WO2011056047A2 - Broadband polarization twister and polarization twisting dual-reflector antenna using same - Google Patents

Broadband polarization twister and polarization twisting dual-reflector antenna using same Download PDF

Info

Publication number
WO2011056047A2
WO2011056047A2 PCT/KR2010/007877 KR2010007877W WO2011056047A2 WO 2011056047 A2 WO2011056047 A2 WO 2011056047A2 KR 2010007877 W KR2010007877 W KR 2010007877W WO 2011056047 A2 WO2011056047 A2 WO 2011056047A2
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
broadband
meander
present
conductor plate
Prior art date
Application number
PCT/KR2010/007877
Other languages
French (fr)
Korean (ko)
Other versions
WO2011056047A3 (en
Inventor
황금철
Original Assignee
동국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국대학교 산학협력단 filed Critical 동국대학교 산학협력단
Publication of WO2011056047A2 publication Critical patent/WO2011056047A2/en
Publication of WO2011056047A3 publication Critical patent/WO2011056047A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • H01Q15/242Polarisation converters
    • H01Q15/246Polarisation converters rotating the plane of polarisation of a linear polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/195Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface wherein a reflecting surface acts also as a polarisation filter or a polarising device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the present invention relates to a polarization conversion technology, and more particularly, to a polarization converter and a polarization conversion dual reflector antenna using the same to improve the wideband polarization conversion performance and to minimize the polarization conversion loss.
  • an antenna composed of a double reflector including a main reflector and a sub-reflector, such as a cassgrain reflector antenna, is widely used. It is used.
  • Such a dual reflector antenna has a short focal length compared to a general single reflector antenna, thereby greatly reducing the antenna width and having a high gain.
  • a problem arises in that the antenna gain and the side lobe characteristics are relatively degraded due to the blockage effect caused by the sub reflector present in the radiation plane.
  • the polarization twisting dual-reflector antenna such as a caseingrain antenna, which reduces the occlusion effect by using a polarization transformation, has been proposed.
  • the polarization converting dual reflector antenna includes a polarization converter in the main reflector and a polarization filter function in the subreflector to remove the blinding effect of the subreflector.
  • the polarization converter corresponds to an essential component for implementing the polarization conversion dual reflector antenna.
  • the existing technology uses a periodic metal-strip or a corrugated conducting surface formed with a right angle groove to implement a polarization conversion reflector.
  • polarization conversion can be performed only in a narrow frequency band.
  • the existing technology uses a layered structure of the polarization converter to obtain the broadband characteristics of the polarization conversion.
  • high polarization conversion loss is caused due to a polarization conversion film, a spacing layer, etc. included in the laminated structure.
  • Embodiments of the present invention by using a meander-shaped groove plate for polarization conversion to improve the broadband polarization conversion performance, as well as to minimize the polarization conversion loss.
  • the broadband polarization converter includes a conductor plate for performing a polarization twist, and a meander-shaped groove is formed on a reflective surface of the conductor plate.
  • a polarization twisting dual-reflector antenna performs polarization conversion by using a broadband polarization converter according to embodiments of the present invention.
  • Embodiments of the present invention can improve the wideband polarization conversion performance by performing a polarization conversion by using a meander-shaped groove plate.
  • the polarization converter according to the embodiments of the present invention can be effectively applied to a polarization conversion dual reflector antenna that requires wideband polarization conversion performance.
  • FIG. 1 is a diagram illustrating a wideband polarization converter according to an embodiment of the present invention.
  • 2 to 4 are meander shaped grooves formed in the conductor plate of the broadband polarization converter according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a global optimization price change with respect to the number of iterations of a GSO in the optimization design of a broadband polarization converter according to an embodiment of the present invention.
  • FIG. 6 is a photograph showing a performance test scene in an RF anechoic chamber for a broadband polarization converter manufactured according to an embodiment of the present invention.
  • FIG. 8 is a graph showing the cross-polarization suppression level of a broadband polarization converter according to an embodiment of the present invention.
  • FIG 9 is a graph showing the polarization conversion loss of a wideband polarization converter according to an embodiment of the present invention.
  • FIG. 1 illustrates a wideband polarization converter according to an embodiment of the present invention.
  • the wideband polarization converter 100 includes a conducting plane 110 that performs a polarization twist.
  • a meander-shaped groove 120 is formed on the reflective surface of the conductor plate 110 that reflects radio waves.
  • the meander shaped grooves 120 are formed on the reflective surface of the conductor plate 110 periodically and repeatedly.
  • the polarization converter when the polarization converter is implemented using the conductor plate 110 having the meander groove 120, wideband polarization conversion is possible, and further, the optimization design further improves the broadband polarization conversion characteristics. You can do it.
  • the film when the polarization converter is implemented using the polarization converter using the conductor plate 110 having the meander groove 120 formed therein, the film includes a polarization conversion film and a spacing layer.
  • the polarization converter can be implemented in a single layer structure rather than a layered structure, thereby minimizing the polarization conversion loss caused by loss tangent of the polarization conversion film or the separation layer. do.
  • FIG. 2 to 4 illustrate a meander shaped groove 120 formed in the conductor plate 110 of the wideband polarization converter 100 according to an embodiment of the present invention.
  • the meander shaped groove 120 may be configured of a groove in a horizontal direction and a groove in a vertical direction perpendicular to each other.
  • the meander shaped groove 120 may be viewed as a periodic combination of unit cells. Accordingly, the geometric shape of the meander shaped groove 120 may be defined using the shape parameters of the unit cell, and the wideband of the wideband polarization converter 100 may be optimized through the design of the shape parameters of the unit cell. Polarization conversion characteristics can be further improved.
  • shape parameters of the unit cell may be defined as follows. That is, the widths of the vertical and horizontal grooves may be defined as w 1 and w 2 , the depth d, the thickness of the horizontal bulkhead b, the thickness of the vertical bulkhead g, and the distance between the vertical grooves a. have. Then, each meander shaped groove 120 physically has a vertical period of 2 ( b + w 2), a horizontal period of a + 2 ( g + w 1), and the width of the vertical and horizontal grooves w 1, respectively. And w 2 and the depth of the groove can be defined as a.
  • the incident electric field is two orthogonal components, i.e., horizontal components, as shown in FIG.
  • vertical components Can be divided into An electric field having an incident angle ⁇ acts on the reflecting surface of the conductor plate 110 on which the meander shaped groove 120 is formed.
  • the two electrically orthogonal components are in phase.
  • a horizontal component The phase of is preceded by the meander shaped grooves 120 formed periodically.
  • vertical components The phase of is delayed.
  • the wideband polarization converter 100 determines the optimized dimension of the meander shaped groove 120 for the polarization conversion by selecting the optimized dimension in a wide frequency range. And A phase difference of 180 degrees can be generated in the liver.
  • a GSO (Genetical Swarm Optimization) technique which improves convergence speed by combining Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) can be used.
  • PSO Particle Swarm Optimization
  • GA Genetic Algorithm
  • CST MicroWave Studio MWS
  • simulation results by the CST MWS are passed to the GSO code to evaluate the cost function.
  • the GSO algorithm determines and updates geometric parameters of the meander shaped groove 120.
  • the broadband polarization converter 100 has a finite number of meander grooves formed on the reflecting surface of the conductor plate 110, but the structure is considered to be an infinite periodic structure. Can be. This is because the number of unit cells is very large. Therefore, the operation of the overall structure of the wideband polarization converter 100 may be calculated from the response of the unit cell calculated by applying the periodic boundary condition used in the CST MWS.
  • a damping boundary condtion with a damping factor of 0.5 may be applied in the PSO process.
  • the population used in the GSO process is 20.
  • the cost function for designing a broadband polarization converter can be defined as in Equation 1.
  • TL ( f n ) is a co-polarization twist loss at the test frequency f n
  • TL obj is an objective twist loss.
  • the TL ( f n ) may be defined as in Equation 2.
  • the price function may target 0.1 dB polarization conversion loss at 15.5 GHz ⁇ f n ⁇ 17.5 GHz.
  • the meander shaped grooves 120 start from any type of population and evolve into an optimized form of minimum price.
  • FIG. 5 is a graph illustrating a global optimization price change with respect to the number of iterations of a GSO in an optimization design of a broadband polarization converter according to an embodiment of the present invention.
  • the price value decreases from 2500.87 to 0 during 150 iterations through the GSO.
  • the optimization design of the meander shaped groove 120 may be obtained after 102 iterations.
  • the shape parameters of the meander shaped groove 120 optimized through the GSO may be shown in Table 1 below.
  • FIG. 6 is a photograph showing a performance test scene in an RF anechoic chamber for a broadband polarization converter actually manufactured according to an embodiment of the present invention.
  • a Ku-band dual-polarized Ku-band circular horn antenna was used to obtain a reflection operation by the wideband polarization converter.
  • the time-gating method of the Agilent N5230A network analyzer was used to eliminate multi-path interference caused by the measurement environment.
  • the simulation value and the actually measured value almost match.
  • the slight difference between the simulated value and the measured value is due to a curved line having a radius of 1 mm for the convenience of the meander groove in the actual manufacturing process of the wideband polarization converter.
  • the measured phase difference between the phases is in the range of 161 ° to 192 ° in the 15.5 GHz to 17.5 GHz band.
  • FIG. 8 is a graph illustrating a crosspolarization suppression level of a wideband polarization converter according to an embodiment of the present invention.
  • the cross polarization suppression rate is 17 dB or more in the 12.5% frequency bandwidth (15.48 GHz to 17.55 GHz).
  • FIG. 9 is a graph illustrating copolarization twist loss of a wideband polarization converter according to an embodiment of the present invention.
  • the positive polarization conversion loss is 0.2 dB or less in the 15.35 GHz to 17.6 GHz band, which means that more than 95.5% of the incident power is polarized in the wide frequency bandwidth of 13.6% or more. That is, it can be seen that the bandwidth performance level of the broadband polarization converter according to the embodiments of the present invention is superior to the structure using a periodic strip or grating of the conventional technology.
  • the broadband polarization converter according to the embodiments of the present invention can minimize the polarization conversion loss because it does not need to use a high-loss dielectric such as an adhesive layer or a spacing layer used in the conventional broadband design. have.
  • the broadband polarization converter includes a polarization twisting dual-reflector antenna that requires wideband polarization conversion performance, for example, a polarization converter in the main reflector and a polarization filter in the secondary reflector. It can be efficiently applied to a case-grain antenna and the like having a function to minimize the blinding effect by the secondary reflector.
  • the polarization conversion dual reflector antenna may perform wideband polarization conversion by including the wideband polarization converter according to the embodiments of the present invention in the main reflector.
  • most of the vertical polarization components radiated from the feed antenna of the polarization conversion dual reflector antenna are reflected in the direction of the main reflector by the polarization filter provided in the secondary reflector of the polarization conversion dual reflector antenna, and the reflected vertical polarization is reflected.
  • the component is polarized in the 90 ° direction by the wideband polarization converter provided in the main reflector and converted into horizontal polarization.
  • the polarization filter of the secondary reflector reflects only vertical polarization components, so that the horizontal polarization can be radiated without being affected by the secondary reflector.
  • the wideband polarization converter according to the embodiments of the present invention when applied to a polarization conversion dual antenna, it is possible to remove the electric blinding effect on the antenna radiation even though the sub-reflector is physically present in the radiation plane. As a result, the wideband polarization conversion performance can be greatly improved and the loss in the polarization conversion can be minimized.

