WO2011054998A2 - Alteration of the expression of the orthologous della-u protein in order to alter the growth pattern of plants and the metabolite content of the fruit - Google Patents

Alteration of the expression of the orthologous della-u protein in order to alter the growth pattern of plants and the metabolite content of the fruit Download PDF

Info

Publication number
WO2011054998A2
WO2011054998A2 PCT/ES2010/070719 ES2010070719W WO2011054998A2 WO 2011054998 A2 WO2011054998 A2 WO 2011054998A2 ES 2010070719 W ES2010070719 W ES 2010070719W WO 2011054998 A2 WO2011054998 A2 WO 2011054998A2
Authority
WO
WIPO (PCT)
Prior art keywords
genetically modified
plant
sidella
della
protein
Prior art date
Application number
PCT/ES2010/070719
Other languages
Spanish (es)
French (fr)
Other versions
WO2011054998A3 (en
Inventor
Antonio Granell Richart
José Luís RAMBLA NEBOT
Cristina MARTI IBAÑEZ
Abdel Bendahmane
Florence Piron
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad Politécnica De Valencia (Upv)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad Politécnica De Valencia (Upv) filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2011054998A2 publication Critical patent/WO2011054998A2/en
Publication of WO2011054998A3 publication Critical patent/WO2011054998A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention describes new functions of the SIDELLA gene of Solanum lycopersicum as well as its uses and mutant versions of the gene associated with new phenotypes that involve the modification of the growth habit and metabolism of the plants that carry these alterations resulting in an alteration in the meta bo lites content of tomato fruit.
  • the final architecture of a plant depends on the number, size and size of the constituent elements (leaves, internodes, flowers and fruits) and the way in which they are inserted into the general body of the plant. Even more important than the above is the growth habit.
  • the productivity of a plant is affected by genetic, physiological and environmental factors, but the architecture and growth habit are key determinants.
  • the tomato plant (Solanum lycopersicum) is from the Solanaceae family
  • the dwarf shrub varieties are a subgroup within the determined varieties characterized by their smaller size and for producing fruits of the "cherry” or "cherry” type.
  • the intensity of the flavor properties of tomato fruit is determined by the amount of sugar (mainly fructose and glucose), by the content of organic acids (mainly citric and malic) and the composition of volatile compounds.
  • sugar mainly fructose and glucose
  • organic acids mainly citric and malic
  • the difference in flavors between varieties is explained by the difference in the quantitative proportions of volatile substances, many of which develop during ripening.
  • Patent application ES 2235335 T3 describes a method of manipulating the aroma of tomato products, which consists of incubating tomato pieces with an enzyme with alcohol dehydrogenase activity and an alcohol dehydrogenase cofactor; as well as the products obtained by this procedure.
  • Sympodial growth plants have a peculiar lateral growth type in which the apical meristem ends (aborts or differs into an inflorescent flower / meristem) but the plant continues to grow from the axillary meristem normally located below the upper leaf, which is repeated after a few leaf nodes, causing continued apical growth.
  • Tomato plants exhibit a sympodial growth pattern characterized by alternating buds of vegetative and reproductive organs. This pattern is established after an initial period in which only vegetative organs are produced (stems / between nodes and leaves in the aerial part) which in the case of tomato involves the production of about 5 to 20 leaf nodes that ends the formation , in the apical meristem of the main outbreak, of an inflorescent meristem that supposes the termination of said main symposium. The growth of the plant does not stop there, but continues from the axillary bud located in the axilla of the leaf closest to that new inflorescence.
  • tomato plants that carry the recessive mutation self-pruning sp (sp / sp) in homozigosis only produce two or three sympodial shoots after the first inflorescence, each consisting of 2 or 3 leaves and an inflorescence, after which they produce 2 inflorescences in a row and growth ceases.
  • This mutation confers a "determined" growth habit that, in addition to affecting the size of the plant, results in fruit ripening and ripening more concentrated over time than occurs in indeterminate growth plants (Stevens and Rick, 1986; Yeager , 1927).
  • SP self-pruning locus
  • CEN Centroradialis
  • TTL1 Terminal Flower
  • SP belongs to a small gene family of six members (SP, SP21, SP3D, SP5G, SP6A, and SP9D) distributed in five chromosomes (Carme l-Goren et al., 2003), although the cause of the sp mutation that is on chromosome six is the only one that can control the passage between determined and indeterminate growth habit.
  • SP paralogs in tomato are not very characterized but they seem to affect the expression of the determined phenotype by modifying the moment at which the plant is determined (case of intrusions of SP9D and SP5G of pennelli in M82 (Carmel-Goren et al., 2003 ; Eshed and Zam ⁇ r, 1995; Jones et al., 2007)
  • the self-pruning mutation has been introduced in most of the industry tomato varieties, since it favors mechanical harvesting (Hanna et ai, 1966; Friedland and Barton, 1975; Stevens and Rick, 1986; Yeager, 1927) and there are no alternative methods or that modulate the expression of SP.
  • DELLA proteins have been described as key elements that would integrate both external and mediated signals by hormones, adapting plant growth to environmental needs and conditions. DELLA proteins are members of a GRAS subfamily of regulators that appear to act at the nuclear level as repressors of development and growth processes.
  • DELLA proteins a family of five members in Arabidopsis, but only one in rice
  • the blockade in the growth exerted by DELLA proteins would be eliminated by targeted degradation of the DELLA protein (Dill et al., 2001; Dill and Sun, 2001; Lee et al., 2002; Peng et al., 1997; Richards et al., 2001; Wen and Chang, 2002).
  • the mechanism of action underlying the effect of inducing the growth of phytohormones gibberellins would be based on the fact that after the union of GA to the GID receptor, a conformational change of the protein would take place that would favor its interaction with DELLA and increase its affinity to be degraded by the 26S proteasome. (Murase et al, 2007; Ueguchi-Tanaka et al, 2007; 2008).
  • DELLA route integrates the floral transition in response to light, ethylene and auxins among others and would act affecting the stability of DELLA proteins, their transcription or indirectly affecting the levels of GAs (Achard et al., 2006; Achard et al., 2003; Fu and Harberd, 2003; Oh et al., 2007).
  • the present invention provides genetically modified plants with the expression of DELLA proteins or altered orthologue thus producing an inhibition in the repression of the development and growth of plants in comparison to corresponding plants not genetically modified. Due to the alteration in the expression of DELLA, by silencing or mutation, genetically modified plants will see their sypodial growth pattern and / or the content of metabolites and / or volatile substances in the fruit altered.
  • the present invention also relates to the fruits and seeds of genetically modified plants as well as the method used to obtain said plants.
  • DELLA is regulated by the described SIDELLA gene and has been used by the authors of the present application (Marti ef al. 2007), however the regulation of its expression to alter the growth pattern and / or to alter the content of the metabolites of the fruits are new functions, as well as their applications.
  • An orthologous gene is known (similar to belonging to two species that have a common ancestor) of the SIDELLA gene, more specifically it is the GAI Arabidopsis tomato gene (Solanum lycopersicum).
  • the GAI gene has been cloned and mutated and the expression of such genes in plants affects their growth, specifically achieving dwarf plants that are useful for reducing the losses that They take place during harvest storage.
  • SIDELLA gene in tomatoes is important in determining the number of symposium repeats, and therefore the size and number of flowers / fruits on the main axis. This should affect the total productivity (number and size of fruits produced).
  • modifications in this gene affect the metabolic content of the fruits as exemplified by the content of volatile compounds associated with the aroma of the fruit.
  • a new function described here is relevant in plants whose main axis growth stops with the first flower to continue growing from the axillary bud (called a simpodial) below the new flower.
  • the new function has been revealed by the authors of the present application in studies with the SIDELLA gene.
  • the expected growth phenotype that is reflected in the length of internodes is observed.
  • the important thing about the present invention is that tomato plants that carry the sp mutation and therefore have a certain growth, that is to say, the growth of the main axis stops after a small number of 2 or 3 simpodial repetitions (metamer consisting for example in 2 leaves and one inflorescence) after the first flower, increase the number of sypodia or even become undetermined when the expression of SIDELLA in transgenic plants is blocked with different efficiency. This occurs without significantly modifying the flowering time and suggests an alternative way to sp to alter the growth habit of the tomato and by extension of other plants of similar growth (i.e. simpodial).
  • the architecture of the plant and the growth habit are modified by acting at the DELLA level (or at the level of orthologous proteins) ie by transgenesis by altering the level of SIDELLA (or orthologous gene) or by introducing mutations in the SIDELLA gene (or orthologous gene) that alter the growth pattern.
  • object of the present invention is the production and identification of mutant versions in that gene (or orthologous gene) that provide various intensities of the phenotype of interest.
  • the results of the present application have been obtained using tomato (Solanum lycopersicum) as an example, but they may be useful for other plants of specific or non-sypodial growth.
  • a method to associate the character with the mutations is also described, thus opening the possibility of identifying new mutants in the gene that give different versions of the phenotype that can adapt to what the producer needs.
  • silencing and mutations are of commercial and / or agronomic interest. It can be very important for those interested in altering the number of symposia buds in plants with that type of growth, including but not limited to solaneaceae, cucurbitaceae such as melon, woody, trees, and obviously ornamental as orchids, among other plants of interest. .
  • the first object of the invention relates to genetically modified plants with the altered expression of the DELLA protein or ortholog characterized in that the alteration in the expression of the DELLA protein or ortholog produces an inhibition in the repression of the development and growth of the plants in comparison to corresponding plants not genetically modified.
  • the alteration in the expression of DELLA of the object of the invention is obtained by silencing the SIDELLA or ortholog gene or by mutation of the SIDELLA or ortholog gene.
  • silencing of the SIDELLA or ortholog gene is obtained by employing a gene construct that is based on an antisense copy of the SIDELLA or ortholog gene controlled by the 2XCaMV35S promoter.
  • the mutation in the genetic sequence of SIDELLA is due to the addition and / or insertion and / or deletion and / or substitution of one or more nucleotides of the SIDELLA or orthologous gene, namely, the mutation consists of the nucleotide replacement guanine with adenine in nucleotide 458, called the TILLING 1 mutation (SEQ ID No.3) or the replacement of the guanine nucleotide with adenine in nucleotide 1498, called the TILLING 2 mutation (SEQ ID No.5) or the replacement of the cytosine nucleotide with thymine in nucleotide 994, called the TILLING 3 mutation (SEQ ID No.7) or the replacement of the cytosine nucleotide with thymine in nucleotide 661, called the TILLING 4 mutation (SEQ ID No.9).
  • the genetically modified plants of the present object of the invention exhibit a sypodi
  • genetically modified plants with the altered expression of the DELLA protein or ortholog of the present object of the invention are characterized in that the content of metabolites and / or volatile substances associated with the aroma of the fruits is increased and / or decreased with respect to to corresponding plants not genetically modified.
  • the increase in metabolite content refers in a particular embodiment to the increase in sucrose, tyrosine, asparagine, isoleucine, threonine, proline, pyroglutamic acid and myo-inositol of an order of 100-400%, and / or that of fructose and glucose in the order of 10-30%, and / or that of volatile substances associated with the aroma of the fruits ⁇ -2-hexenal, 1-pente-3-one and P.
  • the decrease in the content of volatile substances associated with the aroma of the fruits refers to a decrease in 3- methylbutanol, 1-nitro-2-phenylethane, 2-phenylethanol, phenylacetaldehyde and 2-isobutylthiazole in an order of 80-90%, and / or that of volatile substances not associated with the aroma of fruits geranylacetone, terpineol, linalool, benzyl alcohol, eugenol, benzylnitrile, 2-methyl-1-butanol and 2-methyl-1-propanol in an order of 50-100% with respect to corresponding plants not genetically modified.
  • the genetically modified plants of the present object of the invention are plants with a commercial and / or agricultural interest and are selected from the group of Solanaceae, Cucurbitaceae, Orchids, Woody, among other plants of interest.
  • the plants of the invention belong to the Solanaceae family, being specifically a Solanum lycopersicum tomato plant.
  • a second object of the invention relates to the fruits obtained from genetically modified plants according to the previous object of the invention with a content of certain metabolites and / or volatile substances associated with the increased aroma and / or the content of other meta balls and / or substances volatile associated with the diminished aroma with respect to the fruits of corresponding plants not genetically modified.
  • the increase in the metabolite content refers in a particular embodiment to the increase in sucrose, tyrosine, asparagine, isoleucine, threonine, proline, pyroglutamic acid and myo-inositol of an order of 100-400%, and / or that of fructose and glucose in the order of 10-30%, and / or that of the volatile substances associated with the aroma of the fruits ⁇ -2-hexenal, 1-penten-3- one and P.
  • the decrease in the content of volatile substances associated with the aroma of the fruits refers to a decrease in 3- methylbutanol, 1-nitro-2-phenylethane, 2-phenylethanol, phenylacetaldehyde and 2-isobutylthiazole in an order of 80-90%, and / or that of volatile substances not associated with the aroma of geranilacetone, terpineol, linalool, benzyl alcohol, eugenol, benzylnitrile, 2-methyl-1-butanol and 2-methyl-1-propanol in a order of! 50-100% with respect to corresponding plants not genetically modified.
  • Another object of the invention relates to the seeds of genetically modified plants according to the first object of the invention, in which the expression of the proteins D E L L A u o rtó I og a is found in Ite rad a.
  • Another object of the invention relates to the method of obtaining genetically modified plants with the altered expression of the DELLA or orthologous protein comprising the following steps: a) transform the genome of a plant cell, regenerate the plant from the cell of stage a), obtain seeds of the transformed plant containing the modified genome and, grow at least one of the seeds of stage c ) to obtain one that contains the altered expression of the DELLA protein or ortholog.
  • step a) of the present object of the invention consists of a directed mutagenesis whose realization is obtained by silencing the SIDELLA gene using the asDELLA gene construct that is based on an antisense copy of the SIDELLA gene controlled by the 2XCaMV35S promoter.
  • step a) of the present object of the invention consists of a directed mutagenesis whose embodiment consists in modifying the native sequence of the SIDELLA gene to the sequence of the mutated SIDELLA gene selected from the group of mutations called TILLING 1 (SEQ ID No 3 ), TILLING 2 (SEQ ID No 5), TILLING 3 (SEQ ID No 7) and / or TILLING 4 (SEQ ID No 9).
  • step b) is optional and in another embodiment said transformation is mediated by Agrobacterium.
  • step a) consists of an non-directed mutagenesis comprising the following stages: i. expose the plant to a mutagenic agent, preferably the tilmetanesulfonato extract the DNA from each of the families and combine following a 3D strategy, track the SIDELLA gene in each family by nested PCR and universal primers,
  • step (iv) of the present embodiment 4 allelic forms of SIDELLA were selected, namely those named: TILLING 1 (SEQ ID No 3), TILLING 2 (SEQ ID No 5), TILLING 3 (SEQ ID No 7) , TILLING 4 (SEQ ID No 9) ..
  • Figure 1 Structure of the gene construct introduced in tomato to decrease the levels of SIDELLA in transgenic plants.
  • CaMV poly (A) + CaMV polyadenylation sequence.
  • Nptll gene that confers resistance to kanamycin, with the promoter and terminator of nopaiin synthetase (pnos and tnos).
  • FIG. 2 Effect of the strategy on SIDELLA levels in asDELLA transgenic plants. Analysis of the expression levels of asSIDELLA and SIDELLA in internodes of transgenic and wild plants by semi-Peruvian RT-PCR. The figure confirms the expression of asSIDELLA in the transgenic lines (lines 5A, 24B and 7G). At the same time the decrease of the endogenous levels of SIDELLA in these same lines is checked in comparison with a wild plant (wt). As a load control, the RT-PCR reaction for actin was used.
  • Figure 3 Effect of the strategy on the growth and production of sympodial outbreaks in asDELLA transgenic plants.
  • A Effect on the total height of the plants measured after 90 days.
  • B Effect on growth, number of internodes and their size over 120 days.
  • Figures 4-7 (A) Nucleotide sequences and (B) primary structure of the proteins corresponding to the mutated forms of SIDELLA identified by TILLING: Mutante TILLING 1 (figure 4), Mu ⁇ a ni e TILLING 2 (figure 5), Muiá ⁇ e TILLING 3 (figure 6) and Mu ⁇ a ni e TUILLING 4 (figure 7), where the muted nucleolides and amino acids are marked in boldness and underlined by the sequence of culinary SIDELLA determined M82.
  • FIG 4 In the TILLING 1 mutant (A) at the nucleotide level there is a substitution of guanine for adenine (at nucleotide 458) and (B) at the amino acid level there is a substitution of alanine for threonine (at amino acid 153).
  • Figure 5 In the TILLING 2 mutant (A) at the nucleotide level there is a substitution of guanine for adenine (in nucleotide 1498) and (B) at the amino acid level there is a substitution of glutamine for lysine (at amino acid 500).
  • FIG 6 In the MILLING TILLING 3 (A) at the nucleotide level there is a substitution of cytosine for you mine (at nucleotide 994) and (B) at the amino acid level there is a substitution of leucine for phenylalanine (at amino acid 332).
  • Figure 7 In the MILLING TILLING 4 (A) at the nucleotide level there is a substitution of cytosine for imimine (in nucleotide 661) and (B) at the amino acid level there is a substitution of leucine for phenylalanine (at amino acid 221).
  • FIGS 8-11 Stacking of the different TILLING mutants characterized and location of the mutation in the primary structure of the protein compared to other DELLA proteins of other plants to see the conservation degree of the affected amino acid. Except in the TILLING 1 mutant, all mutations occur in highly conserved regions of the protein.
  • Figure 12 M 82 wild plant phenotype compared to TILLING plants with point mutation in homozigosis or he ⁇ erozigosis in SIDELLA. An increase in the height of the mutant plants is observed, which present greater biomass and greater number of fruits.
  • the term "sypodial index” is the number of nodes (leaves) on the main bud until the inflorescence.
  • the "growth habit” (plant ha bit), also called growth pattern, according to the present invention is that presented by plants due to the composition, branching pattern, development and texture as well as the arrangement in space of the modular units consisting of leaves, internodes and flowers (fruits).
  • the "simpodial growth” is that presented by plants such as tomatoes, cantaloupe, many cucurbitaceae, legumes and orchids, etc., and which is characterized in that the growth of the main axis of the plant stops with the formation of the first inflorescence, to continue growing by differentiation and elongation from the differentiation of the bud corresponding to the bud located on the leaf just below that inflorescence. That axillary bud produces a number of leaves and a new terminal flower, to resume growth from the axillary bud below that new inflorescence and so on.
  • sypodial growth plants are the Solanaceae, Cucurbitaceae, Orchids, Woody, among other interest groups.
  • Determined growth is the growth habit characterized by the production of a limited number of sypodial shoots on the main axis, after the first flower, resulting in a plant of smaller height.
  • it is achieved by mutation in the self-pruning gene in homozigosis.
  • “semi-determined growth” is the habit that plants with certain growth have, in which they produce a larger number of symposia buds than the reference genotype under certain conditions.
  • the "indeterminate growth” is the one presented by many species (all wild ones related to tomato and many cultivated) of tomato and typical of all the "vineyards", it is characterized by a simpodial growth, which is repeated indefinitely on the main axis producing new shoots with each new terminal inflorescence.
  • transgenesis in the present invention, is the process by which a DNA sequence containing at least one region not present in the genome of the initial organism is introduced.
  • Genetically modified plant refers, in the present invention, to plants whose genetic material has been deliberately modified in order to modify the expression of the DELLA protein or ortholog.
  • the genetic modification can be carried out both by means of a directed mutagenesis and through non-directed mutations.
  • directed mutagenesis refers to a specific genetic modification, in which a nucleotide chain in the genome of a plant cell is specifically modified.
  • Non-directed mutagenesis refers to the mutagenesis of the cellular genome without directing the mutation, that is, it is not known in advance what mutation is going to be generated, where or the effect that said mutation will have on the cell and / or plant.
  • corresponding non-genetically modified plant (wild plant) refers in the present invention to plants whose genetic material has not been modified.
  • Orthologous gene in the present invention refers to homologous genes in different species that encode “orthologous proteins” that catalyze the same reaction (ie, with the same function) in plants.
  • new functions and uses of the SIDELLA gene of So ⁇ anum lycopersicum are described together with mutant versions of the gene associated with the new phenotypes. These new genotypic characters include the modification of growth habit and metabolism. Genetically modified plants in SIDELLA or allelic mutant forms of this protein can be used to increase the number of sypodial repeats in a given genetic background with the corresponding increase in the number of inflorescences and fruits, and on the other hand produce fruits with a metabolic content. Modified ico, including that of the volatiles associated with the aroma.
  • the present invention is related to the genetic control of growth and more specifically to the growth habit that determines the determined or non-determined growth of a plant. More specifically, this invention is related to the use of the SIDELLA gene to modify that aspect of development through genetic engineering and TILLING strategies followed by marker-assisted improvement using the mutant forms of this gene.
  • a first aspect of this invention is based on the identification of a new function of the DELLA protein not previously described and which provides a way to alter the determined growth habit of plants (in our case, tomato plants carrying the mutation sp / sp).
  • This way of altering the growth habit in tomato is to use an asDELLA construction to decrease levels endogenous to the SIDELLA regulator in transgenic plants.
  • the transgenic plants thus produced have a semi-determined to indeterminate plant phenotype with a greater production of flowers and fruits on the main axis, without significantly altering the flowering time.
  • Another aspect of the present invention and since DELLA proteins degrade after treatment with the gibberellin hormone GAs (Dill et al. 2001; 2004; Gubler et al.
  • the new SIDELLA function can be conferred by transgenesis analogously to that resulting from the use of an asDELLA strategy as described in example 1 or by over-expression of mutated versions, including those of function gain (gai type suppression in asDELLA or related).
  • a method is proposed to identify mutants, derivatives, variants and alleles of that protein from mutagenized plants and that result in new functional characteristics that modify in different degree the number and composition of the simpodial repeats, thus producing plants. with a number of flowers and size adapted to the needs.
  • the changes in the protein may be one or more of the following: addition, insertion, deletion or substitution of one or more nucleotides that results in changes in the amino acid sequence or not.
  • the present invention also provides the nucleoacidic construct or vector comprising a promoter from which the SIDELLA sequence is expressed in antisense orientation.
  • the construction or vector is designed for expression in a cell, especially plant type. Said plant cell expressing that antisense construct is also included in this invention.
  • This construction when inserted into the genome of the plant directs the expression of the complementary mRNA chain of SIDELLA causing the reduction of the levels of the endogenously expressed coding chain. This decrease can also be obtained by other methods such as RNAi, micro R NA, etc.
  • Said construction or vector containing the SIDELLA in antisense, RNAi, etc. will generally contain a promoter or other regulatory sequence.
  • the present invention can be carried out in any plant, especially of simpodial growth, apart from tomato (ie cucurbitaceae or orchids, etc.) in which the SIDELLA ortholog can be isolated and identified by PCR with preserved oligos and carrying out a similar approach.
  • nucleic acid libraries can be tracked with heterologous probes. People skilled in the art can carry out these procedures without problems and carry out genetic constructions and transformation in a similar way to obtain an alteration of the phenotype described in those plants.
  • mutant sequences of SIDELLA are presented that confer alterations in the new function described and that result in tomato plants with a greater number of symposia than the variety provided by the genetic background and with a greater number of inflorescences and alteration of the symposium composition.
  • DELLA or orthologous protein
  • DELLA or orthologous protein
  • SIDELLA or orthologous gene
  • the organoleptic, nutritional and health characteristics of the fruits are a direct consequence of the content in a series of molecules present in it.
  • the flavor and aroma of tomato is related to the concentration and relative amounts of sugars (mainly glucose and fructose) and organic acids (malic, citric) and volatile compounds that contribute to the aroma (at least 14 volatile compounds).
  • sugars mainly glucose and fructose
  • organic acids malic, citric
  • volatile compounds that contribute to the aroma (at least 14 volatile compounds).
  • the flavor and aroma are characters often forgotten in the most recent improvement programs, where the emphasis has been on productivity, long life of the fruits, etc., with the consequent social demand for fruits with better or different flavors.
  • the present patent it is shown that it is possible to modify the relative content of volatile compounds, sugars and amino acids in tomato fruit acting at the level of SIDELLA.
  • the method consists of using natural or generated variability through mutagens and identifying mutated variants by TILLING or similar.
  • TILLING Targeting Induced Local Lesions In Genomes
  • This technology provides a way to obtain mutants in a gene and in our case it was used to find mutants in SIDELLA, since we knew that TILLING combines mutagenesis protocols with POR and a method for detecting DNA polymorphisms.
  • any cell, especially plant that contains the construction directed to modify the levels of expression of DELLA or that contains specific mutants in DELLA affected in this new function.
  • the present invention also comprises the plant comprising said carrier cell of the construction or mutation in SIDELLA.
  • the present invention provides any clone of said plant, self-fertilizing or hybrid seed and its descendants and any part thereof as cuttings, seeds, etc. that can be used to propagate such material.
  • the present invention also provides a method for influencing said new phenotype, such as treatment with GAs or activators or inhibitors of its synthesis or mechanism of action.
  • the present invention also provides a method for using function gain mutations in DELLA (deletions in the gal mutant type protein) to alter the phenotype in the opposite direction (decrease the number of sypodia or flowers by simpodial repetition).
  • a method is provided to increase the number of symposia by maintaining (specific mutants or higher levels of repression) or not (high level of repression or null mutants) the determined character and the number of flowers per symposium, which affects in the number of fruits.
  • the decrease in DELLA levels or the expression of mutated forms of DELLA were made induciblely or by specific promoters.
  • constructions such as those indicated above or mutated versions such as those described controlled by a specific or inducible promoter. This would affect the number of symposia and the composition of the fruits in a more directed way
  • Example 1 Increase in the number of simpodial repetitions by inhibiting the expression levels of the SIDELLA gene in transgenic tomato plants.
  • the coding sequence of the SIDELLA gene (SEQ ID No. 1 and 2) was placed in antisense orientation under the control of the constitutive 35S promoter of the cauliflower mosaic virus (CaMV) (see scheme Figure 1) (The SIDELLA cDNA sequence It has already been published and used in this construction), and introduced into tomato plants (Solanum lycopersicum UC82 sp / sp) by Agrobacferium-mediated transformation following established procedures (Ellul et al. 2003).
  • the UC82 (sp / sp) plants that carry the self-pruning mutation in homozigosis have the characteristic determined habit, forming the first inflorescence after about 10 leaves and finishing their growth after producing 3 metamers. sypodial,
  • the transgenic lines of tomato UC82 (sp / sp) carrying the asDELLA construction show decreased levels in SIDELLA ( Figure 2) and an altered bearing (growth habit) ( Figure 3, tables 1 and 2).
  • TABLE 1 Effect of the decrease in the expression of SIDELLA in transgenic plants on their height, number and length of internodes, flowering time and composition of metamers.
  • Table 1 shows the highest height of transgenic plants in relation to wild plants, as well as an increase in the number and length of their internodes. On the other hand it is verified that the flowering time, measured as number of leaves until the appearance of the first inflorescence, is only delayed somewhat in the 5A plants. As for the composition of the metameres, it is observed that in wild plants the inflorescences appear in consecutive leaves and the growth of the plants stops after three inflorescences, while in the asDELLA the inflorescence appears every 2 or 3 leaves and continues to form additional metamers indefinitely when the wild ones have stopped growing.
  • the cDNA corresponding to SIDELLA was isolated from a lambda ZAP expression library of tomato ovaries (Solanum lycopers ⁇ cum L. ve Rutge ⁇ emasculated one day before the anthesis.
  • the SIDELLA gene was screened from the colonies obtained (40,000) from the expression library using as a probe the complete coding region (cDNA) (1750 bp) of the gaidel mutated gene of Arabidopsis thal ⁇ ana (Atgaldet).
  • nitrocellulose filters obtained from the Lysis plates were performed at 46 ° C for 6 h.
  • the nitrocellulose filters were washed twice with 2 x SSC, 0.1% SDS at room temperature for 5 min and once with 0.1 x SSC, 0.1% SDS at 46 ° C for 22 minutes, 15 positive clones corresponding to the same gene were obtained, isolating and sequencing the longest of them (2389 bp.)
  • This clone contained an ORF of 1764 bp capable of synthesizing a protein of 588 amino acids with a molecular weight of 64, 45 KDa and one pu theoretical isoelectric number of 5.07.
  • the comparison of the deduced protein sequence with those existing in the databases showed that the isolated clone was a tomato ortholog of the DELLA genes
  • plasmid pBINJIT60 under the control of the 35S promoter of the tobacco mosaic virus (35S :: SIDELLAas).
  • the binary plasmid, pBINJIT60 was used to obtain transgenic Lycorpersicon esculentum plants by transformation with Agrobacterium tumefaciens.
  • This plasmid is constructed from the "cassette” of plasmid pJIT60, which provides the 35S promoter of cauliflower mosaic virus (CaMV) with the duplicated “enhancer” (2x35S), the multiple cloning site of pUC9 and the sequence of polyadenylation of the CaMV, [CaMV poly (A) +] (Guerineau et al., 1992), extracted as a Kpnl and Xhol fragment, and subcloned into the Kpnl and I left sites of the binary plasmid pBIN19.
  • CaMV cauliflower mosaic virus
  • 2x35S duplicated "enhancer”
  • PBIN19 contains the NPTII gene, which confers resistance to kanamycin, fused to the promoter and the nopaline synthetase terminator (pnos and tnos), included in the T-DNA (Bevan, 1984).
  • the resulting vector pBINJIT is approximately 13.2 kb in size and presents as unique cloning sites Sal ⁇ , BamHI and Smal.
  • To clone asDELLA antisense in this vector was amplified by PCR using the complete genome sequence of TGxC7 oligonucleotides (5 '-CCAGCACTTGTCATTCTTACC-3' SEQ. ID. No. 13) and TGxCS (5-CATCTCTCTCATTGTCTCTTCC-3 'SEQ. ID No.
  • the 1800pb product was digested with EcoRV and subcloned into the pBSK vector, choosing those clones in which SIDELLA had been cloned in antisense to subclone it into the binary vector pBINJIT60 using the Sma I / Sal I sites in order to reduce the levels Endogenous to SIDELLA, this construction was introduced in the strain LBA4404 of Agrobacter ⁇ um tumefaciens by electroporation for later use in the transformation of tomato from cotyledon explants (Ellul et al., 2003).
  • Example 2 Obtaining and identifying tomato SIDELLA alleles in M82 (sp / sp).
  • TILLING Targeting Induced Local Lesions In Genomes
  • This technology provides a way to obtain mutants in a gene and in our case it was used to find mutants in SIDELLA since we knew that TILLING combines mutagenesis protocols with PCR and a method for detecting DNA polymorphisms.
  • the TILLING method combines the induction of a large number of point mutations by chance caused by the Ethyl Methane Sulfonate (EMS) that produced a population of 12,000 2 families in the tomato variety determined M82 (Menda et al., 2004).
  • EMS Ethyl Methane Sulfonate
  • the DA was extracted from each of the families and combined following a 3D strategy to decrease the number of PCR reactions to be performed.
  • the SIDELLA locus of interest was amplified from each of the pools by means of a nested PCR and universal primers.
  • the first PCR amplification is a standard PCR reaction that uses specific primers of the SIDELLA target gene as indicated in (Qiu et al., 2004).
  • specific primers of the SIDELLA target gene as indicated in (Qiu et al., 2004).
  • SIDELLA-ext-F1 5'cattctctaatggtgctgttttcttc3 '(SEQ. ID. No. 15);
  • SIDELLA-ext-R1 5'aggtagctataagtggccgtgtatg3 '(SEQ. ID. No. 16);
  • SIDELLA-F1 5'gaaaagtaagatttgggaagaaga3 '(SEQ. ID. No.
  • SIDELLA-R1 5'ctaaaagcatggaagcttgtttgaa3 '(SEQ. ID. No. 18).
  • the amplification conditions were 1 min at 94 ° C and 30 cycles of (1 Os at 94 ° C, 20 s at 63 ° C, 1 min at 72 ° C) and 5 min at 72 ° C when SIDELLA oligonucleotides were used -ext-R1 and SIDELLA-ext-F1.
  • a microliter of the first PCR was used as a template for a second nested PCR amplification reaction, using a mixture of specific internal oligonucleotides bearing a universal M13 tail, combining with the universal M13 d primers.
  • M13F70Q CACGACGTTGTAAAACGAC; SEQ. ID. No. 19
  • M13R800 GG ATAAC AATTTC AC AC AGG; SEQ. ID. No. 20
  • IRD700 and IRD800 LI-COR®, Lincoln , Kansas, USA
  • This PCR reaction was carried out using each primer at the concentration of 0.1 ⁇ , and the following two-step cycle program: 94 ° C for 2 min, 10 cycles at 94 ° C for 15 s, a banding temperature of specific primers for 30 S and 72 ° C for 1 min, followed by 25 cycles at 94 ° C for 15 s, 50 ° C for 30 s and 72 ° C for 1 min, and finally an extension of 5 min at 72 ° C .
  • the detection of mutations in unpurified PCR products was carried out as indicated in Triques et al., 2007, except that the enzyme extract was used at a dilution of 1 to 10 000 and 0.6 ⁇ of digestion products were loaded with ENDOI in the sequencing gel.
  • the mutants were evidenced by occupying a different position in the sequencing gel, and by deconvolution of the different lines mixed in the pool.
  • the mutant present in the pool was confirmed individually and the mutation was sequenced following standard procedures.
  • TILLING 1 mutants SEQ. ID. No. 3 and 4
  • TILLING 2 SEQ. ID. No. 5 and 6
  • TILLING 3 SEQ. ID. No. 7 and 8
  • TILLING 4 SEQ. ID. No. 9 and 10
  • TILLING 1 SEQ. ID. No. 3 and 4
  • TILLING 2 SEQ. ID. No. 5 and 6
  • TILLING 3 SEQ. ID. No. 7 and 8
  • TILLING 4 SEQ. ID. No. 9 and 10.
  • TABLE 3 Summary of changes caused by TILLING mutations at the nucleotide and amino acid level, environment of amino acid change, type of mutation and effect on the growth habit of the mutation carrier plant.
  • the effect of these point mutations in SIDELLA is the change in the growth habit of the plant, going from being of a determined to semi-determined type, being nt: nucleotide; aa: amino acid; wt: wild; mt: mutation.
  • Example 4 Alteration in the content of metabolites in the fruit as a result of the modification in SIDELLA.
  • the metabolites analyzed have a determining effect on the organoleptic and nutritive qualities of tomatoes, since volatile compounds are responsible for the aroma, while some of the primary metabolites analyzed, including glucose and fructose sugars, organic acids Citric, malic and succinic, and several amino acids, have a decisive contribution on the flavor and nutritional content of the fruits.
  • the fiber used has a 65 ⁇ coating of polydimethylsiloxane-divinylbenzene (PDMS / DVB) (SUPELCO).
  • PDMS / DVB polydimethylsiloxane-divinylbenzene
  • SUPELCO polydimethylsiloxane-divinylbenzene
  • the vials were tempered at 50 ° C for 10 minutes and, subsequently, the fiber was exposed to the head space for 20 minutes at the same temperature.
  • the acquisition of volatiles in the fiber and subsequent desorption was performed automatically with a CombiPAL (CTG Analytics).
  • the detection was carried out using an Agilent 5975 B mass spectrometer in the Sean mode, in the range of m / z 35-220, at 7 scans / s, ionization source temperature 230 ° C and ionization energy 70eV.
  • the chromatograms were processed with the MSD ChemStation Enhanced Data Analysis software (Agilent Technologies).
  • the primary metabolite analysis was basically performed using the protocol described in Roessner-Tunali et al, 2003, which is detailed below, using the same plant material described above for the analysis of volatile elements.
  • the metabolites were extracted first. Approximately 250 mg of plant material was weighed, 3 ml of methanol and 120 ⁇ of a solution of the internal ribitol standard (0.2 mg / ml in water) were added, and vortexed vigorously for 20 s. It was transferred to a 5 ml glass vial, closed and incubated in a 70 ° C water bath for 15 min. Subsequently, 1.5 ml of water was added, vortexed, and centrifuged at 4000 rpm for 15 min. 50 ⁇ of the supernatant was taken, taken to a 1.5 ml polypropylene tube and dried in a speed-vac for 12 hours, at room temperature.
  • the internal ribitol standard 0.2 mg / ml in water
  • the extracted metabolites were derivatized as follows. 60 ⁇ of a solution of O-methylhydroxylamine hydrochloride (30 mg / ml in pyridine) was added, and kept at 37 ° C with stirring for 2 hours. After a centrifugation pulse, 120 ⁇ of N-methyl-N- (trimethylsilyl) trifluoroacetamide (STFA) and 12 ⁇ of a mixture of several fatty acid methyl esters (800 ng / ml each in chloroform), and kept at 37 ° C, under stirring, for 30 min. Finally, it was transferred to a 2 ml GC vial with 200 ⁇ insert, from which the injection was made.
  • STFA N-methyl-N- (trimethylsilyl) trifluoroacetamide
  • Arabidopsis F-box protein SLEEPY1 targets gibbere ⁇ lin signaling repressors for gibberellin-induced degradation. Plant Cell 16: 1392-1405.
  • the Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 1 1: 3194-3205.

