WO2011052280A1 - 送信装置、無線通信システム、移動局装置の制御プログラムおよび基地局装置の制御プログラム - Google Patents

送信装置、無線通信システム、移動局装置の制御プログラムおよび基地局装置の制御プログラム Download PDF

Info

Publication number
WO2011052280A1
WO2011052280A1 PCT/JP2010/063561 JP2010063561W WO2011052280A1 WO 2011052280 A1 WO2011052280 A1 WO 2011052280A1 JP 2010063561 W JP2010063561 W JP 2010063561W WO 2011052280 A1 WO2011052280 A1 WO 2011052280A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
station apparatus
mobile station
signal
signals
Prior art date
Application number
PCT/JP2010/063561
Other languages
English (en)
French (fr)
Inventor
淳悟 後藤
泰弘 浜口
一成 横枕
中村 理
高橋 宏樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2010800485021A priority Critical patent/CN102598564A/zh
Priority to EP10826415A priority patent/EP2506472A1/en
Priority to US13/504,912 priority patent/US9031589B2/en
Publication of WO2011052280A1 publication Critical patent/WO2011052280A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices

Definitions

  • the present invention relates to a transmission apparatus, a radio communication system, a mobile station apparatus control program, and a base station apparatus control program that switch a transmission signal allocation method in consideration of the capacity of a power amplifier.
  • the restriction on power consumption is stricter than that in the downlink (communication from the base station apparatus to the mobile station apparatus).
  • LTE Long Term Evolution
  • the number of antennas used for transmission is one.
  • LTE-Advanced which is a fourth-generation wireless communication system that is a further development of the LTE system
  • LTE-A Long Term Evolution-Advanced
  • transmission diversity and multi-input multi-output which are transmissions by multiple antennas, while keeping the maximum transmission power of the mobile station device at 23 dBm, which is the same as LTE (MIMO) technology is being introduced.
  • MIMO LTE
  • the mobile station apparatus may increase power consumption, such as the need to transmit a channel estimation signal for each antenna, so only one antenna is used. Single antenna mode is also being studied.
  • DFT-S-OFDM also called Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing, SC-FDMA
  • SC-FDMA Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • DSC Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • SDC Spectrum Division Control
  • Clustered DFT-S-OFDM is a method in which a single carrier spectrum is divided (each divided spectrum is called a cluster), and each cluster is discretely arranged. Although the clustered DFT-S-OFDM has a higher peak power than the DFT-S-OFDM, it selects a frequency having a high channel gain from the usable band, so that a high frequency selection diversity effect can be obtained.
  • the peak power in this specification represents PAPR (Peak to Average Power Ratio) that is a ratio of peak power to average power.
  • Each cluster is an integer multiple of a resource block (Resource Block) in which 12 subcarriers are grouped, and the frequency selection diversity effect increases as the number of resource blocks constituting the cluster decreases.
  • the present invention can be applied even if the cluster is an integral multiple of the subcarrier.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • the capacity of the PA (Power Amplifier) of the mobile station apparatus can be 20 dBm.
  • the capacity of the PA in this specification refers to the 1 dB compression point of the PA or the output power at the time of 1 dB gain compression, and indicates the capability of the PA.
  • various PA configurations have been considered in which the mobile station apparatus has PAs with different capacities from the viewpoint of enabling support of 23 dBm for the maximum transmission power of the mobile station apparatus in the single antenna mode.
  • the mobile station apparatus may have a plurality of 23 dBm PAs or may have 23 dBm and 20 dBm.
  • the present invention has been made in view of such circumstances, and in a mobile station apparatus having a plurality of PAs, when transmitting transmission signals having different peak powers using each PA, transmission with high peak power is performed.
  • An object of the present invention is to provide a transmission apparatus, a radio communication system, a mobile station apparatus control program, and a base station apparatus control program capable of improving propagation characteristics by assigning signals so as to be transmitted from a PA having a large capacity.
  • the transmission device of the present invention is a transmission device including a plurality of PAs (Power Amplifiers) and a plurality of antennas, and determines a transmission signal to be transmitted using each PA based on the capability of each PA.
  • the antennas transmit signals having different PAPR (Peak to Average Power to Ratio) characteristics.
  • the transmission apparatus determines a transmission signal to be transmitted using each PA based on the capability of each PA, and transmits a signal having different PAPR (Peak to Average to Power to Ratio) characteristics from each antenna.
  • PA can be used according to the characteristics, for example, transmission power can be determined without considering backoff, and transmission characteristics can be improved.
  • the transmission signal is converted into a frequency signal by time-frequency conversion, the frequency signal is divided into a plurality of clusters, and a signal that is discretely assigned to a band is transmitted. It is characterized in that it is at least one of signals having different PAPR characteristics.
  • the frequency signal is divided into a plurality of clusters, and the signal that is allocated to the band in a discrete manner is at least one of the signals having different PAPR characteristics to be transmitted. Therefore, the mobile station apparatus uses a plurality of PAs.
  • a large-capacity PA for the signal having a high peak power makes it possible to determine the transmission power without considering backoff, and to always allocate a discrete band. . Therefore, it is not necessary to notify continuous band allocation information in a large-capacity PA, so the number of formats of control information for blind decoding can be reduced.
  • a transmission signal is converted into a frequency signal by time-frequency conversion, and a signal for assigning the frequency signal to a continuous band is transmitted at least of signals having different PAPR characteristics. It is characterized by being one.
  • the signal for assigning the frequency signal to the continuous band is at least one of the signals having different PAPR characteristics to be transmitted, when the mobile station apparatus performs transmission using a plurality of PAs, the peak is obtained.
  • a low-capacity PA for the low-power signal it is only necessary to notify the base station apparatus of the format of control information indicating continuous band allocation.
  • the PA having a small capacity can reduce the number of formats of control information to be blind-decoded.
