WO2011058264A1 - Procede et systeme d'accouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hybride - Google Patents

Procede et systeme d'accouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hybride Download PDF

Info

Publication number
WO2011058264A1
WO2011058264A1 PCT/FR2010/052357 FR2010052357W WO2011058264A1 WO 2011058264 A1 WO2011058264 A1 WO 2011058264A1 FR 2010052357 W FR2010052357 W FR 2010052357W WO 2011058264 A1 WO2011058264 A1 WO 2011058264A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
coupling
clutch
rotation
electric machine
Prior art date
Application number
PCT/FR2010/052357
Other languages
English (en)
Inventor
Eric Schaeffer
Florian Galinaud
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Priority to EP10798161A priority Critical patent/EP2499393A1/fr
Publication of WO2011058264A1 publication Critical patent/WO2011058264A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/08Regulating clutch take-up on starting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/70Control of gearings
    • B60Y2300/73Synchronisation of shaft speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/10462Dog-type clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/106Engine
    • F16D2500/1066Hybrid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50224Drive-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/506Relating the transmission
    • F16D2500/50607Facilitating engagement of a dog clutches, e.g. preventing of gear butting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/506Relating the transmission
    • F16D2500/5063Shaft dither, i.e. applying a pulsating torque to a (transmission) shaft to create a buzz or dither, e.g. to prevent tooth butting or gear locking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70452Engine parameters
    • F16D2500/70458Engine torque
    • F16D2500/7046Engine torque change rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/047Smoothing ratio shift by preventing or solving a tooth butt situation upon engagement failure due to misalignment of teeth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • Method and system for coupling an electric machine to a running gear of a vehicle, in particular a hybrid motor vehicle The invention relates to a method and a coupling system of an electric machine on a running gear of a vehicle, in particular of a hybrid motor vehicle, when the vehicle is stationary.
  • the method and system are particularly suited to a hybrid vehicle that also uses a heat engine, so as to contribute the electric machine to the traction of the vehicle.
  • the document FR2723553 discloses, for example, a motor vehicle comprising a selective control system for operating separately or simultaneously the electric and thermal traction chains.
  • the state of the art is geared towards jaw-type couplings.
  • the document FR20905438 describes a driving method implementing two jaw in which a force exerted in translation on one of the jaw to approach the other dog, is modulated according to different phases of approach.
  • An object of the present invention is to achieve a simplified coupling without clutch which does not require modulating a translational force, particularly when the vehicle is stationary.
  • the invention relates to a method of coupling an electric machine with the wheels of a vehicle running gear when the vehicle is stationary, comprising two steps activated in parallel from a coupling request:
  • a torque control step of the electric machine on a torque linkage setpoint which starts from a zero value at a moment of the coupling request and which gradually increases so as to remain lower than a setting value of the electric machine for a time sufficient to bring the two claws in translation in a position in which the tooth tops of the two claws are coplanar and to exceed said rotational value beyond said time sufficient to achieve the interconnection.
  • the coupling torque setpoint follows a ramp of strictly positive steering coefficient and less than or equal to a drag torque exerted on the upstream clutch divided by said sufficient duration.
  • the steering coefficient is substantially equal to 4 Nm / s.
  • the method comprises a step of switching the torque interconnection setpoint on a torque setpoint linked to a driver's will when the two jaw claws are detected fully engaged one in the other.
  • the clutch torque setpoint is limited to a maximum value of tooth-to-tooth friction torque of the jaw claws.
  • the invention also relates to a coupling system of an electric machine with wheels of a running gear of a vehicle when the vehicle is stationary, comprising: an upstream clutch solidarity in rotation of the electric machine, a clutch downstream integral in rotation of the wheels and an actuator arranged to bring the two jaw in translation along a common axis of rotation; and
  • an electronic device arranged to receive a coupling request, to drive the actuator and to transmit to an electric generator supplying the electric machine, a torque interconnection setpoint which starts from a zero value at a time of receiving the coupling request and which gradually increases so as to remain below a value of rotation of the electric machine for a sufficient time to bring the two jaw in translation in a position in which the toothing of the two jaw teeth are coplanar and exceed said rotation value beyond said time sufficient to achieve the interconnection.
  • the electronic device comprises a steer coefficient strictly positive and less than or equal to a drag torque exerted on the upstream clutch divided by said sufficient time so as to follow a ramp to the torque linkage setpoint.
  • the steering coefficient is substantially equal to 4 Nm / s.
  • the coupling system comprises an end-of-stroke engagement sensor of the claws one into the other, and the electronic device is arranged to switch said interconnection torque setpoint to a torque setpoint linked to a will driver when he receives from the sensor a signal indicating that the two claws are fully engaged one into the other.
  • the electronic device comprises a limitation of the jaw torque setpoint to a maximum value of tooth-to-tooth friction torque of the jaw claws.