Abstract

Alteration of the expression of the orthologous DELLA-u protein in order to alter the growth pattern of plants and the metabolite content of the fruit. The present invention describes novel functions of the SIDELLA gene of Solanum lycopersicum and also the uses thereof and mutant versions of the gene associated with novel phenotypes, requiring the modification of the growth habit and of the metabolism of the plants carrying said alterations, as a certain influence on the metabolite content of the fruit of the tomato plant.

Description

ALTERACION EN LA EXPRESION DE LA PROTEINA DELLA U ORTOLOGA PARA ALTERAR EL PATRON DE CRECIMIENTO DE LAS PLANTAS Y EL CONTENIDO DE METABOLITOS DEL FRUTO  ALTERATION IN THE EXPRESSION OF PROTEINA DELLA OR ORTOLOGA TO ALTER THE PLANNING GROWTH OF PLANTS AND THE METABOLITES CONTENT OF FRUIT
SECTOR TÉCNICO DE LA INVENCIÓN TECHNICAL SECTOR OF THE INVENTION
La presente invención describe nuevas funciones del gen SIDELLA de Solanum lycopersicum así como sus usos y versiones mutantes del gen asociadas a nuevos fenotipos que suponen la modificación del hábito de crecimiento y del metabolismo de las plantas portadoras de esas alteraciones que resulta en una alteración en el contenido de meta bo lites del fruto del tomate. The present invention describes new functions of the SIDELLA gene of Solanum lycopersicum as well as its uses and mutant versions of the gene associated with new phenotypes that involve the modification of the growth habit and metabolism of the plants that carry these alterations resulting in an alteration in the meta bo lites content of tomato fruit.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
En general la arquitectura final de una planta depende del número, tamaño y porte de los elementos constituyentes (hojas, entrenudos, flores y frutos) y de la forma en la que se insertan en el cuerpo general de la planta. Incluso más importante que lo anterior es el hábito de crecimiento. In general the final architecture of a plant depends on the number, size and size of the constituent elements (leaves, internodes, flowers and fruits) and the way in which they are inserted into the general body of the plant. Even more important than the above is the growth habit.
La productividad de una planta resulta afectada por factores genéticos, fisiológicos y medioambientales, pero la propia arquitectura y hábito de crecimiento son determinantes clave. La planta del tomate (Solanum lycopersicum) es de la familia de las solanáceasThe productivity of a plant is affected by genetic, physiological and environmental factors, but the architecture and growth habit are key determinants. The tomato plant (Solanum lycopersicum) is from the Solanaceae family
(Solanaceae) originaria de América y cultivada en todo el mundo por su fruto comestible, el cual es una baya coloreada de tonos que van del amarillento al rojo, debido a la presencia de los pigmentos I ico peno y caroteno. Posee un sabor ligeramente ácido y se produce y consume en todo el mundo tanto fresco como procesado de diferentes modos. Por el hábito de crecimiento, que va a estar dado por el tipo de ramificaciones de las plantas, se reconocen dos grandes grupos de variedades, las de crecimiento indeterminado y las de crecimiento determinado. El primer grupo se caracteriza por tener un ápice vegetativo con dominancia, que le confiere crecimiento continuo al tallo o eje principal. Se reconocen fácilmente ya que presentan un racimo floral cada tres hojas y un crecimiento radial amplio. En las variedades de crecimiento determinado los brotes siempre terminan en una inflorescencia, por lo tanto siempre se debe dejar el brote axilar superior para conducirla como indeterminada. Este grupo de variedades, las cuales también se denominan "arbustivas", no requieren soporte durante su crecimiento. Las variedades arbustivas enanas son un subgrupo dentro de las variedades determinadas caracterizadas por su menor tamaño y por producir frutos del tipo "cereza" o "cherry". (Solanaceae) native to America and cultivated throughout the world for its edible fruit, which is a berry colored in shades that range from yellowish to red, due to the presence of penic and carotene pigments. It has a slightly acidic taste and is produced and consumed worldwide both fresh and processed in different ways. By the growth habit, which will be given by the type of ramifications of the plants, two large groups of varieties are recognized, those of indeterminate growth and those of determined growth. The first group is characterized by having a vegetative apex with dominance, which gives continuous growth to the stem or main axis. They are easily recognized as they have a floral cluster every three leaves and a broad radial growth. In the varieties of growth determined the buds they always end in an inflorescence, therefore the upper axillary bud should always be left to lead as undetermined. This group of varieties, which are also called "shrubs", do not require support during their growth. The dwarf shrub varieties are a subgroup within the determined varieties characterized by their smaller size and for producing fruits of the "cherry" or "cherry" type.
El cuidar el sabor del tomate no es tarea fácil. La intensidad de las propiedades del sabor del fruto de tomate está determinado por la cantidad de azúcar (fructosa y glucosa principalmente), por el contenido de ácidos orgánicos (cítrico y málico principalmente) y la composición de los compuestos volátiles. La diferencia de sabores entre variedades se explican por la diferencia de las proporciones cuantitativas de las sustancias volátiles, muchas de las cuales se desarrollan durante la maduración. Taking care of the tomato flavor is not an easy task. The intensity of the flavor properties of tomato fruit is determined by the amount of sugar (mainly fructose and glucose), by the content of organic acids (mainly citric and malic) and the composition of volatile compounds. The difference in flavors between varieties is explained by the difference in the quantitative proportions of volatile substances, many of which develop during ripening.
La solicitud de patente ES 2235335 T3 describe un procedimiento de manipulación del aroma de productos del tomate, que consiste en incubar trozos de tomate con una enzima con actividad alcohol deshidrogenasa y un cofactor de alcohol deshidrogenasa; así como los productos obtenidos por este procedimiento. Patent application ES 2235335 T3 describes a method of manipulating the aroma of tomato products, which consists of incubating tomato pieces with an enzyme with alcohol dehydrogenase activity and an alcohol dehydrogenase cofactor; as well as the products obtained by this procedure.
Las plantas de crecimiento simpodial tienen un tipo de crecimiento lateral peculiar en el que el meristemo apical termina (aborta o se diferencia en una flor / meristemo inflorescente) pero la planta continua creciendo a partir del meristemo axilar normalmente localizado por debajo de la hoja superior, lo que se repite después de unos cuantos nodos foliares, provocando un crecimiento apical continuado. Sympodial growth plants have a peculiar lateral growth type in which the apical meristem ends (aborts or differs into an inflorescent flower / meristem) but the plant continues to grow from the axillary meristem normally located below the upper leaf, which is repeated after a few leaf nodes, causing continued apical growth.
Las plantas de tomate exhiben un patrón de crecimiento simpodial caracterizado por la alternancia en los brotes de órganos vegetativos y reproductivos. Este patrón se establece después de un periodo inicial en el que solo se producen órganos vegetativos (tallos / entre nudos y hojas en la parte aérea) que en el caso del tomate supone la producción de unos 5 a 20 nodos foliares que acaba con la formación, en el meristemo apical del brote principal, de un meristemo inflorescente que supone la terminación de dicho simpodio principal. El crecimiento de la planta no se detiene ahí, sino que continúa a partir de la yema axilar situada en la axila de la hoja más próxima a esa nueva inflorescencia. En todas las especies de tomate silvestres y la mayor parte de las de consumo en fresco el habito de crecimiento que continua a partir de aquí es la producción de simpodios cada uno consistente en unas 2 o 3 hojas y una inflorescencia en el que el nuevo simpodio se vuelve a producir a partir de la axila de la ultima hoja por debajo de la nueva inflorescencia. Ello produce una planta de gran crecimiento que produce continuamente frutos a lo largo del eje principal, con frutos de diferente estadio de maduración en cualquier momento del crecimiento post floración. Este habito de crecimiento se denomina en este caso "indeterminado". Tomato plants exhibit a sympodial growth pattern characterized by alternating buds of vegetative and reproductive organs. This pattern is established after an initial period in which only vegetative organs are produced (stems / between nodes and leaves in the aerial part) which in the case of tomato involves the production of about 5 to 20 leaf nodes that ends the formation , in the apical meristem of the main outbreak, of an inflorescent meristem that supposes the termination of said main symposium. The growth of the plant does not stop there, but continues from the axillary bud located in the axilla of the leaf closest to that new inflorescence. In all wild tomato species and most of the fresh consumption, the growth habit that continues from here is the production of symposiums each consisting of about 2 or 3 leaves and an inflorescence in which the new symposium It is produced again from the axilla of the last leaf below the new inflorescence. This produces a high-growth plant that continuously produces fruits along the main axis, with fruits from different stages of maturation at any time of post flowering growth. This growth habit is called "undetermined" in this case.
Por el contrario las plantas de tomate que llevan en homozigosis la mutación recesiva self-pruning sp (sp/sp) solo producen dos o tres brotes simpodiales después de la primera inflorescencia consistentes cada uno en 2 ó 3 hojas y una inflorescencia, tras lo cual producen 2 inflorescencias seguidas y cesa así el crecimiento. Esta mutación confiere un hábito de crecimiento "determinado" que además de afectar el porte de la planta resulta en un cuajado y maduración de frutos más concentrada en el tiempo de lo que ocurre en las plantas de crecimiento indeterminado (Stevens y Rick, 1986; Yeager, 1927). On the contrary, tomato plants that carry the recessive mutation self-pruning sp (sp / sp) in homozigosis only produce two or three sympodial shoots after the first inflorescence, each consisting of 2 or 3 leaves and an inflorescence, after which they produce 2 inflorescences in a row and growth ceases. This mutation confers a "determined" growth habit that, in addition to affecting the size of the plant, results in fruit ripening and ripening more concentrated over time than occurs in indeterminate growth plants (Stevens and Rick, 1986; Yeager , 1927).
El locus self-pruning (SP) ha sido clonado (Pnueli et ai, 1998) y demostrado ser un ortólogo de los genes Centroradialis (CEN) de Antirrhinum y Terminal Flower (TFL1) de Arabidopsis. La familia de genes denominada a partir de estos tres "CETS" (de CEN, IFL1 y SP), están conservados entre diferentes especies vegetales donde afectan la floración y la determinación / indeterminación (Pnueli et al., 2001 , Foucher et al., 2003). The self-pruning locus (SP) has been cloned (Pnueli et ai, 1998) and proven to be an ortholog of the Centroradialis (CEN) genes of Antirrhinum and Terminal Flower (TFL1) of Arabidopsis. The family of genes named from these three "CETS" (from CEN, IFL1 and SP), are conserved among different plant species where they affect flowering and determination / indetermination (Pnueli et al., 2001, Foucher et al., 2003).
En el caso del tomate, SP pertenece a una pequeña familia génica de seis miembros (SP, SP21, SP3D, SP5G, SP6A, and SP9D) distribuidos en cinco cromosomas (Carme l-Goren et al., 2003), si bien el causante de la mutación sp que esta en el cromosoma seis es el único demostrado que puede controlar el paso entre habito de crecimiento determinado e indeterminado. Los otros parálogos de SP en tomate no están muy caracterizados pero parecen afectar la expresión del fenotipo determinado modificando el momento en el que se determina la planta (caso de introgresiones de SP9Dy de SP5G de pennelli en M82 (Carmel-Goren et al. , 2003; Eshed and Zamír, 1995; Jones et al., 2007). La mutación self-pruning ha sido introducida en la mayor parte de las variedades de tomate de industria, ya que favorece la recolección mecánica (Hanna et ai, 1966; Friedland y Barton, 1975; Stevens y Rick, 1986; Yeager, 1927) y no se dispone de métodos alternativos o que modulen la expresión de SP. In the case of tomato, SP belongs to a small gene family of six members (SP, SP21, SP3D, SP5G, SP6A, and SP9D) distributed in five chromosomes (Carme l-Goren et al., 2003), although the cause of the sp mutation that is on chromosome six is the only one that can control the passage between determined and indeterminate growth habit. The other SP paralogs in tomato are not very characterized but they seem to affect the expression of the determined phenotype by modifying the moment at which the plant is determined (case of intrusions of SP9D and SP5G of pennelli in M82 (Carmel-Goren et al., 2003 ; Eshed and Zamír, 1995; Jones et al., 2007) The self-pruning mutation has been introduced in most of the industry tomato varieties, since it favors mechanical harvesting (Hanna et ai, 1966; Friedland and Barton, 1975; Stevens and Rick, 1986; Yeager, 1927) and there are no alternative methods or that modulate the expression of SP.
Por otra parte, las proteínas DELLA se han descrito como elementos clave que integrarían tanto señales externas como las mediadas por fiíohormonas, adaptando el crecimiento de las plantas a las necesidades y condiciones medioambientales Las proteínas DELLA son miembros de una subfamilia GRAS de reguladores que parecen actuar a nivel nuclear como represores de procesos de desarrollo y crecimiento. Según el modelo actual, elaborado fundamentalmente a partir del trabajo realizado en Arabidopsis y arroz, el bloqueo en el crecimiento ejercido por las proteínas DELLA (una familia de cinco miembros en Arabidopsis, pero uno solo en el arroz) y en la mayor parte de los cultivos, incluido el tomate, seria eliminado por degradación dirigida de la proíeína DELLA (Dill et al., 2001 ; Dill y Sun, 2001 ; Lee et al., 2002; Peng et al., 1997; Richards et al., 2001 ; Wen y Chang, 2002). El mecanismo de acción subyacente al efecto de inducción del crecimiento de las fitohormonas giberelinas (GA) estaría basado en que tras la unión de la GA al receptor GID se produciría un cambio conforma ció nal de la proteína que favorecería su interacción con DELLA y aumentaría su afinidad a ser degradada por el proteosoma 26S. (Murase et al, 2007; Ueguchi-Tanaka et al, 2007; 2008). On the other hand, DELLA proteins have been described as key elements that would integrate both external and mediated signals by hormones, adapting plant growth to environmental needs and conditions. DELLA proteins are members of a GRAS subfamily of regulators that appear to act at the nuclear level as repressors of development and growth processes. According to the current model, elaborated mainly from the work done in Arabidopsis and rice, the blockade in the growth exerted by DELLA proteins (a family of five members in Arabidopsis, but only one in rice) and in most of the crops, including tomato, would be eliminated by targeted degradation of the DELLA protein (Dill et al., 2001; Dill and Sun, 2001; Lee et al., 2002; Peng et al., 1997; Richards et al., 2001; Wen and Chang, 2002). The mechanism of action underlying the effect of inducing the growth of phytohormones gibberellins (GA) would be based on the fact that after the union of GA to the GID receptor, a conformational change of the protein would take place that would favor its interaction with DELLA and increase its affinity to be degraded by the 26S proteasome. (Murase et al, 2007; Ueguchi-Tanaka et al, 2007; 2008).
Por lo que respecta al crecimiento y programas de desarrollo, parece ser que la ruta DELLA integra la transición floral en respuesta a la luz, al etileno y a las auxinas entre otras y actuarían afectando la estabilidad de la proteínas DELLA, su transcripción o de forma indirecta afectando los niveles de GAs (Achard et al., 2006; Achard et al. , 2003; Fu y Harberd, 2003; Oh et al., 2007). With regard to growth and development programs, it seems that the DELLA route integrates the floral transition in response to light, ethylene and auxins among others and would act affecting the stability of DELLA proteins, their transcription or indirectly affecting the levels of GAs (Achard et al., 2006; Achard et al., 2003; Fu and Harberd, 2003; Oh et al., 2007).
Existen mutantes en dos genes DELLA de Arabidopsis (gai y rga) que están alterados en la estatura de la planta, fundamentalmente debido a la longitud de los entrenudos y al tiempo de floración (Koornneer et al., 1985; Peng y Harberd, 1999, 1993; Peng at al., 1997; Silverstone et al., 1998; Wilson y Somerville, 1995). La modulación de los niveles del único gen DELLA en tomate, SIDELLA, provoca alteraciones en las estructuras reproductivas y en el porte de la planta (Marti et al. 2007). Todas las alteraciones descritas en el porte de la planta tienen que ver con la longitud de los entrenudos y con el tiempo de floración en plantas monopodiales (crecen produciendo tejido vegetativo hasta producir la flor terminal y detienen ahí su crecimiento). There are mutants in two DELLA genes from Arabidopsis (gai and rga) that are altered in the height of the plant, mainly due to the length of internodes and flowering time (Koornneer et al., 1985; Peng and Harberd, 1999, 1993; Peng at al., 1997; Silverstone et al., 1998; Wilson and Somerville, 1995). The modulation of the levels of the only DELLA gene in tomatoes, SIDELLA, causes alterations in the reproductive structures and in the size of the plant (Marti et al. 2007). All the alterations described in the bearing of the plant have to do with the length of the internodes and with the flowering time in monopodial plants (they grow producing vegetative tissue until producing the terminal flower and stop their growth there).
Sería necesario y deseable disponer de otros mecanismos de control del hábito de crecimiento de las plantas de cultivo, por ejemplo en tomate, alternativos a self-pruning o que modularan la actividad de self-pruning produciendo plantas con diferente grado de determinación, y en consecuencia con diferente porte y número de flores y frutos. OBJETO DE LA INVENCIÓN It would be necessary and desirable to have other mechanisms to control the growth habit of crop plants, for example in tomato, alternative to self-pruning or to modulate the activity of self-pruning producing plants with different degrees of determination, and consequently with different size and number of flowers and fruits. OBJECT OF THE INVENTION
La presente invención proporciona plantas genéticamente modificadas con la expresión de las proteínas DELLA u ortóloga alterada produciendo así una inhibición en la represión del desarrollo y crecimiento de las plantas en comparación a plantas correspondientes no modificadas genéticamente. Debido a la alteración en la expresión de DELLA, mediante silenciamiento o mutación, las plantas genéticamente modificadas verán alterado su patrón de crecimiento simpodial y/o el contenido de metabolitos y/o sustancias volátiles en el fruto. La presente invención también se refiere a los frutos y semillas de las plantas modificadas genéticamente así como al procedimiento empleado para obtener dichas plantas. The present invention provides genetically modified plants with the expression of DELLA proteins or altered orthologue thus producing an inhibition in the repression of the development and growth of plants in comparison to corresponding plants not genetically modified. Due to the alteration in the expression of DELLA, by silencing or mutation, genetically modified plants will see their sypodial growth pattern and / or the content of metabolites and / or volatile substances in the fruit altered. The present invention also relates to the fruits and seeds of genetically modified plants as well as the method used to obtain said plants.
La expresión de DELLA se regula mediante el gen SIDELLA descrito y ha sido utilizado por los autores de la presente solicitud (Marti ef al. 2007), sin embargo la regulación de su expresión para alterar el patrón de crecimiento y/o para alterar el contenido de los metabolitos de los frutos son funciones nuevas, así como sus aplicaciones. The expression of DELLA is regulated by the described SIDELLA gene and has been used by the authors of the present application (Marti ef al. 2007), however the regulation of its expression to alter the growth pattern and / or to alter the content of the metabolites of the fruits are new functions, as well as their applications.
Se conoce un gen ortólogo (semejante por pertenecer a dos especies que tienen un antepasado común) del gen SIDELLA, más concretamente es el gen GAI de Arabidopsis en tomate (Solanum lycopersicum) . En US 6,307,126 y su continuación US 6,830,930, se describe que el gen GAI se ha clonado y mutado y la expresión de tales genes en plantas afecta al crecimiento de las mismas, concretamente logrando unas plantas enanas que son útiles para la reducción de las pérdidas que tienen lugar durante el almacenamiento de la cosecha. An orthologous gene is known (similar to belonging to two species that have a common ancestor) of the SIDELLA gene, more specifically it is the GAI Arabidopsis tomato gene (Solanum lycopersicum). In US 6,307,126 and its continuation US 6,830,930, it is described that the GAI gene has been cloned and mutated and the expression of such genes in plants affects their growth, specifically achieving dwarf plants that are useful for reducing the losses that They take place during harvest storage.
Los autores de la presente Solicitud han observado que el gen SIDELLA en tomate es importante para determinar el numero de repeticiones simpodiales, y por lo tanto el porte y numero de flores / frutos en el eje principal. Esto debería afectar a la productividad total (número y tamaño de frutos producidos). Por otro lado, modificaciones en este gen afectan al contenido meta ból ico de los frutos como se ejemplifica para el contenido de compuestos volátiles asociados al aroma del fruto. The authors of this Application have observed that the SIDELLA gene in tomatoes is important in determining the number of symposium repeats, and therefore the size and number of flowers / fruits on the main axis. This should affect the total productivity (number and size of fruits produced). On the other hand, modifications in this gene affect the metabolic content of the fruits as exemplified by the content of volatile compounds associated with the aroma of the fruit.
De acuerdo con lo descrito en el estado de la técnica, sería simplemente esperable que las modificaciones en SIDELLA o genes ortólogos afectaran la altura de la planta y la distancia de los entrenudos, sin afectar al número de estos a excepción del que se produce por una modificación en el tiempo de floración. Las funciones descritas para el gen GAI tienen que ver con el crecimiento y el tiempo de floración y esta apoyado por los fenotipos observados en Arabidopsis y en cereales. Muchas plantas como tomate son de "día neutro" y florecen con independencia de la duración del día. According to what is described in the state of the art, it would be simply expected that the modifications in SIDELLA or orthologous genes would affect the height of the plant and the distance of the internodes, without affecting the number of these except for that produced by a modification in flowering time. The functions described for the GAI gene have to do with growth and flowering time and is supported by the phenotypes observed in Arabidopsis and cereals. Many plants such as tomatoes are "neutral day" and bloom regardless of the duration of the day.
Una nueva función descrita aquí tiene relevancia en las plantas cuyo crecimiento del eje principal se detiene con la primera flor para seguir creciendo a partir del brote axilar (denominado simpodial) por debajo de la nueva flor. La nueva función se ha puesto de manifiesto por los autores de la presente solicitud en estudios con el gen SIDELLA. En plantas de tomate afectadas en los niveles de expresión del gen SIDELLA se observa el fenotipo esperable de crecimiento que se ve reflejado en la longitud de los entrenudos. Lo importante de la presente invención es que piantas de tomate que llevan la mutación sp y por tanto tienen un crecimiento determinado, es decir el crecimiento del eje principal se detiene después de un numero pequeño de 2 ó 3 repeticiones simpodiales (metámero consistente por ejemplo en 2 hojas y una inflorescencia) tras la primera flor, incrementan el número de simpodios o incluso se vuelven indeterminados cuando se bloquea con diferente eficiencia la expresión de SIDELLA en plantas transgénicas. Esto ocurre sin modificar significativamente el tiempo de floración y sugiere una forma alternativa a sp de alterar el hábito de crecimiento del tomate y por extensión de otras plantas de crecimiento similar (i.e. simpodial). A new function described here is relevant in plants whose main axis growth stops with the first flower to continue growing from the axillary bud (called a simpodial) below the new flower. The new function has been revealed by the authors of the present application in studies with the SIDELLA gene. In tomato plants affected in the expression levels of the SIDELLA gene, the expected growth phenotype that is reflected in the length of internodes is observed. The important thing about the present invention is that tomato plants that carry the sp mutation and therefore have a certain growth, that is to say, the growth of the main axis stops after a small number of 2 or 3 simpodial repetitions (metamer consisting for example in 2 leaves and one inflorescence) after the first flower, increase the number of sypodia or even become undetermined when the expression of SIDELLA in transgenic plants is blocked with different efficiency. This occurs without significantly modifying the flowering time and suggests an alternative way to sp to alter the growth habit of the tomato and by extension of other plants of similar growth (i.e. simpodial).
