WO2011055439A1 - Remote control system - Google Patents

Remote control system Download PDF

Info

Publication number
WO2011055439A1
WO2011055439A1 PCT/JP2009/068899 JP2009068899W WO2011055439A1 WO 2011055439 A1 WO2011055439 A1 WO 2011055439A1 JP 2009068899 W JP2009068899 W JP 2009068899W WO 2011055439 A1 WO2011055439 A1 WO 2011055439A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
sampling
remote control
received
sampling frequency
Prior art date
Application number
PCT/JP2009/068899
Other languages
French (fr)
Japanese (ja)
Inventor
智博 木村
真一 宮下
幸宏 深見
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2009/068899 priority Critical patent/WO2011055439A1/en
Priority to JP2011539224A priority patent/JPWO2011055439A1/en
Publication of WO2011055439A1 publication Critical patent/WO2011055439A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2201/00Transmission systems of control signals via wireless link
    • G08C2201/40Remote control systems using repeaters, converters, gateways

Definitions

  • the present invention relates to a remote control system including a remote controller and a receiving device, and more particularly to a technical field of a radio remote controller with a learning function and a remote control system including a radio remote controller receiving device.
  • one remote controller (hereinafter referred to as “remote controller” as appropriate) stores a signal such as an infrared signal, for example, which is emitted from another remote controller (ie, learns), so that a user In some cases, it is possible to reduce the trouble of changing the remote control.
  • a system including a radio remote controller and an AV (AudioVisual) device corresponding to the radio remote controller has been proposed.
  • the AV device Mixes the received infrared transmission carrier-free control code and the infrared transmission carrier reproduced based on the frequency division data for reproducing the infrared transmission carrier of other companies registered in the AV device, and the infrared transmission carrier is superimposed.
  • the control code of the acquired other company's AV device is acquired and the acquired control code of the other company's AV device is transmitted to the other company's AV device by the infrared transmitter of the AV device (see Patent Document 1).
  • the present invention has been made in view of the above problems, for example, and an object of the present invention is to provide a remote control system that realizes a learning function for an infrared remote controller by a relatively simple method.
  • a remote control system of the present invention is a remote control system including a radio remote controller and a receiving device corresponding to the radio remote controller, and the radio remote controller includes an infrared signal.
  • a first frequency table including an infrared light receiving means for receiving light, an input means having a plurality of input keys, a plurality of sampling frequencies, and a plurality of identification numbers respectively corresponding to the plurality of sampling frequencies.
  • the digital value generated by sampling the first storage means and the first analog signal corresponding to the received infrared signal is one corresponding to one sampling frequency among the plurality of sampling frequencies. Together with the identification number of the plurality of input keys.
  • Transmitting means for transmitting a radio wave indicating a digital value and one identification number and the receiving device includes a receiving means capable of receiving a radio wave, an infrared light emitting means capable of emitting an infrared signal, and the first frequency table.
  • the receiving device includes a receiving means capable of receiving a radio wave, an infrared light emitting means capable of emitting an infrared signal, and the first frequency table.
  • the remote control system includes a radio remote controller and a receiver corresponding to the radio remote controller.
  • “corresponding to a radio remote controller” means that a so-called “pairing” operation is performed between the radio remote controller and the receiving device, and communication is possible.
  • the radio remote control includes an infrared light receiving means, an input means, a first storage means, a learning means, and a transmission means.
  • the infrared light receiving means receives an infrared signal fired from, for example, an infrared remote control.
  • the input means has a plurality of input keys that can be pressed by the user.
  • the first storage means which is a nonvolatile memory such as EEPROM (Electrically Erasable and Programmable Read Only Memory), has a plurality of sampling frequencies and a plurality of identification numbers corresponding to the sampling frequencies and one-to-one.
  • a first frequency table is stored in advance.
  • the plurality of sampling frequencies included in the first frequency table may be set according to, for example, the frequency of the infrared signal, the performance of the crystal oscillator included in the radio remote controller, and the like. Specifically, for example, if the frequency of the infrared signal (so-called carrier frequency) is 40 kHz, the sampling frequency may be 80 kHz or more.
  • the learning means including a memory, a processor, etc., corresponds to a digital value generated by sampling the first analog signal corresponding to the received infrared signal to one sampling frequency among a plurality of sampling frequencies. Together with one identification number to be stored in the first storage means in association with one input key of the plurality of input keys.
  • one sampling frequency means a sampling frequency when the first analog signal is sampled.
  • the transmission means including a memory, a processor, etc., when a single input key is pressed, transmits to the receiver a digital value stored in association with the single input key and a radio wave indicating a single identification number. Send.
  • the receiving apparatus includes a receiving unit, an infrared light emitting unit, a second storage unit, and a control unit.
  • a receiving means such as an RF (Radio Frequency) module can receive radio waves transmitted from a radio remote controller.
  • an infrared light emitting means such as an IR (Infrared Rays) blaster can emit an infrared signal.
  • a second frequency table that is paired with the first frequency table is stored in advance in the second storage means that is a nonvolatile memory such as an EEPROM.
  • the second frequency table includes a plurality of clock frequencies and a plurality of identification numbers corresponding one-to-one with the clock frequencies.
  • the difference between one sampling frequency included in the first frequency table and the clock frequency corresponding to the identification number of the second frequency table having the same value as the one identification number corresponding to the one sampling frequency. Is set to be within a predetermined range.
  • a control means comprising a memory, a processor, etc. receives a digital value transmitted by the receiving means and a radio wave indicating one identification number
  • the one identification number indicated by the received radio wave is stored.
  • the infrared light emitting means is controlled to emit an infrared signal corresponding to the second analog signal generated by digital-analog conversion of the digital value indicated by the received radio wave.
  • control means receives the digital value transmitted by the receiving means and the radio wave indicating one identification number
  • the one identification number indicated by the received radio wave is stored.
  • a clock frequency is set based on the second frequency table, and (ii) a second analog signal is generated by digital-analog conversion of a digital value indicated by the received radio wave according to the set clock frequency.
  • Infrared light emitting means is controlled to emit an infrared signal corresponding to the generated second analog signal.
  • the waveform of the received infrared signal is digitized, and a digital value (that is, digital data) indicating the digitized waveform of the infrared signal is converted into a packet and transmitted.
  • a digital value that is, digital data
  • an infrared signal is generated based on the transmitted packet.
  • an infrared signal is simply generated based on the transmitted packet, it is extremely difficult to reproduce the waveform of the received infrared signal due to a time scale shift caused by packet communication. is there.
  • the radio remote controller includes first storage means in which a first frequency table including a plurality of sampling frequencies and a plurality of identification numbers corresponding to the plurality of sampling frequencies one-on-one is stored in advance.
  • the receiving device includes second storage means in which a second frequency table that is paired with the first frequency table is stored in advance.
  • the transmission means of the radio remote controller transmits the radio value indicating the digital value and one identification number stored in association with the one input key to the receiving device. Is sent.
  • the control means of the receiving device is based on the one identification number indicated by the received radio wave and the stored second frequency table.
  • the infrared light emitting means is controlled to emit an infrared signal corresponding to the second analog signal generated by digital-analog conversion of the digital value indicated by the received radio wave.
  • the radio remote controller transmits one identification number corresponding to the sampling frequency at the time of sampling together with the digital value to the receiving device.
  • a clock frequency is set based on the transmitted one identification number and the second frequency table, and a digital value is generated by digital-analog conversion in accordance with the set clock frequency.
  • the infrared light emitting means is controlled to emit an infrared signal corresponding to the second analog signal.
  • the waveform of the infrared signal received by the radio remote controller can be reproduced in the receiving device.
  • the remote control system it is not necessary to analyze the control code of the infrared signal, and the learning function for the infrared remote control can be realized by a relatively simple method of sampling the infrared signal.
  • the remote control system according to the present invention transmits not the value of the sampling frequency but the identification number corresponding to the sampling frequency, the amount of data transmitted from the radio remote controller to the receiving device is reduced. It can be suppressed and is very advantageous in practice.
  • the learning means selects the one sampling frequency that is a sampling frequency capable of storing the waveform of the first analog signal from the plurality of sampling frequencies, and Sampling means for sampling the first analog signal according to the selected one sampling frequency to generate the digital value.
  • the learning means includes the frequency selection means and the sampling means, the first analog signal can be appropriately sampled to generate a digital value.
  • the frequency selection means including a memory, a processor, and the like selects one sampling frequency, which is a sampling frequency capable of storing the waveform of the first analog signal, from a plurality of sampling frequencies.
  • the selection of one sampling frequency in the frequency selection means may be performed based on a known sampling theorem.
  • a sampling means including a memory, a processor, etc. samples the first analog signal according to the selected one sampling frequency to generate a digital value.
  • the one sampling frequency may be the lowest sampling frequency among the sampling frequencies included in the plurality of sampling frequencies and capable of storing the waveform of the first analog signal.
  • the data amount of a digital value generated by sampling the first analog signal can be suppressed.
  • the capacity of the first storage means can be made relatively small, the manufacturing cost of the remote control system can be suppressed.
  • the control means is indicated by the received radio wave when the reception means receives the radio wave indicating the transmitted digital value and one identification number.
  • Setting means for setting a clock frequency based on one identification number and the stored second frequency table, and digital-to-analog conversion of a digital value indicated by the received radio wave in accordance with the set clock frequency
  • And converting means for generating the second analog signal, and controlling the infrared light emitting means so as to emit an infrared signal corresponding to the generated second analog signal.
  • the control means since the control means has the setting means and the conversion means, the second analog signal can be generated by appropriately digital-analog converting the digital value.
  • the setting unit including a memory, a processor, and the like stores the one identification number indicated by the received radio wave and the storage when the reception unit receives the transmitted digital value and the radio wave indicating the one identification number. Based on the second frequency table thus set, a clock frequency for digital-to-analog conversion of a digital value indicated by the received radio wave is set.
  • the conversion means including a memory, a processor, and the like generates a second analog signal by performing digital-analog conversion on the digital value indicated by the received radio wave according to the set clock frequency.
  • the control means controls the infrared light emitting means so as to emit an infrared signal corresponding to the generated second analog signal.
  • the second frequency table includes a plurality of clock frequencies corresponding one-to-one with the plurality of identification numbers, and the one sampling frequency and the one identification number. The difference from one clock frequency corresponding to is within a predetermined range.
  • the second frequency table includes a plurality of clock frequencies respectively corresponding one-to-one with the plurality of identification numbers included in the first frequency table.
  • the difference between one sampling frequency included in the first frequency table and one clock frequency included in the second frequency table corresponding to one identification number corresponding to the one sampling frequency is within a predetermined range. It is.
  • the “predetermined range” is a range of a difference between one sampling frequency and one clock frequency such that the waveform of the infrared signal reproduced by the receiving device is within an allowable range of the device that receives the infrared signal. Is set as
  • the waveform of the infrared signal received by the radio remote controller can be appropriately reproduced in the receiving device.
  • FIG. 1 is a block diagram showing a configuration of a remote control system 1 according to the present embodiment.
  • the remote control system 1 includes a radio remote controller 10 and a radio remote control receiver 20.
  • the “radio-wave remote control receiving unit 20” according to the present embodiment is an example of the “receiving device” according to the present invention.
  • the radio wave control device 30 is an electronic device such as a television or a DVD player, and is controlled by radio waves transmitted from the radio remote controller 10 via the radio remote control receiver 20.
  • the radio remote control receiving unit 20 may be mounted on the radio control device 30.
  • the infrared remote controller 501 can control an infrared control device 502 which is an electronic device such as a television or a DVD player.
  • FIG. 2 is a block diagram showing a configuration of the radio remote controller 10 according to the present embodiment.
  • the radio remote controller 10 includes a microcomputer 101, a memory 102, a key input unit 103, an A / D conversion unit 104, an infrared light receiving unit 105, and an RF module 106.
  • the microcomputer 101 supplies the operation clock of the microcomputer 101 and generates a reference clock for analog-digital conversion (hereinafter referred to as “A / D conversion” as appropriate) of the infrared signal received by the infrared light receiving unit 105.
  • a crystal oscillator 101a is provided.
  • the microcomputer 101 controls the RF module 106 by, for example, UART (Universal Asynchronous Receiver Transmitter) communication.
  • UART Universal Asynchronous Receiver Transmitter
  • microcomputer 101 The “microcomputer 101”, “memory 102”, “key input unit 103”, “infrared light receiving unit 105”, and “RF module 106” according to the present embodiment are the “learning unit”, “first” It is an example of “storage means”, “input means”, “infrared light receiving means”, and “transmitting means”.
  • the memory 102 stores, for example, a key table 411 (see FIG. 3), a sampling frequency table 412 (see FIG. 4), and the like.
  • the “sampling frequency table 412” according to the present embodiment is an example of the “first frequency table” according to the present invention.
  • the key table 411 stores key names, key IDs, and command data or waveform data as operation codes assigned to the keys in advance, for each input key provided in the radio remote controller 10.
  • FIG. 3 is a conceptual diagram illustrating an example of a key table according to the present embodiment.
  • the key ID or the like is set in hexadecimal, but the key ID or the like is not limited to hexadecimal.
  • the microcomputer 101 When one of a plurality of keys of the key input unit 103 is pressed, the microcomputer 101 reads command data or waveform data corresponding to the key ID of the pressed key from the key table 411 and reads the data.
  • the RF module 106 is controlled by UART communication so that the command data or waveform data transmitted to the RF module 106 is transmitted as radio waves.
  • the sampling frequency table 412 stores a sampling frequency ID, a frequency division ratio n and m (n and m are integers) corresponding to the sampling frequency ID, and a sampling frequency fsc.
  • the sampling frequency fsc is expressed as (basic frequency fclk) ⁇ n ⁇ m.
  • FIG. 4 is a conceptual diagram showing an example of the sampling frequency table according to the present embodiment.
  • sampling frequency ID is an example of the “identification number” according to the present invention.
  • the sampling frequency ID is set in hexadecimal, but the sampling frequency ID is not limited to hexadecimal.
  • “Learning” means rewriting one command data or waveform data corresponding to one key in the key table 411.
  • it means that the value “0xA632” corresponding to the key “FnC” is rewritten.
  • FIG. 5 is a conceptual diagram showing the concept of digitizing an infrared signal according to the present embodiment
  • FIG. 6 is a conceptual diagram showing an example of learning waveform data according to the present embodiment
  • FIG. It is a conceptual diagram which shows an example of the learned key table which concerns on a form.
  • the microcomputer 101 determines whether a key (in this case, “FnC”) of the radio remote controller 10 is pressed after a key for shifting the radio remote controller 10 such as a learning mode key to the learning mode is pressed.
  • the key ID of the pressed key here, “0x32”
  • the storage location of the corresponding key table 411 in the memory 102 is determined.
  • the microcomputer 101 sets the sampling frequency fsc based on the sampling frequency table 412 stored in the memory 102, The set sampling frequency fsc is supplied to the A / D converter 104 (see “CLK” in FIG. 1).
  • the waveform of the infrared signal received by the infrared receiver 105 at each sampling point corresponding to the sampling frequency fsc is a digital value (here, “0” or “1”). ”) (Ie, A / D conversion). Thereafter, the converted digital value is transmitted, for example, as 8-bit data to the microcomputer 101 (see “DATA” in FIG. 1).
  • the digital value is not limited to binary, and may be 8-bit data, for example.
  • the “received infrared signal” according to the present embodiment is an example of the “first analog signal” according to the present invention.
  • the microcomputer 101 converts the waveform of the infrared signal digitized by the A / D conversion unit 104 (hereinafter referred to as “learning waveform” as appropriate) into a key ID, for example, in the format shown in FIG.
  • the sampling frequency ID (“fsID” in FIG. 6A) and the learning waveform are associated with each other and stored in the memory 102.
  • learning waveform data as shown in FIG. 6B is stored in the storage location corresponding to the key ID “0x32” in the memory 102 instead of the value “0xA632”.
  • the sampling frequency ID is “0x06” here.
  • the microcomputer 101 further stores a learned key name (here, “FnC”), a key ID (here, “0x32”), and learned command data (in this case, in a learned key table 413 as shown in FIG. Here, “0xA701”) is stored.
  • a learned key name here, “FnC”
  • a key ID here, “0x32”
  • learned command data in this case, in a learned key table 413 as shown in FIG.
  • “0xA701” is stored.
  • the microcomputer 101 determines whether or not the learning mode is set (step S101).
  • whether or not it is in the learning mode may be determined by detecting whether or not a key for shifting the radio remote controller 10 to the learning mode is pressed, for example.
  • step S101 No
  • the microcomputer 101 executes a normal mode process described later.
  • the microcomputer 101 provisionally determines the sampling frequency (step S102).
  • the temporarily determined sampling frequency is, for example, the highest sampling frequency among sampling frequencies corresponding to IDs “0x01” to “0x08” in the sampling frequency table 412 (that is, the sampling frequency corresponding to ID “0x08”). 90.332031 kHz).
  • the microcomputer 101 determines whether or not the pressing of the learning key is detected (step S103).
  • the “learning key” is a key set in advance for learning an infrared signal fired from the infrared remote controller 501.
  • the key names in the key table 411 for example, “FnA” to “FnD” correspond to learning keys.
  • step S103 Whether or not the learning key is pressed is detected by, for example, a key ID assigned in advance in the program of the microcomputer 101 corresponding to the pressed key being a key ID corresponding to the learning key (here, “0x30” to “0”). It is sufficient to determine whether or not 0x33 ′′).
  • step S103: No the microcomputer 101 executes the process of step S103 again (that is, the microcomputer 101 is in a standby state until the learning key is pressed).
  • step S103: Yes the microcomputer 101 determines a key ID corresponding to the pressed learning key, and stores the storage location in the memory 102 of the corresponding key table 411. Determine (step S104).
  • step S105 determines whether or not an infrared signal fired from the infrared remote controller 501 has been received by the infrared light receiving unit 105 (step S105).
  • step S105: No the microcomputer 101 executes the process of step S105 again (that is, is in a standby state until the infrared signal is received).
  • step S105 If it is determined that the infrared signal has been received (step S105: Yes), the microcomputer 101 performs sampling frequency adjustment processing (step S106). Here, the sampling frequency adjustment processing will be described.
  • the first period is sampled at the sampling frequency temporarily determined in the process of step S102 (here, the sampling frequency corresponding to ID “0x08”), and the next period Are sampled at the sampling frequency corresponding to ID “0x07”, and the sampling is performed at the sampling frequency corresponding to ID “0x06” and the sampling frequency is sequentially changed.
  • a sequence of digital values obtained by sampling at each sampling frequency is D8 (n), D7 (n ′), D6 (n ′′), D5 (n ′′ ′).
  • D8 (n), D7 (n ′), and D6 (n ′′) can reproduce the original infrared signal, and the original infrared signal cannot be reproduced after D5 (n ′′). To do.
  • the microcomputer 101 selects the sampling frequency corresponding to the ID “0x06” as the optimum sampling frequency in the sampling frequency table 412 stored in the memory 102.
  • the microcomputer 101 reads the sampling frequency ID selected in the processing of step S106 from the sampling frequency table 412, and uses the read sampling frequency ID as a part of the learning waveform data.
  • the data is stored in the storage location in the memory 102 determined in the process of step S104 (step S107).
  • the microcomputer 101 stores the learning waveform sampled at the sampling frequency selected in step S106 as a part of the learning waveform data in the storage location in the memory 102 determined in step S104.
  • step S108 the infrared signal learning process is terminated.
  • the “microcomputer 101” and the “A / D conversion unit 104” according to the present embodiment are examples of the “frequency selection unit” and the “sampling unit” according to the present invention, respectively.
  • the microcomputer 101 determines whether or not a key press is detected (step S201). Whether or not a key press is detected may be determined by determining whether or not a signal from any one of a plurality of keys of the key input unit 103 is Low, for example.
  • step S201 When it is determined that the key press is not detected (step S201: No), the microcomputer 101 executes the process of step S201 again (that is, enters a standby state until the key is pressed).
  • step S201 If it is determined that a key press is detected (step S201: Yes), the microcomputer 101 determines whether the pressed key is a learned key (step S202). Whether or not the pressed key is a learned key is determined based on whether the key ID assigned in advance in the program of the microcomputer 101 corresponding to the pressed key is stored in the learned key table 413 as shown in FIG. It may be determined by determining whether or not it is stored.
  • step S202: Yes the microcomputer 101 reads the learned waveform data from the memory 102 based on the key ID of the learned key (step S203).
  • step S203 the microcomputer 101 determines based on the key ID assigned in advance in the program of the microcomputer 101 corresponding to the pressed key.
  • An allocation control code (that is, command data) is read from the key table 411 (step S204).
  • the microcomputer 101 transfers the read learning waveform data or the read assignment control code to the RF module 106 and also transfers the learning learned to the radio remote control receiver 20 (see FIG. 1).
  • the RF module 106 is controlled by UART communication so as to transmit the waveform data or the assignment control code (step S206).
  • the RF module 106 packetizes and wirelessly modulates the transferred learning waveform data or assignment control code so that the transferred learning waveform data or assignment control code can be transmitted by radio waves.
  • the microcomputer 101 sets a countdown timer (step S206).
  • This countdown timer is used to determine whether the learning waveform data or the allocation control code has been correctly transmitted to the radio remote control receiving unit 20.
  • the countdown timer T is set to 100 milliseconds, for example.
  • the microcomputer 101 determines whether or not a radio wave indicating reception completion transmitted from the radio remote control receiving unit 20 has been received (step S207). If it is determined that a radio wave indicating completion of reception has been received (step S207: Yes), the microcomputer 101 ends the normal mode process.
  • step S207 If it is determined that a radio wave indicating completion of reception has not been received (step S207: No), the microcomputer 101 determines whether the value of the countdown timer is 0 milliseconds (that is, whether the time is over). Determination is made (step S208).
  • step S208: Yes If it is determined that the value of the countdown timer is 0 milliseconds (step S208: Yes), the microcomputer 101 ends the normal mode process. On the other hand, when it is determined that the value of the countdown timer is not 0 millisecond (step S208: No), the microcomputer 101 executes the process of step S207 again.
  • FIG. 10 is a block diagram showing a configuration of the radio remote control receiving unit 20 according to the present embodiment.
  • the radio remote control receiver 20 includes a microcomputer 201, a memory 202, an RF module 206, a D / A converter 207, and an IR blaster 208.
  • the microcomputer 201 supplies the operation clock of the microcomputer 201 and generates a reference clock for digital-analog conversion (hereinafter referred to as “D / A conversion” as appropriate) of learning waveform data received via the RF module 206.
  • D / A conversion digital-analog conversion
  • a crystal oscillator 201a is provided.
  • microcomputer 201 The “microcomputer 201”, “memory 202”, “RF module 206”, and “IR blaster 208” according to the present embodiment are respectively “control means”, “second storage means”, and “reception means” according to the present invention. And “infrared light emitting means”.
  • the memory 202 stores, for example, a sampling frequency table 421 (see FIG. 11) and the like.
  • the “sampling frequency table 421” according to the present embodiment is an example of the “second frequency table” according to the present invention.
  • the sampling frequency table 421 stores a clock frequency ID, a frequency division ratio n and m (n and m are integers) corresponding to the clock frequency ID, and a clock frequency fsc.
  • the clock frequency fsc is expressed as (basic frequency fclk) ⁇ n ⁇ m.
  • FIG. 11 is a conceptual diagram showing an example of the sampling frequency table 421 according to the present embodiment.
  • the clock frequency ID is set in hexadecimal, but the clock frequency ID is not limited to hexadecimal.
  • the microcomputer 201 controls the RF module 206 so that the RF module 206 is in a standby state (step S301).
  • the microcomputer 201 determines whether or not the radio wave transmitted from the radio remote controller 10 has been received (step S302).
  • step S302 determines whether or not the radio wave transmitted from the radio remote controller 10 has been received.
  • the microcomputer 201 If it is determined that the radio wave transmitted from the radio remote controller 10 has been received (step S302: Yes), the microcomputer 201 extracts the key ID from the data indicated by the received radio wave and stores it in the memory 202 ( Step S303). In this case, the microcomputer 201 controls the RF module 206 by UART communication so as to demodulate the packet from the received radio wave.
  • the microcomputer 201 extracts the sampling frequency ID from the data indicated by the received radio wave and stores it in the memory 202 (step S304). Subsequently, the microcomputer 201 extracts learning waveform data or assignment control code from the data indicated by the received radio wave and stores it in the memory 202 (step S305).
  • the microcomputer 201 determines whether or not the sampling frequency ID (fsID) stored in the memory 202 in the process of step S304 is “0” (step S306).
  • step S306 When it is determined that the sampling frequency ID is “0” (step S306: Yes), the microcomputer 201 is based on the sampling frequency ID (here, “0”) and the sampling frequency table 421 (see FIG. 11).
  • the sampling frequency fs is set to an initial value (that is, a predetermined frequency) (step S307).
  • the microcomputer 201 adjusts the clock frequency according to the set sampling frequency fs and supplies the adjusted clock frequency to the D / A converter 207 (see “CLK” in FIG. 10) ( Step S308).
  • the microcomputer 201 reads out the assignment control code stored in the memory 202 in the process of step S305 and transmits it to the D / A converter 207 (see “DATA” in FIG. 10) (step S309).
  • the D / A conversion unit 207 an analog signal corresponding to the transmitted assignment control code is generated at the clock frequency supplied by the microcomputer 201.
  • the microcomputer 201 controls the IR blaster 208 to fire an infrared signal corresponding to the analog signal generated by the D / A converter 207 (step S313), and ends the infrared signal output process.
  • step S306 determines that the sampling frequency table 421 is based on the sampling frequency ID and the sampling frequency table 421.
  • the frequency division ratio is read out from (Step S310).
  • the microcomputer 201 adjusts the clock frequency according to the read frequency division ratio, and supplies the adjusted clock frequency to the D / A conversion unit 207 (see “CLK” in FIG. 10). (Step S311).
  • the microcomputer 201 reads the learned waveform data stored in the memory 202 in the process of step S305 and transmits it to the D / A converter 207 (see “DATA” in FIG. 10) (step S312).
  • the D / A conversion unit 207 generates an analog signal as an example of the “second analog signal” according to the present invention in accordance with the transmitted learning waveform data at the clock frequency supplied by the microcomputer 201.
  • the radio remote control receiver 20 can appropriately reproduce the waveform of the infrared signal learned by the radio remote controller 10.
  • the difference in sampling frequency between the sampling frequency tables 412 and 421 is due to the difference between the performance of the crystal oscillator 101a of the radio remote controller 10 and the performance of the crystal oscillator 201a of the radio remote control receiver 20. .
  • the microcomputer 201 controls the IR blaster 208 to fire an infrared signal corresponding to the analog signal generated by the D / A converter 207 (step S313), and ends the infrared signal output process.
  • the infrared control device 502 that has received the infrared signal fired from the IR blaster 208 executes an operation according to the received infrared signal.

