WO2011054288A1 - 一种中继系统的安全密钥获取方法、装置 - Google Patents

一种中继系统的安全密钥获取方法、装置 Download PDF

Info

Publication number
WO2011054288A1
WO2011054288A1 PCT/CN2010/078367 CN2010078367W WO2011054288A1 WO 2011054288 A1 WO2011054288 A1 WO 2011054288A1 CN 2010078367 W CN2010078367 W CN 2010078367W WO 2011054288 A1 WO2011054288 A1 WO 2011054288A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
key
air interface
enb
initial
Prior art date
Application number
PCT/CN2010/078367
Other languages
English (en)
French (fr)
Inventor
张冬梅
毕晓宇
张爱琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to RU2012122772/08A priority Critical patent/RU2523954C2/ru
Priority to BR112012010514A priority patent/BR112012010514A2/pt
Priority to EP10827902.7A priority patent/EP2487947B1/en
Publication of WO2011054288A1 publication Critical patent/WO2011054288A1/zh
Priority to US13/463,444 priority patent/US8605908B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2463/00Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00
    • H04L2463/061Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00 applying further key derivation, e.g. deriving traffic keys from a pair-wise master key
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a system key acquisition method and apparatus for a relay system.
  • LTE-A Long Term Evoluting-Advanced, Evolved LTE
  • 3GPP LTE Third Generation Partnership Project
  • RN Re lay Node
  • the RN is located between the base station (DeNB, Donor eNB) to which the RN belongs and the UE, and the RN sends a downlink signal to the UE, or the RN sends an uplink signal to the DeNB, where the air interface between the RN and the DeNB is called the Un port, and between the RN and the UE.
  • the empty mouth is called Uu.
  • the data from the DeNB to the UE passes through two air interfaces, that is, two hops arrive at the UE. As more RNs join, a multi-hop scenario can also occur in LTE-A.
  • the embodiment of the invention provides a method and a device for acquiring a security key of a relay system, so that the data of the UE on the Un-port link can be separately protected.
  • the embodiment of the invention discloses a method for acquiring a security key of a relay system, which includes:
  • the node of the relay system acquires an initial key; And obtaining, by the node, a root key of an air interface protection key between another node directly adjacent to the local node according to the initial key;
  • the node obtains the air interface protection key between the other nodes directly adjacent to the local node and the local node according to the root key.
  • the embodiment of the invention discloses a method for acquiring a security key of a relay system, which includes:
  • the first relay node acquires a root key in the process of authenticating with the adjacent node of the first relay node
  • the adjacent node of the first relay node includes an upper node of the first relay node and/or a lower node of the first relay node.
  • a base station comprising:
  • An obtaining module where the node for the relay system acquires an initial key
  • the obtaining module 1 is configured to obtain, according to the initial key acquired by the acquiring module, a root key of an air interface protection key between another node directly adjacent to the node and the local node;
  • the obtaining module 2 is configured to obtain, according to the root key acquired by the acquiring module 1, the air interface protection key between the other nodes directly adjacent to the local node.
  • a relay node comprising:
  • the obtaining module 1 is configured to: acquire, by the first relay node, a root key in an authentication process between the adjacent node and the first relay node;
  • the adjacent node of the first relay node includes an upper node of the first relay node and/or a lower node of the first relay node.
  • the embodiment of the present invention receives an initial key by using a node in the relay system, and obtains a root key of the air interface protection key between the node and other directly adjacent nodes according to the initial key, according to the root key. Obtaining an air interface protection key between the node and other directly adjacent nodes, so that the data of the UE on the Un port link can be separately protected, that is, each active UE has a set of security parameters on the Un port link, thereby Effectively protect the data on each segment of the air interface.
  • FIG. 1 is a flowchart of a first embodiment of a method for acquiring a security key of a relay system according to the present invention
  • FIG. 2 is a flowchart of a second embodiment of a method for acquiring a security key of a relay system according to the present invention
  • FIG. 4 is a flowchart of a fourth embodiment of a method for acquiring a security key of a relay system according to the present invention
  • FIG. 5 is a fifth embodiment of a method for acquiring a security key of a relay system according to the present invention
  • FIG. 6 is a flowchart of a sixth embodiment of a method for acquiring a security key of a relay system according to the present invention
  • FIG. 7 is a flowchart of a seventh embodiment of a method for acquiring a security key of a relay system according to the present invention
  • FIG. 9 is a flowchart of a ninth embodiment of a method for acquiring a security key of a relay system according to the present invention
  • FIG. 10 is a flowchart of a ninth embodiment of a method for acquiring a security key of a relay system according to the present invention. Schematic diagram of the system node;
  • FIG. 11 is a schematic structural diagram of another relay system node according to an embodiment of the present invention.
  • the RN has the following characteristics:
  • the RN may have its own physical cell identity (PCI, Physical Cell Identity) for transmitting its own synchronization signal and reference signal;
  • PCI Physical Cell Identity
  • the UE may receive the scheduling information of the RN and the HARQ (Hybrid Automatic Retransmitting Request) feedback, and send its own control information to the RN;
  • HARQ Hybrid Automatic Retransmitting Request
  • the RN may be an R8 eNB, that is, have a backward compatibility feature; for an LTE-A UE, the RN may be an entity different from the R8 eNB.
  • the Home Subscriber Server (HSS) generates the original encrypted root key and the original integrity protection root key according to the local original root key K, that is, CK ' ⁇ .
  • the HSS is based on the HSS.
  • the CK ' IK obtains the initial key of the core network ⁇ ⁇ and sends the ⁇ to ⁇ , ⁇ according to the ⁇ to obtain the non-access stratum (NAS, Non-Access Stratum) key ⁇ and the initial key of the access network
  • the MME sends the MME to the base station eNB, and the eNB locally obtains the access layer (AS, access s trat ⁇ ) key ⁇ , wherein ⁇ ⁇ includes the NAS message encryption key and the NAS message integrity protection key, ⁇ It includes the encryption key of the user plane UP (User Plane), the integrity protection key of the control plane CP (Control Plane) and the encryption key of the control plane CP.
  • the UE side also generates CK ' IK according to the local original root key K, and the UE obtains the ⁇ according to the d', and obtains the NAS key according to the ⁇
  • the UE obtains the AS key K AS according to the , and the key acquisition method used by the UE and the UE is as follows:
  • KDF key derivation function
  • FC length is one byte, which is used to distinguish different algorithms
  • P0 is the input parameter
  • L0 is the length of P0, ....
  • the acquisition method is as follows:
  • K NAS KDF ( , S15 )
  • S15 f ( algorithm type distinguisher, algorithm id );
  • the eNB and the UE obtain locally:
  • K ⁇ s KDF ( K ⁇ B , S15 ).
  • FC, PLMN ID, SQN AK FC
  • FC 0xl0
  • PLMN ID is the public land mobile network identity.
  • SQN is the serial number
  • AK can be an anonymous key;
  • length of XX can be the length of XX;
  • Uplink NAS COUNT can be the count value of the uplink NAS message
  • algorithm type distinguisher can be the algorithm type difference number
  • algorithm id can be the algorithm identification number
  • the embodiment of the present invention provides a key acquisition method for a multi-hop system, and the specific situation is as follows: The following embodiments of the present invention are described in detail by taking a 3-hop system as an example, and the methods of the embodiments are also the same. Suitable for systems with 1 hop or greater than 1 hop.
  • FIG. 1 is a flowchart of a first embodiment of a method for acquiring a security key of a relay system according to the present invention, including: 101.
  • a node of a relay system acquires an initial key;
  • the node acquires, according to the initial key, another node that is directly adjacent to the node by the node.
  • the node obtains the air interface protection key between the other nodes directly adjacent to the node and the node according to the root key.
  • the embodiment of the present invention acquires an initial key by using a node of the relay system, and the node acquires, according to the initial key, a root key of an air interface protection key between another node directly adjacent to the local node, The node obtains the air interface protection key between the other nodes directly adjacent to the local node and the local node according to the root key.
