 and 211 at both ends, and a plurality of grooves 212 and so on between the depressions 210 and 211.
 このうち、窪み部210は、供給槽10と連通する貫通口210aを底面に有しており、血液を貯留する上流側貯留部22をガラス平板20との間に形成している。 Among these, the hollow part 210 has a through-hole 210 a communicating with the supply tank 10 on the bottom surface, and an upstream storage part 22 for storing blood is formed between the glass flat plate 20.
 同様に、窪み部211は、排出槽11と連通する貫通口211aを底面に有しており、血液を貯留する下流側貯留部23をガラス平板20との間に形成している。 Similarly, the recess 211 has a through hole 211 a communicating with the discharge tank 11 on the bottom surface, and forms a downstream storage 23 for storing blood between the flat glass plate 20.
 また、複数の溝部212,…は、窪み部210と窪み部211とを結ぶ方向(図中のX方向)に対して平行に延在するよう配設され、上述のX方向に延在するテラス部213によって仕切られた状態となっている。これら複数の溝部212,…は、互い違いに窪み部210、または窪み部211に連通しており、これにより、上流側貯留部22から血液を流入させる上流側血液回路24と、下流側貯留部23に血液を流入させる下流側血液回路25とを、ガラス平板20との間に形成している。 Further, the plurality of grooves 212,... Are arranged so as to extend in parallel to the direction (X direction in the drawing) connecting the recess 210 and the recess 211, and extend in the X direction described above. It is in a state of being partitioned by the portion 213. The plurality of grooves 212,... Alternately communicate with the depression 210 or the depression 211, whereby the upstream blood circuit 24 that allows blood to flow from the upstream reservoir 22 and the downstream reservoir 23. A downstream blood circuit 25 that allows blood to flow into the glass plate 20 is formed.
 図3(a)(b)は、マイクロチップ2の流路を説明するための図であり、図3(a)(b)ともに、上側の図は、テラス部213を上から見た平面図であり、下側の図は、図3(a)(b)を側面から見た断面図である。 FIGS. 3A and 3B are diagrams for explaining the flow path of the microchip 2. In FIGS. 3A and 3B, the upper diagram is a plan view of the terrace portion 213 as viewed from above. The lower diagram is a cross-sectional view of FIGS. 3A and 3B as viewed from the side.
 テラス部213の上端部には、図2(c)や図3(a)(b)に示すように、六角形状の土手部214がX方向に複数配列されており、頂面でガラス平板20に当接している。 As shown in FIG. 2C and FIG. 3A and FIG. 3B, a plurality of hexagonal bank portions 214 are arranged in the X direction on the upper end portion of the terrace portion 213, and the glass flat plate 20 is formed on the top surface. Abut.
 これら複数の土手部214,…は互いとの間にゲート215を形成しており、このゲート215は、X方向の直交方向(以下、Y方向とする)に血液を流す微細な流路26を、ガラス平板20との間に形成している。つまり、この流路26は、表面に微細な溝としてのゲート215を有するベース板21と、このベース板21の表面に当接する平面部を有するガラス平板20とを接合することによって、これらゲート215及び平面部で形成される空間となっている。なお、特に限定はされないが、図2の仮想線A-A,B-Bに示す位置で流路26や上流側血液回路24,下流側血液回路25を切断した場合に、流路26は上流側血液回路24や下流側血液回路25の内部よりも断面積が狭くなっている。より詳細には、流路26の断面形状は赤血球の形状(真ん中が窪んだ円盤形状であり、断面が扁平な楕円形状)に合わせて扁平な長方形をなしており、この流路26の断面のサイズは赤血球のサイズより小さくなっている。これにより、毛細血管などの細い血管を赤血球が自身の形状を変形させながら通過していく状態が観察でき、また、血管中での血液のさらさら度を模擬的に再現することができる。 The plurality of bank portions 214,... Form a gate 215 between them, and the gate 215 has a fine channel 26 that allows blood to flow in a direction orthogonal to the X direction (hereinafter referred to as the Y direction). And the glass flat plate 20. That is, the flow path 26 joins the gate plate 215 by joining the base plate 21 having the gate 215 as a fine groove on the surface and the glass flat plate 20 having the flat portion contacting the surface of the base plate 21. And a space formed by a plane portion. Although not particularly limited, when the flow path 26, the upstream blood circuit 24, and the downstream blood circuit 25 are cut at the positions indicated by virtual lines AA and BB in FIG. The cross-sectional area is narrower than the inside of the side blood circuit 24 and the downstream blood circuit 25. More specifically, the cross-sectional shape of the flow path 26 is a flat rectangle in accordance with the shape of red blood cells (the shape of a disk with a hollow center and an elliptical shape with a flat cross section). The size is smaller than the size of red blood cells. As a result, it is possible to observe a state in which red blood cells pass through a thin blood vessel such as a capillary blood vessel while deforming its own shape, and it is possible to simulate the degree of dryness of blood in the blood vessel.