  • the frequency signal is divided into clusters as signals having different PAPR characteristics, and signals having different cluster sizes are transmitted.
  • the transmission device divides the frequency signal into clusters and transmits signals having different cluster sizes as signals having different PAPR characteristics, so that a signal having a small cluster bandwidth with high peak power has a large capacity.
  • PA can be used, transmission power can be determined without considering back-off, distortion due to PA nonlinearity does not increase, high frequency selective diversity gain is obtained, and transmission characteristics are improved Can be made.
  • the transmitting apparatus of the present invention is characterized in that signals having different PAPR characteristics are transmitted by transmitting signals having different numbers of carriers used for transmission.
  • the transmission device when transmitting a signal having a different number of carriers used for transmission as a signal having different PAPR characteristics, the transmission device adds control information to an antenna using a large capacity PA, By assigning a signal with high peak power to which signals to be transmitted to CCs are added, it is not necessary to lower transmission power in consideration of backoff for antennas using a large capacity PA, and to improve transmission characteristics Can do.
  • a signal having a large number of carriers includes a carrier for transmitting data and a carrier for transmitting control signals.
  • the mobile station apparatus transmits data and control information at the same time during data transmission using a plurality of antennas. Is required, the control information is added to the antenna using the large capacity PA, so that it is not necessary to reduce the transmission power in consideration of the backoff for the antenna using the large capacity PA. Transmission characteristics can be improved.
  • the transmitting apparatus of the present invention is characterized by transmitting signals having different PAPR characteristics by transmitting signals having different bandwidths to which the precoding vector is applied.
  • signals having different PAPR characteristics are transmitted by transmitting signals having different bandwidths to which the precoding vector is applied. Therefore, when the mobile station apparatus performs data transmission by MIMO, the capacity of the PA to be used is small. Since a signal to which precoding is applied in a cluster unit is assigned to a large antenna, transmission power can be determined without considering PA backoff, and it becomes easier to separate spatially multiplexed signals at the receiving side. Transmission characteristics can be improved.
  • a transmission signal is converted into a frequency signal by time-frequency conversion, and an SFBC (Space Frequency Block Code) encoded signal is transmitted, thereby transmitting signals having different PAPR characteristics. It is characterized by that.
  • a transmission signal is converted into a frequency signal by time-frequency conversion, and a signal having a different PAPR characteristic is transmitted by transmitting a SFBC (Space Frequency Block Code) encoded signal.
  • SFBC Space Frequency Block Code
  • the transmission apparatus of the present invention is characterized in that signals having different PAPR characteristics are transmitted by transmitting a signal obtained by adding a plurality of CC (Component Carrier) signals.
  • CC Component Carrier
  • signals having different PAPR characteristics are transmitted by transmitting a signal obtained by adding a plurality of CC signals based on the capacity of each PA.
  • the wireless communication system of the present invention determines at least one of a mobile station apparatus including a plurality of PAs (Power Amplifiers) and a plurality of antennas and a transmission method or a frequency band to be used, and the determined result is
  • a radio communication system including a base station apparatus that notifies the mobile station apparatus, the mobile station apparatus notifies the base station apparatus of information indicating the capability of the PA, and the base station apparatus According to the PA capability notified from the mobile station apparatus, the bandwidth to which the precoding vector is applied and the transmission signal to which the phase rotation is applied are determined by the precoding vector.
  • the base station apparatus determines the transmission signal that gives the phase rotation based on the bandwidth to which the precoding vector is applied and the precoding vector according to the PA capability notified from the mobile station apparatus.
  • a signal to which precoding is applied can be assigned in cluster units to an antenna having a large PA capacity.
  • transmission power is determined without considering PA back-off, and spatially multiplexed signals can be easily separated on the receiving side, so that transmission characteristics can be improved.
  • the wireless communication system of the present invention determines at least one of a mobile station apparatus including a plurality of PAs (Power Amplifiers) and a plurality of antennas and a transmission method or a frequency band to be used, and the determined result is
  • a radio communication system comprising a base station apparatus that notifies the mobile station apparatus, wherein the base station apparatus transmits data to the mobile station apparatus according to the PA capability notified from the mobile station apparatus. It is characterized by determining at least one of a transmission method and a frequency band for transmission.
  • the base station apparatus determines at least one of a transmission method or a frequency band for the mobile station apparatus to transmit data according to the PA capability notified from the mobile station apparatus, the mobile station apparatus
  • the mobile station apparatus always assigns a discrete band to a large capacity PA during transmission using a plurality of antennas, and always assigns a continuous band to a small capacity PA. Transmission power can be determined without considering backoff. Further, in a PA with a large capacity, it is not necessary to notify control information indicating continuous band allocation, and the number of formats of control information to be blind-decoded can be reduced.
  • a mobile station apparatus control program is a mobile station apparatus control program including a plurality of PAs (Power Amplifiers) and a plurality of antennas, and transmits a transmission signal transmitted using each PA.
  • PAs Power Amplifiers
  • a series of processes including a process for determining based on the capability of each PA and a process for transmitting signals having different PAPR (Peak-to-Average-Power-Ratio) characteristics from each antenna can be read and executed by a computer. It is characterized by being commanded.
  • the transmission signal to be transmitted using each PA is determined based on the capability of each PA, and signals having different PAPR (Peak-to-Average-Power-Ratio) characteristics are transmitted from each antenna.
  • PA can be used. For example, transmission power can be determined without considering backoff, and transmission characteristics can be improved.
  • the base station apparatus control program of the present invention determines at least one of a mobile station apparatus including a plurality of PAs (Power Amplifiers) and a plurality of antennas, and a transmission method or a frequency band to be used.