  • FIG. 1 is a schematic view of a hybrid motor vehicle comprising a coupling system according to the invention
  • FIG. 2 is a schematic view of the coupling system according to the invention.
  • Figure 3 shows the steps of a coupling method according to the invention
  • Figures 4a and 4b are curves that show a behavioral evolution of the vehicle when the method according to the invention is implemented.
  • a hybrid-type vehicle 10 comprises a power unit 11 arranged to drive two front wheels 14 of the vehicle 10, and a power unit 12 arranged to drive two rear wheels 44 belonging to one and the same rear drive train.
  • vehicle 10 The powertrain (GMP) 11 comprises in a manner known per se, a heat engine here for purely illustrative purposes at the front of the vehicle.
  • Power train 12 includes an electric machine
  • FIG. 2 shows in more detail the power train 12 of FIG. 1.
  • the axis 15 of the electric machine 42 and the axis 16 of the wheels 44 are schematically folded over a same axis 46 above which are simply represented the half-parts of the electric machine 42, the coupling mechanism 43 and a sensible block symbolized the two wheels 44.
  • a dog clutch system comprises an upstream clutch 51 and a downstream clutch 52.
  • the upstream clutch 51 is rotationally integral with a gearbox 45 connected to the output shaft of the electric machine 42.
  • Downstream clutch 52 is integral in rotation with the wheels 44 via a differential mechanism to balance in a manner known per se, the torque between the wheels 44 of the rear axle, especially when they run at different speeds, for example in a turn.
  • the clutch 51 rotates about the axis 46 at a speed of rotation proportional to or equal to the speed of rotation of the electric machine 42 and transmits a torque proportional to the torque generated by the electric machine 42 while keeping the power supplied by the electric machine 42 to a yield factor near that results from the transmission losses between the electric machine 42 and the clutch 51.
  • the transmission losses in the electric machine 42 and between the electric machine 42 and the clutch 51 can be represented by a drag torque of the upstream part of the dog 51.
  • the clutch 52 rotates about the axis 46 at a speed of rotation which is a function of the speed of the wheels 44. A torque applied to the dog clutch 52 is transmitted to the wheels 44. When the clutch 52 is disengaged from the clutch 51 as is shown in FIG. 2, the wheels 44 can rotate or not rotate independently of the speed of rotation of the electric machine 42.
  • the coupling mechanism 43 comprises an actuator 34 arranged to move the clutch 52 in translation along the axis 46.
  • Each of the faces facing the jaws 51 and 52 is provided with teeth and cavities.
  • the teeth of a dog are dimensioned to be housed in the cavities of the other dog.
  • the actuator 34 can engage the clutch 52 in engagement with the clutch 51 so as to make the claws 51 and 52 rotate in rotation about the axis 46.
  • An on-off position sensor 32 is mounted in the coupling mechanism 43 to detect a fully engaged position of the clutch 52 in the clutch. dog 51.
  • the rotational independence of the jaws 51 and 52 makes the teeth of the dog 52 are not necessarily in front of the cavities of the dog 51 when the actuator 34 moves the dog 52 in translation along the axis 46.
  • a difficulty appears when the vehicle is in a stopped situation, to engage quickly and smoothly jaw as soon as a coupling of the electric machine of the vehicle is requested by the driver.
  • the mechanical architecture of the rear power train system does not include a clutch and also does not include synchronizer.
  • the only movement of the system is a translation of one or more jaws 51, 52, exerted or activated by the actuator 34. It is recalled that statistically, the failures of engagement in the systems of interconnection often occur because of a high probability of tooth-to-tooth contact of the claws before engaging them.
  • the rear powertrain comprises an electronic device 40 which allows, as we will explain now, a fine control of the torque of the electric machine 42 in combination with a sequential control of the actuator 34 of interconnection in order to reach a fast and smooth jerk that limits the number of failures or stops on dog.
  • the device 40 is connected to the actuator 34 and the sensor 32, respectively by a pin 33 and a pin 31 of the connector of the coupling mechanism 43.
  • the electronic device 40 is connected to the electric machine 42 by an electric generator 41 regulated by current.
  • the electric generator 41 is for example supplied in a known manner from a battery, not shown.
  • the device 40 furthermore comprises electronic digital or analog processing circuits arranged and / or programmed to execute the process steps explained now with reference to FIG.
  • FIG. 4a shows the time t on the abscissa and the rotation speeds ⁇ on the ordinate, respectively represented by the curve 2 for the wheel 44 and by the curve 1 for the electric machine 42.
  • a temporal evolution of the behavior of the power unit 12 during the implementation of the method is represented in FIG. 4b which carries the time t on the abscissa and various values V on the ordinate, among which a position of the actuator 34 of interconnection, a control signal of the actuator 34 and a torque control setpoint of the electric machine 42, respectively represented at 3, 4, 5 on the curves of FIG. 4b.
  • the actuator 33 is in a maximum withdrawal position 3 which corresponds to a declutched state of the powertrain 12, the control signal 4 is zero and the torque control setpoint of the electric machine 42 is zero.
  • the method validates a transition 53 following a request for coupling of the electrical machine, for example from the driver and which results in a signal D emitted to the device 40 as shown in FIG. 2.
  • a first vertical dotted line represents in FIGS. 4a and 4b, the instant at which the transition 53 is validated.
  • the method validates the transition 53 following step 50, it activates in parallel a step 54 and a step 55.
  • step 54 the method actuates the downstream clutch 52 towards the upstream claw 51.