Hasta el momento la única forma de alterar el hábito de crecimiento en tomate ha sido mediante el gen self-pruning. La introducción de ese gen para alterar el patrón de crecimiento del tomate de indeterminado a determinado significó una revolución en el cultivo de tomate de industria y permitió la mecanización de la recolección. Actualmente esta mutación recesiva del gen self-pruning ha sido introducida en la mayor parte de las variedades de tomate de industria que son por tanto sp/sp. Aparte de unas pocas formas alélicas de genes de la familia self-pruning no se ha propuesto ni se dispone de ningún método para alterar el patrón de crecimiento. So far the only way to alter the growth habit in tomatoes has been through the self-pruning gene. The introduction of that gene to alter the pattern of tomato growth from indeterminate to determined meant a revolution in the cultivation of tomato industry and allowed the mechanization of harvesting. Currently this recessive mutation of the self-pruning gene has been introduced in most of the tomato varieties of industry that are therefore sp / sp. Apart from a few allelic forms of genes of the self-pruning family, no method of altering the growth pattern has been proposed or available.
En la presente invención se modifica la arquitectura de la planta y el hábito de crecimiento actuando al nivel de DELLA (o a nivel de proteínas ortólogas) i.e. mediante transgénesis alterando el nivel de SIDELLA (o gen ortólogo) o mediante introducción de mutaciones en el gen SIDELLA (o gen ortólogo) que alteran el patrón de crecimiento. También es objeto de la presente invención la producción e identificación de versiones mutantes en ese gen (o gen ortólogo) que proporcionan diversas intensidades del fenotipo de interés. Los resultados de la presente solicitud han sido obtenidos utilizando el tomate (Solanum lycopersicum) como ejemplo, pero pueden ser de utilidad para otras plantas de crecimiento simpodial determinado o no. In the present invention, the architecture of the plant and the growth habit are modified by acting at the DELLA level (or at the level of orthologous proteins) ie by transgenesis by altering the level of SIDELLA (or orthologous gene) or by introducing mutations in the SIDELLA gene (or orthologous gene) that alter the growth pattern. Also object of the present invention is the production and identification of mutant versions in that gene (or orthologous gene) that provide various intensities of the phenotype of interest. The results of the present application have been obtained using tomato (Solanum lycopersicum) as an example, but they may be useful for other plants of specific or non-sypodial growth.
También se describe un método para asociar el carácter con las mutaciones abriendo así la posibilidad de identificar nuevos mutantes en el gen que den versiones diferentes del fenotipo que puedan adaptarse a lo que el productor necesite. A method to associate the character with the mutations is also described, thus opening the possibility of identifying new mutants in the gene that give different versions of the phenotype that can adapt to what the producer needs.
El carácter conferido por el silenciamiento y las mutaciones es de interés comercial y/o agronómico. Puede ser de muy importante para aquellos interesados en alterar el numero de brotes simpodiales en plantas con ese tipo de crecimiento, incluyendo pero no limitando a solaneaceas, cucurbitáceas como el melón, leñosas, árboles, y obviamente ornamentales como orquidáceas, entre otras plantas de interés. The character conferred by silencing and mutations is of commercial and / or agronomic interest. It can be very important for those interested in altering the number of symposia buds in plants with that type of growth, including but not limited to solaneaceae, cucurbitaceae such as melon, woody, trees, and obviously ornamental as orchids, among other plants of interest. .
Es de interés disponer de mecanismos para conferir el habito de crecimiento que convenga a un determinado tipo de planta, de cultivo u ornamental. Así, puede interesar conferir el carácter determinado a una especie de crecimiento indeterminado, con el propósito de limitar su crecimiento (razones estéticas, disponibilidad de espacio, etc.), o de concentrar como consecuencia de ello la producción y maduración de los frutos en el tiempo. It is of interest to have mechanisms to confer the growth habit that suits a particular type of plant, crop or ornamental. Thus, it may be interesting to confer the determined character to a kind of indeterminate growth, with the purpose of limiting its growth (aesthetic reasons, availability of space, etc.), or to concentrate as a result the production and maturation of fruits in weather.
Por otra parte, interesa incrementar el numero de brotes simpodiales de una planta de crecimiento determinado, con objeto de aumentar la producción y la exposición solar de los frutos, incluso de volverla indeterminada. On the other hand, it is interesting to increase the number of symposium buds of a given growth plant, in order to increase the production and sun exposure of the fruits, even to make it undetermined.
El disponer de formas de modificar el contenido metabólico de los frutos es importante también desde el punto de vista organoléptico y nutricional. Así, en otro aspecto de la presente invención, se describe como segunda nueva función del gen SIDELLA u ortólogo la regulación del contenido de los metabolitos y/o sustancias volátiles asociadas al aroma de los frutos que puede ser empleada en todo tipo de plantas, de crecimiento simpodial o no. The availability of ways to modify the metabolic content of fruits is also important from an organoleptic and nutritional point of view. Thus, in another aspect of the present invention, the regulation of the content of the metabolites and / or volatile substances associated with the aroma of fruits that can be used in all types of plants, as a second new function of the SIDELLA gene or ortholog is described simpodial growth or not.
El primer objeto de invención se refiere a plantas genéticamente modificadas con la expresión alterada de la proteína DELLA u ortóloga caracterizadas porque la alteración en la expresión de la proteína DELLA u ortóloga produce una inhibición en la represión del desarrollo y crecimiento de las plantas en comparación a plantas correspondientes no modificadas genéticamente. La alteración en la expresión de DELLA del objeto de invención se obtiene mediante silenciamiento del gen SIDELLA u ortólogo o mediante mutación del gen SIDELLA u ortólogo. The first object of the invention relates to genetically modified plants with the altered expression of the DELLA protein or ortholog characterized in that the alteration in the expression of the DELLA protein or ortholog produces an inhibition in the repression of the development and growth of the plants in comparison to corresponding plants not genetically modified. The alteration in the expression of DELLA of the object of the invention is obtained by silencing the SIDELLA or ortholog gene or by mutation of the SIDELLA or ortholog gene.
En una realización particular, el silenciamiento del gen SIDELLA u ortólogo se obtiene mediante el empleo una construcción génica que se basa en una copia ántisentido del gen SIDELLA u ortólogo controlada por el promotor 2XCaMV35S. In a particular embodiment, silencing of the SIDELLA or ortholog gene is obtained by employing a gene construct that is based on an antisense copy of the SIDELLA or ortholog gene controlled by the 2XCaMV35S promoter.
En otra realización particular, la mutación en la secuencia genética de SIDELLA se debe a adición y/o inserción y/o supresión y/o sustitución de uno o más nucleótidos de gen SIDELLA u ortólogo, concretamente, la mutación consiste en la sustitución del nucleótido guanina por adenina en el nucleótido 458, denominada mutación TILLING 1 (SEQ ID No.3) o la sustitución del nucleótido guanina por adenina en el nucleótido 1498, denominada mutación TILLING 2 (SEQ ID No.5) o la sustitución del nucleótido citosina por timina en el nucleótido 994, denominada mutación TILLING 3 (SEQ ID No.7) o la sustitución del nucleótido citosina por timina en el nucleótido 661 , denominada mutación TILLING 4 (SEQ ID No.9). En otra realización particular las plantas genéticamente modificadas del presente objeto de invención, exhiben un patrón de crecimiento simpodial, concretamente un patrón de crecimiento simpodial determinado que se modifica a indeterminado o a semideterminado. In another particular embodiment, the mutation in the genetic sequence of SIDELLA is due to the addition and / or insertion and / or deletion and / or substitution of one or more nucleotides of the SIDELLA or orthologous gene, namely, the mutation consists of the nucleotide replacement guanine with adenine in nucleotide 458, called the TILLING 1 mutation (SEQ ID No.3) or the replacement of the guanine nucleotide with adenine in nucleotide 1498, called the TILLING 2 mutation (SEQ ID No.5) or the replacement of the cytosine nucleotide with thymine in nucleotide 994, called the TILLING 3 mutation (SEQ ID No.7) or the replacement of the cytosine nucleotide with thymine in nucleotide 661, called the TILLING 4 mutation (SEQ ID No.9). In another particular embodiment, the genetically modified plants of the present object of the invention exhibit a sypodial growth pattern, specifically a determined symposium growth pattern that is modified to indeterminate or semi-determined.
En otra realización particular, las plantas genéticamente modificadas con la expresión alterada de la proteína DELLA u ortóloga del presente objeto de invención están caracterizadas porque el contenido de metabolitos y/o sustancias volátiles asociadas al aroma de los frutos se ve aumentado y/o disminuido respecto a plantas correspondientes no modificadas genéticamente. Concretamente el aumento en el contenido de los metabolitos se refiere en una realización particular al aumento de sacarosa, tirosina, asparagina, isoleucina, treonina, prolina, ácido piroglutámico y mio- inositol de un orden del 100-400%, y/o el de fructosa y glucosa en un orden del 10-30%, y/o el de las sustancias volátiles asociadas al aroma de los frutos Ε-2-hexenal, 1 -penten- 3-ona y p.damascenona de un orden del 100-200%, y/o el de las sustancias volátiles no asociadas al aroma de los frutos ácido 3-metilbutanoico, E,E-2,4-decadienal y Ε-2-octenal en un orden del 100-200% respecto de plantas correspondientes no modificadas genéticamente. En otra realización particular la disminución en el contenido de las sustancias volátiles asociadas al aroma de los frutos se refiere a una disminución en 3- metilbutanol, 1 -nitro-2-feniletano, 2-feniletanol, fenilacetaldehído y 2-isobutiltiazol en un orden del 80-90%, y/o la de las sustancias volátiles no asociadas al aroma de los frutos geranilacetona, terpineol, linalool, bencil alcohol, eugenol, benzilnitrilo, 2-metil-1 -butanol y 2-metil-1 -propanol en un orden del 50-100% respecto de plantas correspondientes no modificadas genéticamente. In another particular embodiment, genetically modified plants with the altered expression of the DELLA protein or ortholog of the present object of the invention are characterized in that the content of metabolites and / or volatile substances associated with the aroma of the fruits is increased and / or decreased with respect to to corresponding plants not genetically modified. Specifically, the increase in metabolite content refers in a particular embodiment to the increase in sucrose, tyrosine, asparagine, isoleucine, threonine, proline, pyroglutamic acid and myo-inositol of an order of 100-400%, and / or that of fructose and glucose in the order of 10-30%, and / or that of volatile substances associated with the aroma of the fruits Ε-2-hexenal, 1-pente-3-one and P. damascenone of an order of 100-200 %, and / or that of volatile substances not associated with the aroma of the fruits 3-methylbutanoic acid, E, E-2,4-decadienal and Ε-2-octenal in an order of 100-200% with respect to corresponding plants not genetically modified In another particular embodiment the decrease in the content of volatile substances associated with the aroma of the fruits refers to a decrease in 3- methylbutanol, 1-nitro-2-phenylethane, 2-phenylethanol, phenylacetaldehyde and 2-isobutylthiazole in an order of 80-90%, and / or that of volatile substances not associated with the aroma of fruits geranylacetone, terpineol, linalool, benzyl alcohol, eugenol, benzylnitrile, 2-methyl-1-butanol and 2-methyl-1-propanol in an order of 50-100% with respect to corresponding plants not genetically modified.
Las plantas genéticamente modificadas del presente objeto de invención son plantas con un interés comercial y/o agrícola y se seleccionan del grupo de las solanáceas, cucurbitáceas, orquidáceas, leñosas, entre otras plantas de interés. En una realización particular las plantas de la invención pertencen a la familia de las Solanáceas, siendo concretamente una planta de tomate Solanum lycopersicum. The genetically modified plants of the present object of the invention are plants with a commercial and / or agricultural interest and are selected from the group of Solanaceae, Cucurbitaceae, Orchids, Woody, among other plants of interest. In a particular embodiment the plants of the invention belong to the Solanaceae family, being specifically a Solanum lycopersicum tomato plant.
Un segundo objeto de invención se refiere a los frutos obtenidos de las plantas genéticamente modificadas según el anterior objeto de invención con un contenido de ciertos metabolttos y/o sustancias volátiles asociadas al aroma aumentado y/o el contenido de otros meta bolitas y/o sustancias volátiles asociadas al aroma disminuido respecto a los frutos de plantas correspondientes no modificadas genéticamente. El aumento en el contenido de los metabolitos se refiere en una realización particular al aumento de sacarosa, tirosina, asparagina, isoleucina, treonina, prolina, ácido piroglutámico y mio- inositol de un orden del 100-400%, y/o el de fructosa y glucosa en un orden del 10-30%, y/o el de las sustancias volátiles asociadas al aroma de los frutos Ε-2-hexenal, 1 -penten-3- ona y p.damascenona de un orden del 100-200%, y/o el de las sustancias volátiles no asociadas al aroma de los frutos ácido 3-metilbutanoico, E,E-2,4-decadienal y Ε-2-octenal en un orden del 100-200% respecto de plantas correspondientes no modificadas genéticamente. En otra realización particular la disminución en el contenido de las sustancias volátiles asociadas al aroma de los frutos se refiere a una disminución en 3- metilbutanol, 1 -nitro-2-feniletano, 2-feniletanol, fenilacetaldehído y 2-isobutiltiazol en un orden del 80-90%, y/o la de las sustancias volátiles no asociadas al aroma de los frutos geranilacetona, terpineol, linalool, bencil alcohol, eugenol, benzilnitrilo, 2-metil-1-butanol y 2-metil-1 -propanol en un orden de! 50-100% respecto de plantas correspondientes no modificadas genéticamente. A second object of the invention relates to the fruits obtained from genetically modified plants according to the previous object of the invention with a content of certain metabolites and / or volatile substances associated with the increased aroma and / or the content of other meta balls and / or substances volatile associated with the diminished aroma with respect to the fruits of corresponding plants not genetically modified. The increase in the metabolite content refers in a particular embodiment to the increase in sucrose, tyrosine, asparagine, isoleucine, threonine, proline, pyroglutamic acid and myo-inositol of an order of 100-400%, and / or that of fructose and glucose in the order of 10-30%, and / or that of the volatile substances associated with the aroma of the fruits Ε-2-hexenal, 1-penten-3- one and P. damascenone of an order of 100-200% , and / or that of volatile substances not associated with the aroma of the fruits 3-methylbutanoic acid, E, E-2,4-decadienal and Ε-2-octenal in an order of 100-200% with respect to corresponding unmodified plants genetically In another particular embodiment the decrease in the content of volatile substances associated with the aroma of the fruits refers to a decrease in 3- methylbutanol, 1-nitro-2-phenylethane, 2-phenylethanol, phenylacetaldehyde and 2-isobutylthiazole in an order of 80-90%, and / or that of volatile substances not associated with the aroma of geranilacetone, terpineol, linalool, benzyl alcohol, eugenol, benzylnitrile, 2-methyl-1-butanol and 2-methyl-1-propanol in a order of! 50-100% with respect to corresponding plants not genetically modified.
Otro objeto de invención se refiere a las semillas de las plantas genéticamente modificadas según el primer objeto de invención, en las que la expresión de las proteínas D E L L A u o rtó I og a se e ncue nt ra a Ite rad a . Another object of the invention relates to the seeds of genetically modified plants according to the first object of the invention, in which the expression of the proteins D E L L A u o rtó I og a is found in Ite rad a.
Otro objeto de invención se refiere al procedimiento de obtención de plantas genéticamente modificadas con la expresión alterada de la proteína DELLA u ortóloga que comprende las siguientes etapas: a) transformar el genoma de una célula de la planta, regenerar la planta a partir de la célula de la etapa a), obtener semillas de las planta transformada que contengan el genoma modificado y, crecer al menos una de las semillas de la etapa c) para obtener una que contenga la expresión alterada de la proteína DELLA u ortóloga. Another object of the invention relates to the method of obtaining genetically modified plants with the altered expression of the DELLA or orthologous protein comprising the following steps: a) transform the genome of a plant cell, regenerate the plant from the cell of stage a), obtain seeds of the transformed plant containing the modified genome and, grow at least one of the seeds of stage c ) to obtain one that contains the altered expression of the DELLA protein or ortholog.
En una realización particular la etapa a) del presente objeto de invención consiste en una mutagénesis dirigida cuya realización se obtiene mediante el silenciamiento del gen SIDELLA empleando la construcción génica asDELLA que se basa en una copia antisentido del gen SIDELLA controlada por el promotor 2XCaMV35S. En otra realización particular la etapa a) del presente objeto de invención consiste en una mutagénesis dirigida cuya realización consiste en modificar la secuencia nativa del gen SIDELLA a la secuencia del gen SIDELLA mutado seleccionado del grupo de las mutaciones denominadas TILLING 1 (SEQ ID No 3), TILLING 2 (SEQ ID No 5), TILLING 3 (SEQ ID No 7) y/o TILLING 4 (SEQ ID No 9). In a particular embodiment, step a) of the present object of the invention consists of a directed mutagenesis whose realization is obtained by silencing the SIDELLA gene using the asDELLA gene construct that is based on an antisense copy of the SIDELLA gene controlled by the 2XCaMV35S promoter. In another particular embodiment step a) of the present object of the invention consists of a directed mutagenesis whose embodiment consists in modifying the native sequence of the SIDELLA gene to the sequence of the mutated SIDELLA gene selected from the group of mutations called TILLING 1 (SEQ ID No 3 ), TILLING 2 (SEQ ID No 5), TILLING 3 (SEQ ID No 7) and / or TILLING 4 (SEQ ID No 9).
En otra realización particular, del presente objeto de invención, la etapa b) es opcional y en otra realización dicha transformación es mediada por Agrobacterium. In another particular embodiment, of the present object of the invention, step b) is optional and in another embodiment said transformation is mediated by Agrobacterium.
En otra realización particular la etapa a) consiste en una mutagénesis no dirigida que comprende las siguientes etapas: i. exponer la planta a un agente mutagénico, preferentemente el tilmetanosulfonato extraer el DNA de cada una de las familias y combinar siguiendo una estrategia 3D, rastrear el gen SIDELLA en cada familia mediante PCR anidada y cebadores universales, In another particular embodiment, step a) consists of an non-directed mutagenesis comprising the following stages: i. expose the plant to a mutagenic agent, preferably the tilmetanesulfonato extract the DNA from each of the families and combine following a 3D strategy, track the SIDELLA gene in each family by nested PCR and universal primers,
IV. detectar los a lelos mutantes de SIDELLA por secuenciación y deconvulución. A partir de la etapa (iv) de la presente realización se seleccionaron 4 formas álélicas de SIDELLA, concretamente las denominadas: TILLING 1 (SEQ ID No 3), TILLING 2 (SEQ ID No 5), TILLING 3 (SEQ ID No 7), TILLING 4 (SEQ ID No 9).. IV. detect the mutants of SIDELLA by sequencing and deconvulution. From step (iv) of the present embodiment, 4 allelic forms of SIDELLA were selected, namely those named: TILLING 1 (SEQ ID No 3), TILLING 2 (SEQ ID No 5), TILLING 3 (SEQ ID No 7) , TILLING 4 (SEQ ID No 9) ..
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 : Estructura de la construcción génica introducida en tomate para disminuir los niveles de SIDELLA en plantas transgénicas. Esquema de la estructura del T-DNA: 2x35S: promotor 35SCaMV (virus del mosaico del tabaco) duplicado. CaMV poli (A)+: secuencia de poliadenilación del CaMV. Nptll: gen que confiere resistencia a la kanamicina, con el promotor y el terminador de la nopaiin sintetasa (pnos y tnos). Figure 1: Structure of the gene construct introduced in tomato to decrease the levels of SIDELLA in transgenic plants. Scheme of the structure of T-DNA: 2x35S: 35SCaMV promoter (tobacco mosaic virus) duplicated. CaMV poly (A) + : CaMV polyadenylation sequence. Nptll: gene that confers resistance to kanamycin, with the promoter and terminator of nopaiin synthetase (pnos and tnos).
Figura 2; Efecto de la estrategia sobre los niveles de SIDELLA en las plantas transgénicas asDELLA. Análisis de los niveles de expresión de asSIDELLA y SIDELLA en entrenudos de plantas transgénicas y silvestres mediante RT-PCR semicuaníiíaíiva. En la figura se confirma la expresión de asSIDELLA en las líneas transgénicas (líneas 5A, 24B y 7G). Al mismo tiempo se comprueba la disminución de los niveles endógenos de SIDELLA en estas misma líneas en comparación con una planta silvestre (wt). Como control de carga se utilizó la reacción de RT-PCR para la actina. Figure 2; Effect of the strategy on SIDELLA levels in asDELLA transgenic plants. Analysis of the expression levels of asSIDELLA and SIDELLA in internodes of transgenic and wild plants by semi-Peruvian RT-PCR. The figure confirms the expression of asSIDELLA in the transgenic lines (lines 5A, 24B and 7G). At the same time the decrease of the endogenous levels of SIDELLA in these same lines is checked in comparison with a wild plant (wt). As a load control, the RT-PCR reaction for actin was used.
Figura 3: Efecto de la estrategia sobre el crecimiento y la producción de brotes simpodiales en las plantas transgénicas asDELLA. (A) Efecto sobre la altura total de las plantas medida después de 90 días. (B) Efecto sobre el crecimiento, número de entrenudos y tamaño de los mismos a lo largo de 120 días. En estas gráficas se observa la mayor altura alcanzada por las plantas transgénicas en comparación con las silvestres, así como que esta mayor altura se debe tanto a un aumento en el número de entrenudos como en su longitud. En las plantas transgénicas el crecimiento del brote simpodial se detiene más tarde o incluso adquiere crecimiento indeterminado. Los valores corresponden a la media de 4 plantas. La barra indica el error estándar, wt: planta silvestre. 5A, 24B, 7C: líneas transgénicas asDELLA independientes. EN: entrenudo Figure 3: Effect of the strategy on the growth and production of sympodial outbreaks in asDELLA transgenic plants. (A) Effect on the total height of the plants measured after 90 days. (B) Effect on growth, number of internodes and their size over 120 days. These graphs show the greater height reached by the transgenic plants compared to the wild ones, as well as that this greater height is due both to an increase in the number of internodes and their length. In transgenic plants the growth of the symposium bud stops later or even acquires undetermined growth. The values correspond to the average of 4 plants. The bar indicates the standard error, wt: wild plant. 5A, 24B, 7C: independent asDELLA transgenic lines. EN: internode