Abstract

A remote control system (1) provided with: an RF remote control (10) in which a first frequency table (412), which includes a plurality of sampling frequencies and a plurality of identification numbers, is stored in advance; and a reception apparatus (20) in which a second frequency table (421), which is paired with the first frequency table, is stored in advance. When one input key is pressed, the RF remote control transmits an RF signal, which indicates a digital value and one identification number both corresponding to the one input key, to the reception apparatus. When the reception apparatus has received the transmitted RF signal, the reception apparatus emits an infrared signal corresponding to an analog signal generated by digital-to-analog conversion of the digital value indicated by the received RF signal, said digital value being converted based on the one identification number indicated by the received RF signal and on the stored second frequency table.

Description

リモートコントロールシステムRemote control system
 本発明は、リモートコントローラ及び受信装置を備えるリモートコントロールシステムに関し、特に、学習機能付きの電波式リモートコントローラ及び電波式リモートコントローラ受信装置を備えるリモートコントロールシステムの技術分野に関する。 The present invention relates to a remote control system including a remote controller and a receiving device, and more particularly to a technical field of a radio remote controller with a learning function and a remote control system including a radio remote controller receiving device.
 この種のシステムでは、一のリモートコントローラ(以下、適宜“リモコン”と称する)に、他のリモコンから発せられる、例えば赤外信号等の信号を記憶させ(即ち、学習させ)、ユーザが複数のリモコンを相互に持ち替える手間を低減することが図られることがある。 In this type of system, one remote controller (hereinafter referred to as “remote controller” as appropriate) stores a signal such as an infrared signal, for example, which is emitted from another remote controller (ie, learns), so that a user In some cases, it is possible to reduce the trouble of changing the remote control.
 この種のシステムとして、例えば、電波式リモコンと、該電波式リモコンに対応するAV(AudioVisual)機器とを備えたシステムが提案されている。ここでは特に、電波式リモコンに予め登録されている他社AV機器の制御コードに基づいて、赤外線送信キャリアなし制御コードが変調及び高周波増幅された後に、AV機器に対して送信されると、AV機器は、受信した赤外線送信キャリアなし制御コードと、AV機器に登録されている他社の赤外線送信キャリア再生用分周データに基づいて再生された赤外線送信キャリアと、を混合して、赤外線送信キャリアが重畳された他社AV機器の制御コードを取得し、該取得された他社AV機器の制御コードをAV機器の赤外線送信機により他社AV機器へ送信することが開示されている(特許文献1参照)。 As this type of system, for example, a system including a radio remote controller and an AV (AudioVisual) device corresponding to the radio remote controller has been proposed. Here, in particular, when an infrared transmission carrierless control code is modulated and high-frequency amplified based on the control code of another company's AV device registered in advance in the radio remote controller, and transmitted to the AV device, the AV device Mixes the received infrared transmission carrier-free control code and the infrared transmission carrier reproduced based on the frequency division data for reproducing the infrared transmission carrier of other companies registered in the AV device, and the infrared transmission carrier is superimposed. It is disclosed that the control code of the acquired other company's AV device is acquired and the acquired control code of the other company's AV device is transmitted to the other company's AV device by the infrared transmitter of the AV device (see Patent Document 1).
特開2003-46801号公報Japanese Patent Laid-Open No. 2003-46801
 しかしながら、特許文献1に記載された技術では、例えば電波式リモコンに、他社AV機器の制御コードを記憶させる際に、一旦メモリに記憶された信号波形が各種信号形式のいずれに該当し、コマンドコードは何かを分析する仕組みを、電波式リモコンに装備しなければならない。すると、システムの構成が比較的複雑になる可能性があるという技術的問題点がある。 However, in the technique described in Patent Document 1, for example, when storing a control code of another company's AV equipment in a radio remote controller, the signal waveform once stored in the memory corresponds to any of various signal formats, and the command code The radio remote control must be equipped with a mechanism for analyzing something. Then, there is a technical problem that the configuration of the system may be relatively complicated.
 本発明は、例えば上記問題点に鑑みてなされたものであり、比較的簡便な方法により赤外線方式のリモコンに対する学習機能を実現するリモートコントロールシステムを提供することを課題とする。 The present invention has been made in view of the above problems, for example, and an object of the present invention is to provide a remote control system that realizes a learning function for an infrared remote controller by a relatively simple method.
 本発明のリモートコントロールシステムは、上記課題を解決するために、電波式リモートコントローラ、及び前記電波式リモートコントローラに対応する受信装置を備えるリモートコントロールシステムであって、前記電波式リモートコントローラは、赤外線信号を受光する赤外線受光手段と、複数の入力キーを有する入力手段と、複数のサンプリング周波数と、前記複数のサンプリング周波数と夫々一対一に対応する複数の識別番号とを含む第1周波数テーブルが予め格納されている第1記憶手段と、前記受光された赤外線信号に対応する第1アナログ信号がサンプリングされることにより生成されたデジタル値を、前記複数のサンプリング周波数のうち一のサンプリング周波数に対応する一の識別番号と共に、前記複数の入力キーのうち一の入力キーと対応付けて前記第1記憶手段に格納する学習手段と、前記一の入力キーが押下された際に、前記受信装置に対し、前記一の入力キーと対応付けて格納されたデジタル値及び一の識別番号を示す電波を送信する送信手段とを備え、前記受信装置は、電波を受信可能な受信手段と、赤外線信号を発光可能な赤外線発光手段と、前記第1周波数テーブルと対をなす第2周波数テーブルが予め格納されている第2記憶手段と、前記受信手段により、前記送信されたデジタル値及び一の識別番号を示す電波が受信された際、前記受信された電波により示される一の識別番号及び前記格納された第2周波数テーブルに基づいて、前記受信された電波により示されるデジタル値がデジタル-アナログ変換されることにより生成された第2アナログ信号に対応した赤外線信号を発光するように前記赤外線発光手段を制御する制御装置とを備える。 In order to solve the above problems, a remote control system of the present invention is a remote control system including a radio remote controller and a receiving device corresponding to the radio remote controller, and the radio remote controller includes an infrared signal. A first frequency table including an infrared light receiving means for receiving light, an input means having a plurality of input keys, a plurality of sampling frequencies, and a plurality of identification numbers respectively corresponding to the plurality of sampling frequencies. The digital value generated by sampling the first storage means and the first analog signal corresponding to the received infrared signal is one corresponding to one sampling frequency among the plurality of sampling frequencies. Together with the identification number of the plurality of input keys. Learning means for storing in the first storage means in association with one input key, and stored in association with the one input key for the receiving device when the one input key is pressed Transmitting means for transmitting a radio wave indicating a digital value and one identification number, and the receiving device includes a receiving means capable of receiving a radio wave, an infrared light emitting means capable of emitting an infrared signal, and the first frequency table. When a radio wave indicating the transmitted digital value and one identification number is received by the second storage means in which a pair of second frequency tables are stored in advance and the reception means, the received radio wave Based on the one identification number shown and the stored second frequency table, the second value generated by digital-to-analog conversion of the digital value indicated by the received radio wave. And a control device for controlling the infrared light emitting means to emit an infrared signal corresponding to the log signal.
 本発明のリモートコントロールシステムによれば、当該リモートコントロールシステムは、電波式リモコンと、該電波式リモコンに対応する受信装置を備えている。ここで、「電波式リモコンに対応する」とは、電波式リモコンと受信装置との間で、所謂「ペアリング」操作が行われており、通信可能状態となっていることを意味する。 According to the remote control system of the present invention, the remote control system includes a radio remote controller and a receiver corresponding to the radio remote controller. Here, “corresponding to a radio remote controller” means that a so-called “pairing” operation is performed between the radio remote controller and the receiving device, and communication is possible.
 電波式リモコンは、赤外線受光手段、入力手段、第1記憶手段、学習手段及び送信手段を備えて構成されている。 The radio remote control includes an infrared light receiving means, an input means, a first storage means, a learning means, and a transmission means.
 赤外線受光手段は、例えば赤外線方式のリモコンから発砲された赤外線信号を受光する。入力手段は、ユーザが押下可能な複数の入力キーを有している。 The infrared light receiving means receives an infrared signal fired from, for example, an infrared remote control. The input means has a plurality of input keys that can be pressed by the user.
 例えばEEPROM(Electrically Erasable and Programmable Read Only Memory)等の不揮発性メモリである第1記憶手段には、複数のサンプリング周波数と、該記複数のサンプリング周波数と夫々一対一に対応する複数の識別番号とを含む第1周波数テーブルが予め格納されている。 For example, the first storage means, which is a nonvolatile memory such as EEPROM (Electrically Erasable and Programmable Read Only Memory), has a plurality of sampling frequencies and a plurality of identification numbers corresponding to the sampling frequencies and one-to-one. A first frequency table is stored in advance.
 尚、第1周波数テーブルに含まれる複数のサンプリング周波数は、例えば赤外線信号の周波数、電波式リモコンが備える水晶発振子の性能等に応じて設定すればよい。具体的には例えば、赤外線信号の周波数(所謂キャリア周波数)が40kHzであれば、サンプリング周波数は80kHz以上とすればよい。 Note that the plurality of sampling frequencies included in the first frequency table may be set according to, for example, the frequency of the infrared signal, the performance of the crystal oscillator included in the radio remote controller, and the like. Specifically, for example, if the frequency of the infrared signal (so-called carrier frequency) is 40 kHz, the sampling frequency may be 80 kHz or more.
 例えばメモリ、プロセッサ等を備えてなる学習手段は、受光された赤外線信号に対応する第1アナログ信号がサンプリングされることにより生成されたデジタル値を、複数のサンプリング周波数のうち一のサンプリング周波数に対応する一の識別番号と共に、複数の入力キーのうち一の入力キーと対応付けて第1記憶手段に格納する。ここで、「一のサンプリング周波数」は、第1アナログ信号がサンプリングされる際のサンプリング周波数を意味する。 For example, the learning means including a memory, a processor, etc., corresponds to a digital value generated by sampling the first analog signal corresponding to the received infrared signal to one sampling frequency among a plurality of sampling frequencies. Together with one identification number to be stored in the first storage means in association with one input key of the plurality of input keys. Here, “one sampling frequency” means a sampling frequency when the first analog signal is sampled.
 例えばメモリ、プロセッサ等を備えてなる送信手段は、一の入力キーが押下された際に、受信装置に対し、一の入力キーと対応付けて格納されたデジタル値及び一の識別番号を示す電波を送信する。 For example, the transmission means including a memory, a processor, etc., when a single input key is pressed, transmits to the receiver a digital value stored in association with the single input key and a radio wave indicating a single identification number. Send.
 受信装置は、受信手段、赤外線発光手段、第2記憶手段及び制御手段を備えて構成されている。 The receiving apparatus includes a receiving unit, an infrared light emitting unit, a second storage unit, and a control unit.
 例えばRF(Radio Frequency)モジュール等である受信手段は、電波式リモコンから発信された電波を受信可能である。例えばIR(Infrared Rays)ブラスタ等である赤外線発光手段は、赤外線信号を発光可能である。 For example, a receiving means such as an RF (Radio Frequency) module can receive radio waves transmitted from a radio remote controller. For example, an infrared light emitting means such as an IR (Infrared Rays) blaster can emit an infrared signal.
 例えばEEPROM等の不揮発性メモリである第2記憶手段には、第1周波数テーブルと対をなす第2周波数テーブルが予め格納されている。第2周波数テーブルには、複数のクロック周波数と、該クロック周波数と夫々一対一に対応する複数の識別番号とが含まれている。 For example, a second frequency table that is paired with the first frequency table is stored in advance in the second storage means that is a nonvolatile memory such as an EEPROM. The second frequency table includes a plurality of clock frequencies and a plurality of identification numbers corresponding one-to-one with the clock frequencies.
 本発明では特に、第1周波数テーブルに含まれる一のサンプリング周波数と、該一のサンプリング周波数に対応する一の識別番号と同じ値を有する第2周波数テーブルの識別番号に対応するクロック周波数との差分が、所定範囲内になるように設定されている。 Particularly in the present invention, the difference between one sampling frequency included in the first frequency table and the clock frequency corresponding to the identification number of the second frequency table having the same value as the one identification number corresponding to the one sampling frequency. Is set to be within a predetermined range.