  • the device 40 sends a signal 4 in step on the pin 33 which puts the actuator 34 in translational movement to engage the clutch 52 in the dog clutch 51.
  • the actuator 34 is set in motion and pushes the clutch 52 of so that the withdrawal position 3 is gradually reduced until stopping at a moment b.
  • the movement in translation stops at a moment b before reaching the total stroke of the clutch when the tops of the teeth of the two claws come into contact, thus preventing the introduction of teeth in the cavities of the opposite dog.
  • the position 3 remains stationary over time until a moment d which allows the teeth of each dog to enter the cavities of the opposite dog.
  • step 55 the method applies a torque setpoint along a ramp on the electrical machine 42.
  • the device 40 sends a setpoint C * to the electric generator 41 which follows a ramp of slope sufficiently low that the electric machine 42 remains motionless in rotation until a time c after time b.
  • the value of the slope of the ramp is calibrated so that the torque generated by the electric machine 42 is compensated by the drag torque of the upstream portion of the dog 51, at least for the time necessary to approach the clutch 52 of the dog 51 to put them in contact.
  • the drag torque typically comprises the inertia torque of the electric machine 42 and transmissions to the clutch 51 and the various friction losses on bearings or in gears.
  • the steepness coefficient of the slope is determined so that the generated torque is insufficient to move the electric machine 42 at least up to the instant b, that is to say to adjust the torque without rotating. the dog 51 as long as it is not in contact with the clutch 52.
  • the guiding coefficient can be determined from of tests on a prototype specimen of the powertrain and / or by calculation as a function of the inertial forces, the losses and the powers involved. Sufficient time to bring the two jaw in translation in a position in which the vertices of teeth are in the same plane, is calculated according to the power of the actuator 34 and the distance separating this plane with the maximum retracted position, taking a margin of safety to take into account possible response times.
  • the torque provided by the electric machine 42 is sufficient to start to put the electric machine 42 and the clutch 51 in rotation as represented by the upward slope of the speed 1 on the Figure 4a between instants c and d.
  • the rotation of the clutch 51 from instant c moves the teeth of the dog 51 so as to put the teeth of the dog 51 vis-à-vis with the cavities of the clutch 52.
  • the vis-à-vis teeth of each dog with the cavities of the opposite dog causes a rapid movement of the actuator 34 and therefore of the clutch 52 in translation so as to put the teeth of the clutch 52 in position 3 of contact with the bottom of the cavities of the clutch 51.
  • the evolution of the position 3 does not need to be measured and it suffices that the position sensor 32 behaves as a limit position detector of the clutch 52 when it is fully engaged. in the clutch 51.
  • the torque ramp applied to the electrical machine 42 between instants a and d is particularly advantageous because the torque value between the instant a, and for safety measure generally beyond the instant b, is weak enough not to put the machine electric in rotation without having to know precisely the value of the instant b. Indeed, the moment b can evolve according to the wear of the parts or other uncontrolled event criteria.
  • a transition 56 is validated when the clutch 52 is fully engaged in the clutch 51.
  • the all-or-nothing type sensor 32 makes it possible to detect an end of travel of the translational movement of the clutch.
  • the actuator 34 which then validates the transition 56 in the device 40.
  • the method activates a step 57 after validation of the transition 56 following the steps 54 and 55 which were executed simultaneously in parallel.
  • Step 57 cuts the torque setpoint C * and causes switching of the electric machine torque to a value that results from the driver's will.
  • the dog 51 quickly reaches zero speed when the teeth of the dog 51 come into flank contact with the teeth of the clutch 52.
  • the torque clutch torque reference C * increases steadily and then vanishes in step from the maximum value reached when the jaw claws are engaged and in the absence of torque demand resulting from the driver's will.
  • the torque reference C * is limited to a maximum value of friction torque tooth on tooth jaw. It is indeed better to avoid too much acceleration in rotation of the dog at the time of penetration of the teeth in the cavities of the opposite dog because such an acceleration would cause flanks on the sides of the teeth likely to cause damage.
  • the electric powertrain can be mounted both at the front and rear of the vehicle, on a running gear identical or different from that on which is mounted the thermal power train.
  • a gearbox may also exist between the downstream claw and the wheels.
  • the displacement of the downstream clutch can be replaced by a displacement of the upstream clutch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Mechanical Operated Clutches (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Pour accoupler une machine électrique avec des roues d'entraînement d'un véhicule lorsque le véhicule est à l'arrêt, le procédé comprend deux étapes (54, 55) activées en parallèle à partir d'une demande d'accouplement : - une étape (54) de rapprochement en translation de deux crabots le long d'un axe commun de rotation, un crabot amont étant solidaire en rotation de la machine électrique et un crabot aval étant solidaire en rotation des roues d'entraînement; et une étape (55) d'asservissement en couple de la machine électrique sur une consigne de couple de crabotage qui part d'une valeur nulle à un instant de la demande d'accouplement et qui augmente progressivement en restant inférieure à une valeur de mise en rotation de la machine électrique pendant une durée suffisante à rapprocher les deux crabots en translation dans une position dans laquelle les sommets de dents des deux crabots sont coplanaires et en dépassant ladite valeur de mise en rotation au-delà de ladite durée suffisante.