Figuras 4-7: (A) Secuencias nucleotídica y (B) estructura primaria de las proteínas correspondientes a las formas mutadas de SIDELLA identificadas por TILLING: Muíante TILLING 1 (figura 4), Muía ni e TILLING 2 (figura 5), Muíaníe TILLING 3 (figura 6) y Muía ni e TUILLING 4 (figura 7), donde se marcan en negriía y subrayadas los nucleólidos y aminoácidos muíados respecto a la secuencia de SIDELLA culíivar determinado M82. Figura 4 En el muíante TILLING 1 (A) a nivel nucleotídico existe una sustitución de guanina por adenina (en el nucleótido 458) y (B) a nivel aminoacídico existe una sustitución de alanina por treonina (en el aminoácido 153). Figura 5 En el muíante TILLING 2 (A) a nivel nucleotídico existe una sustitución de guanina por adenina (en el nucleótido 1498) y (B) a nivel aminoacídico existe una sustitución de glutamina por lisina (en el aminoácido 500). Figura 6 En el muíaníe TILLING 3 (A) a nivel nucleotídico existe una sustitución de citosina por ti mina (en el nucleótido 994) y (B) a nivel aminoacídico existe una sustitución de leucina por fenilalanina (en el aminoácido 332). Figura 7 En el muíaníe TILLING 4 (A) a nivel nucleotídico existe una sustitución de citosina por íimina (en el nucleótido 661 ) y (B) a nivel aminoacídico existe una sustitución de leucina por fenilalanina (en el aminoácido 221). Figures 4-7: (A) Nucleotide sequences and (B) primary structure of the proteins corresponding to the mutated forms of SIDELLA identified by TILLING: Mutante TILLING 1 (figure 4), Muía ni e TILLING 2 (figure 5), Muiáíe TILLING 3 (figure 6) and Muía ni e TUILLING 4 (figure 7), where the muted nucleolides and amino acids are marked in boldness and underlined by the sequence of culinary SIDELLA determined M82. Figure 4 In the TILLING 1 mutant (A) at the nucleotide level there is a substitution of guanine for adenine (at nucleotide 458) and (B) at the amino acid level there is a substitution of alanine for threonine (at amino acid 153). Figure 5 In the TILLING 2 mutant (A) at the nucleotide level there is a substitution of guanine for adenine (in nucleotide 1498) and (B) at the amino acid level there is a substitution of glutamine for lysine (at amino acid 500). Figure 6 In the MILLING TILLING 3 (A) at the nucleotide level there is a substitution of cytosine for you mine (at nucleotide 994) and (B) at the amino acid level there is a substitution of leucine for phenylalanine (at amino acid 332). Figure 7 In the MILLING TILLING 4 (A) at the nucleotide level there is a substitution of cytosine for imimine (in nucleotide 661) and (B) at the amino acid level there is a substitution of leucine for phenylalanine (at amino acid 221).
Figuras 8-11 : Apilamienío de los diferentes mutantes de TILLING caracterizados y localización de la mutación en la estructura primaria de la proteína comparada con otras proteínas DELLA de otras plantas para ver el grado de conservación del aminoácido afectado. Salvo en el mutante TILLING 1 , todas las mutaciones se producen en regiones muy conservadas de la proteína. (SIDELLA de Solanum licopersicum del cultivar determinado M82; StGAl de Solanum tuberosum; GhGAl de Gosipium hirsutum; AtGAl, AtRGA, AtRGL1 ; AtRGL2 y AtRGL de Arabidopsis thaliana; VvGAl de Vitis vinifera; ZmGAl de Zea mais; OsGAl de Oryza sativa y TaGAl de Triticum aestivum) El alineamiento se realizó con el algoritmo "ClustalW" del EBI (www2.ebi.ac.uk/clustalw/). Las secuencias de las proteínas DELLA empleadas para la realización de estos apilamientos pueden ser consultada en bases de datos públicas como GenBank (http://www.ncbi.nlm.nih.gov/Genbank/). Figures 8-11: Stacking of the different TILLING mutants characterized and location of the mutation in the primary structure of the protein compared to other DELLA proteins of other plants to see the conservation degree of the affected amino acid. Except in the TILLING 1 mutant, all mutations occur in highly conserved regions of the protein. (SIDELLA of Solanum licopersicum of the particular cultivar M82; StGAl of Solanum tuberosum; GhGAl of Gosipium hirsutum; AtGAl, AtRGA, AtRGL1; AtRGL2 and AtRGL of Arabidopsis thaliana; VvGAl of Vitis vinifera; ZmGAl of Zea mary Oisga of Osga; Triticum aestivum) The alignment was performed using the "ClustalW" algorithm of the EBI (www2.ebi.ac.uk/clustalw/). The DELLA protein sequences used to perform these stacks can be consulted in public databases such as GenBank (http://www.ncbi.nlm.nih.gov/Genbank/).
Figura 12: Fenotipo de planta silvestre M 82 frente al de las plantas de TILLING con mutación puntual en homozigosis o heíerozigosis en SIDELLA. Se observa un aumenío en la altura de las plantas mutantes, que presentan mayor biomasa y mayor número de frutos. Figure 12: M 82 wild plant phenotype compared to TILLING plants with point mutation in homozigosis or heíerozigosis in SIDELLA. An increase in the height of the mutant plants is observed, which present greater biomass and greater number of fruits.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN En la presente invención el término "índice simpodial" (sympodial index) es el número de nodos (hojas) sobre el brote principal hasta la inflorescencia. El "hábito de crecimiento" (plant ha bit), también denominado patrón de crecimiento, según la presente invención es aquél presentado por las plantas debido a la composición, el patrón de ramificación, el desarrollo y la textura así como la disposición en el espacio temporal de las unidades modulares consistentes en hojas, entrenudos y flores (frutos). DETAILED DESCRIPTION OF THE INVENTION In the present invention the term "sypodial index" is the number of nodes (leaves) on the main bud until the inflorescence. The "growth habit" (plant ha bit), also called growth pattern, according to the present invention is that presented by plants due to the composition, branching pattern, development and texture as well as the arrangement in space of the modular units consisting of leaves, internodes and flowers (fruits).
El "crecimiento simpodial" es el que presentan plantas como el tomate, melón, muchas cucurbitáceas, legumbres y orquídeas, etc, y que está caracterizado porque el crecimiento del eje principal de la planta se detiene con la formación de la primera inflorescencia, para seguir creciendo por diferenciación y elongación a partir de la diferenciación del brote correspondiente a la yema situada en la hoja justo por debajo de esa inflorescencia. Ese brote axilar produce un número de hojas y una nueva flor terminal, para reanudar el crecimiento a partir de la yema axilar situada por debajo de esa nueva inflorescencia y así consecutivamente. The "simpodial growth" is that presented by plants such as tomatoes, cantaloupe, many cucurbitaceae, legumes and orchids, etc., and which is characterized in that the growth of the main axis of the plant stops with the formation of the first inflorescence, to continue growing by differentiation and elongation from the differentiation of the bud corresponding to the bud located on the leaf just below that inflorescence. That axillary bud produces a number of leaves and a new terminal flower, to resume growth from the axillary bud below that new inflorescence and so on.
Entre las plantas de crecimiento simpodial se encuentran las solanáceas, cucurbitáceas, orquidáceas, leñosas, entre otros grupos de interés. Among the sypodial growth plants are the Solanaceae, Cucurbitaceae, Orchids, Woody, among other interest groups.
El "crecimiento determinado", a efectos de esta patente, es el hábito de crecimiento caracterizado por la producción de un número limitado de brotes simpodiales sobre el eje principal, después de la primera flor, resultando en una planta de altura más reducida. En el caso del tomate se consigue mediante mutación en el gen self-pruning en homozigosis. "Determined growth", for the purposes of this patent, is the growth habit characterized by the production of a limited number of sypodial shoots on the main axis, after the first flower, resulting in a plant of smaller height. In the case of tomato, it is achieved by mutation in the self-pruning gene in homozigosis.
Igualmente, el "crecimiento semi-determinado" es el hábito que presentan las plantas de crecimiento determinado, en el que producen un número mayor de brotes simpodiales ue el genotipo de referencia en determinadas condiciones. Likewise, "semi-determined growth" is the habit that plants with certain growth have, in which they produce a larger number of symposia buds than the reference genotype under certain conditions.
Y el "crecimiento indeterminado" es el presentado por muchas especies (todas las silvestres relacionadas con el tomate y muchas cultivadas) de tomate y típico de todas las "viñas", se caracteriza por un crecimiento simpodial, que se repite indefinidamente sobre el eje principal produciendo nuevos brotes con cada nueva inflorescencia terminal. And the "indeterminate growth" is the one presented by many species (all wild ones related to tomato and many cultivated) of tomato and typical of all the "vineyards", it is characterized by a simpodial growth, which is repeated indefinitely on the main axis producing new shoots with each new terminal inflorescence.
Asimismo, se considera que "transgénesis", en la presente invención, es el proceso mediante el cual se introduce una secuencia de DNA que contiene al menos una región no presente en el genoma del organismo inicial. It is also considered that "transgenesis", in the present invention, is the process by which a DNA sequence containing at least one region not present in the genome of the initial organism is introduced.
"Planta modificada genéticamente" (planta transgénica) se refiere, en la presente invención, a plantas cuyo material genético ha sido modificado deliberadamente con el fin de modificar la expresión de la proteína DELLA u ortóloga. La modificación genética puede realizarse tanto mediante una mutagénesis dirigida como a través de mutaciones no dirigidas. En la presente invención, "mutagénesis dirigida" se refiere una modificación genética concreta, en la que se modifica específicamente una cadena nucleotídica en el genoma de una célula de planta. "Mutagénesis no dirigida" se refiere a la mutagénesis del genoma celular sin dirigir la mutación, es decir no se conoce de antemano qué mutación se va a generar, dónde o el efecto que dicha mutación ejercerá sobre la célula y/o planta. "Genetically modified plant" (transgenic plant) refers, in the present invention, to plants whose genetic material has been deliberately modified in order to modify the expression of the DELLA protein or ortholog. The genetic modification can be carried out both by means of a directed mutagenesis and through non-directed mutations. In the present invention, "directed mutagenesis" refers to a specific genetic modification, in which a nucleotide chain in the genome of a plant cell is specifically modified. "Non-directed mutagenesis" refers to the mutagenesis of the cellular genome without directing the mutation, that is, it is not known in advance what mutation is going to be generated, where or the effect that said mutation will have on the cell and / or plant.
El término "planta correspondiente no modificada genéticamente" (planta silvestre) se refiere en la presente invención a plantas cuyo material genético no ha sido modificado. The term "corresponding non-genetically modified plant" (wild plant) refers in the present invention to plants whose genetic material has not been modified.
"Gen ortólogo" en la presente invención se refiere a genes homólogos en diferentes especies que codifican "proteínas ortólogas" que catalizan la misma reacción (es decir, con una misma función) en plantas. En la presente invención se describen nuevas funciones y usos del gen SIDELLA de Soíanum lycopersicum junto con versiones mutantes del gen asociadas a los nuevos fenotipos. Estos nuevos caracteres genotípicos incluyen la modificación del hábito de crecimiento y del metabolismo. Plantas genéticamente modificadas en SIDELLA o formas mutantes alélicas de esta proteína pueden utilizarse para incrementar el número de repeticiones simpodiales en un fondo genético determinado con el correspondiente incremento en el número de inflorescencias y de frutos, y por otra parte producir frutos con un contenido meta ból ico modificado, incluido el de los volátiles asociados al aroma. "Orthologous gene" in the present invention refers to homologous genes in different species that encode "orthologous proteins" that catalyze the same reaction (ie, with the same function) in plants. In the present invention new functions and uses of the SIDELLA gene of Soíanum lycopersicum are described together with mutant versions of the gene associated with the new phenotypes. These new genotypic characters include the modification of growth habit and metabolism. Genetically modified plants in SIDELLA or allelic mutant forms of this protein can be used to increase the number of sypodial repeats in a given genetic background with the corresponding increase in the number of inflorescences and fruits, and on the other hand produce fruits with a metabolic content. Modified ico, including that of the volatiles associated with the aroma.
La presente invención está relacionada con el control genético del crecimiento y más concretamente con el hábito de crecimiento que determina el crecimiento simpodial determinado o no de una planta. Más concretamente esta invención está relacionada con la utilización del gen SIDELLA para modificar ese aspecto del desarrollo mediante estrategias de ingeniería genética y de TILLING seguidas de mejora asistida por marcadores utilizando las formas mutantes de este gen. The present invention is related to the genetic control of growth and more specifically to the growth habit that determines the determined or non-determined growth of a plant. More specifically, this invention is related to the use of the SIDELLA gene to modify that aspect of development through genetic engineering and TILLING strategies followed by marker-assisted improvement using the mutant forms of this gene.
Un primer aspecto de esta invención se basa en la identificación de una nueva función de la proteína DELLA no previamente descrita y que proporciona una forma de alterar el hábito de crecimiento determinado de plantas (en nuestro caso de plantas de tomate portadoras de la mutación sp/sp). Esta forma de alterar el hábito de crecimiento en tomate consiste en utilizar una construcción asDELLA para disminuir los niveles endógenos del regulador SIDELLA en plantas transgénicas. Las plantas transgénicas así producidas presentan un fenotipo de planta semideterminada a indeterminada con una mayor producción de flores y frutos en el eje principal, sin alterar significativamente el tiempo de floración. Otro aspecto de la presente invención, y dado que las proteínas DELLA se degradan tras el tratamiento con la hormona giberelina GAs (Dill et al. 2001; 2004; Gubler et al. 2002; Itoh et al. 2002; Silverstone et al., 2001), se basa en otro método de variar el nivel de determinación (número y composición de las repeticiones simpodiales después de la primera flor) consistente en el tratamiento de la planta con concentraciones de GAs. Otro aspecto de esta invención, y dado que existen formas de DELLA insensibles a GAs, es alterar el número y composición de las repeticiones simpodiales después de la primera flor de forma independiente de GAs y conferir un fenotipo de ganancia de función mediante utilización de una versión mutada de DELLA. A first aspect of this invention is based on the identification of a new function of the DELLA protein not previously described and which provides a way to alter the determined growth habit of plants (in our case, tomato plants carrying the mutation sp / sp). This way of altering the growth habit in tomato is to use an asDELLA construction to decrease levels endogenous to the SIDELLA regulator in transgenic plants. The transgenic plants thus produced have a semi-determined to indeterminate plant phenotype with a greater production of flowers and fruits on the main axis, without significantly altering the flowering time. Another aspect of the present invention, and since DELLA proteins degrade after treatment with the gibberellin hormone GAs (Dill et al. 2001; 2004; Gubler et al. 2002; Itoh et al. 2002; Silverstone et al., 2001 ), is based on another method of varying the level of determination (number and composition of the simpodial repetitions after the first flower) consisting of the treatment of the plant with concentrations of GAs. Another aspect of this invention, and given that there are forms of DELLA insensitive to GAs, is to alter the number and composition of the simpodial repeats after the first flower independently of GAs and confer a function gain phenotype by using a version DELLA mutated.
La nueva función de SIDELLA se puede conferir mediante transgénesis de forma análoga a la resultante de la utilización de una estrategia de asDELLA como se describe en el ejemplo 1 o mediante sobre expresión de versiones mutadas, incluidas las de ganancia de función (supresión tipo gai en asDELLA o relacionadas). The new SIDELLA function can be conferred by transgenesis analogously to that resulting from the use of an asDELLA strategy as described in example 1 or by over-expression of mutated versions, including those of function gain (gai type suppression in asDELLA or related).
En otro aspecto de la presente invención se propone un método para identificar mutantes, derivados, variantes y alelos de esa proteína de plantas mutagenizadas y que resulten en características funcionales nuevas que modifiquen en diferente grado el número y composición de las repeticiones simpodiales, produciendo así plantas con un número de flores y porte adaptado a las necesidades. Los cambios en la proteína pueden ser uno o más de los siguientes: adición, inserción, supresión o sustitución de uno o más nucleótidos que resulte en cambios en la secuencia de aminoácidos o no. La presente invención también suministra la construcción nucleoacídica o vector que comprende un promotor desde el cual se exprese la secuencia de SIDELLA en orientación antisentido. La construcción o vector esta diseñada para su expresión en una célula, especialmente de tipo vegetal. Dicha célula vegetal que expresa esa construcción en antisentido está también comprendida en esta invención. Esta construcción cuando se inserta en el genoma de la planta dirige la expresión de la cadena complementaria de mRNA de SIDELLA ocasionando la disminución de los niveles de la cadena codificante expresada endógenamente. Dicha disminución también puede obtenerse por otros métodos como RNAi, micro R NA, etc. Dicha construcción o vector que contenga el SÍDELLA en antisentido, RNAi, etc., contendrá generalmente un promotor u otra secuencia reguladora. In another aspect of the present invention a method is proposed to identify mutants, derivatives, variants and alleles of that protein from mutagenized plants and that result in new functional characteristics that modify in different degree the number and composition of the simpodial repeats, thus producing plants. with a number of flowers and size adapted to the needs. The changes in the protein may be one or more of the following: addition, insertion, deletion or substitution of one or more nucleotides that results in changes in the amino acid sequence or not. The present invention also provides the nucleoacidic construct or vector comprising a promoter from which the SIDELLA sequence is expressed in antisense orientation. The construction or vector is designed for expression in a cell, especially plant type. Said plant cell expressing that antisense construct is also included in this invention. This construction when inserted into the genome of the plant directs the expression of the complementary mRNA chain of SIDELLA causing the reduction of the levels of the endogenously expressed coding chain. This decrease can also be obtained by other methods such as RNAi, micro R NA, etc. Said construction or vector containing the SIDELLA in antisense, RNAi, etc., will generally contain a promoter or other regulatory sequence.
La persona experta en la materia conoce métodos para realizar dichas construcciones que contengan las señales y elementos necesarios para su expresión en plantas y obtener plantas transgénicas portadoras de dichas construcciones y que expresen el gen de forma constitutiva o inducida. Para más detalles se pueden ver, por ejemplo: "Molecular Cloníng: a Laboratory Manual" 2nd edition, Sambrook et al, 1989, Cold Spring Harbor Laboratory Press. "Protocole in Molecular Biology", Second Edition, Ausubel et al. ed., John Wiley & Sons, 1992. "Specific procedures and vectors previously used with wide success upon plants" are described by Bevan, Nucí. Acids Res. (1984) 12, 8711 -8721), and Guerineau and Mullineaux, (1993); "Plant transformation and expression vectors", In: Plant Molecular Biology Labfax (Croy RRD ed) Oxford, BIOS Scientific Publishers, pp 121-148. The person skilled in the art knows methods for making said constructions that contain the signals and elements necessary for their expression in plants and obtain transgenic plants carrying said constructions and that express the gene in a constitutive or induced way. For more details you can see, for example: "Molecular Cloníng: a Laboratory Manual" 2nd edition, Sambrook et al, 1989, Cold Spring Harbor Laboratory Press. "Protocole in Molecular Biology", Second Edition, Ausubel et al. ed., John Wiley & Sons, 1992. "Specific procedures and vectors previously used with wide success upon plants" are described by Bevan, Nucí. Acids Res. (1984) 12, 8711-8721), and Guerineau and Mullineaux, (1993); "Plant transformation and expression vectors", In: Plant Molecular Biology Labfax (Croy RRD ed) Oxford, BIOS Scientific Publishers, pp 121-148.
La presente invención se puede llevar a cabo en cualquier planta, especialmente de crecimiento simpodial, aparte de tomate (ie cucurbitáceas o orquídeas, etc) en las que se puede aislar e identificar el ortólogo de SIDELLA mediante PCR con oligos conservados y llevar a cabo una aproximación similar. Alternativamente se pueden rastrear librerías de ácidos nucléicos con sondas heterólogas. Las personas conocedoras del arte pueden llevar a cabo estos procedimientos sin problemas y llevar a cabo construcciones y transformación genética de forma similar para obtener una alteración del fenotipo descrito en esa plantas. The present invention can be carried out in any plant, especially of simpodial growth, apart from tomato (ie cucurbitaceae or orchids, etc.) in which the SIDELLA ortholog can be isolated and identified by PCR with preserved oligos and carrying out a similar approach. Alternatively, nucleic acid libraries can be tracked with heterologous probes. People skilled in the art can carry out these procedures without problems and carry out genetic constructions and transformation in a similar way to obtain an alteration of the phenotype described in those plants.
En otro aspecto de la presente invención se presentan secuencias mutantes de SIDELLA que confieren alteraciones en la nueva función descrita y que resultan en plantas de tomate con un número mayor de simpodios que la variedad que aporta el fondo genético y con un número mayor de inflorescencias y alteración de la composición simpodial. In another aspect of the present invention, mutant sequences of SIDELLA are presented that confer alterations in the new function described and that result in tomato plants with a greater number of symposia than the variety provided by the genetic background and with a greater number of inflorescences and alteration of the symposium composition.
En otro aspecto de la invención se proporciona la forma de producir e identificar nuevas versiones de DELLA (o proteína ortóloga)que estén afectadas en esta nueva función y que resulten de interés. Actuando sobre DELLA (o proteína ortóloga) podemos alterar no sólo la longitud de los entrañudos sino el número de brotes simpodiales sobre el eje principal y, en consecuencia, el número de inflorescencias y frutos asociados. Concretamente, permite en el caso de plantas de tomate de crecimiento determinado (sp/sp) convertirla en indeterminado. En otro aspecto de la presente invención la alteración de SIDELLA (o gen ortólogo) ocasiona en el fruto cambios en el contenido sustancial del mismo que afectaran sus características nutricionales y organolépticas. Las características organolépticas, nutricionales y de salud de los frutos son consecuencia directa del contenido en una serie de moléculas presentes en el mismo. Concretamente el sabor y aroma del tomate está relacionado con la concentración y cantidades relativas de azúcares (fundamentalmente glucosa y fructosa) y de ácidos orgánicos (málico, cítrico) y de los compuestos volátiles que contribuyen al aroma (al menos 14 compuestos volátiles). El sabor y el aroma son unos caracteres a menudo olvidados en los programas de mejora más recientes, donde el énfasis ha sido en la productividad, larga vida de los frutos, etc, con la consecuente demanda social por frutos con mejores o diferentes sabores. En la presente patente se muestra que es posible modificar el contenido relativo de compuestos volátiles, de azúcares y de aminoácidos en el fruto del tomate actuando a nivel de SIDELLA. El método consiste en utilizar variabilidad natural o generada mediante mutágenos e identificar las variantes mutadas mediante TILLING o similar. El TILLING (Targeting Induced Local Lesions In Genomes) es una tecnología dirigida a la identificación de mutantes en un gen de interés de secuencia conocida y se aplica a todo tipo de organismos, desde plantas hasta animales o bacterias (McCallum et al., 2000; Till et al, 2004; Slade et al., 2005). Esta tecnología proporciona una forma de obtener mutantes en un gen y en nuestro caso se utilizó para encontrar mutantes en SIDELLA, ya que sabíamos que el TILLING combina protocolos de mutagénesis con la POR y un método para detección de polimorfismos en el DNA. In another aspect of the invention there is provided the way to produce and identify new versions of DELLA (or orthologous protein) that are affected in this new function and that are of interest. Acting on DELLA (or orthologous protein) we can alter not only the length of the entrails but also the number of sypodial shoots on the main axis and, consequently, the number of inflorescences and associated fruits. Specifically, it allows in the case of tomato plants of certain growth (sp / sp) to make it undetermined. In another aspect of the present invention, the alteration of SIDELLA (or orthologous gene) causes in the fruit changes in the substantial content thereof that will affect its nutritional and organoleptic characteristics. The organoleptic, nutritional and health characteristics of the fruits are a direct consequence of the content in a series of molecules present in it. Specifically, the flavor and aroma of tomato is related to the concentration and relative amounts of sugars (mainly glucose and fructose) and organic acids (malic, citric) and volatile compounds that contribute to the aroma (at least 14 volatile compounds). The flavor and aroma are characters often forgotten in the most recent improvement programs, where the emphasis has been on productivity, long life of the fruits, etc., with the consequent social demand for fruits with better or different flavors. In the present patent it is shown that it is possible to modify the relative content of volatile compounds, sugars and amino acids in tomato fruit acting at the level of SIDELLA. The method consists of using natural or generated variability through mutagens and identifying mutated variants by TILLING or similar. TILLING (Targeting Induced Local Lesions In Genomes) is a technology aimed at identifying mutants in a gene of interest of known sequence and is applied to all types of organisms, from plants to animals or bacteria (McCallum et al., 2000; Till et al, 2004; Slade et al., 2005). This technology provides a way to obtain mutants in a gene and in our case it was used to find mutants in SIDELLA, since we knew that TILLING combines mutagenesis protocols with POR and a method for detecting DNA polymorphisms.