  • a control program for a base station apparatus applied to a wireless communication system configured from a base station apparatus that notifies the mobile station apparatus of the result of the received processing, and a process for receiving information indicating the PA capability from the mobile station apparatus And reading a series of processes including a process of determining a bandwidth to which a precoding vector is applied and a transmission signal to which a phase rotation is applied based on the precoding vector according to the received information indicating the capability of the PA. It is characterized by being commanded to be executable and executable.
  • the mobile station apparatus determines the bandwidth to which the precoding vector is applied and the transmission signal to which the phase rotation is applied according to the precoding vector according to the PA capability notified from the mobile station apparatus.
  • a signal to which precoding is applied can be assigned in units of clusters to an antenna having a large PA capacity.
  • transmission power is determined without considering PA back-off, and spatially multiplexed signals can be easily separated on the receiving side, so that transmission characteristics can be improved.
  • the base station apparatus control program determines at least one of a mobile station apparatus including a plurality of PAs (Power (Amplifiers) and a plurality of antennas, and a transmission method or a frequency band to be used.
  • a control program for a base station apparatus applied to a wireless communication system configured from a base station apparatus that notifies the mobile station apparatus of the result of the received processing, and a process for receiving information indicating the PA capability from the mobile station apparatus And a process of determining at least one of a transmission method and a frequency band for the mobile station apparatus to transmit data according to the received information indicating the capability of the PA, read by a computer It is characterized by being commanded to be executable and executable.
  • the mobile station apparatus determines at least one of the transmission method and frequency band for transmitting data according to the PA capability notified from the mobile station apparatus, the mobile station apparatus Consider a back-off by always assigning a discrete band to a PA with a large capacity during transmission using multiple antennas, and always assigning a continuous band to a PA with a small capacity. Transmission power can be determined. Further, in a PA with a large capacity, it is not necessary to notify control information indicating continuous band allocation, and the number of formats of control information to be blind-decoded can be reduced.
  • a mobile station apparatus transmits data using a plurality of antennas, it is not necessary to consider backoff due to PA nonlinearity for a transmission signal with high peak power, and peak power can be increased with higher transmission power. Therefore, transmission characteristics can be improved.
  • FIG. 4 is a diagram illustrating a case where a mobile station apparatus according to the first embodiment of the present invention uses a different CC for each transmission antenna 109 in data transmission using a plurality of transmission antennas 109.
  • FIG. 1 it is a block diagram which shows an example of the mobile station apparatus in the case of having two transmission antennas 109 about the case of transmitting data by MIMO.
  • FIG. 1 it is a block diagram which shows an example of the base station apparatus which receives the signal multiplexed spatially.
  • it is a figure showing an example which applies precoding In the 3rd Embodiment of this invention, it is a figure showing an example which applies precoding about the transmission by SC-FDMA.
  • FIG. 1 it is a block diagram which shows an example of the mobile station apparatus which has four transmission antennas 109.
  • FIG. It is a block diagram which shows an example of the mobile station apparatus which concerns on the 4th Embodiment of this invention. It is a block diagram which shows an example of the mobile station apparatus which concerns on the 5th Embodiment of this invention. It is a figure which shows the encoding method of SFBC which concerns on the 5th Embodiment of this invention. It is a block diagram which shows an example of the mobile station apparatus which concerns on the 6th Embodiment of this invention.
  • FIG. 1 is a block diagram showing an example of a mobile station apparatus which is a transmission apparatus according to the first embodiment of the present invention. However, it is a minimum block diagram necessary for explaining the present invention. Since the mobile station apparatus has a plurality of PAs and antennas and performs the same processing on each transmission signal, a signal output from one transmission antenna on behalf of the plurality of transmission antennas will be described with reference to FIG. (M is the number of transmission antennas).
  • the sign bit is input to the modulation unit 101-1, and is modulated into a modulation symbol such as QPSK (Quaternary Phase Shift ⁇ Keying), 16QAM (16-ary Quadrature Amplitude Modulation), and DFT.
  • the unit 102-1 converts the signal into a frequency domain signal.
  • the receiving antenna 103 receives control information notified from the base station apparatus, is down-converted to a baseband frequency by the radio unit 401, and obtains a control signal using the decoding information notified in advance by the reception processing unit 104 .
  • Band allocation information acquisition section 105 inputs band allocation information included in the control signal to mapping section 106-1.
  • Mapping section 106-1 performs frequency domain signal allocation based on band allocation information input from band allocation information acquisition section 105.
  • band allocation information is a continuous band
  • DFT-S-OFDM is used
  • band allocation information is a discrete band
  • a Clustered DFT-S-OFDM access scheme is used.
  • the signal converted from the frequency domain to the time domain by the IDFT unit 107-1 is multiplexed with a reference signal used for propagation path estimation. Although omitted in this figure, after being up-converted from the baseband frequency, it is amplified by PA section 108-1 and transmitted from transmission antenna 109-1 (transmission antennas 109-1 to 109-M are represented as transmission antenna 109). Is output.
  • the signal input to the PA unit 108-1 is a signal that has been subjected to amplifier conversion processing.
  • CP Cyclic Prefix
  • the band used in LTE is called a component carrier (CC: Component: Carrier).
  • CC component carrier
  • LTE-A as a method of extending the band while maintaining backward compatibility, the LTE-A band is divided into a plurality of LTE systems (CC).
  • CC LTE systems
  • CA carrier aggregation
  • control information is notified by a control signal using a downlink radio resource called PDCCH (Physical Downlink Control Channel), and information on band allocation is transmitted using a field called DCI (Downlink Control Information) format.
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • the DCI format includes format 0 indicating continuous uplink band allocation, format 1A indicating downlink continuous band allocation, format 1 indicating downlink discrete band allocation, and the like.
  • a format indicating an uplink discrete band allocation is further added.
  • the size of the DCI format is determined by each format, and the mobile station apparatus obtains control information by blind decoding in which the DCI format is determined and decoded based on the size.
  • FIG. 2 is a block diagram showing a configuration example of the reception processing unit 104 according to the first embodiment of the present invention.