 図4はマイクロチップ2の可動部を説明するための図である。 FIG. 4 is a diagram for explaining the movable part of the microchip 2.
 土手部214は、図4に示すように、X方向に移動可能な可動部214a、及びベース板21と一体に形成された静止部214bから形成されている。可動部214aは、流路26を形成するY方向に平行な流路壁のうち、Y方向中央の流路壁部分26aを含んで方形状に形成され、アクチュエータ27によりX方向へ所定範囲だけ移動可能になっている。この可動部214aの移動により、流路26の一部分の断面積を任意に変化させることができる。 As shown in FIG. 4, the bank portion 214 includes a movable portion 214 a that can move in the X direction and a stationary portion 214 b that is formed integrally with the base plate 21. The movable portion 214a is formed in a square shape including a flow path wall portion 26a at the center in the Y direction among flow path walls parallel to the Y direction forming the flow path 26, and is moved by a predetermined range in the X direction by the actuator 27. It is possible. By the movement of the movable portion 214a, the cross-sectional area of a part of the flow path 26 can be arbitrarily changed.
 なお、可動部214aは、上記構成に限定されず、流路26の少なくとも一部分における流路壁を含んでX方向へ移動可能に構成されていればよく、更には、流路26の断面形状を変化させる構成であってもよい。この断面形状を変化させる構成としては、例えば、流路壁部分26aの上端をX方向へ傾かせるものや、形状記憶材等の使用により流路壁部分26aを湾曲させるもの等が可能である。また、可動部214a、静止部214b、及びアクチュエータ27は、図示の簡略化のため、図2及び図3では図示を省略している。 The movable portion 214a is not limited to the above configuration, and may be configured to be movable in the X direction including the flow channel wall in at least a part of the flow channel 26. Furthermore, the cross-sectional shape of the flow channel 26 may be changed. The configuration may be changed. As a configuration for changing the cross-sectional shape, for example, a configuration in which the upper end of the flow path wall portion 26a is inclined in the X direction or a shape in which the flow path wall portion 26a is curved by using a shape memory material or the like can be used. Further, the movable portion 214a, the stationary portion 214b, and the actuator 27 are not shown in FIGS. 2 and 3 for simplification of illustration.
 可動部214aを駆動するアクチュエータ27は、可動部214aに対応してベース板21内にそれぞれ埋設されており、後述の駆動制御部92と接続されて駆動制御されるようになっている(図1参照)。このアクチュエータ27は、特に限定はされないが、圧電アクチュエータ又は圧電超音波リニアアクチュエータである。このようなアクチュエータ27としては、例えば特開平7-298656号公報、特開2006-66976号公報、又は特開2007-57581号公報に開示のもの等を用いることができる。 Actuators 27 for driving the movable portion 214a are respectively embedded in the base plate 21 corresponding to the movable portion 214a, and are connected to a drive control portion 92, which will be described later, so as to be driven and controlled (FIG. 1). reference). The actuator 27 is not particularly limited, but is a piezoelectric actuator or a piezoelectric ultrasonic linear actuator. As such an actuator 27, for example, those disclosed in JP-A-7-298656, JP-A-2006-66976, or JP-A-2007-57581 can be used.