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

Disclosed is a broadband polarization twisting technique. According to one embodiment of the present invention, the broadband polarization twister comprises a conducting plate that performs a polarization twisting process, wherein meander grooves are formed on a reflecting surface of the conducting plate. Thus, the invention improves broadband polarization twisting performance, and minimizes polarization twisting loss.

Description

광대역 편파 변환기 및 이를 이용한 편파 변환 이중 반사경 안테나Broadband Polarized Converter and Polarized Reflective Dual Reflector Antenna Using the Same
본 발명은 편파 변환 기술에 관한 것으로서, 더욱 상세하게는, 광대역 편파 변환 성능을 개선함은 물론 편파 변환 손실을 최소화하는 편파 변환기 및 이를 이용한 편파 변환 이중 반사경 안테나에 관한 것이다.The present invention relates to a polarization conversion technology, and more particularly, to a polarization converter and a polarization conversion dual reflector antenna using the same to improve the wideband polarization conversion performance and to minimize the polarization conversion loss.
최근, 위성 통신, 레이더 시스템 등을 위한 안테나로서, 주 반사경(main-reflector) 및 부 반사경(sub-reflector)을 포함하여 이중 반사경으로 구성되는 안테나, 예컨대 카세그레인 반사경 안테나(Cassegrain reflector antenna) 등이 널리 이용되고 있다.Recently, as an antenna for satellite communication, radar systems, etc., an antenna composed of a double reflector including a main reflector and a sub-reflector, such as a cassgrain reflector antenna, is widely used. It is used.
이러한 이중 반사경 안테나는, 일반적인 단일 반사경 안테나에 비해 짧은 초점 거리(focal length)를 지니므로 안테나 폭을 대폭 감소시킬 수 있으며, 높은 이득을 보이는 장점이 있다. 그러나, 이러한 이중 반사경 안테나의 경우, 복사 평면 내에 존재하는 부 반사경으로부터 야기되는 가림 효과(blockage effect)로 인해 상대적으로 안테나 이득 및 부엽 특성이 저하되는 문제가 발생한다.Such a dual reflector antenna has a short focal length compared to a general single reflector antenna, thereby greatly reducing the antenna width and having a high gain. However, in the case of such a dual reflector antenna, a problem arises in that the antenna gain and the side lobe characteristics are relatively degraded due to the blockage effect caused by the sub reflector present in the radiation plane.
이러한 문제를 해결하기 위해, 편파 변환 이중 반사경 안테나(polarization twisting dual-reflector antenna), 예컨대 편파 변환을 이용하여 가림 효과를 감소시키는 카세그레인 안테나가 제안된 바 있다. 상기 편파 변환 이중 반사경 안테나는, 주 반사경에 편파 변환기 구비하고, 부 반사경에 편파 필터 기능을 구비하여 상기 부 반사경에 의한 가림 효과를 제거한다.In order to solve this problem, a polarization twisting dual-reflector antenna, such as a caseingrain antenna, which reduces the occlusion effect by using a polarization transformation, has been proposed. The polarization converting dual reflector antenna includes a polarization converter in the main reflector and a polarization filter function in the subreflector to remove the blinding effect of the subreflector.
이와 같이, 편파 변환기는 상기 편파 변환 이중 반사경 안테나 등을 구현하기 위한 필수적인 구성 요소에 해당한다.As such, the polarization converter corresponds to an essential component for implementing the polarization conversion dual reflector antenna.
한편, 기존 기술은 편파 변환 반사경을 구현하기 위해 주기적인 금속 스트립(metal-strip) 또는 직각 홈이 형성된 파형 도체면(corrugated conducting surface) 등을 사용하고 있다. 그러나, 이러한 주기적 금속 스트립이나 파형 도체면을 사용하는 경우, 협소한 주파수 대역에서만 편파 변환을 수행할 수 있게 된다.On the other hand, the existing technology uses a periodic metal-strip or a corrugated conducting surface formed with a right angle groove to implement a polarization conversion reflector. However, when using such periodic metal strips or corrugated conductor surfaces, polarization conversion can be performed only in a narrow frequency band.
또한, 기존 기술은 편파 변환의 광대역 특성을 얻기 위해 적층 구조(layered structure)의 편파 변환기를 사용한다. 그러나, 이러한 적층 구조의 편파 변환기를 사용하는 경우, 상기 적층 구조에 포함되는 편파 변환용 필름, 이격층(spacing layer) 등으로 인해 높은 편파 변환 손실을 야기하게 된다.In addition, the existing technology uses a layered structure of the polarization converter to obtain the broadband characteristics of the polarization conversion. However, in the case of using such a laminated structured polarization converter, high polarization conversion loss is caused due to a polarization conversion film, a spacing layer, etc. included in the laminated structure.
따라서, 넓은 주파수 대역에서 편파 변환이 가능하면서도 편파 변환 손실을 최소화 할 수 있는 새로운 개념의 광대역 편파 변환 기술이 절실히 요구되고 있는 실정이다.Therefore, there is an urgent need for a new concept of wideband polarization conversion technology capable of polarization conversion in a wide frequency band and minimizing polarization conversion loss.
본 발명의 실시예들은, 편파 변환을 위해 미앤더 형태의 홈이 형성된 도체판을 이용함으로써, 광대역 편파 변환 성능을 개선함은 물론, 편파 변환 손실을 최소화하고자 한다.Embodiments of the present invention, by using a meander-shaped groove plate for polarization conversion to improve the broadband polarization conversion performance, as well as to minimize the polarization conversion loss.
본 발명의 일 실시예에 따른 광대역 편파 변환기는, 편파 변환(polarization twist)을 수행하는 도체판을 포함하고, 상기 도체판의 반사면에는 미앤더(meander) 형태의 홈(groove)이 형성된다.The broadband polarization converter according to an embodiment of the present invention includes a conductor plate for performing a polarization twist, and a meander-shaped groove is formed on a reflective surface of the conductor plate.
본 발명의 일 실시예에 따른 편파 변환 이중 반사경 안테나(polarization twisting dual-reflector antenna)는, 본 발명의 실시예들에 따른 광대역 편파 변환기를 이용하여 편파 변환을 수행한다.A polarization twisting dual-reflector antenna according to an embodiment of the present invention performs polarization conversion by using a broadband polarization converter according to embodiments of the present invention.
본 발명의 실시예들은, 미앤더 형태의 홈이 형성된 도체판을 이용하여 편파 변환을 수행함으로써, 광대역 편파 변환 성능을 개선할 수 있다.Embodiments of the present invention can improve the wideband polarization conversion performance by performing a polarization conversion by using a meander-shaped groove plate.