 例えばメモリ、プロセッサ等を備えてなる制御手段は、受信手段により送信されたデジタル値及び一の識別番号を示す電波が受信された際、受信された電波により示される一の識別番号及び格納された第2周波数テーブルに基づいて、受信された電波により示されるデジタル値がデジタル-アナログ変換されることにより生成された第2アナログ信号に対応した赤外線信号を発光するように赤外線発光手段を制御する。 For example, when a control means comprising a memory, a processor, etc. receives a digital value transmitted by the receiving means and a radio wave indicating one identification number, the one identification number indicated by the received radio wave is stored. Based on the second frequency table, the infrared light emitting means is controlled to emit an infrared signal corresponding to the second analog signal generated by digital-analog conversion of the digital value indicated by the received radio wave.
 より具体的には、制御手段は、受信手段により送信されたデジタル値及び一の識別番号を示す電波が受信された際、(i)受信された電波により示される一の識別番号及び格納された第2周波数テーブルに基づいて、クロック周波数を設定し、(ii)該設定されたクロック周波数に応じて、受信された電波により示されるデジタル値をデジタル-アナログ変換して第2アナログ信号を生成し、(iii)該生成された第2アナログ信号に対応した赤外線信号を発光するように赤外線発光手段を制御する。 More specifically, when the control means receives the digital value transmitted by the receiving means and the radio wave indicating one identification number, (i) the one identification number indicated by the received radio wave is stored. A clock frequency is set based on the second frequency table, and (ii) a second analog signal is generated by digital-analog conversion of a digital value indicated by the received radio wave according to the set clock frequency. (Iii) Infrared light emitting means is controlled to emit an infrared signal corresponding to the generated second analog signal.
 本願発明者の研究によれば、以下の事項が判明している。即ち、電波式リモコンでは、受光された赤外線信号の波形がデジタル化され、該デジタル化された赤外線信号の波形を示すデジタル値(即ち、デジタルデータ)がパケットに変換され伝送される。受信装置では、伝送されたパケットに基づいて赤外線信号が生成される。ここで、伝送されたパケットに基づいて、単純に、赤外線信号が生成されると、パケット通信に起因する時間軸のスケールのズレによって、受光された赤外線信号の波形を再現することは極めて困難である。 According to the inventor's research, the following matters have been found. That is, in the radio remote controller, the waveform of the received infrared signal is digitized, and a digital value (that is, digital data) indicating the digitized waveform of the infrared signal is converted into a packet and transmitted. In the receiving device, an infrared signal is generated based on the transmitted packet. Here, if an infrared signal is simply generated based on the transmitted packet, it is extremely difficult to reproduce the waveform of the received infrared signal due to a time scale shift caused by packet communication. is there.
 しかるに本発明では、電波式リモコンが、複数のサンプリング周波数と、複数のサンプリング周波数と夫々一対一に対応する複数の識別番号とを含む第1周波数テーブルが予め格納されている第1記憶手段を備えていると共に、受信装置が、第1周波数テーブルと対をなす第2周波数テーブルが予め格納されている第2記憶手段を備えている。 However, in the present invention, the radio remote controller includes first storage means in which a first frequency table including a plurality of sampling frequencies and a plurality of identification numbers corresponding to the plurality of sampling frequencies one-on-one is stored in advance. In addition, the receiving device includes second storage means in which a second frequency table that is paired with the first frequency table is stored in advance.
 そして、電波式リモコンの一の入力キーが押下された際、電波式リモコンの送信手段により、受信装置に対し、一の入力キーと対応付けて格納されたデジタル値及び一の識別番号を示す電波が送信される。受信手段により送信されたデジタル値及び一の識別番号を示す電波が受信された際、受信装置の制御手段により、受信された電波により示される一の識別番号及び格納された第2周波数テーブルに基づいて、受信された電波により示されるデジタル値がデジタル-アナログ変換されることにより生成された第2アナログ信号に対応した赤外線信号を発光するように赤外線発光手段が制御される。 Then, when one input key of the radio remote controller is pressed, the transmission means of the radio remote controller transmits the radio value indicating the digital value and one identification number stored in association with the one input key to the receiving device. Is sent. When a radio wave indicating the digital value and one identification number transmitted by the receiving means is received, the control means of the receiving device is based on the one identification number indicated by the received radio wave and the stored second frequency table. Thus, the infrared light emitting means is controlled to emit an infrared signal corresponding to the second analog signal generated by digital-analog conversion of the digital value indicated by the received radio wave.
 つまり、本発明では、電波式リモコンから、受信装置に対して、デジタル値と共に、サンプリング時のサンプリング周波数に対応する一の識別番号が送信される。受信装置では、該送信された一の識別番号及び第2周波数テーブルに基づいて、クロック周波数が設定され、該設定されたクロック周波数に応じて、デジタル値がデジタル-アナログ変換されることにより生成された第2アナログ信号に対応した赤外線信号を発光するように赤外線発光手段が制御される。 That is, in the present invention, the radio remote controller transmits one identification number corresponding to the sampling frequency at the time of sampling together with the digital value to the receiving device. In the receiving apparatus, a clock frequency is set based on the transmitted one identification number and the second frequency table, and a digital value is generated by digital-analog conversion in accordance with the set clock frequency. The infrared light emitting means is controlled to emit an infrared signal corresponding to the second analog signal.
 この結果、本発明に係るリモートコントロールシステムでは、電波式リモコンにより受光された赤外線信号の波形を、受信装置において再現することができる。 As a result, in the remote control system according to the present invention, the waveform of the infrared signal received by the radio remote controller can be reproduced in the receiving device.
 本発明に係るリモートコントロールシステムでは、赤外線信号の制御コード分析を行わなくてよく、赤外線信号のサンプリングという比較的簡便な方法により赤外線方式のリモコンに対する学習機能を実現することができる。加えて、本発明に係るリモートコントロールシステムでは、サンプリング周波数の値ではなく、該サンプリング周波数に対応する識別番号を送信しているので、電波式リモコンから受信装置に対して送信されるデータの量を抑制することができ、実用上非常に有利である。 In the remote control system according to the present invention, it is not necessary to analyze the control code of the infrared signal, and the learning function for the infrared remote control can be realized by a relatively simple method of sampling the infrared signal. In addition, since the remote control system according to the present invention transmits not the value of the sampling frequency but the identification number corresponding to the sampling frequency, the amount of data transmitted from the radio remote controller to the receiving device is reduced. It can be suppressed and is very advantageous in practice.
 本発明のリモートコントロールシステムの一態様では、前記学習手段は、前記第1アナログ信号の波形を保存可能なサンプリング周波数である前記一のサンプリング周波数を前記複数のサンプリング周波数から選択する周波数選択手段と、前記選択された一のサンプリング周波数に応じて前記第1アナログ信号をサンプリングして前記デジタル値を生成するサンプリング手段とを有する。 In one aspect of the remote control system of the present invention, the learning means selects the one sampling frequency that is a sampling frequency capable of storing the waveform of the first analog signal from the plurality of sampling frequencies, and Sampling means for sampling the first analog signal according to the selected one sampling frequency to generate the digital value.
 この態様によれば、学習手段が、周波数選択手段及びサンプリング手段を有しているので、第1アナログ信号を適切にサンプリングしてデジタル値を生成することができる。 According to this aspect, since the learning means includes the frequency selection means and the sampling means, the first analog signal can be appropriately sampled to generate a digital value.
 例えばメモリ、プロセッサ等を備えてなる周波数選択手段は、第1アナログ信号の波形を保存可能なサンプリング周波数である一のサンプリング周波数を複数のサンプリング周波数から選択する。尚、周波数選択手段における一のサンプリング周波数の選択は、公知のサンプリング定理に基づいて行えばよい。例えばメモリ、プロセッサ等を備えてなるサンプリング手段は、選択された一のサンプリング周波数に応じて第1アナログ信号をサンプリングしてデジタル値を生成する。 For example, the frequency selection means including a memory, a processor, and the like selects one sampling frequency, which is a sampling frequency capable of storing the waveform of the first analog signal, from a plurality of sampling frequencies. The selection of one sampling frequency in the frequency selection means may be performed based on a known sampling theorem. For example, a sampling means including a memory, a processor, etc. samples the first analog signal according to the selected one sampling frequency to generate a digital value.
 この態様では、前記一のサンプリング周波数は、前記複数のサンプリング周波数に含まれる、前記第1アナログ信号の波形を保存可能なサンプリング周波数のうち、最低のサンプリング周波数であってよい。 In this aspect, the one sampling frequency may be the lowest sampling frequency among the sampling frequencies included in the plurality of sampling frequencies and capable of storing the waveform of the first analog signal.
 このように構成すれば、第1アナログ信号がサンプリングされることにより生成されるデジタル値のデータ量を抑制することができる。この結果、例えば第1記憶手段の容量を比較的小さくすることができるので、当該リモートコントロールシステムの製造コストを抑制することができる。 With this configuration, the data amount of a digital value generated by sampling the first analog signal can be suppressed. As a result, for example, since the capacity of the first storage means can be made relatively small, the manufacturing cost of the remote control system can be suppressed.
 本発明のリモートコントロールシステムの他の態様では、前記制御手段は、前記受信手段により、前記送信されたデジタル値及び一の識別番号を示す電波が受信された際、前記受信された電波により示される一の識別番号、及び前記格納された第2周波数テーブルに基づいてクロック周波数を設定する設定手段と、前記設定されたクロック周波数に応じて前記受信された電波により示されるデジタル値をデジタル-アナログ変換して前記第2アナログ信号を生成する変換手段とを有し、前記生成された第2アナログ信号に応じた赤外線信号を発光するように前記赤外線発光手段を制御する。 In another aspect of the remote control system of the present invention, the control means is indicated by the received radio wave when the reception means receives the radio wave indicating the transmitted digital value and one identification number. Setting means for setting a clock frequency based on one identification number and the stored second frequency table, and digital-to-analog conversion of a digital value indicated by the received radio wave in accordance with the set clock frequency And converting means for generating the second analog signal, and controlling the infrared light emitting means so as to emit an infrared signal corresponding to the generated second analog signal.
 この態様によれば、制御手段が、設定手段及び変換手段を有しているので、デジタル値を適切にデジタル-アナログ変換して第2アナログ信号を生成することができる。 According to this aspect, since the control means has the setting means and the conversion means, the second analog signal can be generated by appropriately digital-analog converting the digital value.
 例えばメモリ、プロセッサ等を備えてなる設定手段は、受信手段により、送信されたデジタル値及び一の識別番号を示す電波が受信された際、受信された電波により示される一の識別番号、及び格納された第2周波数テーブルに基づいて、受信された電波により示されるデジタル値がデジタル-アナログ変換される際のクロック周波数を設定する。 For example, the setting unit including a memory, a processor, and the like stores the one identification number indicated by the received radio wave and the storage when the reception unit receives the transmitted digital value and the radio wave indicating the one identification number. Based on the second frequency table thus set, a clock frequency for digital-to-analog conversion of a digital value indicated by the received radio wave is set.
 例えばメモリ、プロセッサ等を備えてなる変換手段は、設定されたクロック周波数に応じて受信された電波により示されるデジタル値をデジタル-アナログ変換して第2アナログ信号を生成する。 For example, the conversion means including a memory, a processor, and the like generates a second analog signal by performing digital-analog conversion on the digital value indicated by the received radio wave according to the set clock frequency.
 制御手段は、生成された第2アナログ信号に応じた赤外線信号を発光するように赤外線発光手段を制御する。 The control means controls the infrared light emitting means so as to emit an infrared signal corresponding to the generated second analog signal.
 本発明のリモートコントロールシステムの他の態様では、前記第2周波数テーブルは、前記複数の識別番号と夫々一対一に対応する複数のクロック周波数を含み、前記一のサンプリング周波数と、前記一の識別番号に対応する一のクロック周波数との差分は、所定範囲内である。 In another aspect of the remote control system of the present invention, the second frequency table includes a plurality of clock frequencies corresponding one-to-one with the plurality of identification numbers, and the one sampling frequency and the one identification number. The difference from one clock frequency corresponding to is within a predetermined range.
 この態様によれば、第2周波数テーブルは、第1周波数テーブルに含まれる複数の識別番号と夫々一対一に対応する、複数のクロック周波数を含んでいる。そして、第1周波数テーブルに含まれる一のサンプリング周波数と、該一のサンプリング周波数に対応する一の識別番号に対応する、第2周波数テーブルに含まれる一のクロック周波数との差分は、所定範囲内である。 According to this aspect, the second frequency table includes a plurality of clock frequencies respectively corresponding one-to-one with the plurality of identification numbers included in the first frequency table. The difference between one sampling frequency included in the first frequency table and one clock frequency included in the second frequency table corresponding to one identification number corresponding to the one sampling frequency is within a predetermined range. It is.