Description

"Procédé et système d'accouplement d'une machine électrique sur un train roulant de véhicule, notamment d'un véhicule automobile hybride". L'invention concerne un procédé et un système d'accouplement d'une machine électrique sur un train roulant d'un véhicule, notamment d'un véhicule automobile hybride, lorsque le véhicule est à l'arrêt.
Le procédé et le système sont particulièrement adaptés à un véhicule hybride qui utilise par ailleurs un moteur thermique, de façon à faire contribuer la machine électrique à la traction du véhicule.
Le document FR2723553 divulgue par exemple un véhicule automobile comprenant un système de commande sélective pour actionner séparément ou simultanément les chaînes de traction électrique et thermique.
Le document US5403244 divulgue une chaîne de traction électrique de véhicule à couplage de transmission directe en utilisant des moyens de synchronisation basés sur des plaques de friction de type disques d'embrayage. Les accouplements de type embrayage sont générateurs de perte d'énergie.
Pour augmenter le rendement, l'état connu de la technique s'oriente vers des accouplements de type crabots. Ainsi le document FR20905438 décrit un procédé de pilotage mettant en œuvre deux crabots dans lequel un effort exercé en translation sur l'un des crabots pour l'approcher de l'autre crabot, est modulé en fonction de différentes phases d'approche.
Un but de la présente invention est de réaliser un accouplement simplifié sans embrayage qui ne nécessite pas de moduler un effort en translation, particulièrement quand le véhicule est immobile.
Pour atteindre ce but, l'invention a pour objet un procédé d'accouplement d'une machine électrique avec des roues de train roulant d'un véhicule lorsque le véhicule est immobile, comprenant deux étapes activées en parallèle à partir d'une demande d'accouplement :
- une étape de rapprochement en translation de deux crabots le long d'un axe commun de rotation, un crabot amont étant solidaire en rotation de la machine électrique et un crabot aval étant solidaire en rotation des roues ; et
une étape d'asservissement en couple de la machine électrique sur une consigne de couple de crabotage qui part d'une valeur nulle à un instant de la demande d'accouplement et qui augmente progressivement de façon à rester inférieure à une valeur de mise en rotation de la machine électrique pendant une durée suffisante à rapprocher les deux crabots en translation dans une position dans laquelle les sommets de dents des deux crabots sont coplanaires et à dépasser ladite valeur de mise en rotation au-delà de ladite durée suffisante pour réaliser le crabotage.
Particulièrement, la consigne de couple de crabotage suit une rampe de coefficient directeur strictement positif et inférieur ou égal à un couple de traînée exercé sur le crabot amont divisé par ladite durée suffisante.
Plus particulièrement, le coefficient directeur est sensiblement égal à 4 Nm/s.
Avantageusement, le procédé comprend une étape de commutation de la consigne de couple de crabotage sur une consigne de couple liée à une volonté conducteur lorsque les deux crabots sont détectés totalement engagés l'un dans l'autre.
De préférence, la consigne de couple de crabotage est limitée à une valeur maximale de couple de frottement dent sur dent des crabots.
L'invention a aussi pour objet un système d'accouplement d'une machine électrique avec des roues d'un train roulant d'un véhicule lorsque le véhicule est à l'arrêt, comprenant : un crabot amont solidaire en rotation de la machine électrique, un crabot aval solidaire en rotation des roues et un actionneur agencé pour rapprocher les deux crabots en translation le long d'un axe commun de rotation ; et
- un dispositif électronique agencé pour recevoir une demande d'accouplement, pour piloter l 'actionneur et pour transmettre à un générateur électrique d'alimentation de la machine électrique, une consigne de couple de crabotage qui part d'une valeur nulle à un instant de réception de la demande d'accouplement et qui augmente progressivement de façon à rester inférieure à une valeur de mise en rotation de la machine électrique pendant une durée suffisante à rapprocher les deux crabots en translation dans une position dans laquelle les sommets de dents des deux crabots sont coplanaires et à dépasser ladite valeur de mise en rotation au-delà de ladite durée suffisante pour réaliser le crabotage.
Particulièrement, le dispositif électronique comporte un coefficient directeur de rampe strictement positif et inférieur ou égal à un couple de traînée exercé sur le crabot amont divisé par ladite durée suffisante de façon à faire suivre une rampe à la consigne de couple de crabotage.
Plus particulièrement, le coefficient directeur est sensiblement égal à 4 Nm/s.
Avantageusement, le système d'accouplement comprend un capteur de fin de course d'engagement des crabots l'un dans l'autre, et le dispositif électronique est agencé pour commuter ladite consigne de couple de crabotage sur une consigne de couple liée à une volonté conducteur lorsqu'il reçoit du capteur un signal indiquant que les deux crabots sont totalement engagés l'un dans l'autre.
De préférence, le dispositif électronique comporte une limitation de la consigne de couple de crabotage à une valeur maximale de couple de frottement dent sur dent des crabots. L'invention sera mieux comprise, et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative qui va suivre d'un mode de réalisation particulier, actuellement préféré de l'invention, donné uniquement à titre d'exemple illustratif et non limitatif, en référence aux dessins schématiques annexés; dans lesquels :
- la figure 1 est une vue schématique d'un véhicule automobile hybride comportant un système d'accouplement selon l'invention ;
- la figure 2 est une vue schématique du système d'accouplement selon l'invention ;
la figure 3 montre les étapes d'un procédé d'accouplement selon l'invention ;
les figures 4a et 4b sont des courbes qui représentent une évolution comportementale du véhicule lorsque le procédé selon l'invention est mis en œuvre.
En référence à la figure 1, un véhicule 10 de type hybride, comprend un groupe motopropulseur 11 agencé pour entraîner deux roues avant 14 du véhicule 10, et un groupe motopropulseur 12 agencé pour entraîner deux roues arrière 44 appartenant à un même train roulant arrière du véhicule 10. Le groupe motopropulseur (GMP) 11 comprend de façon connue en soi, un moteur thermique situé ici à titre purement illustratif à l'avant du véhicule. Le groupe motopropulseur 12 comprend une machine électrique
42 reliée aux roues 44 par un mécanisme d'accouplement
43.
La figure 2 représente plus en détails le groupe motopropulseur 12 de la figure 1. Pour alléger la figure de façon à en faciliter la compréhension, l'axe 15 de la machine électrique 42 et l'axe 16 des roues 44 sont schématiquement repliés sur un même axe 46 au-dessus duquel sont simplement représentées les demi-parties de la machine électrique 42, du mécanisme d'accouplement 43 et d'un bloc sensé symbolisé les deux roues 44. Dans le mécanisme d'accouplement 43, un système de crabotage comprend un crabot amont 51 et un crabot aval 52. Le crabot amont 51 est solidaire en rotation d'un réducteur 45 relié à l'arbre de sortie de la machine électrique 42. Le crabot aval 52 est solidaire en rotation des roues 44 via un mécanisme différentiel pour équilibrer de manière connue en soi, le couple entre les roues 44 du train arrière, notamment lorsqu'elles roulent à des vitesses différentes, par exemple dans un virage.