또한, 미앤더 형태의 홈이 형성된 도체판을 이용하여 단일 층 구조의 편파 변환기를 구현함으로써, 기존의 적층 구조에서 발생하는 편파 변환용 필름, 이격층 등으로 인한 편파 변환 손실을 최소화할 수 있다.In addition, by implementing a single layer polarization converter using a meander shaped grooved plate, it is possible to minimize the polarization conversion loss due to the polarization conversion film, the separation layer, etc. generated in the conventional laminated structure.
나아가, 본 발명의 실시예들에 따른 편파 변환기는 광대역 편파 변환 성능을 요하는 편파 변환 이중 반사경 안테나 등에 효율적으로 적용될 수 있다.Furthermore, the polarization converter according to the embodiments of the present invention can be effectively applied to a polarization conversion dual reflector antenna that requires wideband polarization conversion performance.
도 1은 본 발명의 일 실시예에 따른 광대역 편파 변환기를 나타낸 도면.1 is a diagram illustrating a wideband polarization converter according to an embodiment of the present invention.
도 2 내지 도 4는 본 발명의 일 실시예에 따른 광대역 편파 변환기의 도체판에 형성된 미앤더 형태의 홈을 나타낸 도면.2 to 4 are meander shaped grooves formed in the conductor plate of the broadband polarization converter according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 광대역 편파 변환기의 최적화 설계에 있어서 GSO의 이터레이션 수에 대한 광역적 최적화 가격 변화를 나타낸 그래프.5 is a graph showing a global optimization price change with respect to the number of iterations of a GSO in the optimization design of a broadband polarization converter according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따라 제작된 광대역 편파 변환기에 대한 RF 무반향실에서의 성능 실험 장면을 나타낸 사진.6 is a photograph showing a performance test scene in an RF anechoic chamber for a broadband polarization converter manufactured according to an embodiment of the present invention.
도 7은 도 6의 실험에서 입사각 θ=0°인 일반적 입사파에 대하여 반사된 직교 성분 간의 위상차 측정 결과를 나타낸 그래프.FIG. 7 is a graph illustrating a phase difference measurement result between reflected orthogonal components with respect to a general incident wave having an incident angle θ = 0 ° in the experiment of FIG. 6.
도 8은 본 발명의 일 실시예에 따른 광대역 편파 변환기의 교차 편파 억제 레벨을 나타낸 그래프.8 is a graph showing the cross-polarization suppression level of a broadband polarization converter according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 광대역 편파 변환기의 정편파 변환 손실을 나타낸 그래프.9 is a graph showing the polarization conversion loss of a wideband polarization converter according to an embodiment of the present invention.
이하, 본 발명의 기술적 과제의 해결 방안을 명확화하기 위해 첨부도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다. 다만, 본 발명을 설명함에 있어서 관련 공지기술에 관한 설명이 오히려 본 발명의 요지를 불명료하게 할 수 있다고 판단되는 경우 그에 관한 설명을 생략하기로 한다. 또한, 후술하는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자 등의 의도 또는 관례 등에 따라 달라질 수 있을 것이다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings in order to clarify a solution of the technical problem of the present invention. However, in describing the present invention, when it is determined that the description of the related known technology may make the gist of the present invention unclear, the description thereof will be omitted. In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to intentions or customs of users, operators, and the like. Therefore, the definition should be made based on the contents throughout the specification.
도 1에는 본 발명의 일 실시예에 따른 광대역 편파 변환기가 도시되어 있다.1 illustrates a wideband polarization converter according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 상기 광대역 편파 변환기(100)는 편파 변환(polarization twist)을 수행하는 도체판(conducting plane: 110)을 포함한다. 또한, 전파를 반사하는 상기 도체판(110)의 반사면에는 미앤더(meander) 형태의 홈(groove: 120)이 형성되어 있다. 상기 미앤더 형태의 홈(120)은, 상기 도체판(110)의 상기 반사면 전체에 주기적으로 반복하여 형성되어 있다.As shown in FIG. 1, the wideband polarization converter 100 includes a conducting plane 110 that performs a polarization twist. In addition, a meander-shaped groove 120 is formed on the reflective surface of the conductor plate 110 that reflects radio waves. The meander shaped grooves 120 are formed on the reflective surface of the conductor plate 110 periodically and repeatedly.
아래에서 다시 설명하겠지만, 미앤더 형태의 홈(120)이 형성된 도체판(110)을 이용하여 편파 변환기를 구현하는 경우, 광대역 편파 변환이 가능해지며, 나아가 최적화 설계를 통해 광대역 편파 변환 특성을 더욱 개선할 수 있게 된다.As will be described again below, when the polarization converter is implemented using the conductor plate 110 having the meander groove 120, wideband polarization conversion is possible, and further, the optimization design further improves the broadband polarization conversion characteristics. You can do it.
또한, 미앤더 형태의 홈(120)이 형성된 도체판(110)을 이용하여 편파 변환기를 이용하여 편파 변환기를 구현하는 경우, 기존 기술과 달리 편파 변환용 필름, 이격층(spacing layer) 등을 포함하는 적층 구조(layered structure)가 아닌 단일 층 구조(single layer structure)로 편파 변환기를 구현할 수 있게 됨으로써, 상기 편파 변환용 필름이나 이격층 등의 손실 탄젠트로 인해 발생하는 편파 변환 손실을 최소화 할 수 있게 된다.In addition, when the polarization converter is implemented using the polarization converter using the conductor plate 110 having the meander groove 120 formed therein, the film includes a polarization conversion film and a spacing layer. The polarization converter can be implemented in a single layer structure rather than a layered structure, thereby minimizing the polarization conversion loss caused by loss tangent of the polarization conversion film or the separation layer. do.
도 2 내지 도 4에는 본 발명의 일 실시예에 따른 광대역 편파 변환기(100)의 도체판(110)에 형성된 미앤더 형태의 홈(120)이 상세하게 도시되어 있다.2 to 4 illustrate a meander shaped groove 120 formed in the conductor plate 110 of the wideband polarization converter 100 according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 상기 미앤더 형태의 홈(120)은 상호 직교하는 수평 방향의 홈 및 수직 방향의 홈으로 구성될 수 있다.As shown in FIG. 2, the meander shaped groove 120 may be configured of a groove in a horizontal direction and a groove in a vertical direction perpendicular to each other.
