WO2011052462A1 - Method for assessing light damage to plants caused by night lighting, method of assessing properties of night lighting, and lighting device for avoiding light damage - Google Patents

Method for assessing light damage to plants caused by night lighting, method of assessing properties of night lighting, and lighting device for avoiding light damage Download PDF

Info

Publication number
WO2011052462A1
WO2011052462A1 PCT/JP2010/068556 JP2010068556W WO2011052462A1 WO 2011052462 A1 WO2011052462 A1 WO 2011052462A1 JP 2010068556 W JP2010068556 W JP 2010068556W WO 2011052462 A1 WO2011052462 A1 WO 2011052462A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
night
light source
illumination
ratio
Prior art date
Application number
PCT/JP2010/068556
Other languages
French (fr)
Japanese (ja)
Inventor
潔 岩谷
晴彦 山本
Original Assignee
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山口大学 filed Critical 国立大学法人山口大学
Priority to CN2010800489484A priority Critical patent/CN102595874B/en
Priority to JP2011538374A priority patent/JP5783571B2/en
Publication of WO2011052462A1 publication Critical patent/WO2011052462A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to a method for evaluating light damage to plants by night lighting, a method for evaluating characteristics of night lighting, and a light pollution avoiding lighting apparatus.
  • a white or yellow light source such as a mercury lamp, a fluorescent lamp, or a sodium lamp is generally used.
  • a night illumination device using a light source is installed on a road or the like close to a vegetation area such as a field, the light is also irradiated to plants in the vegetation area at night. Decreased yield and reduced quality due to delayed flowering of short-day plants such as rice and soybeans, or early flowering of long-day plants such as spinach and broccoli. This is called light pollution.
  • Patent Document 1 a reflecting mirror and a light source are arranged inside a lamp body having an open bottom surface, and a light shielding wall is formed integrally with the lamp body below the light source behind the light center of the light source.
  • a road illuminator in which a part of the irradiation light is shielded is described.
  • Patent Document 2 discloses a green filter with a light quality balance in which a slurry mixed with zinc oxide and a green inorganic pigment is deposited on the outer surface of a fluorescent mercury lamp to cut ultraviolet radiation, reduce blue light, and increase green light. It describes about reducing the growth radiation efficiency of a plant with an attached lamp.
  • Patent Document 3 has a spectral radiant energy peak between the lower limit of the wavelength range where the influence on flower bud formation on plants is strong and the lower limit of the wavelength range where the antifungal effect is high, and the spectral radiant energy ⁇ e ( ⁇ ). And a luminaire having a light source in which the ratio of the product of spectral absorption Pr ( ⁇ ) of phytochrome in the section of 560 to 700 nm and the radiant flux included in the wavelength range of 460 to 580 nm is 0.05 or less Is described.
  • Patent Document 4 uses light from a light source that emits green light of 500 to 580 nm to irradiate a range including the vegetation area side as a street lamp for installation at a position close to the vegetation area.
  • a street lamp is described that uses a combination of LEDs with high directivity in a wavelength range other than green of 500 to 580 nm for irradiation to a side that is not a vegetation region.
  • Patent Document 5 discloses a near-infrared fluorescent lamp that irradiates near-infrared light and shields red light by applying a pigment containing a near-infrared light-emitting phosphor, a blue-light-emitting phosphor, and a green light-emitting phosphor as main components as an inner surface paint.
  • Patent Document 6 describes that near-infrared light is irradiated to paddy rice before sunlight is irradiated to prevent the heading delay of paddy rice.
  • Non-Patent Document 1 discloses a dark period interruption in which flowering delay of short-day plants is caused by light irradiation for only 10 minutes of nighttime over several hours, regarding the relationship between flowering time control and nighttime light irradiation.
  • Non-Patent Document 2 as the relationship between photosynthesis and pulse emission, which are important functions of plants, the photosynthesis rate of Sardana when the pulse emission frequency is 2.5 kHz and the duty ratio is 50% is that of continuous light. It is described with respect to an increase of 23% compared to the case.
  • Patent Document 1 light damage to the plant is avoided by shielding a part of the illumination light source, but there is an abrupt change in illuminance between the illuminated bright area and the darkness due to the shading adjacent to the illuminated area. This creates the potential for danger in the darkness, which is rather unsafe.
  • the illumination light source used for avoiding light pollution is illumination with green-centered light, making it difficult to illuminate natural colors with high color rendering properties and limited applications. Is done.
  • JP 2000-222911 A JP 2005-216572 A JP 2004-121217 A JP 2008-226567 A JP 2006-244910 A JP 2006-271374 A
  • the present invention has been made to solve the above-mentioned problems, and the method for evaluating light damage to plants by night illumination according to the present invention is based on light damage caused to a plant by a lighting device installed in the vicinity of a vegetation area.
  • a multi-spot plant in the meteorological instrument until the expression of the flowering induction gene. After planting and planting some plants in an artificial meteor for performing night illumination after expression of the flowering-inducing gene, and after having passed one or more night periods, the leaf blades are collected and processed.
  • Total RNA is extracted, and the expression level of the target gene is quantitatively analyzed to determine the gene expression level A under night-lighting conditions, and after expression of the flowering induction gene, Artificial air without night lighting After putting a plant of another strain in the vessel and letting go through one or more night periods, extract the leaf blades and extract the total RNA, and determine the mRNA level of the gene for the target gene expression level. Quantitative analysis is performed to determine the gene expression level B under night illumination conditions, and the gene expression level A under night illumination conditions and gene expression level B under night illumination conditions. And determining the light pollution avoidance ratio as a ratio. When the plant is rice, the flowering induction gene is Hd3a.
  • the present invention further includes obtaining an average color rendering index for the light source used for the night illumination, and the light pollution avoidance ratio and the average color rendering evaluation obtained by the method for evaluating light damage to plants by the night illumination. It is good also as the characteristic evaluation method of the night illumination which evaluated the characteristic of the light source of night illumination from the number.
  • the flowering induction gene is Hd3a.
  • the light pollution avoiding illumination device has a specific color component pulsed light source or a different color component driven by a pulse driving device at a predetermined pulse emission frequency and duty ratio.
  • An illumination device using a light source combining a plurality of types of pulsed light sources that are driven at a pulsed light emission frequency and duty ratio, wherein the pulsed light source of the specific color component or a plurality of types of pulsed light sources are combined.
  • the pulse light source of the specific color component or a plurality of types of pulse light sources are combined so that the light damage avoidance ratio obtained by the method for evaluating light damage to plants by night illumination with respect to the light source is 0.8 or more Set the pulse emission frequency and duty ratio of each type of pulsed light source A.
  • the blue light emitting diode is driven at a pulse light emission frequency of 300 to 2700 Hz and a duty ratio of 10 to 90%.
  • the green light emitting diode is a green light emitting diode
  • the green light emitting diode is driven at a pulse light emission frequency of 50 to 1000 Hz and a duty ratio of 20 to 90%
  • the pulse light source of the specific color component is a yellow green light emitting diode.
  • the yellow-green light emitting diode is preferably driven at a pulse emission frequency of 500 to 2700 Hz and a duty ratio of 10 to 90%.
  • the light pollution avoiding illumination apparatus is an illumination apparatus using a light source that is a combination of pulsed light sources each having a different color component and driven by a pulse driving device at a predetermined pulsed light emission frequency and duty ratio.
  • the light damage avoidance ratio determined by the method for evaluating light damage to plants by night illumination with respect to a light source combining the plurality of kinds of pulsed light source is 0.8 or more.
  • the plurality of types of pulsed light sources that set the pulsed light emission frequency and duty ratio of each type of pulsed light source in the light source that combines the above-mentioned pulsed light sources, and that the average color rendering index as the whole light source is 60 or more It may be a combination of the above.
  • the plurality of pulsed light sources may include at least a blue light emitting diode and a yellow-green light emitting diode, and the plurality of pulsed light sources may include a blue light emitting diode, a green light emitting diode, and a yellow green light emitting diode. .
  • the present invention it is possible to appropriately and effectively evaluate light damage caused by night lighting by using the light damage avoidance ratio from the gene expression level obtained under night lighting conditions and without night lighting conditions.
  • equipment for evaluating light pollution it is possible to use simple equipment and measuring instruments by using an artificial meteorograph, and the expression level of a flowering induction gene that starts expression before actual flowering can be determined. Since it is used and evaluated, it can be carried out in a form in which the time is shorter than the conventional method of observing flowering. In the case of rice, when observing outdoors, the evaluation of light pollution is usually carried out once a year, but in the case of the present invention using an artificial meteor, the evaluation of light pollution is 5 weeks after emergence.
  • the average color rendering index of the light source for night illumination can be obtained, and the suitability as a night illumination device can be evaluated together with the light pollution avoidance ratio.
  • the illumination apparatus using the pulsed light source controlled to the optimum pulsed light emission frequency and duty ratio derived by the nighttime illumination characteristic evaluation method of the present invention is included in the phytochrome absorption wavelength range of 560 to 700 nm.
  • the out-of-light avoidance ratio can be increased to 1 or more for blue and green that are outside this wavelength range and originally considered to be less likely to cause light pollution.
  • appropriately controlled pulsed blue, green, and yellow-green illuminations provide higher illumination while maintaining equivalent color rendering compared to other general lighting (such as mercury lamps). Even if you go, you can make little light pollution to the crops (rice).
  • the illuminating device is constituted by a light source in which a plurality of types of pulsed light sources having different color components are combined, and light is obtained by appropriately setting the pulse emission frequency and duty ratio of each type of pulsed light source.
  • It can be a harm avoidance lighting device.
  • a pulsed light source it is possible to select a light source element that has a higher light damage avoidance ratio than a continuous light source, and by combining various light emission frequencies and duty ratios, the selectivity of the light source element become diverse.
  • it can be a combination of a plurality of types of pulsed light sources that give a natural sense to humans.
  • (A)-(f) It is a figure which shows the evaluation of the light pollution avoidance about an illumination light source, and the evaluation of the characteristic as night illumination as a flow.
  • the present invention when evaluating the light pollution by night illumination, data is obtained about a sample collected from a plant cultivated in an artificial meteor that performs night illumination, and flowering-induced gene expression is analyzed to analyze night illumination.
  • light damage to plants was evaluated by determining the expression level of flowering-inducible genes when pulse light emission type light source was used as the light source and the frequency and duty ratio of pulse light emission were varied. We are studying the conditions for the avoidance lighting device.
  • RNA extraction 50-65 mg of freshly stored leaf blades were weighed into a 2 mL sample tube, and crushed using a pulverizer (Automill: Tokken Co., Ltd.) while frozen in liquid nitrogen.
  • a pulverizer Automill: Tokken Co., Ltd.
  • RNeasy Plant Mini Kit Qiagen Co., Ltd.
  • total RNA was extracted by an automatic extraction apparatus (QIAcube: Qiagen Co., Ltd.) according to the reagent and protocol of the apparatus.
  • the purity and concentration of the extracted RNA were measured with an absorptiometer (Nanodrop ND-1000: Thermo Fisher Scientific).
  • the expression level of Hd3a mRNA was shown by a relative quantification method using ubiquitin (ubq) mRNA as an internal standard gene.
  • the primer set for quantifying the expression level of ubiquitin mRNA was as shown below.
  • Reverse primer 5'-ACGATTGATTTAACCAGTCCATGA-3 '(SEQ ID NO: 4) Based on the above, the ratio of the Hd3a-mRNA expression level to the ubq-mRNA expression level was taken as the relative expression level of Hd3a-mRNA.
  • A is the gene expression level under night illumination
  • B is the gene expression level under no night lighting
  • a / B Use light pollution avoidance ratio. The higher the light pollution avoidance ratio, the lower the possibility of light pollution. Calculate the light pollution avoidance ratio for each combination of the wavelength, pulse emission frequency, and duty ratio of the light source of the night illumination used in the artificial meteor that obtained the rice sample in the process of (1) to (4) above. . Through such a process, the light pollution avoidance of the illumination light source is evaluated.
  • an average color rendering index Ra is obtained by a spectroscopic method for the color of the light source for night illumination.
  • Table 1 generally shows the numerical range of the color rendering property Ra that is adapted to the usage application of illumination.
  • the right column shows the corresponding lamp type.
  • Fig. 1 shows the flow.
  • the period until the expression of the flowering induction gene is confirmed is Although it is about 5 weeks, it can be said that this period is almost constant for the same type of plant, so after confirming the expression of this flowering induction gene once, the expression of the flowering induction gene is again performed for the same type of plant.
  • the process may move to the next stage in the flow of FIG.
  • “until the expression of a flowering induction gene is confirmed” has a meaning including the fact that it is considered to be expressed on such a probability.
  • real-time PCR is used in the flow of FIG. 1.
  • a method for quantitatively analyzing mRNA for example, Northern blotting is used. Other analysis methods may be used.
  • FIG. 2 shows the light pollution avoidance ratio obtained according to the frequency.
  • (b) blue, (c) green, and (d) yellow-green have relatively high light pollution avoidance ratios, and (e) yellow has a lower value than those, and the light pollution avoidance ratios to some extent depend on the pulse emission frequency. I can see that they are different. In the case of (a) purple and (f) red, the light pollution avoidance ratio is very low.
  • FIG. 4 shows the case of yellow-green LED as shown in FIG.
  • the blue light in FIG. 3 has a particularly high light damage avoidance ratio at a pulse emission frequency of 700 Hz and a duty ratio of 60%
  • the green light in FIG. 4 has a particularly high light damage avoidance ratio at a pulse light emission frequency of around 50 Hz, a duty ratio of 60% and 90%.
  • the light pollution avoidance ratio is particularly high near the pulse emission frequency of 700 Hz and the duty ratio of 70%.
  • the light pollution avoidance ratio is an amount defined in the form of A / B from the gene expression level under night illumination (A) and the gene expression level under night illumination conditions (B). Although it is used as an index for representing the sample as a ratio corresponding to the ratio of avoiding light pollution, the quantity is not expressed as the ratio to the whole. Therefore, as a result shown in FIGS. 2 to 5, the high numerical value of the light pollution avoidance ratio exceeds 1.0. It represents a quantity that is an index as a relative ratio rather than an absolute ratio.
  • the value of the light pollution avoidance ratio of the illumination light source is preferably a value of 1.0 or more, but in practice, if the light pollution avoidance ratio is 0.8 or more, it is considered to be practically used. In the case of green light, the light pollution avoidance ratio is about 0.70 for continuous light, and 1.34 for pulse emission with 50 Hz and a duty ratio of 60%. From the results shown in FIGS. As for light and yellow-green light, those suitable as the light pollution avoidance ratio can be obtained by appropriately selecting the pulse emission frequency and the duty ratio.
  • the blue light emitting diode is driven at a pulse emission frequency of 300 to 2700 Hz and a duty ratio of 10 to 90%, and from FIG.
  • a diode it is assumed to be driven with a pulse emission frequency of 50 to 1000 Hz and a duty ratio of 20 to 90%.
  • the pulse emission frequency is 500 to 2700 Hz and the duty ratio is 10 to 90%. It should be driven.
  • a pulse light emission type light source is used as the light source, but the light damage avoidance ratio for each color light source at the time of continuous light emission at an illuminance of 5 lux is shown in FIG. Show.
  • the numerical values in the figure indicate the light pollution avoidance ratio, and the error bars indicate the standard deviation.
  • the light pollution avoidance ratio is 0.8 or more only in blue, particularly yellow-green, yellow, which is within the absorption wavelength range of 560 nm to 700 nm of phytochrome having strong influence on flowering described in Patent Document 3. It can be seen that the red light avoidance ratio is low under continuous light conditions. Further, when FIG. 6 is compared with the cases of FIGS. 3 to 5, it can be seen that the effect of improving the light damage avoidance ratio of blue, green and yellow-green by the pulse emission frequency and the duty ratio becomes more remarkable.
  • the average color rendering index Ra is not so high.
  • an illuminating device in which blue, green, and yellow-green LEDs were combined was configured, and measurements were performed under the same conditions.
  • FIG. 7 shows a light emission spectrum by an example of a light pollution avoiding lighting device configured by combining a plurality of blue, green, and yellow-green LEDs.
  • the white light spectrum is a dotted line, and the green LED spectrum is a chain line. It is shown by.
  • This light pollution avoidance lighting device has a blue LED emission frequency of 250 Hz, a green LED emission frequency of 250 Hz, a yellow-green LED emission frequency of 1000 Hz, and a duty ratio of 10%.
  • the emission spectrum of an example of a light pollution avoiding LED illumination light source configured by combining a plurality of blue, green and yellow-green LEDs is shown by a solid line, and the emission spectrum of a mercury lamp illumination light source generally used for night illumination. Is indicated by a dotted line, and the emission spectrum of the fluorescent lamp illumination light source is indicated by a chain line.
  • This light pollution avoiding LED illumination light source uses a combination of a pulse emission frequency and a duty ratio in which the light source of each color in FIG. 3 to FIG. 5 shows the highest light pollution avoidance ratio.
  • the frequency is 700 Hz
  • the duty ratio is 60%
  • the emission frequency of the green LED is 50 Hz
  • the duty ratio is 60%
  • the emission frequency of the yellow-green LED is 700 Hz
  • the duty ratio is 70%.
  • FIG. 9 shows the results of a test conducted in the sense of confirming the light pollution avoidance effect of the light pollution avoidance lighting apparatus described above.
  • Each of the three artificial weather devices was installed with the light pollution avoidance lighting apparatus. Things (mixed color: pulsed light emission), those with the same spectral spectrum as the light pollution avoiding lighting device but with continuous lighting (mixed color: continuous light emission), those without a lighting device (target zone: night lighting) None), rice (12 strains) was cultivated in each, and the number of flowering arrival days was observed.
  • the rice with the light pollution avoiding lighting device shows a two-day delay at the start of flowering compared to the rice without night lighting, but with a flowering rate of 50%, the one-day delay is shown. And no delay at the end of flowering.
  • the start of flowering was 5 days, 50% flowering showed a delay of 4 days, and one strain did not flower even 88 days after emergence.
  • the number of days that the flowering rate reaches 50% is regarded as an index of rice flowering among producers and researchers.
  • Fig. 10 shows the flowering delay days for light pollution avoidance LED lighting, fluorescent lighting, and mercury lamp lighting installed in an outdoor paddy field where rice (Koshihikari) is actually cultivated.
  • This is an average horizontal plane illuminance of 3 lux, which is an illuminance standard class B of a security light by the Japan Security Equipment Association, an average horizontal plane illuminance of 5 lux, which is also a class A, International Lighting Commission Pub. 115 indicates the flowering delay days with an average horizontal illuminance of 10 lux on the “roads with high night use” in “Lighting conditions for pedestrian area”, and the delay days with 3 lux are dark gray and 5 lux.
  • the delay days are white, the delay days at 10 lux are shown in light gray, and the error bars indicate the standard deviation. In the LED lighting for avoiding light pollution, the delay days are only about 2 days even at 10 lux. On the other hand, fluorescent lamp illumination is delayed for 5 days or more even at 3 lux, and is delayed about 10 days at 10 lux. Mercury lamp lighting is delayed for 4 days at 3 lux, 10 days at 5 lux, 12 days at 10 lux.
  • a light source by a combination of a blue LED, a green LED, and a yellow-green LED whose emission spectrum is shown in FIG. 7 is an example, and other light source elements are used as the light pollution avoiding illumination device. They can be combined.
  • a light source element of the light pollution avoiding illumination apparatus a light source such as a pulse emission type LED having wavelength selectivity is used.
  • a light source element may be selected on the condition that the light pollution avoiding ratio is 0.8 or more, and the blue LED, the green LED, and the yellow green whose light pollution avoiding ratio is shown in FIGS.
  • the LED a plurality of monochromatic LEDs having a pulse emission frequency and a duty ratio in which the light pollution avoidance ratio is 0.8 or more may be arranged, but the lighting device can give a natural feeling to a person. Therefore, it is desirable to use an illumination device that combines LEDs of different color lights so that the average color rendering index is 60 or more for night illumination.
  • the emission frequency of the blue LED is 250 Hz
  • the emission frequency of the green LED is 250 Hz
  • the emission frequency of the yellow-green LED is 1000 Hz
  • the duty ratio is 10% for both.
  • the LEDs of the respective colors may have other emission frequencies and have different duty ratios, and may have other emission frequencies and duty ratios. May be combined.
  • the illumination device includes an element light source such as an LED and a pulse light emission drive device that drives the element light source, and the pulse light emission drive device is provided according to the light emission frequency and the duty ratio. Therefore, in terms of the simplicity of the apparatus, it is advantageous to reduce the number of emission frequencies and duty ratios as much as possible, and preferably one. Moreover, about LED, when it makes pulse light emission, the lifetime of an element can be lengthened compared with the case of continuous light emission. However, since the light emission frequency is interpersonal illumination, it should be about 30 Hz or higher, which is a critical fusion frequency that is the lower limit where a person does not feel flickering of illumination.
  • the light pollution avoidance lighting apparatus combining light source elements by pulsed light emission according to the present invention avoids light pollution by setting the light pollution avoidance ratio to 0.8 or more, preferably 1.0 or more, and has an average color rendering index Ra. By setting the value to 60 or more, a natural feel can be obtained for a person.
  • a natural feel can be obtained for a person.
  • the light pollution avoiding lighting device according to the present invention there will be a decrease in yield as well as a decrease in price due to the lowering of the grade, but this is eliminated by using the light pollution avoiding lighting device according to the present invention, and the light of the producer It can be said that it has sufficient performance to dispel concerns about harm.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Lamina of plants having been grown in an artificial climate chamber with or without night lighting are collected and treated. The gene expression amounts in the individual samples thus obtained are determined by using a gene analysis technique and a light damage avoidance ratio is calculated as the ratio of these gene expression amounts, thereby assessing light damage to plants. Thus, light damage to plants caused by night lighting can be appropriately and effectively assessed. Provided is a lighting device for avoiding light damage, wherein the pulsed light frequency and duty ratio of a pulsed light source are set to give a light damage avoidance ratio of 0.8 or higher. By combining multiple pulsed light sources, the average color rendering index is enhanced so as to achieve a natural feeling as a night lighting device. Thus, the night lighting device, which is to be installed close to a vegetation area, can give a natural feeling to humans without causing light damage to plants.