 以上のマイクロチップ2の構造をふまえ、図1にもどり、本願実施例の説明を行う。供給槽10から導入された血液は上流側貯留部22で貯留され、上流側血液回路24から流路26、下流側血液回路25を通過した後、下流側貯留部23に貯留されて排出槽11から排出されることとなる。(より詳細には、図3に示すように、流路26を流れる血液中の血球、例えば赤血球は、まずゲート215上流の入口領域Aを通った後、ゲート215の内部領域Bを変形しながら通過し、最後にゲート215下流の出口領域Cを通過することとなる。)
 なお、このマイクロチップ2の前後には、圧力センサE1,E2が設けられており、この圧力センサE1,E2は、計測したチップ上流圧力P1,チップ下流圧力P2を血流制御部9へ出力するようになっている(図1参照)。但し、これら圧力センサE1,E2は、マイクロチップ2の入口,出口近傍での血液の圧力を計測できればよく、例えばマイクロチップ2の前後にそれぞれ圧力調整容器を設けて、この各容器内の圧力を計測するようにしてもよい。
Based on the structure of the microchip 2 described above, returning to FIG. 1, the embodiment of the present application will be described. The blood introduced from the supply tank 10 is stored in the upstream storage section 22, and after passing through the flow path 26 and the downstream blood circuit 25 from the upstream blood circuit 24, is stored in the downstream storage section 23 and discharged into the discharge tank 11. It will be discharged from. (In more detail, as shown in FIG. 3, blood cells in blood flowing through the flow path 26, such as red blood cells, first pass through the inlet region A upstream of the gate 215 and then deform the inner region B of the gate 215. And finally pass through the exit region C downstream of the gate 215.)
In addition, pressure sensors E1 and E2 are provided before and after the microchip 2, and the pressure sensors E1 and E2 output the measured chip upstream pressure P1 and chip downstream pressure P2 to the blood flow control unit 9. (See FIG. 1). However, these pressure sensors E1 and E2 only need to be able to measure the blood pressure in the vicinity of the inlet and outlet of the microchip 2. For example, pressure adjusting containers are provided before and after the microchip 2, and the pressure in each container is measured. You may make it measure.
 TVカメラ3は、例えばデジタルCCDカメラであり、血液の流れを撮影するための高速カメラあるいは、動画が撮影可能なカメラなどが用いられる。このTVカメラ3は、マイクロチップ2におけるガラス平板20に対向して設置され、流路26を通過する血液の流れをガラス平板20越しに撮影する。その撮影範囲は、複数のゲート215における入口領域A~出口領域Cを含む範囲となっている。但し、この撮影範囲は、図2、図3で示されている各ゲート215における入口領域A、内部領域B、出口領域Cのうちの少なくとも1つの領域を含む範囲であればよい。TVカメラ3によって得られた血流画像は、パソコン7に出力されるとともに、ディスプレイ8に表示されるようになっている。 The TV camera 3 is, for example, a digital CCD camera, and a high-speed camera for photographing a blood flow or a camera capable of photographing a moving image is used. The TV camera 3 is installed facing the glass flat plate 20 in the microchip 2 and photographs the blood flow passing through the flow path 26 through the glass flat plate 20. The imaging range is a range including an entrance area A to an exit area C in the plurality of gates 215. However, this imaging range may be a range including at least one of the entrance area A, the internal area B, and the exit area C in each gate 215 shown in FIGS. The blood flow image obtained by the TV camera 3 is output to the personal computer 7 and displayed on the display 8.