  • the data of the UE on the Un port link can be separately protected. That is, each active UE has a set of security parameters on the Un port link, so as to effectively protect the data on each segment of the air interface.
  • the node of the relay system is a base station eNB
  • the node in the relay system acquires an initial key, including:
  • the eNB acquires an initial key from a mobility management entity MME;
  • the node of the relay system is a relay node RN
  • the node in the relay system acquires an initial key, including:
  • the RN acquires an initial key from a solid E or an eNB;
  • the node of the relay system when the node of the relay system is a user terminal UE, the node in the relay system acquires an initial key, including:
  • the UE acquires an initial key from a superior node of the UE.
  • the method further includes: the eNB acquiring an initial key of a lower node of the eNB according to the delivery input parameter and the initial key;
  • the method further includes:
  • the node obtains a root key of the air interface protection key between the node and the node directly adjacent to the node according to the initial key, and specifically includes:
  • the relay node RN acquires a root key of the air interface protection key between the local node and the directly adjacent node according to the initial key and the delivery input parameter.
  • the method further includes:
  • the node obtains a root key of the air interface protection key between the node and the node directly adjacent to the node according to the initial key, and specifically includes:
  • the UE acquires a root key of the air interface protection key between the local node and the directly adjacent node according to the initial key and the delivery input parameter.
  • the input parameter involved in this embodiment may be a transfer input parameter.
  • the embodiment of the present invention acquires an initial key by using a node of the relay system, and the node acquires, according to the initial key, a root key of an air interface protection key between another node directly adjacent to the local node, The node obtains the air interface protection key between the other nodes directly adjacent to the local node and the local node according to the root key.
  • the data of the UE on the Un-link can be separately protected. That is, each active UE has a set of security parameters on the Un-link, so that the data on each air interface is effectively protected.
  • a UE obtains all air interface keys according to a local original root key K of the UE, and ⁇ is obtained from an air interface of the upper node eNB or RN.
  • the input parameters involved in the embodiment of the present invention may be
  • the RN1 accesses the network and completes the authentication process.
  • the RN2 accesses the network, and completes the authentication process.
  • the UE accesses the network, and completes the authentication process.
  • Step 201, step 202, and step 203 are in no particular order.
  • the MME obtains the K NAS and the initial key ⁇ according to the key K ASME generated by the UE authentication process.
  • the method for obtaining the initial key is similar to the key acquisition method in the LTE system, and details are not described herein. .
  • the initial key ⁇ is sent to the eNB.
  • the eNB receives and saves the initial key ⁇ sent by the MME.
  • eNB forwards the initial key to the RN1 ⁇ ;
  • RN1 saves the initial key ⁇ .
  • the first input parameter may be a temporary identification parameter C-TNTI 1 allocated by the eNB to the RN1 when the RN1 enters the network, and the C-RNTI 1 obtained by the RN1 each time re-accessing the new DeNB is different;
  • the first input parameter may be a radio resource control (RRC, Radio Re Source Cont ro l ) message count value parameter RRC MESSAGE C0UNT1 of the specific UE between the eNB and the RN1; or the first input parameter may be
  • the random value parameter NONCE 1 negotiated by the eNB and the RN1 may include, but is not limited to, one or any combination of the above three parameters.
  • the UP and CP data protection keys used to protect the eNB and the RN1 are obtained by the root key.
  • the UP data protection key that is, the UP encryption key
  • the CP data protection key that is, the CP encryption key and the CP integrity protection.
  • the key ⁇ mt the three key acquisition methods refer to the above
  • the input key is described below by taking the key acquisition as an example, namely: KDF ( KeNB , f (UP encrypt ion algorithm type distinguished er, UP encrypt ion algorithm id))
  • the UP encryption ion algorithm type distinguisher is a user-specific secret algorithm type specifier, and the UP encryption algorithm id is a user face force. Secret algorithm ID.
  • RN1 forwards the initial key ⁇ to RN2;
  • RN2 saves the initial key ⁇ .
  • the second input parameter may be a temporary identification parameter C-RNTI2 allocated by the RN1 to the RN2 when the RN2 is in the network; or the second input parameter may be an RRC message count parameter RRC between the RN1 and the RN2 for the specific UE. MESSAGE C0UNT2; or the second input parameter may be a random value parameter N0NCE2 negotiated by RN1 and RN2.
  • Input parameters may include, but are not limited to, one or any combination of the three above.
  • the method of the K UP U KRRC ⁇ ' is similar to the method of obtaining the ⁇ ⁇ system in the LTE system, and details are not described herein again.
  • the UE obtains the ⁇ and the initial key ⁇ locally, and the obtaining method is similar to the prior art, and details are not described herein again.
  • the RN2 and the UE obtain the root key according to the initial key, and obtain an air interface key for protecting the UP and CP data between the UE and the RN2 according to the root key.
  • the obtaining method may include the following two methods:
  • the input key is a third input parameter, which may be a temporary identifier parameter C-RNTI3 allocated by the RN2 to the UE when the UE enters the network; or the third input parameter may be an RRC message count parameter parameter between the RN2 and the UE for the specific UE. RRC MESSAGE C0UNT3, or the third input parameter can be RN2 negotiates a random value parameter N0NCE3 with the UE.
  • the input parameters may include, but are not limited to, one or any combination of the above three parameters.
  • the input key is the key ⁇ MJ used before the handover, and the input parameter may be the target cell physical identifier PCI and the target cell radio frequency channel number EARFCN-DL
  • the eNB receives the initial key ⁇ , and obtains the root key between the eNB and the RN1 node according to the initial key ⁇ , and obtains the air interface between the e NB and the direct lower node according to the root key M.
  • protection key forward the initial key to the eNB so that the respective lower nodes obtain the initial root key key ⁇ air interface protection key between each lower node according to the data to the UE on the Un interface link may be respectively Protection, that is, each active UE has a set of security parameters on the Un port link, so as to effectively protect the data on each segment of the air interface.
  • FIG. 3 is a flowchart of a method for acquiring a security key of a relay system according to a third embodiment of the present invention.
  • the eNB obtains the initial density of all lower-level RN nodes locally according to the received ⁇ .
  • the key is then sent to the RNs at various levels.
  • the input parameters involved in the embodiments of the present invention may include the input parameters and the local input parameters. As shown in Figure 3:
  • Steps 301 to 305 are similar to steps 201 to 205 in the second embodiment, and are not mentioned here;
  • the fourth input parameter may be a transmission input parameter, and the fourth transmission input parameter may be a temporary identification parameter C-RNTI 4 allocated by the RN1 to the RN2 when the RN2 enters the network, which needs special description.
  • the C-RNTI4 obtained by the RN2 is re-accessed to the new DeNB each time; or the fourth delivery input parameter may be a random value parameter NONCE 4 negotiated by RN1 and RN2;
  • the fifth input parameter may be a fifth delivery input parameter, and the fifth delivery input parameter may be a temporary identification parameter C-RNTI5 allocated by the RN2 to the UE when the UE enters the network, and the UE needs to specifically indicate that the UE re-accesses the new one each time.
  • the C-RNTI 5 obtained by the DeNB is different; or the fifth delivery input parameter may be a random value parameter NONCE 5 negotiated by the eNB and the RN1;
  • the fourth input parameter and the fifth input parameter may also be other input parameters, such as the id of the corresponding RN, or the carrier frequency of the corresponding RN.
  • the input parameters may include, but are not limited to, one or any combination of the above three parameters.
  • the eNB sends the initial key and the fourth input parameter to the RN1.
  • the eNB and RN1 ⁇ initial key according to the root key W is acquired, RN1 between eNB and eNB based on the root key and RN1 'for protecting the UP acquisition, CP key data, the' acquisition method ⁇ under:
  • the sixth local input parameter may be a temporary identification parameter C-TNT6 allocated by the eNB to the RN1 when the RN1 is in the network, and the RN1 is re-accessed to the new DeNB each time, and the obtained C-RNTI6 is different;