  • the blind decoding will be described with reference to FIG.
  • the decoding information is input to the format information acquisition unit 1041 in advance.
  • the format information acquisition unit 1041 inputs the size of the format to be decoded to the decoding unit 1042, and inputs the format information to the format check unit 1043.
  • Decoding section 1042 performs a decoding process on the received signal based on the format size input from format information acquisition section 1041 from a predetermined frequency position candidate called a search space to which control information is assigned.
  • the user discrimination processing unit 1044 performs exclusive OR with the user ID for the cyclic redundancy check (CRC: Cyclic Redundancy Check) bit added to the control information, and performs masking.
  • CRC Cyclic Redundancy Check
  • the cyclic redundancy check unit 1045 checks whether the decoding result is correctly decoded by the cyclic redundancy check. If the decoding result is correct, the format check unit 1043 confirms the received control information from the value of the bit that determines the format of the same size. However, in the cyclic redundancy check unit 1045, if the decoding result is not correct, it is determined as control information for another user, and the same reception process is performed on another signal in the search space. The above processing is repeated until the control information is correctly decoded. The bandwidth allocation information is included in the control information that has been correctly decoded.
  • FIG. 3 is a block diagram showing an example of a base station apparatus which is a receiving apparatus according to the first embodiment of the present invention.
  • the base station apparatus has a plurality of antennas, it is conceivable to perform reception diversity, MIMO separation, reception of signals transmitted by CA, etc., but reception processing of each antenna is basically the same. Therefore, the reception processing of one reception antenna will be described on behalf of a plurality of reception antennas (the number of reception antennas is M).
  • a signal transmitted from the mobile station apparatus is received by the receiving antenna 201-1. Although omitted in this example, the received signal is down-converted to a baseband frequency, and when CP is added, CP is removed.
  • the DFT section 202-1 extracts a propagation path estimation signal included in the transmission signal, inputs it to the propagation path estimation section 203, and the data signal is converted into a frequency domain signal.
  • Information on the band to which the signal is allocated is stored in the buffer 204, and the band allocation information is input to the demapping unit 205-1.
  • the demapping unit 205-1 receives the band allocation information and extracts the transmitted signal from the frequency domain signal.
  • the propagation path compensation unit 206-1 uses the propagation path information of the band used for transmission input from the propagation path estimation unit 203, and multiplies a minimum mean square error (MMSE: Minimum Mean Square Error) weight.
  • MMSE Minimum Mean Square Error
  • a process for compensating for the distortion of the wireless propagation path is performed.
  • MIMO separation processing is performed from the signal obtained from each propagation path compensation unit 206-1.
  • reception diversity and MIMO signals are combined.
  • IDFT section 207-1 it is converted into a signal in the time domain and input to demodulation section 208-1.
  • Demodulation section 208-1 demodulates the modulated signal input from IDFT section 207-1.
  • propagation path estimation section 203 estimates the frequency response from the propagation path estimation signal, which is a known signal received by each antenna, and inputs it to propagation path compensation section 206-1 and band allocation determination section 209.
  • the band allocation determination unit 209 may allocate the same band to all transmission antennas 109-1 to 109-M in transmission diversity and MIMO, and may allocate a different band for each antenna when CA is applied.
  • the band allocation information is converted into control information data to be transmitted by the control information generation unit 210, converted into a transmission signal by signal processing by the transmission processing unit 211, up-converted from the baseband frequency, and transmitted from the transmission antenna 212.
  • FIG. 4 is a diagram illustrating a case where the mobile station apparatus according to the first embodiment of the present invention uses a different CC for each transmission antenna 109 in data transmission using a plurality of transmission antennas 109. As shown in FIG. 4, it is possible to use different CCs for each transmission antenna 109. When a different CC is used for each transmission antenna 109, since the mobile station apparatus allocates a band for each transmission antenna 109, a clustered DFT-S-OFDM that uses discrete bands is used. It is possible to switch the SC-FDMA to be used as necessary. Clustered DFT-S-OFDM and SC-FDMA have different signal peak power, and when switched, they are determined from the required transmission power, backoff, and PA capacity used by the antenna.
  • the reception processing unit 104 of the mobile station apparatus needs to perform blind decoding of control information indicating uplink continuous band allocation and discrete band allocation in the CC used for each transmission antenna 109.
  • the maximum number of blind decoding increases.
  • the capacity of the PA is the TX MAX dBm, when the transmitting antenna 109 is two can afford 3 dB, there is no need to consider the following backoff 3dBm.
  • the number of transmission antennas 109 is two and the PA capacity is TX MAX -3 dBm, it is necessary to consider back-off as before. Accordingly, if the PA has a large capacity even when discrete bands are allocated, the sum of the transmission power and the back-off will not easily exceed the capacity of the PA, and transmission signal distortion will not easily occur.
  • the base station apparatus always notifies the mobile station apparatus only of control information indicating discrete band allocation, and the mobile station apparatus Only blindly decode control information in the format of allocation of discrete bands.
  • the sum of transmission power and backoff may exceed the capacity of the PA.
  • the band allocation determination unit 209 of the base station apparatus determines the bandwidth allocation and notified by the control information.
  • the transmission antenna 109 and the PA are associated one-to-one.
  • the cluster size is determined in consideration of the backoff, and the capacity In the transmission antenna 109 using a large PA, allocation is determined with a smaller cluster size without considering backoff.
  • the capacity and cluster size of the PA used by the transmission antenna 109 may be determined as shown in Table 3 below. .
  • N Cluster is the number of resource blocks that make up a small-capacity PA cluster
  • N RBG is the number of resource blocks that make up a resource block group.
  • the allocation information of the band determined by the above method is notified from the CC used by each transmission antenna 109 from the transmission antenna 212 as control information.
  • the mobile station apparatus maps data in the frequency domain based on the notified control information, and transmits from each CC.