 パソコン7は、TVカメラ3と接続されており、当該TVカメラ3が出力した画像情報から複数種類の血液特性をそれぞれ算出可能な演算処理部70を備えている。なお、血液特性とは、血液の性状等を示す種々の特性値であり、血液の圧力や速度等の他、血液の凝集能といった流動性に関するものを含む。凝集能とは、血球が滞留して集塊状に結合する凝集現象の発生しやすさを表す定量値であり、滞留した血球からなる血球滞留部に含まれる各血球種の面積、個数、面積割合、又は個数割合などで表される。このような演算処理部70としては、従来より公知のものを用いることができる。 The personal computer 7 is connected to the TV camera 3 and includes an arithmetic processing unit 70 capable of calculating a plurality of types of blood characteristics from image information output from the TV camera 3. The blood characteristics are various characteristic values indicating blood properties and the like, and include those related to fluidity such as blood coagulation ability in addition to blood pressure and velocity. Aggregation capacity is a quantitative value indicating the ease of occurrence of the aggregation phenomenon in which blood cells stay and bind together, and the area, number, and area ratio of each blood cell type contained in the blood cell retention part consisting of the retained blood cells. Or the number ratio. As such an arithmetic processing part 70, a conventionally well-known thing can be used.
 ディスプレイ8は、パソコン7と接続されており、TVカメラ3が出力した撮影画像や、パソコン7によって算出された血液特性を表示するようになっている。 The display 8 is connected to the personal computer 7 and displays a photographed image output from the TV camera 3 and blood characteristics calculated by the personal computer 7.
 血流制御部9は、マイクロチップ2前後の差圧を制御する差圧制御部91と、アクチュエータ27の駆動を制御する駆動制御部92とを備え、シーケンス制御部17からの制御指令に応じてこれら差圧制御部91及び駆動制御部92が所定の制御を行うようになっている。なお、血流制御部9及びシーケンス制御部17をパソコン7と一体に構成し、このパソコン7が前記所定の制御を行うようにしてもよい。 The blood flow control unit 9 includes a differential pressure control unit 91 that controls the differential pressure across the microchip 2 and a drive control unit 92 that controls the drive of the actuator 27, and according to a control command from the sequence control unit 17. The differential pressure control unit 91 and the drive control unit 92 perform predetermined control. The blood flow control unit 9 and the sequence control unit 17 may be configured integrally with the personal computer 7, and the personal computer 7 may perform the predetermined control.
 差圧制御部91は、チップ上流圧力P1及びチップ下流圧力P2が所定の圧力となるように、マイクロチップ2上流の加圧ポンプ15とマイクロチップ2下流の減圧ポンプ16とをそれぞれ制御する。駆動制御部92は、マイクロチップ2の流路26において、対向する流路壁部分26a間の距離w(図4参照)が所定値となるように、アクチュエータ27の駆動を制御する。 The differential pressure control unit 91 controls the pressurization pump 15 upstream of the microchip 2 and the decompression pump 16 downstream of the microchip 2 so that the chip upstream pressure P1 and the chip downstream pressure P2 become predetermined pressures. The drive control unit 92 controls the drive of the actuator 27 so that the distance w (see FIG. 4) between the opposed flow path wall portions 26a in the flow path 26 of the microchip 2 becomes a predetermined value.
 図1を主に用いて、以下に、血液特性を計測する際の血液特性解析システム1の動作について説明する。 Referring mainly to FIG. 1, the operation of the blood characteristic analysis system 1 when measuring blood characteristics will be described below.
 まずマイクロチップ2へ血液を流しつつ、図4に示されるマイクロチップ2内の流路26内の血流をTVカメラ3で撮影する。より詳細には、シーケンス制御部17が供給槽10へ計測対象の血液を注入させつつ、必要に応じて溶液びん13へ生理食塩水等を加えさせる。そして、シーケンス制御部17が差圧制御部91を介して加圧ポンプ15及び減圧ポンプ16を制御することによりマイクロチップ2に所定の差圧を作用させて当該マイクロチップ2に血液を流す一方、TVカメラ3が流路26内の血流を撮影する。 First, the blood flow in the flow path 26 in the microchip 2 shown in FIG. More specifically, the sequence controller 17 adds physiological saline or the like to the solution bottle 13 as necessary while injecting blood to be measured into the supply tank 10. The sequence control unit 17 controls the pressurization pump 15 and the decompression pump 16 via the differential pressure control unit 91 to apply a predetermined differential pressure to the microchip 2 to flow blood through the microchip 2, The TV camera 3 images the blood flow in the flow path 26.