  • the six local input parameters may be a radio resource control (RRC, Radi. Resource Control) message count value parameter RRC MESSAGE C0UNT6 of the specific UE between the eNB and the RN1; the sixth local input parameter may be a random value negotiated by the eNB and the RN1.
  • the local input parameters may include, but are not limited to, one or any combination of the above three parameters.
  • the root key 'obtained is used to protect the UP and CP data protection keys between the eNB and the RN1, wherein the UP data protection key is the UP encryption key ⁇ , the CP data protection key, that is, the CP encryption key set and the CP complete.
  • the sexual protection key ⁇ " the three key acquisition methods refer to the above ⁇ ⁇ acquisition method formula
  • the input key is the following to take the key acquisition as an example, that is,
  • Kupenc KDF ( KeNB , f ( UP encrypt ion algorithm type distinguished er, UP encrypt ion algorithm id))
  • the UP encryption ion algorithm type distinguisher is a user-specific secret algorithm type specifier, and the UP encryption algorithm id is a user face force.
  • Secret algorithm ID is a user-specific secret algorithm type specifier, and the UP encryption algorithm id is a user face force.
  • the eNB sends the initial key ⁇ ⁇ and the fifth input parameter to the RN2;
  • RN1 and RN2 obtain the air interface keys ⁇ , Krrc ⁇ , Krrc ' ⁇ for protecting the UP CP data between RN1 and RN2 according to the root key ⁇ ', and the acquisition method is similar to the K acquisition method in the LTE system, and is not Again, the method of obtaining '' is as follows:
  • the input key is ⁇
  • the seventh local input parameter may be the RRC message count value parameter RRC MESSAGE C0UNT7 between the RN1 and the RN2 for the specific UE, or the seventh local input parameter may be the temporary identification parameter C assigned to the RN2 by the RN1. - RNTI7, or the seventh local input parameter may negotiate a random value parameter N0NCE7 for RN1 and RN2.
  • the local input parameters may include, but are not limited to, one or any combination of the above three parameters.
  • 312 RN2 sends the fifth input parameter to the UE
  • the UE obtains the initial key ⁇ and K RN2 locally.
  • the method for obtaining the initial key ⁇ refers to the above-mentioned acquisition formula, and will not be described again.
  • the method for obtaining the initial key is similar to the method for obtaining the ⁇ in step 306.
  • RN2 and UE acquires a root key K ⁇ key between the UE and based on the initial RN2, and RN2 ⁇ UE based on the 'data acquisition UP CP key is used for air interface between the UE and the protection of RN2, ⁇ ' acquisition method There are two ways to do this:
  • the eighth local input parameter may be the RRC message count value parameter RRC MESSAGE C0UNT8 between the RN2 and the UE, or the eighth local input parameter may be the temporary identification parameter C-RNTI 8 allocated by the RN2 to the UE, or The eighth local input parameter may negotiate a random value parameter N0NCE8 with the UE for the RN2, and the input parameter may include, but is not limited to, one or any combination of the above three parameters.
  • K KDF ( , f ( PCI , EARFCN-DL ) );
  • the input key may be the key used before the handover ⁇ 2
  • the input parameter PC I may be the target cell physical identifier
  • the EARFCN-DL may be the target cell radio frequency channel number.
  • the eNB acquires an initial key of each lower-level node according to the ⁇ , and the eNB forwards the initial key of each lower-level node and acquires an input parameter used by the initial key, so that each lower-level node according to the The initial key and the input parameter obtain the root key of the air interface protection key of each lower node.
  • the data of the UE on the Un interface link can be separately protected. That is, each active UE has a set of security parameters on the Un interface link, so as to effectively protect the data on each segment of the air interface.
  • Steps 401 to 403 are similar to steps 201 to 203 in the second embodiment, and are not mentioned here, except that:
  • the initial key E ⁇ solid eNB UE according to a key generated in the authentication process and obtaining a solid E ⁇ Li, obtaining as follows:
  • the input key is a key generated during the authentication process
  • the UL NAS COUNT is a count value parameter of the uplink NAS signaling of the UE in the solid E
  • the tenth input parameter may include a tenth pass input parameter, and the tenth pass
  • the input parameter may be a random value parameter N0NCE1 0 or a NAS COUNT value between the MME and the corresponding RN
  • the eleventh input parameter may be an eleventh pass input parameter, the eleventh value.
  • the input parameters may include, but are not limited to, one or any combination of the above three parameters.
  • the solid E sends an initial key ⁇ to the eNB.
  • the MME sends an initial key and a tenth input parameter to the RN1.
  • 408 RN2 sends an eleventh input parameter to the UE
  • RN1 and the eNB 409 acquires a root key according to the initial key ', and e NB RN1 based on the root key' for protecting the air interface key acquisition UP CP data between RN1 and the eNB, the acquisition method:
  • the twelfth local input parameter may be C-TNT12, and the twelfth local input parameter may be a temporary identification parameter C-TNT12 allocated by the eNB to the RN1 when the RN1 enters the network, and the RN1 re-accesses the new one each time.
  • DeNB the obtained C-RNTI 12 is different; or the twelfth local input parameter may be a radio resource control (RRC, Radio Resource Control) message count value parameter RRC MESSAGE C0UNT12 of a specific UE between the eNB and the RN1; or
  • the twelfth local input parameter may be a random value parameter NONCE 12 negotiated by the eNB and the RN1.
  • the local input parameters may include, but are not limited to, one or any combination of the above three parameters.
  • KDF ( KeNB , f (UP encrypt ion algorithm type distinguished er, UP encrypt ion algorithm id))
  • the UP encryption ion algorithm type distinguisher is a user-specific secret algorithm type specifier, and the UP encryption algorithm id is a user face force.
  • Secret algorithm ID is a user-specific secret algorithm type specifier, and the UP encryption algorithm id is a user face force.
  • the RN1 acquires the initial key acquisition method of the RN1 according to the eNB's initial key and the tenth input parameter, which is similar to the step 404, and is not described here.
  • RN1 and RN2 respectively obtain the root between RN1 and RN2 according to the initial key ⁇ .
  • the key ⁇ obtaining method is similar to the step 310 in the third embodiment, and is not described here again; the RN1 RN2 obtains the UP CP data air interface protection key between the RN1 and the RN2 according to the root key ⁇ '
  • 411 RN2 obtains according to the initial key and the eleventh input parameter between the RN1 and the eNB
  • the initial key between the RN2 and the UE is obtained in a similar manner to step 404;
  • the UE obtains the initial key of the eNB locally, and the UE acquires the initial key of the RN2 according to the eleventh input parameter, and the UE and the RN2 acquire the root key K and the RN2 between the RN2 and the UE according to the initial key ⁇ of the RN2. and based on the UE follows ⁇ 'acquired CP UP key data for the air interface between the UE and the protection of RN2, K w K mcenc K, the LTE system acquisition method ⁇ obtaining the like, not repeated here, acquisition methods :
  • the thirteenth local input parameter of the input key may be a temporary identification parameter C-RNTI13 that may be allocated to the UE by the RN2 when the UE enters the network; or the thirteenth input parameter may be an RRC message count parameter between the RN2 and the UE.
  • the RRC MESSAGE C0UNT13, or the thirteenth local input parameter may negotiate the random value parameter N0NCE13 with the UE for the RN2; the local input parameter may include, but is not limited to, one or any combination of the above three parameters.
  • the embodiment of the present invention acquires an initial key of a lower node of the eNB under the solid E and an initial key of the eNB according to a key generated in the solid E authentication process by the mobility management entity, and the initial key of the eNB; Transmitting, to the lower-level node, an initial key of the eNB or an initial key of the lower-level node, so that the lower-level node generates according to an initial key of the eNB or the lower-level node and the solid E authentication process
  • the data of the UE on the Un port link can be separately protected. That is, each active UE has a set of security parameters on the Un port link, so as to effectively protect the data on each segment of the air interface.
  • FIG. 5 is a flowchart of a fifth embodiment of a method for acquiring a security key of a relay system according to the present invention.
  • an Un-link protection key is based on a permanent key Ka of an RN, and can be used to protect an RN-specific RB. It can also be used to protect RBs of all UEs belonging to the RN.
  • the input parameters involved in the embodiments of the present invention may be local input parameters. As shown in Figure 5:
  • RN1 accesses the network, completes the authentication process, and uses Ka to obtain the key during the authentication process.