  • the minimum allocatable bandwidth is set as a resource block unit.
  • the transmission antenna 109 using a large capacity PA may be set as a subcarrier unit, or a small capacity PA is used. Any bandwidth that is smaller than the number of resource blocks that constitute a cluster of transmission antennas 109 is within the scope of the present invention.
  • the cluster size is reduced for a PA with a large capacity without considering backoff. Transmission power can be determined, high frequency selective diversity gain can be obtained, and transmission characteristics can be improved.
  • the PA capacity is notified to the base station apparatus in advance, and the effect that blind decoding can be efficiently performed is shown as an effect.
  • the PA output signal is saturated by adaptively switching the transmit antenna 109 depending on how the resource blocks are allocated (continuous / non-contiguous, cluster size is large / small, the number of allocated resource blocks is large / small), etc. By doing so, it becomes possible to reduce the probability of distortion.
  • FIG. 5 is a block diagram showing an example of a mobile station apparatus when two transmission antennas 109 are provided for data transmission by MIMO in the third embodiment of the present invention.
  • the mobile station apparatus receives, as control information from the base station apparatus, PMI (Precoding ⁇ ⁇ Matrix ⁇ ⁇ Indicator) representing the precoding matrix to be multiplied with the transmission signal, together with the band allocation information, by the receiving antenna 103. .
  • PMI Precoding ⁇ ⁇ Matrix ⁇ ⁇ Indicator
  • the received control information is input to the radio unit 401 and down-converted to a baseband frequency. Subsequently, a control information reception process is performed as in FIG.
  • the bandwidth allocation information acquisition unit 105 inputs the bandwidth allocation information included in the control information to the mapping units 106-1 and 106-2, and the PMI information acquisition unit 402 converts the PMI information included in the control information into the precoding unit 403-. Enter 1 and 403-2.
  • the code bits are processed up to the DFT units 102-1 and 102-2 in the same manner as in FIG. 1, and a frequency domain signal is generated.
  • the precoding units 403-1 and 403-2 multiply by a precoding vector (Precoding vector, also referred to as transmission weight) that gives a phase rotation according to the propagation path of each transmission antenna 109. Suppresses quality degradation of spatially multiplexed signals due to anti-phase addition.
  • precoding is preferably applied with a narrower bandwidth depending on the frequency domain signal.
  • the propagation path is different for each cluster depending on the arrangement of the clusters.
  • Precoding on a cluster basis is preferred because it can vary greatly.
  • the peak power increases, so it is necessary to reduce the transmission output for backoff in consideration of PA nonlinearity.
  • FIG. 6 is a block diagram showing an example of a base station apparatus that receives a spatially multiplexed signal in the third embodiment of the present invention.
  • the description will be made assuming that there are two reception antennas.
  • the frequency domain signal extracted based on the band allocation information by the demapping units 205-1 and 205-2 is input to the signal separation unit 501 as in FIG.
  • the signal separation unit 501 separates the spatially multiplexed signals, and the separated signals are converted into time domain signals by the IDFT units 207-1 and 207-2, respectively.
  • the propagation path estimation unit 203 inputs the propagation path estimation value of each receiving antenna 201 to the band allocation determination unit 209 and the precoding determination unit 502.
  • the precoding determination unit 502 determines precoding that gives a phase rotation to one transmission antenna 109, and inputs PMI information to the control information generation unit 210. Control information is transmitted from the transmission antenna 212 together with band allocation information.
  • the bandwidth to which precoding is applied is determined based on the capacity of the PA used by the transmission antenna 109.
  • FIG. 7 is a diagram illustrating an example in which precoding is applied in the third embodiment of the present invention.
  • the transmission antenna 109-2 uses a PA with a large capacity, it is not necessary to reduce the transmission power even if the precoding that increases the peak power is changed in units of clusters.
  • PV # 2,..., PV # 5 are determined based on the propagation path in the frequency band in which the respective clusters are arranged.
  • precoding is applied to the transmission antenna 109-2.
  • precoding is applied to the transmission antenna 109-1 for each cluster. May be.
  • the case of Clustered DFT-S-OFDM has been described, but the present invention can also be applied to SC-FDMA.
  • FIG. 8 is a diagram illustrating an example in which precoding is applied to transmission by SC-FDMA in the third embodiment of the present invention.
  • PV # 1 to PV # 5 are assigned different precoding vectors depending on the propagation path in resource block units as shown in FIG.
  • the unit to which the SC-FDMA precoding vector is applied may be an integer multiple of the resource block or a subcarrier unit.
  • Clustered DFT-S-OFDM may apply a precoding vector to a narrower bandwidth than the cluster.
  • FIG. 9 is a block diagram showing an example of a mobile station apparatus having four transmission antennas 109 in the third embodiment of the present invention.
  • PMI information acquisition section 402 inputs a precoding vector for each of transmission antennas 109-1 to 109-4 from the received PMI information.
  • FIG. 10 is a diagram illustrating an example in which precoding is applied to a mobile station apparatus having four transmission antennas 109 in the third embodiment of the present invention. Precoding gives a phase rotation to signals transmitted from three transmitting antennas 109 as shown in FIG. Only the transmission antenna 109 having a large PA capacity to be used among the transmission antennas 109-1 to 109-4 is changed in a cluster unit.
  • PV # 21 41 to PV # 45 are determined by the propagation path of the frequency band in which the cluster is arranged.
  • PV # 21 and PV # 31 are determined by the propagation paths of the transmission antennas 109-2 and 109-3.
  • the transmission antenna 109 to which the phase rotation by precoding is not applied is the transmission antenna 109-1, but another transmission antenna 109 may be used, or the transmission antenna 109 having a small PA capacity may be used.
  • the transmission antenna 109 having a large PA capacity has been described as precoding in units of clusters. However, precoding may be performed in units of resource blocks or subcarriers.