 ここで、「所定範囲」は、受信装置により再現された赤外線信号の波形が、該赤外線信号を受信する装置の許容範囲となるような、一のサンプリング周波数と一のクロック周波数との差分の範囲として設定されている。 Here, the “predetermined range” is a range of a difference between one sampling frequency and one clock frequency such that the waveform of the infrared signal reproduced by the receiving device is within an allowable range of the device that receives the infrared signal. Is set as
 以上の結果、本発明に係るリモートコントロールシステムでは、電波式リモコンにより受光された赤外線信号の波形を、受信装置において適切に再現することができる。 As a result, in the remote control system according to the present invention, the waveform of the infrared signal received by the radio remote controller can be appropriately reproduced in the receiving device.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other advantages of the present invention will be clarified from the embodiments to be described below.
本発明の実施形態に係るリモートコントロールシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the remote control system which concerns on embodiment of this invention. 本発明の実施形態に係る電波式リモコンの構成を示すブロック図である。It is a block diagram which shows the structure of the electromagnetic wave type remote control which concerns on embodiment of this invention. 本発明の実施形態に係るキーテーブルの一例を示す概念図である。It is a conceptual diagram which shows an example of the key table which concerns on embodiment of this invention. 本発明の実施形態に係るサンプリング周波数テーブルの一例を示す概念図である。It is a conceptual diagram which shows an example of the sampling frequency table which concerns on embodiment of this invention. 本発明の実施形態に係る赤外線信号のデジタル化の概念を示す概念図である。It is a conceptual diagram which shows the concept of the digitization of the infrared signal which concerns on embodiment of this invention. 本発明の実施形態に係る学習波形データの一例を示す概念図である。It is a conceptual diagram which shows an example of the learning waveform data which concern on embodiment of this invention. 本発明の実施形態に係る学習済キーテーブルの一例を示す概念図である。It is a conceptual diagram which shows an example of the learned key table which concerns on embodiment of this invention. 本発明の実施形態に係る電波式リモコンにおける赤外線信号学習処理を示すフローチャートである。It is a flowchart which shows the infrared signal learning process in the electromagnetic wave type remote control which concerns on embodiment of this invention. 本発明の実施形態に係る電波式リモコンにおける通常モード処理を示すフローチャートである。It is a flowchart which shows the normal mode process in the electromagnetic wave type remote control which concerns on embodiment of this invention. 本発明の実施形態に係る電波式リモコン受信部20の構成を示すブロック図である。It is a block diagram which shows the structure of the radio wave type remote control receiver 20 which concerns on embodiment of this invention. 本発明の実施形態に係るサンプリング周波数テーブル421の一例を示す概念図である。It is a conceptual diagram which shows an example of the sampling frequency table 421 which concerns on embodiment of this invention. 本発明の実施形態に係る電波式リモコン受信部における赤外線信号出力処理を示すフローチャートである。It is a flowchart which shows the infrared signal output process in the electromagnetic wave type remote control receiver which concerns on embodiment of this invention.
 以下、本発明に係るリモートコントロールシステムの実施形態を、図1乃至図12に基づいて説明する。 Hereinafter, an embodiment of a remote control system according to the present invention will be described with reference to FIGS.
 先ず、本実施形態に係るリモートコントロールシステムの構成について、図1を参照して説明する。図1は、本実施形態に係るリモートコントロールシステム1の構成を示すブロック図である。 First, the configuration of the remote control system according to the present embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing a configuration of a remote control system 1 according to the present embodiment.
 図1において、リモートコントロールシステム1は、電波式リモコン10及び電波式リモコン受信部20を備えて構成されている。本実施形態に係る「電波式リモコン受信部20」は、本発明に係る「受信装置」の一例である。 1, the remote control system 1 includes a radio remote controller 10 and a radio remote control receiver 20. The “radio-wave remote control receiving unit 20” according to the present embodiment is an example of the “receiving device” according to the present invention.
 電波式制御機器30は、例えばテレビ、DVDプレーヤー等の電子機器であり、電波式リモコン受信部20を介して、電波式リモコン10から送信される電波により制御される。尚、電波式リモコン受信部20は、電波式制御機器30に搭載されていてもよい。赤外線リモコン501は、例えばテレビ、DVDプレーヤー等の電子機器である赤外線式制御機器502を制御可能である。 The radio wave control device 30 is an electronic device such as a television or a DVD player, and is controlled by radio waves transmitted from the radio remote controller 10 via the radio remote control receiver 20. The radio remote control receiving unit 20 may be mounted on the radio control device 30. The infrared remote controller 501 can control an infrared control device 502 which is an electronic device such as a television or a DVD player.
 (電波式リモコン)
 次に、電波式リモコン10の構成について、図2を参照して説明する。図2は、本実施形態に係る電波式リモコン10の構成を示すブロック図である。
(Radio wave remote control)
Next, the configuration of the radio remote controller 10 will be described with reference to FIG. FIG. 2 is a block diagram showing a configuration of the radio remote controller 10 according to the present embodiment.
 図2において、電波式リモコン10は、マイコン(マイクロコントローラ)101、メモリ102、キー入力部103、A/D変換部104、赤外線受光部105及びRFモジュール106を備えて構成されている。 2, the radio remote controller 10 includes a microcomputer 101, a memory 102, a key input unit 103, an A / D conversion unit 104, an infrared light receiving unit 105, and an RF module 106.
 マイコン101は、該マイコン101の動作クロックの供給、及び赤外線受光部105により受光された赤外線信号をアナログ-デジタル変換(以下、適宜“A/D変換”と称する)する際の基準クロックを生成するための水晶発振子101aを有している。 The microcomputer 101 supplies the operation clock of the microcomputer 101 and generates a reference clock for analog-digital conversion (hereinafter referred to as “A / D conversion” as appropriate) of the infrared signal received by the infrared light receiving unit 105. A crystal oscillator 101a is provided.
 マイコン101は、RFモジュール106を、例えばUART(Universal Asynchronous Receiver Transmitter)通信により制御している。 The microcomputer 101 controls the RF module 106 by, for example, UART (Universal Asynchronous Receiver Transmitter) communication.
 本実施形態に係る「マイコン101」、「メモリ102」、「キー入力部103」、「赤外線受光部105」及び「RFモジュール106」は、夫々、本発明に係る「学習手段」、「第1記憶手段」、「入力手段」、「赤外線受光手段」及び「送信手段」の一例である。 The “microcomputer 101”, “memory 102”, “key input unit 103”, “infrared light receiving unit 105”, and “RF module 106” according to the present embodiment are the “learning unit”, “first” It is an example of “storage means”, “input means”, “infrared light receiving means”, and “transmitting means”.
 メモリ102には、例えばキーテーブル411(図3参照)、サンプリング周波数テーブル412(図4参照)等が格納されている。本実施形態に係る「サンプリング周波数テーブル412」は、本発明に係る「第1周波数テーブル」の一例である。 The memory 102 stores, for example, a key table 411 (see FIG. 3), a sampling frequency table 412 (see FIG. 4), and the like. The “sampling frequency table 412” according to the present embodiment is an example of the “first frequency table” according to the present invention.
 図3に示すように、キーテーブル411には、電波式リモコン10に設けられた各入力キーのキー名、キーID及び予めキーに割り当てられたオペコードとしてのコマンドデータ又は波形データが格納されている。図3は、本実施形態に係るキーテーブルの一例を示す概念図である。尚、本実施形態では、キーID等が16進数で設定されているが、キーID等は16進数に限定されない。 As shown in FIG. 3, the key table 411 stores key names, key IDs, and command data or waveform data as operation codes assigned to the keys in advance, for each input key provided in the radio remote controller 10. . FIG. 3 is a conceptual diagram illustrating an example of a key table according to the present embodiment. In this embodiment, the key ID or the like is set in hexadecimal, but the key ID or the like is not limited to hexadecimal.
 キー入力部103が有する複数のキーのうち一のキーが押下された場合、マイコン101は、押下されたキーのキーIDに対応するコマンドデータ又は波形データをキーテーブル411から読み出し、該読み出されたコマンドデータ又は波形データを、RFモジュール106に転送して電波として送信するように、UART通信により、RFモジュール106を制御する。 When one of a plurality of keys of the key input unit 103 is pressed, the microcomputer 101 reads command data or waveform data corresponding to the key ID of the pressed key from the key table 411 and reads the data. The RF module 106 is controlled by UART communication so that the command data or waveform data transmitted to the RF module 106 is transmitted as radio waves.
 図4に示すように、サンプリング周波数テーブル412には、サンプリング周波数IDと、該サンプリング周波数IDに対応する分周比n及びm(n及びmは整数)と、サンプリング周波数fscとが格納されている。ここで、サンプリング周波数fscは、(基本周波数fclk)×n÷mとして表わされる。図4は、本実施形態に係るサンプリング周波数テーブルの一例を示す概念図である。 As shown in FIG. 4, the sampling frequency table 412 stores a sampling frequency ID, a frequency division ratio n and m (n and m are integers) corresponding to the sampling frequency ID, and a sampling frequency fsc. . Here, the sampling frequency fsc is expressed as (basic frequency fclk) × n ÷ m. FIG. 4 is a conceptual diagram showing an example of the sampling frequency table according to the present embodiment.
 本実施形態に係る「サンプリング周波数ID」は、本発明に係る「識別番号」の一例である。尚、本実施形態では、サンプリング周波数IDが16進数で設定されているが、サンプリング周波数IDは16進数に限定されない。 The “sampling frequency ID” according to the present embodiment is an example of the “identification number” according to the present invention. In this embodiment, the sampling frequency ID is set in hexadecimal, but the sampling frequency ID is not limited to hexadecimal.
 次に、電波式リモコン10に赤外線リモコン501から発砲される赤外線信号を学習させる際の、電波式リモコン10の動作について、図5乃至図7を参照して説明する。ここでは、一例として、電波式リモコン10の「FnC」というキーと対応付けて、赤外線リモコン501から発砲される赤外線信号を学習させる場合を説明する。 Next, the operation of the radio remote controller 10 when the radio remote controller 10 learns an infrared signal fired from the infrared remote controller 501 will be described with reference to FIGS. Here, as an example, a case will be described in which an infrared signal fired from the infrared remote controller 501 is learned in association with the key “FnC” of the radio remote controller 10.
 本実施形態に係る「学習」とは、キーテーブル411において、一のキーに対応している一のコマンドデータ又は波形データを書き換えることを意味する。ここでは、「FnC」というキーに対応している「0xA632」という値を書き換えることを意味する。 “Learning” according to the present embodiment means rewriting one command data or waveform data corresponding to one key in the key table 411. Here, it means that the value “0xA632” corresponding to the key “FnC” is rewritten.
 図5は、本実施形態に係る赤外線信号のデジタル化の概念を示す概念図であり、図6は、本実施形態に係る学習波形データの一例を示す概念図であり、図7は、本実施形態に係る学習済キーテーブルの一例を示す概念図である。 FIG. 5 is a conceptual diagram showing the concept of digitizing an infrared signal according to the present embodiment, FIG. 6 is a conceptual diagram showing an example of learning waveform data according to the present embodiment, and FIG. It is a conceptual diagram which shows an example of the learned key table which concerns on a form.
 例えば学習モードキー等の電波式リモコン10を学習モードに移行するためのキーが押下された後、電波式リモコン10の一のキー(ここでは、“FnC”)が押下された場合、マイコン101は、押下されたキーのキーID(ここでは、“0x32”)を判定し、該当するキーテーブル411のメモリ102内における格納場所を決定する。 For example, when a key (in this case, “FnC”) of the radio remote controller 10 is pressed after a key for shifting the radio remote controller 10 such as a learning mode key to the learning mode is pressed, the microcomputer 101 The key ID of the pressed key (here, “0x32”) is determined, and the storage location of the corresponding key table 411 in the memory 102 is determined.
 次に、赤外線受光部105により、赤外線リモコン501から発砲された赤外線信号が受光された際、マイコン101は、メモリ102に格納されているサンプリング周波数テーブル412に基づいてサンプリング周波数fscを設定し、該設定されたサンプリング周波数fscをA/D変換部104に供給する(図1中の“CLK”参照)。 Next, when the infrared signal fired from the infrared remote controller 501 is received by the infrared light receiving unit 105, the microcomputer 101 sets the sampling frequency fsc based on the sampling frequency table 412 stored in the memory 102, The set sampling frequency fsc is supplied to the A / D converter 104 (see “CLK” in FIG. 1).
 A/D変換部104では、図5に示すように、サンプリング周波数fscに応じた各サンプリングポイントにおいて、赤外線受光部105により受光された赤外線信号の波形がデジタル値(ここでは“0”又は“1”)に変換される(即ち、A/D変換される)。その後、該変換されたデジタル値が、例えば8ビットデータとして、マイコン101に送信される(図1中の“DATA”参照)。 In the A / D converter 104, as shown in FIG. 5, the waveform of the infrared signal received by the infrared receiver 105 at each sampling point corresponding to the sampling frequency fsc is a digital value (here, “0” or “1”). ”) (Ie, A / D conversion). Thereafter, the converted digital value is transmitted, for example, as 8-bit data to the microcomputer 101 (see “DATA” in FIG. 1).