또한, 도 3에 도시된 바와 같이, 상기 미앤더 형태의 홈(120)은 단위 셀(unit cell)의 주기적인 결합으로 볼 수 있다. 따라서, 상기 단위 셀의 형상 파라미터들을 이용하여 상기 미앤더 형태의 홈(120)의 기하학적 형상을 정의할 수 있으며, 상기 단위 셀의 형상 파라미터들을 이용한 최적화 설계를 통해 상기 광대역 편파 변환기(100)의 광대역 편파 변환 특성을 더욱 개선할 수 있다.In addition, as shown in FIG. 3, the meander shaped groove 120 may be viewed as a periodic combination of unit cells. Accordingly, the geometric shape of the meander shaped groove 120 may be defined using the shape parameters of the unit cell, and the wideband of the wideband polarization converter 100 may be optimized through the design of the shape parameters of the unit cell. Polarization conversion characteristics can be further improved.
도 4에 도시된 바와 같이, 상기 단위 셀의 형상 파라미터들을 다음과 같이 정의할 수 있다. 즉, 수직 및 수평 방향 홈의 폭을 각각 w 1w 2, 깊이를 d, 수평 방향 격벽의 두께를 b, 수직 방향 격벽의 두께를 g, 그리고 수직 방향의 홈들 간의 거리를 a로 정의할 수 있다. 그러면, 각각의 미앤더 형태의 홈(120)들은 물리적으로 세로 주기를 2(b+w2), 가로 주기를 a+2(g +w1), 수직 및 수평 방향 홈의 폭을 각각 w1 및 w2, 및 홈의 깊이를 a로 정의할 수 있다.As shown in FIG. 4, shape parameters of the unit cell may be defined as follows. That is, the widths of the vertical and horizontal grooves may be defined as w 1 and w 2 , the depth d, the thickness of the horizontal bulkhead b, the thickness of the vertical bulkhead g, and the distance between the vertical grooves a. have. Then, each meander shaped groove 120 physically has a vertical period of 2 ( b + w 2), a horizontal period of a + 2 ( g + w 1), and the width of the vertical and horizontal grooves w 1, respectively. And w 2 and the depth of the groove can be defined as a.
평면파(plane wave)를 상기 미앤더 형태의 홈(120)의 축들에 대하여 45°각도로 편파된 전계 벡터로 간주하면, 도 4에 도시된 바와 같이, 입사 전계는 두 개의 직교 성분, 즉 수평 성분
Figure PCTKR2010007877-appb-I000001
및 수직 성분
Figure PCTKR2010007877-appb-I000002
으로 나눌 수 있다. 입사각 θ를 지닌 전계는 상기 미앤더 형태의 홈(120)이 형성된 상기 도체판(110)의 반사면에 작용한다.
Considering a plane wave as an electric field vector polarized at an angle of 45 ° with respect to the axes of the meander shaped groove 120, the incident electric field is two orthogonal components, i.e., horizontal components, as shown in FIG.
Figure PCTKR2010007877-appb-I000001
And vertical components
Figure PCTKR2010007877-appb-I000002
Can be divided into An electric field having an incident angle θ acts on the reflecting surface of the conductor plate 110 on which the meander shaped groove 120 is formed.
평면파가 상기 미앤더 형태의 홈(120)이 형성된 반사면에 입사될 때, 두 개의 전기적 직교 성분들은 위상이 같다. 그러나, 상기 평면파가 반사 경로를 통과하는 동안에, 수평 성분
Figure PCTKR2010007877-appb-I000003
의 위상은 주기적으로 형성된 상기 미앤더 형태의 홈(120)들에 의해 앞서게 된다. 반면, 수직 성분
Figure PCTKR2010007877-appb-I000004
의 위상은 지연된다.
When the plane wave is incident on the reflecting surface on which the meander shaped groove 120 is formed, the two electrically orthogonal components are in phase. However, while the plane wave passes through the reflection path, a horizontal component
Figure PCTKR2010007877-appb-I000003
The phase of is preceded by the meander shaped grooves 120 formed periodically. In contrast, vertical components
Figure PCTKR2010007877-appb-I000004
The phase of is delayed.
따라서,
Figure PCTKR2010007877-appb-I000005
Figure PCTKR2010007877-appb-I000006
가 180°각도의 위상차가 생길 때, 반사파의 편파 벡터는 입사 편파에 대하여 90°각도로 변환될 수 있다. 본 발명의 실시예들에 따른 광대역 편파 변환기(100)는, 편파 변환을 위한 상기 미앤더 형태의 홈(120)의 최적화된 치수를 결정함으로써 넓은 주파수 범위에서 상기
Figure PCTKR2010007877-appb-I000007
Figure PCTKR2010007877-appb-I000008
간에 180°각도의 위상차를 발생시킬 수 있다.
therefore,
Figure PCTKR2010007877-appb-I000005
And
Figure PCTKR2010007877-appb-I000006
When the phase difference of 180 degrees occurs, the polarization vector of the reflected wave can be converted to 90 degrees with respect to the incident polarization. The wideband polarization converter 100 according to the embodiments of the present invention determines the optimized dimension of the meander shaped groove 120 for the polarization conversion by selecting the optimized dimension in a wide frequency range.
Figure PCTKR2010007877-appb-I000007
And
Figure PCTKR2010007877-appb-I000008
A phase difference of 180 degrees can be generated in the liver.
이하, 본 발명의 실시예들에 따른 광대역 편파 변환기의 최적화 설계 과정을 설명하고, 그 성능을 검증한다.Hereinafter, an optimization design process of a broadband polarization converter according to embodiments of the present invention will be described, and its performance will be verified.
상기 미앤더 형태의 홈(120)의 최적화 설계를 위해, 확률론적 최적화 기법으로서 PSO(Particle Swarm Optimization) 및 GA(Genetic Algorithm)을 결합하여 수렴 속도를 개선한 GSO(Genetical Swarm Optimization) 기법을 사용할 수 있다. 또한, 상기 미앤더 형태의 홈(120)이 형성된 상기 도체판(110)에 의한 반사파를 계산하기 위해, 3차원 유한적분 타임 도메인 솔버인, CST MicroWave Studio(MWS)를 사용할 수 있다. 이 경우, CST MWS에 의한 시뮬레이션 결과는 GSO 코드로 전달되어 가격 함수(cost function)를 평가한다. 상기 가격 평가를 기반으로, 상기 GSO 알고리즘은 상기 미앤더 형태의 홈(120)의 기하학적 형상 파라미터들을 결정 및 업데이트 한다.For the optimization design of the meander shaped groove 120, as a probabilistic optimization technique, a GSO (Genetical Swarm Optimization) technique, which improves convergence speed by combining Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), can be used. have. In addition, the CST MicroWave Studio (MWS), which is a three-dimensional finite integral time domain solver, may be used to calculate the reflected wave generated by the conductor plate 110 having the meander groove 120. In this case, simulation results by the CST MWS are passed to the GSO code to evaluate the cost function. Based on the price estimate, the GSO algorithm determines and updates geometric parameters of the meander shaped groove 120.
더욱 구체적으로 설명하면, 상기 광대역 편파 변환기(100)는, 상기 도체판(110)의 반사면에 유한 개수의 미앤더 홈(meander-groove)이 형성되어 있지만, 그 구조는 무한 주기 구조로 간주할 수 있다. 그 이유는 단위 셀의 수가 매우 크기 때문이다. 그러므로, 상기 광대역 편파 변환기(100) 전체 구조의 동작은 CST MWS에서 사용되는 주기 경계 조건을 적용하여 산출되는 상기 단위 셀의 응답으로부터 계산될 수 있다.More specifically, the broadband polarization converter 100 has a finite number of meander grooves formed on the reflecting surface of the conductor plate 110, but the structure is considered to be an infinite periodic structure. Can be. This is because the number of unit cells is very large. Therefore, the operation of the overall structure of the wideband polarization converter 100 may be calculated from the response of the unit cell calculated by applying the periodic boundary condition used in the CST MWS.