Le crabot 51 tourne autour de l'axe 46 à une vitesse de rotation proportionnelle ou égale à la vitesse de rotation de la machine électrique 42 et transmet un couple proportionnel au couple généré par la machine électrique 42 en conservant la puissance fournie par la machine électrique 42 à un facteur de rendement près qui résulte des pertes de transmission entre la machine électrique 42 et le crabot 51. Les pertes de transmission dans la machine électrique 42 et entre la machine électrique 42 et le crabot 51 peuvent être représentées par un couple de traînée de la partie amont du crabot 51.
Le crabot 52 tourne autour de l'axe 46 à une vitesse de rotation qui est fonction de la vitesse des roues 44. Un couple appliqué sur le crabot 52 est transmis aux roues 44. Lorsque le crabot 52 est désolidarisé du crabot 51 comme cela est représenté sur la figure 2, les roues 44 peuvent tourner ou ne pas tourner indépendamment de la vitesse de rotation de la machine électrique 42.
Le mécanisme d'accouplement 43 comprend un actionneur 34 agencé pour déplacer le crabot 52 en translation le long de l'axe 46. Chacune des faces en regard des crabots 51 et 52 est munie de dents et de cavités. Les dents d'un crabot sont dimensionnées pour venir se loger dans les cavités de l'autre crabot. Ainsi, lorsque les dents du crabot 52 font face aux cavités du crabot 51, comme cela est représenté sur la figure 2, l' actionneur 34 peut engager le crabot 52 en prise avec le crabot 51 de façon à rendre solidaire en rotation les crabots 51 et 52 autour de l'axe 46. Un capteur de position tout ou rien 32 est monté dans le mécanisme d'accouplement 43 pour détecter une position totalement engagée du crabot 52 dans le crabot 51.
L'indépendance en rotation des crabots 51 et 52 fait que les dents du crabot 52 ne sont pas nécessairement en face des cavités du crabot 51 lorsque l'actionneur 34 déplace le crabot 52 en translation le long de l'axe 46. Une difficulté apparaît lorsque le véhicule est dans une situation arrêtée, pour engager rapidement et sans à-coups les crabots dès qu'un accouplement de la machine électrique du véhicule est demandé par le conducteur. L'architecture mécanique du système de groupe motopropulseur arrière, ne comprend pas d'embrayage et ne comprend pas non plus de synchroniseur. Le seul mouvement du système est une translation d'un ou des crabots 51, 52, exercée ou activée par l'actionneur 34. On rappelle que statistiquement, les échecs d'engagement dans les systèmes de crabotage se produisent souvent à cause d'une probabilité élevée de contact dent sur dent des crabots avant engagement de ceux-ci.
Pour remédier à ce problème, le groupe motopropulseur arrière comprend un dispositif électronique 40 qui permet, comme nous allons l'expliquer à présent, un pilotage fin du couple de la machine électrique 42 en combinaison avec un pilotage séquentiel de l'actionneur 34 de crabotage de façon à atteindre un crabotage rapide et sans à-coups qui limite le nombre d'échecs ou d'arrêts sur crabot. Le dispositif 40 est relié à l'actionneur 34 et au capteur 32, respectivement par une broche 33 et par une broche 31 de connecteur du mécanisme d'accouplement 43. Le dispositif électronique 40 est relié d'autre part à la machine électrique 42 par un générateur électrique 41 régulé en courant. Le générateur électrique 41 est par exemple alimenté de manière connue à partir d'une batterie, non représentée. Le dispositif 40 comprend d'autre part des circuits électroniques de traitement numérique ou analogique agencés et/ou programmés pour exécuter les étapes de procédé expliquées à présent en référence à la figure 3.
Tant que le véhicule 10 est immobile, le procédé selon l'invention fige le dispositif 40 dans une étape d'attente 50. La figure 4a porte le temps t en abscisses et les vitesses de rotation Ω en ordonnées, représentées respectivement par la courbe 2 pour la roue 44 et par la courbe 1 pour la machine électrique 42. Le véhicule étant immobile, la courbe 2 est constamment à zéro. Une évolution temporelle du comportement du groupe moto propulseur 12 pendant la mise en œuvre du procédé, est représentée sur la figure 4b qui porte le temps t en abscisses et différentes valeurs V en ordonnées, parmi lesquelles une position de l'actionneur 34 de crabotage, un signal de commande de l'actionneur 34 et une consigne de pilotage en couple de la machine électrique 42, représentées respectivement en 3, 4, 5 sur les courbes de la figure 4b. Initialement, l'actionneur 33 est dans une position 3 maximale de retrait qui correspond à un état décraboté du groupe motopropulseur 12, le signal de commande 4 est nul et la consigne de pilotage en couple de la machine électrique 42 est à zéro.
Le procédé valide une transition 53 suite à une demande d'accouplement de la machine électrique, par exemple de la part du conducteur et qui se traduit par un signal De émis vers le dispositif 40 comme représenté sur la figure 2. Une première ligne pointillée verticale représente sur les figures 4a et 4b, l'instant a auquel la transition 53 est validée.
Quand le procédé valide la transition 53 suite à l'étape 50, il active en parallèle une étape 54 et une étape 55.
A l'étape 54, le procédé actionne le crabot aval 52 vers le crabot amont 51. Dans le mode de réalisation illustré par la figure 2, le dispositif 40 envoie un signal 4 en échelon sur la broche 33 qui met l'actionneur 34 en mouvement de translation pour engager le crabot 52 dans le crabot 51. Après un temps de réponse relativement court, l'actionneur 34 se met en mouvement et pousse le crabot 52 de sorte que la position 3 de retrait se réduit progressivement jusqu'à s'arrêter à un instant b. Le mouvement en translation s'arrête à un instant b avant d'atteindre la course totale du crabot lorsque les sommets des dents des deux crabots entrent en contact, empêchant ainsi l'introduction des dents dans les cavités du crabot opposé. La position 3 reste stationnaire au cours du temps jusqu'à un instant d qui permet aux dents de chaque crabot de pénétrer dans les cavités du crabot opposé .