Description

夜間照明による植物への光害の評価方法、夜間照明の特性評価方法及び光害回避照明装置Method for evaluating light damage to plants caused by night lighting, method for evaluating characteristics of night lighting, and light pollution avoiding lighting apparatus
 本発明は夜間照明による植物への光害の評価方法、夜間照明の特性評価方法及び光害回避照明装置に関する。 The present invention relates to a method for evaluating light damage to plants by night lighting, a method for evaluating characteristics of night lighting, and a light pollution avoiding lighting apparatus.
 屋外に設置される夜間照明装置としては、一般的には水銀灯や蛍光灯、ナトリウム灯のように、白色ないし黄色系の光源が用いられる。このような光源による夜間照明装置が田畑のような植生地域に近接する道路等に設置された場合、その光が夜間に植生地域における植物にも照射される。イネ、ダイズのような短日性植物の開花が遅延され、あるいはホウレンソウ、ブロッコリのような長日性植物の開花が早まる(「とう」がたつ)ことで収穫量の減少、品質の低下という状況になり、これは光害と称される。 As a night illumination apparatus installed outdoors, a white or yellow light source such as a mercury lamp, a fluorescent lamp, or a sodium lamp is generally used. When such a night illumination device using a light source is installed on a road or the like close to a vegetation area such as a field, the light is also irradiated to plants in the vegetation area at night. Decreased yield and reduced quality due to delayed flowering of short-day plants such as rice and soybeans, or early flowering of long-day plants such as spinach and broccoli. This is called light pollution.
 夜間低照度となる農地のような植生地域に近接する道路に街路灯、防犯灯を設置しようとするに際し、作物に影響を及ぼす光害に対する懸念から設置が許可されないという場合も少なからずある。このようなことから、夜間照明装置として光害を生じないようにすることが望まれ、また、検討されており、以下のような文献においてそのような夜間照明装置の技術に関して開示されている。 When trying to install street lights and security lights on roads close to vegetation areas such as farmland with low illuminance at night, there are not a few cases where installation is not permitted due to concerns about light pollution that affects crops. For this reason, it is desired and studied to prevent light pollution as a night illumination device, and the following literature discloses the technology of such a night illumination device.
 特許文献1には、下面を開口した灯体の内部に反射鏡、光源を配置し、光源の光中心の後方で光源の下方に遮光壁を灯体と一体的に突出形成し、後方への照射光の一部を遮光するようにした道路用照明器について記載されている。 In Patent Document 1, a reflecting mirror and a light source are arranged inside a lamp body having an open bottom surface, and a light shielding wall is formed integrally with the lamp body below the light source behind the light center of the light source. A road illuminator in which a part of the irradiation light is shielded is described.
 特許文献2には、蛍光水銀ランプ外球表面に酸化亜鉛と緑色無機顔料を混合したスラリーを蒸着し、紫外線放射をカットし、青色光を低減し、緑色光を増加した光質バランスの緑色フィルター付ランプにより植物の育成放射効率を低下させることについて記載されている。 Patent Document 2 discloses a green filter with a light quality balance in which a slurry mixed with zinc oxide and a green inorganic pigment is deposited on the outer surface of a fluorescent mercury lamp to cut ultraviolet radiation, reduce blue light, and increase green light. It describes about reducing the growth radiation efficiency of a plant with an attached lamp.
 特許文献3には、植物への花芽形成への影響が強い波長域の下限と防蛾効果が高い波長域の下限との間に分光放射エネルギーのピークを有し、分光放射エネルギーΦe(λ)とフィトクロムの分光吸収度Pr(λ)の積を560~700nmの区間で積分した値と460~580nmの波長域に含まれる放射束との比を0.05以下にした光源を備えた照明器具について記載されている。 Patent Document 3 has a spectral radiant energy peak between the lower limit of the wavelength range where the influence on flower bud formation on plants is strong and the lower limit of the wavelength range where the antifungal effect is high, and the spectral radiant energy Φe (λ). And a luminaire having a light source in which the ratio of the product of spectral absorption Pr (λ) of phytochrome in the section of 560 to 700 nm and the radiant flux included in the wavelength range of 460 to 580 nm is 0.05 or less Is described.
 特許文献4には、植生地域に近接した位置に設置するための街路灯として、植生地域側を含む範囲への照射を行うためには500~580nmの緑色光を発光する光源の光を用い、植生地域でない側への照射には500~580nmの緑色以外の波長域で指向性の高いLEDを組み合わせて用いるようにした街路灯について記載されている。 Patent Document 4 uses light from a light source that emits green light of 500 to 580 nm to irradiate a range including the vegetation area side as a street lamp for installation at a position close to the vegetation area. A street lamp is described that uses a combination of LEDs with high directivity in a wavelength range other than green of 500 to 580 nm for irradiation to a side that is not a vegetation region.
 特許文献5には、主成分として近赤外線発光蛍光体、青色発光蛍光体及び緑色発光蛍光体を含む顔料を内面塗料として塗布することにより近赤外線を照射し赤色光を遮蔽する近赤外線光蛍光灯について記載され、特許文献6には、水稲の出穂遅延を防止するために太陽光が照射される前に水稲に対して近赤外線光を照射することについて記載されている。 Patent Document 5 discloses a near-infrared fluorescent lamp that irradiates near-infrared light and shields red light by applying a pigment containing a near-infrared light-emitting phosphor, a blue-light-emitting phosphor, and a green light-emitting phosphor as main components as an inner surface paint. Patent Document 6 describes that near-infrared light is irradiated to paddy rice before sunlight is irradiated to prevent the heading delay of paddy rice.
 また、非特許文献1には、開花時期制御と夜間の光照射との関係について、数時間に及ぶ夜間のうちのわずか10分間のみの光照射により短日性植物の開花遅延が生じる暗期中断について記載され、非特許文献2には、植物の重要な機能である光合成とパルス発光との関係として、パルス発光周波数2.5kHz、デューティ比50%とした場合のサラダナの光合成速度が連続光の場合に比し23%増加する等に関して記載されている。 In addition, Non-Patent Document 1 discloses a dark period interruption in which flowering delay of short-day plants is caused by light irradiation for only 10 minutes of nighttime over several hours, regarding the relationship between flowering time control and nighttime light irradiation. In Non-Patent Document 2, as the relationship between photosynthesis and pulse emission, which are important functions of plants, the photosynthesis rate of Sardana when the pulse emission frequency is 2.5 kHz and the duty ratio is 50% is that of continuous light. It is described with respect to an increase of 23% compared to the case.
 特許文献1に示されるものでは、照明光源の一部を遮光することにより植物への光害は回避されるが、照明された明るい範囲とこれに隣接する遮光による暗闇とでは急激な照度変化が生じ、暗闇には危険が潜む可能性が生じ、かえって安全でない状態となる。特許文献2~4に示されるものでは、光害回避のために用いられる照明光源が緑色中心の光による照明になっており、演色性の高い自然な色彩の照明は困難になり、用途が限定される。 In the one shown in Patent Document 1, light damage to the plant is avoided by shielding a part of the illumination light source, but there is an abrupt change in illuminance between the illuminated bright area and the darkness due to the shading adjacent to the illuminated area. This creates the potential for danger in the darkness, which is rather unsafe. In those shown in Patent Documents 2 to 4, the illumination light source used for avoiding light pollution is illumination with green-centered light, making it difficult to illuminate natural colors with high color rendering properties and limited applications. Is done.
 特許文献5,6に示されるように照明照射後の適時に近赤外光を照射するものでは、近赤外光が対人照明としては機能しないために、同等の照度の照明機器と比較して機器全体の消費電力が上昇し、近赤外光の照射範囲が肉眼で把握できないために、設置時の配光調整には高度の技術と高価な基材が必要となる。また、近赤外光の照射が過剰になると、もともとの光害とは逆の作用の光害、例えば開花遅延対策で過剰照射した場合には早期開花が生じ、やはり品質に影響を及ぼす。 As shown in Patent Documents 5 and 6, when near-infrared light is irradiated in a timely manner after illumination, near-infrared light does not function as interpersonal illumination, so compared to lighting equipment with equivalent illuminance Since the power consumption of the entire device increases and the irradiation range of near-infrared light cannot be grasped with the naked eye, advanced technology and an expensive base material are required for light distribution adjustment at the time of installation. In addition, when the near-infrared light is excessively irradiated, if the light damage is the opposite of the original light damage, for example, when it is excessively irradiated as a countermeasure against flowering delay, early flowering occurs, which also affects the quality.
 また、植物の開花減少に及ぼす夜間照明の影響については、非特許文献1,2のような従来の研究においても特に取り上げられていない。 Also, the influence of night lighting on the decrease in flowering of plants has not been taken up in conventional studies such as Non-Patent Documents 1 and 2.
特開2000-222911号公報JP 2000-222911 A 特開2005-216572号公報JP 2005-216572 A 特開2004-121217号公報JP 2004-121217 A 特開2008-226567号公報JP 2008-226567 A 特開2006-244910号公報JP 2006-244910 A 特開2006-271374号公報JP 2006-271374 A
 植生地域に近接した箇所に設置する夜間照明装置の場合、夜間照明により光害が生じることが考えられ、光害によってイネのような農作物の場合、等級低下による価格減少とともに収量減少をもきたすというような影響を免れられないことにもなって、生産者としては夜間照明装置の設置に対し懸念を抱くことにもつながる。このようなことから、光害を回避できる夜間照明装置について従来検討がなされている。 In the case of a night lighting device installed in the vicinity of the vegetation area, light damage may be caused by night lighting, and in the case of crops such as rice due to light damage, the yield will decrease along with the price reduction due to the grade reduction. As a result, it is inevitable that such an influence will arise, and the producer will also have concerns about the installation of the night lighting device. For this reason, studies have been made on night illumination devices that can avoid light pollution.
 このうち、光源からの光の一部を遮光して植物側に光が照射されないようにするものでは、照明された明るい範囲とこれに隣接する遮光による暗闇とでは急激な照度変化が生じるということから夜間照明による安全性への問題が解消されないことになり、光源の波長域を限定するものでは、対人照明として自然な照明とするのは困難になって用途が限られ、また、補足的に近赤外光を照射するものでは、機器全体の消費電力が上昇し設置時の配光調整が煩雑になるというような問題があり、光害を回避し簡易で有効な夜間照明装置とするための技術はこれまでに提示されていなかった。 Of these, when the light from the light source is partially blocked so that the plant side is not irradiated with light, a rapid change in illuminance occurs between the illuminated bright area and the darkness caused by the light shielding adjacent to it. The problem of safety due to nighttime lighting will not be solved, and if the wavelength range of the light source is limited, it becomes difficult to make natural lighting as interpersonal lighting, and the use is limited. For devices that irradiate near-infrared light, there is a problem that the power consumption of the entire device increases and the light distribution adjustment during installation becomes complicated. The technology has not been presented so far.
 また、光害を回避できる夜間照明装置を構成する上では、光源が光害を生じるものか否かについての評価を適切かつ簡易に行う方法が必要とされるが、そのような光源が植物に及ぼす光害の評価方法についての有効な技術手法はこれまで提示されていなかった。
 このような状況から、夜間照明による植物への光害の評価を適切に行う方法を示すこと、また、光害を回避できる実際的かつ有効性のある照明装置を与えることが課題とされていた。
Moreover, in constructing a night illumination device that can avoid light pollution, a method for appropriately and simply evaluating whether or not the light source causes light pollution is required. An effective technique for evaluating the effects of light pollution has not been proposed.
From such a situation, it has been a problem to provide a method for appropriately evaluating light pollution to plants by night lighting, and to provide a practical and effective lighting device that can avoid light pollution. .
 本発明は、前述の課題を解決すべくなしたものであり、本発明による夜間照明による植物への光害の評価方法は、植生地域に近接して設置される照明装置が植物に及ぼす光害を評価する方法であって、夜間照明を行うための人工気象器と夜間照明を行わない人工気象器とを用意することと、開花誘導遺伝子の発現時まで人工気象器内で複数株の植物を育成することと、開花誘導遺伝子の発現後に前記夜間照明を行うための人工気象器内に一部の株の植物を入れて1回以上の夜間期間を経過させた後に葉身を採取し処理して全RNAを抽出し、目的とする遺伝子の発現量について該遺伝子のmRNA量を定量的に解析することにより夜間照明条件下での遺伝子発現量Aを求めることと、開花誘導遺伝子の発現後に前記夜間照明を行わない人工気象器内に他の株の植物を入れて1回以上の夜間期間を経過させた後に葉身を採取し処理して全RNAを抽出し、目的とする遺伝子の発現量について該遺伝子のmRNA量を定量的に解析することにより夜間照明なしの条件下での遺伝子発現量Bを求めることと、前記夜間照明条件下での遺伝子発現量Aと夜間照明なしの条件下での遺伝子発現量Bとの比としての光害回避割合を求めることと、からなるものである。