 尚、デジタル値は2値に限らず、例えば8ビットデータ等であってもよい。本実施形態に係る「受光された赤外線信号」は、本発明に係る「第1アナログ信号」の一例である。 The digital value is not limited to binary, and may be 8-bit data, for example. The “received infrared signal” according to the present embodiment is an example of the “first analog signal” according to the present invention.
 次に、マイコン101は、A/D変換部104によりデジタル化された赤外線信号の波形(以下、適宜“学習波形”と称する)を、例えば図6(a)に示すようなフォーマットで、キーIDと、サンプリング周波数ID(図6(a)中の“fsID”)と、学習波形とが相互に関連付けられて、メモリ102に格納する。図5に示した赤外線信号の波形の場合、図6(b)に示すような学習波形データが、メモリ102内におけるキーID「0x32」に対応する格納場所に、「0xA632」という値に代わって格納される。サンプリング周波数IDは、ここでは「0x06」である。 Next, the microcomputer 101 converts the waveform of the infrared signal digitized by the A / D conversion unit 104 (hereinafter referred to as “learning waveform” as appropriate) into a key ID, for example, in the format shown in FIG. The sampling frequency ID (“fsID” in FIG. 6A) and the learning waveform are associated with each other and stored in the memory 102. In the case of the waveform of the infrared signal shown in FIG. 5, learning waveform data as shown in FIG. 6B is stored in the storage location corresponding to the key ID “0x32” in the memory 102 instead of the value “0xA632”. Stored. The sampling frequency ID is “0x06” here.
 マイコン101は、更に、図7に示すような学習済キーテーブル413に、学習済みのキー名(ここでは、“FnC”)とキーID(ここでは、“0x32”)と学習済みのコマンドデータ(ここでは、“0xA701”)とを格納する。 The microcomputer 101 further stores a learned key name (here, “FnC”), a key ID (here, “0x32”), and learned command data (in this case, in a learned key table 413 as shown in FIG. Here, “0xA701”) is stored.
 次に、以上のように構成された電波式リモコン10における赤外線信号学習処理について、図8のフローチャートを参照して説明する。 Next, infrared signal learning processing in the radio remote controller 10 configured as described above will be described with reference to the flowchart of FIG.
 図8において、先ず、マイコン101は、学習モードであるか否かを判定する(ステップS101)。ここで、学習モードであるか否かは、例えば、電波式リモコン10を学習モードに移行するためのキーが押下されたか否かを検出して、判定すればよい。学習モードではないと判定された場合(ステップS101:No)、マイコン101は、後述する通常モード処理を実行する。 In FIG. 8, first, the microcomputer 101 determines whether or not the learning mode is set (step S101). Here, whether or not it is in the learning mode may be determined by detecting whether or not a key for shifting the radio remote controller 10 to the learning mode is pressed, for example. When it is determined that the learning mode is not set (step S101: No), the microcomputer 101 executes a normal mode process described later.
 学習モードであると判定された場合(ステップS101:Yes)、マイコン101は、サンプリング周波数を仮決定する(ステップS102)。該仮決定されたサンプリング周波数は、例えばサンプリング周波数テーブル412のID“0x01”~“0x08”に夫々対応するサンプリング周波数のうち最も高いサンプリング周波数である(即ち、ID“0x08”に対応するサンプリング周波数である90.332031kHz)。 If it is determined that the learning mode is set (step S101: Yes), the microcomputer 101 provisionally determines the sampling frequency (step S102). The temporarily determined sampling frequency is, for example, the highest sampling frequency among sampling frequencies corresponding to IDs “0x01” to “0x08” in the sampling frequency table 412 (that is, the sampling frequency corresponding to ID “0x08”). 90.332031 kHz).
 次に、マイコン101は、学習キーの押下が検出されたか否かを判定する(ステップS103)。ここで、「学習キー」とは、赤外線リモコン501から発砲される赤外線信号の学習用に予め設定されたキーである。本実施形態では、キーテーブル411のキー名のうち、例えば「FnA」~「FnD」が学習キーに該当する。 Next, the microcomputer 101 determines whether or not the pressing of the learning key is detected (step S103). Here, the “learning key” is a key set in advance for learning an infrared signal fired from the infrared remote controller 501. In the present embodiment, among the key names in the key table 411, for example, “FnA” to “FnD” correspond to learning keys.
 学習キーの押下が検出されたか否かは、例えば押下されたキーに対応するマイコン101のプログラム内で予め割り当てられたキーIDが、学習キーに対応するキーID(ここでは、“0x30”~“0x33”)であるか否かを判定して、判定すればよい。 学習キーの押下が検出されないと判定された場合(ステップS103:No)、マイコン101は、再び、ステップS103の処理を実行する(即ち、学習キーが押下されるまで待機状態となる)。学習キーの押下が検出されたと判定された場合(ステップS103:Yes)、マイコン101は、押下された学習キーに対応するキーIDを判定し、該当するキーテーブル411のメモリ102内の格納場所を決定する(ステップS104)。 Whether or not the learning key is pressed is detected by, for example, a key ID assigned in advance in the program of the microcomputer 101 corresponding to the pressed key being a key ID corresponding to the learning key (here, “0x30” to “0”). It is sufficient to determine whether or not 0x33 ″). When it is determined that the pressing of the learning key is not detected (step S103: No), the microcomputer 101 executes the process of step S103 again (that is, the microcomputer 101 is in a standby state until the learning key is pressed). When it is determined that pressing of the learning key is detected (step S103: Yes), the microcomputer 101 determines a key ID corresponding to the pressed learning key, and stores the storage location in the memory 102 of the corresponding key table 411. Determine (step S104).
 次に、マイコン101は、赤外線リモコン501から発砲された赤外線信号が赤外線受光部105により受光されたか否かを判定する(ステップS105)。赤外線信号が受光されていないと判定された場合(ステップS105:No)、マイコン101は、再び、ステップS105の処理を実行する(即ち、赤外線信号が受光されるまで待機状態となる)。 Next, the microcomputer 101 determines whether or not an infrared signal fired from the infrared remote controller 501 has been received by the infrared light receiving unit 105 (step S105). When it is determined that the infrared signal is not received (step S105: No), the microcomputer 101 executes the process of step S105 again (that is, is in a standby state until the infrared signal is received).
 赤外線信号が受光されたと判定された場合(ステップS105:Yes)、マイコン101は、サンプリング周波数のアジャスト処理を行う(ステップS106)。ここで、サンプリング周波数のアジャスト処理について、説明する。 If it is determined that the infrared signal has been received (step S105: Yes), the microcomputer 101 performs sampling frequency adjustment processing (step S106). Here, the sampling frequency adjustment processing will be described.
 一般的に、赤外線信号には周期性があるため、最初の周期は、ステップS102の処理で仮決定されたサンプリング周波数(ここでは、ID“0x08”に対応するサンプリング周波数)でサンプリングし、次周期は、ID“0x07”に対応するサンプリング周波数でサンプリングし、次々周期は、ID“0x06”に対応するサンプリング周波数でサンプリングする、と順次サンプリング周波数を変更してサンプリングする。各サンプリング周波数でサンプリングして得られたデジタル値の列を、D8(n)、D7(n´)、D6(n´´)、D5(n´´´)・・・とする。 In general, since the infrared signal has periodicity, the first period is sampled at the sampling frequency temporarily determined in the process of step S102 (here, the sampling frequency corresponding to ID “0x08”), and the next period Are sampled at the sampling frequency corresponding to ID “0x07”, and the sampling is performed at the sampling frequency corresponding to ID “0x06” and the sampling frequency is sequentially changed. A sequence of digital values obtained by sampling at each sampling frequency is D8 (n), D7 (n ′), D6 (n ″), D5 (n ″ ′).
 サンプリング定理から、D8(n)、D7(n´)及びD6(n´´)は、元の赤外線信号を再現でき、D5(n´´´)以降は、元の赤外線信号を再現できなかったとする。この場合、マイコン101は、メモリ102に格納されているサンプリング周波数テーブル412の中で最適なサンプリング周波数として、ID“0x06”に対応するサンプリング周波数を選択する。 From the sampling theorem, D8 (n), D7 (n ′), and D6 (n ″) can reproduce the original infrared signal, and the original infrared signal cannot be reproduced after D5 (n ″). To do. In this case, the microcomputer 101 selects the sampling frequency corresponding to the ID “0x06” as the optimum sampling frequency in the sampling frequency table 412 stored in the memory 102.
 再び、図8に戻り、マイコン101は、ステップS106の処理において選択されたサンプリング周波数のIDをサンプリング周波数テーブル412から読み出し、該読みだされたサンプリング周波数のIDを、学習波形データの一部として、上記ステップS104の処理において決定されたメモリ102内の格納場所に格納する(ステップS107)。 Returning to FIG. 8 again, the microcomputer 101 reads the sampling frequency ID selected in the processing of step S106 from the sampling frequency table 412, and uses the read sampling frequency ID as a part of the learning waveform data. The data is stored in the storage location in the memory 102 determined in the process of step S104 (step S107).
 次に、マイコン101は、ステップS106の処理において選択されたサンプリング周波数でサンプリングされた学習波形を、学習波形データの一部として、上記ステップS104の処理において決定されたメモリ102内の格納場所に格納して(ステップS108)、赤外線信号学習処理を終了する。 Next, the microcomputer 101 stores the learning waveform sampled at the sampling frequency selected in step S106 as a part of the learning waveform data in the storage location in the memory 102 determined in step S104. In step S108, the infrared signal learning process is terminated.
 尚、本実施形態に係る「マイコン101」及び「A/D変換部104」は、夫々、本発明に係る「周波数選択手段」及び「サンプリング手段」の一例である。 The “microcomputer 101” and the “A / D conversion unit 104” according to the present embodiment are examples of the “frequency selection unit” and the “sampling unit” according to the present invention, respectively.
 次に、電波式リモコン10における通常モード処理について、図9のフローチャートを参照して説明する。 Next, normal mode processing in the radio remote controller 10 will be described with reference to the flowchart of FIG.
 図9において、先ず、マイコン101は、キーの押下が検出されたか否かを判定する(ステップS201)。キーの押下が検出されたか否かは、例えばキー入力部103が有する複数のキーのいずれかのキーからの信号がLowとなったか否かを判定して、判定すればよい。 In FIG. 9, first, the microcomputer 101 determines whether or not a key press is detected (step S201). Whether or not a key press is detected may be determined by determining whether or not a signal from any one of a plurality of keys of the key input unit 103 is Low, for example.
 キーの押下が検出されないと判定された場合(ステップS201:No)、マイコン101は、再び、ステップS201の処理を実行する(即ち、キーが押下されるまで待機状態となる)。 When it is determined that the key press is not detected (step S201: No), the microcomputer 101 executes the process of step S201 again (that is, enters a standby state until the key is pressed).
 キーの押下が検出されたと判定された場合(ステップS201:Yes)、マイコン101は、押下されたキーが学習済みのキーであるか否かを判定する(ステップS202)。押下されたキーが学習済みのキーであるか否かは、例えば押下されたキーに対応するマイコン101のプログラム内で予め割り当てられたキーIDが、図7に示すような学習済キーテーブル413に格納されているか否かを判定して、判定すればよい。 If it is determined that a key press is detected (step S201: Yes), the microcomputer 101 determines whether the pressed key is a learned key (step S202). Whether or not the pressed key is a learned key is determined based on whether the key ID assigned in advance in the program of the microcomputer 101 corresponding to the pressed key is stored in the learned key table 413 as shown in FIG. It may be determined by determining whether or not it is stored.
 押下されたキーが学習済キーであると判定された場合(ステップS202:Yes)、マイコン101は、学習済キーのキーIDに基づいて、メモリ102から学習波形データを読み出す(ステップS203)。他方、押下されたキーが学習済キーでないと判定された場合(ステップS202:No)、マイコン101は、押下されたキーに対応するマイコン101のプログラム内で予め割り当てられたキーIDに基づいて、キーテーブル411から割当制御コード(即ち、コマンドデータ)を読み出す(ステップS204)。 When it is determined that the pressed key is the learned key (step S202: Yes), the microcomputer 101 reads the learned waveform data from the memory 102 based on the key ID of the learned key (step S203). On the other hand, when it is determined that the pressed key is not a learned key (step S202: No), the microcomputer 101 determines based on the key ID assigned in advance in the program of the microcomputer 101 corresponding to the pressed key. An allocation control code (that is, command data) is read from the key table 411 (step S204).
 次に、マイコン101は、読み出された学習波形データ又は読み出された割当制御コードを、RFモジュール106に転送すると共に、電波式リモコン受信部20(図1参照)に対し、転送された学習波形データ又は割当制御コードを送信するように、UART通信により、RFモジュール106を制御する(ステップS206)。 Next, the microcomputer 101 transfers the read learning waveform data or the read assignment control code to the RF module 106 and also transfers the learning learned to the radio remote control receiver 20 (see FIG. 1). The RF module 106 is controlled by UART communication so as to transmit the waveform data or the assignment control code (step S206).
 尚、RFモジュール106では、転送された学習波形データ又は割当制御コードを、電波で伝送できるように、転送された学習波形データ又は割当制御コードのパケット化及び無線変調が行われる。 The RF module 106 packetizes and wirelessly modulates the transferred learning waveform data or assignment control code so that the transferred learning waveform data or assignment control code can be transmitted by radio waves.
 続いて、マイコン101は、カウントダウンタイマーをセットする(ステップS206)。このカウントダウンタイマーは、学習波形データ又は割当制御コードが、電波式リモコン受信部20に、正しく送信されたか否かを判定するためのものである。本実施形態では、カウントダウンタイマーTが、例えば100ミリ秒にセットされる。 Subsequently, the microcomputer 101 sets a countdown timer (step S206). This countdown timer is used to determine whether the learning waveform data or the allocation control code has been correctly transmitted to the radio remote control receiving unit 20. In the present embodiment, the countdown timer T is set to 100 milliseconds, for example.