A l'étape 55, le procédé applique une consigne de couple suivant une rampe sur la machine électrique 42. Dans le mode de réalisation illustré par la figure 2, le dispositif 40 envoie une consigne C* au générateur électrique 41 qui suit une rampe de pente suffisamment faible pour que la machine électrique 42 reste immobile en rotation jusqu'à un instant c postérieur à l'instant b. La valeur de la pente de la rampe est calibrée de façon à ce que le couple généré par la machine électrique 42 soit compensé par le couple de traînée de la partie amont du crabot 51, au moins pendant la durée nécessaire à approcher le crabot 52 du crabot 51 jusqu'à les mettre en contact. Le couple de traînée comprend typiquement le couple d'inertie de la machine électrique 42 et des transmissions jusqu'au crabot 51 et les différentes pertes par frottement sur des paliers ou dans des engrenages. Le coefficient directeur de la pente est déterminé de façon à ce que le couple généré soit insuffisant pour mettre en mouvement la machine électrique 42 au moins jusqu'à l'instant b, c'est-à-dire pour ajuster le couple sans faire tourner le crabot 51 tant qu'il n'est pas en contact avec le crabot 52. Le coefficient directeur peut être déterminé à partir d'essais sur un exemplaire prototype du groupe motopropulseur et/ou par le calcul en fonction des forces d'inertie, des pertes et des puissances mises en jeu. Une durée suffisante à rapprocher les deux crabots en translation dans une position dans laquelle les sommets de dents sont dans un même plan, est calculée en fonction de la puissance de l'actionneur 34 et de la distance qui sépare ce plan avec la position de retrait maximale, en prenant une marge de sécurité pour tenir compte de temps de réponse éventuels. On peut aussi déterminer statistiquement cette durée suffisante préalablement sur banc d'essai en mesurant sur un nombre représentatif d'essais, la durée qui sépare l'enclenchement de l'actionneur avec une collision dent sur dent dans le plan où les sommets de dents des deux crabots se rencontrent. Le coefficient directeur est ensuite obtenu en divisant le couple de traînée, mesuré ou calculé, par la durée suffisante ci-dessus mentionnée en le réduisant légèrement de façon à assurer l'absence de mise en rotation avant mise en contact. Le coefficient directeur peut aussi tout simplement être ajusté au moyen d'un potentiomètre réel ou virtuel au cours d'essais préalables sur un prototype représentatif des groupes motopropulseur produits ensuite en série. Pour donner un ordre de grandeur, une valeur du coefficient directeur de 4 Nm/ s s'est avérée convenir parfaitement sur un prototype d'essai mis en œuvre par les inventeurs. Cette valeur peut varier sensiblement en fonction du type de groupe motopropulseur mis en œuvre. La vitesse 1 de rotation de la machine électrique 42 reste nulle ensuite bien que le couple appliqué continue à augmenter car il est alors compensé par les forces de frottement dent sur dent des crabots.
A l'instant c, le couple fourni par la machine électrique 42 est suffisant pour commencer à mettre la machine électrique 42 et le crabot 51 en rotation tel que représenté par la pente ascendante de la vitesse 1 sur la figure 4a entre les instants c et d. La mise en rotation du crabot 51 à partir de l'instant c déplace les dents du crabot 51 de façon à mettre les dents du crabot 51 en vis-à-vis avec les cavités du crabot 52. La mise en vis- à-vis des dents de chaque crabot avec les cavités du crabot opposé, provoque un déplacement rapide de l'actionneur 34 et par conséquent du crabot 52 en translation de façon à mettre les dents du crabot 52 en position 3 de contact avec le fond des cavités du crabot 51. On notera que l'évolution de la position 3 n'a pas besoin d'être mesurée et il suffit que le capteur de position 32 se comporte comme un détecteur de fin de course de position du crabot 52 lorsqu'il est totalement engagé dans le crabot 51. La rampe de couple appliqué à la machine électrique 42 entre les instants a et d est particulièrement avantageuse car la valeur de couple entre l'instant a, et par mesure de sécurité généralement au-delà de l'instant b, est suffisamment faible pour ne pas mettre la machine électrique en rotation sans avoir à connaître précisément la valeur de l'instant b. En effet, l'instant b peut évoluer en fonction de l'usure des pièces ou d'autres critères événementiels non maîtrisés. L'évolution du couple entre les instants b et c permet de vaincre progressivement les forces de frottement dent sur dent des crabots jusqu'à mettre le crabot 51 en rotation lorsqu'il est en contact avec le crabot 52 sans avoir à connaître précisément la valeur de couple nécessaire pour vaincre ces forces de frottement. En effet, la position des dents du crabot 51 relativement à la position des dents du crabot 52 est parfaitement aléatoire et la surface angulaire de contact des dents l'une sur l'autre peut varier en fonction de la position angulaire relative initiale des crabots 51 et 52. Les dents de chaque crabot peuvent tout aussi bien se trouver d'emblée en face des cavités du crabot opposé sans dénaturer le procédé, superposant simplement les instants b, c et d. L'évolution de position 3 représentée sur la figure 4b, a pour unique but d'expliquer le résultat des actions du procédé sans avoir à être contrôler, la rampe de couple provoquant un effet d'auto adaptation en passant naturellement par la valeur de couple qui convient à chaque situation qui se produit parmi une multitude de situations de présentation des crabots qui peuvent se produire .
Une transition 56 est validée lorsque le crabot 52 est totalement engagé dans le crabot 51. Dans l'exemple de réalisation illustré par la figure 2, le capteur 32 de type tout ou rien, permet de détecter une fin de course du mouvement en translation de l'actionneur 34 qui valide alors la transition 56 dans le dispositif 40. Le procédé active une étape 57 dès validation de la transition 56 qui suit les étapes 54 et 55 qui ont été exécutées simultanément en parallèle.
L'étape 57 coupe la consigne de couple C* et provoque une commutation du couple de machine électrique sur une valeur qui résulte de la volonté conducteur. Comme représenté par la pente descendante de la vitesse de rotation 1 sur la figure 4a, le crabot 51 atteint rapidement une vitesse nulle lorsque les dents du crabot 51 entrent en contact flanc sur flanc avec les dents du crabot 52.
La référence de couple de crabotage C* augmente constamment puis s'annule en échelon à partir de la valeur maximale atteinte lorsque les crabots sont engagés et en absence de demande de couple qui résulte de la volonté du conducteur.
De façon à permettre un glissement des sommets de dents l'un sur l'autre lorsqu'ils sont en butée dans un même plan en évitant une vitesse de rotation excessive du crabot amont au moment où les sommets de dents arrivent en face des cavités du crabot aval, la référence de couple C* est limitée à une valeur maximale de couple de frottement dent sur dent des crabots. Il est en effet préférable d'éviter une trop forte accélération en rotation du crabot au moment de la pénétration des dents dans les cavités du crabot opposé car une telle accélération provoquerait des chocs flanc sur flanc des dents susceptibles de causer des dégradations.
En termes économiques, l'exploitation des possibilités de pilotage de la machine électrique tant en couple qu'en régime, associée à un actionneur simplifié, piloté de façon simple en mode tout ou rien, permet de réduire notablement les coûts par rapport à des systèmes plus complexes.
Bien que l'invention ait été décrite en liaison avec un mode de réalisation particulier, il est évident qu'elle n'y est nullement limitée et qu'on peut lui apporter de nombreuses variantes et modifications sans pour autant sortir de son cadre ni de son esprit. Notamment, le groupe motopropulseur électrique peut être monté aussi bien à l'avant qu'à l'arrière du véhicule, sur un train roulant identique ou différent de celui sur lequel est monté le groupe moto propulseur thermique. Bien que non représenté sur la figure 2, un réducteur peut aussi exister entre le crabot aval et les roues. Le déplacement du crabot aval peut être remplacé par un déplacement du crabot amont.