 この際、図4に示されるマイクロチップ2内の流路壁部分26a間の距離wは、駆動制御部92により所定の周期で反復変動するように設定されている。距離wを変化させることにより流路26の断面積を変化させる。こうして流路26の断面積を変化させることにより、図5(a)に示すように、チップ上流圧力P1とチップ下流圧力P2との差、つまり流路26の上流側と下流側とにおける血液の圧力差ΔPを所定の周期Tで変化させることができる。このときの所定の周期Tとしては、例えば現代人の安静時における平均脈拍数65回/分を模擬した値(60/65≒0.92sec)とすればよいが、この値に限定されず、年齢・性別・健康状態等に応じた値に適宜設定することができる。また、血液の圧力差ΔPは、流路26を流れる血液の速度が0.1~30mm/secの範囲内となるよう制御される。これは主にTVカメラ3の撮影能力に依存する条件であり、例えばTVカメラ3がフレームレート1000fps以上の高速カメラであれば、血液の速度が10~30mm/secであってもよい。 At this time, the distance w between the flow path wall portions 26a in the microchip 2 shown in FIG. 4 is set by the drive control unit 92 so as to repeatedly change at a predetermined cycle. The cross-sectional area of the flow path 26 is changed by changing the distance w. By changing the cross-sectional area of the flow path 26 in this way, as shown in FIG. 5A, the difference between the tip upstream pressure P1 and the tip downstream pressure P2, that is, the upstream and downstream sides of the flow path 26 The pressure difference ΔP can be changed at a predetermined period T. As the predetermined period T at this time, for example, a value (60 / 65≈0.92 sec) simulating an average pulse rate of 65 times / minute at the time of resting modern people may be used, but it is not limited to this value. It can be set as appropriate according to age, gender, health status, and the like. Further, the blood pressure difference ΔP is controlled so that the speed of the blood flowing through the flow path 26 is within a range of 0.1 to 30 mm / sec. This is a condition that mainly depends on the shooting capability of the TV camera 3. For example, if the TV camera 3 is a high-speed camera with a frame rate of 1000 fps or higher, the blood speed may be 10 to 30 mm / sec.
 また、このように周期的に変化する圧力差ΔPは、加圧ポンプ15及び/又は減圧ポンプ16によってチップ上流圧力P1及び/又はチップ下流圧力P2を加圧及び/又は減圧することで生じさせてもよい。更には、これら加圧ポンプ15及び/又は減圧ポンプ16の駆動と、上記した流路壁部分26a間の距離wの変動とを組み合わせてもよい。wの値としては、赤血球の血球径(約8μm)より小さい値であればよく、最も小さい値は、血管が詰まった状態を示す、w=0である。 Further, the pressure difference ΔP that periodically changes in this way is generated by increasing and / or decreasing the tip upstream pressure P1 and / or the tip downstream pressure P2 by the pressurizing pump 15 and / or the decompressing pump 16. Also good. Furthermore, you may combine the drive of these pressurization pumps 15 and / or the pressure reduction pump 16, and the fluctuation | variation of the above-mentioned distance w between the flow-path wall parts 26a. The value of w may be a value smaller than the blood cell diameter of red blood cells (about 8 μm), and the smallest value is w = 0, which indicates a state where the blood vessel is clogged.
 なお、圧力差ΔPの周期は、所定の値に限定されず、図5(b)に示すように、変動的な周期T’としてもよい。この図は時間の経過とともに短くなる周期を示しているが、例えば時間の経過とともに長くなる周期でもよいし、ランダムに変化する周期でもよい。 Note that the period of the pressure difference ΔP is not limited to a predetermined value, and may be a variable period T ′ as shown in FIG. Although this figure shows a cycle that becomes shorter with the passage of time, for example, it may be a cycle that becomes longer with the passage of time or a cycle that changes randomly.
 次に、パソコン7が撮影画像を画像処理することによって血液特性を算出した後、算出結果や撮影画像そのものをディスプレイ8に表示させる。 Next, after the personal computer 7 calculates blood characteristics by performing image processing on the captured image, the calculation result and the captured image itself are displayed on the display 8.