한편, 상기 GSO 알고리즘의 구현을 위해, PSO 프로세스에서 감쇠 팩터(damping factor)를 0.5로 한 감쇠 경계 조건(damping boundary condtion)을 적용할 수 있다. 이때, GA는 룰렛 휠(roulette wheel) 선택법과 확률 P cross=0.8의 균등 교차(uniform crossover)를 통해 구현할 수 있다. 또한, 확률 P mut=0.15의 임의 변이(random mutation)를 허용할 수 있다. 그리고, 상기 PSO 및 GA은 혼성화 계수 hc = 0.2로 결합할 수 있다. 이는, 각각의 이터레이션(iteration) 단계에서 모집단 전체 개체수의 20%를 GA를 통해 진화시키고, 상기 나머지 개체수를 PSO를 통해 진화시킨다는 것을 의미한다.Meanwhile, in order to implement the GSO algorithm, a damping boundary condtion with a damping factor of 0.5 may be applied in the PSO process. In this case, GA may be implemented through a roulette wheel selection method and a uniform crossover of the probability P cross = 0.8. It can also allow for random mutation of probability P mut = 0.15. In addition, the PSO and GA may be combined with a hybridization coefficient hc = 0.2. This means that in each iteration step, 20% of the population total evolves via GA, and the remaining population evolves via PSO.
상기 GSO 프로세스에 사용된 개체수는 20이다. 광대역 편파 변환기 설계를 위한 가격함수(cost function)는 수학식 1과 같이 정의할 수 있다.The population used in the GSO process is 20. The cost function for designing a broadband polarization converter can be defined as in Equation 1.
수학식 1
Figure PCTKR2010007877-appb-M000001
Equation 1
Figure PCTKR2010007877-appb-M000001
상기 수학식 1에서, TL(f n )은 테스트 주파수 f n 에서의 정편파 변환 손실(co-polarization twist loss)이며, TL obj는 목표 변환 손실(objective twist loss)이다. 상기 TL(f n )은 수학식 2와 같이 정의할 수 있다.In Equation 1, TL ( f n ) is a co-polarization twist loss at the test frequency f n , and TL obj is an objective twist loss. The TL ( f n ) may be defined as in Equation 2.
수학식 2
Figure PCTKR2010007877-appb-M000002
Equation 2
Figure PCTKR2010007877-appb-M000002
상기 가격함수는, 15.5GHz ≤ f n ≤ 17.5GHz에서 0.1dB 편파 변환 손실을 목표로 할 수 있다. 상기 GSO 알고리즘을 통해 상기 미앤더 형태의 홈(120)은 임의의 형태의 개체군에서 시작하여 최소 가격의 최적화된 형태로 진화하게 된다.The price function may target 0.1 dB polarization conversion loss at 15.5 GHz ≤ f n ≤ 17.5 GHz. Through the GSO algorithm, the meander shaped grooves 120 start from any type of population and evolve into an optimized form of minimum price.
도 5에는 본 발명의 일 실시예에 따른 광대역 편파 변환기의 최적화 설계에 있어서 GSO의 이터레이션 수에 대한 광역적 최적화 가격 변화가 그래프로 도시되어 있다.FIG. 5 is a graph illustrating a global optimization price change with respect to the number of iterations of a GSO in an optimization design of a broadband polarization converter according to an embodiment of the present invention.
도 5에 도시된 바와 같이, 상기 GSO를 통해 150회 이터레이션을 수행하는 동안 가격치는 2500.87에서 0으로 감소하게 된다. 상기 미앤더 형태의 홈(120)의 최적화 설계는 102회 이터레이션을 수행한 후 획득할 수 있다.As shown in FIG. 5, the price value decreases from 2500.87 to 0 during 150 iterations through the GSO. The optimization design of the meander shaped groove 120 may be obtained after 102 iterations.
상기 GSO를 통해 최적화된 상기 미앤더 형태의 홈(120)의 형상 파라미터들은 표 1과 같이 나타낼 수 있다.The shape parameters of the meander shaped groove 120 optimized through the GSO may be shown in Table 1 below.
표 1
Figure PCTKR2010007877-appb-T000001
Table 1
Figure PCTKR2010007877-appb-T000001
실제 최적화 설계 및 성능 실험에 있어서, 편파 변환기 분석을 1회 실행하기 위해 Intel Xeon Quad 3.0 GHz PC 상에서 26초가 소요되었다. 따라서, 150회 이터레이션 실행을 위한 전체 CPU 타임은 21.67 시간(26s×20개체×150회)이 소요되었다. 최종적으로 최적화 설계된 53×45×2 cm3 크기의 광대역 편파 변환기는 CNC 밀링 장비를 사용하여 제작되었다.In the actual optimization design and performance experiments, it took 26 seconds on an Intel Xeon Quad 3.0 GHz PC to perform one polarization transducer analysis. Therefore, the total CPU time for 150 iterations took 21.67 hours (26s x 20 objects x 150 times). Finally, an optimized 53 × 45 × 2 cm 3 wideband polarized transducer was fabricated using CNC milling equipment.
도 6에는 본 발명의 일 실시예에 따라 실제 제작된 광대역 편파 변환기에 대한 RF 무반향실(RF anechoic chamber)에서의 성능 실험 장면이 사진으로 도시되어 있다.FIG. 6 is a photograph showing a performance test scene in an RF anechoic chamber for a broadband polarization converter actually manufactured according to an embodiment of the present invention.
도 6에 도시된 바와 같이, 상기 광대역 편파 변환기에 의한 반사 동작을 얻기 위해 Ku 대역 이중 편파 원형 혼 안테나(dual-polarized Ku-band circular horn antenna)를 사용하였다. 또한, 측정 환경에 의해 야기되는 다중 경로 간섭(multi-path interference)을 제거하기 위해 Agilent N5230A 네트워크 분석기의 타임 게이팅(time-gating) 방식을 사용하였다.As shown in FIG. 6, a Ku-band dual-polarized Ku-band circular horn antenna was used to obtain a reflection operation by the wideband polarization converter. In addition, the time-gating method of the Agilent N5230A network analyzer was used to eliminate multi-path interference caused by the measurement environment.
도 7에는 도 6의 실험에서 입사각 θ=0°인 일반적 입사파에 대하여 반사된 직교 성분
Figure PCTKR2010007877-appb-I000009
Figure PCTKR2010007877-appb-I000010
간의 위상차(∠
Figure PCTKR2010007877-appb-I000011
- ∠
Figure PCTKR2010007877-appb-I000012
) 측정 결과가 그래프로 도시되어 있다.
FIG. 7 shows a reflected quadrature component of a general incident wave having an incident angle θ = 0 ° in the experiment of FIG.
Figure PCTKR2010007877-appb-I000009
And
Figure PCTKR2010007877-appb-I000010
Phase difference between
Figure PCTKR2010007877-appb-I000011
-∠
Figure PCTKR2010007877-appb-I000012
Measurement results are shown graphically.
도 7에 도시된 바와 같이, 시뮬레이션 값과 실제 측정된 값이 거의 일치함을 알 수 있다. 상기 시뮬레이션 값 및 측정값 간의 근소한 차이는 상기 광대역 편파 변환기의 실제 제작 과정에서 편의상 미앤더 홈의 모서리를 반경 1mm의 곡선 처리한 것에 기인한다. 또한, 상기
Figure PCTKR2010007877-appb-I000013
Figure PCTKR2010007877-appb-I000014
간의 측정된 위상차는 15.5GHz ~ 17.5GHz 대역에서 161°에서 192° 범위 내에 있음을 관찰할 수 있다.
As shown in FIG. 7, it can be seen that the simulation value and the actually measured value almost match. The slight difference between the simulated value and the measured value is due to a curved line having a radius of 1 mm for the convenience of the meander groove in the actual manufacturing process of the wideband polarization converter. Also, the