 前記植物がイネの場合、開花誘導遺伝子はHd3aである。
The present invention has been made to solve the above-mentioned problems, and the method for evaluating light damage to plants by night illumination according to the present invention is based on light damage caused to a plant by a lighting device installed in the vicinity of a vegetation area. A multi-spot plant in the meteorological instrument until the expression of the flowering induction gene. After planting and planting some plants in an artificial meteor for performing night illumination after expression of the flowering-inducing gene, and after having passed one or more night periods, the leaf blades are collected and processed. Total RNA is extracted, and the expression level of the target gene is quantitatively analyzed to determine the gene expression level A under night-lighting conditions, and after expression of the flowering induction gene, Artificial air without night lighting After putting a plant of another strain in the vessel and letting go through one or more night periods, extract the leaf blades and extract the total RNA, and determine the mRNA level of the gene for the target gene expression level. Quantitative analysis is performed to determine the gene expression level B under night illumination conditions, and the gene expression level A under night illumination conditions and gene expression level B under night illumination conditions. And determining the light pollution avoidance ratio as a ratio.
When the plant is rice, the flowering induction gene is Hd3a.
 本発明は、前記夜間照明に用いられる光源についての平均演色評価数を求めることをさらに含み、前記夜間照明による植物への光害の評価方法により求められた前記光害回避割合と前記平均演色評価数とから夜間照明の光源の特性を評価するようにした夜間照明の特性評価方法としてもよい。前記植物がイネの場合、開花誘導遺伝子はHd3aである。 The present invention further includes obtaining an average color rendering index for the light source used for the night illumination, and the light pollution avoidance ratio and the average color rendering evaluation obtained by the method for evaluating light damage to plants by the night illumination. It is good also as the characteristic evaluation method of the night illumination which evaluated the characteristic of the light source of night illumination from the number. When the plant is rice, the flowering induction gene is Hd3a.
 本発明による光害回避照明装置は、パルス駆動装置により所定のパルス発光周波数およびデューティ比で駆動されるようにした特定色成分のパルス発光光源またはそれぞれ異なる色成分を有しパルス駆動装置により所定のパルス発光周波数およびデューティ比で駆動されるようにした複数種類のパルス発光光源を組み合わせた光源を用いた照明装置であって、前記特定色成分のパルス発光光源または複数種類のパルス発光光源を組み合わせた光源に対して前記夜間照明による植物への光害の評価方法により求められた光害回避割合が0.8以上になるように前記特定色成分のパルス発光光源または複数種類のパルス発光光源を組み合わせた光源における各々の種類のパルス発光光源のパルス発光周波数及びデューティ比を設定してなるものである。 The light pollution avoiding illumination device according to the present invention has a specific color component pulsed light source or a different color component driven by a pulse driving device at a predetermined pulse emission frequency and duty ratio. An illumination device using a light source combining a plurality of types of pulsed light sources that are driven at a pulsed light emission frequency and duty ratio, wherein the pulsed light source of the specific color component or a plurality of types of pulsed light sources are combined The pulse light source of the specific color component or a plurality of types of pulse light sources are combined so that the light damage avoidance ratio obtained by the method for evaluating light damage to plants by night illumination with respect to the light source is 0.8 or more Set the pulse emission frequency and duty ratio of each type of pulsed light source A.
 前記特定色成分のパルス発光光源を青色発光ダイオードとした場合には、該青色発光ダイオードをパルス発光周波数300~2700Hz、デューティ比10~90%で駆動するものとし、前記特定色成分のパルス発光光源を緑色発光ダイオードとした場合には、該緑色発光ダイオードをパルス発光周波数50~1000Hz、デューティ比20~90%で駆動するものとし、前記特定色成分のパルス発光光源が黄緑色発光ダイオードとした場合には、該黄緑色発光ダイオードをパルス発光周波数500~2700Hz、デューティ比10~90%で駆動するものとするのがよい。 When the pulse light source of the specific color component is a blue light emitting diode, the blue light emitting diode is driven at a pulse light emission frequency of 300 to 2700 Hz and a duty ratio of 10 to 90%. When the green light emitting diode is a green light emitting diode, the green light emitting diode is driven at a pulse light emission frequency of 50 to 1000 Hz and a duty ratio of 20 to 90%, and the pulse light source of the specific color component is a yellow green light emitting diode. In this case, the yellow-green light emitting diode is preferably driven at a pulse emission frequency of 500 to 2700 Hz and a duty ratio of 10 to 90%.
 また、本発明による光害回避照明装置は、それぞれ異なる色成分を有しパルス駆動装置により所定のパルス発光周波数およびデューティ比で駆動されるようにしたパルス発光光源を組み合わせた光源を用いた照明装置であって、前記複数種類のパルス発光光源を組み合わせた光源に対して前記夜間照明による植物への光害の評価方法により求められた光害回避割合が0.8以上になるように前記複数種類のパルス発光光源を組み合わせた光源における各々の種類のパルス発光光源のパルス発光周波数及びデューティ比を設定するとともに、光源全体としての平均演色評価数が60以上となるような前記複数種類のパルス発光光源の組み合わせとしたものとしてもよい。 Further, the light pollution avoiding illumination apparatus according to the present invention is an illumination apparatus using a light source that is a combination of pulsed light sources each having a different color component and driven by a pulse driving device at a predetermined pulsed light emission frequency and duty ratio. The light damage avoidance ratio determined by the method for evaluating light damage to plants by night illumination with respect to a light source combining the plurality of kinds of pulsed light source is 0.8 or more. The plurality of types of pulsed light sources that set the pulsed light emission frequency and duty ratio of each type of pulsed light source in the light source that combines the above-mentioned pulsed light sources, and that the average color rendering index as the whole light source is 60 or more It may be a combination of the above.
 前記複数のパルス発光光源が青色発光ダイオードと黄緑色発光ダイオードを少なくとも含むものとしてもよく、また、前記複数のパルス発光光源が青色発光ダイオード、緑色発光ダイオードおよび黄緑色発光ダイオードからなるものとしてもよい。 The plurality of pulsed light sources may include at least a blue light emitting diode and a yellow-green light emitting diode, and the plurality of pulsed light sources may include a blue light emitting diode, a green light emitting diode, and a yellow green light emitting diode. .
 本発明では、夜間照明の条件下および夜間照明なしの条件下でそれぞれ求められた遺伝子発現量から光害回避割合を用いることにより適切かつ有効に夜間照明による光害への評価を行うことができる。光害の評価を行うための設備としては、人工気象器を用いることにより簡易な設備、測定器具を用いて行うことができ、また、実際の開花前に発現が始まる開花誘導遺伝子の発現量を用いて評価することから、開花を観察する従来法よりも時間を短縮した形で行うことができる。イネの場合について言えば、屋外で観察する場合光害の評価は通常1年に1回の実施となるが、人工気象器を用いる本発明の場合光害の評価は、出芽後5週目のイネを用いて照明し評価を行うため、1年に10回程度の実施が可能であり、従来法での屋外で行う場合に比し5~10倍、人工気象器を用いて開花到達日数を確認する従来法に比しても2.5倍以上の時間短縮効果がある。さらに、夜間照明の光源の平均演色評価数を求め光害回避割合と合わせて夜間照明装置としての適切性についての評価を行うことができる。 In the present invention, it is possible to appropriately and effectively evaluate light damage caused by night lighting by using the light damage avoidance ratio from the gene expression level obtained under night lighting conditions and without night lighting conditions. . As equipment for evaluating light pollution, it is possible to use simple equipment and measuring instruments by using an artificial meteorograph, and the expression level of a flowering induction gene that starts expression before actual flowering can be determined. Since it is used and evaluated, it can be carried out in a form in which the time is shorter than the conventional method of observing flowering. In the case of rice, when observing outdoors, the evaluation of light pollution is usually carried out once a year, but in the case of the present invention using an artificial meteor, the evaluation of light pollution is 5 weeks after emergence. Since it is illuminated and evaluated using rice, it can be carried out about 10 times a year, and the number of days to reach flowering can be increased by using a meteorological instrument 5-10 times compared to the case where it is performed outdoors using the conventional method. Even if compared with the conventional method to be confirmed, there is an effect of shortening the time by 2.5 times or more. In addition, the average color rendering index of the light source for night illumination can be obtained, and the suitability as a night illumination device can be evaluated together with the light pollution avoidance ratio.
本発明の夜間照明の特性評価方法により導き出された最適なパルス発光周波数およびデューティ比に制御されたパルス発光光源を用いた照明装置では、フィトクロムの吸収波長域560から700nmの範囲に含まれ、本来光害を起こしうる黄緑色のみならず、この波長域外であり、もともと光害を起こしにくいとされてきた青色、緑色についても光外回避割合を1以上に高めることができる。そのように、適切に制御されたパルス発光の青色、緑色、黄緑色の照明は、他の一般照明(水銀灯等)と比較して、同等の演色性を維持しながら、より高照度の照射を行っても、農作物(イネ)への光害をほとんど生じないようにすることができる。 The illumination apparatus using the pulsed light source controlled to the optimum pulsed light emission frequency and duty ratio derived by the nighttime illumination characteristic evaluation method of the present invention is included in the phytochrome absorption wavelength range of 560 to 700 nm. In addition to yellowish green that can cause light pollution, the out-of-light avoidance ratio can be increased to 1 or more for blue and green that are outside this wavelength range and originally considered to be less likely to cause light pollution. As such, appropriately controlled pulsed blue, green, and yellow-green illuminations provide higher illumination while maintaining equivalent color rendering compared to other general lighting (such as mercury lamps). Even if you go, you can make little light pollution to the crops (rice).
 本発明による照明装置では、異なる色成分を有する複数種類のパルス発光光源を組み合わせた光源により照明装置を構成し、それぞれの種類のパルス発光光源のパルス発光周波数およびデューティ比を適宜設定することにより光害回避照明装置とすることができる。パルス発光光源を用いることにより光源要素として連続発光光源に比較して光害回避割合が高いものを選択することができ、多種の発光周波数、デューティ比のものの組み合わせとすることで光源要素の選択性が多様になる。さらには人に自然な感覚が得られるような複数種類のパルス発光光源の組み合わせとすることができる。 In the illuminating device according to the present invention, the illuminating device is constituted by a light source in which a plurality of types of pulsed light sources having different color components are combined, and light is obtained by appropriately setting the pulse emission frequency and duty ratio of each type of pulsed light source. It can be a harm avoidance lighting device. By using a pulsed light source, it is possible to select a light source element that has a higher light damage avoidance ratio than a continuous light source, and by combining various light emission frequencies and duty ratios, the selectivity of the light source element Become diverse. Furthermore, it can be a combination of a plurality of types of pulsed light sources that give a natural sense to humans.
照明光源についての光害回避性の評価と、夜間照明としての特性の評価とをフローとして示す図である。It is a figure which shows the evaluation of the light pollution avoidance about an illumination light source, and the evaluation of the characteristic as night illumination as a flow. (a)~(f):種々の波長の光源についてデューティ比10%の場合のパルス発光周波数に応じて求められた光害回避割合を示す図である。(A)-(f): It is a figure which shows the light pollution avoidance ratio calculated | required according to the pulse light emission frequency in case the duty ratio is 10% about the light source of various wavelengths. 青色LEDについてパルス発光周波数およびデューティ比による光害回避割合を示す図である。It is a figure which shows the light pollution avoidance ratio by a pulse light emission frequency and a duty ratio about blue LED. 緑色LEDについてパルス発光周波数およびデューティ比による光害回避割合を示す図である。It is a figure which shows the light pollution avoidance ratio by a pulse light emission frequency and a duty ratio about green LED. 黄緑色LEDについてパルス発光周波数およびデューティ比による光害回避割合を示す図である。It is a figure which shows the light pollution avoidance ratio by a pulse light emission frequency and a duty ratio about yellow green LED. 連続発光時の各色の光源についての光害回避割合を示す図である。It is a figure which shows the light pollution avoidance ratio about the light source of each color at the time of continuous light emission. 光害回避照明装置の例による発光スペクトルを白色光源、緑色単色光源の発光スペクトルとともに示した図である。It is the figure which showed the light emission spectrum by the example of a light pollution avoidance lighting apparatus with the light emission spectrum of a white light source and a green monochromatic light source. 青色、緑色、黄緑色のLEDをそれぞれ複数組み合わせて構成した光害回避LED照明光源の例、水銀灯照明光源、蛍光灯照明光源の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the example of the light pollution avoidance LED illumination light source comprised by combining multiple blue, green, and yellow green LED, respectively, a mercury lamp illumination light source, and a fluorescent lamp illumination light source. 光害回避照明装置の光害回避を確認する試験の結果を示す図である。It is a figure which shows the result of the test which confirms the light pollution avoidance of a light pollution avoidance lighting apparatus. イネを栽培している屋外水田圃場に設置した光害回避LED照明、蛍光灯照明、水銀灯照明についての開花遅延日数を示す図である。It is a figure which shows the flowering delay days about the light pollution avoidance LED lighting installed in the outdoor paddy field which cultivates rice, fluorescent lamp lighting, and mercury lamp lighting.
 本発明では、夜間照明による光害への評価を行うに際し、夜間照明を行う人工気象器内で栽培した植物から採取された試料についてデータを取得し、開花誘導遺伝子発現について解析して夜間照明が光害回避性か否かの評価を行うことについて検討し、また、植生地域に近接して設置される夜間照明装置に関して、光源の動作形態と植物への光害の影響との関係について検討した上で、特に光源としてパルス発光型の光源を用い、パルス発光の周波数及びデューティ比を種々変化させた場合における開花誘導遺伝子の発現量を求めることによる植物への光害の評価を行い、光害回避照明装置としての条件について検討を行っている。 In the present invention, when evaluating the light pollution by night illumination, data is obtained about a sample collected from a plant cultivated in an artificial meteor that performs night illumination, and flowering-induced gene expression is analyzed to analyze night illumination. We examined the evaluation of whether or not it is light pollution avoidance, and also examined the relationship between the operation mode of the light source and the effects of light pollution on the plants for the night lighting equipment installed in the vicinity of the vegetation area. In the above, light damage to plants was evaluated by determining the expression level of flowering-inducible genes when pulse light emission type light source was used as the light source and the frequency and duty ratio of pulse light emission were varied. We are studying the conditions for the avoidance lighting device.
 最初に、短日性植物であるイネを評価の対象となる植物として用い、夜間照明が植物に及ぼす光害の評価について説明する。試料の採取、開花誘導遺伝子発現量の解析は次のような過程を経るものである。 First, we will explain the evaluation of light pollution caused by night lighting on plants, using rice, which is a short-day plant, as the plant to be evaluated. Sample collection and flowering-induced gene expression level analysis are performed as follows.
(1)イネ試料の育成、処理、採取
 人工気象器内でイネの開花を促進する短日条件(昼間8時間/夜間16時間)で開花誘導遺伝子の発現が確認される状態(出芽後約5週間)まで育成した。その際、人工気象器内には、波長、パルス発光周波数、デューティ比を任意の値に制御可能なLEDあるいは有機ELによる夜間照明装置を設置し、照明時の照度設定は、社団法人日本防犯設備協会による防犯灯の照度基準(SES E1901-1 クラスA)の平均水平面照度5ルクス以上とした。
(1) Breeding, treatment, and collection of rice samples Expression of flowering-inducible genes is confirmed under short-day conditions (8 hours in the day / 16 hours at night) that promote rice flowering in an artificial meteorological instrument (about 5 after germination) Week). At that time, a night illumination device with LED or organic EL that can control the wavelength, pulse emission frequency, and duty ratio to arbitrary values is installed in the artificial weather device. The average horizontal illuminance was 5 lux or more according to the standard of illuminance of crime prevention lights (SES E1901-1 class A) by the association.
 夜間照明をした人工気象器と、設置していない人工気象器とを用意し、開花誘導遺伝子が確認されたイネを2組に分け、夜間照明を設置した人工気象器に一方の組のイネを入れ、また、夜間照明を設置していない人工気象器に他方の組のイネを入れ、1回以上の夜間に遭遇させるようにした。夜間終了の直前にイネの葉身を採取し、液体窒素で凍結し、50mLサンプルチューブに採取し、液体窒素で冷却した解剖鋏で数mm角程度に破砕し-80度で保存した。 Prepare an artificial meteor with night illumination and an artificial meteor that is not installed, divide rice with flowering induction genes into two groups, and put one set of rice into an artificial meteor with night illumination In addition, the other set of rice was put into a meteorological instrument that was not equipped with night lighting so that it would encounter more than one night. Immediately before the end of the night, rice leaf blades were collected, frozen in liquid nitrogen, collected in a 50 mL sample tube, crushed to a few mm square with a dissecting scoop cooled with liquid nitrogen, and stored at −80 degrees.
(2)RNA抽出
 冷凍保存しておいた葉身を2mLサンプルチューブに50~65mg秤量し、液体窒素で凍結した状態で粉砕機(オートミル:株式会社トッケン)を用いて粉砕した。RNA抽出にはRNイージープラント・ミニキット(RNeasy Plant Mini Kit:株式会社キアゲン)を用い、自動抽出装置(QIAcube:株式会社キアゲン)により試薬および装置のプロトコルにしたがって全RNAの抽出を行った。抽出したRNAは吸光度計(Nanodrop ND-1000:サーモ・フィッシャー・サイアンティフィク社)により純度および濃度を測定した。
(2) RNA extraction 50-65 mg of freshly stored leaf blades were weighed into a 2 mL sample tube, and crushed using a pulverizer (Automill: Tokken Co., Ltd.) while frozen in liquid nitrogen. For RNA extraction, RNeasy Plant Mini Kit (Qiagen Co., Ltd.) was used, and total RNA was extracted by an automatic extraction apparatus (QIAcube: Qiagen Co., Ltd.) according to the reagent and protocol of the apparatus. The purity and concentration of the extracted RNA were measured with an absorptiometer (Nanodrop ND-1000: Thermo Fisher Scientific).
(3)cDNA合成
 (2)より得られたRNAからクァンティテクト・リバース・トランスクリプション・キット(Quantitect Reverse Transcription Kit:株式会社キアゲン)を用い、試薬のプロトコルに従いゲノム由来のDNAの除去とcDNAの合成を行った。合成したcDNAは上記の吸光度計により純度および濃度を測定した。
(3) cDNA synthesis Using the Quantitect Reverse Transcription Kit (Qiagen) from the RNA obtained from (2), removal of genomic DNA and cDNA according to the reagent protocol Was synthesized. The synthesized cDNA was measured for purity and concentration using the above-mentioned absorbance meter.
(4)リアルタイムPCR
 (3)により得られたcDNAおよびローター・ジーンSYBRグリーン・キット(Rotor-Gene SYBR Green Kit:株式会社キアゲン)と以下のプライマーセットを用いて3ローター・ジーンQ(Rotor-Gene Q:株式会社キアゲン)によりリアルタイムPCRを行い、イネ開花誘導遺伝子(Hd3a)のmRNA(メッセンジャーRNA)の発現量を定量した。
  フォワードプライマー 5’-GCTCACTATCATCATCCAGCATG-3’(配列番号1)
  リバースプライマー 5’-CCTTGCTCAGCTATTTAATTGCATAA-3’(配列番号2)
(4) Real-time PCR
Using the cDNA obtained in (3) and the Rotor-Gene SYBR Green Kit (Qiagen) and the following primer set, the 3-Rotor Gene Q (Qiagen) ) And real-time PCR was performed to quantify the expression level of rice flowering induction gene (Hd3a) mRNA (messenger RNA).
Forward primer 5'-GCTCACTATCATCATCCAGCATG-3 '(SEQ ID NO: 1)
Reverse primer 5'-CCTTGCTCAGCTATTTAATTGCATAA-3 '(SEQ ID NO: 2)
 その際、Hd3aのmRNAの発現量は、ユビキチン(ubq)のmRNAを内部標準遺伝子として使用し、相対定量法で示した。ユビキチンのmRNAの発現量を定量するためのプライマーセットは、以下に示した通りであった。
  フォワードプライマー 5’-AACCAGCTGAGGCCCAAGA-3’(配列番号3)
  リバースプライマー 5’-ACGATTGATTTAACCAGTCCATGA-3’(配列番号4)
 以上から、ubq-mRNA発現量に対するHd3a-mRNA発現量の比をHd3a-mRNAの相対発現量とした。
At that time, the expression level of Hd3a mRNA was shown by a relative quantification method using ubiquitin (ubq) mRNA as an internal standard gene. The primer set for quantifying the expression level of ubiquitin mRNA was as shown below.
Forward primer 5'-AACCAGCTGAGGCCCAAGA-3 '(SEQ ID NO: 3)
Reverse primer 5'-ACGATTGATTTAACCAGTCCATGA-3 '(SEQ ID NO: 4)
Based on the above, the ratio of the Hd3a-mRNA expression level to the ubq-mRNA expression level was taken as the relative expression level of Hd3a-mRNA.
 上述の(1)~(4)の過程で求められた遺伝子発現量について、夜間照明下での遺伝子発現量をA、夜間照明のない条件下での遺伝子発現量をBとし、A/Bを光害回避割合とする。光害回避割合が高いほど光害を受ける可能性が低いものと考えられる。上述(1)~(4)の過程でのイネの試料が得られた人工気象器に用いられた夜間照明の光源の波長、パルス発光周波数、デューティ比の各組み合わせごとに光害回避割合を求める。
 このような過程により、照明光源についての光害回避性についての評価がなされる。
Regarding the gene expression level obtained in the above steps (1) to (4), A is the gene expression level under night illumination, B is the gene expression level under no night lighting, and A / B Use light pollution avoidance ratio. The higher the light pollution avoidance ratio, the lower the possibility of light pollution. Calculate the light pollution avoidance ratio for each combination of the wavelength, pulse emission frequency, and duty ratio of the light source of the night illumination used in the artificial meteor that obtained the rice sample in the process of (1) to (4) above. .
Through such a process, the light pollution avoidance of the illumination light source is evaluated.
 続いて、夜間照明の光源の色に対して分光的方法により平均演色評価数Raを求める。演色性評価については、JIS Z 8726に規定されているが、人にとって自然な色彩であるかという程度として平均演色評価数を用いて判断するものであり、最も自然な色彩とする基準光の場合にRa=100とし、評価対象光源と基準光との合致程度をスコア化する。 Subsequently, an average color rendering index Ra is obtained by a spectroscopic method for the color of the light source for night illumination. The color rendering evaluation is defined in JIS Z 8726, but it is judged using the average color rendering index as the degree of natural color for humans. In the case of reference light with the most natural color Ra = 100, and the degree of matching between the evaluation target light source and the reference light is scored.
 試料光の色と基準光による試験色との色空間上の距離(ΔE)を求め、15の試験色について特殊演色評価数Riを
     Ri=100-4.6・ΔE  (i=1~15)
により求める。平均演色評価数Raは
     Ra=(R1+R2+・・・・+R8)/8
により求められるものである。
The distance (ΔE) in the color space between the color of the sample light and the test color by the reference light is obtained, and the special color rendering index Ri for the 15 test colors is Ri = 100-4.6 · ΔE (i = 1 to 15)
Ask for. The average color rendering index Ra is Ra = (R1 + R2 +... + R8) / 8
Is required.
 本発明の光害回避照明装置の光源としては、光害を回避することから、光害回避割合を高くするとともに、なるべく自然な照明の感覚が得られるように平均演色評価数も高くなるようにするものである。照明の使用用途に応じて適合する演色性Raの数値範囲は一般的に表1のようになるとされる。右欄は対応するランプの種類を示したものである。 As a light source of the light pollution avoidance lighting device of the present invention, since light pollution is avoided, the light pollution avoidance ratio is increased, and the average color rendering index is also increased so as to obtain a natural lighting sensation as much as possible. To do. Table 1 generally shows the numerical range of the color rendering property Ra that is adapted to the usage application of illumination. The right column shows the corresponding lamp type.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試料の採取から光害回避割合の評価に至る照明光源についての光害回避割合の評価の過程と、照明光源について求めた平均演色評価数を合わせて行う夜間照明としての特性の評価とを全体的にフローとして示すと図1のようになる。図1にフローとして示した光害回避割合の評価の過程において、人工気象器内で短日条件のもとに栽培されたイネの場合に、開花誘導遺伝子の発現が確認されるまでの期間が約5週間となっているが、同じ種類の植物についてこの期間はほぼ一定であると言えるので、1度この開花誘導遺伝子の発現を確認した後は、同一種植物に関しては再度開花誘導遺伝子の発現の確認をすることなく、その期間(イネの場合について約5週間)を経過後に図1のフローでの次の段階に移行してもよい。図1のフローにおいて、「開花誘導遺伝子の発現が確認されるまで」としているのは、このような蓋然性の上で発現したものとみなすということを含めた意味合いのものである。 The process of evaluating the light pollution avoidance ratio for the illumination light source, from sampling to evaluation of the light pollution avoidance ratio, and the evaluation of the characteristics as the nighttime illumination performed by combining the average color rendering index obtained for the illumination light source as a whole Fig. 1 shows the flow. In the process of evaluating the light pollution avoidance ratio shown as a flow in FIG. 1, in the case of rice cultivated under short-day conditions in an artificial meteorological instrument, the period until the expression of the flowering induction gene is confirmed is Although it is about 5 weeks, it can be said that this period is almost constant for the same type of plant, so after confirming the expression of this flowering induction gene once, the expression of the flowering induction gene is again performed for the same type of plant. Without confirming the above, after the period (about 5 weeks in the case of rice) has elapsed, the process may move to the next stage in the flow of FIG. In the flow of FIG. 1, “until the expression of a flowering induction gene is confirmed” has a meaning including the fact that it is considered to be expressed on such a probability.
 また、評価対象となる遺伝子のmRNA量を定量的に解析するために、図1のフローにおいてはリアルタイムPCRを用いているが、mRNAを定量的に解析する手法としては、例えばノーザンブロットのような他の解析手法を用いてもよい。 In addition, in order to quantitatively analyze the amount of mRNA of the gene to be evaluated, real-time PCR is used in the flow of FIG. 1. As a method for quantitatively analyzing mRNA, for example, Northern blotting is used. Other analysis methods may be used.
 実際の例として、水平面照度を5lx、デューティ比を10%としパルス発光周波数を種々変化させた照明光源LEDのもとでイネ(コシヒカリ)について実施した測定結果について、種々の波長の光源についてパルス発光周波数に応じて求められた光害回避割合を示すと図2のようになった。このうち(b)青色、(c)緑色、(d)黄緑色で光害回避割合が比較的高く、(e)黄色ではそれらより低い値になり、それぞれパルス発光周波数により光害回避割合がある程度異なってくることがわかる。また、(a)紫色と(f)赤色の場合には光害回避割合が非常に低い値になっている。 As an actual example, measurement results of rice (Koshihikari) under the illumination light source LED with a horizontal illuminance of 5 lx, a duty ratio of 10%, and various pulse emission frequencies varied, and pulse emission of light sources of various wavelengths FIG. 2 shows the light pollution avoidance ratio obtained according to the frequency. Of these, (b) blue, (c) green, and (d) yellow-green have relatively high light pollution avoidance ratios, and (e) yellow has a lower value than those, and the light pollution avoidance ratios to some extent depend on the pulse emission frequency. I can see that they are different. In the case of (a) purple and (f) red, the light pollution avoidance ratio is very low.
 さらに、水平面照度を5lxとし、デューティ比とパルス発光周波数とを変化させた時の測定結果から求められた光害回避割合を示すと、青色LED光源の場合が図3、緑色LED光源の場合が図4,黄緑色LEDの場合が図5のようになった。図3の青色ではパルス発光周波数700Hz、デューティ比60%で光害回避割合が特に高くなり、図4の緑色ではパルス発光周波数50Hz付近、デューティ比60%、90%で特に光害回避割合が高くなり、また、図5の黄緑色ではパルス発光周波数700Hz、デューティ比70%付近で特に光害回避割合が高くなっている。 Furthermore, when the horizontal plane illuminance is 5 lx and the duty ratio and the pulse emission frequency are changed, the light pollution avoidance ratio obtained from the measurement result is shown in FIG. FIG. 4 shows the case of yellow-green LED as shown in FIG. The blue light in FIG. 3 has a particularly high light damage avoidance ratio at a pulse emission frequency of 700 Hz and a duty ratio of 60%, and the green light in FIG. 4 has a particularly high light damage avoidance ratio at a pulse light emission frequency of around 50 Hz, a duty ratio of 60% and 90%. Further, in the yellow-green color of FIG. 5, the light pollution avoidance ratio is particularly high near the pulse emission frequency of 700 Hz and the duty ratio of 70%.
 前述したように、光害回避割合は夜間照明下での遺伝子発現量(A)と、夜間照明のない条件下での遺伝子発現量(B)とから、A/Bの形で規定される量であり、試料に関し光害を回避するものの割合に対応するものとして表すための指標として用いられるが、全体に対する割合そのものとして表現される数量となっているのではない。このことから、図2~5に示される結果として、光害回避割合として高い数値は1.0を超えるようにもなる。絶対的割合というより、相対的割合としての指標となる数量を表している。 As described above, the light pollution avoidance ratio is an amount defined in the form of A / B from the gene expression level under night illumination (A) and the gene expression level under night illumination conditions (B). Although it is used as an index for representing the sample as a ratio corresponding to the ratio of avoiding light pollution, the quantity is not expressed as the ratio to the whole. Therefore, as a result shown in FIGS. 2 to 5, the high numerical value of the light pollution avoidance ratio exceeds 1.0. It represents a quantity that is an index as a relative ratio rather than an absolute ratio.
 照明光源の光害回避割合の値として望ましいのは1.0以上の値であるが、実際的には光害回避割合が0.8以上であれば実用に供するものと考えられる。緑色光の場合は連続光では光害回避割合が0.70程度であり、50Hz,デューティ比60%のパルス発光で1.34であるが、図3~5のような結果からすれば、青色光や黄緑色光についてもパルス発光周波数、デューティ比を適宜選択することにより光害回避割合として適合するものが得られる。 The value of the light pollution avoidance ratio of the illumination light source is preferably a value of 1.0 or more, but in practice, if the light pollution avoidance ratio is 0.8 or more, it is considered to be practically used. In the case of green light, the light pollution avoidance ratio is about 0.70 for continuous light, and 1.34 for pulse emission with 50 Hz and a duty ratio of 60%. From the results shown in FIGS. As for light and yellow-green light, those suitable as the light pollution avoidance ratio can be obtained by appropriately selecting the pulse emission frequency and the duty ratio.
 光害回避割合の面から好ましい発光光源を考えると、図3から、青色発光ダイオードの場合についてはパルス発光周波数300~2700Hz、デューティ比10~90%で駆動するものとし、図4から、緑色発光ダイオードの場合についてはパルス発光周波数50~1000Hz、デューティ比20~90%で駆動するものとし、図5から、黄緑色発光ダイオードの場合についてはパルス発光周波数500~2700Hz、デューティ比10~90%で駆動するものとするのがよい。 Considering a preferred light emission source from the aspect of avoiding light pollution, it is assumed from FIG. 3 that the blue light emitting diode is driven at a pulse emission frequency of 300 to 2700 Hz and a duty ratio of 10 to 90%, and from FIG. In the case of a diode, it is assumed to be driven with a pulse emission frequency of 50 to 1000 Hz and a duty ratio of 20 to 90%. From FIG. 5, in the case of a yellow-green light emitting diode, the pulse emission frequency is 500 to 2700 Hz and the duty ratio is 10 to 90%. It should be driven.
 本発明においては、光源としてパルス発光型の光源を用いているが、光害回避割合について対比するという意味で、照度5ルクスで連続発光時の各色の光源についての光害回避割合を図6に示す。図中の数値は光害回避割合、誤差棒は標準偏差をそれぞれ示している。光害回避割合が0.8以上となっているのは青色のみであり、特に特許文献3記載の開花への影響が強いフィトクロムの吸収波長域560nm~700nmの範囲内にある黄緑色、黄色、赤色はともに連続光条件では光害回避割合が低いことがわかる。また、図6を図3~5の場合と対比すると、パルス発光周波数およびデューティ比による青色、緑色、黄緑色の光害回避割合の向上効果がより顕著になることがわかる。 In the present invention, a pulse light emission type light source is used as the light source, but the light damage avoidance ratio for each color light source at the time of continuous light emission at an illuminance of 5 lux is shown in FIG. Show. The numerical values in the figure indicate the light pollution avoidance ratio, and the error bars indicate the standard deviation. The light pollution avoidance ratio is 0.8 or more only in blue, particularly yellow-green, yellow, which is within the absorption wavelength range of 560 nm to 700 nm of phytochrome having strong influence on flowering described in Patent Document 3. It can be seen that the red light avoidance ratio is low under continuous light conditions. Further, when FIG. 6 is compared with the cases of FIGS. 3 to 5, it can be seen that the effect of improving the light damage avoidance ratio of blue, green and yellow-green by the pulse emission frequency and the duty ratio becomes more remarkable.
 単色光源の場合には、光害回避割合を高い値にすることができても、平均演色評価数Raはそれほど高くならない。演色性を高めるために、例として、青色、緑色、黄緑色のLEDを組み合わせた照明装置を構成し、それに基づいて同じ条件で測定を行った。 In the case of a monochromatic light source, even if the light pollution avoidance ratio can be increased, the average color rendering index Ra is not so high. In order to improve the color rendering, as an example, an illuminating device in which blue, green, and yellow-green LEDs were combined was configured, and measurements were performed under the same conditions.
 図7は青色、緑色、黄緑色のLEDをそれぞれ複数組み合わせ配置して構成した光害回避照明装置の例による発光スペクトルを実線で示し、白色光スペクトルを点線で、また、緑色LEDのスペクトルを鎖線で示したものである。この光害回避照明装置は、青色LEDの発光周波数を250Hz、緑色LEDを発光周波数が250Hz、黄緑色LEDの発光周波数を1000Hzとし、デューティ比はいずれも10%としたものであり、一般的に屋外で利用されている白色LED(Ra=88)と比較すると、580nmより長い波長域の光を含まないが、青色と黄緑色の補色作用により白色に近い感覚になり、人の視感度の高い緑色が照度に寄与するものとなり、演色評価数Raが66となり、単色緑色の場合のRa=33に比較して十分に高く、表1での演色性グループ2に相当し、一般的に夜間照明に使用されている水銀灯と同等になると言える。 FIG. 7 shows a light emission spectrum by an example of a light pollution avoiding lighting device configured by combining a plurality of blue, green, and yellow-green LEDs. The white light spectrum is a dotted line, and the green LED spectrum is a chain line. It is shown by. This light pollution avoidance lighting device has a blue LED emission frequency of 250 Hz, a green LED emission frequency of 250 Hz, a yellow-green LED emission frequency of 1000 Hz, and a duty ratio of 10%. Compared with white LED (Ra = 88) used outdoors, it does not contain light in the wavelength range longer than 580 nm, but it has a sense close to white due to the complementary color action of blue and yellow-green, and has high human visibility. Green contributes to illuminance, and the color rendering index Ra is 66, which is sufficiently higher than Ra = 33 in the case of monochrome green, corresponds to the color rendering group 2 in Table 1, and is generally used for night illumination. It can be said that it is equivalent to the mercury lamp used in the plant.
 図8において、青色、緑色、黄緑色のLEDをそれぞれ複数組み合わせ配置して構成した光害回避LED照明光源の例による発光スペクトルを実線で示し、一般に夜間照明に使用される水銀灯照明光源の発光スペクトルを点線で示し、また、蛍光灯照明光源の発光スペクトルを鎖線で示している。この光害回避LED照明光源は、図3から図5において各色の光源が最も高い光害回避割合を示したパルス発光周波数とデューティ比の組み合わせを用いており、実際の設定は、青色LEDの発光周波数を700Hz、デューティ比を60%、緑色LEDの発光周波数を50Hz、デューティ比を60%、黄緑色LEDの発光周波数を700Hz、デューティ比を70%としたものである。光害回避LED照明光源の平均演色評価数はRa=69となり、蛍光灯のRa=93よりは低いが、水銀灯のRa=66よりは高く、演色性グループ2の照明として一般照明として利用可能な性能を備えていることがわかる。 In FIG. 8, the emission spectrum of an example of a light pollution avoiding LED illumination light source configured by combining a plurality of blue, green and yellow-green LEDs is shown by a solid line, and the emission spectrum of a mercury lamp illumination light source generally used for night illumination. Is indicated by a dotted line, and the emission spectrum of the fluorescent lamp illumination light source is indicated by a chain line. This light pollution avoiding LED illumination light source uses a combination of a pulse emission frequency and a duty ratio in which the light source of each color in FIG. 3 to FIG. 5 shows the highest light pollution avoidance ratio. The frequency is 700 Hz, the duty ratio is 60%, the emission frequency of the green LED is 50 Hz, the duty ratio is 60%, the emission frequency of the yellow-green LED is 700 Hz, and the duty ratio is 70%. The average color rendering index of a light pollution avoiding LED illumination light source is Ra = 69, which is lower than Ra = 93 of a fluorescent lamp, but higher than Ra = 66 of a mercury lamp, and can be used as general lighting as color rendering group 2 illumination. It turns out that it has performance.
 図9は前述の光害回避照明装置の光害回避効果を確認する意味で行った試験の結果を示すものであり、3台の人工気象器内の各々を、光害回避照明装置を設置したもの(混色区:パルス発光)、光害回避照明装置と分光スペクトルは等しいが連続発光とした照明装置を設置したもの(混色区:連続発光)、照明装置を設置しないもの(対象区:夜間照明なし)とし、それぞれでイネ(12株)を栽培し、開花到達日数を観察した。 FIG. 9 shows the results of a test conducted in the sense of confirming the light pollution avoidance effect of the light pollution avoidance lighting apparatus described above. Each of the three artificial weather devices was installed with the light pollution avoidance lighting apparatus. Things (mixed color: pulsed light emission), those with the same spectral spectrum as the light pollution avoiding lighting device but with continuous lighting (mixed color: continuous light emission), those without a lighting device (target zone: night lighting) None), rice (12 strains) was cultivated in each, and the number of flowering arrival days was observed.
 図9に示される結果では、光害回避照明装置を設置した場合のイネは夜間照明のないイネに比べ、開花開始で2日の遅延を示しているが、開花率50%では1日の遅延に改善され、開花終期では遅延を示さない。連続発光の照明装置の場合、開花開始が5日、開花50%で4日の遅延を示し、1株は出芽後88日でも開花しなかった。ここで、開花率50%到達日数は生産者、研究者の間でイネ開花の指標とされるものである。 In the results shown in FIG. 9, the rice with the light pollution avoiding lighting device shows a two-day delay at the start of flowering compared to the rice without night lighting, but with a flowering rate of 50%, the one-day delay is shown. And no delay at the end of flowering. In the case of the lighting device with continuous light emission, the start of flowering was 5 days, 50% flowering showed a delay of 4 days, and one strain did not flower even 88 days after emergence. Here, the number of days that the flowering rate reaches 50% is regarded as an index of rice flowering among producers and researchers.
 光害回避照明装置を設置した場合の1日の遅延の影響による収量減少は2.7%となりわずかであって、等級品質に変化はなかった。連続発光の照明装置を設置した場合の4日の遅延の影響により収量減少が20.3%となったが、その主要因は全収穫籾のうちの食用となる籾(比重1.06以上)の割合である登熟歩合が19.2%ほど減少したためであった。登熟歩合の低下は等級品質のランクを下げることにもつながっている。 When the light pollution avoidance lighting device was installed, the yield decrease due to the delay of one day was only 2.7%, and the grade quality was not changed. Yield reduction was 20.3% due to the delay of 4 days when installing a continuous lighting device, but the main factor was edible rice out of all harvested rice (specific gravity 1.06 or more) This is because the ripening rate, which is the ratio of, decreased by about 19.2%. Lowering the ripening rate also leads to lowering the grade quality grade.
 図10に実際にイネ(コシヒカリ)を栽培している屋外水田圃場に設置した光害回避LED照明、蛍光灯照明、水銀灯照明についての開花遅延日数を示す。これは、社団法人日本防犯設備協会による防犯灯の照度基準クラスBである平均水平面照度3ルクス、同じくクラスAである平均水平面照度5ルクス、国際照明委員会Pub.115による「歩行者エリアに対する照明条件」の「夜間の利用度の高い道路」における平均水平面照度10ルクスでの開花遅延日数を示すものであり、3ルクスでの遅延日数を濃い灰色、5ルクスでの遅延日数を白色、10ルクスでの遅延日数を薄い灰色で示し、誤差棒は標準偏差を示している。光害回避LED照明では10ルクスにおいても遅延日数は約2日にとどまっている。一方、蛍光灯照明は3ルクスにおいても5日以上遅延しており、10ルクスで約10日遅延している。水銀灯照明は3ルクスで4日、5ルクスで10日、10ルクスで12日以上遅延している。 Fig. 10 shows the flowering delay days for light pollution avoidance LED lighting, fluorescent lighting, and mercury lamp lighting installed in an outdoor paddy field where rice (Koshihikari) is actually cultivated. This is an average horizontal plane illuminance of 3 lux, which is an illuminance standard class B of a security light by the Japan Security Equipment Association, an average horizontal plane illuminance of 5 lux, which is also a class A, International Lighting Commission Pub. 115 indicates the flowering delay days with an average horizontal illuminance of 10 lux on the “roads with high night use” in “Lighting conditions for pedestrian area”, and the delay days with 3 lux are dark gray and 5 lux. The delay days are white, the delay days at 10 lux are shown in light gray, and the error bars indicate the standard deviation. In the LED lighting for avoiding light pollution, the delay days are only about 2 days even at 10 lux. On the other hand, fluorescent lamp illumination is delayed for 5 days or more even at 3 lux, and is delayed about 10 days at 10 lux. Mercury lamp lighting is delayed for 4 days at 3 lux, 10 days at 5 lux, 12 days at 10 lux.
 全ての実施結果はイネ品種にコシヒカリを使用したものであり、これは、この品種が東北の一部から九州まで全国で栽培されており、全国収穫量の35%以上を占めている最多作付品種であり、かつ、夜間照明による光害を起こし易い性質をもっていることが理由となっている。 All the implementation results are those using Koshihikari for rice varieties, which are cultivated nationwide from part of Tohoku to Kyushu, and cultivate most crops, accounting for more than 35% of the national harvest. The reason for this is that it has the property of causing light pollution by night illumination.
 光害回避照明装置として、図7に発光スペクトルを示した青色LED、緑色LED、黄緑色LEDの組み合わせによる光源は一例をなすものであり、光害回避照明装置としては、他の光源要素を用い組み合わせて構成することができる。光害回避照明装置の光源要素としては、パルス発光型で波長選択性のあるLEDのような光源を用いる。 As a light pollution avoiding illumination device, a light source by a combination of a blue LED, a green LED, and a yellow-green LED whose emission spectrum is shown in FIG. 7 is an example, and other light source elements are used as the light pollution avoiding illumination device. They can be combined. As a light source element of the light pollution avoiding illumination apparatus, a light source such as a pulse emission type LED having wavelength selectivity is used.
 光害回避照明装置としては光害回避割合が0.8以上になることを条件として光源要素を選択すればよく、図3~5に光害回避割合を示した青色LED、緑色LED、黄緑色LEDに関して、光害回避割合が0.8以上となるようなパルス発光周波数、デューティ比の単色LEDのみを複数配置したものでもよいのであるが、人に対し自然な感覚が与えられる照明装置とするという要請から、夜間照明として平均演色評価数が60以上となるように異なる色光のLEDを組み合わせた照明装置とすることが望ましい。 As a light pollution avoiding lighting device, a light source element may be selected on the condition that the light pollution avoiding ratio is 0.8 or more, and the blue LED, the green LED, and the yellow green whose light pollution avoiding ratio is shown in FIGS. Regarding the LED, a plurality of monochromatic LEDs having a pulse emission frequency and a duty ratio in which the light pollution avoidance ratio is 0.8 or more may be arranged, but the lighting device can give a natural feeling to a person. Therefore, it is desirable to use an illumination device that combines LEDs of different color lights so that the average color rendering index is 60 or more for night illumination.
 図7に発光スペクトルを示した光害回避照明装置の場合、青色LEDの発光周波数を250Hz、緑色LEDを発光周波数が250Hz、黄緑色LEDの発光周波数を1000Hzとし、デューティ比はいずれも10%としたLEDを組み合わせて構成したものであるが、例えば図8に示すように各色のLEDについて他の発光周波数を有しデューティ比が異なるものとしてもよく、さらに、他の発光周波数、デューティ比のものを組み合わせてもよい。 In the case of the light pollution avoidance lighting device whose emission spectrum is shown in FIG. 7, the emission frequency of the blue LED is 250 Hz, the emission frequency of the green LED is 250 Hz, the emission frequency of the yellow-green LED is 1000 Hz, and the duty ratio is 10% for both. For example, as shown in FIG. 8, the LEDs of the respective colors may have other emission frequencies and have different duty ratios, and may have other emission frequencies and duty ratios. May be combined.
 照明装置としては、LED等による要素光源と、これを駆動するパルス発光駆動装置とを備えることになり、パルス発光駆動装置は発光周波数、デューティ比に応じた分だけ備えることになる。したがって装置の簡易性という面から言えば、発光周波数、デューティ比の種類をなるべく少なく、できれば1種類とするのが有利になる。また、LEDについて、パルス発光させる場合は連続発光の場合より素子の寿命を長くすることができる。ただし、発光周波数としては、対人照明であることから、人が照明のちらつきを感じない下限となる臨界融合周波数である約30Hz以上とすべきである。 The illumination device includes an element light source such as an LED and a pulse light emission drive device that drives the element light source, and the pulse light emission drive device is provided according to the light emission frequency and the duty ratio. Therefore, in terms of the simplicity of the apparatus, it is advantageous to reduce the number of emission frequencies and duty ratios as much as possible, and preferably one. Moreover, about LED, when it makes pulse light emission, the lifetime of an element can be lengthened compared with the case of continuous light emission. However, since the light emission frequency is interpersonal illumination, it should be about 30 Hz or higher, which is a critical fusion frequency that is the lower limit where a person does not feel flickering of illumination.
 各色のLEDのうち、いずれかが光害回避割合の0.8以上の条件を満たさなくても、組み合わせた照明装置として光害回避割合の条件を満たせばよく、平均演色評価数Raに関しては、単色のLEDでは低くなるので、複数色を組み合わせた照明装置としてRaが60以上とするのが望ましい。 Even if one of the LEDs of each color does not satisfy the condition of the light pollution avoidance ratio of 0.8 or more, it is only necessary to satisfy the condition of the light pollution avoidance ratio as the combined lighting device. Since it becomes low in single color LED, it is desirable that Ra is 60 or more as a lighting device combining a plurality of colors.
 本発明によるパルス発光による光源要素を組み合わせた光害回避照明装置は、光害回避割合を0.8以上、望ましくは1.0以上とすることにより光害を回避するとともに、平均演色評価数Raを60以上とすることにより、人に対して自然な感触が得られるものになる。光害によっては、イネのような作物の場合等級低下による価格減少とともに収量減少をもきたすことになるが、これは本発明による光害回避照明装置を使用することにより解消され、生産者の光害に対する懸念を払拭するに十分な性能を備えるものと言える。また、植物としては短日性植物であるイネについて検討しているが、光害についてはイネのみに特有な事項というわけではなく、他の短日性植物、長日性植物の場合にも光害としては同様に考えられると言えよう。 The light pollution avoidance lighting apparatus combining light source elements by pulsed light emission according to the present invention avoids light pollution by setting the light pollution avoidance ratio to 0.8 or more, preferably 1.0 or more, and has an average color rendering index Ra. By setting the value to 60 or more, a natural feel can be obtained for a person. Depending on light pollution, in the case of crops such as rice, there will be a decrease in yield as well as a decrease in price due to the lowering of the grade, but this is eliminated by using the light pollution avoiding lighting device according to the present invention, and the light of the producer It can be said that it has sufficient performance to dispel concerns about harm. In addition, we are studying rice, which is a short-day plant as a plant, but light pollution is not a matter specific to rice, and light is also applied to other short-day plants and long-day plants. It can be said that harm is considered similarly.

Claims (11)

  1.  植生地域に近接して設置される照明装置が植物に及ぼす光害を評価する方法であって、
     夜間照明を行うための人工気象器と夜間照明を行わない人工気象器とを用意することと、
     開花誘導遺伝子の発現時まで人工気象器内で複数株の植物を育成することと、
     開花誘導遺伝子の発現後に前記夜間照明を行うための人工気象器内に一部の株の植物を入れて1回以上の夜間期間を経過させた後に葉身を採取し処理して全RNAを抽出し、目的とする遺伝子の発現量について該遺伝子のmRNA量を定量的に解析することにより夜間照明条件下での遺伝子発現量Aを求めることと、
     開花誘導遺伝子の発現後に前記夜間照明を行わない人工気象器内に他の株の植物を入れて1回以上の夜間期間を経過させた後に葉身を採取し処理して全RNAを抽出し、目的とする遺伝子の発現量について該遺伝子のmRNA量を定量的に解析することにより夜間照明なしの条件下での遺伝子発現量Bを求めることと、
     前記夜間照明条件下での遺伝子発現量Aと夜間照明なしの条件下での遺伝子発現量Bとの比としての光害回避割合を求めることと、
    からなることを特徴とする夜間照明による植物への光害の評価方法。
    A method for evaluating light damage to plants by a lighting device installed close to a vegetation area,
    Providing an artificial meteor that performs night illumination and an artificial meteor that does not perform night illumination;
    Cultivating multiple strains of plants in an artificial meteor until the expression of the flowering induction gene,
    After the expression of the flowering-inducible gene, the plant of some strains is placed in an artificial meteor that performs the nighttime illumination, and after at least one night period has elapsed, the leaf blades are collected and processed to extract total RNA. And determining the gene expression level A under night illumination conditions by quantitatively analyzing the mRNA level of the target gene expression level,
    After the expression of the flowering-inducible gene, the plant of other strains is placed in an artificial meteor that does not perform night illumination, and after one or more night periods have elapsed, the leaf blades are collected and processed to extract total RNA, Obtaining the gene expression level B under no night lighting conditions by quantitatively analyzing the mRNA level of the target gene expression level;
    Obtaining a light pollution avoidance ratio as a ratio of the gene expression level A under the night illumination condition and the gene expression level B under no night illumination condition;
    The evaluation method of the light damage to the plant by the night illumination characterized by comprising.
  2.  前記植物がイネであり、開花誘導遺伝子がHd3aであることを特徴とする請求項1に記載の夜間照明による植物への光害の評価方法。 The method for evaluating light damage to plants by night illumination according to claim 1, wherein the plant is rice and the flowering induction gene is Hd3a.
  3.  前記夜間照明に用いられる光源についての平均演色評価数を求めることをさらに含み、
     請求項1に記載の夜間照明による植物への光害の評価方法により求められた前記光害回避割合と前記平均演色評価数とから夜間照明の光源の特性を評価することを特徴とする夜間照明の特性評価方法。
    Further determining an average color rendering index for the light source used for the night illumination;
    A light source for night light is evaluated from the light damage avoidance ratio determined by the method for evaluating light damage to plants by night light according to claim 1 and the average color rendering index. Characterization method.
  4.  前記植物がイネであり、開花誘導遺伝子がHd3aであることを特徴とする請求項3に記載の夜間照明の特性評価方法。 The method for evaluating characteristics of night illumination according to claim 3, wherein the plant is rice and the flowering induction gene is Hd3a.
  5.  パルス駆動装置により所定のパルス発光周波数およびデューティ比で駆動されるようにした特定色成分のパルス発光光源またはそれぞれ異なる色成分を有しパルス駆動装置により所定のパルス発光周波数およびデューティ比で駆動されるようにした複数種類のパルス発光光源を組み合わせた光源を用いた照明装置であって、前記複数種類のパルス発光光源を組み合わせた光源に対して請求項1に記載の夜間照明による植物への光害の評価方法により求められた光害回避割合が0.8以上になるように前記特定色成分のパルス発光光源または複数種類のパルス発光光源を組み合わせた光源における各々の種類のパルス発光光源のパルス発光周波数及びデューティ比を設定してなることを特徴とする光害回避照明装置。 A pulsed light source having a specific color component driven by a pulse driving device with a predetermined pulse emission frequency and a duty ratio, or having a different color component and driven by a pulse driving device with a predetermined pulse emission frequency and a duty ratio. It is the illuminating device using the light source which combined the multiple types of pulsed light source as described above, Comprising: The light damage to the plant by the night illumination of Claim 1 with respect to the light source which combined the said multiple types of pulsed light source The pulse emission of each type of pulsed light source in the pulsed light source of the specific color component or a combination of a plurality of types of pulsed light sources so that the light pollution avoidance ratio obtained by the evaluation method is 0.8 or more A light pollution avoiding illumination device characterized by setting a frequency and a duty ratio.
  6.  前記特定色成分のパルス発光光源が青色発光ダイオードであり、該青色発光ダイオードをパルス発光周波数300~2700Hz、デューティ比10~90%で駆動するものであることを特徴とする請求項5に記載の光害回避照明装置。 6. The pulse light emission source of the specific color component is a blue light emitting diode, and the blue light emitting diode is driven at a pulse emission frequency of 300 to 2700 Hz and a duty ratio of 10 to 90%. Light pollution avoidance lighting device.
  7.  前記特定色成分のパルス発光光源が緑色発光ダイオードであり、該緑色発光ダイオードをパルス発光周波数50~1000Hz、デューティ比20~90%で駆動するものであることを特徴とする請求項5に記載の光害回避照明装置。 6. The pulse light emission source of the specific color component is a green light emitting diode, and the green light emitting diode is driven at a pulse emission frequency of 50 to 1000 Hz and a duty ratio of 20 to 90%. Light pollution avoidance lighting device.
  8.  前記特定色成分のパルス発光光源が黄緑色発光ダイオードであり、該黄緑色発光ダイオードをパルス発光周波数500~2700Hz、デューティ比10~90%で駆動するものであることを特徴とする請求項5に記載の光害回避照明装置。 The pulse light source of the specific color component is a yellow-green light-emitting diode, and the yellow-green light-emitting diode is driven at a pulse emission frequency of 500 to 2700 Hz and a duty ratio of 10 to 90%. The light pollution avoidance lighting apparatus as described.
  9.  それぞれ異なる色成分を有しパルス駆動装置により所定のパルス発光周波数およびデューティ比で駆動されるようにした複数種類のパルス発光光源を組み合わせた光源を用いた照明装置であって、前記複数種類のパルス発光光源を組み合わせた光源に対して請求項1に記載の夜間照明による植物への光害の評価方法により求められた光害回避割合が0.8以上になるように前記複数種類のパルス発光光源を組み合わせた光源における各々の種類のパルス発光光源のパルス発光周波数及びデューティ比を設定するとともに、光源全体としての平均演色評価数が60以上となるような前記複数種類のパルス発光光源の組み合わせとしたことを特徴とする請求項5に記載の光害回避照明装置。 A lighting device using a light source that is a combination of a plurality of types of pulsed light sources each having a different color component and driven by a pulse driving device at a predetermined pulse emission frequency and duty ratio. The plurality of types of pulsed light sources such that the light damage avoidance ratio determined by the method for evaluating light damage to plants by night illumination according to claim 1 is 0.8 or more with respect to a light source combining light emitting light sources. The pulse emission frequency and duty ratio of each type of pulsed light source in the combined light source are set, and the combination of the plurality of types of pulsed light sources is such that the average color rendering index as the whole light source is 60 or more. The light pollution avoidance illumination apparatus according to claim 5.
  10.  前記複数種類のパルス発光光源が青色発光ダイオードと黄緑色発光ダイオードを少なくとも含むことを特徴とする請求項9に記載の光害回避照明装置。 The light pollution avoiding illumination device according to claim 9, wherein the plurality of types of pulsed light sources include at least a blue light emitting diode and a yellow green light emitting diode.
  11.  前記複数種類のパルス発光光源が青色発光ダイオード、緑色発光ダイオードおよび黄緑色発光ダイオードからなることを特徴とする請求項9に記載の光害回避照明装置。 10. The light pollution avoiding illumination apparatus according to claim 9, wherein the plurality of types of pulsed light sources include a blue light emitting diode, a green light emitting diode, and a yellow green light emitting diode.
PCT/JP2010/068556 2009-11-02 2010-10-21 Method for assessing light damage to plants caused by night lighting, method of assessing properties of night lighting, and lighting device for avoiding light damage WO2011052462A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800489484A CN102595874B (en) 2009-11-02 2010-10-21 Method for assessing light damage to plants caused by night lighting, method of assessing properties of night lighting, and lighting device for avoiding light damage
JP2011538374A JP5783571B2 (en) 2009-11-02 2010-10-21 Method for evaluating light damage to plants caused by night lighting, method for evaluating characteristics of night lighting, and light pollution avoiding lighting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009252092 2009-11-02
JP2009-252092 2009-11-02

Publications (1)

Publication Number Publication Date
WO2011052462A1 true WO2011052462A1 (en) 2011-05-05

Family

ID=43921885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068556 WO2011052462A1 (en) 2009-11-02 2010-10-21 Method for assessing light damage to plants caused by night lighting, method of assessing properties of night lighting, and lighting device for avoiding light damage

Country Status (4)

Country Link
JP (1) JP5783571B2 (en)
CN (1) CN102595874B (en)
TW (1) TW201125484A (en)
WO (1) WO2011052462A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181484A (en) * 2010-02-26 2011-09-15 Atsuo Yoshida Lighting system for plant cultivation by intermittent irradiation
CN103037584A (en) * 2012-12-20 2013-04-10 高炎华 Light-emitting diode (LED) indoor lighting automatic starting control system
CN103052231A (en) * 2012-12-21 2013-04-17 高炎华 Automatic turning-on control system for LED (Light Emitting Diode) indoor illuminating lamp
CN103068111A (en) * 2012-12-21 2013-04-24 高炎华 Light emitting diode (LED) indoor lighting auto-start control system
JP2014060147A (en) * 2012-08-23 2014-04-03 Yamaguchi Univ Lighting method and lighting device for preventing light pollution
JP2016157515A (en) * 2015-02-23 2016-09-01 株式会社アグリライト研究所 Led lighting circuit, led lamp, led lighting device and energization control circuit used for the same
WO2019031559A1 (en) * 2017-08-08 2019-02-14 Agcグリーンテック株式会社 Plant cultivation method and plant cultivation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504617B (en) * 2020-06-05 2022-02-08 西北农林科技大学 Plant growth light source determination method and system
CN114067223B (en) * 2022-01-17 2022-04-15 南京信息工程大学 Night city excessive illumination monitoring method based on noctilucent remote sensing data

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226567A (en) * 2007-03-12 2008-09-25 Yamaguchi Univ Streetlamp

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484409A (en) * 1982-03-29 1984-11-27 University Patents, Inc. Prevention of freezing at moderate supercooling using synthetic polymeric ice nucleation inhibitors
US20080043464A1 (en) * 2006-08-17 2008-02-21 Ian Ashdown Bi-Chromatic Illumination Apparatus
CN101002533A (en) * 2007-01-18 2007-07-25 同济大学 Calculation method for multiple factor coordination control of greenhouse environment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226567A (en) * 2007-03-12 2008-09-25 Yamaguchi Univ Streetlamp

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HARUHIKO YAMAMOTO ET AL.: "Gairoto no Yakan Shomei ga Ine no Seiiku to Shuryo ni Oyobosu Eikyo", PROCEEDINGS OF ANNUAL CONFERENCE OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN, DAI 39 KAI, 2006, pages 282 - 283 *
KIYOSHI IWATANI ET AL.: "LED Kogen o Tosai shita Kogata Jinko Kishoki no Kaihatsu", THE SOCIETY OF AGRICULTURAL METEOROLOGY OF JAPAN 2008 NENDO ZENKOKU TAIKAI KOEN YOSHI, vol. 60, 2008 *
YUSUKE FUKUSHIMA ET AL.: "Suiginto ni yoru Shuya Shomei ga Daizu no Seiiku, Shuryo Oyobi Hinshitsu ni Oyobosu Eikyo", BULLETIN OF THE FUKUOKA AGRICULTURAL RESEARCH CENTER, vol. 22, 2003, pages 43 - 47 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181484A (en) * 2010-02-26 2011-09-15 Atsuo Yoshida Lighting system for plant cultivation by intermittent irradiation
JP2014060147A (en) * 2012-08-23 2014-04-03 Yamaguchi Univ Lighting method and lighting device for preventing light pollution
CN103037584A (en) * 2012-12-20 2013-04-10 高炎华 Light-emitting diode (LED) indoor lighting automatic starting control system
CN103052231B (en) * 2012-12-21 2016-03-09 余姚市吉佳电器有限公司 LED indoor is thrown light on automatic opening control system
CN103068111A (en) * 2012-12-21 2013-04-24 高炎华 Light emitting diode (LED) indoor lighting auto-start control system
CN103068111B (en) * 2012-12-21 2016-03-02 余姚市吉佳电器有限公司 LED indoor is thrown light on automatic opening control system
CN103052231A (en) * 2012-12-21 2013-04-17 高炎华 Automatic turning-on control system for LED (Light Emitting Diode) indoor illuminating lamp
JP2016157515A (en) * 2015-02-23 2016-09-01 株式会社アグリライト研究所 Led lighting circuit, led lamp, led lighting device and energization control circuit used for the same
WO2019031559A1 (en) * 2017-08-08 2019-02-14 Agcグリーンテック株式会社 Plant cultivation method and plant cultivation device
CN111050541A (en) * 2017-08-08 2020-04-21 旭硝子绿色技术株式会社 Plant cultivation method and plant cultivation device
JPWO2019031559A1 (en) * 2017-08-08 2020-07-09 Agcグリーンテック株式会社 Plant cultivation method and plant cultivation device
EP3666062A4 (en) * 2017-08-08 2021-04-28 AGC Green-Tech Co., Ltd. Plant cultivation method and plant cultivation device
JP7091342B2 (en) 2017-08-08 2022-06-27 Agcグリーンテック株式会社 Plant cultivation method and plant cultivation equipment

Also Published As

Publication number Publication date
CN102595874A (en) 2012-07-18
CN102595874B (en) 2013-11-06
JP5783571B2 (en) 2015-09-24
JPWO2011052462A1 (en) 2013-03-21
TW201125484A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
JP5783571B2 (en) Method for evaluating light damage to plants caused by night lighting, method for evaluating characteristics of night lighting, and light pollution avoiding lighting apparatus
Son et al. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes
Owen et al. End-of-production supplemental lighting with red and blue light-emitting diodes (LEDs) influences red pigmentation of four lettuce varieties
Flint et al. A biological spectral weighting function for ozone depletion research with higher plants
Miyake et al. Effects of light intensity on cyclic electron flow around PSI and its relationship to non-photochemical quenching of Chl fluorescence in tobacco leaves
US20180054974A1 (en) Method and an Apparatus for Stimulation of Plant Growth and Development with Near Infrared and Visible Lights
Rocha et al. Comparative performance of light emitting plasma (LEP) and light emitting diode (LED) in ex situ aquaculture of scleractinian corals
Urbonavičiūtė et al. Effect of short-wavelength light on lettuce growth and nutritional quality
Both et al. Proposed product label for electric lamps used in the plant sciences
Nichelmann et al. Quantification of light screening by anthocyanins in leaves of Berberis thunbergii
Engbers et al. Plant physiological acclimation to irradiation by light-emitting diodes (LEDs)
Hornyák et al. Photosynthetic efficiency, growth and secondary metabolism of common buckwheat (Fagopyrum esculentum Moench) in different controlled-environment production systems
Park et al. Night interruption light quality changes morphogenesis, flowering, and gene expression in Dendranthema grandiflorum
WO2007032101A1 (en) Method of cultivating sprout
JP2006340689A (en) Method for cultivating green vegetables and installation for the same
Owen et al. Geranium and purple fountain grass leaf pigmentation is influenced by end-of-production supplemental lighting with red and blue light-emitting diodes
Hideg et al. The distribution and possible origin of blue–green fluorescence in control and stressed barley leaves
Marder et al. Light‐independent thermoluminescence from thylakoids of greening barley leaves. Evidence for involvement of oxygen radicals and free chlorophyll
Richards et al. Laser-induced fluorescence spectroscopy of dark-and light-adapted bean (Phaseolus vulgaris L.) and wheat (Triticum aestivum L.) plants grown under three irradiance levels and subjected to fluctuating lighting conditions
Mironyuk et al. Optimization of spectral composition and energy economy effectiveness of phyto-irradiators with use of digital technologies
JP2015228864A (en) Plant control device using led composite rays
JP6308517B2 (en) Lighting method and lighting apparatus for preventing light pollution
CN113766829A (en) Light source for plant cultivation and method for cultivating plant using the same
JP5164070B2 (en) How to control seedling growth
Anthony Adding far-red light to white LEDs: implications for cucumber seedling morphology, growth, and photosynthesis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048948.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826594

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538374

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826594

Country of ref document: EP

Kind code of ref document: A1