 次に、マイコン101は、電波式リモコン受信部20から送信された受信完了を示す電波を受信したか否かを判定する(ステップS207)。受信完了を示す電波を受信したと判定された場合(ステップS207:Yes)、マイコン101は、通常モード処理を終了する。 Next, the microcomputer 101 determines whether or not a radio wave indicating reception completion transmitted from the radio remote control receiving unit 20 has been received (step S207). If it is determined that a radio wave indicating completion of reception has been received (step S207: Yes), the microcomputer 101 ends the normal mode process.
 受信完了を示す電波を受信していないと判定された場合(ステップS207:No)、マイコン101は、カウントダウンタイマーの値が0ミリ秒であるか否か(即ち、タイムオーバーであるか否か)を判定する(ステップS208)。 If it is determined that a radio wave indicating completion of reception has not been received (step S207: No), the microcomputer 101 determines whether the value of the countdown timer is 0 milliseconds (that is, whether the time is over). Determination is made (step S208).
 カウントダウンタイマーの値が0ミリ秒であると判定された場合(ステップS208:Yes)、マイコン101は、通常モード処理を終了する。他方、カウントダウンタイマーの値が0ミリ秒でないと判定された場合(ステップS208:No)、マイコン101は、再び、ステップS207の処理を実行する。 If it is determined that the value of the countdown timer is 0 milliseconds (step S208: Yes), the microcomputer 101 ends the normal mode process. On the other hand, when it is determined that the value of the countdown timer is not 0 millisecond (step S208: No), the microcomputer 101 executes the process of step S207 again.
 (電波式リモコン受信部)
 次に、電波式リモコン受信部20の構成について、図10を参照して説明する。図10は、本実施形態に係る電波式リモコン受信部20の構成を示すブロック図である。
(Radio wave remote control receiver)
Next, the configuration of the radio remote control receiving unit 20 will be described with reference to FIG. FIG. 10 is a block diagram showing a configuration of the radio remote control receiving unit 20 according to the present embodiment.
 図10において、電波式リモコン受信部20は、マイコン201、メモリ202、RFモジュール206、D/A変換部207及びIRブラスタ208を備えて構成されている。 In FIG. 10, the radio remote control receiver 20 includes a microcomputer 201, a memory 202, an RF module 206, a D / A converter 207, and an IR blaster 208.
 マイコン201は、該マイコン201の動作クロックの供給、及びRFモジュール206を介して受信した学習波形データをデジタル-アナログ変換(以下、適宜“D/A変換”と称する)する際の基準クロックを生成するための水晶発振子201aを有している。 The microcomputer 201 supplies the operation clock of the microcomputer 201 and generates a reference clock for digital-analog conversion (hereinafter referred to as “D / A conversion” as appropriate) of learning waveform data received via the RF module 206. A crystal oscillator 201a is provided.
 本実施形態に係る「マイコン201」、「メモリ202」、「RFモジュール206」及び「IRブラスタ208」は、夫々、本発明に係る「制御手段」、「第2記憶手段」、「受信手段」及び「赤外線発光手段」の一例である。 The “microcomputer 201”, “memory 202”, “RF module 206”, and “IR blaster 208” according to the present embodiment are respectively “control means”, “second storage means”, and “reception means” according to the present invention. And “infrared light emitting means”.
 メモリ202には、例えばサンプリング周波数テーブル421(図11参照)等が格納されている。本実施形態に係る「サンプリング周波数テーブル421」は、本発明に係る「第2周波数テーブル」の一例である。 The memory 202 stores, for example, a sampling frequency table 421 (see FIG. 11) and the like. The “sampling frequency table 421” according to the present embodiment is an example of the “second frequency table” according to the present invention.
 図11に示すように、サンプリング周波数テーブル421には、クロック周波数IDと、該クロック周波数IDに対応する分周比n及びm(n及びmは整数)と、クロック周波数fscとが格納されている。ここで、クロック周波数fscは、(基本周波数fclk)×n÷mとして表わされる。図11は、本実施形態に係るサンプリング周波数テーブル421の一例を示す概念図である。尚、本実施形態では、クロック周波数IDが16進数で設定されているが、クロック周波数IDは16進数に限定されない。 As shown in FIG. 11, the sampling frequency table 421 stores a clock frequency ID, a frequency division ratio n and m (n and m are integers) corresponding to the clock frequency ID, and a clock frequency fsc. . Here, the clock frequency fsc is expressed as (basic frequency fclk) × n ÷ m. FIG. 11 is a conceptual diagram showing an example of the sampling frequency table 421 according to the present embodiment. In this embodiment, the clock frequency ID is set in hexadecimal, but the clock frequency ID is not limited to hexadecimal.
 次に、以上のように構成された電波式リモコン受信部20における赤外線信号出力処理を図12のフローチャートを参照して説明する。 Next, infrared signal output processing in the radio remote control receiving unit 20 configured as described above will be described with reference to the flowchart of FIG.
 図12において、先ず、マイコン201は、RFモジュール206が待ち受け状態になるように、該RFモジュール206を制御する(ステップS301)。次に、マイコン201は、電波式リモコン10から送信された電波を受信したか否かを判定する(ステップS302)。電波式リモコン10から送信された電波を受信していないと判定された場合(ステップS302:No)、マイコン201は、再び、ステップS201の処理を実行する。 In FIG. 12, first, the microcomputer 201 controls the RF module 206 so that the RF module 206 is in a standby state (step S301). Next, the microcomputer 201 determines whether or not the radio wave transmitted from the radio remote controller 10 has been received (step S302). When it is determined that the radio wave transmitted from the radio remote controller 10 is not received (step S302: No), the microcomputer 201 executes the process of step S201 again.
 電波式リモコン10から送信された電波を受信したと判定された場合(ステップS302:Yes)、マイコン201は、受信された電波により示されるデータからキーIDを抽出して、メモリ202に格納する(ステップS303)。尚、この場合、マイコン201は、受信された電波からパケットを復調するように、UART通信により、RFモジュール206を制御する。 If it is determined that the radio wave transmitted from the radio remote controller 10 has been received (step S302: Yes), the microcomputer 201 extracts the key ID from the data indicated by the received radio wave and stores it in the memory 202 ( Step S303). In this case, the microcomputer 201 controls the RF module 206 by UART communication so as to demodulate the packet from the received radio wave.
 続いて、マイコン201は、受信された電波により示されるデータからサンプリング周波数IDを抽出して、メモリ202に格納する(ステップS304)。続いて、マイコン201は、受信された電波により示されるデータから学習波形データ又は割当制御コードを抽出して、メモリ202に格納する(ステップS305)。 Subsequently, the microcomputer 201 extracts the sampling frequency ID from the data indicated by the received radio wave and stores it in the memory 202 (step S304). Subsequently, the microcomputer 201 extracts learning waveform data or assignment control code from the data indicated by the received radio wave and stores it in the memory 202 (step S305).
 次に、マイコン201は、上記ステップS304の処理においてメモリ202に格納されたサンプリング周波数ID(fsID)が“0”か否かを判定する(ステップS306)。 Next, the microcomputer 201 determines whether or not the sampling frequency ID (fsID) stored in the memory 202 in the process of step S304 is “0” (step S306).
 サンプリング周波数IDが“0”であると判定された場合(ステップS306:Yes)、マイコン201は、サンプリング周波数ID(ここでは、“0”)と、サンプリング周波数テーブル421(図11参照)とに基づいて、サンプリング周波数fsを初期値(即ち、既定の周波数)に設定する(ステップS307)。 When it is determined that the sampling frequency ID is “0” (step S306: Yes), the microcomputer 201 is based on the sampling frequency ID (here, “0”) and the sampling frequency table 421 (see FIG. 11). The sampling frequency fs is set to an initial value (that is, a predetermined frequency) (step S307).
 続いて、マイコン201は、設定されたサンプリング周波数fsに応じてクロック周波数を調整して、該調整されたクロック周波数をD/A変換部207に供給する(図10中の“CLK”参照)(ステップS308)。 Subsequently, the microcomputer 201 adjusts the clock frequency according to the set sampling frequency fs and supplies the adjusted clock frequency to the D / A converter 207 (see “CLK” in FIG. 10) ( Step S308).
 続いて、マイコン201は、上記ステップS305の処理においてメモリ202に格納された割当制御コードを読み出し、D/A変換部207に送信する(図10中の“DATA”参照)(ステップS309)。D/A変換部207では、マイコン201により供給されたクロック周波数で、送信された割当制御コードに応じたアナログ信号が生成される。 Subsequently, the microcomputer 201 reads out the assignment control code stored in the memory 202 in the process of step S305 and transmits it to the D / A converter 207 (see “DATA” in FIG. 10) (step S309). In the D / A conversion unit 207, an analog signal corresponding to the transmitted assignment control code is generated at the clock frequency supplied by the microcomputer 201.
 次に、マイコン201は、D/A変換部207で生成されたアナログ信号に応じた赤外線信号を発砲するように、IRブラスタ208を制御して(ステップS313)、赤外線信号出力処理を終了する。 Next, the microcomputer 201 controls the IR blaster 208 to fire an infrared signal corresponding to the analog signal generated by the D / A converter 207 (step S313), and ends the infrared signal output process.
 他方、ステップS306の処理において、サンプリング周波数IDが“0”でないと判定された場合(ステップS306:No)、マイコン201は、サンプリング周波数IDと、サンプリング周波数テーブル421とに基づいて、サンプリング周波数テーブル421から分周比を読み出す(ステップS310)。 On the other hand, when it is determined in step S306 that the sampling frequency ID is not “0” (step S306: No), the microcomputer 201 determines that the sampling frequency table 421 is based on the sampling frequency ID and the sampling frequency table 421. The frequency division ratio is read out from (Step S310).
 続いて、マイコン201は、読み出された分周比に応じてクロック周波数を調整して、該調整されたクロック周波数をD/A変換部207に供給する(図10中の“CLK”参照)(ステップS311)。 Subsequently, the microcomputer 201 adjusts the clock frequency according to the read frequency division ratio, and supplies the adjusted clock frequency to the D / A conversion unit 207 (see “CLK” in FIG. 10). (Step S311).
 続いて、マイコン201は、上記ステップS305の処理においてメモリ202に格納された学習波形データを読み出し、D/A変換部207に送信する(図10中の“DATA”参照)(ステップS312)。D/A変換部207では、マイコン201により供給されたクロック周波数で、送信された学習波形データに応じた、本発明に係る「第2アナログ信号」の一例としてのアナログ信号が生成される。 Subsequently, the microcomputer 201 reads the learned waveform data stored in the memory 202 in the process of step S305 and transmits it to the D / A converter 207 (see “DATA” in FIG. 10) (step S312). The D / A conversion unit 207 generates an analog signal as an example of the “second analog signal” according to the present invention in accordance with the transmitted learning waveform data at the clock frequency supplied by the microcomputer 201.
 ここで、図4及び図10に示すように、サンプリング周波数テーブル412及び421の各々において、同一のサンプリング周波数IDに対応するサンプリング周波数同士の差分は、所定範囲に収まっている(具体的には例えば、±0.0018%の範囲)。このため、電波式リモコン受信部20において、電波式リモコン10により学習された赤外線信号の波形を適切に再現することができる。 Here, as shown in FIGS. 4 and 10, in each of the sampling frequency tables 412 and 421, the difference between the sampling frequencies corresponding to the same sampling frequency ID is within a predetermined range (specifically, for example, , ± 0.0018% range). For this reason, the radio remote control receiver 20 can appropriately reproduce the waveform of the infrared signal learned by the radio remote controller 10.
 尚、サンプリング周波数テーブル412及び421間のサンプリング周波数の違いは、電波式リモコン10の水晶発振子101aの性能と、電波式リモコン受信部20の水晶発振子201aの性能との違いに起因している。 Note that the difference in sampling frequency between the sampling frequency tables 412 and 421 is due to the difference between the performance of the crystal oscillator 101a of the radio remote controller 10 and the performance of the crystal oscillator 201a of the radio remote control receiver 20. .
 次に、マイコン201は、D/A変換部207で生成されたアナログ信号に応じた赤外線信号を発砲するように、IRブラスタ208を制御して(ステップS313)、赤外線信号出力処理を終了する。IRブラスタ208から発砲された赤外線信号を受信した赤外線式制御装置502は、該受信された赤外線信号に応じた動作を実行する。 Next, the microcomputer 201 controls the IR blaster 208 to fire an infrared signal corresponding to the analog signal generated by the D / A converter 207 (step S313), and ends the infrared signal output process. The infrared control device 502 that has received the infrared signal fired from the IR blaster 208 executes an operation according to the received infrared signal.
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うリモートコントロールシステムもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and a remote control system that includes such a change is also possible. Moreover, it is included in the technical scope of the present invention.
 1…リモートコントロールシステム、10…電波式リモコン、20…電波式リモコン受信部、101、201…マイコン、102、202…メモリ、103…キー入力部、104…A/D変換部、105…赤外線受光部、106、206…RFモジュール、207…D/A変換部、208…IRブラスタ、412、421…サンプリング周波数テーブル DESCRIPTION OF SYMBOLS 1 ... Remote control system, 10 ... Radio type remote control, 20 ... Radio type remote control receiving part, 101, 201 ... Microcomputer, 102, 202 ... Memory, 103 ... Key input part, 104 ... A / D conversion part, 105 ... Infrared light reception , 106, 206 ... RF module, 207 ... D / A converter, 208 ... IR blaster, 412, 421 ... sampling frequency table

Claims (5)

  1.  電波式リモートコントローラ、及び前記電波式リモートコントローラに対応する受信装置を備えるリモートコントロールシステムであって、
     前記電波式リモートコントローラは、
     赤外線信号を受光する赤外線受光手段と、
     複数の入力キーを有する入力手段と、
     複数のサンプリング周波数と、前記複数のサンプリング周波数と夫々一対一に対応する複数の識別番号とを含む第1周波数テーブルが予め格納されている第1記憶手段と、
     前記受光された赤外線信号に対応する第1アナログ信号がサンプリングされることにより生成されたデジタル値を、前記複数のサンプリング周波数のうち一のサンプリング周波数に対応する一の識別番号と共に、前記複数の入力キーのうち一の入力キーと対応付けて前記第1記憶手段に格納する学習手段と、
     前記一の入力キーが押下された際に、前記受信装置に対し、前記一の入力キーと対応付けて格納されたデジタル値及び一の識別番号を示す電波を送信する送信手段と
     を備え、
     前記受信装置は、
     電波を受信可能な受信手段と、
     赤外線信号を発光可能な赤外線発光手段と、
     前記第1周波数テーブルと対をなす第2周波数テーブルが予め格納されている第2記憶手段と、
     前記受信手段により、前記送信されたデジタル値及び一の識別番号を示す電波が受信された際、前記受信された電波により示される一の識別番号及び前記格納された第2周波数テーブルに基づいて、前記受信された電波により示されるデジタル値がデジタル-アナログ変換されることにより生成された第2アナログ信号に対応した赤外線信号を発光するように前記赤外線発光手段を制御する制御装置と
     を備えることを特徴とするリモートコントロールシステム。
    A remote control system comprising a radio remote controller and a receiver corresponding to the radio remote controller,
    The radio remote controller is
    An infrared receiving means for receiving an infrared signal;
    An input means having a plurality of input keys;
    A first storage means in which a first frequency table including a plurality of sampling frequencies and a plurality of identification numbers respectively corresponding to the plurality of sampling frequencies one-to-one is stored in advance;
    A digital value generated by sampling a first analog signal corresponding to the received infrared signal, together with one identification number corresponding to one sampling frequency among the plurality of sampling frequencies, the plurality of inputs. Learning means stored in the first storage means in association with one input key of the keys;
    Transmission means for transmitting a radio wave indicating a digital value and one identification number stored in association with the one input key to the receiving device when the one input key is pressed;
    The receiving device is:
    A receiving means capable of receiving radio waves;
    An infrared light emitting means capable of emitting an infrared signal;
    A second storage means in which a second frequency table paired with the first frequency table is stored in advance;
    When a radio wave indicating the transmitted digital value and one identification number is received by the receiving means, based on the one identification number indicated by the received radio wave and the stored second frequency table, A controller for controlling the infrared light emitting means to emit an infrared signal corresponding to a second analog signal generated by digital-to-analog conversion of a digital value indicated by the received radio wave. Features a remote control system.
  2.  前記学習手段は、
     前記第1アナログ信号の波形を保存可能なサンプリング周波数である前記一のサンプリング周波数を前記複数のサンプリング周波数から選択する周波数選択手段と、
     前記選択された一のサンプリング周波数に応じて前記第1アナログ信号をサンプリングして前記デジタル値を生成するサンプリング手段と
     を有することを特徴とする請求項1に記載のリモートコントロールシステム。
    The learning means includes
    Frequency selection means for selecting the one sampling frequency, which is a sampling frequency capable of storing the waveform of the first analog signal, from the plurality of sampling frequencies;
    The remote control system according to claim 1, further comprising sampling means for sampling the first analog signal according to the selected one sampling frequency to generate the digital value.
  3.  前記一のサンプリング周波数は、前記複数のサンプリング周波数に含まれる、前記第1アナログ信号の波形を保存可能なサンプリング周波数のうち、最低のサンプリング周波数であることを特徴とする請求項2に記載のリモートコントロールシステム。 3. The remote according to claim 2, wherein the one sampling frequency is a lowest sampling frequency among sampling frequencies included in the plurality of sampling frequencies and capable of storing the waveform of the first analog signal. Control system.
  4.  前記制御手段は、
     前記受信手段により、前記送信されたデジタル値及び一の識別番号を示す電波が受信された際、
     前記受信された電波により示される一の識別番号、及び前記格納された第2周波数テーブルに基づいてクロック周波数を設定する設定手段と、
     前記設定されたクロック周波数に応じて前記受信された電波により示されるデジタル値をデジタル-アナログ変換して前記第2アナログ信号を生成する変換手段と
     を有し、
     前記生成された第2アナログ信号に応じた赤外線信号を発光するように前記赤外線発光手段を制御する
     ことを特徴とする請求項1に記載のリモートコントロールシステム。
    The control means includes
    When the radio wave indicating the transmitted digital value and one identification number is received by the receiving means,
    Setting means for setting a clock frequency based on one identification number indicated by the received radio wave and the stored second frequency table;
    Conversion means for converting the digital value indicated by the received radio wave in accordance with the set clock frequency into digital-analog to generate the second analog signal;
    The remote control system according to claim 1, wherein the infrared light emitting unit is controlled to emit an infrared signal corresponding to the generated second analog signal.
  5.  前記第2周波数テーブルは、前記複数の識別番号と夫々一対一に対応する複数のクロック周波数を含み、
     前記一のサンプリング周波数と、前記一の識別番号に対応する一のクロック周波数との差分は、所定範囲内である
     ことを特徴とする請求項1に記載のリモートコントロールシステム。
    The second frequency table includes a plurality of clock frequencies corresponding one-to-one with the plurality of identification numbers,
    The remote control system according to claim 1, wherein the difference between the one sampling frequency and the one clock frequency corresponding to the one identification number is within a predetermined range.
PCT/JP2009/068899 2009-11-05 2009-11-05 Remote control system WO2011055439A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/068899 WO2011055439A1 (en) 2009-11-05 2009-11-05 Remote control system
JP2011539224A JPWO2011055439A1 (en) 2009-11-05 2009-11-05 Remote control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068899 WO2011055439A1 (en) 2009-11-05 2009-11-05 Remote control system