Figure PCTKR2010007877-appb-I000013
And
Figure PCTKR2010007877-appb-I000014
It can be observed that the measured phase difference between the phases is in the range of 161 ° to 192 ° in the 15.5 GHz to 17.5 GHz band.
도 8에는 본 발명의 일 실시예에 따른 광대역 편파 변환기의 교차 편파 억제 레벨(crosspolarization suppression level)이 그래프로 도시되어 있다.8 is a graph illustrating a crosspolarization suppression level of a wideband polarization converter according to an embodiment of the present invention.
도 8에 도시된 바와 같이, 교차 편파 억제율은 12.5% 주파수 대역폭(15.48GHz ~ 17.55GHz)에서 17dB 이상임을 알 수 있다.As shown in FIG. 8, it can be seen that the cross polarization suppression rate is 17 dB or more in the 12.5% frequency bandwidth (15.48 GHz to 17.55 GHz).
도 9에는 본 발명의 일 실시예에 따른 광대역 편파 변환기의 정편파 변환 손실(copolarization twist loss)이 그래프로 도시되어 있다.9 is a graph illustrating copolarization twist loss of a wideband polarization converter according to an embodiment of the present invention.
도 9에 도시된 바와 같이, 정편파 변환 손실은 15.35GHz ~ 17.6GHz 대역에서 0.2dB 이하임을 알 수 있으며, 이는 13.6% 이상의 넓은 주파수 대역폭에서 입사 파워의 95.5% 이상이 편파 변환됨을 의미한다. 즉, 본 발명의 실시예들에 따른 광대역 편파 변환기의 대역폭 성능 수준은 기존 기술의 주기적 스트립 또는 격자 등을 사용하는 구조보다 우수함을 알 수 있다. 또한, 본 발명의 실시예들에 따른 광대역 편파 변환기는, 기존 기술의 광대역 설계시 사용되는 접착층이나 이격층(spacing layer) 등과 같이 손실이 큰 유전체를 사용하지 않아도 되기 때문에 편파 변환 손실을 최소화할 수 있다.As shown in FIG. 9, it can be seen that the positive polarization conversion loss is 0.2 dB or less in the 15.35 GHz to 17.6 GHz band, which means that more than 95.5% of the incident power is polarized in the wide frequency bandwidth of 13.6% or more. That is, it can be seen that the bandwidth performance level of the broadband polarization converter according to the embodiments of the present invention is superior to the structure using a periodic strip or grating of the conventional technology. In addition, the broadband polarization converter according to the embodiments of the present invention can minimize the polarization conversion loss because it does not need to use a high-loss dielectric such as an adhesive layer or a spacing layer used in the conventional broadband design. have.
한편, 본 발명의 실시예들에 따른 광대역 편파 변환기는, 광대역 편파 변환 성능을 요하는 편파 변환 이중 반사경 안테나(polarization twisting dual-reflector antenna), 예컨대 주 반사경에 편파 변환기를 구비하고 부 반사경에 편파 필터 기능을 구비하여 상기 부 반사경에 의한 가림 효과를 최소화할 수 있는 카세그레인 안테나 등에 효율적으로 적용될 수 있다.Meanwhile, the broadband polarization converter according to the embodiments of the present invention includes a polarization twisting dual-reflector antenna that requires wideband polarization conversion performance, for example, a polarization converter in the main reflector and a polarization filter in the secondary reflector. It can be efficiently applied to a case-grain antenna and the like having a function to minimize the blinding effect by the secondary reflector.
즉, 편파 변환 이중 반사경 안테나는, 본 발명의 실시예들에 따른 광대역 편파 변환기를 주 반사경에 구비하여 광대역 편파 변환을 수행할 수 있다. 이 경우, 상기 편파 변환 이중 반사경 안테나의 급전 안테나로부터 복사되는 수직 편파 성분의 대부분이 상기 편파 변환 이중 반사경 안테나의 부 반사경에 구비된 편파 필터에 의해 상기 주 반사경 방향으로 반사되고, 상기 반사된 수직 편파 성분은 상기 주 반사경에 구비된 상기 광대역 편파 변환기에 의해 90°방향으로 편파 변환되어 수평 편파로 전환된다. 상기 부 반사경의 편파 필터는 수직 편파 성분만을 반사시키므로 결과적으로 상기 수평 편파는 상기 부 반사경에 의한 영향을 받지 않고 복사될 수 있게 된다.That is, the polarization conversion dual reflector antenna may perform wideband polarization conversion by including the wideband polarization converter according to the embodiments of the present invention in the main reflector. In this case, most of the vertical polarization components radiated from the feed antenna of the polarization conversion dual reflector antenna are reflected in the direction of the main reflector by the polarization filter provided in the secondary reflector of the polarization conversion dual reflector antenna, and the reflected vertical polarization is reflected. The component is polarized in the 90 ° direction by the wideband polarization converter provided in the main reflector and converted into horizontal polarization. The polarization filter of the secondary reflector reflects only vertical polarization components, so that the horizontal polarization can be radiated without being affected by the secondary reflector.
이와 같이, 본 발명의 실시예들에 따른 광대역 편파 변환기를 편파 변환 이중 안테나에 적용하는 경우, 물리적으로 복사 평면 내에 부 반사경이 존재함에도 불구하고 안테나 복사에 미치는 전기적 가림 효과를 제거할 수 있음은 물론, 광대역 편파 변환 성능을 대폭 개선하고 편파 변환시의 손실을 최소화할 수 있게 된다.As described above, when the wideband polarization converter according to the embodiments of the present invention is applied to a polarization conversion dual antenna, it is possible to remove the electric blinding effect on the antenna radiation even though the sub-reflector is physically present in the radiation plane. As a result, the wideband polarization conversion performance can be greatly improved and the loss in the polarization conversion can be minimized.
지금까지 본 발명에 관해 실시예들을 참고하여 설명하였다. 그러나 당업자라면 본 발명의 본질적인 기술적 사상으로부터 벗어나지 않는 범위에서 본 발명이 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 상술한 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 즉, 본 발명의 진정한 기술적 범위는 첨부된 특허청구범위에 나타나 있으며, 그와 균등범위 내에 있는 모든 차이점은 본 발명에 포함되는 것으로 해석되어야 할 것이다.So far, the present invention has been described with reference to embodiments. However, one of ordinary skill in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential technical spirit of the present invention. Therefore, the above-described embodiments should be considered in descriptive sense only and not for purposes of limitation. That is, the true technical scope of the present invention is shown in the appended claims, and all differences within the equivalent scope will be construed as being included in the present invention.

Claims (6)

  1. 편파 변환(polarization twist)을 수행하는 도체판을 포함하고,A conductor plate performing a polarization twist,
    상기 도체판의 반사면에는 미앤더(meander) 형태의 홈(groove)이 형성되어 있는 광대역 편파 변환기.And a meander-shaped groove formed on the reflecting surface of the conductor plate.
  2. 제1항에 있어서,The method of claim 1,
    상기 도체판은, 단일 층 구조(single layer structure)로 형성되는 것을 특징으로 하는 광대역 편파 변환기.The conductor plate is a broadband polarization converter, characterized in that formed in a single layer structure (single layer structure).
  3. 제1항에 있어서,The method of claim 1,
    상기 미앤더 형태의 홈은, 상호 직교하는 수평 방향의 홈 및 수직 방향의 홈으로 구성되는 것을 특징으로 하는 광대역 편파 변환기.The meander shaped groove is a broadband polarization converter, characterized in that consisting of a groove in the horizontal direction and a vertical direction perpendicular to each other.
  4. 제3항에 있어서,The method of claim 3,
    상기 미앤더 형태의 홈은, 상기 도체판의 상기 반사면 전체에 주기적으로 반복하여 형성되어 있는 것을 특징으로 하는 광대역 편파 변환기.And the meander shaped groove is formed repeatedly on the entire reflective surface of the conductor plate.
  5. 편파 변환(polarization twist)을 수행하는 단일 층 구조(single layer structure)의 도체판을 포함하고,A conductor plate of a single layer structure that performs a polarization twist,
    상기 도체판의 반사면에는 미앤더(meander) 형태의 홈(groove)이 형성되어 있는 광대역 편파 변환기.And a meander-shaped groove formed on the reflecting surface of the conductor plate.
  6. 제1항 내지 제5항 중 어느 한 항에 따른 광대역 편파 변환기를 이용하여 편파 변환을 수행하는 편파 변환 이중 반사경 안테나(polarization twisting dual-reflector antenna).A polarization twisting dual-reflector antenna for performing polarization conversion using the wideband polarization converter according to any one of claims 1 to 5.
PCT/KR2010/007877 2009-11-09 2010-11-09 Broadband polarization twister and polarization twisting dual-reflector antenna using same WO2011056047A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090107563A KR100953601B1 (en) 2009-11-09 2009-11-09 Broadband polarization twister and polarization twisting dual-reflector antenna using thereof
KR10-2009-0107563 2009-11-09

Publications (2)

Publication Number Publication Date
WO2011056047A2 true WO2011056047A2 (en) 2011-05-12
WO2011056047A3 WO2011056047A3 (en) 2011-09-09

Family

ID=42220091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007877 WO2011056047A2 (en) 2009-11-09 2010-11-09 Broadband polarization twister and polarization twisting dual-reflector antenna using same

Country Status (2)

Country Link
KR (1) KR100953601B1 (en)
WO (1) WO2011056047A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033846A (en) * 2016-06-30 2016-10-19 浙江大学 Polarization switching surface based on sub-wavelength harmonic structure
CN111628296B (en) * 2020-05-29 2021-07-30 安徽师范大学 Reflection-type dual-band dual-rotation-direction microwave section line-circular polarization converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150991A (en) * 1998-11-12 2000-11-21 Raytheon Company Electronically scanned cassegrain antenna with full aperture secondary/radome
US6370398B1 (en) * 1999-05-24 2002-04-09 Telaxis Communications Corporation Transreflector antenna for wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150991A (en) * 1998-11-12 2000-11-21 Raytheon Company Electronically scanned cassegrain antenna with full aperture secondary/radome
US6370398B1 (en) * 1999-05-24 2002-04-09 Telaxis Communications Corporation Transreflector antenna for wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOLZMAN, ERIC L.: 'Transreflector antenna design for millimeter-wave wireless links' IEEE ANTENNAS AND PROPAGATION MAGAZINE vol. 47, no. 5, October 2005, pages 9 - 22 *
HWANG, K.C.: 'Optimisation of broadband twist reflector for Ku-band application' IET ELECTRONICS LETTERS vol. 44, no. 3, 31 January 2008, pages 210 - 211 *

Also Published As

Publication number Publication date
KR100953601B1 (en) 2010-04-21
WO2011056047A3 (en) 2011-09-09

Similar Documents

Publication Publication Date Title
Thornton et al. Modern lens antennas for communications engineering
CN113922101B (en) Wide-angle RCS (radar cross section) shrinkage reduction super surface based on radar wave absorption and scattering cancellation technology
Tang et al. Improved performance of a microstrip phased array using broadband and ultra-low-loss metamaterial slabs
Chou et al. Investigations of isolation improvement techniques for multiple input multiple output (MIMO) WLAN portable terminal applications
Takahashi et al. Dual circularly polarized radial line slot antennas
Brandão et al. FSS-based dual-band cassegrain parabolic antenna for RadarCom applications
Sakakibara et al. Single-layer slotted waveguide arrays for millimeter wave applications
Van Houten et al. Analysis of a phase-correcting Fresnel-zone plate antenna with dielectric/transparent zones
Kildal Artificially soft and hard surfaces in electromagnetics and their application to antenna design
McGrath et al. Scanning and impedance properties of TEM horn arrays for transient radiation
WO2011056047A2 (en) Broadband polarization twister and polarization twisting dual-reflector antenna using same
Mianroodi et al. Dual-port dual-band (28/38 GHz) SIW leaky wave antenna for 5G base stations
CA1232061A (en) Shaped offset-fed dual reflector antenna
Holzman Transreflector antenna design for millimeter-wave wireless links
Prasannakumar Wideband bi-static and monostatic STAR antenna systems
Rayner et al. FD-TD design of short backfire antennas
Zabihi et al. Enhanced coverage in the shadow region using dipole scatterers at the corner
Li et al. Auxiliary antenna design for anti‐interference of satellite communication earth station
Ettore Analysis and design of efficient planar leaky-wave antennas
Dastkhosh et al. Compact low weight high gain broadband antenna by polarization-rotation technique for X-band radar
Tan et al. Investigations on metallic sphere-inserted conical horn
Yusoff et al. Circular polarization folded reflectarray antenna for 5G applications
Choubar Performance enhancement of radiation and scattering properties of circularly polarized antennas using frequency selective surface
Chaimool et al. Wideband constant beamwidth coplanar waveguide‐fed slot antennas using metallic strip loadings and a widened tuning stub with shaped reflectors
Teshirogi et al. Dielectric slab based leaky-wave antennas for millimeter-wave applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10828582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10828582

Country of ref document: EP

Kind code of ref document: A2