  • precoding is applied on a cluster basis to the transmission antenna 109 having a large PA capacity to be used. Since transmission power is determined without considering OFF and it becomes easy to separate spatially multiplexed signals on the receiving side, transmission characteristics can be improved.
  • FIG. 11 is a block diagram showing an example of a mobile station apparatus according to the fourth embodiment of the present invention.
  • PA section 108-1 is a small capacity PA
  • PA section 108-2 is a large capacity PA.
  • control information such as CQI, RI (Rank Indication), and PMI that are periodically transmitted to the base station apparatus as control information for ACK, NACK, and downlink for data received in the downlink from the base station apparatus.
  • the control information is converted into a time domain signal in the transmission processing unit 602.
  • IDFT section 107-2 outputs a signal of transmission data in the time domain.
  • PA section 108-2 having a large capacity because a transmission signal with high peak power due to multi-carrier transmission is obtained. Therefore, the control information signal output from the transmission processing unit 602 is added to the output from the IDFT unit 107-2 and transmitted from the transmission antenna 109-2 via the PA unit 108-2.
  • the PA unit 108-1 having a small capacity transmits a signal having a high peak power
  • the transmission signal is distorted due to the nonlinearity of the PA. Therefore, only the data signal is transmitted from the transmission antenna 109-1 without multiplexing control information. Send. Since the signal obtained by adding the control information and the data in the time domain is multi-carrier, the peak power becomes high. Therefore, transmission power control in consideration of backoff is required due to the nonlinearity of PA.
  • the time domain signal of the control information is added to the transmission antenna 109 having a large PA capacity to be used. It is not necessary to reduce the transmission power for the back-off due to the increase in peak power due to simultaneous transmission.
  • FIG. 12 is a block diagram showing an example of a mobile station apparatus according to the fifth embodiment of the present invention.
  • PA section 108-1 is a PA with a large capacity
  • PA section 108-2 is a PA with a small capacity.
  • SFBC which is a transmission diversity method
  • the mobile station apparatus in FIG. 12 is a mobile station apparatus using SFBC, and frequency domain signals are input from the DFT units 102-1 and 102-2 to the transmission signal processing units 701-1 and 701-2, respectively.
  • the same signal is output from the DFT units 102-1 and 102-2, so the number of the modulation unit 101 and the number of DFT units 102 may be one.
  • Transmission signal processing sections 701-1 and 701-2 perform SFBC encoding. In the SFBC encoding, only one of the transmission signals has a high peak power, and the other has the same peak power. In the present embodiment, SFBC encoding with high peak power is performed on a signal transmitted using PA section 108-1 having a large capacity. Therefore, in the present embodiment, the process of the transmission signal processing unit 701-1 is a process that increases the peak power.
  • FIG. 13 is a diagram showing an SFBC encoding method according to the fifth embodiment of the present invention.
  • the transmission signal processing unit 701-1 performs the processing on the frequency domain signals of S (1), S (2),..., S (N). If encoding is performed in units of two subcarriers, and the k ⁇ 1th and kth subcarriers, the signals of S (k ⁇ 1) and S (k) are converted to S (k) *, ⁇ S (k ⁇ 1). ) *.
  • X * is a complex conjugate of X.
  • the transmission signal processing unit 701-2 outputs the same S (1), S (2),..., S (N) as the input signal.
  • the signal output from transmission signal processing section 701-1 is transmitted from transmission antenna 109-1 via mapping section 106-1, IDFT section 107-1 and PA section 108-1. Since the transmission process from the transmission antenna 109-2 is the same, the description is omitted.
  • the transmission signal is distorted due to the nonlinearity of the PA. Therefore, it is necessary to reduce the transmission power in consideration of backoff.
  • the present embodiment it is necessary to reduce the transmission power in consideration of the increase in the peak power due to the encoding by selecting the signal of the transmission antenna 109 using the PA having a large capacity and performing the encoding that increases the peak power. Disappear.
  • a signal with high peak power is assigned to the transmission antenna 109 using the PA having a large capacity by encoding SFBC. Therefore, it is not necessary to reduce transmission power in consideration of backoff, and transmission characteristics can be improved.
  • the total allowable transmission power value of the PA of the mobile station apparatus is the allowable maximum transmission power value of the mobile station apparatus.
  • the transmission antennas 109 that use a plurality of CCs are determined in consideration of the capacity of the PA used in each transmission antenna 109 when the transmission antennas are larger will be described. However, it is assumed that the capacity of each PA is previously notified from the mobile station apparatus to the base station apparatus.
  • CAs that perform data transmission to a plurality of CCs at the same timing
  • the PA to be used is different for each CC, or that the CC to be used is transmitted using one PA.
  • a single carrier signal using one DFT is assigned to one CC in the frequency domain.
  • a signal having a high peak power is transmitted using multi-carrier.
  • FIG. 14 is a block diagram showing an example of a mobile station apparatus according to the sixth embodiment of the present invention.
  • the PA unit 108-1 is a PA having a small capacity
  • the PA unit 801-2 is a PA having a large capacity.
  • the case where the mobile station apparatus of this embodiment has both a small capacity PA and a large capacity PA will be described. However, if the mobile station apparatus is essentially the same as the present embodiment, the mobile station apparatus has a different PA configuration. However, it is the same as the present invention. Since the transmission antenna 109-1 uses a small-capacity PA, when a plurality of CC signals with high peak power are transmitted, distortion occurs in the transmission signal due to the nonlinearity of the PA.
  • the transmitting antenna 802-2 uses the PA unit 801-2 having a large capacity, it is not necessary to consider the backoff due to the increase in peak power caused by transmitting a plurality of CC signals, and the transmission power is reduced. There is no need. Therefore, the signals transmitted from the transmission antenna 802-2 are generated by generating time domain signals to be transmitted to different CCs by the IDFT unit 803-2 and the IDFT unit 803-3 and transmitting the signals.
  • the program that operates in the mobile station apparatus and the base station apparatus related to the present invention is a program (a program that causes a computer to function) that controls the CPU and the like so as to realize the functions of the above-described embodiments related to the present invention.
  • Information handled by these devices is temporarily stored in the RAM at the time of processing, then stored in various ROMs and HDDs, read out by the CPU, and corrected and written as necessary.
  • a recording medium for storing the program a semiconductor medium (for example, ROM, nonvolatile memory card, etc.), an optical recording medium (for example, DVD, MO, MD, CD, BD, etc.), a magnetic recording medium (for example, magnetic tape, Any of a flexible disk etc. may be sufficient.
  • the processing is performed in cooperation with the operating system or other application programs.
  • the functions of the invention may be realized.
  • the program can be stored and distributed in a portable recording medium, or transferred to a server computer connected via a network such as the Internet.
  • the storage device of the server computer is also included in the present invention.
  • part or all of the mobile station apparatus and the base station apparatus in the above-described embodiment may be realized as an LSI that is typically an integrated circuit.
  • Each functional block of the mobile station apparatus and the base station apparatus may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 複数のPA(Power Amplifier)および複数のアンテナを備える移動局装置で、ピーク電力の異なる送信信号を各々のPAを用いて送信する場合に、伝搬特性の向上を図る。複数のPAおよび複数のアンテナを備える送信装置であって、各PAを用いて送信する送信信号を、各PAの能力に基づいて決定し、送信信号を時間周波数変換により周波数信号に変換し、周波数信号を複数のクラスタに分割し、離散的に帯域への割り当てを行なうことにより、ピーク電力の高い信号を送信する。また、周波数信号を連続した帯域への割り当てを行なうことにより、ピーク電力の低い信号を送信する。

Description

送信装置、無線通信システム、移動局装置の制御プログラムおよび基地局装置の制御プログラム
 本発明は、電力増幅器の容量を考慮して送信信号の割り当て方法を切り替える送信装置、無線通信システム、移動局装置の制御プログラムおよび基地局装置の制御プログラムに関する。
 移動体通信におけるアップリンク(移動局装置から基地局装置への通信)では、ダウンリンク(基地局装置から移動局装置への通信)に比べ電力消費に対する制限が厳しく、第3.9世代の携帯電話の無線通信システムであるLTE(Long Term Evolution)のアップリンクでは、送信に用いるアンテナ数は1本となっている。
 最近ではLTEシステムをより発展させた第4世代の無線通信システムであるLTE-A(LTE-Advanced)の標準化が行なわれている。LTE-Aシステムのアップリンクでは、ピークデータレートや周波数利用効率を向上させる観点から、移動局装置の最大送信電力をLTEと同じ23dBmに保ちつつ多アンテナによる伝送である送信ダイバーシチや多入力多出力(MIMO)技術の導入が検討されている。一方で、移動局装置が常に多アンテナによるアクセス方式を用いると、アンテナ毎に伝搬路推定用信号を送信する必要があるなど、電力消費を増加させる場合があることから、1本アンテナしか使用しないシングルアンテナモードの検討も行なわれている。
 ところで、LTE-Aシステムのアップリンクでは、LTEとの後方互換性を重視し、シングルキャリア信号であるDFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing、SC-FDMAとも称される)をサポートし(非特許文献1)、さらにスループットを改善することができるClustered DFT-S-OFDM(ダイナミックスペクトル制御(DSC:Dynamic Spectrum Control)、DFT-S-OFDM with SDC(Spectrum Division Control)とも呼称される。)が採用されている。Clustered DFT-S-OFDMは、シングルキャリアスペクトルを分割(分割された各スペクトルはクラスタと呼ばれる)し、各クラスタを離散的に配置する方式である。Clustered DFT-S-OFDMは、DFT-S-OFDMに比べピーク電力が高くなるものの、使用可能な帯域から伝搬路利得の高い周波数を選択するため、高い周波数選択ダイバーシチ効果を得ることができる。
 本明細書中のピーク電力とは、平均電力に対するピーク電力の比であるPAPR(Peak to Average Power Ratio)などのことを表す。各クラスタは、12サブキャリアをグループ化したリソースブロック(Resource Block)の整数倍とし、クラスタを構成するリソースブロック数が少ないほど周波数選択ダイバーシチ効果が高くなる。ただし、クラスタはサブキャリアの整数倍としても本発明は適用可能である。