Publications (1)

Publication Number Publication Date
WO2011055439A1 true WO2011055439A1 (en) 2011-05-12

Family

ID=43969684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068899 WO2011055439A1 (en) 2009-11-05 2009-11-05 Remote control system

Country Status (2)

Country Link
JP (1) JPWO2011055439A1 (en)
WO (1) WO2011055439A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023449A1 (en) * 2014-08-15 2016-02-18 恬家(上海)信息科技有限公司 Infrared learning method by employing a/d method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004147237A (en) * 2002-10-28 2004-05-20 Sharp Corp Radio transmission system
JP2004241925A (en) * 2003-02-04 2004-08-26 Sony Corp Signal transmitting method, bidirectional communication system, display device, and base device
JP2007150410A (en) * 2005-11-24 2007-06-14 Funai Electric Co Ltd Learning remote control unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046801A (en) * 2001-07-31 2003-02-14 Kenwood Corp Remote controller
JP2003219486A (en) * 2002-01-22 2003-07-31 Victor Co Of Japan Ltd Video-audio receiver, controlled apparatus and remote control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004147237A (en) * 2002-10-28 2004-05-20 Sharp Corp Radio transmission system
JP2004241925A (en) * 2003-02-04 2004-08-26 Sony Corp Signal transmitting method, bidirectional communication system, display device, and base device
JP2007150410A (en) * 2005-11-24 2007-06-14 Funai Electric Co Ltd Learning remote control unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016023449A1 (en) * 2014-08-15 2016-02-18 恬家(上海)信息科技有限公司 Infrared learning method by employing a/d method

Also Published As

Publication number Publication date
JPWO2011055439A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
CN101286265B (en) Remote controller, electronic apparatus and remote control system
US6529556B1 (en) Remote control apparatus and method
EP0124331B1 (en) Remote control transmitter arrangement for one or more television devices
DE69926208D1 (en) DATA TRANSMITTER, DATA RECEIVER, CONTROL TRANSMISSION UNIT, CONTROL TRANSMISSION PROCEDURE, AND PROGRAM RECORDING MEDIUM
JPH08314831A (en) Equipment and method for infrared communication
CN101589414A (en) Universal remote control programming
CN101589413A (en) Universal remote control programming
JP2004532585A (en) Economical extension of operating distance of RF remote link receiving IR remote control with different IR carrier frequency
CN101114859A (en) Digital cordless microphone
WO2011055439A1 (en) Remote control system
KR19980070723A (en) Remote control transmitter, information transmission system and remote control transmission method using the same
US20060033636A1 (en) Controlling an infrared responsive device
KR20060084884A (en) Apparatus and method for controlling remote controller signal to unite in digital broadcasting receiver
US20020130802A1 (en) Combination high frequency circuit/infrared transmission circuit
JP4543792B2 (en) Peripheral equipment control device
JPH11340913A (en) Remote control system and remote control transmitter used for the system
JP2003174685A (en) Remote control transmitter and transmission system employing the same
JP5327679B2 (en) Remote control device
JPH06311563A (en) Remote control system
JP3606378B2 (en) Video wireless transmission / reception system
JP2009124581A (en) Wireless control apparatus
JPH11168778A (en) Remote controller
KR101074922B1 (en) Remocon key code setting receiver and the method
JPH0514531A (en) Communication system
KR0183680B1 (en) Time setting method and remote control apparatus performing this

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851091

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011539224

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851091

Country of ref document: EP

Kind code of ref document: A1