Claims

R E V E N D I C A T I O N S
1. Procédé d'accouplement d'une machine électrique (42) avec des roues (44) de train roulant d'un véhicule lorsque le véhicule est immobile, comprenant deux étapes (54, 55) activées en parallèle à partir d'une demande d'accouplement :
- une étape (54) de rapprochement en translation de deux crabots (51, 52) le long d'un axe commun (46) de rotation, un crabot amont (51) étant solidaire en rotation de la machine électrique (42) et un crabot aval étant solidaire en rotation des roues (44) ; et
- une étape (55) d'asservissement en couple de la machine électrique (42) sur une consigne de couple (C*) de crabotage qui part d'une valeur nulle à un instant (a) de la demande d'accouplement et qui augmente progressivement de façon à rester inférieure à une valeur de mise en rotation de la machine électrique (42) pendant une durée suffisante à rapprocher les deux crabots en translation dans une position dans laquelle les sommets de dents des deux crabots sont coplanaires et à dépasser ladite valeur de mise en rotation au-delà de ladite durée suffisante pour réaliser le crabotage.
2. Procédé d'accouplement selon la revendication 1, caractérisé en ce que ladite consigne de couple (C*) de crabotage suit une rampe de coefficient directeur strictement positif et inférieur ou égal à un couple de traînée exercé sur le crabot amont (51) divisé par ladite durée suffisante.
3. Procédé d'accouplement selon la revendication 2, caractérisé en ce que le coefficient directeur est sensiblement égal à 4 Nm/s.
4. Procédé d'accouplement selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend une étape (57) de commutation de ladite consigne de couple (C*) de crabotage sur une consigne de couple liée à une volonté conducteur lorsque les deux crabots sont détectés totalement engagés l'un dans l'autre.
5. Procédé d'accouplement selon l'une des revendications 1 à 4, caractérisé en ce que la consigne de couple de crabotage est limitée à une valeur maximale de couple de frottement dent sur dent des crabots.
6. Système d'accouplement d'une machine électrique (42) avec des roues (44) d'un train roulant d'un véhicule lorsque le véhicule est immobile, comprenant :
- un crabot amont (51) solidaire en rotation de la machine électrique (42), un crabot aval (52) solidaire en rotation des roues (44) et un actionneur (34) agencé pour rapprocher les deux crabots (51, 52) en translation le long d'un axe commun (46) de rotation ;
un dispositif électronique (40) agencé pour recevoir une demande d'accouplement, pour piloter 1 'actionneur (34) et pour transmettre à un générateur électrique (41) d'alimentation de la machine électrique (42), une consigne de couple (C*) de crabotage qui part d'une valeur nulle à un instant de réception de la demande d'accouplement et qui augmente progressivement de façon à rester inférieure à une valeur de mise en rotation de la machine électrique (42) pendant une durée suffisante à rapprocher les deux crabots en translation dans une position dans laquelle les sommets de dents des deux crabots sont coplanaires et à dépasser ladite valeur de mise en rotation au-delà de ladite durée suffisante pour réaliser le crabotage.
7. Système d'accouplement selon la revendication 6, caractérisé en ce que le dispositif électronique (40) comporte un coefficient directeur de rampe strictement positif et inférieur ou égal à un couple de traînée exercé sur le crabot amont (51) divisé par ladite durée suffisante de façon à faire suivre une rampe à la consigne de couple (C*) de crabotage.
8. Système d'accouplement selon la revendication 7, caractérisé en ce que le coefficient directeur est sensiblement égal à 4 Nm/s.
9. Système d'accouplement selon l'une des revendications 6 à 8, caractérisé en ce qu'il comprend un capteur (32) de fin de course d'engagement des crabots l'un dans l'autre, et en ce que le dispositif électronique (40) est agencé pour commuter ladite consigne de couple (C*) de crabotage sur une consigne de couple liée à une volonté conducteur lorsqu'il reçoit du capteur (32) un signal indiquant que les deux crabots sont totalement engagés l'un dans l'autre.
10. Système d'accouplement selon l'une des revendications 6 à 9, caractérisé en ce que le dispositif
(40) comporte une limitation de la consigne de couple de crabotage à une valeur maximale de couple de frottement dent sur dent des crabots.
PCT/FR2010/052357 2009-11-10 2010-11-03 Procede et systeme d'accouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hybride WO2011058264A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10798161A EP2499393A1 (fr) 2009-11-10 2010-11-03 Procede et systeme d'accouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hybride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0957948 2009-11-10
FR0957948A FR2952416B1 (fr) 2009-11-10 2009-11-10 Procede et systeme d'accouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hybride.

Publications (1)

Publication Number Publication Date
WO2011058264A1 true WO2011058264A1 (fr) 2011-05-19

Family

ID=42167257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052357 WO2011058264A1 (fr) 2009-11-10 2010-11-03 Procede et systeme d'accouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hybride

Country Status (3)

Country Link
EP (1) EP2499393A1 (fr)
FR (1) FR2952416B1 (fr)
WO (1) WO2011058264A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012007622A1 (de) * 2012-04-18 2013-10-24 Voith Patent Gmbh Verfahren zum Durchführen eines Schaltschritts
FR2995569B1 (fr) * 2012-09-14 2014-09-12 Peugeot Citroen Automobiles Sa Procede de controle pour un actionneur de commande de la transmission d'une machine electrique de traction
FR3001685B1 (fr) * 2013-02-06 2015-02-27 Peugeot Citroen Automobiles Sa Procede de commande d'un systeme de train roulant arriere de vehicule hybride
DE102013204227A1 (de) * 2013-03-12 2014-09-18 Zf Friedrichshafen Ag Antriebsstrang für ein Fahrzeug und Verfahren zum Durchführen eines Lastwechsels
FR3056160B1 (fr) * 2016-09-20 2019-08-09 Renault S.A.S Transmission pour vehicule automobile a propulsion electrique
FR3104098A1 (fr) 2019-12-06 2021-06-11 Psa Automobiles Sa Procede de pilotage de l’etat d’accouplement d’une machine motrice aux roues d’un vehicule en cas d’action d’une fonction de securite active