Ello resulta en la identificación de formas mutadas como las que se presentan en las Figuras de la 4 a la 11 . Algunas de las mutaciones son silenciosas, pero otras resultan en cambios notables en el número de simpodios y en la composición de estos incluyendo un mayor número de flores por simpodio. Aunque no sabemos exactamente cuáles son los residuos más importantes para la nueva función de interés, se entiende en general que aquellas mutaciones que ocasionen cambios conservativos, es decir provocan un cambio aminoacídico de por ejemplo un aminoácido hidrofóbico por otro hidrofóbico, o uno ácido por otro ácido no resultan a menudo en cambios sustanciales en la actividad de la proteína. Por otro lado, cambios no conservativos como pueden ser un aminoácido ácido por un básico o uno polar por uno hidrofóbico alteran de forma importante la función. De especial importancia es que afecte la nueva función alterando en menor medida otras funciones ya descritas como la longitud del entrenudo o la fertilidad. La descripción de nuevas mutaciones puede permitir definir mejor lo aminoácidos más relevantes para cada caso. This results in the identification of mutated forms such as those presented in Figures 4 through 11. Some of the mutations are silent, but others result in notable changes in the number of sypodia and their composition, including a greater number of flowers per symposium. Although we do not know exactly what are the most important residues for the new function of interest, it is generally understood that those mutations that cause conservative changes, that is to say cause an amino acid change of for example a hydrophobic amino acid for another hydrophobic, or one acidic for another Acid often does not result in substantial changes in protein activity. On the other hand, non-conservative changes such as an acidic amino acid by a basic or a polar amino acid by a hydrophobic one significantly alter the function. Of special importance is that it affects the new function by altering to a lesser extent other functions already described such as internode length or fertility. The Description of new mutations may allow us to better define the most relevant amino acids for each case.
En otro aspecto de la presente invención se proporcionan mutaciones concretas (ver Figuras tabla 3, 4 y figura 12) que proporcionan cambios en el número y composición de los simpodios alterando sólo levemente la longitud de los entrenudos u otros aspectos del fenotipo. In another aspect of the present invention, specific mutations are provided (see Figures Table 3, 4 and Figure 12) that provide changes in the number and composition of the symposia by only slightly altering the length of internodes or other aspects of the phenotype.
Es posible, mediante la utilización de una técnica de TILLING similar a la utilizada aquí, identificar nuevos alelos que proporcionen intensidades de alteración del número de simpodios y de composición de los mismos (incluido el número de flores) que mejor se adapte a las necesidades o deseos del obtentor, rastreando un número suficiente de mutantes y caracterizando dicha colección. It is possible, through the use of a TILLING technique similar to that used here, to identify new alleles that provide intensities of alteration of the number of symposia and their composition (including the number of flowers) that best suits the needs or breeder's wishes, tracking a sufficient number of mutants and characterizing said collection.
Otros mutantes en DELLA afectados en esta nueva función son también objeto de la presente invención. Other mutants in DELLA affected in this new function are also objects of the present invention.
También representan un aspecto de la presente intención, cualquier célula, especialmente vegetal, que contenga la construcción dirigida a modificar los niveles de expresión de DELLA o que contenga mutantes puntuales en DELLA afectados en esta nueva función. They also represent an aspect of the present intention, any cell, especially plant, that contains the construction directed to modify the levels of expression of DELLA or that contains specific mutants in DELLA affected in this new function.
La presente invención también comprende la planta que comprenda dicha célula portadora de la construcción o de la mutación en SIDELLA. Además de la planta, la presente invención proporciona cualquier clon de dicha planta, semilla de autofecundación o híbrida y sus descendiente y cualquier parte de ellos como esquejes, semillas, etc. que pueda ser utilizado para propagar dicho material. The present invention also comprises the plant comprising said carrier cell of the construction or mutation in SIDELLA. In addition to the plant, the present invention provides any clone of said plant, self-fertilizing or hybrid seed and its descendants and any part thereof as cuttings, seeds, etc. that can be used to propagate such material.
La presente invención también proporciona un método para influenciar dicho nuevo fenotipo, como es el tratamiento con GAs o activadores o inhibidores de su síntesis o mecanismo de acción. The present invention also provides a method for influencing said new phenotype, such as treatment with GAs or activators or inhibitors of its synthesis or mechanism of action.
La presente invención también proporciona un método para utilizar mutaciones de ganancia de función en DELLA (supresiones en la proteína tipo mutante gal) para alterar el fenotipo en el sentido contrario (disminuir el número de simpodios o de flores por repetición simpodial). De especial relevancia es que se proporciona un método para aumentar el número de simpodios manteniendo (mutantes puntuales o mayor nivel de represión) o no (alto nivel de represión o mutantes nulos) el carácter determinado y el número de flores por simpodio, lo que repercute en el número de frutos. Debería de ser posible para cualquier persona experimentada en el arte de introducir variaciones en esta estrategia en la que la disminución en los niveles de DELLA o la expresión de formas mutadas de DELLA se hiciera de forma inducible o mediante promotores específicos. Por ejemplo las construcciones como las indicadas arriba o versiones mutadas como las descritas controladas por un promotor específico o inducible. Ello permitiría afectar al número de simpodios y la composición de los frutos de forma más dirigida, The present invention also provides a method for using function gain mutations in DELLA (deletions in the gal mutant type protein) to alter the phenotype in the opposite direction (decrease the number of sypodia or flowers by simpodial repetition). Of particular relevance is that a method is provided to increase the number of symposia by maintaining (specific mutants or higher levels of repression) or not (high level of repression or null mutants) the determined character and the number of flowers per symposium, which affects in the number of fruits. It should be possible for anyone experienced in the art of introducing variations in this strategy in which the decrease in DELLA levels or the expression of mutated forms of DELLA were made induciblely or by specific promoters. For example, constructions such as those indicated above or mutated versions such as those described controlled by a specific or inducible promoter. This would affect the number of symposia and the composition of the fruits in a more directed way,
Existen promotores específicos, así como inducibles, que pueden ser muy útiles para realizar esas nuevas aplicaciones y procedimientos de transformación para la mayor parte de las plantas de cultivo y muchas ornamentales. There are specific promoters, as well as inducible ones, that can be very useful to carry out these new applications and transformation procedures for most of the crop plants and many ornamentals.
EJEMPLOS EXAMPLES
Ejemplo 1 : Incremento del número de repeticiones simpodiales mediante inhibición de los niveles de expresión del gen SIDELLA en plantas transgénicas de tomate. Example 1: Increase in the number of simpodial repetitions by inhibiting the expression levels of the SIDELLA gene in transgenic tomato plants.
La secuencia codificante del gen SIDELLA (SEQ ID No. 1 y 2) se colocó en orientación antisentído bajo el control del promotor constitutivo 35S del virus del mosaico de la coliflor (CaMV) (ver esquema Figura 1) (La secuencia del cDNA de SIDELLA ya se ha publicado y se ha utilizado en esta construcción), y se introdujo en plantas de tomate (Solanum lycopersicum UC82 sp/sp) mediante transformación mediada por Agrobacferium siguiendo procedimientos establecidos (Ellul et al. 2003). Se seleccionaron plantas homozigotas para el transgen y se evaluó el tamaño de la planta a lo largo del tiempo, el numero de entrenudos y la longitud de estos, el numero de hojas hasta la primera inflorescencia, y la composición del metámero simpodial, y los resultados se muestran en las Figuras 3, tablas 1 y 2. The coding sequence of the SIDELLA gene (SEQ ID No. 1 and 2) was placed in antisense orientation under the control of the constitutive 35S promoter of the cauliflower mosaic virus (CaMV) (see scheme Figure 1) (The SIDELLA cDNA sequence It has already been published and used in this construction), and introduced into tomato plants (Solanum lycopersicum UC82 sp / sp) by Agrobacferium-mediated transformation following established procedures (Ellul et al. 2003). Homozygous plants were selected for the transgene and the size of the plant was evaluated over time, the number of internodes and their length, the number of leaves until the first inflorescence, and the composition of the sypodial metaphor, and the results They are shown in Figures 3, Tables 1 and 2.
Las plantas UC82 (sp/sp) portadoras de la mutación self-pruning en homozigosis presentan el característico habito determinado, formando la primera inflorescencia después de unas 10 hojas y terminando su crecimiento tras producir 3 metámeros simpodiales, Las líneas transgénicas de tomate UC82 (sp/sp) portadoras de la construcción asDELLA muestran niveles disminuidos en SIDELLA (Figura 2) y un porte (hábito de crecimiento) alterado (Figura 3, tablas 1 y 2). No sólo las plantas son más altas por una mayor longitud de los entrenudos, sino porque el crecimiento del brote principal no se detiene como en UC82 (sp/sp) tras tres metámeros simpodiales sino que continua creciendo mediante la adición de nuevos unidades que depende de la línea transgénica, desde 8 simpodios (línea asDELLA 24B) hasta incluso adquirir crecimiento indeterminado (líneas asDELLA 5A y 7C) The UC82 (sp / sp) plants that carry the self-pruning mutation in homozigosis have the characteristic determined habit, forming the first inflorescence after about 10 leaves and finishing their growth after producing 3 metamers. sypodial, The transgenic lines of tomato UC82 (sp / sp) carrying the asDELLA construction show decreased levels in SIDELLA (Figure 2) and an altered bearing (growth habit) (Figure 3, tables 1 and 2). Not only are the plants taller for longer internodes, but because the growth of the main shoot does not stop as in UC82 (sp / sp) after three symposium metameres, but continues to grow by adding new units that depend on the transgenic line, from 8 symposia (line asDELLA 24B) to even acquire indeterminate growth (lines asDELLA 5A and 7C)
TABLA 1 : Efecto de la disminución en la expresión de SIDELLA en las plantas transgénicas sobre su altura, número y longitud de los entrenudos, tiempo de floración y composición de metámeros. A: datos relativos a 5 plantas silvestres (wt). B: Datos relativos a 4 plantas asDELLA, línea 5A y C: Datos relativos a 3 plantas asDELLA, línea 24B. TABLE 1: Effect of the decrease in the expression of SIDELLA in transgenic plants on their height, number and length of internodes, flowering time and composition of metamers. A: data related to 5 wild plants (wt). B: Data related to 4 asDELLA plants, line 5A and C: Data related to 3 asDELLA plants, line 24B.
Figure imgf000021_0001
Figure imgf000021_0001
B. B.
Figure imgf000022_0001
Figure imgf000022_0001
C. C.
Figure imgf000022_0002
Figure imgf000022_0002
En la tabla 1 se observa la mayor altura de las plantas transgénicas en relación a las silvestres, así como un aumento en el número y longitud de sus entrenudos. Por otro lado se comprueba que el tiempo de floración, medido como número de hojas hasta la aparición de la primera inflorescencia, sólo se retrasa algo en las plantas 5A. En cuanto a la composición de los metámeros, se observa que en las plantas silvestres las inflorescencias aparecen en hojas consecutivas y el crecimiento de la plantas se detiene tras tres inflorescencias, mientras que en las asDELLA la inflorescencia aparece cada 2 ó 3 hojas y continua formando metámeros adicionales de forma indefinida cuando las silvestres ya han dejado de crecer. Table 1 shows the highest height of transgenic plants in relation to wild plants, as well as an increase in the number and length of their internodes. On the other hand it is verified that the flowering time, measured as number of leaves until the appearance of the first inflorescence, is only delayed somewhat in the 5A plants. As for the composition of the metameres, it is observed that in wild plants the inflorescences appear in consecutive leaves and the growth of the plants stops after three inflorescences, while in the asDELLA the inflorescence appears every 2 or 3 leaves and continues to form additional metamers indefinitely when the wild ones have stopped growing.
TABLA 2: Efecto de la disminución en la expresión de SIDELLA sobre el hábito de crecimiento de las plantas transgénicas. Los datos corresponden a la media de 4 plantas por genotipo. Se observa la variación en la composición de los metámeros de las líneas asDELLA y el cambio de tipo de crecimiento en las mismas de determinado a indeterminado o semi-determinado (más de 10 repeticiones simpodiales). TABLE 2: Effect of the decrease in the expression of SIDELLA on the growth habit of transgenic plants. The data correspond to the average of 4 plants per genotype. The variation in the composition of the metameres of the asDELLA lines and the change in the type of growth in them from determined to indeterminate or semi-determined (more than 10 symposia repetitions) are observed.
Figure imgf000023_0001
Figure imgf000023_0001
El cDNA correspondiente a SIDELLA (SEQ. ID. No. 1 y 2) se aisló a partir de una genoteca de expresión en Lambda ZAP de ovarios de tomate (Solanum lycopersícum L. ve Rutgeή emasculados un día antes de la antesis. El gen SIDELLA se rastreo a partir de las colonias obtenidas (40000) de la genoteca de expresión utilizando como sonda la región codificante completa (cDNA) (1750pb) del gen mutado gaidel de Arabidopsis thalíana (Atgaldet) . La hibridación de los filtros de nitrocelulosa obtenidos de las placas de lisis se realizó a 46°C durante 6 h. Los filtros de nitrocelulosa se lavaron dos veces con 2 x SSC, 0.1 % SDS a temperatura ambiente durante 5 min y una vez con 0.1 x SSC, 0.1 % SDS a 46°C durante 22 minutos. Se obtuvieron 15 clones positivos correspondientes todos al mismo gen, aislándose y secuenciándose el más largo de ellos (2389pb). Este clon contenía una ORF de 1764 pb capaz de sintetizar una proteina de 588 aminoácidos con un peso molecular de 64,45 KDa y un punto isoeléctrico teórico de 5.07. La comparación de la secuencia proteica deducida con las existentes en los bancos de datos, mostró que el clon aislado era un ortólogo en tomate de los genes DELLA  The cDNA corresponding to SIDELLA (SEQ. ID. No. 1 and 2) was isolated from a lambda ZAP expression library of tomato ovaries (Solanum lycopersícum L. ve Rutgeή emasculated one day before the anthesis. The SIDELLA gene was screened from the colonies obtained (40,000) from the expression library using as a probe the complete coding region (cDNA) (1750 bp) of the gaidel mutated gene of Arabidopsis thalíana (Atgaldet). Hybridization of nitrocellulose filters obtained from the Lysis plates were performed at 46 ° C for 6 h.The nitrocellulose filters were washed twice with 2 x SSC, 0.1% SDS at room temperature for 5 min and once with 0.1 x SSC, 0.1% SDS at 46 ° C for 22 minutes, 15 positive clones corresponding to the same gene were obtained, isolating and sequencing the longest of them (2389 bp.) This clone contained an ORF of 1764 bp capable of synthesizing a protein of 588 amino acids with a molecular weight of 64, 45 KDa and one pu theoretical isoelectric number of 5.07. The comparison of the deduced protein sequence with those existing in the databases, showed that the isolated clone was a tomato ortholog of the DELLA genes
Posteriormente, el gen se clonó en dirección antisentido en el plásmido pBINJIT60 bajo el control del promotor 35S del virus del mosaico del tabaco (35S::SIDELLAas). El plásmido binario, pBINJIT60, se utilizó para la obtención de plantas transgénicas de Lycorpersicon esculentum mediante transformación con Agrobacterium tumefaciens. Este plásmido está construido a partir del "casette" del plásmido pJIT60, que aporta el promotor 35S del virus del mosaico de la coliflor (CaMV) con el "enhancer" duplicado (2x35S), el sitio de clonación múltiple del pUC9 y la secuencia de poliadenilación del CaMV, [CaMV poli (A)+] (Guerineau et al., 1992), extraído como fragmento Kpnl y Xhol, y subclonado en los sitios Kpnl y Salí del plásmido binario pBIN19. El pBIN19 contiene el gen NPTII, que confiere resistencia a la kanamicina, fusionado al promotor y al terminador de la nopalina sintetasa (pnos y tnos), incluido en el T-DNA (Bevan, 1984). El vector resultante pBINJIT posee un tamaño de 13,2 kb aproximadamente y presenta como sitios únicos de clonaje Salí, BamHI y Smal. Para clonar asDELLA en antisentido en este vector, se amplifico mediante PCR su secuencia genómica completa utilizando los oligonucleotidos TGxC7 (5'-CCAGCACTTGTCATTCTTACC-3' SEQ. ID. No. 13) y TGxCS (5.-CATCTCTCTCATTGTCTCTTCC-3' SEQ. ID. No. 14). El producto de 1800pb se digirió con EcoRV y subclonó en el vector pBSK, eligiéndose aquellos clones en los que SIDELLA se había clonado en antisentido para subclonarlo en el vector binario pBINJIT60 utilizando los sitios Sma I/Sal I. Con el fin de reducir los niveles endógenos de SIDELLA, esta construcción fue introducida en la cepa LBA4404 de Agrobacteríum tumefaciens mediante electroporación para su utilización posterior en la transformación de tomate a partir de explantes de cotiledón (Ellul et al., 2003). Se seleccionaron plantas homozigotas para el transgen y se comprobó, mediante RT-PCR semicuantitativa, que efectivamente mostraban disminución del nivel de expresión de SIDELLA endógeno (Figura 2). En estas misma plantas se evaluó, a lo largo del tiempo, su altura, el numero de entrenudos y la longitud de estos, el numero de hojas hasta la primera inflorescencia, y la composición del metámero simpodial. Los resultados se muestran en las Figuras 3 y tablas 1 y 2. Subsequently, the gene was cloned in the antisense direction in plasmid pBINJIT60 under the control of the 35S promoter of the tobacco mosaic virus (35S :: SIDELLAas). The binary plasmid, pBINJIT60, was used to obtain transgenic Lycorpersicon esculentum plants by transformation with Agrobacterium tumefaciens. This plasmid is constructed from the "cassette" of plasmid pJIT60, which provides the 35S promoter of cauliflower mosaic virus (CaMV) with the duplicated "enhancer" (2x35S), the multiple cloning site of pUC9 and the sequence of polyadenylation of the CaMV, [CaMV poly (A) +] (Guerineau et al., 1992), extracted as a Kpnl and Xhol fragment, and subcloned into the Kpnl and I left sites of the binary plasmid pBIN19. PBIN19 contains the NPTII gene, which confers resistance to kanamycin, fused to the promoter and the nopaline synthetase terminator (pnos and tnos), included in the T-DNA (Bevan, 1984). The resulting vector pBINJIT is approximately 13.2 kb in size and presents as unique cloning sites Salí, BamHI and Smal. To clone asDELLA antisense in this vector was amplified by PCR using the complete genome sequence of TGxC7 oligonucleotides (5 '-CCAGCACTTGTCATTCTTACC-3' SEQ. ID. No. 13) and TGxCS (5-CATCTCTCTCATTGTCTCTTCC-3 'SEQ. ID No. 14). The 1800pb product was digested with EcoRV and subcloned into the pBSK vector, choosing those clones in which SIDELLA had been cloned in antisense to subclone it into the binary vector pBINJIT60 using the Sma I / Sal I sites in order to reduce the levels Endogenous to SIDELLA, this construction was introduced in the strain LBA4404 of Agrobacteríum tumefaciens by electroporation for later use in the transformation of tomato from cotyledon explants (Ellul et al., 2003). Homozygous plants were selected for the transgene and it was verified, by semi-quantitative RT-PCR, that they effectively showed a decrease in the level of endogenous SIDELLA expression (Figure 2). In these same plants, their height, the number of internodes and the length of these, the number of leaves until the first inflorescence, and the composition of the sypodial metamer were evaluated over time. The results are shown in Figures 3 and tables 1 and 2.
Ejemplo 2: Obtención e identificación de alelos SIDELLA de tomate en M82 (sp /sp). Example 2: Obtaining and identifying tomato SIDELLA alleles in M82 (sp / sp).
Con objeto de identificar alelos mutados en el gen SIDELLA que pudieran proporcionar diferentes intensidades del nuevo fenotipo se utilizó una estrategia de TILLING. In order to identify mutated alleles in the SIDELLA gene that could provide different intensities of the new phenotype, a TILLING strategy was used.