 以上のように、本実施の形態における血液特性解析システム1によれば、流路26の上流側と下流側とにおける血液の圧力差ΔPを所定の周期T又は変動的な周期T’で変化させることができるので、生体内の血管の脈動を模擬して血液特性の計測を行うことができる。したがって、流路を通過する血液に付与される圧力差が一定であった従来の計測に比べ、生体内に近い状態での血液特性の計測を行うことができる。 As described above, according to the blood characteristic analysis system 1 in the present embodiment, the blood pressure difference ΔP between the upstream side and the downstream side of the flow path 26 is changed at a predetermined cycle T or a variable cycle T ′. Therefore, blood characteristics can be measured by simulating blood vessel pulsation in a living body. Therefore, blood characteristics in a state close to the living body can be measured as compared with the conventional measurement in which the pressure difference applied to the blood passing through the flow path is constant.
 なお、上記実施の形態においては、圧力差ΔPを付与することで流路26に血液を通過させているが、当該流路26を通過させる血液の量が制御可能であれば、血液に圧力差ΔPを付与しなくとも、例えば電気泳動を利用した方法を用いてもよい。 In the above embodiment, blood is allowed to pass through the flow path 26 by applying the pressure difference ΔP. However, if the amount of blood passing through the flow path 26 can be controlled, the pressure difference is applied to the blood. For example, a method using electrophoresis may be used without providing ΔP.
 また、その他の点についても、本発明は上記実施の形態に限定されるものではなく、適宜変更可能であるのは勿論である。 Also, regarding other points, the present invention is not limited to the above-described embodiment, and it is needless to say that it can be appropriately changed.
 1 血液特性解析システム
 2 マイクロチップ
 3 TVカメラ(撮影手段)
 9 血流制御部(圧力制御手段)
 26 流路
 70 演算処理部(解析手段)
 A 入口領域
 B 内部領域
 C 出口領域
 T、T’ 周期
 ΔP 圧力差
1 Blood characteristic analysis system 2 Microchip 3 TV camera (photographing means)
9 Blood flow control unit (pressure control means)
26 flow path 70 arithmetic processing unit (analysis means)
A Inlet area B Inner area C Outlet area T, T 'Period ΔP Pressure difference

Claims (3)

  1.  血液特性を計測する血液特性解析システムであって、
     血液が通過する少なくとも1つの流路を有するマイクロチップと、
     前記流路の内部領域、入口領域、及び出口領域の少なくとも1つの領域における血液の流れを撮影する撮影手段と、
     前記撮影手段による血流画像を解析して血液特性を算出可能な解析手段と、
     前記流路の上流側と下流側とにおける血液の圧力差を、所定の周期又は変動的な周期で変化させることが可能な圧力制御手段と、
     を備えることを特徴とする血液特性解析システム。
    A blood characteristic analysis system for measuring blood characteristics,
    A microchip having at least one flow path through which blood passes;
    Imaging means for imaging the blood flow in at least one of the internal region, the inlet region, and the outlet region of the flow path;
    Analysis means capable of calculating blood characteristics by analyzing a blood flow image by the imaging means;
    A pressure control means capable of changing the blood pressure difference between the upstream side and the downstream side of the flow path at a predetermined cycle or a variable cycle;
    A blood characteristic analysis system comprising:
  2.  前記圧力制御手段は、前記流路の断面積を変化させることにより、当該流路の上流側と下流側とにおける血液の圧力差を変化させることが可能であることを特徴とする請求項1に記載の血液特性解析システム。 The pressure control means can change a blood pressure difference between an upstream side and a downstream side of the flow path by changing a cross-sectional area of the flow path. The described blood characteristic analysis system.
  3.  前記圧力制御手段は、前記流路の上流側と下流側とにおける血液の圧力差を、加圧及び減圧のうち少なくとも一方により生じさせることを特徴とする請求項1又は2に記載の血液特性解析システム。 3. The blood characteristic analysis according to claim 1, wherein the pressure control unit generates a blood pressure difference between the upstream side and the downstream side of the flow path by at least one of pressurization and decompression. system.