  • RN2 accesses the network, completes the authentication process, and obtains the key by using Kb during the authentication process.
  • RN1 are generated during the authentication key ⁇ Li --1 acquisition and initial key K RN1 of legs, solid E, RN2 are generated during the authentication key ⁇ Rei - 2 of acquisition and RN2
  • the initial key, the obtaining method can refer to the obtaining formula of the above ⁇ , and the input key is the key generated in the authentication process;
  • the E sends the obtained initial key to the eNB.
  • the fixed E sends the obtained initial key ⁇ to the RN1;
  • the RN1 and the eNB obtain an air interface key for protecting the UP and CP data between the RN1 and the eNB according to the initial key, and the acquiring method is similar to the method for obtaining the ⁇ in the LTE system, and inputting the key. 507.
  • the RN2 obtains a root key ⁇ ' between the RN1 and the RN2 according to the initial key ⁇ , and the RN2 and the RN2 obtain an air interface for protecting the UP and CP data between the RN1 and the RN2 according to the root key ⁇ 2'
  • the key acquisition method is similar to the method for obtaining ⁇ in the LTE system.
  • the input key is ⁇ '
  • the acquisition method is:
  • the fourteenth input parameter may be an RRC message count value parameter RRC MESSAGE C0NUT14 between the RN1 and the RN2 for the specific UE; or the fourteenth input parameter may be the temporary identifier parameter C-RNT allocated by the RN1 to the RN2 when the RN2 enters the network.
  • the I 14 or the fourteenth input parameter may also be a random value parameter N0NCE14 negotiated by RN1 and RN1, which may include, but is not limited to, one or any combination of the above three parameters.
  • the embodiment of the present invention acquires, by the mobility management entity MME, an initial key of a lower node of the eNB under the solid E according to an input parameter and a key generated in the MME authentication process, and an initial key of the eNB; Solid E sends an initial key of the eNB or an initial key of the lower node to the lower node; the solid E sends the input parameter to the lower node; so that the lower node according to the input Determining an air interface protection key between the lower node and the direct lower node of the lower node by using the parameter and the initial key of the eNB, or the input parameter and the key generated by the lower node and the MME authentication process Root key.
  • the data of the UE on the Un port link can be separately protected, that is, each active UE has a set of security parameters on the Un port link, thereby effectively protecting the data on each segment of the air interface.
  • the embodiments of the present invention may also be used in combination.
  • the bearer of the RN1 and the bearer of the UE may be generated by using the method of the fifth embodiment.
  • the key is protected.
  • the method of the second embodiment can be used for protection.
  • the method of the fifth embodiment can also be used to generate the key for protection.
  • the UE 7 on the Un port between RN1 and RN2 also The method of the second embodiment can be used to generate a key for protection.
  • the UE bearer on the Un interface between the RN1 and the eNB can also use the method in the third embodiment to generate a key for protection, for the Un port between the RN1 and the RN2.
  • the UE bearer may also use the method in the third embodiment to generate a key for protection.
  • the UE bearer on the Un interface between the RN1 and the eNB may also use the method in the fourth embodiment to generate a key for protection, for RN1 and RN2.
  • the UE bearer on the Un port can also be protected by using the method in the fourth embodiment.
  • FIG. 6 is a flowchart of a sixth embodiment of a method for acquiring a security key of a relay system according to the present invention.
  • a protection key used by a lower-level RN is associated with a key used by an upper-level RN, and the input parameters are related to the embodiment of the present invention. Parameters can be entered locally. As shown in Figure 6:
  • 601 RN1 accesses the network and completes the authentication process
  • the solid E and the RN 1 respectively obtain the initial key of the K NAS and the RN1 according to the key generated in the authentication process.
  • the acquisition method can be similar to the LTE system, and the input key is the key generated during the authentication process ⁇ - 1 , the input parameter can be RN1 Up l ink NAS COUNT;
  • the E sends the initial key to the eNB.
  • RN1 directly acquires an UP between the RN1 and the eNB according to the initial key leg.
  • the air interface key of the CP data is obtained in a similar manner to the acquisition s in the LTE system, and the input key is ⁇ ;
  • RN2 accesses the network and completes the authentication process.
  • the MME sends the initial key leg of the RN1 to the RN2.
  • the solid E and the RN2 obtain the initial key ⁇ 2 of the K NAS and the RN 2 according to the initial key of the brain-RN1 generated in the authentication process, and the method for obtaining the defect is as follows:
  • KDF KDF ⁇ brain one leg 2 , K RNI , f ( Up l ink NAS COUNT of RN2 ) )
  • the input key is ⁇ - 2 and,
  • the initial key ⁇ is sent to the RN1;
  • RN2 2 acquires a root key between RN1 and RN2 According to this ⁇ ⁇ , according to the root key ⁇ 2' obtains an air interface key for protecting UP CP data between RN1 and RN2, and the acquisition method is similar to the acquisition in the LTE system, and the input key is ⁇ 2';
  • 609 UE accesses the network, completes the authentication process, and sends KRN1 and KRN2 to the UE.
  • the 610 MME and the UE acquire the initial keys K eNB and K NAS according to the key-UE K M2 generated in the authentication process, where the obtaining method is as follows:
  • the solid E sends the initial key ⁇ of the eNB to the RN2;
  • RN2 W 612 acquires a root key between the UE and based on the initial key K0 RN2, and RN2 UE based on the ⁇ 'UP CP acquired for data protection between the UE and RN2 air interface keys, input key for ⁇ There are two ways to get this:
  • the input key is, the first input parameter may be the RRC message count value between the RN2 and the UE, or the first input parameter may be the C-RNTI allocated by the RN2 to the UE. Or the first input parameter may be a fresh value NONCE negotiated by the RN2 with the UE; the input parameter may include but is not limited to one or any combination of the above parameters.
  • Update with the intra-cell handover method Obtain the root key.
  • the update method is:
  • K KDF ( K ⁇ B , f (PCI, EARFCN-DL ) );
  • the input key may be used as pre-switching key ⁇ ⁇ ⁇
  • the input parameter may be a target cell physical cell identity (Physical Cell Identifier, PCI), EARFCN-DL target cell The number of radio frequency channels.
  • the embodiment of the present invention acquires an initial key by using a node of the relay system, and the node acquires, according to the initial key, a root key of an air interface protection key between another node directly adjacent to the local node, The node obtains, according to the root key, the other sections directly adjacent to the node by the local node.
  • the data of the UE on the Un port link can be separately protected. That is, each active UE has a set of security parameters on the Un port link, so as to effectively protect the data on each segment of the air interface.
  • each level of the RN authenticates with its own upper-level node, and generates each segment of the air interface protection key. As shown in Figure 7:
  • the RN1 accesses the network, and mutually authenticates with the eNB.
  • the RN1 and the eNB respectively generate a root key between the RN1 and the eNB generated in the authentication process.
  • ⁇ - Obtain the key used to protect the UP and CP data on the air interface between them.
  • the acquisition method is similar to the ⁇ obtained in the LTE system, and the input key is ;
  • the RN2 accesses the network, and mutually authenticates with the RN1.
  • RN1 and RN2 respectively use a root key between RN1 and RN2 generated in the authentication process.
  • ⁇ - Obtain the key used to protect the UP and CP data on the air interface between them. Obtain the method and reference the above formula for ⁇ «, and enter the key as ⁇ .
  • the first relay node obtains a root key in the process of authenticating with the adjacent node of the first relay node, and the first relay node acquires the first key according to the root key for protecting the first An air interface protection key between the relay node and the adjacent node, where the adjacent node of the first relay node includes an upper node of the first relay node and/or the first relay The lower node of the node.
  • the data on each node can be separately protected, that is, each active UE has a set of security parameters on the Un port link, so as to effectively protect the data on each segment of the air interface.
  • the embodiment of the present invention can also be used in combination with the first/second/third embodiment.
  • the method in the seventh embodiment is used to protect the RN-related bearer on the Un interface
  • the first/second/third embodiment is used to protect the UE-related bearer on the Un interface. .
  • FIG. 8 is a flowchart of a method for obtaining a security key of a relay system according to an eighth embodiment of the present invention.