El TILLING (Targeting Induced Local Lesions In Genomes) es una tecnología dirigida a la identificación de mutantes en un gen de interés de secuencia conocida y se aplica a todo tipo de organismos desde plantas hasta animales o bacterias (McCallum et al., 2000; Till et al., 2004; Slade et al., 2005). Esta tecnología proporciona una forma de obtener mutantes en un gen y en nuestro caso se utilizó para encontrar mutantes en SIDELLA ya que sabíamos que el TILLING combina protocolos de mutagénesis con la PCR y un método para detección de polimorfismos en el DNA. Existen muchas formas de mutagenizar poblaciones y diferentes formas de identificar mutantes puntuales en un conjunto de materiales (Mccollum et al., 2004; Gady et al., 2009) En nuestro caso el método TILLING combina la inducción de un gran número de mutaciones puntuales al azar ocasionadas por el Ethyl Methane Sulfonate (EMS) que produjo una población de 12,000 2 familias en la variedad de tomate determinado M82 (Menda et al., 2004). Se extrajo el D A de cada una de las familias y se combinó siguiendo una estrategia de 3D para disminuir el número de reacciones de PCRs a realizar. Para el rastreo TILLING, el locus de interés SIDELLA se amplificó de cada uno de los pools mediante una PCR anidada y cebadores universales. La primera amplificación PCR es una reacción estándar de PCR que utiliza cebadores específicos del gen diana SIDELLA según s indica en (Qiu et al., 2004). Para la reacción especifica se utilizaron los siguientes oligonucleótidos: SIDELLA-ext-F1 5'cattctctaatggtgctgttttcttc3' (SEQ. ID. No. 15); SIDELLA-ext-R1 : 5'aggtagctataagtggccgtgtatg3' (SEQ. ID. No. 16); SIDELLA-F1 : 5'gaaaagtaagatttgggaagaaga3' (SEQ. ID. No. 17); SIDELLA-R1 5'ctaaaagcatggaagcttgtttgaa3' (SEQ. ID. No. 18). Las condiciones de amplificación fueron de 1 min a 94°C y 30 ciclos de (1 Os a 94 °C, 20 s a 63 °C, 1 min a 72 °C) y 5 min a 72 °C cuando se utilizan los oligonucleótidos SIDELLA-ext-R1 y SIDELLA-ext-F1 . Se utilizó un microlitro de la primera PCR como molde para una segunda reacción de amplificación PCR anidada, utilizando una mezcla de oligonucleótidos específicos internos que llevaban una cola de M13 universal, combinando con los cebadores d M13 universales. M13F70Q (CACGACGTTGTAAAACGAC; SEQ. ID. No. 19) y M13R800 (GG ATAAC AATTTC AC AC AGG ; SEQ. ID. No. 20), marcados en el extremo 5' con marcas fluorescentes IRD700 e IRD800 (LI-COR®, Lincoln, Nebraska, USA), respectivamente. Esta reacción de PCR se llevó a cabo utilizando cada cebador a la concentración de 0.1 μΜ, y el siguiente programa de ciclos en dos pasos: 94°C durante 2 min, 10 ciclos a 94° C durante 15 s, una temperatura de anillamiento de cebadores específicos durante 30 S y 72°C durante 1 min, seguido de 25 ciclos a 94°C durante 15 s, 50 °C durante 30 s y 72°C durante 1 min, y al final una extensión de 5 min at 72°C. TILLING (Targeting Induced Local Lesions In Genomes) is a technology aimed at identifying mutants in a gene of interest of known sequence and is applied to all types of organisms from plants to animals or bacteria (McCallum et al., 2000; Till et al., 2004; Slade et al., 2005). This technology provides a way to obtain mutants in a gene and in our case it was used to find mutants in SIDELLA since we knew that TILLING combines mutagenesis protocols with PCR and a method for detecting DNA polymorphisms. There are many ways to mutagenize populations and different ways to identify point mutants in a set of materials (Mccollum et al., 2004; Gady et al., 2009) In our case the TILLING method combines the induction of a large number of point mutations by chance caused by the Ethyl Methane Sulfonate (EMS) that produced a population of 12,000 2 families in the tomato variety determined M82 (Menda et al., 2004). The DA was extracted from each of the families and combined following a 3D strategy to decrease the number of PCR reactions to be performed. For TILLING tracking, the SIDELLA locus of interest was amplified from each of the pools by means of a nested PCR and universal primers. The first PCR amplification is a standard PCR reaction that uses specific primers of the SIDELLA target gene as indicated in (Qiu et al., 2004). For the specific reaction the following oligonucleotides were used: SIDELLA-ext-F1 5'cattctctaatggtgctgttttcttc3 '(SEQ. ID. No. 15); SIDELLA-ext-R1: 5'aggtagctataagtggccgtgtatg3 '(SEQ. ID. No. 16); SIDELLA-F1: 5'gaaaagtaagatttgggaagaaga3 '(SEQ. ID. No. 17); SIDELLA-R1 5'ctaaaagcatggaagcttgtttgaa3 '(SEQ. ID. No. 18). The amplification conditions were 1 min at 94 ° C and 30 cycles of (1 Os at 94 ° C, 20 s at 63 ° C, 1 min at 72 ° C) and 5 min at 72 ° C when SIDELLA oligonucleotides were used -ext-R1 and SIDELLA-ext-F1. A microliter of the first PCR was used as a template for a second nested PCR amplification reaction, using a mixture of specific internal oligonucleotides bearing a universal M13 tail, combining with the universal M13 d primers. M13F70Q (CACGACGTTGTAAAACGAC; SEQ. ID. No. 19) and M13R800 (GG ATAAC AATTTC AC AC AGG; SEQ. ID. No. 20), marked at the 5 'end with fluorescent markings IRD700 and IRD800 (LI-COR®, Lincoln , Nebraska, USA), respectively. This PCR reaction was carried out using each primer at the concentration of 0.1 μΜ, and the following two-step cycle program: 94 ° C for 2 min, 10 cycles at 94 ° C for 15 s, a banding temperature of specific primers for 30 S and 72 ° C for 1 min, followed by 25 cycles at 94 ° C for 15 s, 50 ° C for 30 s and 72 ° C for 1 min, and finally an extension of 5 min at 72 ° C .
La detección de mutaciones en productos de PCR no purificados se llevó a cabo según se indica en Triques et al., 2007, excepto que el extracto enzimático se utilizó a una dilución de 1 a 10 000 y se cargaron 0.6 μΐ de productos de la digestión con ENDOI en el gel de secuenciación. Los mutantes se evidenciaron por ocupar una posición diferente en el gel de secuenciación, y por deconvolución de las diferentes líneas mezcladas en el pool. El mutante presente en el pool se confirmó individualmente y la mutación se secuenció siguiendo procedimientos estándar. The detection of mutations in unpurified PCR products was carried out as indicated in Triques et al., 2007, except that the enzyme extract was used at a dilution of 1 to 10 000 and 0.6 μΐ of digestion products were loaded with ENDOI in the sequencing gel. The mutants were evidenced by occupying a different position in the sequencing gel, and by deconvolution of the different lines mixed in the pool. The mutant present in the pool was confirmed individually and the mutation was sequenced following standard procedures.
Sólo se presentan aquellas mutaciones identificadas que suponen un cambio en la secuencia aminoacídica de la proteína, destacando aquellas que dan cambio no conservado en el aminoácido correspondiente (Le. ácido por básico o prolina por otro, etc.) y que es de esperar por tanto que resulten en una alteración en el nuevo fenotipo descrito mediado por SIDELLA. Only those identified mutations that involve a change in the amino acid sequence of the protein are presented, highlighting those that give change not conserved in the corresponding amino acid (Le. acid by basic or proline by another, etc.) and that is to be expected therefore that they result in an alteration in the new phenotype described mediated by SIDELLA.
Se identificaron de esa forma una serie de a le los mutantes que tras su secuenciación resultaron presentar alteraciones respecto a la secuencia de SIDELLA del cultivar determinado M82 (SEQ. ID. No 11 y 12) denominados mutantes TILLING 1 (SEQ. ID. No 3 y 4), TILLING 2 (SEQ. ID. No 5 y 6), TILLING 3 (SEQ. ID. No 7 y 8), y TILLING 4 (SEQ. ID. No 9 y 10) que se muestran en las Figuras 4 a 7. In this way, a series of mutants were identified that, after sequencing, showed alterations with respect to the SIDELLA sequence of the particular M82 cultivar (SEQ. ID. No. 11 and 12) called TILLING 1 mutants (SEQ. ID. No. 3 and 4), TILLING 2 (SEQ. ID. No. 5 and 6), TILLING 3 (SEQ. ID. No. 7 and 8), and TILLING 4 (SEQ. ID. No. 9 and 10) shown in Figures 4 to 7.
En el mutante TILLING 1 a nivel nucleotídico (SEQ. ID. No. 3) existe una sustitución de guanina por adenina (en el nucleótido 458) y a nivel aminoacídico (SEQ. ID. No. 4) existe una sustitución de alanina por treonina (en el aminoácido 153). In the TILLING 1 mutant at the nucleotide level (SEQ. ID. No. 3) there is a substitution of guanine for adenine (at nucleotide 458) and at the amino acid level (SEQ. ID. No. 4) there is a substitution of alanine for threonine ( in amino acid 153).
En el mutante TILLING 2 a nivel nucleotídico (SEQ. ID. No. 5) existe una sustitución de guanina por adenina (en el nucleótido 1498) y a nivel aminoacídico (SEQ. ID. No. 6) existe una sustitución de glutamina por Usina (en el aminoácido 500). En el mutante TILLING 3 a nivel nucleotídico (SEQ. ID. No. 7) existe una sustitución de citosina por timina (en el nucleótido 994) y a nivel aminoacídico (SEQ. ID. No. 8) existe una sustitución de leucina por fenilalanina (en el aminoácido 332). In the TILLING 2 mutant at the nucleotide level (SEQ. ID. No. 5) there is a substitution of guanine for adenine (in nucleotide 1498) and at the amino acid level (SEQ. ID. No. 6) there is a substitution of glutamine for Usine ( in amino acid 500). In the TILLING 3 mutant at the nucleotide level (SEQ. ID. No. 7) there is a substitution of cytosine for thymine (in nucleotide 994) and at the amino acid level (SEQ. ID. No. 8) there is a substitution of leucine for phenylalanine ( in amino acid 332).
En el mutante TILLING 4 a nivel nucleotídico (SEQ. ID. No. 9) existe una sustitución de citosina por timina (en el nucleótido 661) y a nivel aminoacídico (SEQ. ID. No. 10) existe una sustitución de leucina por fenilalanina (en el aminoácido 221) In the TILLING 4 mutant at the nucleotide level (SEQ. ID. No. 9) there is a substitution of cytosine for thymine (in nucleotide 661) and at the amino acid level (SEQ. ID. No. 10) there is a substitution of leucine for phenylalanine ( in amino acid 221)
También se realizó un apilamiento de la estructura primaria de la proteína SIDELLA para cada una de las mutaciones junto con otras proteínas DELLA de otras especies vegetales con el fin de ver el grado de conservación del aminoácido mutado y en que región de la proteína se producía este (Figuras 8 a 1 1). Salvo en el mutante TILLING 1 , todas las mutaciones se producen en regiones muy conservadas de la proteína. Ejemplo 3: Alteración en el hábito de crecimiento en plantas portadoras de alelos m utados de SIDELLA. A stacking of the primary structure of the SIDELLA protein was also made for each of the mutations together with other DELLA proteins of other plant species in order to see the degree of conservation of the mutated amino acid and in which region of the protein this was produced. (Figures 8 to 1 1). Except in the TILLING 1 mutant, all mutations occur in highly conserved regions of the protein. Example 3: Alteration in the growth habit in plants that carry SIDELLA mutated alleles.
Para llevar a cabo un estudio del efecto que sobre el fenotipo ocasionan las nuevas mutaciones obtenidas en SIDELLA, se hizo un pequeño "mini breeding". Para ello, las líneas portadoras de las diferentes mutaciones TILLING 1 (SEQ. ID. No 3 y 4), TILLING 2 (SEQ. ID. No 5 y 6), TILLING 3 (SEQ. ID. No 7 y 8) y TILLING 4 (SEQ. ID. No 9 y 10) se autofecundaron y se seleccionaron plantas descendientes que eran portadoras de la mutación en homozigosis, heterozigosís o azigoticas. Dichos materiales se caracterizaron a continuación. Se hizo un seguimiento del hábito de crecimiento de estas plantas y que se resume en las tablas 3 y 4. En dichas tablasse muestra que las mutaciones en DELLA señaladas en la tabla producen un fenotipo de planta de mayor altura y de crecimiento semideterminado en comparación con su fondo silvestre que es determinado. To carry out a study of the effect on the phenotype caused by the new mutations obtained in SIDELLA, a small "mini breeding" was made. For this, the carrier lines of the different mutations TILLING 1 (SEQ. ID. No. 3 and 4), TILLING 2 (SEQ. ID. No. 5 and 6), TILLING 3 (SEQ. ID. No. 7 and 8) and TILLING 4 (SEQ. ID. No. 9 and 10) were self-fertilized and descendant plants were selected that were carriers of the mutation in homozigosis, heterozygosis or azigotics. These materials were characterized below. The growth habit of these plants was monitored and summarized in Tables 3 and 4. These tables show that the DELLA mutations indicated in the table produce a plant phenotype of greater height and semi-determined growth compared to its wild bottom that is determined.
En la Figura 12 se puede ver el aspecto general de las plantas que llevan mutaciones puntuales en SIDELLA identificadas por TILLING. Lo más destacable es que líneas presentan un fenotipo que es básicamente el del fondo silvestre no modificado UC82 excepto en el mayor número de repeticiones simpodiales que se obtienen a partir de la primera inflorescencia, lo que resulta en un mayor número de hojas e inflorescencias antes de detenerse el crecimiento, lo que implica, según puede observarse, plantas de mayor porte y, en consecuencia, mayor biomasa y número de frutos. In Figure 12 you can see the general appearance of plants that carry point mutations in SIDELLA identified by TILLING. Most noteworthy is that lines have a phenotype that is basically that of the unmodified wild fund UC82 except in the greatest number of sypodial repetitions obtained from the first inflorescence, resulting in a greater number of leaves and inflorescences before stop growth, which implies, as can be seen, plants of greater size and, consequently, greater biomass and number of fruits.
TABLA 3: Resumen de los cambios causados por las mutaciones de TILLING a nivel de nucleótido y de aminoácido, entorno del cambio aminoacídico, tipo de mutación y efecto sobre el hábito de crecimiento de la planta portadora de la mutación. El efecto de estas mutaciones puntuales en SIDELLA es el cambio de hábito de crecimiento de la planta, pasando de ser de tipo determinado a semideterminado, siendo nt: nucleótido; aa: aminoácido; wt: silvestre; mt: mutación. TABLE 3: Summary of changes caused by TILLING mutations at the nucleotide and amino acid level, environment of amino acid change, type of mutation and effect on the growth habit of the mutation carrier plant. The effect of these point mutations in SIDELLA is the change in the growth habit of the plant, going from being of a determined to semi-determined type, being nt: nucleotide; aa: amino acid; wt: wild; mt: mutation.
Figure imgf000028_0001
TABLA 4: Efecto de las mutaciones puntuales en SIDELLA sobre diferentes parámetros de crecimiento: altura, número total de entrenudos y longitud de los mismos, numero de hojas hasta la primera inflorescencia, composición de los metámeros simpodiales. Las plantas mutantes presentan una mayor altura, mayor número y longitud de los entrenudos, así como un aumento en el número de metámeros respecto al tipo silvestre que dota a la planta de un crecimiento semideterminado.
Figure imgf000028_0001
TABLE 4: Effect of point mutations in SIDELLA on different growth parameters: height, total number of internodes and their length, number of leaves until the first inflorescence, composition of sympodial metameres. The mutant plants have a greater height, greater number and length of internodes, as well as an increase in the number of metameres with respect to the wild type that gives the plant a semi-determined growth.
Figure imgf000029_0001
Figure imgf000029_0001
Una vez conocido tanto las secuencias genéticas y aminoacídicas de los mutantes TILLING (SEQ. ID No 3-9), resultaría fácil para un experto en la materia generar plantas transgénicas que contengan dichas mutaciones empleando técnicas conocidas del estado de la técnica.  Once both the genetic and amino acid sequences of the TILLING mutants (SEQ. ID No 3-9) have been known, it would be easy for one skilled in the art to generate transgenic plants containing said mutations using techniques known in the state of the art.
Ejemplo 4: Alteración en el contenido de metabolitos en el fruto como consecuencia de la modificación en SIDELLA. Example 4: Alteration in the content of metabolites in the fruit as a result of the modification in SIDELLA.
Una observación preliminar de los frutos de las plantas asDELLA indicaba que el contenido en sólidos solubles totales había aumentado en relación con los frutos de plantas no modificadas. Con objeto de averiguar si los frutos asSJDELLA tenían alterada la composición metabólica se analizaron el contenido de compuestos volátiles y metabolitos primarios de frutos maduros de las líneas asDELLA, tanto partenocárpicos como con semillas, y se compararon con dos grupos de silvestres, un grupo de silvestres sin tratar y el otro grupo de silvestres que habían sido tratados por spray con una solución 10uM de GA1 +3. A preliminary observation of the fruits of the asDELLA plants indicated that the total soluble solids content had increased in relation to the fruits of unmodified plants. In order to find out if the asSJDELLA fruits had altered the metabolic composition, the content of volatile compounds and primary metabolites of mature fruits of the asDELLA lines, both parthenocarpic and seeds, were analyzed and compared with two groups of wild ones, a group of wild ones untreated and the other group of wild animals that had been spray treated with a 10uM solution of GA1 +3.
Los metabolitos analizados tienen un efecto determinante sobre las cualidades organolépticas y nutritivas del tomate, ya que los compuestos volátiles son los responsables del aroma, mientras que algunos de los metabolitos primarios analizados, entre los que se incluyen los azúcares glucosa y fructosa, los ácidos orgánicos cítrico, málico y succínico, y varios aminoácidos, tienen una contribución decisiva sobre el sabor y el contenido nutricional de los frutos. The metabolites analyzed have a determining effect on the organoleptic and nutritive qualities of tomatoes, since volatile compounds are responsible for the aroma, while some of the primary metabolites analyzed, including glucose and fructose sugars, organic acids Citric, malic and succinic, and several amino acids, have a decisive contribution on the flavor and nutritional content of the fruits.
Los resultados indican un cambio en el contenido tanto de metabolitos primarios como de aromas en las muestras asDELLA, que puede imitarse mediante tratamiento de los frutos silvestres con GAs, cómo s muestra más adelante. Esta nueva función de SIDELLA y de las GAs en cambiar el perfil metabólico del fruto es de interés para alterar las propiedades organolépticas del fruto. Además, se analizó si el contener o no semillas alteraba el contenido de metabolitos de los frutos asDELLA. The results indicate a change in the content of both primary metabolites and aromas in asDELLA samples, which can be mimicked by treating wild fruits with GAs, as shown below. This new function of SIDELLA and the GAs in changing the metabolic profile of the fruit is of interest to alter the organoleptic properties of the fruit. In addition, it was analyzed whether or not containing seeds altered the metabolite content of asDELLA fruits.
Análisis del perfil de volátiles: El análisis de compuestos volátiles se realizó básicamente utilizando el protocolo descrito en Zanor et al., 2009, que se detalla a continuación. Para ello se recolectaron frutos de tomate en el estadio rojo maduro. Se tomaron trozos del pericarpo y se congelaron inmediatamente con nitrógeno líquido. Las muestras congeladas se trituraron con un molinillo de café (Moulinex de Luxe) y se guardaron a -80°C hasta el momento del análisis. Este mismo material se utilizó tanto para el análisis de compuestos volátiles como de metabolitos primarios. Analysis of volatile profile: The analysis of volatile compounds was basically performed using the protocol described in Zanor et al., 2009, which is detailed below. For this, tomato fruits were collected in the ripe red stage. Pieces of the pericarp were taken and immediately frozen with liquid nitrogen. The frozen samples were crushed with a coffee grinder (Moulinex de Luxe) and stored at -80 ° C until analysis. This same material was used both for the analysis of volatile compounds and primary metabolites.
Previamente a su análisis se pesaron 0,5 g de material en un vial de 7 mi y se incubó en baño de agua a 37°C durante 5 minutos, con el vial cerrado. Posteriormente se añadieron 0,5 mi de una solución EDTA 100mM a pH 7,5 y 1 ,1 g de CaCI2.2H20. Inmediatamente se cerró el vial de nuevo, se agitó vigorosamente y se sónico durante 5 minutos. Finalmente, 1 mi de este extracto se llevó a un vial de espacio de cabeza de 10 mi, sobre el cual se realizó el análisis. Los volátiles se capturaron en el espacio de cabeza por microéxtracción en fase sólida (SPME). La fibra utilizada tiene un recubrimiento de 65 μηη de polidimetilsiloxano-divinilbenceno (PDMS/DVB) (SUPELCO). Los viales se atemperaron a 50°C durante 10 minutos y, posteriormente, la fibra estuvo expuesta al espacio de cabeza durante 20 minutos a la misma temperatura. La adquisición de volátiles en la fibra y posterior desorción se realizó de manera automatizada con un CombiPAL (CTG Analytics). Prior to analysis, 0.5 g of material were weighed into a 7 ml vial and incubated in a 37 ° C water bath for 5 minutes, with the vial closed. Subsequently, 0.5 ml of a 100mM EDTA solution at pH 7.5 and 1.1 g of CaCl2.2H20 were added. The vial was immediately closed again, vigorously shaken and sonic for 5 minutes. Finally, 1 ml of this extract was taken to a 10 ml headspace vial, on which the analysis was performed. Volatiles were captured in the headspace by solid phase microextraction (SPME). The fiber used has a 65 μηη coating of polydimethylsiloxane-divinylbenzene (PDMS / DVB) (SUPELCO). The vials were tempered at 50 ° C for 10 minutes and, subsequently, the fiber was exposed to the head space for 20 minutes at the same temperature. The acquisition of volatiles in the fiber and subsequent desorption was performed automatically with a CombiPAL (CTG Analytics).
Para la separación ero matog ráfica y la detección de los volátiles adsorbidos a la fibra PDMS/DVB, estos se desorbieron en el puerto de inyección a 250°C de un cromatografo de gases Agilent 6890N durante 1 minuto. Las condiciones ero matog ráf ¡cas se describen a continuación. Gas portador: helio, 1 ,2 ml/min. Columna: DB-5mS (60m, 0,25mm, 1 μπη) (J&W Scientific). Temperatura: 40°C durante 2 min, rampa de 50C/min hasta 260°C y luego 260°C durante 5 min. La detección se realizó mediante un espectrómetro de masas Agilent 5975 B en el modo sean, en el rango de m/z 35-220, a 7 scans/s, temperatura de la fuente de ionización 230°C y energía de ionización 70eV. Los cromatogramas se procesaron con el software MSD ChemStation Enhanced Data Análisis (Agilent Technologies). For ero-matographic separation and the detection of volatiles adsorbed to PDMS / DVB fiber, these were desorbed at the 250 ° C injection port of an Agilent 6890N gas chromatograph for 1 minute. The conditions of matographs are described below. Carrier gas: helium, 1.2 ml / min. Column: DB-5mS (60m, 0.25mm, 1μπη) (J&W Scientific). Temperature: 40 ° C for 2 min, 5 0 C / min ramp up to 260 ° C and then 260 ° C for 5 min. The detection was carried out using an Agilent 5975 B mass spectrometer in the Sean mode, in the range of m / z 35-220, at 7 scans / s, ionization source temperature 230 ° C and ionization energy 70eV. The chromatograms were processed with the MSD ChemStation Enhanced Data Analysis software (Agilent Technologies).
Los resultados (según se puede ver en la tabla 5) indican un cambio en el contenido de volátiles en las muestras asDELLA que además puede imitarse mediante tratamiento de los frutos silvestres con GAs. Los cambios observados en la asDELLA se detectan tanto en los frutos con semillas (tamaño igual que el Silvestre) como sin semillas (menor tamaño). Concretamente se observa un aumento significativo de los volátiles que contribuyen al aroma siguientes: beta-dama scenona, 1 -penten-3-ona y (E)-2-hexenal, que poseen valores de al menos el doble en las asDELLA o en las tratadas. Otros compuestos como el 3-metilbutanol, 1 -nitro-2-feniletano, 2-feniletanol, fenilacetaldehído y 2-isobutiltiazol disminuyeron de forma importante en los frutos modificados. Los descriptores olfativos asociados a cada uno de estos compuestos de forma individual se pueden ver en la tabla 6. The results (as can be seen in Table 5) indicate a change in volatile content in asDELLA samples that can also be mimicked by treating wild fruits with GAs. The changes observed in asDELLA are detected both in fruits with seeds (same size as Wild) and without seeds (smaller size). Specifically, there is a significant increase in volatiles that contribute to the following aroma: beta-dama scenona, 1-penten-3-one and (E) -2-hexenal, which have values of at least double in the asDELLA or in the treated. Other compounds such as 3-methylbutanol, 1-nitro-2-phenylethane, 2-phenylethanol, phenylacetaldehyde and 2-isobutyl thiazole decreased significantly in modified fruits. The olfactory descriptors associated with each of these compounds individually can be seen in Table 6.
TABLA 5: Modificación sobre el patrón de volátiles que contribuyen al aroma del tomate. Los frutos asDELLA, tanto los partenocárpicos como los polinizados, tienen niveles aumentados de algunos de ellos, y disminuidos de otros. El tratamiento con GAs produce efectos semejantes. En negrita aparecen los compuestos cuyas diferencias respecto al WT tienen significación estadística (p<0,05). Pl: plantas WT pulverizadas 2 veces a la semana con una solución de giberelinas GA1 +3 10uM; AS C: transgénicas asSIDELLA sin tratamiento; AS Pol: transgénicas asSIDELLA cuyas flores fueron polinizadas (y cuyos frutos tienen semilla); WT: Plantas control silvestres UC82.
Figure imgf000032_0001
Otros compuestos volátiles que no parecen contribuir al aroma del fruto pero que pueden tener otras funciones, incluida la comunicación con otros organismos, se encuentran en niveles diferentes y de forma estadísticamente significativa tanto en los frutos modificados asDELLA (con o sin semillas) como los tratados con GAs (tabla 7). Los más afectados en este caso son el 2-metii-1 -butanol y 2-metiM -propanol, que presentan niveles mucho menores. La importancia de dichos cambios en la adaptación a las condiciones ambientales, etc. está por esclarecer, pero muy probablemente afecte a la atracción o repulsión de diferentes organismos hacia el fruto.
TABLE 5: Modification on the pattern of volatiles that contribute to the aroma of tomato. AsDELLA fruits, both parthenocarpic and pollinated, have increased levels of some of them, and decreased levels of others. The treatment with GAs produces similar effects. Bold compounds appear whose differences from WT have statistical significance (p <0.05). Pl: WT plants sprayed twice a week with a solution of gibberellins GA1 +3 10uM; AS C: transgenic asSIDELLA without treatment; AS Pol: transgenic asSIDELLA whose flowers were pollinated (and whose fruits have seeds); WT: UC82 wild control plants.
Figure imgf000032_0001
Other volatile compounds that do not seem to contribute to the aroma of the fruit but that may have other functions, including communication with other organisms, are found at different levels and in a statistically significant way in both modified fruits asDELLA (with or without seeds) and those treated with GAs (table 7). The most affected in this case are 2-metii-1-butanol and 2-metiM-propanol, which have much lower levels. The importance of such changes in adaptation to environmental conditions, etc. It is about to clarify, but it most likely affects the attraction or repulsion of different organisms towards the fruit.
TABLA 7: Modificación sobre el patrón de volátiles que no contribuyen al aroma del tomate. Los frutos asDELLA, tanto los partenocárpícos como los polinizados, tienen niveles aumentados de algunos de ellos, y disminuidos de otros. El tratamiento con GAs produce efectos semejantes. En negrita aparecen los compuestos cuyas diferencias respecto al WT tienen significación estadística (p<0,05). Pl: plantas WT pulverizadas 2 veces a la semana con una solución de giberelinas GA1 +3 I OUM; siendo AS C: transgénicas asSIDELLA sin tratamiento; AS Pol: transgénicas asSIDELLA cuyas flores fueron polinizadas (y cuyos frutos tienen semilla); WT; Plantas control silvestres UC82. TABLE 7: Modification on the pattern of volatiles that do not contribute to the aroma of tomato. The asDELLA fruits, both parthenocarpic and pollinated, have increased levels of some of them, and decreased levels of others. The treatment with GAs produces similar effects. Bold compounds appear whose differences from WT have statistical significance (p <0.05). Pl: WT plants sprayed twice a week with a solution of gibberellins GA1 +3 I OUM; being AS C: transgenic asSIDELLA without treatment; AS Pol: transgenic asSIDELLA whose flowers were pollinated (and whose fruits have seeds); WT; UC82 wild control plants.
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000033_0001
Figure imgf000034_0001
Análisis de metabolitos primarios: Analysis of primary metabolites:
El análisis de metabolitos primarios se realizó básicamente utilizando el protocolo descrito en Roessner-Tunali et al, 2003, que se detalla a continuación, utilizándose el mismo material vegetal descrito anteriormente para el análisis de los elementos volátiles. The primary metabolite analysis was basically performed using the protocol described in Roessner-Tunali et al, 2003, which is detailed below, using the same plant material described above for the analysis of volatile elements.
Para llevar a cabo el análisis, primero se realizó la extracción de los metabolitos. Se pesaron aproximadamente 250 mg de material vegetal, se le añadieron 3 mi de metanol y 120 μΙ de una solución del patrón interno ribitol (0,2 mg/ml en agua), y se agitó vigorosamente en vórtex durante 20 s. Se transfirió a un vial de vidrio de 5 mi, se cerró y se incubó en baño de agua a 70°C durante 15 min. Posteriormente se le añadieron 1 ,5 mi de agua, se agitó en vórtex, y se centrifugó a 4000 rpm durante 15 min. Se tomaron 50 μΙ del sobrenadante, se llevaron a un tubo de polipropileno de 1 ,5 mi y se llevó a sequedad en un speed-vac durante 12 horas, a temperatura ambiente. To carry out the analysis, the metabolites were extracted first. Approximately 250 mg of plant material was weighed, 3 ml of methanol and 120 μΙ of a solution of the internal ribitol standard (0.2 mg / ml in water) were added, and vortexed vigorously for 20 s. It was transferred to a 5 ml glass vial, closed and incubated in a 70 ° C water bath for 15 min. Subsequently, 1.5 ml of water was added, vortexed, and centrifuged at 4000 rpm for 15 min. 50 μΙ of the supernatant was taken, taken to a 1.5 ml polypropylene tube and dried in a speed-vac for 12 hours, at room temperature.
A continuación, los metabolitos extraídos se derivatizaron del siguiente modo. Se adicionaron 60 μΙ de una solución de clorhidrato de O-metilhidroxilamina (30 mg/ml en piridina), y se mantuvo a 37°C en agitación durante 2 horas. Tras un pulso de centrifugación, se añadieron 120 μΙ de N-metil-N-(trimetilsilil)trifluoroacetamida ( STFA) y 12 μΙ de una mezcla de varios metilésteres de ácidos grasos (800 ng/ml de cada uno en cloroformo), y se mantuvo a 37°C, en agitación, durante 30 min. Finalmente, se transfirió a un vial GC de 2 mi con inserto de 200 μΙ, desde el cual se realizó la inyección. Then, the extracted metabolites were derivatized as follows. 60 μΙ of a solution of O-methylhydroxylamine hydrochloride (30 mg / ml in pyridine) was added, and kept at 37 ° C with stirring for 2 hours. After a centrifugation pulse, 120 μΙ of N-methyl-N- (trimethylsilyl) trifluoroacetamide (STFA) and 12 μΙ of a mixture of several fatty acid methyl esters (800 ng / ml each in chloroform), and kept at 37 ° C, under stirring, for 30 min. Finally, it was transferred to a 2 ml GC vial with 200 μΙ insert, from which the injection was made.
Para realizar la separación cromatográfica y la detección, se inyectó 1 μΙ del extracto en el puerto de inyección a 230°C de un cromatógrafo de gases Agilent 6890 N. Se realizaron dos inyecciones de cada extracto: una con split 1 ;20 para la determinación de los meta bol itos más abundantes (fructosa y glucosa), y otra splitless para el resto de los metabolitos. Las condiciones cromatográficas se describen a continuación. Gas portador: helio, 2 ml/min. Columna BPX35 (30 m, 0,32mm, 0,25μιη) (SGE). Temperatura: 85°C durante 2 min, rampa de 15°C/min hasta 360°C. La detección se llevó a cabo mediante un espectrómetro de masas PEGASUS 4DTo perform chromatographic separation and detection, 1 μΙ of the extract was injected into the 230 ° C injection port of an Agilent 6890 N gas chromatograph. Two injections of each extract were made: one with split 1; 20 for determination of the most abundant metabolites (fructose and glucose), and another splitless for the rest of the metabolites. Chromatographic conditions are described below. Carrier gas: helium, 2 ml / min. BPX35 column (30 m, 0.32mm, 0.25μιη) (SGE). Temperature: 85 ° C for 2 min, ramp from 15 ° C / min up to 360 ° C. Detection was carried out using a PEGASUS 4D mass spectrometer
(LEGO), en el rango de m/z 40-600, a 6,25 scans/s, temperatura de la fuente de ionización 200°C y energía de ionización 70eV. Se aplicó un solvent delay de 150 s, (LEGO), in the range of m / z 40-600, at 6.25 scans / s, ionization source temperature 200 ° C and ionization energy 70eV. A solvent delay of 150 s was applied,
Para analizar los datos, los cromatogramas se procesaron con el software GhromaTOF-GC v3.32 (LECO). Las áreas obtenidas para cada compuesto se corrigieren respecto al patrón interno y al peso fresco exacto de cada muestra. To analyze the data, the chromatograms were processed with the GhromaTOF-GC v3.32 (LECO) software. The areas obtained for each compound are corrected with respect to the internal standard and the exact fresh weight of each sample.
Los resultados (según se puede ver en la tabla 8) indican que los frutos asDELLA, tanto los partenocárpicos como los que tienen semillas, contienen niveles incrementados de sacarosa, así como de los aminoácidos tirosina, asparagina, isoleucina, treonina y prolina, entre otros metabolitos. El efecto sobre la acumulación de estos compuestos en los frutos asDELLA puede obtenerse en parte mediante el tratamiento con 10uM GA1 +3. The results (as can be seen in Table 8) indicate that asDELLA fruits, both parthenocarpics and those with seeds, contain increased levels of sucrose, as well as the amino acids tyrosine, asparagine, isoleucine, threonine and proline, among others. metabolites The effect on the accumulation of these compounds in asDELLA fruits can be obtained in part by treatment with 10uM GA1 +3.
TABLA 8: Incremento de los niveles de diversos metabolitos con efectos sobre las cualidades organolépticas del tomate. Los frutos asDELLA, tanto los partenocárpicos como los polinizados, tienen niveles mayores de varios metabolitos, sobre todo de algunos azúcares y aminoácidos. El tratamiento con GAs produce efectos semejantes. En negrita aparecen los compuestos cuyas diferencias respecto al WT tienen significación estadística (p<0,05). Pl: plantas WT pulverizadas 2 veces a la semana con una solución de giberelinas GA1 +3 10uM; AS C: transgénicas asSIDELLA sin tratamiento; AS Pol: transgénicas asSIDELLA cuyas flores fueron polinizadas (y cuyos frutos tienen semilla); WT: Plantas control silvestres UC82.
Figure imgf000036_0001
TABLE 8: Increase in the levels of various metabolites with effects on the organoleptic qualities of tomato. AsDELLA fruits, both parthenocarpic and pollinated, have higher levels of various metabolites, especially some sugars and amino acids. The treatment with GAs produces similar effects. Bold compounds appear whose differences from WT have statistical significance (p <0.05). Pl: WT plants sprayed twice a week with a solution of gibberellins GA1 +3 10uM; AS C: transgenic asSIDELLA without treatment; AS Pol: transgenic asSIDELLA whose flowers were pollinated (and whose fruits have seeds); WT: UC82 wild control plants.
Figure imgf000036_0001
Esta nueva función de SIDELLA y de las GAs consistente en alterar el perfil meta bélico del fruto es de interés, ya que permite modificar las propiedades organolépticas y nutricionales del fruto. REFERENCIAS This new function of SIDELLA and the GAs, which consists in altering the meta-war profile of the fruit, is of interest, since it allows the organoleptic and nutritional properties of the fruit to be modified. REFERENCES
• Achard P. Vriezen W.H. Van Der Straeten D. and Harberd N.P. (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Ce// 15: 2816-2825. · Achard P. Cheng, H. De Grauwe L. Decat J. Schoutteten H . Moritz T. Van der Straeten D. Peng J.R. and Harberd N.P. (2006) Integration of plant responses to environmentally activated phytohormonal signáis. Science 31 1 : 91-94. • Achard P. Vriezen W.H. Van Der Straeten D. and Harberd N.P. (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Ce // 15: 2816-2825. · Achard P. Cheng, H. De Grauwe L. Decat J. Schoutteten H. Moritz T. Van der Straeten D. Peng J.R. and Harberd N.P. (2006) Integration of plant responses to environmentally activated phytohormonal signáis. Science 31 1: 91-94.
• Bevan M. (1984). Binarv Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12:871 1-21 · Carmel-Goren L. Liu Y. S. Lifschitz E. Zamir D (2003) The SELF-PRUNING gene family in tomate Plant Molecular Biology 52: 1215-1222. • Bevan M. (1984). Binarv Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12: 871 1-21 · Carmel-Goren L. Liu Y. S. Lifschitz E. Zamir D (2003) The SELF-PRUNING gene family in tomato Plant Molecular Biology 52: 1215-1222.
• Gubler F. Chandler P.M. White R.G. Llewellyn D.J. Jacobsen J.V. (2002) Gibbereílin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physioi. 129: 191 -200 • Gubler F. Chandler P.M. White R.G. Llewellyn D.J. Jacobsen J.V. (2002) Gibbereílin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physioi 129: 191-200
· Dill A. Jung H.S. y Sun T.P. (2001) The DELLA motif is essential for gibberellin- induced degradation of RGA. Proc, Nati Acad. Sci. USA 98: 14162-14167. Dill A. Jung H.S. and Sun T.P. (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc, Nati Acad. Sci. USA 98: 14162-14167.
• Dill, A., Thomas, S.G., Hu, J., Steber, C.M., and Sun, T.-P. (2004). The Arabidopsis F- box protein SLEEPY1 targets gibbereílin signaling repressors for gibberellin-induced degradation. Plant Cell 16: 1392-1405. • Dill, A., Thomas, S.G., Hu, J., Steber, C.M., and Sun, T.-P. (2004). The Arabidopsis F-box protein SLEEPY1 targets gibbereílin signaling repressors for gibberellin-induced degradation. Plant Cell 16: 1392-1405.
· Doebley J. (2006) . Unfallen grains: how ancient farmers turned weeds into crops. · Doebley J. (2006). Unfallen grains: how ancient farmers turned weeds into crops.
Science 312: 1318-1319.  Science 312: 1318-1319.
• Ellul P. Garcia-Sogo B. Pineda B. Ríos G. Roig L. and Moreno V. (2003) The ploidy level of transgenic plants in Agrobacteriummediated transformation of tomato cotyledons (Lycopersicon esculentum Mili.) is genotype and procedure dependent. Theor. Appl. Genet. 06, 231-238 • Ellul P. Garcia-Sogo B. Pineda B. Ríos G. Roig L. and Moreno V. (2003) The ploidy level of transgenic plants in Agrobacteriummediated transformation of tomato cotyledons (Lycopersicon esculentum Mili.) Is genotype and procedure dependent. Theor Appl. Genet 06, 231-238
• Eshed Y. Zamir D. (1995). An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the Identification and fine mapping of yield-associated QTL. Genetics 141 : 1 147-1 162.  • Eshed Y. Zamir D. (1995). An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the Identification and fine mapping of yield-associated QTL. Genetics 141: 1 147-1 162.
• Foucher F. Morin J. Courtiade J. Cadioux S. Ellis N. Banfield M, J. Rameau C. (2003), DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and develo pment in pea. Plant Cell 15: 2742-2754. • Foucher F. Morin J. Courtiade J. Cadioux S. Ellis N. Banfield M, J. Rameau C. (2003), DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1 / CENTRORADIALIS homologs that control two distinct phases of flowering initiation and develo pment in pea. Plant Cell 15: 2742-2754.
• Friedland W. H. Barton A. (1975). Destalking the wily tomato: a case study in social consequences in California agricultural research. Research Monograph No. 15, Dept. of Applied Behavioral Sciences, University of California, Da vis, California, USA. • Friedland W. H. Barton A. (1975). Destalking the wily tomato: a case study in social consequences in California agricultural research. Research Monograph No. 15, Dept. of Applied Behavioral Sciences, University of California, Da vis, California, USA.
• Fu X.D. y Harberd N.P. (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. N ature 421 : 740-743. • Fu X.D. and Harberd N.P. (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. No. 421: 740-743.
• Antoine LF Gady, Freddy WK Hermans, Marión HBJ Van de Wal, Eibertus N van Loo, Richard GF Visser and Christian WB Bachem (2009).lmplementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods 5Λ 3 doi:10.1 186/1746-4811 -5-13 • Antoine LF Gady, Freddy WK Hermans, Marión HBJ Van de Wal, Eibertus N van Loo, Richard GF Visser and Christian WB Bachem (2009) .lmplementation of two high through-put techniques in a novel application: detecting point mutations in large EMS mutated plant populations. Plant Methods 5Λ 3 doi: 10.1 186 / 1746-4811 -5-13
• Guerineau F, Lucy A, Mullineaux P. (1992). Effect of two consensus seque nces preceding the translation initiator codon on gene expression in plant protoplasts. Plant MoI Biol. 18:815-8. • Guerineau F, Lucy A, Mullineaux P. (1992). Effect of two consensus seque nces preceding the translation initiator codon on gene expression in plant protoplasts. Plant MoI Biol. 18: 815-8.
· Hanna G. C. Gentle A. Smith P. G. Lippe L. F. Da vis G. N. McCoy D. N.(1964). · Hanna G. C. Gentle A. Smith P. G. Lippe L. F. Da vis G. N. McCoy D. N. (1964).
Recently developed vegetables aid mechanical cultivation. California Agriculture 18: 8- 10.  Recently developed vegetables aid mechanical cultivation. California Agriculture 18: 8-10.
• Itoh, H., Ueguchi-Tanaka , M., Sato, Y., Ashikari, M. and Matsuoka, M. (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell, 14, 57-70. • Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M. and Matsuoka, M. (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell, 14, 57-70.
• Carl M. Jones, Charles M. Rick, Dawn Adams, Judy Jernstedt and Roger T. Chetelat (2007). Genealogy and fine mapping of obscura venosa, a gene affecting the distribution of chloroplasts in leaf veins, and evidence of selection during breeding of tomatoes (Lycopérsicon esculentum; Solanaceaé), Am. J. BotanySA: 935-947. · Koornneef M. Elgersma A. Hanhart C.J. van Loenen-Martinez E.P. van Ring L. and Zeevaart JAD. (1985). A gibberellin insensitive mutant of Arabidopsis thalíana. Physiol. Plant 65: 33-39. • Carl M. Jones, Charles M. Rick, Dawn Adams, Judy Jernstedt and Roger T. Chetelat (2007). Genealogy and fine mapping of obscura venosa, a gene affecting the distribution of chloroplasts in leaf veins, and evidence of selection during breeding of tomatoes (Lycopérsicon esculentum; Solanaceaé), Am. J. BotanySA: 935-947. · Koornneef M. Elgersma A. Hanhart C.J. van Loenen-Martinez E.P. van Ring L. and Zeevaart JAD. (1985). A gibberellin insensitive mutant of Arabidopsis thalíana. Physiol Plant 65: 33-39.
• Krebs A. V. (2005). La Causa: the word was made flesh. Website htto://www. farmworkermo vement. org/essa vs/essa vs/KREBS %20MANUSCRIPT%20L A%20CAUSA.pdf Lee S.G. Cheng H. King K.E. Wang W.F. He Y.W. Hussain A. Lo J. Harberd N.P. y Peng, J.R. (2002) Gibberellin regulates Arabidopsis seed germination vía RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 16: 646-658. • Krebs AV (2005). The Cause: the word was made flesh. Website htto: // www. farmworker vement. org / essa vs / essa vs / KREBS% 20MANUSCRIPT% 20L A% 20CAUSA.pdf Read SG Cheng H. King KE Wang WF He YW Hussain A. Lo J. Harberd NP and Peng, JR (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, to GAI / RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 16: 646-658.
Cristina Marti, Diego Orzáez, Philippe Ellul, Vicente Moreno, Juan Carbonell y Antonio Granell, (2007) . Silencing of DELLA induces facultative parthenocarpy in tomato fruits. The Plant Journal 52: 865-876.  Cristina Marti, Diego Orzáez, Philippe Ellul, Vicente Moreno, Juan Carbonell and Antonio Granell, (2007). Silencing of DELLA induces facultative parthenocarpy in tomato fruits. The Plant Journal 52: 865-876.
McCallum CM, Comai L, Greene EA, Henikoff S: Targeting induced local lesions IN genomes (TILLING) for plant functional genomics (2000). Plant Physiol. 123(2):439-McCallum CM, Comai L, Greene EA, Henikoff S: Targeting induced local lesions IN genomes (TILLING) for plant functional genomics (2000). Plant Physiol 123 (2): 439-
442. 442
Menda N, Semel Y, Peled D, Eshed Y, Zamir D,(2004) In silico screening of a saturated mutation library of tomato. Plant J. Jun;38(5):861 -72. Menda N, Semel Y, Peled D, Eshed Y, Zamir D, (2004) In silico screening of a saturated mutation library of tomato. Plant J. Jun; 38 (5): 861-72.
Murase K. Hirano Y. Sun t-P. y Hakoshima T. (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1 . Nature 456: 459-464.  Murase K. Hirano Y. Sun t-P. and Hakoshima T. (2008). Gibberellin-induced DELLA recognition by the gibberellin GID1 receptor. Nature 456: 459-464.
Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G. (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA pro mote rs in Arabidopsis seeds. Plant Cell 19: 1 192-1208. Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G. (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA pro mote rs in Arabidopsis seeds. Plant Cell 19: 1 192-1208.
Peng J. and Harberd P. (1993). Derivative alíeles of the Arabidopsis gibberellin- insensitive (gal) mutación confer a wild-type phenotipe. Plant Céll. 5: 351-360  Peng J. and Harberd P. (1993). Derivative alleles of the Arabidopsis gibberellin- insensitive (gal) mutation confer a wild-type phenotipe. Plant Céll. 5: 351-360
Peng J. Richard D.E. Hartley N.M. Murphy G.P. Devos K.M. Flitntham J.E. et al. (1999). "Green Revolution" genes encode mutant gibberellin response modulators. Nature 400: 256-261. Peng J. Richard D.E. Hartley N.M. Murphy G.P. Devos K.M. Flitntham J.E. et al. (1999). "Green Revolution" genes encode mutant gibberellin response modulators. Nature 400: 256-261.
Peng J.R. Carol P. Richards D.E. King K.E. Cowling R.J. Murphy G.P. y Harberd N.P. (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 1 1 : 3194-3205. Peng J.R. Carol P. Richards D.E. King K.E. Cowling R.J. Murphy G.P. and Harberd N.P. (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 1 1: 3194-3205.
Pnueli L. Carmel-Goren L. Ha re ven D. Gutfinger T. Alvarez J. Ganal M. Zamir D. Lifschitz E. (1998). The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Devetopment 125: 1979-1989. Pnueli L. Gutfinger T. Hareven D, Ben-Naim O. Ron N. Adir N. Lifschttz E. (2001). Tomato SP-interacting proteins define a eonserved signaling system that regulates shoot architecture and flowering. Plant Ce// 13: 2687-2702. Pnueli L. Carmel-Goren L. Ha re ven D. Gutfinger T. Alvarez J. Ganal M. Zamir D. Lifschitz E. (1998). The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Devetopment 125: 1979-1989. Pnueli L. Gutfinger T. Hareven D, Ben-Naim O. Ron N. Adir N. Lifschttz E. (2001). Tomato SP-interacting proteins define an eonserved signaling system that regulates shoot architecture and flowering. Plant Ce // 13: 2687-2702.
Qiu P. Shandilya H. D'Alessio JM. O'Connor K. Durocher J. Gerard GF. (2004) Mutation detection using Surveyor nuclease. Biotechniques 36(4):702-707. Qiu P. Shandilya H. D'Alessio JM. O'Connor K. Durocher J. Gerard GF. (2004) Mutation detection using Surveyor nuclease. Biotechniques 36 (4): 702-707.
Richards D.E., King K.E., Ait-ali T., y Nichoias P Harberd. (2001). How gibberellin regulates plant growth and development: A Molecular Genetic Analysis of Gibberellin Signaling. Rev. Plant Physiol. Plant Mol. Biol. 52:67-88 Richards D.E., King K.E., Ait-ali T., and Nichoias P Harberd. (2001). How gibberellin regulates plant growth and development: A Molecular Genetic Analysis of Gibberellin Signaling. Rev. Plant Physiol. Plant Mol. Biol. 52: 67-88
Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D and Fernie AR. (2003). Metabolic Profiling of Transgenic Tomato Plañís Overexpressing Hexokinase Reveáis That the Influence of Hexose Phosphorylation Diminishes during Fruit Development. Plant Physiology 133:84-99. Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C, Granot D and Fernie AR. (2003). Metabolic Profiling of Transgenic Tomato Plañís Overexpressing Hexokinase Reveal That the Influence of Hexose Phosphorylation Diminishes during Fruit Development. Plant Physiology 133: 84-99.
Silverstone A.L. Ciampaglio Ch.N. Sun T.-p. (1998). The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell, 10: 155-169 Silverstone A.L. Ciampaglio Ch.N. Sun T.-p. (1998). The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell, 10: 155-169
Silverstone, A.L., Jung, H-S., Dill, A., Kawaide, H., Kamiya, Y., and Sun, T-p. (2001). Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell. 13: 1555-1565. Silverstone, A.L., Jung, H-S., Dill, A., Kawaide, H., Kamiya, Y., and Sun, T-p. (2001). Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13: 1555-1565.
Slade AJ, Knauf VC: TILLING moves beyond functional genomics into crop improvement. (2005). Transgenic Res. 14(2): 109.-115. Slade AJ, Knauf VC: TILLING moves beyond functional genomics into crop improvement. (2005). Transgenic Res. 14 (2): 109.-115.
Smith B. (1998) Foreword, Livingsto and the tomato. Ohio State Universiíy Press, Columbus, Ohio, USA. Smith B. (1998) Foreword, Livingsto and the tomato. Ohio State University Press, Columbus, Ohio, USA.
Stevens M. A. Rick C. M. (1986). Genetics and breeding. In J. G. Atherton, J. Rudich [eds.] The tomato crop: a scienfífic basís for improvement, 35-105. Chapman and Hall, New York, New York, USA. Stevens M. A. Rick C. M. (1986). Genetics and breeding. In J. G. Atherton, J. Rudich [eds.] The tomato crop: a scienfífic basís for improvement, 35-105. Chapman and Hall, New York, New York, USA.
Szymkowiak E. J. Irish E. E. (2006). JO I NT LES S suppresses sympodial identity in inflorescence meristems of tomato. Planta 223: 646-658. Szymkowiak E. J. Irish E. E. (2006). JO I NT LES S suppresses sympodial identity in inflorescence meristems of tomato. Floor 223: 646-658.
Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codorno CA, Enns LC, Odden AR. (2004). Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4(1):12. Triques K, Sturbois Β, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A. (2007). Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING ¡n pea. Plant J , 51 (6):1116-1 125. Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codorno CA, Enns LC, Odden AR. (2004). Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4 (1): 12. Triques K, Sturbois Β, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A. (2007). Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING ¡n pea. Plant J, 51 (6): 1116-1 125.
Ueguchi-Tanaka, M., Nakajima, M., Motoyuki, A., and Matsuoka, M. (2007). Gibberellin receptor and its role in gibberellin signaling in plants. Annu, Rev, Plant Biol. 58: 183-198. Ueguchi-Tanaka, M., Nakajima, M., Motoyuki, A., and Matsuoka, M. (2007). Gibberellin receptor and its role in gibberellin signaling in plants. Annu, Rev, Plant Biol. 58: 183-198.
Ueguchi-Tanaka M. Hirano K. Hasegawa Y. Kitano H. y Matsuoka .M. (2008). Release of the repressive activity of rice DELLA proteína SLR1 by gibberellin does not require SLR1 degradationn in the gid2 mutant. Plant Ce// 20: 2437-2446. Ueguchi-Tanaka M. Hirano K. Hasegawa Y. Kitano H. and Matsuoka .M. (2008). Release of the repressive activity of rice DELLA protein SLR1 by gibberellin does not require SLR1 degradationn in the gid2 mutant. Plant Ce // 20: 2437-2446.
Wen C.K. y Chang C. (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Ce// 14: 87-100. Wen C.K. and Chang C. (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Ce // 14: 87-100.
Wilson R.N. and Chris R. Somerville (1995) Phenotypic Suppression of the Gibberellin-lnsensitive Mutant (gal) of Arabidopsis' Plant Physiol. (1995) 108: 495-502 Yeager A. F. (1927). Determínate growth in the tomato. Journal of Heredíty 2B: 263- 265.  Wilson R.N. and Chris R. Somerville (1995) Phenotypic Suppression of the Gibberellin-lnsensitive Mutant (gal) of Arabidopsis' Plant Physiol. (1995) 108: 495-502 Yeager A. F. (1927). Determine growth in the tomato. Journal of Heredíty 2B: 263-265.
Zanor MI, Rambla JL, Chaib J, Steppa A, Medina A, Granell A, Fernie AR, Causse M., (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany 60: 2139-2154. Zanor MI, Rambla JL, Chaib J, Steppa A, Medina A, Granell A, Fernie AR, Causse M., (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany 60: 2139-2154.

Claims

REIVINDICACIONES
1 . Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóioga caracterizada porque la alteración en la expresión de la proteína DELLA produce una inhibición en la represión del desarrollo y crecimiento de las plantas en comparación a plantas correspondientes no modificadas genéticamente. one . Genetically modified plant with the altered expression of the DELLA protein or orthologue characterized in that the alteration in the expression of the DELLA protein produces an inhibition in the repression of the development and growth of the plants in comparison to corresponding plants not genetically modified.
2. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóioga según reivindicación 1 , caracterizada porque dicha alteración se obtiene mediante sitenciamiento del gen SIDELLA u ortólogo. 2. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claim 1, characterized in that said alteration is obtained by siting the SIDELLA gene or ortholog.
3. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóioga según reivindicación 2, caracterizada porque el silenciamiento se obtiene empleando una construcción génica que se basa en una copia antisentido del gen SIDELLA controlada por el promotor 2XCaMV35S. 3. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claim 2, characterized in that the silencing is obtained using a gene construct based on an antisense copy of the SIDELLA gene controlled by the 2XCaMV35S promoter.
4. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóioga según reivindicación 1 , caracterizada porque dicha alteración se obtiene mediante mutación del gen SIDELLA u ortólogo. 4. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claim 1, characterized in that said alteration is obtained by mutation of the SIDELLA gene or ortholog.
5. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóioga según reivindicación 4, caracterizada porque la mutación en la secuencia genética de SIDELLA se debe a adición y/o inserción y/o supresión y/o sustitución de uno o más nucleótidos de gen SIDELLA u ortólogo. 5. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claim 4, characterized in that the mutation in the genetic sequence of SIDELLA is due to addition and / or insertion and / or deletion and / or substitution of one or more nucleotides SIDELLA gene or ortholog.
6. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóioga según reivindicación 5, caracterizada porque la mutación consiste en la sustitución del nucleótido guanina por el nucleótido adenina en el nucleótido 458. 6. A genetically modified plant with the altered expression of the DELLA protein or orthologue according to claim 5, characterized in that the mutation consists in the replacement of the guanine nucleotide with the adenine nucleotide in nucleotide 458.
7. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóioga según reivindicación 6, caracterizada porque la mutación en la secuencia genética de SIDELLA es la denominada TILLING 1 (SEQ ID No 3). 7. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claim 6, characterized in that the mutation in the genetic sequence of SIDELLA is called TILLING 1 (SEQ ID No 3).
8. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóioga según reivindicación 5, caracterizada porque la mutación consiste en la sustitución del nucleótido guanina por el nucleótido adenina en el nucleótido 1498, 8. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claim 5, characterized in that the mutation consists in the replacement of the guanine nucleotide with the adenine nucleotide in nucleotide 1498,
9. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóioga según reivindicación 8, caracterizada porque la mutación en la secuencia genética de SIDELLA es la denominada TILLING 2 (SEQ ID No.5). 9. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claim 8, characterized in that the mutation in the genetic sequence of SIDELLA is called TILLING 2 (SEQ ID No.5).
10. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicación 5, caracterizada porque la mutación consiste en la sustitución del nucleótido citosina por timina en el nucleótido 994. 10. Genetically modified plant with the altered expression of the DELLA or orthologous protein according to claim 5, characterized in that the mutation consists in the substitution of the cytosine nucleotide with thymine in nucleotide 994.
1 1 . Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicación 10, caracterizada porque la mutación en la secuencia genética de SIDELLA es la denominada TILLING 3 (SEQ ID No.7). eleven . Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claim 10, characterized in that the mutation in the genetic sequence of SIDELLA is called TILLING 3 (SEQ ID No.7).
12. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicación 5, caracterizada porque la mutación consiste en la sustitución del nucleótido citosina por timina en el nucleótido 661 . 12. Genetically modified plant with the altered expression of the DELLA or orthologous protein according to claim 5, characterized in that the mutation consists in the replacement of the cytosine nucleotide with thymine in nucleotide 661.
13. Pía nta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicación 12, caracterizada porque la mutación en la secuencia genética de SIDELLA es la denominada TILLING 4 (SEQ ID No.9). 13. Genetically modified plant with the altered expression of the DELLA protein or ortholog according to claim 12, characterized in that the mutation in the genetic sequence of SIDELLA is called TILLING 4 (SEQ ID No.9).
14. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicaciones 1 a 13 caracterizada porque la planta exhibe un patrón de crecimiento simpodial. 14. Genetically modified plant with the altered expression of the DELLA or orthologous protein according to claims 1 to 13 characterized in that the plant exhibits a symposium growth pattern.
15. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicaciones 1 a 14 caracterizada porque el patrón de crecimiento simpodial determinado se modifica a indeterminado. 15. Genetically modified plant with the altered expression of the DELLA or orthologous protein according to claims 1 to 14 characterized in that the determined sypodial growth pattern is modified to undetermined.
16. Pía nta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicaciones 1 a 14 caracterizada porque el patrón de crecimiento simpodial determinado se modifica a semideterminado. 16. Genetically modified path with the altered expression of the DELLA or orthologous protein according to claims 1 to 14 characterized in that the determined sypodial growth pattern is modified to semi-determined.
17. Pía nta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicaciones 1 a 13 caracterizada porque el contenido de meta bol ¡tos y/o algunas sustancias volátiles y/o no asociadas al aroma de los frutos se ve aumentado respecto a plantas correspondientes no modificadas genéticamente. 17. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claims 1 to 13, characterized in that the content of metabolites and / or some volatile substances and / or not associated with the aroma of the fruits is increased with respect to corresponding plants not genetically modified.
18. Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicaciones 1 a 13 caracterizada porque el contenido de algunas sustancias volátiles asociadas y/o no asociadas al aroma de los frutos se ve reducido respecto a plantas correspondientes no modificadas genéticamente. 18. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claims 1 to 13 characterized in that the content of some volatile substances associated and / or not associated with the aroma of the fruits is reduced compared to corresponding plants not genetically modified.
Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicación 17 caracterizada porque el aumento en el contenido de los metabolitos sacarosa, tirosina, asparagina, isoleucina, treonina, prolina, ácido piroglutámico y mio-inositol es del orden del 100-400%, y/o el de fructosa y glucosa es del orden del 10-30%, y/o el de las sustancias volátiles asociadas al aroma de los frutos Ε-2-hexenal, 1 -penten-3-ona y p.damascenona es del orden del 100- 200%, y/o el de las sustancias volátiles no asociadas al aroma de los frutos ácido 3- metilbutanoico, E,E-2,4-decadienal y Ε-2-octenal es del orden del 100-200% respecto de plantas correspondientes no modificadas genéticamente Genetically modified plant with the altered expression of the DELLA or orthologous protein according to claim 17 characterized in that the increase in the content of the metabolites sucrose, tyrosine, asparagine, isoleucine, threonine, proline, pyroglutamic acid and myo-inositol is of the order of 100- 400%, and / or that of fructose and glucose is of the order of 10-30%, and / or that of volatile substances associated with the aroma of the fruits Ε-2-hexenal, 1-penten-3-one and p. Damascenone is of the order of 100-200%, and / or that of volatile substances not associated with the aroma of the fruits 3- methylbutanoic acid, E, E-2,4-decadienal and Ε-2-octenal is of the order of 100 -200% compared to corresponding plants not genetically modified
Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicación 18 caracterizada porque la disminución en el contenido de las sustancias volátiles asociadas al aroma de los frutos 3- metilbutanol, l -nitro-2-feniletano, 2-feniletanol, fenilacetaldehído y 2-isobutiltiazol es del orden del 80-90%, y/o la de las sustancias volátiles no asociadas al aroma de los frutos geranilacetona, terpineol, linalool, bencil alcohol, eugenol, benzilnitrilo, 2- metil-1 -butano! y 2-metil-1 -propanol es del orden del 50-100% respecto de plantas correspondientes no modificadas genéticamente. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claim 18 characterized in that the decrease in the content of volatile substances associated with the aroma of the fruits 3- methylbutanol, l-nitro-2-phenylethane, 2-phenylethanol, phenylacetaldehyde and 2-isobutyl thiazole is of the order of 80-90%, and / or that of volatile substances not associated with the aroma of geranilacetone, terpineol, linalool, benzyl alcohol, eugenol, benzylnitrile, 2- methyl-1-butane! and 2-methyl-1-propanol is of the order of 50-100% with respect to corresponding plants not genetically modified.
Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicaciones 1 a 20 caracterizada porque la planta tiene un interés comercial y/o agrícola. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claims 1 to 20 characterized in that the plant has a commercial and / or agricultural interest.
Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicación 21 caracterizada porque dicha planta se selecciona del grupo de las solanáceas, cucurbitáceas, orquidáceas y/o leñosas. Genetically modified plant with the altered expression of the DELLA or orthologous protein according to claim 21, characterized in that said plant is selected from the group of solanaceae, cucurbits, orchids and / or woody.
Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicación 22 caracterizada porque la planta pertenece a la familia de las Solanáceas. Genetically modified plant with the altered expression of the DELLA or orthologous protein according to claim 22 characterized in that the plant belongs to the Solanaceae family.
Planta genéticamente modificada con la expresión alterada de la proteína DELLA u ortóloga según reivindicación 23 caracterizada porque la planta genéticamente modificada es una planta de tomate, Sotanum lycopersicum. Genetically modified plant with the altered expression of the DELLA protein or orthologue according to claim 23 characterized in that the genetically modified plant is a tomato plant, Sotanum lycopersicum.
Fruto de la planta genéticamente modificada según reivindicaciones 1 a 24 caracterizado porque el contenido de metabolitos y/o sustancias volátiles asociadas y/o no asociadas al aroma de los frutos está aumentado respecto a los frutos de plantas correspondientes no modificadas genéticamente. Fruit of the genetically modified plant according to claims 1 to 24 characterized in that the content of metabolites and / or associated volatile substances and / or not associated to the aroma of the fruits is increased with respect to the fruits of corresponding plants not genetically modified.
26. Fruto de la planta genéticamente modificada según reivindicaciones 1 a 24 caracterizado porque el contenido de algunas sustancias volátiles asociadas y/o no asociadas al aroma de los frutos está reducido respecto a los frutos de plantas correspondientes no modificadas genéticamente. 26. Fruit of the genetically modified plant according to claims 1 to 24 characterized in that the content of some volatile substances associated and / or not associated with the aroma of the fruits is reduced with respect to the fruits of corresponding plants not genetically modified.
27. Fruto de la planta genéticamente modificada según reivindicación 25 caracterizado porque aumento del contenido de metabolitos sacarosa, tirosina, asparagina, isoleucina, treonina, prolina, ácido piroglutámico y mio-inositol es del orden del 100- 400%, y/o el de fructosa y glucosa es del orden del 10-30%, y/o el de las sustancias volátiles asociadas al aroma de los frutos Ε-2-hexenal, 1 -penten-3-ona y p.damascenona es del orden del 100-200%, y/o el de las sustancias volátiles no asociadas al aroma de los frutos ácido 3-metilbutanoico, E,E-2,4-decadienal y E-2- octenal es del orden del 100-200% respecto a los frutos de plantas correspondientes no modificadas genéticamente 27. Fruit of the genetically modified plant according to claim 25, characterized in that the increase in the content of sucrose, tyrosine, asparagine, isoleucine, threonine, proline, pyroglutamic acid and myo-inositol metabolites is of the order of 100-400%, and / or of Fructose and glucose is of the order of 10-30%, and / or that of volatile substances associated with the aroma of the fruits Ε-2-hexenal, 1-penten-3-one and P. damascenone is of the order of 100-200 %, and / or that of volatile substances not associated with the aroma of the fruits 3-methylbutanoic acid, E, E-2,4-decadienal and E-2- octenal is of the order of 100-200% with respect to the fruits of corresponding plants not genetically modified
28. Fruto de la planta genéticamente modificada según reivindica con 26 caracterizado porque la disminución de las sustancias volátiles asociadas al aroma de los frutos 3- metilbutanol, 1 -nitro-2-feniletano, 2-feniletanol, fenilacetaldehído y 2-isobutiltiazol es del orden del 80-90%, y/o la de las sustancias volátiles no asociadas al aroma de los frutos geranilacetona, terpineol, linalool, bencil alcohol, eugenol, benzilnitrilo, 2- metil-1 -butanol y 2-metil-1 -propanol es del orden del 50-100% respecto a los frutos de plantas correspondientes no modificadas genéticamente 28. Fruit of the genetically modified plant as claimed in 26 characterized in that the decrease in volatile substances associated with the aroma of the fruits 3- methylbutanol, 1-nitro-2-phenylethane, 2-phenylethanol, phenylacetaldehyde and 2-isobutylthiazole is of the order 80-90%, and / or that of volatile substances not associated with the aroma of geranilacetone, terpineol, linalool, benzyl alcohol, eugenol, benzylnitrile, 2- methyl-1-butanol and 2-methyl-1-propanol is of the order of 50-100% with respect to the fruits of corresponding plants not genetically modified
29. Fruto según reivindicaciones 25-28 caracterizado porque el fruto es el tomate. 29. Fruit according to claims 25-28 characterized in that the fruit is tomato.
30. Semilla de la planta genéticamente modificada según reivindicaciones 1 a 29 caracterizada porque la expresión de la proteina DELLA se encuentra alterado. 30. Genetically modified plant seed according to claims 1 to 29 characterized in that the expression of the DELLA protein is altered.
31 . Procedimiento de obtención de plantas genéticamente modificadas con la expresión alterada de la proteína DELLA u ortóloga caracterizado porque comprende las etapas siguientes: a) transformar el genoma de una célula de la planta, b) regenerar la planta a partir de la célula de la etapa a), c) obtener semillas de las planta transformada que contengan el genoma modificado y, d) crecer al menos una de las semillas de la etapa c) para obtener una planta que contenga la expresión alterada de la proteína DELLA u ortóloga, 31. Procedure for obtaining genetically modified plants with the altered expression of the DELLA protein or orthologue characterized in that it comprises the following stages: a) transforming the genome of a plant cell, b) regenerating the plant from the cell of stage a ), c) obtain seeds of the transformed plant that contain the modified genome and, d) grow at least one of the seeds of step c) to obtain a plant that contains the altered expression of the DELLA protein or ortholog,
5 32. Procedimiento según reivindicación 31 caracterizado porque la etapa a) consiste en una mutagénesis dirigida. 5 32. Method according to claim 31 characterized in that step a) consists of a directed mutagenesis.
33. Procedimiento según reivindicación 32 caracterizado porque la mutagénesis dirigida consiste en silenciar el gen SIDELLA. 33. Method according to claim 32 characterized in that the directed mutagenesis consists in silencing the SIDELLA gene.
34. Procedimiento según reivindicación 33 caracterizado porque para el silenciamiento 10 de la etapa a) se emplea la construcción génica asDELLA. 34. Method according to claim 33 characterized in that for the silencing 10 of stage a) the asDELLA gene construct is used.
35. Procedimiento según reivindicación 34 caracterizado porque la construcción génica se basa en una copia antisentido del gen SIDELLA controlada por el promotor 2XCaMV35S. 35. Method according to claim 34 characterized in that the gene construct is based on an antisense copy of the SIDELLA gene controlled by the 2XCaMV35S promoter.
36. Procedimiento según reivindicación 32 caracterizado porque la mutagénesis 15 dirigida de la etapa a) consiste en modificar la secuencia nativa del gen SIDELLA a la secuencia del gen SIDELLA mutado seleccionado del grupo de las mutaciones denominadas TILLING 1 (SEQ ID No 3), TILLING 2 (SEQ ID No 5), TILLING 3 (SEQ ID No 7), o TILLING 4 (SEQ ID No 9). 36. The method according to claim 32, characterized in that the directed mutagenesis of step a) consists in modifying the native sequence of the SIDELLA gene to the sequence of the mutated SIDELLA gene selected from the group of mutations called TILLING 1 (SEQ ID No 3), TILLING 2 (SEQ ID No 5), TILLING 3 (SEQ ID No 7), or TILLING 4 (SEQ ID No 9).
37. Procedimiento según reivindicación 31 caracterizado porque la etapa b) es opcional 37. Method according to claim 31 characterized in that step b) is optional
20 38. Procedimiento según reivindicación 37 caracterizado porque la etapa b) se realiza mediante transformación mediada por Agrobacterium. Method according to claim 37, characterized in that step b) is carried out by Agrobacterium-mediated transformation.
39. Procedimiento según reivindicación 31 caracterizado porque la etapa a) consiste en una mutagénesis no dirigida que comprende las siguientes etapas: i. exponer la planta a un agente mutagénico, 39. Method according to claim 31, characterized in that step a) consists of an non-directed mutagenesis comprising the following stages: i. expose the plant to a mutagenic agent,
25 ii. extraer el DNA de cada una de las familias y combinar siguiendo una estrategia 3D, iii. rastrear el gen SIDELLA en cada familia mediante PCR anidada y cebadores específicos y universales, iv. detectar los a lelos mutantes de SIDELLA por secuenciación y deconvolución. 25 ii. extract the DNA of each of the families and combine following a 3D strategy, iii. track the SIDELLA gene in each family using nested PCR and specific and universal primers, iv. detect the mutants of SIDELLA by sequencing and deconvolution.
40. Procedimiento según reivindicación 39 caracterizado porque el agente mutagénico de la etapa i) es etilmetanosutfonato. 40. Method according to claim 39, characterized in that the mutagenic agent of step i) is ethylmethanesutfonate.
5 41 . Procedimiento según la reivindicación 39 caracterizado porque en la etapa (iv) se seleccionaron 4 formas alélicas de SIDELLA. 5 41. Method according to claim 39 characterized in that in step (iv) 4 allelic forms of SIDELLA were selected.
42. Procedimiento según las reivindicaciones 39 a 41 , caracterizado porque en la etapa (iv) una de las 4 formas alélicas de SIDELLA es la denominada TILLING 1 (SEQ ID No.3). 42. Method according to claims 39 to 41, characterized in that in step (iv) one of the 4 allelic forms of SIDELLA is called TILLING 1 (SEQ ID No.3).
10 43. Procedimiento según las reivindicaciones 39 a 41 , caracterizado porque en la etapa 10 43. Method according to claims 39 to 41, characterized in that in the step
(iv) una de las 4 formas alélicas de SIDELLA es la denominada TILLING 2 (SEQ ID No.5).  (iv) one of the 4 allelic forms of SIDELLA is called TILLING 2 (SEQ ID No.5).
44. Procedimiento según las reivindicaciones 39 a 41 , caracterizado porque en la etapa (iv) una de las 4 formas alélicas de SIDELLA es la denominada TILLING 3 (SEQ ID44. Method according to claims 39 to 41, characterized in that in step (iv) one of the 4 allelic forms of SIDELLA is called TILLING 3 (SEQ ID
13 No.7). 13 No.7).
45. Procedimiento según las reivindicaciones 39 a 41 , caracterizado porque en la etapa (iv) una de las 4 formas alélicas de SIDELLA es la denominada TILLING 4 (SEQ ID45. Method according to claims 39 to 41, characterized in that in step (iv) one of the 4 allelic forms of SIDELLA is called TILLING 4 (SEQ ID
No.9). No.9).
PCT/ES2010/070719 2009-11-07 2010-11-05 Alteration of the expression of the orthologous della-u protein in order to alter the growth pattern of plants and the metabolite content of the fruit WO2011054998A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200902130A ES2364932B1 (en) 2009-11-07 2009-11-07 CHANGES IN THE EXPRESSION OF THE PROTEIN DELLA OR ORTHOLOGIST TO ALTER THE GROWTH PATTERN OF PLANTS AND THE METABOLITES CONTENT OF THE FRUIT.
ESP200902130 2009-11-07

Publications (2)

Publication Number Publication Date
WO2011054998A2 true WO2011054998A2 (en) 2011-05-12
WO2011054998A3 WO2011054998A3 (en) 2011-07-07

Family

ID=43970456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070719 WO2011054998A2 (en) 2009-11-07 2010-11-05 Alteration of the expression of the orthologous della-u protein in order to alter the growth pattern of plants and the metabolite content of the fruit

Country Status (2)

Country Link
ES (1) ES2364932B1 (en)
WO (1) WO2011054998A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277360A (en) * 2011-08-05 2011-12-14 中国农业大学 Prunus pseudocerasus L. DELLA proteins as well as coding genes and application thereof
CN104558132A (en) * 2015-01-14 2015-04-29 山东省农业科学院生物技术研究中心 DELLA gene families of peanut as well as encoding genes and applications of DELLA gene families
JP2015089368A (en) * 2013-11-07 2015-05-11 国立大学法人 筑波大学 Mutant plant
WO2019053725A1 (en) 2017-09-18 2019-03-21 Futuragene Israel Ltd. Tissue-specific expression control of della polypeptides

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277360A (en) * 2011-08-05 2011-12-14 中国农业大学 Prunus pseudocerasus L. DELLA proteins as well as coding genes and application thereof
CN102277360B (en) * 2011-08-05 2012-10-17 中国农业大学 Prunus pseudocerasus L. DELLA proteins as well as coding genes and application thereof
JP2015089368A (en) * 2013-11-07 2015-05-11 国立大学法人 筑波大学 Mutant plant
EP3081641A1 (en) * 2013-11-07 2016-10-19 University of Tsukuba Mutant plant
EP3081641A4 (en) * 2013-11-07 2017-05-10 University of Tsukuba Mutant plant
US10385357B2 (en) 2013-11-07 2019-08-20 University Of Tsukuba Mutant plant
CN104558132A (en) * 2015-01-14 2015-04-29 山东省农业科学院生物技术研究中心 DELLA gene families of peanut as well as encoding genes and applications of DELLA gene families
CN104558132B (en) * 2015-01-14 2018-06-19 山东省农业科学院生物技术研究中心 Peanut DELLA gene families and its encoding gene and application
WO2019053725A1 (en) 2017-09-18 2019-03-21 Futuragene Israel Ltd. Tissue-specific expression control of della polypeptides
US11555195B2 (en) 2017-09-18 2023-01-17 Futuragene Israel Ltd. Tissue-specific expression control of DELLA polypeptides

Also Published As

Publication number Publication date
WO2011054998A3 (en) 2011-07-07
ES2364932A1 (en) 2011-09-19
ES2364932B1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
Chao et al. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage
Livne et al. Uncovering DELLA-independent gibberellin responses by characterizing new tomato procera mutants
Yue et al. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio
AU2008265513B2 (en) Method for improving stress resistance in plants and materials therefor
US10982225B2 (en) Flowering time-regulating genes and related constructs and applications thereof
US20200299711A1 (en) Polynucleotide construct for improving agricultural characteristics in crop plants
BRPI0708660A2 (en) methods for improving the performance of a plant grown under conditions of high population density, isolated polynucleotide, expression cassette, plant, seed, method for modulating expression of a polynucleotide of interest in a plant
ES2348668T3 (en) A METHOD TO INCREASE THE WEIGHT OF SEEDS.
EP2231862B1 (en) Genetically modified plants displaying reduced accumulation of cadmium
Choi et al. Tiller formation in rice is altered by overexpression of OsIAGLU gene encoding an IAA-conjugating enzyme or exogenous treatment of free IAA
Kuluev et al. The role of expansin genes PtrEXPA3 and PnEXPA3 in the regulation of leaf growth in poplar
US20150128304A1 (en) Plant Body Showing Improved Resistance Against Environmental Stress and Method for Producing Same
BR112019012622A2 (en) yield enhancement methods, growth rate, biomass, vigor, oil content, seed yield, fiber yield, fiber quality, fiber length, photosynthetic capacity, nitrogen use efficiency, and / or abiotic stress tolerance of a plant, producing and growing a crop and selecting a plant, isolated polynucleotide, nucleic acid construct, isolated polypeptide, plant cell, and plant.
WO2009039330A2 (en) Compositions and methods for altering the morphology of plants
ES2364932B1 (en) CHANGES IN THE EXPRESSION OF THE PROTEIN DELLA OR ORTHOLOGIST TO ALTER THE GROWTH PATTERN OF PLANTS AND THE METABOLITES CONTENT OF THE FRUIT.
ES2910505T3 (en) Parthenocarpy regulation gene and its use
US20100138962A1 (en) Use of plant chromatin remodeling genes for modulating plant architecture and growth
ES2543382T3 (en) Plant with resistance to stress due to low temperatures and its production method
US20230279419A1 (en) Enhancement of productivity in c3 plants
Zhu et al. Functional analysis of the isopentenyltransferase gene MdIPT3a from apple (Malus pumila Mill.)
US20160369295A1 (en) Drought tolerant plants and related constructs and methods involving genes encoding dtp4 polypeptides
BRPI0801924A2 (en) methods for modifying plant morphology
KR20190043394A (en) Novel proteins enhancing drought stress tolerance of plants, genes encoding the proteins and transgenic plants transformed with the genes
WO2004092372A1 (en) Gene capable of imparting salt stress resistance
US20150033408A1 (en) Polypeptide involved in morphogenesis and/or environmental stress resistance of plant

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10827949

Country of ref document: EP

Kind code of ref document: A2