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403244A (en) 1993-04-15 1995-04-04 General Electric Company Electric vehicle drive train with direct coupling transmission
FR2723553A1 (fr) 1994-08-12 1996-02-16 Villibord Maurice Marcel Vehicule automobile a entrainement par moteur electrique et moteur thermique, simultanement ou separement
US6008606A (en) * 1997-09-18 1999-12-28 Honda Giken Kogyo Kabushiki Kaisha Starting assistance device for a vehicle with a motor and dog-clutch control for transmitting a torque to idler wheels
US20070240956A1 (en) * 2006-04-18 2007-10-18 Kengo Minami Automated transmission controller and vehicle including the automated transmission controller
FR2905438A1 (fr) 2006-09-05 2008-03-07 Peugeot Citroen Automobiles Sa Procede de pilotage d'un dispositif d'accouplement de deux crabots, a temps de crabotage reduit.
FR2912484A1 (fr) * 2007-02-09 2008-08-15 Peugeot Citroen Automobiles Sa Procede d'apprentissage d'une grille de boite de vitesses pilotee d'un vehicule hybride, et boite de vitesse notamment pour vehicule hybride.
FR2913225A1 (fr) * 2007-03-01 2008-09-05 Peugeot Citroen Automobiles Sa Procede de changement de rapport dans une boite de vitesses equipant un vehicule.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403244A (en) 1993-04-15 1995-04-04 General Electric Company Electric vehicle drive train with direct coupling transmission
FR2723553A1 (fr) 1994-08-12 1996-02-16 Villibord Maurice Marcel Vehicule automobile a entrainement par moteur electrique et moteur thermique, simultanement ou separement
US6008606A (en) * 1997-09-18 1999-12-28 Honda Giken Kogyo Kabushiki Kaisha Starting assistance device for a vehicle with a motor and dog-clutch control for transmitting a torque to idler wheels
US20070240956A1 (en) * 2006-04-18 2007-10-18 Kengo Minami Automated transmission controller and vehicle including the automated transmission controller
FR2905438A1 (fr) 2006-09-05 2008-03-07 Peugeot Citroen Automobiles Sa Procede de pilotage d'un dispositif d'accouplement de deux crabots, a temps de crabotage reduit.
FR2912484A1 (fr) * 2007-02-09 2008-08-15 Peugeot Citroen Automobiles Sa Procede d'apprentissage d'une grille de boite de vitesses pilotee d'un vehicule hybride, et boite de vitesse notamment pour vehicule hybride.
FR2913225A1 (fr) * 2007-03-01 2008-09-05 Peugeot Citroen Automobiles Sa Procede de changement de rapport dans une boite de vitesses equipant un vehicule.

Also Published As

Publication number Publication date
EP2499393A1 (fr) 2012-09-19
FR2952416B1 (fr) 2011-11-18
FR2952416A1 (fr) 2011-05-13

Similar Documents

Publication Publication Date Title
EP2512894B1 (fr) Procede et systeme d'accouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hybride
EP2512898B1 (fr) Procede et systeme de desaccouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hydride
EP2499393A1 (fr) Procede et systeme d'accouplement d'une machine electrique sur un train roulant de vehicule, notamment d'un vehicule automobile hybride
EP2310238B1 (fr) Procede de desserrage de freins d'un vehicule automobile equipe d'un dispositif d'assistance au demarrage en cote, un tel dispositif d'assistance et vehicule automobile le comportant
WO2008050038A1 (fr) Procede et dispositif de compensation d'interruption du couple fourni par le groupe motopropulseur d'un vehicule hybride au cours d'un changement de vitesse
EP1896280B1 (fr) Procede pour piloter le couplage ou le decouplage des deux moteurs d' un groupe motopropulseur hybride parallele
EP2906454B1 (fr) Procédé et dispositif de controle-commande de démarrage d'un moteur thermique d'un véhicule hybride
EP1983228A1 (fr) Procédé d'optimisation de pilotage des synchroniseurs d'une boîte de vitesses lors d'un changement de rapport de vitesse
EP2830902B1 (fr) Procede de controle de motorisation d'un vehicule comprenant au moins deux motorisations
EP3237257B1 (fr) Procédé de passage automatique d'un véhicule automobile en mode roue libre
FR2976036A1 (fr) Procede d'apprentissage du point de lechage d'un embrayage d'une boite a double embrayage avec detection des jeux de boite de vitesses
EP3565728A1 (fr) Controle d'une machine electrique de vehicule hybride pour la fermeture d'un accouplement a crabot
EP2996916B1 (fr) Procédé de commande d'un groupe moto propulseur a moteur thermique et a boite de vitesses automatisée
WO2018127635A1 (fr) Controle d'une machine electrique de vehicule hybride suivant l'état d'un accouplement a crabot
EP3485183B1 (fr) Dispositif de contrôle de la pression hydraulique d'un accumulateur d'actionneur de boîte de vitesses d'une chaîne de transmission hybride de véhicule
FR2992041A1 (fr) Procede et dispositif de controle de l'utilisation des moteurs electrique et thermique d'un vehicule hybride, en fonction d'une acceleration demandee par un systeme de controle de vitesse
FR3033459A1 (fr) Procede de regeneration electrique d'un vehicule automobile pour une phase de lacher de pied
FR2920703A1 (fr) Procede de pilotage d'un dispositif de synchronisation sur une boite de vitesses pilotee d'un vehicule hybride.
FR3086246A1 (fr) Procede de gestion du groupe moto-propulseur d’un vehicule automobile
WO2009098417A1 (fr) Procede de desserrage de freins d'un vehicule automobile equipe d'un dispositif d'assisance au demarrage en cote, un tel dispositif d'assistance et vehicule automobile le comportant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10798161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010798161

Country of ref document: EP