  • all levels of RNs are authenticated with the eNB, and each segment of the air interface protection key is generated, as shown in FIG.
  • the RN1 accesses the network, and mutually authenticates with the eNB. 802.
  • the eNB and the RN1 respectively obtain, according to the root key leg between the eNB and the RN1 generated in the authentication process, a key for protecting UP and CP data on the air interface between them;
  • the RN2 accesses the network, and mutually authenticates with the eNB.
  • the eNB and the RN2 respectively generate an initial key K2 of the RN2 in the authentication process, and the eNB forwards the initial key ⁇ to the RN1, and the RN1 and the RN2 respectively obtain the root key between the RN1 and the RN2 according to the K ⁇ 2 ', according to the ⁇ ' to obtain a key for protecting UP, CP data on the air interface between RN1 and RN2.
  • the first relay node obtains a root key in the process of authenticating with the adjacent node of the first relay node, and the first relay node acquires the first key according to the root key for protecting the first An air interface protection key between the relay node and the adjacent node, where the adjacent node of the first relay node includes an upper node of the first relay node and/or the first relay The lower node of the node.
  • the data on each node can be separately protected, that is, each active UE has a set of security parameters on the Un port link, so as to effectively protect the data on each segment of the air interface.
  • the embodiment of the present invention can also be used in combination with the first/second/third embodiment.
  • the method in the eighth embodiment is used to protect the RN-related bearer on the Un interface
  • the first/second/third embodiment is used to protect the UE-related bearer on the Un interface.
  • the data of the UE on the Un-link can be separately protected. That is, each active UE has a set of security parameters on the Un-link, so that the data on each air interface is effectively protected.
  • FIG. 9 is a flowchart of a twelfth embodiment of a method for acquiring a security key of a relay system according to the present invention, including:
  • the first relay node acquires a root key in the process of authenticating with the adjacent node of the first relay node.
  • the first relay node acquires, according to the root key, an air interface protection key used to protect the first relay node and the adjacent node.
  • the adjacent node of the first relay node includes an upper node of the first relay node and/or a lower node of the first relay node.
  • the embodiment of the present invention acquires an initial key by using a node of the relay system, and the node acquires, according to the initial key, a root key of an air interface protection key between another node directly adjacent to the local node, The node obtains the air interface protection key between the other nodes directly adjacent to the local node and the local node according to the root key.
  • the data of the UE on the Un port link can be separately protected. That is, each active UE has a set of security parameters on the Un port link, so as to effectively protect the data on each segment of the air interface.
  • FIG. 10 is a schematic structural diagram of a node of a relay system according to an embodiment of the present invention, including: an acquiring module 1 001, where a node used in a relay system acquires an initial key;
  • the obtaining module 1 002 is configured to obtain, according to the initial key acquired by the acquiring module, a root key of an air interface protection key between another node directly adjacent to the node and the node;
  • the obtaining module 2 003 is configured to obtain, according to the root key acquired by the acquiring module 1, the air interface protection key between the other nodes directly adjacent to the node.
  • the acquiring module is specifically configured to: when the node in the relay system is a base station eNB, the eNB acquires an initial key from a mobility management entity MME;
  • the acquiring module is specifically configured to: when the node in the relay system is a relay node RN, the RN obtains an initial key from a solid E or an eNB;
  • the acquiring module is specifically configured to: when the node in the relay system is a user terminal UE, the UE acquires an initial key from a superior node of the UE.
  • the device further includes:
  • the acquiring module is further configured to: when the node in the relay system is an eNB, the eNB acquires an initial density of a lower node of the eNB according to the input parameter and the initial key acquired by the acquiring module. Key
  • a sending module 1 004 configured to send, by the eNB, the initial key to one of a node of a lower node of the node, and send the eNB to a directly adjacent node of a node of a node of the node of the local node. Passing input parameters such that a node of the lower node of the local node and a node directly adjacent to a node of the lower node of the local node according to the transfer input parameter and The initial key acquires a root key of an air interface protection key between a node of the lower node of the local node and a node directly adjacent to a node of the lower node of the local node.
  • the device when the node in the relay system is a relay node RN, the device further includes: a receiving module 1005, configured to receive, by the RN, an upper node to transmit an input parameter;
  • the obtaining module 1 is further configured to obtain, by the RN, a root key of an air interface protection key between directly adjacent nodes of the node according to the initial key and the delivery input parameter.
  • the apparatus further includes: the receiving module is further configured to: when a node in the relay system is a relay node UE,
  • the acquiring module 1 is further configured to acquire, by the UE, a root key of an air interface protection key between directly adjacent nodes of the node according to the initial key and the delivery input parameter.
  • the embodiment of the present invention acquires an initial key by using a node of the relay system, and the node acquires, according to the initial key, a root key of an air interface protection key between another node directly adjacent to the local node, The node obtains the air interface protection key between the other nodes directly adjacent to the local node and the local node according to the root key.
  • the data of the UE on the Un port link can be separately protected. That is, each active UE has a set of security parameters on the Un port link, so as to effectively protect the data on each segment of the air interface.
  • FIG. 11 is a schematic structural diagram of a relay node according to an embodiment of the present invention, including:
  • the obtaining module 1101 is configured to acquire, by the first relay node, a root key in the process of authenticating with the adjacent node of the first relay node;
  • the obtaining module 2102 is configured to acquire, by the first relay node, the air interface protection key between the first relay node and the adjacent node according to the root key acquired by the acquiring module 1 ;
  • the adjacent node of the first relay node includes an upper node of the first relay node and/or a lower node of the first relay node.
  • an initial key is obtained by a node of the relay system, and the node is based on the initial
  • the start key acquires a root key of the air interface protection key between the other node directly adjacent to the local node, and the node obtains the other node directly adjacent to the local node according to the root key.
  • the air interface protection key between the nodes.
  • the data of the UE on the Un interface link can be separately protected. That is, each active UE has a set of security parameters on the Un interface link, so as to effectively protect the data on each segment of the air interface.
  • the present invention can be implemented by means of software and a necessary general hardware platform. Of course, it can also be through hardware, but in many cases, the former is more Good implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a
  • the computer device (which may be a personal computer, server, or network device, etc.) performs the method of various embodiments of the present invention.
  • the present invention can be implemented by means of software and a necessary general hardware platform. Of course, hardware can also be used, but in many cases, the former is better. Implementation. Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a The computer device (which may be a personal computer, server, or network device, etc.) performs the method of various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种中继系统的安全密钥获取方法、 装置 本申请要求于 2009 年 11 月 3 日提交中国专利局、 申请号为 200910110027. 5 发明名称为"一种中继系统的安全密钥获取方法、 装置"的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 具体涉及一种中继系统的系统密钥获取方法、 装置。
背景技术
LTE-A ( Long Term Evolut ion-Advanced , 演进的 LTE )是当前最受关注 的宽带无线通信技术标准 3GPP LTE 的演进, 为了提高小区边缘的吞吐量, LTE-A 中引入中继节点 (Re lay Node , RN ), 方便运营商或用户临时网络部署 需求, 以及支持群移动功能, RN 可以部署在乡村、 城市、 室内热点区域或者 盲点区域。
RN位于 RN归属的基站( DeNB, Donor eNB )与 UE之间, RN向 UE发送下 行信号, 或者 RN向 DeNB发送上行信号, 其中, RN与 DeNB之间的空口叫做 Un口, RN与 UE之间的空口叫 Uu口。 DeNB到 UE的数据经过两段空口, 即经 过两跳到达 UE , 随着更多 RN的加入, LTE-A里还可以出现多跳场景。
由于 RN 的引入, 使得空口链路段数增多, 密钥层次也增多, 现有安全 机制不能对各段空口上数据进行有效的安全保护。
发明内容
本发明实施例提供了一种中继系统安全密钥获取方法、 装置, 使 UE在 Un 口链路上的数据可以分别保护。
本发明实施例公开了一种中继系统安全密钥获取方法, 包括:
中继系统的节点获取初始密钥; 所述节点根据所述初始密钥获取本节点与本节点直接相邻的其他节点之 间的空口保护密钥的根密钥;
所述节点根据所述根密钥, 获取本节点与本节点直接相邻的所述其他节 点之间的所述空口保护密钥。
本发明实施例公开了一种中继系统安全密钥获取方法, 包括:
第一中继节点在与第一中继节点的相邻接节点认证的过程中获取根密 钥;
所述第一中继节点根据所述根密钥获取用于保护所述第一中继节点与所 述相邻接节点之间的空口保护密钥;
所述第一中继节点的相邻接节点包括所述第一中继节点的上级节点和 / 或所述第一中继节点的下级节点。
一种基站, 包括:
获取模块, 用于中继系统的节点获取初始密钥;
获取模块一, 用于根据获取模块获取的所述初始密钥, 获取本节点与本 节点直接相邻的其他节点之间的空口保护密钥的根密钥;
获取模块二, 用于根据获取模块一获取的所述根密钥, 获取本节点与本 节点直接相邻的所述其他节点之间的所述空口保护密钥。
一种中继节点, 包括:
获取模块一, 用于第一中继节点在与第一中继节点的相邻接节点在认证 的过程中获取根密钥;
获取模块二, 用于所述第一中继节点根据所述获取模块一获取的所述根 密钥获取保护所述第一中继节点与所述相邻接节点之间的空口保护密钥; 所述第一中继节点的相邻接节点包括所述第一中继节点的上级节点和 / 或所述第一中继节点的下级节点。
本发明实施例通过中继系统中的节点接收初始密钥, 根据该初始密钥获 取该节点与直接相邻其他节点之间的空口保护密钥的根密钥, 根据该根密钥 获取该节点与直接相邻其他节点之间的空口保护密钥, 使 UE在 Un 口链路上 的数据可以分别保护, 即每个活动的 UE在 Un 口链路上都有一套安全参数, 从而对各段空口上数据进行有效的安全保护。
附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作简要介绍, 显而易见地, 下面描述中的附图仅仅是本发 明的一些实施例, 对于本领域的普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明中继系统安全密钥获取方法第一实施例的流程图; 图 2为本发明中继系统安全密钥获取方法第二实施例的流程图; 图 3为本发明中继系统安全密钥获取方法第三实施例的流程图; 图 4为本发明中继系统安全密钥获取方法第四实施例的流程图; 图 5为本发明中继系统安全密钥获取方法第五实施例的流程图; 图 6为本发明中继系统安全密钥获取方法第六实施例的流程图; 图 7为本发明中继系统安全密钥获取方法第七实施例的流程图; 图 8为本发明中继系统安全密钥获取方法第八实施例的流程图; 图 9为本发明中继系统安全密钥获取方法第九实施例的流程图; 图 10为本发明实施例一种中继系统节点的结构示意图;
图 11为本发明实施例另一种中继系统节点的结构示意图。
具体实施方式
为了使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本 发明作进一步地详细描述, 显然, 所描述的实施例仅仅是本发明一部份实施 例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在 没有做出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的 范围。
RN具有如下特性: RN可以具有属于自己的物理小区标识(PCI, Physical Cell Identity), 用于传输自己的同步信号, 参考信号;
UE可以接收 RN的调度信息以及自动重传请求( HARQ , Hybrid Automatic Retransmitting Request)反馈, 并发送自己的控制信息给 RN;
针对 3GPP Release 8 UE, RN可以为 R8 eNB, 即具有后向兼容特性; 针对 LTE-A UE, RN可以为不同于 R8 eNB的实体。
LTE 系统认证过程中, 归属用户服务器 (HSS, Home Subscriber Server )根据本地原始根密钥 K生成原始加密根密钥和原始完整性保护根密 钥, 即 CK' ΙΚ ,在认证过程中, HSS根据该 CK' IK获取核心网的初始密钥 ΚΑ 并将该 ^ 发送给 ΜΜΕ, ΜΜΕ 根据该 ^ 获取非接入层(NAS, Non-Access Stratum )密钥 ^ 和接入网的初始密钥 , MME将该 发送给基站 eNB, eNB在本地根据该 获取接入层(AS, access s trat丽)密钥 ^ ,其中, κ^ 包括 NAS消息加密密钥和 NAS消息完整性保护密钥, ^ ^包括用户面 UP (User Plane, 用户面) 的加密密钥、 控制面 CP (Control Plane, 控制面) 的完整 性保护密钥与控制面 CP 的加密密钥。 UE 侧也根据本地原始根密钥 K 生成 CK'IK , UE根据该 d' 获取出 ^ UE根据该 ^ 获取 NAS 密钥 和
Κ , UE根据该 Κ 获取 AS密钥 KAS , 固 Ε与 UE使用的密钥获取方法如下:
KDF ( key derivation function) 即密钥推衍函数, 包括:
推 4汙得到的密钥 = HMAC-SHA-256 (Key, S );
Key是输入密钥, S = FC| IPOI ILOI IP1I IL1...;
FC长度为一个字节, 用于区分不同算法, P0是输入参数, L0是 P0的长 度, …。
获取方法如下:
= KDF ( CK| I IK, S10), S10 = f (FC, PLMN ID, SQN AK ); 固 E和 UE在本地获取: KeNB = KDF ( KASME , Sll ), Sll = f (Uplink NAS COUNT);
KNAS = KDF ( , S15 ) S15 = f ( algorithm type distinguisher, algorithm id );
eNB和 UE在本地获取:
K^s = KDF ( K^B , S15 )。
510 = f (FC, PLMN ID, SQN AK ) = FC| IPLMN ID I I length of PLMN ID I I SQN AKI I length of ( SQN AK );
其中 FC = 0xl0; PLMN ID 即公共陆地移动网络标识。 SQN是序列号, AK 可以为匿名密钥; length of XX可以为 XX的长度;
511 = f (FC, Uplink NAS COUNT) = FC I I Upl ink NAS COUNT I I length of Uplink NAS COUNT;
其中 FC = 0X11, Uplink NAS COUNT可以为上行 NAS消息计数值;
S15 = f ( FC , algorithm type distinguisher , algorithm id ) = FC I I algorithm type distinguisher I I length of algorithm type distinguisher I I algorithm id I I length of algorithm id;
其中, FC = 0X15, algorithm type distinguisher 可以为算法类型区别 号, algorithm id可以为算法标识号。
但是由于 RN 的引入, 使得空口链路段数增多, 密钥层次也增多, 现有 安全机制不能对各段空口上数据进行有效的安全保护。 为了解决上述技术问 题 , 本发明实施例提供了一种多跳系统的密钥获取方法, 具体情况如下: 本发明下面的实施例以 3跳系统为例进行详细介绍, 各实施例的方法同 样也适用于 1跳或大于 1跳的系统。
图 1为本发明中继系统安全密钥获取方法第一实施例的流程图, 包括: 101、 中继系统的节点获取初始密钥;
102、 所述节点根据所述初始密钥获取本节点与本节点直接相邻的其他节 点之间的空口保护密钥的根密钥;
1 03、 所述节点根据所述根密钥, 获取本节点与本节点直接相邻的所述其 他节点之间的所述空口保护密钥。
本发明实施例通过中继系统的节点获取初始密钥, 所述节点根据所述初 始密钥获取本节点与本节点直接相邻的其他节点之间的空口保护密钥的根密 钥, 所述节点根据所述根密钥, 获取本节点与本节点直接相邻的所述其他节 点之间的所述空口保护密钥。 使 UE在 Un 口链路上的数据可以分别保护, 即 每个活动的 UE在 Un 口链路上都有一套安全参数, 从而对各段空口上数据进 行有效的安全保护。
进一步, 当所述中继系统的节点为基站 eNB 时, 所述中继系统中的节点 获取初始密钥, 包括:
所述 eNB从移动性管理实体 MME获取初始密钥;
进一步, 当所述中继系统的节点为中继节点 RN时, 所述中继系统中的节 点获取初始密钥, 包括:
所述 RN从固 E或 eNB获取初始密钥;
进一步, 当所述中继系统的节点为用户终端 UE时, 所述中继系统中的节 点获取初始密钥, 包括:
所述 UE从所述 UE的上级节点获取初始密钥。
进一步, 当所述中继系统中的节点为 eNB时, 所述方法进一步包括: 所述 eNB根据传递输入参数及所述初始密钥获取所述 eNB的下级节点的 初始密钥;
所述 eNB向本节点的下级节点中的一个节点发送所述初始密钥; 所述 eNB向所述本节点的下级节点的一个节点的直接相邻的节点发送所 述传递输入参数, 以使得所述本节点的下级节点中的一个节点与所述本节点 的下级节点的一个节点的直接相邻的节点根据所述传递输入参数及所述初始 密钥获取所述本节点的下级节点中的一个节点与所述本节点的下级节点的一 个节点的直接相邻的节点之间的空口保护密钥的根密钥。
进一步, 当所述中继系统中的节点为中继节点 RN时, 所述方法进一步包 括:
所述 RN接收上级节点发送的传递输入参数;
所述节点根据所述初始密钥获取本节点与本节点直接相邻节点之间的空 口保护密钥的根密钥, 具体包括:
所述中继节点 RN根据所述初始密钥与所述传递输入参数获取本节点与直 接相邻节点之间的空口保护密钥的根密钥。
进一步, 当所述中继系统中的节点为中继节点 UE时, 所述方法进一步包 括:
所述 UE接收上级节点发送的传递输入参数;
所述节点根据所述初始密钥获取本节点与本节点直接相邻节点之间的空 口保护密钥的根密钥, 具体包括:
所述 UE根据所述初始密钥与所述传递输入参数获取本节点与直接相邻节 点之间的空口保护密钥的根密钥。
特此说明, 该实施例涉及的输入参数可以为传递输入参数。
本发明实施例通过中继系统的节点获取初始密钥, 所述节点根据所述初 始密钥获取本节点与本节点直接相邻的其他节点之间的空口保护密钥的根密 钥, 所述节点根据所述根密钥, 获取本节点与本节点直接相邻的所述其他节 点之间的所述空口保护密钥。 使 UE在 Un口链路上的数据可以分别保护, 即 每个活动的 UE在 Un 口链路上都有一套安全参数, 从而对各段空口上数据进 行有效的安全保护。
图 2 为本发明中继系统安全密钥获取方法第二实施例的流程图, 本实施 例中, UE根据 UE本地原始根密钥 K获取全部空口密钥, κ 由上级节点 eNB 或 RN从空口传递给下级 RN ,本发明实施例涉及的输入参数可
数。 如图 1所示: 201、 RN1接入网络, 完成认证过程;
202、 RN2接入网络, 完成认证过程;
203、 UE接入网络, 完成认证过程;
其中, 步骤 201、 步骤 202和步骤 203不分先后顺序。
204、 MME根据 UE认证过程生成的密钥 KASME '获取 KNAS和初始密钥 κ ; 步骤 204中, 获取 ^ 、初始密钥 的方法与 LTE系统中密钥获取方法 类似, 在此不再赘述。
205、 固 Ε将该初始密钥 κ 发送给 eNB;
206、 eNB接收并保存 MME发送的该初始密钥 κ
207、 eNB向 RN1转发该初始密钥 Κ
208、 RN1保存该初始密钥 κ
209、 eNB和 RN1根据该初始密钥 在本地获取 eNB和 RN1之间的根密 钥 κ ' , 根据该根密钥 κ '获取用于保护 eNB和 RN1之间的 UP、 CP数据的空 口密钥, 具体方法如下:
W = KDF ( κ , f (第一输入参数 ) )
所述的第一输入参数可以为 RN1入网时, eNB给 RN1分配的临时标识参数 C-TNTI 1 ,需要特别说明的是 RN1每次重新接入新的 DeNB时所获得的 C-RNTI 1 不同; 或者所述的第一输入参数可以为 eNB与 RN1之间特定 UE的无线资源控 制 (RRC , Rad io Re source Cont ro l ) 消息计数值参数 RRC MESSAGE C0UNT1 ; 或者所述的第一输入参数可以为 eNB和 RN1协商的随机值参数 NONCE 1 , 输入 参数可以包括但不限于上述三种参数之一或任意组合。
由根密钥 获取用于保护 eNB和 RN1之间的 UP、 CP数据保护密钥, 其 中, UP数据保护密钥即 UP加密密钥 CP数据保护密钥即 CP加密密钥 置 和 CP完整性保护密钥 ^ mt , 三种密钥的获取方法参照上述 获取公 式, 输入密钥是 下面以 密钥获取为例进行说明, 即: KDF ( KeNB , f ( UP encrypt ion algorithm type distinguisher, UP encrypt ion algorithm id))
其中, UP encrypt ion algorithm type distinguisher 为用户面力口密算 法类型区分符, UP encryption algorithm id为用户面力。密算法 ID。
210、 RN1将该初始密钥 κ 转发给 RN2;
211、 RN2保存该初始密钥 κ
212、 RN1与 RN2根据该初始密钥 κ 获取根密钥 , 获取方法为: 漏 = KDF ( κ , f (第二输入参数 ) )
其中, 所述第二输入参数可以为 RN2入网时, RN1给 RN2分配的临时标识 参数 C-RNTI2; 或者所述第二输入参数可以为 RN1与 RN2之间关于特定 UE的 RRC消息计数值参数 RRC MESSAGE C0UNT2; 或者所述第二输入参数可以为 RN1 和 RN2协商的随机值参数 N0NCE2。 输入参数可以包括但不限于上述三种参数 之一或任意组合。
由根密钥 ^ 获取 RN1 和 RN2之间 Un 口链路上 UP、 CP数据保护密钥
KUP U KRRC^'的方法与 LTE系统中 ^ ^获取方法类似,在此不再赘述。
213、 UE在本地获取 ^ 和初始密钥^ ^, 获取方法与现有技术类似, 再 此不再赘述。 RN2和 UE根据该初始密钥 获取根密钥^ , 根据该根密钥 ^ 获取用于保护 UE与 RN2之间的 UP、 CP数据的空口密钥,该 获取方法 可以包括下面两种方式:
a、 =KOF ( κ f (第三输入参数))
其中, 输入密钥为 第三输入参数可以为 UE入网时, RN2给 UE分配 的临时标识参数 C-RNTI3; 或者第三输入参数可以为 RN2与 UE之间的关于特 定 UE的 RRC消息计数值参数 RRC MESSAGE C0UNT3, 或者第三输入参数可以为 RN2与 UE协商出随机值参数 N0NCE3。 该输入参数可以包括但不限于上述三种 参数之一或任意组合。
b、 釆用小区内切换 Int ra- ce l l handover方式更新 ^ 获取才艮密钥 2 , 具体为:
= KDF KeNB , f ( pci , EARFCN-DL ) )
其中,输入密钥为切换前使用的密钥 ^MJ ,输入参数可以为目标小区物理 标识 PCI和目标小区无线频率信道数 EARFCN-DL
本发明实施例通过 eNB接收初始密钥 κ , 才艮据该初始密钥 κ 获取 eNB 与 RN1节点之间的根密钥 根据该根密钥 M 获取所述 eNB与直接下级 节点之间的空口保护密钥, eNB转发该初始密钥 以使得各下级节点根据 所述初始密钥 Κ 获取各下级节点之间的空口保护密钥的根密钥,使 UE在 Un 口链路上的数据可以分别保护, 即每个活动的 UE在 Un 口链路上都有一套安 全参数, 从而对各段空口上数据进行有效的安全保护。
图 3 为本发明中继系统安全密钥获取方法第三实施例的流程图, 本实施 例中, 与实施例二不同的是 eNB根据收到的 κ , 在本地获取所有下级 RN节 点的初始密钥, 然后将获取结果或获取的参数下发给各级 RN, 本发明实施例 涉及的输入参数可以包括传递输入参数和本地输入参数。 如图 3所示:
步骤 301 ~ 305与实施例二中的步骤 201 ~ 205类似, 在此不再赞述;
306 eNB 在本地根据接收的初始密钥 Κ 获取各下级节点的初始密钥 Κ腿 、 Krn 2 , 获取方法如下:
腿 = KDF ( K^B , f (第四输入参数 ) )
〖腿 = KDF ( κ , f (第五输入参数 ) )
其中所述的第四输入参数可以为传递输入参数, 该第四传递输入参数可 以为 RN2入网时, RN1给 RN2分配的临时标识参数 C-RNTI 4 , 需要特别说明的 是 RN2每次重新接入新的 DeNB时所获得的 C-RNTI4不同; 或者所述第四传递 输入参数可以为 RN1和 RN2协商的随机值参数 NONCE 4;
其中所述第五输入参数可以为第五传递输入参数, 第五传递输入参数可 以为 UE入网时, RN2给 UE分配的临时标识参数 C-RNTI5, 需要特别说明的是 UE每次重新接入新的 DeNB时所获得的 C-RNTI5不同;或者所述第五传递输入 参数可以为 eNB和 RN1协商的随机值参数 NONCE 5;
或者, 第四输入参数与第五输入参数还可以为其他输入参数, 例如相应 RN的 id, 或者相应 RN的载波频点等。 该输入参数可以包括但不限于上述三 种参数之一或任意组合。
307、 eNB将该初始密钥 、 第四输入参数发送给 RN1;
308、 eNB和 RN1根据该初始密钥 Κ 获取 eNB和 RN1之间的根密钥 W , eNB和 RN1根据该根密钥 '获取用于保护 UP、 CP数据的密钥, 该 '的获 取方法 ^下:
W = KDF ( K^B , f (第六本地输入参数 ) )
其中, 所述的第六本地输入参数可以为 RN1入网时, eNB给 RN1分配的临 时标识参数 C-TNT6, RN1每次重新接入新的 DeNB , 所获得的 C-RNTI6不同; 所述的第六本地输入参数可以为 eNB与 RN1之间特定 UE的无线资源控制( RRC, Radi。 Resource Control) 消息计数值参数 RRC MESSAGE C0UNT6; 所述的第六本 地输入参数可以为 eNB和 RN1协商的随机值参数 NONCE 6。 该本地输入参数 可以包括但不限于上述三种参数之一或任意组合。
由根密钥 '获取用于保护 eNB和 RN1之间 UP、 CP数据保护密钥,其中, UP数据保护密钥即 UP加密密钥 κ , CP数据保护密钥即 CP加密密钥 置 和 CP 完整性保护密钥 ^ϋ"" , 三种密钥的获取方法参照上述^ ^获取方法公 式, 输入密钥是 下面以 密钥获取为例进行说明, 即
Kupenc = KDF ( KeNB , f ( UP encrypt ion algorithm type distinguisher, UP encrypt ion algorithm id))
其中, UP encrypt ion algorithm type distinguisher 为用户面力口密算 法类型区分符, UP encryption algorithm id为用户面力。密算法 ID
309 eNB将该初始密钥 κ^ 、 该第五输入参数发送给 RN2;
310 RN1根据该 eNB的初始密钥 以及第五输入参数获取 RN1的初始 密钥 κ腿 , RN1与 RN2根据该初始密钥 腿获取 RN1与 RN2之间的根密钥 Κ 、 ,
RN1与 RN2根据该根密钥 ^ '获取用于保护 RN1和 RN2之间的 UP CP数据的 空口密钥 ΚυρKrrc^、 Krrc'^ , 获取方法与 LTE系统中 K 获取方法类似, 在此不再赘述, ^ '的获取方法如下 :
W = KDF ( κ顯 , f (第七本地输入参数 ) )
其中,输入密钥为 ^ 第七本地输入参数可以为 RN1与 RN2之间的关于 特定 UE的 RRC消息计数值参数 RRC MESSAGE C0UNT7, 或者第七本地输入参数 可以为 RN1分配给 RN2的临时标识参数 C-RNTI7,或者第七本地输入参数可以 为 RN1与 RN2协商出随机值参数 N0NCE7。 该本地输入参数可以包括但不限于 上述三种参数之一或任意组合。
311 RN2根据 eNB的初始密钥 和第五输入参数获取 RN2的初始密钥 K皿 , 该 2获取方法与步骤 306中的获取方法类似。
312 RN2向 UE发送该第五输入参数;
313 UE在本地获取 及初始密钥 ΚKRN2 , 该初始密钥 κ 的获取 方法参照上述与 的获取公式,再此不再赘述; 初始密钥 的获取方法与 步骤 306中 ^ 的获取方法类似, RN2和 UE根据该初始密钥 Κ 获取 RN2和 UE之间的根密钥 K , RN2和 UE根据该 ^ '获取用于保护 UE与 RN2之间的 UP CP数据空口密钥, ^ '获取方法可以包括以下两种方式:
a K = KDF K觀 , f (第八本地输入参数 ) ) 其中, 输入密钥 X , 第八本地输入参数可以为 RN2与 UE之间 RRC消息 计数值参数 RRC MESSAGE C0UNT8 , 或者第八本地输入参数可以为 RN2分配给 UE的临时标识参数 C-RNTI 8 , 或者第八本地输入参数可以为 RN2与 UE协商出 随机值参数 N0NCE8 , 该输入参数可以包括但不限于上述三种参数之一或任意 组合。
b、 釆用小区内切换 int ra-ce l l handover方式更新 , 获得 ' , 具 体方法为:
K = KDF ( , f ( PCI , EARFCN-DL ) );
其中, 输入密钥可以为切换前使用的密钥 ^2 , 输入参数 PC I 可以为目 标小区物理标识, EARFCN-DL可以为目标小区无线频率信道数。
本发明实施例通过 eNB根据所述 κ 获取各下级节点的初始密钥, eNB转 发所述各下级节点的初始密钥及获取所述初始密钥用到的输入参数, 以使得 各下级节点根据所述初始密钥及所述输入参数获取各下级节点的空口保护密 钥的根密钥。 使 UE在 Un口链路上的数据可以分别保护, 即每个活动的 UE在 Un口链路上都有一套安全参数,从而对各段空口上数据进行有效的安全保护。
图 4 为本发明中继系统安全密钥获取方法第四实施例的流程图, 本实施 例中, 与实施例三不同的是 eNB, RN节点的初始密钥都在固 E中集中获取产 生, 然后下发获取结果或者下发获取结果和参数给各节点, 如图 4所示: 步骤 401 ~ 403与实施例二中的步骤 201 ~ 203类似, 在此不再赞述, 不 同之处在于:
404、 固 E根据 UE认证过程中生成的密钥 ^丽获取 和固 E下 eNB的 初始密钥 Κ , 获取方法如下:
κ = KDF ( K^ME , f ( UL NAS COUNT ) )
漏 = KDF ( KA , f (第十输入参数 ) )
= KDF ( KASME , f (第十一输入参数 ) ) 其中, 输入密钥为认证过程中产生的密钥 ^ UL NAS COUNT 为 固 E 中 UE的上行 NAS信令的计数值参数, 所述第十输入参数可以包括第十传递输 入参数, 该第十传递输入参数可以为随机值参数 N0NCE1 0或者 MME与对应 RN 之间的 NAS COUNT值, 第十一输入参数可以为第十一传递输入参数, 第十一 值。 该输入参数可以包括但不限于上述三种参数之一或任意组合。
405、 固 E向 eNB发送初始密钥 κ
406、 固 Ε向 RN1发送初始密钥 、 第十输入参数;
407 ΜΜΕ向 RN2发送初始密钥 KRm 第十一输入参数;
408 RN2向 UE发送第十一输入参数;
409 RN1和 eNB根据初始密钥 获取根密钥 ' , RN1和 eNB根据该 根密钥 '获取用于保护 RN1和 eNB之间 UP CP数据的空口密钥, 获取方法 下:
= KDF ( K^B , f (第十二本地输入参数 ) )
其中, 第十二本地输入参数可以为 C-TNT12 可以为所述的第十二本地输 入参数可以为 RN1入网时, eNB给 RN1分配的临时标识参数 C-TNT12 , RN1每 次重新接入新的 DeNB , 所获得的 C-RNTI 12不同; 或者所述的第十二本地输 入参数可以为 eNB与 RN1之间特定 UE的无线资源控制 (RRC , Radio Resource Control ) 消息计数值参数 RRC MESSAGE C0UNT12 ; 或者所述的第十二本地输 入参数可以为 eNB和 RN1协商的随机值参数 NONCE 12。 该本地输入参数可以 包括但不限于上述三种参数之一或任意组合。
由 '获取用于保护 RN1和 eNB之间 UP CP数据保护密钥, 其中, UP 数据保护密钥即 UP加密密钥 , CP数据保护密钥即 CP加密密钥 和 CP完整性保护密钥 ^ϋ"" , 三种密钥的获取方法参照上述^ ^获取方法公式, 输入密钥是 ^ 下面以 Kw密钥获取为例进行说明, 即
KDF ( KeNB , f ( UP encrypt ion algorithm type distinguisher, UP encrypt ion algorithm id))
其中, UP encrypt ion algorithm type distinguisher 为用户面力口密算 法类型区分符, UP encryption algorithm id为用户面力。密算法 ID
410 RN1根据 eNB的初始密钥 、 第十输入参数获取 RN1的初始密钥 获取方法与步骤 404类似, 在此不再赘述; RN1和 RN2分别根据该初始 密钥^ 获取 RN1和 RN2之间的根密钥 ^ 获取方法与实施例三中步骤 310 类似, 在此不再赘述; RN1 RN2根据该根密钥 ^ '获取用于保护 RN1与 RN2 之间的 UP CP数据空口保护密钥
411 RN2根据该 RN1与 eNB之间的初始密钥 、 第十一输入参数获取
RN2与 UE之间的初始密钥 , 获取方法与步骤 404类似;
412 UE在本地获取 eNB的初始密钥 , UE根据该 、 第十一输入参 数获取 RN2的初始密钥 , UE和 RN2根据 RN2的初始密钥 κ 获取 RN2与 UE之间的根密钥 K , RN2与 UE根据该 ^ '获取用于保护 UE与 RN2之间的 CP UP数据空口密钥, Kw Kmcenc K , 获取方法与 LTE系统中 ^ ^获 取方法类似, 在此不再赘述, 获取方法如下:
a K^ =KDF ( f (第十三本地输入参数))
其中, 输入密钥 第十三本地输入参数可以为 UE入网时, 可以为 RN2分配给 UE的临时标识参数 C-RNTI13; 或者第十三输入参数可以为 RN2与 UE之间的 RRC消息计数值参数 RRC MESSAGE C0UNT13, 或者第十三本地输入 参数可以为 RN2与 UE协商出随机值参数 N0NCE13; 该本地输入参数可以包括 但不限于上述三种参数之一或任意组合。
b、 釆用小区内切换 intra-cell handover方式更新 获取 更新 方法与 313 ( b )类似, 在此不再赘述。
本发明实施例通过移动性管理实体固 E根据所述固 E 认证过程中生成的 密钥获取所述固 E下 eNB的下级节点的初始密钥, 以及所述 eNB的初始密钥; 所述固 E向所述下级节点发送所述 eNB的初始密钥或所述下级节点的初始密 钥; 以使得所述下级节点根据所述 eNB的初始密钥或所述下级节点与 固 E认 证过程中生成的密钥, 获取所述下级节点与所述下级节点的直接下级节点之 间的空口保护密钥的根密钥。 使 UE在 Un 口链路上的数据可以分别保护, 即 每个活动的 UE在 Un 口链路上都有一套安全参数, 从而对各段空口上数据进 行有效的安全保护。
图 5 为本发明中继系统安全密钥获取方法第五实施例的流程图, 本实施 例中, Un口链路保护密钥基于 RN节点的永久密钥 Ka , 可用于保护 RN特定的 RB, 也可用于保护属于该 RN的所有 UE的 RB。 本发明实施例涉及的输入参数 可以为本地输入参数。 如图 5所示:
501、 RN1 接入网络, 完成认证过程, 在认证过程中用 Ka 获取密钥
KASME―腿^
502 、 RN2 接入网络, 完成认证过程, 在认证过程中用 Kb 获取密钥
KASME― 1
503、固8、 RN1分别根据认证过程中生成的密钥 ^丽 - 1获取 和 RN1 的初始密钥 K腿 , 固E、 RN2 分别根据认证过程中生成的密钥 ^丽 - 2获取 和 RN2的初始密钥 , 获取方法可以参照上述 ^ 的获取公式,输入密 钥是认证过程中生成的密钥;
504、 固 E将获取的该初始密钥 发送给 eNB;
505、 固 E将获取的该始密钥 ^ 发送给 RN1 ;
506、 RN1和 eNB根据该初始密钥 ^漏获取用于保护 RN1和 eNB之间的 UP、 CP数据的空口密钥, 获取方法与 LTE系统中获取 ^ 的方法类似, 输入密钥 507、 RN2根据该初始密钥^ 获取 RN1与 RN2之间的根密钥 ^ ' , RN1 和 RN2根据该根密钥 ^^2 '获取用于保护 RN1和 RN2之间的 UP、 CP数据的空口 密钥, 获取方法与 LTE系统中获取 ^的方法类似,输入密钥为 ^ ' , 的 获取方法为:
= KDF f (第十四输入参数 ) )
其中, 第十四输入参数可以为 RN1与 RN2之间关于特定 UE的 RRC消息计 数值参数 RRC MESSAGE C0NUT14 ; 或者, 第十四输入参数可以为 RN2入网时 RN1给 RN2分配的临时标识参数 C-RNT I 14 ,或者第十四输入参数还可以为 RN1 和 RN1协商出的随机值参数 N0NCE14可, 该输入参数可以包括但不限于上述 三种参数之一或任意组合。
本发明实施例通过移动性管理实体 MME根据输入参数和所述 MME认证过 程中生成的密钥获取所述固 E下 eNB的下级节点的初始密钥, 以及所述 eNB 的初始密钥; 所述固 E向所述下级节点发送所述 eNB的初始密钥或所述下级 节点的初始密钥; 所述固 E 向所述下级节点发送所述输入参数; 以使得所述 下级节点根据所述输入参数和所述 eNB 的初始密钥, 或输入参数和所述下级 节点与 MME认证过程中生成的密钥, 获取所述下级节点与所述下级节点的直 接下级节点之间的空口保护密钥的根密钥。 使 UE在 Un 口链路上的数据可以 分别保护, 即每个活动的 UE在 Un 口链路上都有一套安全参数, 从而对各段 空口上数据进行有效的安全保护。
本发明的各实施例还可以联合使用, 例如, 当 RN1与 eNB之间的 Un口上 有两类承载, 分别是 RN1的承载与 UE的承载, 对于 RN1的承载, 可以使用实 施例五的方法生成密钥进行保护, 对于 UE的承载, 可以使用实施例二的方法 进行保护, 同理, 对于 RN1与 RN2之间的 Un口上的 RN2 载也可以使用实施 例五的方法生成密钥进行保护, 对于 RN1与 RN2之间的 Un口上的 UE 7 载也 可以使用实施例二的方法生成密钥进行保护; 其中, 对于 RN1与 eNB之间的 Un口上的 UE承载还可以使用实施例三的方法生成密钥进行保护,对于 RN1与 RN2之间的 Un口上的 UE承载,也可以使用实施例三的方法生成密钥进行保护; 其中, 对于 RN1与 eNB之间的 Un口上的 UE承载还可以使用实施例四的方法 生成密钥进行保护, 对于 RN1与 RN2之间的 Un口上的 UE承载, 也可以使用 实施例四的方法生成密钥进行保护。
图 6 为本发明中继系统安全密钥获取方法第六实施例的流程图, 本实施 例中下级 RN使用的保护密钥和上级 RN使用的密钥相关联, 本发明实施例涉 及的输入参数可以为本地输入参数。 如图 6所示:
601 RN1接入网络, 完成认证过程;
602、 固 E和 RN 1 分别根据认证过程中生成的密钥〖腦―腿获取 KNAS和 RN1的初始密钥 ^ 获取方法可以与 LTE系统类似, 输入密钥是认证过程中 生成的密钥 ^ - 1 , 输入参数可以为 RN1的 Up l ink NAS COUNT;
603、 固 E将该初始密钥 发送给 eNB;
604 RN1根据该初始密钥 腿直接获取用于保护 RN1和 eNB之间的 UP
CP数据的空口密钥, 获取方法与 LTE系统中获取 s类似, 输入密钥为 ^ ;
605 RN2接入网络, 完成认证过程, MME在 RN2认证过程中, 固 E向 RN2 发送 RN1的初始密钥 腿;
606、固 E和 RN2根据认证过程中生成的该〖腦— RN1的初始密钥〖腿 获取 KNAS和 RN 2的初始密钥 ^ 2 , 该 Κ 获取方法如下:
= KDF κ腦一腿 2 , KRNI , f ( Up l ink NAS COUNT of RN2 ) ) 输入密钥是 ^ - 2和 ,
607、 固 Ε将该初始密钥 ^ 发送给 RN1 ;
608 RN2根据该^^2获取 RN1与 RN2之间的根密钥 Κ , 根据该根密钥 ^^2'获取用于保护 RN1和 RN2之间的 UP CP数据的空口密钥, 获取方法与 LTE系统中获取 类似, 输入密钥为 ^^2';
609 UE接入网络, 完成认证过程, 并将 KRN1和 KRN2发送给 UE
610 MME和 UE根据认证过程中生成的密钥 -UE KM2获取初始密钥 KeNB和 KNAS , 其中, 的获取方法如下:
Κ =KDF ( KASME-UE ^ K 2 , f (uplink NAS COUNT of UE ) ) 输入密钥 和
611、 固 E将该 eNB的初始密钥 κ 发送给 RN2;
612 RN2根据该初始密钥 Κ 获取 UE与 RN2之间的根密钥 W , RN2 和 UE根据该 ^ '获取用于保护 RN2和 UE之间的 UP CP数据的空口密钥, 输 入密钥为 ^ 该 '的获取方法有两种:
a、 与实施例二步骤 209中 '获取方法类似, 输入密钥为 , 第一输 入参数可以为 RN2与 UE之间 RRC消息计数值, 或者第一输入参数可以为 RN2 分配给 UE的 C-RNTI, 或者第一输入参数可以为 RN2 与 UE协商出的新鲜值 NONCE; 该输入参数可以包括但不限于上述参数之一或任意组合。
b、 釆用 intra-cell handover方式更新 获取根密钥 更 新方法为:
K = KDF ( K^B , f (PCI, EARFCN-DL ) );
其中, M /可以为更新后的密钥, 输入密钥可以为切换前使用的密钥 Κ^Β ,输入参数可以为目标小区物理小区标识( Physical Cell Identifier, PCI ), EARFCN-DL为目标小区无线频率信道数。
本发明实施例通过中继系统的节点获取初始密钥, 所述节点根据所述初 始密钥获取本节点与本节点直接相邻的其他节点之间的空口保护密钥的根密 钥, 所述节点根据所述根密钥, 获取本节点与本节点直接相邻的所述其他节 点之间的所述空口保护密钥。 使 UE在 Un 口链路上的数据可以分别保护, 即 每个活动的 UE在 Un 口链路上都有一套安全参数, 从而对各段空口上数据进 行有效的安全保护。
图 7 为本发明中继系统安全密钥获取方法第七实施例的流程图, 本实施 例中各级 RN与自己上一级节点认证, 生成各段空口保护密钥。 如图 7所示:
701、 RN1接入网络, 与 eNB相互认证;
702、 RN1 和 eNB分别根据认证过程中生成的 RN1 和 eNB之间的根密钥
^^- 获取用于保护他们之间空口上 UP、 CP 数据的密钥, 获取方法与 LTE 系统中获取 ^ ^类似, 输入密钥为 ;
703、 RN2接入网络, 与 RN1相互认证;
704、 RN1 和 RN2分别根据认证过程中生成的 RN1 和 RN2之间的根密钥
^^- 获取用于保护他们之间空口上 UP、 CP数据的密钥, 获取方法与参照 上述^ «的获取公式, 输入密钥为 ^ 。
本实例通过第一中继节点在与第一中继节点的相邻接节点认证的过程中 获取根密钥, 所述第一中继节点根据所述根密钥获取用于保护所述第一中继 节点与所述相邻接节点之间的空口保护密钥, 所述第一中继节点的相邻接节 点包括所述第一中继节点的上级节点和 /或所述第一中继节点的下级节点。 使各个节点上的数据可以分别保护, 即每个活动的 UE在 Un 口链路上都有一 套安全参数, 从而对各段空口上数据进行有效的安全保护。
本发明实施例还可以与实施例一 /二 /三联合使用, 实施例七的方法用于 保护 Un口上的 RN相关的承载, 实施例一 /二 /三用于保护 Un口上的 UE相关 的承载。
图 8 为本发明中继系统安全密钥获取方法第八实施例的流程图, 本实施 例中各级 RN与都与 eNB认证, 生成各段空口保护密钥, 如图 8所示:
801、 RN1接入网络, 与 eNB相互认证; 802、 eNB与 RN1分别根据认证过程中生成的 eNB与 RN1之间的根密钥 腿 获取用于保护他们之间空口上 UP、 CP数据的密钥;
803、 RN2接入网络, 与 eNB相互认证;
804、 eNB和 RN2分别在认证过程中生成 RN2 的初始密钥 K 2 , eNB将该 初始密钥 ^ 转发给 RN1 , RN1和 RN2分别根据该 K 获取 RN1和 RN2之间的 根密钥 ^^2' , 根据该 ^ '获取用于保护 RN1和 RN2之间空口上 UP、 CP数据 的密钥。
本实例通过第一中继节点在与第一中继节点的相邻接节点认证的过程中 获取根密钥, 所述第一中继节点根据所述根密钥获取用于保护所述第一中继 节点与所述相邻接节点之间的空口保护密钥, 所述第一中继节点的相邻接节 点包括所述第一中继节点的上级节点和 /或所述第一中继节点的下级节点。 使各个节点上的数据可以分别保护, 即每个活动的 UE在 Un 口链路上都有一 套安全参数, 从而对各段空口上数据进行有效的安全保护。
本发明实施例还可以与实施例一 /二 /三联合使用, 实施例八的方法用于 保护 Un口上的 RN相关的承载, 实施例一 /二 /三用于保护 Un口上的 UE相关 的承载。 使 UE在 Un口链路上的数据可以分别保护, 即每个活动的 UE在 Un 口链路上都有一套安全参数, 从而对各段空口上数据进行有效的安全保护。 图 9为本发明中继系统安全密钥获取方法第十二实施例的流程图, 包括:
901、 第一中继节点在与第一中继节点的相邻接节点认证的过程中获取根 密钥;
902、 所述第一中继节点根据所述根密钥获取用于保护所述第一中继节点 与所述相邻接节点之间的空口保护密钥;
所述第一中继节点的相邻接节点包括所述第一中继节点的上级节点和 / 或所述第一中继节点的下级节点。 本发明实施例通过中继系统的节点获取初始密钥, 所述节点根据所述初 始密钥获取本节点与本节点直接相邻的其他节点之间的空口保护密钥的根密 钥, 所述节点根据所述根密钥, 获取本节点与本节点直接相邻的所述其他节 点之间的所述空口保护密钥。 使 UE在 Un 口链路上的数据可以分别保护, 即 每个活动的 UE在 Un 口链路上都有一套安全参数, 从而对各段空口上数据进 行有效的安全保护。
图 1 0为本发明实施例一种中继系统的节点的结构示意图, 包括: 获取模块 1 001 , 用于中继系统的节点获取初始密钥;
获取模块一 1 002 , 用于根据获取模块获取的所述初始密钥, 获取本节点 与本节点直接相邻的其他节点之间的空口保护密钥的根密钥;
获取模块二 1 003 , 用于根据获取模块一获取的所述根密钥, 获取本节点 与本节点直接相邻的所述其他节点之间的所述空口保护密钥。
所述的获取模块具体用于当所述中继系统中的节点为基站 eNB 时, 所述 eNB从移动性管理实体 MME获取初始密钥;
所述的获取模块具体用于当所述中继系统中的节点为中继节点 RN时, 所 述 RN从固 E或 eNB获取初始密钥;
所述的获取模块具体用于当所述中继系统中的节点为用户终端 UE时, 所 述 UE从所述 UE的上级节点获取初始密钥。
进一步, 所述装置还包括:
所述的获取模块还用于当所述中继系统中的节点为 eNB时, 所述 eNB根 据传递输入参数及所述获取模块获取的所述初始密钥获取所述 eNB的下级节 点的初始密钥;
发送模块 1 004 , 用于所述 eNB向本节点的下级节点中的一个节点发送所 述初始密钥和所述 eNB向所述本节点的下级节点的一个节点的直接相邻的节 点发送所述传递输入参数, 以使得所述本节点的下级节点中的一个节点与所 述本节点的下级节点的一个节点的直接相邻的节点根据所述传递输入参数及 所述初始密钥获取所述本节点的下级节点中的一个节点与所述本节点的下级 节点的一个节点的直接相邻的节点之间的空口保护密钥的根密钥。
进一步, 当所述中继系统中的节点为中继节点 RN时, 所述装置还包括: 接收模块 1005 , 用于所述 RN接收上级节点传递输入参数;
所述获取模块一还用于所述 RN根据所述初始密钥与所述传递输入参数获 取本节点直接相邻节点之间的空口保护密钥的根密钥。
进一步, 当所述中继系统中的节点为中继节点 UE时, 所述装置还包括: 所述的接收模块还用于当所述中继系统中的节点为中继节点 UE时, 所述
UE接收上级节点传递输入参数;
所述的获取模块一还用于所述 UE根据所述初始密钥与所述传递输入参数 获取本节点直接相邻节点之间的空口保护密钥的根密钥。
本发明实施例通过中继系统的节点获取初始密钥, 所述节点根据所述初 始密钥获取本节点与本节点直接相邻的其他节点之间的空口保护密钥的根密 钥, 所述节点根据所述根密钥, 获取本节点与本节点直接相邻的所述其他节 点之间的所述空口保护密钥。 使 UE在 Un 口链路上的数据可以分别保护, 即 每个活动的 UE在 Un 口链路上都有一套安全参数, 从而对各段空口上数据进 行有效的安全保护。
图 11为本发明实施例一种中继节点的结构示意图, 包括:
获取模块一 1101 , 用于第一中继节点在与第一中继节点的相邻接节点认 证的过程中获取根密钥;
获取模块二 1102 , 用于所述第一中继节点根据所述获取模块一获取的所 述根密钥获取保护所述第一中继节点与所述相邻接节点之间的空口保护密 钥;
所述第一中继节点的相邻接节点包括所述第一中继节点的上级节点和 / 或所述第一中继节点的下级节点。
本发明实施例通过中继系统的节点获取初始密钥, 所述节点根据所述初 始密钥获取本节点与本节点直接相邻的其他节点之间的空口保护密钥的根密 钥, 所述节点根据所述根密钥, 获取本节点与本节点直接相邻的所述其他节 点之间的所述空口保护密钥。 使 UE在 Un口链路上的数据可以分别保护, 即 每个活动的 UE在 Un 口链路上都有一套安全参数, 从而对各段空口上数据进 行有效的安全保护。
在通过以上的各实施例的描述, 本领域的技术人员可以清楚地了解到本 发明可借助软件及必需的通用硬件平台的方式来实现, 当然, 也可以通过硬 件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术 方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出 来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台 计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各 个实施例该的方法。
虽然通过参照本发明的某些优选实施方式, 已经对本发明进行了图示和 描述, 但本领域的普通技术人员应该明白, 可以在形式上和细节上对其作各 种改变, 而不偏离本发明的精神和范围。
通过以上的各实施例的描述, 本领域的技术人员可以清楚地了解到本发 明可借助软件及必需的通用硬件平台的方式来实现, 当然, 也可以通过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本发明的技术方案 本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算 机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实 施例该的方法。
虽然通过参照本发明的某些优选实施方式, 已经对本发明进行了图示 和描述, 但本领域的普通技术人员应该明白, 可以在形式上和细节上对其作 各种改变, 而不偏离本发明的精神和范围。

Claims

权利要求
1、 一种中继系统的安全密钥获取方法, 其特征在于, 包括:
第一节点和网络侧根据认证过程生成所述第一节点的初始密钥, 以使得 网络侧将所述初始密钥发送给所述第一节点直接相邻的上级节点, 所述上级 节点根据所述初始密钥获取所述上级节点的根密钥, 并根据所述上级节的根 密钥获取用于保护所述第一节点和所述上级节点之间的空口保护密钥;
所述第一节点根据所述初始密钥获取所述第一节点的根密钥;
所述第一节点根据所述第一节点的根密钥获取用于保护所述第一节点和 所述上级节点之间的空口保护密钥。
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法进一步包括: 所述第一节点和网络侧通过认证还生成所述第一节点的输入参数, 所述 网络侧还向所述第一节点直接相邻的上级节点发送所述输入参数, 以使得所 述上级节点根据所述初始密钥和所述输入参数获取所述上级节点的根密钥, 并根据所述上级节点的根密钥获取用于保护所述第一节点和所述上级节点之 间的空口保护密钥;
所述第一节点根据所述初始密钥获取所述第一节点的根密钥, 包括: 所述第一节点根据所述第一节点的初始密钥与所述输入参数获取用于保 护所述第一节点和所述上级节点之间的空口保护密钥的根密钥。
3、 根据权利要求 2所述的方法, 其特征在于, 所述第一节点根据所述第 一节点的初始密钥与所述输入参数获取用于保护所述第一节点和所述上级节 点之间的空口保护密钥的根密钥具体通过如下公式获得:
¾密《 = KDF ( Km , f (输入参数 ) )
所述 fi ffi为本节点与本节点直接相邻的其他节点之间的空口保护密钥 的根密钥, 所述 KDF为密钥推衍函数, X初始 为初始密钥, f为函数,
所述输入参数包括以下参数中任意一个:
本节点与本节点直接相邻的其他节点的临时标识参数 C-RNT I A; 本节点与本节点直接相邻其他节点之间的无线资源控制 RRC消息中的计 数值参数 RRC MESSAGE COUNT;
本节点与本节点直接相邻其他节点协商的随机值参数 NONCE;
本节点直接相邻的其他节点的物理小区标识 PC I和无线频率信道数
EARFCN-DL;
本节点直接相邻的其他节点的上行非接入层消息中计数值参数 Up 1 i nk NAS COUNT。
4、 一种中继系统的安全密钥获取方法, 其特征在于, 包括:
中继系统的节点获取初始密钥;
所述节点根据所述初始密钥获取本节点与本节点直接相邻的其他节点之 间的空口保护密钥的根密钥;
所述节点根据所述根密钥 , 获取本节点与本节点直接相邻的所述其他节 点之间的所述空口保护密钥。
5、 根据权利要求 4所述的方法, 其特征在于,
当所述中继系统的节点为基站 eNB时, 所述中继系统中的节点获取初始密 钥, 包括:
所述 eNB从移动性管理实体 MME获取初始密钥;
当所述中继系统的节点为中继节点 RN时, 所述中继系统中的节点获取初 始密钥, 包括:
所述 RN从 MME或 eNB获取初始密钥,或所述 RN从自身获取存储的初始密钥。
6、 根据权利要求 4所述的方法, 其特征在于, 所述节点根据所述初始密 钥获取本节点与本节点直接相邻的其他节点之间的空口保护密钥的根密钥具 体通过如下公式获得:
¾密《 = KDF ( Km , f (输入参数 ) )
所述 fi ffi为本节点与本节点直接相邻的其他节点之间的空口保护密钥 的根密钥, 所述 KDF为密钥推衍函数, X初始 为初始密钥, f为函数, 所述输入参数包括以下参数中任意一个:
本节点与本节点直接相邻的其他节点的临时标识参数 C-RNT I A; 本节点与本节点直接相邻其他节点之间的无线资源控制 RRC消息中的计 数值参数 RRC MESSAGE COUNT;
本节点与本节点直接相邻其他节点协商的随机值参数 NONCE;
本节点直接相邻的其他节点的物理小区标识 PCI和无线频率信道数
EARFCN-DL;
本节点直接相邻的其他节点的上行非接入层消息中计数值参数 Up 1 i nk NAS COUNT。
7、 根据权利要求 6所述的方法, 其特征在于,
当所述中继系统中的节点为 eNB时, 所述方法进一步包括:
所述 eNB根据输入参数及所述初始密钥获取所述 eNB的下级节点的根密 钥;
所述 eNB向第一节点以及第二节点发送所述初始密钥及输入参数, 以使得 所述第一节点与所述第二节点根据所述输入参数及所述初始密钥获取所述第 一节点与所述第二节点之间的空口保护密钥的根密钥;
所述第一节点为所述 eNB的下级节点中的一个节点;
所述第二节点为所述 eNB的下级节点中的一个节点所直接相邻的节点。
8、 根据权利要求 6所述的方法, 其特征在于, 当所述中继系统中的节点 为中继节点 RN时, 所述方法进一步包括:
所述 RN接收上级节点发送的输入参数; 或者所述 RN获取本地生成的输入 参数;
所述节点根据所述初始密钥获取本节点与本节点直接相邻的其他节点之 间的空口保护密钥的根密钥, 具体包括:
所述 RN根据所述初始密钥与所述输入参数获取本节点与所述直接相邻的 其他节点之间的空口保护密钥的根密钥。
9、 根据权利要求 6所述的方法, 其特征在于, 当所述中继系统中的节点 为用户终端 UE时, 所述方法进一步包括:
所述 UE接收上级节点发送的输入参数;
所述节点根据所述初始密钥获取本节点与本节点直接相邻的其他节点之 间的空口保护密钥的根密钥, 具体包括:
所述 UE根据所述初始密钥与所述输入参数获取本节点与所述直接相邻的 其他节点之间的空口保护密钥的根密钥。
10、 一种中继系统的节点, 其特征在于, 包括:
获取模块, 用于获取初始密钥;
获取模块一, 用于根据所述获取模块获取的所述初始密钥, 获取本节点 与本节点直接相邻的其他节点之间的空口保护密钥的根密钥;
获取模块二, 用于根据获取模块一获取的所述根密钥, 获取本节点与本 节点直接相邻的所述其他节点之间的所述空口保护密钥。
11、 根据权利要求 10所述的基站, 其特征在于,
所述的获取模块具体用于当所述中继系统的节点为基站 eNB时, 所述 eNB 从移动性管理实体 MME获取初始密钥; 或者
所述的获取模块具体用于当所述中继系统的节点为中继节点 RN时, 所述 RN从 MME或 eNB获取初始密钥; 或者
所述的获取模块具体用于当所述中继系统的节点为用户终端 UE时, 所述 UE从所述 UE的上级节点获取初始密钥。
12、 根据权利要求 10所述的基站, 其特征在于, 所述装置还包括: 所述获取模块还用于当所述中继系统中的节点为 eNB时, 所述 eNB根据输 入参数及所述初始密钥获取所述 eNB的下级节点的初始密钥;
发送模块, 用于所述 eNB向第一节点以及第二节点发送所述获取模块获取 的所述初始密钥及输入参数 , 以使得所述第一节点与所述第二节点根据所述 获取模块获取的输入参数及所述初始密钥获取所述第一节点与所述第二节点 之间的空口保护密钥的根密钥,所述第一节点为所述 eNB的下级节点中的一个 节点, 所述第二节点为所述 eNB的下级节点中的一个节点所直接相邻的节点。
1 3、 根据权利要求 10所述的基站, 其特征在于, 所述装置还包括: 接收模块, 用于当所述中继系统中的节点为中继节点 RN时, 接收上级节 点发送的输入参数;
所述获取模块一还用于所述 RN根据所述获取模块获取的初始密钥与接收 模块接收的所述输入参数, 获取本节点直接相邻节点之间的空口保护密钥的 根密钥。
14、 根据权利要求 10所述的基站, 其特征在于, 所述装置还包括: 所述的接收模块还用于当所述中继系统中的节点为用户终端 UE时, 所述
UE接收上级节点输入参数;
所述的获取模块一还用于所述 UE根据所述获取模块获取的所述初始密钥 与所述接收模块接收的输入参数, 获取本节点直接相邻节点之间的空口保护 密钥的 4艮密钥。
15、 一种中继系统的节点, 其特征在于, 包括:
用于根据认证过程生成第一节点的初始密钥的模块;
用于根据所述初始密钥获取所述第一节点的根密钥的模块;
用于根据所述根密钥获取保护所述第一节点和所述上级节点之间的空口 保护密钥的模块。
16、 根据权利要求 15所述的节点, 其特征在于,
所述生成所述初始密钥的模块还用于生成所述第一节点的输入参数; 所述获取所述第一节点的根密钥的模块具体用于:
根据所述初始密钥与所述输入参数获取用于保护所述第一节点和所述上 级节点之间的空口保护密钥的根密钥。
PCT/CN2010/078367 2009-11-03 2010-11-03 一种中继系统的安全密钥获取方法、装置 WO2011054288A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2012122772/08A RU2523954C2 (ru) 2009-11-03 2010-11-03 Способ и устройство для получения ключа безопасности в ретрансляционной системе
BR112012010514A BR112012010514A2 (pt) 2009-11-03 2010-11-03 método e dispositivo para obter chave de segurança em sistema de transmissão
EP10827902.7A EP2487947B1 (en) 2009-11-03 2010-11-03 Method and device for acquiring safe key in relay system
US13/463,444 US8605908B2 (en) 2009-11-03 2012-05-03 Method and device for obtaining security key in relay system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910110027.5A CN102056159B (zh) 2009-11-03 2009-11-03 一种中继系统的安全密钥获取方法、装置
CN200910110027.5 2009-11-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/463,444 Continuation US8605908B2 (en) 2009-11-03 2012-05-03 Method and device for obtaining security key in relay system

Publications (1)

Publication Number Publication Date
WO2011054288A1 true WO2011054288A1 (zh) 2011-05-12

Family

ID=43959973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078367 WO2011054288A1 (zh) 2009-11-03 2010-11-03 一种中继系统的安全密钥获取方法、装置

Country Status (6)

Country Link
US (1) US8605908B2 (zh)
EP (1) EP2487947B1 (zh)
CN (1) CN102056159B (zh)
BR (1) BR112012010514A2 (zh)
RU (1) RU2523954C2 (zh)
WO (1) WO2011054288A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103167492B (zh) 2011-12-15 2016-03-30 华为技术有限公司 在通信系统中生成接入层密钥的方法及其设备
JP5944184B2 (ja) * 2012-02-29 2016-07-05 株式会社東芝 情報通知装置、方法、プログラム及びシステム
CN103929740B (zh) * 2013-01-15 2017-05-10 中兴通讯股份有限公司 数据安全传输方法及lte接入网系统
KR101762376B1 (ko) * 2014-01-10 2017-07-27 한국전자통신연구원 모바일 인증 시스템 및 방법
US20160366707A1 (en) * 2014-03-24 2016-12-15 Intel IP Corporation Apparatus, system and method of securing communications of a user equipment (ue) in a wireless local area network
CN106714153B (zh) * 2015-11-13 2022-06-10 华为技术有限公司 密钥分发、生成和接收方法以及相关装置
US10298549B2 (en) * 2015-12-23 2019-05-21 Qualcomm Incorporated Stateless access stratum security for cellular internet of things
US10638388B2 (en) * 2016-08-05 2020-04-28 Qualcomm Incorporated Techniques for fast transition of a connection between a wireless device and a local area network, from a source access node to a target access node
CN108377495B (zh) 2016-10-31 2021-10-15 华为技术有限公司 一种数据传输方法、相关设备及系统
CN112385266B (zh) * 2018-07-09 2022-06-14 华为技术有限公司 通信方法、设备及系统
CN114268903B (zh) * 2021-12-28 2022-09-30 北京航空航天大学 一种地理信息辅助的无人机中继位置部署以及功率分配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1914960A1 (en) * 2006-10-16 2008-04-23 Nokia Siemens Networks Oy Method for transmission of DHCP messages
CN101292558A (zh) * 2005-10-18 2008-10-22 Lg电子株式会社 为中继站提供安全性的方法
CN101437226A (zh) * 2007-09-04 2009-05-20 财团法人工业技术研究院 提供安全通信之方法、提供安全通信之系统、中继站、以及基站
CN101534236A (zh) * 2008-03-11 2009-09-16 华为技术有限公司 中继站通信时的加密方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030235305A1 (en) * 2002-06-20 2003-12-25 Hsu Raymond T. Key generation in a communication system
US7793103B2 (en) 2006-08-15 2010-09-07 Motorola, Inc. Ad-hoc network key management
JP4222403B2 (ja) 2006-10-16 2009-02-12 沖電気工業株式会社 不正端末推定システム、不正端末推定装置及び通信端末装置
ES2837540T3 (es) * 2006-10-20 2021-06-30 Nokia Technologies Oy Generación de claves para protección en redes móviles de la siguiente generación
US20080107013A1 (en) 2006-11-06 2008-05-08 Nokia Corporation Signature generation using coded waveforms
CN101815293B (zh) 2009-02-20 2012-08-15 华为技术有限公司 无线中继网络中的链路安全认证方法、装置和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292558A (zh) * 2005-10-18 2008-10-22 Lg电子株式会社 为中继站提供安全性的方法
EP1914960A1 (en) * 2006-10-16 2008-04-23 Nokia Siemens Networks Oy Method for transmission of DHCP messages
CN101437226A (zh) * 2007-09-04 2009-05-20 财团法人工业技术研究院 提供安全通信之方法、提供安全通信之系统、中继站、以及基站
CN101534236A (zh) * 2008-03-11 2009-09-16 华为技术有限公司 中继站通信时的加密方法及装置

Also Published As

Publication number Publication date
BR112012010514A2 (pt) 2016-03-15
CN102056159B (zh) 2014-04-02
RU2012122772A (ru) 2013-12-10
US8605908B2 (en) 2013-12-10
EP2487947A4 (en) 2012-09-12
US20120213372A1 (en) 2012-08-23
EP2487947A1 (en) 2012-08-15
CN102056159A (zh) 2011-05-11
RU2523954C2 (ru) 2014-07-27
EP2487947B1 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
US11785510B2 (en) Communication system
WO2011054288A1 (zh) 一种中继系统的安全密钥获取方法、装置
EP2663107B1 (en) Key generating method and apparatus
CN109922051B (zh) 用于使能用于enb间的传输的安全通信的方法和系统
US11121862B2 (en) System and method for wireless network access protection and security architecture
CN104349309B (zh) 一种移动通信系统中利用nh、ncc对解决安全问题的方法
CN101945387B (zh) 一种接入层密钥与设备的绑定方法和系统
WO2011137805A1 (zh) 切换过程中的安全处理方法、装置和系统
WO2013185735A2 (zh) 一种加密实现方法及系统
WO2012031510A1 (zh) 一种实现安全密钥同步绑定的方法及系统
CN101931953A (zh) 生成与设备绑定的安全密钥的方法及系统
CN101977378B (zh) 信息传输方法、网络侧及中继节点
WO2013075417A1 (zh) 切换过程中密钥生成方法及系统
CN107925874B (zh) 超密集网络安全架构和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010827902

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4256/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012122772

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010514

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010514

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120503