PCT/JP2009/069433 2009-11-16 2009-11-16 Blood property analysis system WO2011058655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/069433 WO2011058655A1 (en) 2009-11-16 2009-11-16 Blood property analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/069433 WO2011058655A1 (en) 2009-11-16 2009-11-16 Blood property analysis system

Publications (1)

Publication Number Publication Date
WO2011058655A1 true WO2011058655A1 (en) 2011-05-19

Family

ID=43991334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069433 WO2011058655A1 (en) 2009-11-16 2009-11-16 Blood property analysis system

Country Status (1)

Country Link
WO (1) WO2011058655A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264318A (en) * 2000-03-15 2001-09-26 Japan Science & Technology Corp Apparatus and method for analyzing leucocyte adherence phenomenon
WO2006095615A1 (en) * 2005-03-07 2006-09-14 Kuraray Co., Ltd. Microchannel array and method for producing the same, and blood measuring method employing it
WO2007046450A1 (en) * 2005-10-18 2007-04-26 Fujimori Kogyo Co., Ltd. Apparatus for monitoring thrombus formation and method of monitoring thrombus formation
JP2008304376A (en) * 2007-06-08 2008-12-18 Tokyo Metropolitan Univ Sample introducing microdevice

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264318A (en) * 2000-03-15 2001-09-26 Japan Science & Technology Corp Apparatus and method for analyzing leucocyte adherence phenomenon
WO2006095615A1 (en) * 2005-03-07 2006-09-14 Kuraray Co., Ltd. Microchannel array and method for producing the same, and blood measuring method employing it
WO2007046450A1 (en) * 2005-10-18 2007-04-26 Fujimori Kogyo Co., Ltd. Apparatus for monitoring thrombus formation and method of monitoring thrombus formation
JP2008304376A (en) * 2007-06-08 2008-12-18 Tokyo Metropolitan Univ Sample introducing microdevice

Similar Documents

Publication Publication Date Title
AU2017201561B2 (en) Method and device for trapping and analysing cells and the like
US20100170796A1 (en) In Vitro Microfluidic Model of Microcirculatory Diseases, and Methods of Use Thereof
Abkarian et al. Cellular-scale hydrodynamics
EP2419862B1 (en) System for assessing the efficacy of stored red blood cells using microvascular networks
JP5146462B2 (en) Blood fluidity measurement system
De Loubens et al. Stretching of capsules in an elongation flow, a route to constitutive law
EP2216639A1 (en) Blood fluidity measurement apparatus and blood fluidity measurement method
Roman et al. Going beyond 20 μm-sized channels for studying red blood cell phase separation in microfluidic bifurcations
KR100889618B1 (en) Delicate particle deformation measuring device
US20210387193A1 (en) Microfluidic viscometer and assembly, and methods using the same
Guibert et al. A new approach to model confined suspensions flows in complex networks: application to blood flow
de Blois et al. Swimming droplets in 1D geometries: an active Bretherton problem
WO2011058655A1 (en) Blood property analysis system
US7784332B2 (en) Device and method for measuring fine particle concentration
JP2010066041A (en) System for analysis of characteristics of blood
JP5387689B2 (en) Blood cell trajectory display device
WO2010024197A1 (en) Microchip and blood analysis system
Koolivand et al. Deformation of an elastic capsule in a microfluidic T-junction: settling shape and moduli determination
JP5182373B2 (en) Microchip, blood characteristic analysis system, and blood characteristic analysis method
O'Brien et al. Effective hydrodynamic shaping of sample streams in a microfluidic parallel-plate flow-assay device: matching whole blood dynamic viscosity
Barthes-Biesel Mechanics of encapsulated droplets
WO2011065176A1 (en) Microchip and blood analysis system
WO2011010570A1 (en) Apparatus for measuring amount of aggregates, and method for measuring amount of aggregates
KR100676694B1 (en) Rbc deformation measuring device using piezoelectric
WO2011065195A1 (en) Microchip and film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP