WO2011054140A1 - 检测集成芯片及应用方法 - Google Patents

检测集成芯片及应用方法 Download PDF

Info

Publication number
WO2011054140A1
WO2011054140A1 PCT/CN2009/074760 CN2009074760W WO2011054140A1 WO 2011054140 A1 WO2011054140 A1 WO 2011054140A1 CN 2009074760 W CN2009074760 W CN 2009074760W WO 2011054140 A1 WO2011054140 A1 WO 2011054140A1
Authority
WO
WIPO (PCT)
Prior art keywords
chip
detection
tank
reaction
sample
Prior art date
Application number
PCT/CN2009/074760
Other languages
English (en)
French (fr)
Inventor
王战会
陈坦
Original Assignee
天津微纳芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津微纳芯科技有限公司 filed Critical 天津微纳芯科技有限公司
Priority to PCT/CN2009/074760 priority Critical patent/WO2011054140A1/zh
Priority to CN2009801443803A priority patent/CN102239005A/zh
Publication of WO2011054140A1 publication Critical patent/WO2011054140A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • B01L2300/0806Standardised forms, e.g. compact disc [CD] format
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0694Valves, specific forms thereof vents used to stop and induce flow, backpressure valves

Definitions

  • the invention belongs to the field of analysis and detection, and particularly relates to a multifunctional multi-index detection integrated chip and application method which integrates sample pretreatment, sample quantitative delivery, reaction and detection.
  • the object of the present invention is to provide a detection integrated chip, which can overcome the defects of the existing detection equipment, can automatically complete the entire detection process, and has a short detection period, and can obtain multiple detection indexes in one detection.
  • Another object of the present invention is to provide an application method which can perform detection using the above integrated chip.
  • a detection integrated chip the chip is divided into upper and lower layers, the upper layer of the chip is connected to the lower layer of the chip; the upper layer of the chip is provided with a set of through holes for sample loading; the chip The lower layer is provided with a set of grooves and micro flow channels, micro-reflecting surfaces and vent holes connecting the grooves.
  • the detection integrated chip of the invention integrates sample pretreatment, sample transportation, reaction and detection, and does not need to be equipped with professional sample pretreatment equipment and manipulator, and the operation is simple, and the whole detection process is fully automated. Patient self-test can be achieved without professional intervention. With one chip, multiple detection indicators can be obtained in one test, and the detection cycle is short.
  • the multi-function multi-indicator detection integrated chip is small in size and integrated with the miniaturized detection equipment, and can develop miniaturized, integrated and portable detection equipment to realize on-site sample analysis.
  • the multifunctional multi-indicator detection integrated chip of the invention can be used in the field of biomedical detection, and fully automates the body fluids such as whole blood, plasma, urine, saliva, semen, spinal cord and amniotic fluid of human or animal. Detection.
  • the multifunctional multi-index detection integrated chip of the invention can be used in the field of environmental detection to quickly detect organic or inorganic pollutants in the environment.
  • the multifunctional multi-indicator detection integrated chip of the invention can be used in the field of food safety to quickly detect toxic and harmful substances, bacteria and viruses in foods.
  • the multifunctional multi-index detection integrated chip of the invention can be used in the fields of pharmacy and chemical industry to quickly detect various drug components and chemical products.
  • Figure 1 is a top view of the upper layer of the chip
  • Figure 2 is a top plan view of the lower layer of the chip
  • Figure 3 is a schematic diagram of the moment when the chip starts to rotate with the motor after the sample and the reference liquid are added;
  • Figure 4 is a schematic view of the sample flowing through the spiral microchannel and the reservoir to start solid-liquid separation;
  • Figure 5 is a schematic view of the sample after solid-liquid separation entering the reaction tank through the annular flow path and the divergent flow path;
  • Figure 6 is a schematic diagram of constant temperature reaction and optical detection after the reaction tank is filled.
  • the concentration of the analyte to be detected is high in the sample to be tested, it can be pre-diluted to the appropriate concentration outside the chip and then added to the chip for detection.
  • blood biochemical indicators can be pre-diluted and added to the chip for testing.
  • the chip can be used in the field of biomedical testing to rapidly detect various indicators in human or animal whole blood, plasma, urine, saliva, semen, spinal cord, amniotic fluid and other body fluids.
  • the chip can also be used in the field of environmental testing to quickly detect organic or inorganic contaminants in the environment.
  • the chip can also be used in the field of food safety to quickly detect toxic and harmful substances, bacteria, viruses, etc. in food.
  • the chip can be used in the pharmaceutical and chemical fields for rapid detection of various pharmaceutical ingredients and chemical products.
  • the present invention discloses a detection integrated chip which is fabricated by using a transparent plastic as a raw material and casting by means of a mold.
  • the chip includes an upper layer 1 and a lower layer 2, wherein:
  • the upper layer 1 is provided with two through holes 11, 12, the through holes 11 for adding the sample, and the through holes 12 for adding the contrast liquid.
  • the lower layer 2 is provided with a sample tank 21, a liquid storage tank 22, a comparative reference liquid tank 23, a set of reaction detecting tanks 24, and a set of comparative reference liquid reaction detecting tanks 25, a set for self-checking and detection correction.
  • the sample tank 21 is provided with a venting hole 211, and the sample tank 21 is located at a position near the center of the chip, and the sample passes through the core.
  • the through hole 11 of the upper layer 1 is injected into the sample tank 21.
  • Spiral microchannel 28 the inlet is connected to the sample tank 21, and the outlet is connected to the reservoir 22.
  • the width of the spiral microchannel 28 is gradually widened from the inlet to the outlet, and the ratio of the microchannel width at the inlet and outlet is 1:1.
  • the depth of the spiral microchannel 28 is gradually deepened, and the ratio of the depth of the microchannel at the inlet and the outlet is 1:1.
  • the inlet of the spiral microchannel 28 is small, which acts to limit the flow of the sample, so that the solid insoluble matter in the sample has sufficient separation between the liquid and the liquid under the centrifugal force before flowing out of the reservoir 22.
  • the connection of the spiral microchannel 28 to the reservoir 22 extends the path through which the sample solution flows, facilitating the flow of solid insolubles that have not been separated from the liquid through the spiral microchannel 28 before exiting the reservoir 22. The liquid is completely separated.
  • the reservoir 22 is annular and radially distributed.
  • the reservoir 22 is connected to the reaction tank 24 via a curved microchannel 292.
  • Reaction tank 24 has a diameter of 0.1 mm and a depth of lmm.
  • the reaction tank 24 is located on a circumference away from the center of the circle, and may have a circular shape, a square shape, a rectangular shape or a polygonal shape. In the present embodiment, it is circular.
  • the comparison reference tank 23 is provided with a venting opening 211 into which the reference fluid passes through the inlet 12 on the inlet.
  • the reference liquid tank 23 and the comparative reference liquid reaction detecting tank 25 are connected by a flow path 291.
  • the reaction detecting tank 24 is pre-loaded with various lyophilized reagents.
  • the lyophilized reagent pre-packed in the reaction detecting tank is a blood biochemical indicator for detecting, including alanine aminotransferase ( ALT), aspartate aminotransferase (AST), ⁇ -glutamyl transferase ( ⁇ - ⁇ ), alkaline phosphatase (ALP), total bilirubin (TBI L), direct bilirubin ( DBIt), total protein (TP), albumin (Alb), urea (Urea), creatinine (Cr), uric acid (UA), glucose (Glu), total cholesterol (TC), triglyceride (TG),
  • ALT alanine aminotransferase
  • AST aspartate aminotransferase
  • ⁇ - ⁇ alkaline phosphatase
  • ALP alkaline phosphatase
  • TBI L total bilirubin
  • DBIt direct bilirubin
  • High density lipoprotein HDL
  • low density low protein VLDL
  • very low density lipoprotein LDL
  • serum magnesium Mg
  • serum potassium K
  • serum sodium Na
  • serum chlorine C1
  • serum Calcium Ca
  • serum phosphorus P
  • serum iron Fe
  • serum ammonia NH
  • carbon dioxide C02
  • the auxiliary slot 26 is used for self-test and correction of the test equipment associated with the chip, the set of auxiliary slots 26 being located on a circumference away from the center of the circle.
  • the distance from the center of the auxiliary groove 26 to the center of the circle is the same as the distance from the center of the reaction detecting groove 24.
  • the auxiliary groove 26 has a diameter of 2 mm.
  • the overflow tank 27 includes a comparison reference liquid overflow tank 271 and a sample overflow tank 272.
  • the reference liquid tank 23 is connected to the comparative reference liquid overflow tank 271 through the flow path 291.
  • the sample overflow tank 272 is connected to the liquid storage tank 22 through the annular flow passage 293 and the curved micro flow passage 292.
  • the micro-reflecting surface 210 and the auxiliary groove 26 are used for optically precise positioning of the reaction detecting groove, and the micro-reflecting surface 210 is located around the reaction detecting groove 24.
  • the width of the micro-reflecting surface 210 is 0.1 mm.
  • the angle between the micro-reflecting surface 210 and the central axis of the reaction detecting groove 24 is 0 degree.
  • the small hole 211 is a vent hole. Its diameter ranges from 0.1mm to 2mm.
  • the chip is fixed to the motor and placed in a constant temperature chamber of 37 ° C.
  • the motor rotates the chip at a speed of 4000 rpm.
  • the blood sample enters the spiral micro from the sample tank 21 under the action of centrifugal force.
  • the flow path 28 the particulate matter such as blood cells in the blood begins to separate from the liquid, and the reference liquid enters the flow channel 291 from the comparative reference liquid tank 23 under the action of centrifugal force;
  • the chip continues to rotate under the motor, and the blood sample gradually enters the reservoir 22 from the sample tank 21 through the spiral microchannel 28.
  • the reference liquid is gradually introduced into the comparison reference liquid detecting tank 25 and the comparative reference liquid overflow tank 271 through the flow path 291.
  • the comparative reference liquid detecting tank 25 and the comparative reference liquid overflow tank 271 are all filled. Under the action of centrifugal force, the blood sample is gradually separated into two layers of blood cells and plasma in the spiral microchannel 28 and the reservoir 22, and the blood cells are retained in the spiral microchannel 28 and the side wall of the reservoir 22 away from the center of the circle. on.
  • the liquid storage amount in the liquid storage tank 22 is gradually increased to reach a certain volume, the plasma will enter the annular flow path 293 through the curved flow path 292 under the centrifugal force, and then pass through the divergent flow connected to each reaction detecting groove 24.
  • the channel 294 fills the reaction detecting tank 24 one by one, dissolves the reagent pre-packed in the reaction detecting tank 24, and starts the reaction.
  • reaction detecting tank 24 is also referred to as a colorimetric tank.
  • the difference is that the ratio of the width at the entrance of the spiral microchannel 28 to the width at the outlet is 1:10, at the entrance of the spiral microchannel 28. Depth to depth ratio at the exit It is 1:10.
  • the reaction tank 24 has a diameter of 10 mm and a depth of 10 mm.
  • the auxiliary groove 26 has a diameter of 10 mm.
  • the width of the micro-reflecting surface 210 is up to 5 mm.
  • the angle between the micro-reflecting surface 210 and the central axis of the reaction vessel 24 is 90 degrees.
  • Embodiment 3 Compared with the first embodiment, the difference is that the ratio of the width at the entrance of the spiral microchannel 28 to the width at the outlet is 1:5. The ratio of the depth at the entrance of the spiral microchannel 28 to the depth at the outlet is 1:2.
  • the reaction tank 24 has a diameter of 2 mm and a depth of 5 mm.
  • the width of the micro-reflecting surface 210 is lmm.
  • the angle between the micro-reflecting surface 21 0 and the central axis of the reaction tank 24 is 45 degrees.
  • the chip is made by die casting, and pre-installed in the reaction tank 24 for detecting organic substances (such as phenol), heavy metal ions (such as lead, copper, iron) and pesticide residues in water (such as Reagents for organophosphorus). 1 ml of water sample was added to the sample tank 21. The comparative reference liquid is injected into the comparison reference tank 23. Fix the chip on the motor and start the motor to start rotating. The steps of sample transport, separation, reaction detection and the like are similar to those in the first embodiment.
  • organic substances such as phenol
  • heavy metal ions such as lead, copper, iron
  • pesticide residues in water such as Reagents for organophosphorus
  • chips are produced by die casting, and pre-installed in reaction tank 24 for detecting microorganisms (such as E. coli), additives (such as saccharification enzyme preparations), and pesticide residues (such as organic Phosphorus, carbamate pesticides, reagents such as inorganic arsenic, formaldehyde, cyanide, nitrite, and proteins.
  • microorganisms such as E. coli
  • additives such as saccharification enzyme preparations
  • pesticide residues such as organic Phosphorus, carbamate pesticides, reagents such as inorganic arsenic, formaldehyde, cyanide, nitrite, and proteins.
  • Liquid samples can be directly sampled and added to the chip.
  • the solid sample is pulverized, diluted with a diluent, and added to the chip.
  • various extraction techniques can be used to extract the substance to be tested from the food and then add it to the chip for detection.
  • the detection method

Description

说明书
Title of Invention:检测集成芯片及应用方法 技术领域
技术领域
[1] 本发明属于分析检测领域, 具体涉及一种集样品的前处理、 样品的定量输送、 反应和检测于一体的多功能多指标检测集成芯片及应用方法。
背景技术
背景技术
[2] 面临着 21世纪在生物医学分析、 疾病诊断、 环境监测、 食品与药品安全等领域 的众多挑战, 现场釆样分析、 快速检测以及患者自测等需求的提出, 对检验检 疫分析手段和设备提出了更高的要求。 要满足这些不断提出的新的需求, 就必 须要发展微型化、 集成化和便携化的检验检疫仪器设备。
[3] 目前检验检疫所釆用的自动化分析设备的起源可以追溯到上世纪五十年代, 经 过了半个世纪的发展已实现了集成化和自动化。 如自动生化分析仪是将生化分 析中的取样、 加试剂、 混合、 保温、 比色、 结果计算与报告等这些步骤的部分 或全部由模仿手工操作的机械手来完成。 但现有自动生化分析仪体积庞大、 价 格昂贵、 操作复杂、 还需要配备专业设备进行样品的前处理, 所以需要安装在 大型医院的中心实验室, 由经过培训的专业人员进行操作。 另外, 为了提高检 测效率和降低检测成本, 往往需要收集起数量较多的一批样品来进行统一分析 检测, 所以检测周期较长。 目前医院里使用的大型自动化生化分析仪的特点难 以满足现场釆样分析、 快速检测以及患者自测等需求。
对发明的公开
技术问题
[4] 本发明的目的在于提供了一种检测集成芯片, 其可克服现有检测设备的缺陷, 能自动化完成整个检测过程, 且检测周期短, 一次检测就能获得多个检测指标
[5] 本发明的另一目的是提供一种应用方法, 其能利用上述集成芯片进行检测。 技术解决方案
[6] 一种检测集成芯片, 该芯片分为上下二层, 所述的芯片上层与所述的芯片下层 相连; 所述芯片上层设有一组用于样品加样的通孔; 所述的芯片下层设有一组 槽及连接各槽间的微流道、 微反射面和通气孔。
[7] 一种利用上述检测集成芯片的应用方法, 其包括以下步骤:
[8] (1) 将样品溶液经通孔注入到所述的样品槽中;
[9] (2) 启动电机旋转所述的芯片;
[10] (3) 样品溶液在离心力作用下, 实现固液分离;
[11] (4) 样品中的液体流入反应槽, 与所述的反应试剂进行反应;
[12] (5) 通过与芯片配套的检测设备在反应槽中进行原位检测。
有益效果
[13] 釆用上述方案后, 本发明的检测集成芯片集样品前处理、 样品输送、 反应和检 测于一体, 无需配备专业的样品前处理设备和机械手, 操作简单, 整个检测过 程全自动化完成, 无需专业人员操作, 可以实现患者自测。 一片芯片, 一次检 测就可以获得多个检测指标, 检测周期短。 多功能多指标检测集成芯片体积微 小, 与微型化检测设备集成, 可以发展出微型化、 集成化和便携化的检测设备 , 实现现场釆样分析。
[14] 另外, 本发明的多功能多指标检测集成芯片可以用于生物医学检测领域, 对人 或动物的全血、 血浆、 尿液、 唾液、 精液、 脊髓、 羊水等体液进行全自动化的 快速检测。 本发明的多功能多指标检测集成芯片可以用于环境检测领域, 对环 境中的有机或无机污染物进行快速检测。 本发明的多功能多指标检测集成芯片 可以用于食品安全领域, 对食品中的有毒有害物质、 细菌、 病毒等进行快速检 测。 本发明的多功能多指标检测集成芯片可以用于制药、 化工领域, 对各种药 品成分、 化工产品进行快速检测。
附图说明
[15] 图 1是芯片上层的俯视图;
[16] 图 2是芯片下层的俯视示意图;
[17] 图 3是样品与对比参照液加入后芯片随着电机开始转动的瞬间示意图; [18] 图 4是样品流经螺旋微流道和储液槽开始进行固液分离的示意图;
[19] 图 5是固液分离后的样品经过环行流道和发散式流道进入反应槽的示意图;
[20] 图 6是反应槽注满后进行恒温反应和光学检测的示意图。
本发明的实施方式
[21] 下面以全血生化检测为例, 并结合附图详细说明本发明多功能多指标检测集成 芯片的使用方法。
[22] 在使用待检测的样品中如果待检测物浓度较高, 可以在芯片外预稀释至合适的 浓度, 再加入到芯片中检测。 如血液的生化指标分析, 可以对血液进行预稀释 再加入到芯片中检测。 另外, 本芯片可以用于生物医学检测领域, 对人或动物 的全血、 血浆、 尿液、 唾液、 精液、 脊髓、 羊水等体液中的多种指标进行全自 动化的快速检测。 再者, 本芯片还可以用于环境检测领域, 对环境中的有机或 无机污染物进行快速检测。 本芯片还可以用于食品安全领域, 对食品中的有毒 有害物质、 细菌、 病毒等进行快速检测。 本芯片可以用于制药、 化工领域, 对 各种药品成分、 化工产品进行快速检测。
[23] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 虽然通过实施例描绘了本发明, 本领域普通技术人员知道, 本发明有许多变形和变化而不脱离本发明的精神, 而此处所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明的范围
[24] 实施例一: 血液生化分析
[25] 如图 1、 2所示, 本发明公开一种检测集成芯片, 该芯片以透明塑料为原料, 通 过模具铸造的方式制作而成。 本芯片包括上层 1和下层 2, 其中:
[26] 上层 1上设有两通孔 11、 12, 通孔 11用于加入样品, 通孔 12用于加入对比液。
[27] 下层 2上设有样品槽 21、 储液槽 22、 对比参照液槽 23、 一组反应检测槽 24和一 组对比参照液反应检测槽 25、 一组用于自检和检测校正的辅助槽 26、 一组溢流 槽 27、 用于固液分离的螺旋微流道 28、 连接各槽间的微流道 29、 微反射面 210及 排气孔 211。
[28] 样品槽 21上设有排气孔 211, 样品槽 21位于芯片靠近中心的位置, 样品通过芯 片上层 1的通孔 11注入到样品槽 21中。
[29] 螺旋微流道 28, 入口与样品槽 21相连, 出口与储液槽 22相连。 螺旋微流道 28的 宽度从入口到出口逐渐变宽, 入口与出口处的微流道宽度比例为 1:1。 螺旋微流 道 28深度逐渐变深, 入口与出口处的微流道深度比例为 1:1。 螺旋微流道 28的入 口小, 起到限制样品流量的作用, 使样品中的固体不溶物在流出储液槽 22之前 在离心力下有足够的吋间与液体分离。 螺旋微流道 28与储液槽 22相连接延长了 样品溶液流过的路程, 有利于把流经螺旋微流道 28还没有与液体分离开来的固 体不溶物在流出储液槽 22之前与液体彻底分离。
[30] 储液槽 22呈环形, 径向分布。
[31] 储液槽 22通过弧形微流道 292与反应槽 24相连。
[32] 反应槽 24直径为 0.1mm, 深度为 lmm。 反应槽 24位于远离圆心的圆周上, 形状 可以是圆形、 方形、 长方形或多边形, 在本实施例中, 其为圆形。
[33] 对比参照液槽 23上设有排气孔 211, 参照液通过 1上的进口 12进入该槽内。 参照 液槽 23与对比参照液反应检测槽 25是通过流道 291相连。
[34] 反应检测槽 24中预装有各种冻干试剂, 在本实施例中, 该反应检测槽中预装的 冻干试剂是用于检测的血液生化指标包括丙氨酸氨基转移酶 (ALT)、 天门冬氨酸 氨基转移酶 (AST)、 γ-谷氨酞基转移酶 (γ-ΟΤ)、 碱性磷酸酶 (ALP)、 总胆红素 (TBI L)、 直接胆红素 (DBIt) 、 总蛋白 (TP)、 白蛋白 (Alb)、 尿素 (Urea)、 肌酐 (Cr)、 尿酸 (UA)、 葡萄糖 (Glu)、 总胆固醇 (TC)、 甘油三酯 (TG) 、
高密度脂蛋白 (HDL) 、 低密度低蛋白 (VLDL) 、 极低密度脂蛋白 (LDL) 、 血清镁 (Mg) 、 血清钾 (K) 、 血清钠 (Na) 、 血清氯 (C1) 、 血清钙 (Ca ) 、 血清磷 (P) 、 血清铁 (Fe) 、 血清氨 (NH) 、 二氧化碳 (C02) 。
[35] 辅助槽 26用于与芯片配套的检测设备的自检和校正, 该组辅助槽 26位于远离圆 心的圆周上。 辅助槽 26的中心至圆心的距离与反应检测槽 24距圆心的距离相同 。 辅助槽 26的直径为 2mm。
[36] 溢流槽 27包括对比参照液溢流槽 271及样品溢流槽 272。 参照液槽 23与对比参照 液溢流槽 271通过流道 291相连。
[37] 样品溢流槽 272通过环形流道 293、 弧形微流道 292与储液槽 22相连。 [38] 微反射面 210、 辅助槽 26是用于反应检测槽光学精确定位的, 微反射面 210位于 反应检测槽 24的周围。 微反射面 210的宽度为 0.1mm。 微反射面 210与反应检测槽 24的中心轴角度为 0度。
[39] 小孔 211为排气孔。 其直径介于 0.1mm到 2mm。
[40] 使用吋, 先从人或动物的指尖、 静脉或其它部位取数滴血液, 然后按 1 : 100的 比例稀释, 并从通孔 11注入样品槽 21。 把对比参照液从通孔 12注入对比参照液 槽 23 ;
[41] 配合图 3所示, 将芯片固定到电机上, 置于 37摄氏度恒温腔中, 由电机带动芯 片旋转, 速度 4000转每分钟; 血液样品在离心力的作用下从样品槽 21进入螺旋 微流道 28, 血液中的血细胞等颗粒状物质开始与液体分离, 对比参照液在离心 力的作用下从对比参照液槽 23进入流道 291;
[42] 配合图 4所示, 芯片在电机带动下继续旋转, 血液样品会从样品槽 21经过螺旋 微流道 28逐步进入到储液槽 22。 与此同吋对比参照液经过流道 291逐步进入对比 参照液检测槽 25和对比参照液溢流槽 271。
[43] 配合图 5所示, 对比参照液检测槽 25和对比参照液溢流槽 271都已经充满。 血液 样品在离心力的作用下, 会逐渐地在螺旋微流道 28和储液槽 22中分离成血细胞 与血浆两层, 血细胞滞留在螺旋微流道 28和储液槽 22的远离圆心的侧壁上。 当 储液槽 22中储液量逐渐增多, 达到一定的体积量吋, 血浆会在离心力作用下经 过弧形流道 292进入环形流道 293, 再通过与各个反应检测槽 24相连的发散式流 道 294将反应检测槽 24逐个充满, 溶解反应检测槽 24中预装的试剂, 并开始反应
[44] 配合图 6所示, 样品槽 21、 螺旋微流道 28、 对比参照液槽 23与流道 291中都已经 没有液体。 所有反应检测槽 24都充满了液体样品, 样品溢流槽 272也被充满。 芯 片继续保持旋转, 通过与反应检测槽 24相邻的微反射面 210对各个反应槽 24进行 精确定位, 并通过分光光度计对各个反应检测槽 24中的反应进行检测, 给出检 测结果。 此吋, 反应检测槽 24也称为比色槽。
[45] 实施例二: 与实施例一相比, 不同之处在于: 螺旋微流道 28的入口处的宽度与 出口处的宽度比例为到 1: 10, 螺旋微流道 28的入口处的深度与出口处的深度比例 为 1: 10。 反应槽 24直径为 10mm深度为 10mm。 辅助槽 26的直径为 10mm。 微反射 面 210的宽度为到 5mm。 微反射面 210与反应槽 24的中心轴角度为 90度。
[46] 实施例三: 与实施例一相比, 不同之处在于: 螺旋微流道 28的入口处的宽度与 出口处的宽度比例为 1:5。 螺旋微流道 28的入口处的深度与出口处的深度比例为 1 : 2。 反应槽 24直径为 2mm深度为 5mm。 微反射面 210的宽度为 lmm。 微反射面 21 0与反应槽 24的中心轴角度为 45度。
[47] 实施例四: 水质检测
[48] 以透明塑料为原料, 通过模具铸造的方式制作芯片, 并在反应槽 24中预装用于 检测水中有机物 (如苯酚) 、 重金属离子 (如铅、 铜、 铁) 、 农药残留 (如有 机磷) 的试剂。 取 1毫升水样加入到样品槽 21中。 把对比参照液注入对比参照液 槽 23。 把芯片固定在电机上, 启动电机开始旋转。 样品输送、 分离、 反应检测 等步骤与实施例一类似。
[49] 实施例五: 食品卫生检测
[50] 以透明塑料为原料, 通过模具铸造的方式制作芯片, 并在反应槽 24中预装用于 检测食品中微生物 (如大肠杆菌) 、 添加剂 (如糖化酶制剂) 、 农药残留 (如 有机磷、 氨基甲酸酯农药) 、 污染物 (如无机砷、 甲醛、 氰化物、 亚硝酸盐) 、 蛋白质等的试剂。 对于液态样品可以直接取样加入到芯片中。 固体样品需粉 碎, 再加稀释液稀释溶解, 然后加入到芯片中。 特殊的还可以用到各种萃取技 术把待测物质从食品中提取后, 再加入到芯片检测。 检测方法同实施例一。
[51] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内

Claims

权利要求书
[Claim 1] 一种检测集成芯片, 其特征在于: 所述的芯片分为上下二层, 所 述的芯片上层与所述的芯片下层相连; 所述芯片上层设有一组用 于样品加样的通孔; 所述的芯片下层设有一组槽及连接各槽间的 微流道、 微反射面和排气孔。
[Claim 2] 如权利要求 1所述的检测集成芯片, 其特征在于: 所述的芯片下层 的槽为样品槽、 储液槽、 对比参照液槽、 一组反应和检测槽、 一 组用于自检和检测校正的辅助槽、 一组溢流槽, 上述各槽间通过 微流道相连。
[Claim 3] 如权利要求 1所述的检测集成芯片, 其特征在于: 所述的芯片下层 还进一步包括有用于固液分离的螺旋微流道。
[Claim 4] 如权利要求 2或 3所述的测集成芯片, 其特征在于: 所述的芯片下 层的样品槽, 位于靠近中心的位置, 所述的样品通过所述的芯片 上层的通孔注入到所述的样品槽中。
[Claim 5] 如权利要求 3所述的检测集成芯片, 其特征在于: 所述的芯片的螺 旋微流道, 入口与所述的样品槽相连, 出口与所述的储液槽相连
[Claim 6] 如权利要求 3所述的检测集成芯片, 其特征在于: 所述的螺旋微流 道的宽度从入口到出口逐渐变宽, 入口与出口处的微流道宽度比 例为 1 : 1到 1 : 10。
[Claim 7] 如权利要求 6所述的检测集成芯片, 其特征在于: 所述的螺旋微 流道的入口处的宽度与出口处的宽度比例为 1 :5。
[Claim S] 如权利要求 3所述的检测集成芯片, 其特征在于: 所述的螺旋微流 道深度逐渐变深, 入口与出口处的微流道深度比例为 1 : 1到 1 : 10。
[Claim 9] 如权利要求 8所述的检测集成芯片, 其特征在于: 所述的螺旋微 流道的入口处的深度与出口处的深度比例为 1 : 2。
[Claim 10] 如权利要求 3所述的检测集成芯片, 其特征在于: 所述的芯片下层 的储液槽与所述的螺旋微流道的出口相连, 呈环形, 径向分布。 如权利要求 2所述的检测集成芯片, 其特征在于: 所述的芯片下层 的反应槽直径介于 0.1mm到 10mm。
如权利要求 2或 11所述的检测集成芯片, 其特征在于: 所述的芯片 下层的反应槽的深度介于 lmm到 10mm。
如权利要求 2所述的检测集成芯片, 其特征在于: 所述的反应槽 中预装有反应试剂。
如权利要求 13所述的检测集成芯片, 其特征在于: 所述的反应试 剂为液态的反应试剂、 干粉状反应试剂, 或预装液态的反应试剂 , 再在所述的反应槽中原位冻干、 或预装部分液态的反应试剂原 位冻干后再加入一种或一种以上已冻干的反应试剂。
如权利要求 2所述的检测集成芯片, 其特征在于: 所述的芯片下 层的对比参照液槽通过微流道与一组反应槽相连, 所述的对比参 照液用于检测结果的对比参照。
如权利要求 2所述的检测集成芯片, 其特征在于: 所述的芯片下 层的辅助槽用于与所述芯片配套的检测设备的自检和校正, 该组 辅助槽位于远离圆心的圆周上。
如权利要求 16所述的检测集成芯片, 其特征在于: 所述的一组辅 助槽的中心至圆心的距离与所述的反应槽距圆心的距离相同。 如权利要求 16或 17所述的检测集成芯片, 其特征在于: 所述的辅 助槽的直径介于 lmm到 10mm。
如权利要求 2所述的检测集成芯片, 其特征在于: 所述的芯片的 微反射面是用于反应和检测槽光学精确定位的, 其位于所述的反 应槽周围。
如权利要求 1或 19所述的检测集成芯片, 其特征在于; 所述的微反 射面宽度介于 0. lmm到 5mm。
如权利要求 19所述的检测集成芯片, 其特征在于: 所述的微反射 面与所述的反应槽中心轴角度介于 0到 90度。
如权利要求 1所述的检测集成芯片, 其特征在于: 所述的芯片上层 的通孔为两个。
如权利要求 1所述的检测集成芯片, 其特征在于: 所述的芯片的 原材料为塑料、 硅胶、 金属、 合金、 玻璃或硅。
如权利要求 1所述的检测集成芯片, 其特征在于: 所述的芯片上 层与下层之间釆用粘接或者用超声波焊接的方式连接。
用权利要求 1~24任一所述的检测集成芯片的应用方法, 其包括以 下步骤:
(1) 将样品溶液经通孔注入到所述的样品槽中;
(2) 启动电机旋转所述的芯片;
(3) 样品溶液在离心力作用下, 实现固液分离;
(4) 样品中的液体流入反应槽, 与所述的反应试剂进行反应;
(5) 通过与芯片配套的检测设备在反应槽中进行原位检测。 如权利要求 25所述的应用方法, 其特征在于: 在步骤 (2) 中, 所 述的电机的转速介于 1000到 10000转每分钟。
如权利要求 25所述的应用方法, 其特征在于: 在步骤 (3) 中, 样 品中固体不溶物在流经所述的螺旋微流道与所述的储液槽过程与 液体分离, 滞留在所述的螺旋微流道和所述的储液槽中。
如权利要求 25所述的应用方法, 其特征在于: 在步骤 (4 ) 中, 样品中液体依次流经螺旋微流道、 储液槽、 与反应槽连接的微流 道, 最终进入反应槽。
如权利要求 25所述的应用方法, 其特征在于: 在步骤 (3) 、 (4
) (5) 进行的同吋, 所述的芯片始终处于旋转状态。
如权利要求 25所述的应用方法, 其特征在于: 在芯片中一次性全 自动化完成样品溶液的前处理、 定量输送、 反应和检测过程。 如权利要求 25所述的应用方法, 其特征在于: 在步骤 (5) 中, 与 芯片配套的设备是分光光度计、 荧光计、 光电管。
如权利要求 25或 31所述的应用方法, 其特征在于: 在步骤 (5) 中
, 与芯片配套的检测方法是分光光度法、 荧光法、 化学发光法。
PCT/CN2009/074760 2009-11-03 2009-11-03 检测集成芯片及应用方法 WO2011054140A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2009/074760 WO2011054140A1 (zh) 2009-11-03 2009-11-03 检测集成芯片及应用方法
CN2009801443803A CN102239005A (zh) 2009-11-03 2009-11-03 检测集成芯片及应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/074760 WO2011054140A1 (zh) 2009-11-03 2009-11-03 检测集成芯片及应用方法

Publications (1)

Publication Number Publication Date
WO2011054140A1 true WO2011054140A1 (zh) 2011-05-12

Family

ID=43969546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074760 WO2011054140A1 (zh) 2009-11-03 2009-11-03 检测集成芯片及应用方法

Country Status (2)

Country Link
CN (1) CN102239005A (zh)
WO (1) WO2011054140A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668005A (zh) * 2015-01-23 2015-06-03 张国豪 一种家用微流控芯片及其使用方法
CN104815708A (zh) * 2015-03-11 2015-08-05 北京工业大学 一种基于AlGaN/GaN HEMT的生物表面微流道制备方法
CN107930710A (zh) * 2017-11-27 2018-04-20 深圳华炎微测医疗科技有限公司 化学发光检测微流控芯片和化学发光检测微流控芯片体系以及它们的应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426259A (zh) * 2011-12-14 2012-04-25 天津微纳芯科技有限公司 多功能多指标检测集成芯片
CN105277725B (zh) * 2014-07-01 2017-03-29 清华大学 一种用于核酸分析检测的集成化微流控系统
CN107389549A (zh) * 2017-08-17 2017-11-24 武汉璟泓万方堂医药科技股份有限公司 转盘式胶体金/荧光试纸芯片
CN108469367A (zh) * 2018-05-11 2018-08-31 石家庄禾柏生物技术股份有限公司 一种离心式血浆分离光盘

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050037484A1 (en) * 2003-04-23 2005-02-17 Norbert Staimer Optical bio-discs including spiral fluidic circuits for performing assays
CN1639557A (zh) * 2001-04-11 2005-07-13 伯斯坦技术公司 包括分析盘的多参数化验以及涉及该化验的方法
WO2006060922A2 (en) * 2004-12-10 2006-06-15 Simon Fraser University Microfluidic microarray assemblies and methods of manufacturing and using same
US20080317634A1 (en) * 2003-07-25 2008-12-25 Horacio Kido Fluidic circuits for sample preparation including bio-discs and methods relating thereto

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1639557A (zh) * 2001-04-11 2005-07-13 伯斯坦技术公司 包括分析盘的多参数化验以及涉及该化验的方法
US20050037484A1 (en) * 2003-04-23 2005-02-17 Norbert Staimer Optical bio-discs including spiral fluidic circuits for performing assays
US20080317634A1 (en) * 2003-07-25 2008-12-25 Horacio Kido Fluidic circuits for sample preparation including bio-discs and methods relating thereto
WO2006060922A2 (en) * 2004-12-10 2006-06-15 Simon Fraser University Microfluidic microarray assemblies and methods of manufacturing and using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668005A (zh) * 2015-01-23 2015-06-03 张国豪 一种家用微流控芯片及其使用方法
CN104815708A (zh) * 2015-03-11 2015-08-05 北京工业大学 一种基于AlGaN/GaN HEMT的生物表面微流道制备方法
CN107930710A (zh) * 2017-11-27 2018-04-20 深圳华炎微测医疗科技有限公司 化学发光检测微流控芯片和化学发光检测微流控芯片体系以及它们的应用

Also Published As

Publication number Publication date
CN102239005A (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
CN107129930B (zh) 一种全集成核酸检测微流控芯片及其使用方法
WO2011054140A1 (zh) 检测集成芯片及应用方法
CN106964411B (zh) 具有集成传送模块的测试盒
CN102426259A (zh) 多功能多指标检测集成芯片
US20100075311A1 (en) Cartridge system
CN107199061B (zh) 一种多任务全自动生化检测芯片的使用方法
CN102253226B (zh) 用于单试剂及多试剂法检测的集成芯片及检测方法
CN102580797A (zh) 检测集成芯片及检测方法
KR101355126B1 (ko) 생화학 분석 카트리지
CN108435266A (zh) 一种微流控检测芯片及基于其的试剂盒、全血多指标检测方法和应用
KR20170024827A (ko) 미세유로 필름 반응기, 핵산 추출 모듈 및 qPCR 반응조성물 모듈이 구비된 qPCR 카트리지 및 이를 이용한 고속 qPCR 시스템
CN203376333U (zh) 一种多功能多指标检测集成芯片
CN111495451B (zh) 生化指标检测集成芯片及其检测的方法和应用
US20180236446A1 (en) Modular microfluidic device for analytical bioassay
CN108160125A (zh) 生化检测微流控芯片和生化检测微流控芯片体系以及它们的应用
CN108051393B (zh) 一种全自动尿液检测装置及应用该装置的智能马桶
CN207472761U (zh) 一种微流控检测芯片及用于全血多指标检测的试剂盒
CN207786625U (zh) 生化检测微流控芯片和生化检测微流控芯片体系
RU2082754C1 (ru) Способ проведения биохимических реакций и устройство для его осуществления
CN111004719A (zh) 核酸检测模块、检测单元及检测系统
CN202351247U (zh) 多功能多指标检测集成芯片
JP2006121935A (ja) 前処理手段および廃液貯留部を有する生体物質検査用マイクロリアクタ
CN202110178U (zh) 用于单试剂及多试剂法检测的集成芯片
WO2017116960A2 (en) Multi-piece fluid transfer tip
KR20210083710A (ko) 모듈형 미세 유체 장치 및 이를 이용한 유체 분석 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144380.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851024

Country of ref document: EP

Kind code of ref document: A1