 2本の送信アンテナの送信電力を合計して23dBmとする場合には、1本当たりの送信電力が20dBmとなることから、移動局装置の持つPA(Power Amplifier)の容量は20dBmにすることが考えられる。ここで、本明細書中のPAの容量とは、PAの1dBコンプレッションポイントまたは、1dB利得圧縮時の出力電力などのことであり、PAの能力を示すものである。一方で、シングルアンテナモードにおける移動局装置の最大送信電力について、23dBmもサポートを可能とする観点から、容量が異なるPAを移動局装置が持つなど様々なPAの構成が考えられている。例えば、移動局装置が23dBmのPAを複数持つ場合や23dBmと20dBmを持つなどの場合がある。
 しかしながら、移動局装置が複数のPAを持つ場合において、移動局装置の持つPAの許容送信電力値の合計値が移動局装置の許容最大送信電力値より大きい場合に、Clustered DFT-S-OFDMとDFT-S-OFDMの切替えや多アンテナ送信、マルチキャリア送信などの異なるピーク電力の送信信号をPAの許容送信電力値を考慮せずに割り当てると、PAの非線形性によって歪みが生じ、伝搬特性が劣化する問題があった。
 本発明は、このような事情を鑑みてなされたものであり、複数のPAを有する移動局装置において、ピーク電力の異なる送信信号を各々のPAを用いて送信する場合に、ピーク電力が高い送信信号を容量の大きいPAから送信するように割り当てることによって、伝搬特性の向上を図ることができる送信装置、無線通信システム、移動局装置の制御プログラムおよび基地局装置の制御プログラムを提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の送信装置は、複数のPA(Power Amplifier)および複数のアンテナを備える送信装置であって、前記各PAを用いて送信する送信信号を、前記各PAの能力に基づいて決定し、前記各アンテナからPAPR(Peak to Average Power Ratio)特性が異なる信号を送信することを特徴としている。
 このように、送信装置は、各PAを用いて送信する送信信号を、各PAの能力に基づいて決定し、各アンテナからPAPR(Peak to Average Power Ratio)特性が異なる信号を送信するので、PAPR特性に応じたPAの使用が可能となり、例えば、バックオフを考慮せずに送信電力を決定することができ、伝送特性を向上させることができる。
 (2)また、本発明の送信装置において、送信信号を時間周波数変換により周波数信号に変換し、前記周波数信号を複数のクラスタに分割し、離散的に帯域への割り当てを行なう信号を、送信するPAPR特性が異なる信号の少なくとも一つとすることを特徴としている。
 このように、周波数信号を複数のクラスタに分割し、離散的に帯域への割り当てを行なう信号を、送信するPAPR特性が異なる信号の少なくとも一つとするので、移動局装置が複数のPAを用いた送信をする際に、ピーク電力の高い該信号に容量の大きいPAを用いることで、バックオフを考慮せずに送信電力を決定することができ、常に離散的な帯域の割り当てとすることができる。そのため、容量の大きいPAでは、連続的な帯域の割り当て情報を通知する必要がなくなるため、ブラインドデコーディングする制御情報のフォーマット数も減らすことができる。
 (3)また、本発明の送信装置において、送信信号を時間周波数変換により周波数信号に変換し、前記周波数信号を連続的な帯域への割り当てを行なう信号を、送信するPAPR特性が異なる信号の少なくとも一つとすることを特徴としている。
 このように、周波数信号を連続的な帯域への割り当てを行なう信号を、送信するPAPR特性が異なる信号の少なくとも一つとするので、移動局装置が複数のPAを用いた送信をする際に、ピーク電力の低い該信号を容量の小さいPAを用いることで、連続的な帯域の割り当てを示す制御情報のフォーマットを基地局装置より通知されれば良くなる。これにより、容量の小さいPAでは、ブラインドデコーディングする制御情報のフォーマット数も減らすことができる。
 (4)また、本発明の送信装置において、異なるPAPR特性を有する信号として、前記周波数信号をクラスタに分割し、異なるクラスタサイズの信号を送信することを特徴としている。
 このように、送信装置は、異なるPAPR特性を有する信号として、周波数信号をクラスタに分割し、異なるクラスタサイズの信号を送信するので、ピーク電力の高くなるクラスタの帯域幅が狭い信号を容量の大きいPAを用いることが可能となり、バックオフを考慮せずに送信電力を決定することができ、PAの非線形性による歪みを大きくなることがなく、高い周波数選択ダイバーシチ利得が得られ、伝送特性を向上させることができる。
 (5)また、本発明の送信装置において、送信に使用するキャリア数が異なる信号を送信することにより、PAPR特性が異なる信号を送信することを特徴としている。
 このように、送信装置は、PAPR特性が異なる信号として、送信に使用するキャリア数が異なる信号を送信する時に、容量の大きいPAを使用するアンテナに対して、制御情報の加算をしたり、複数のCCへ送信する信号が加算されたピーク電力の高い信号を割り当てることで、容量の大きいPAを使用するアンテナについて、バックオフを考慮して送信電力を下げる必要がなく、伝送特性を向上させることができる。
 (6)また、本発明の送信装置において、前記キャリア数が異なる信号のうち、キャリア数が多い信号には、データ送信用のキャリアと制御信号送信用のキャリアとが含まれることを特徴としている。
 このように、キャリア数が多い信号には、データ送信用のキャリアと制御信号送信用のキャリアとが含まれるので、移動局装置が複数のアンテナを用いたデータ送信時にデータと制御情報の同時送信が必要な場合、容量の大きいPAを使用するアンテナに対して、制御情報の加算を行なうことで、容量の大きいPAを使用するアンテナについて、バックオフを考慮して送信電力を下げる必要がなく、伝送特性を向上させることができる。
 (7)また、本発明の送信装置において、プリコーディングベクトルを適用する帯域幅が異なる信号を送信することにより、PAPR特性が異なる信号を送信することを特徴としている。
 このように、プリコーディングベクトルを適用する帯域幅が異なる信号を送信することにより、PAPR特性が異なる信号を送信するので、移動局装置がMIMOでデータ送信を行なう際に、使用するPAの容量が大きいアンテナに対して、クラスタ単位でプリコーディングを適用した信号を割り当てるため、PAのバックオフを考慮せずに送信電力を決定でき、空間多重された信号を受信側で分離しやすくなることから、伝送特性を向上させることができる。
 (8)また、本発明の送信装置において、送信信号を時間周波数変換により周波数信号に変換し、SFBC(Space Frequency Block Code)符号化した信号を送信することにより、PAPR特性が異なる信号を送信することを特徴としている。
 このように、送信信号を時間周波数変換により周波数信号に変換し、SFBC(Space Frequency Block Code)符号化した信号を送信することにより、PAPR特性が異なる信号を送信するので、移動局装置がSFBCを用いたデータ送信する場合において、容量の大きいPAを使用するアンテナに対して、SFBCの符号化によりピーク電力の高い信号を割り当てることで、バックオフを考慮して送信電力を下げる必要がなく、伝送特性を向上させることができる。
 (9)また、本発明の送信装置において、複数のCC(Component Carrier)の信号を加算した信号を送信することにより、PAPR特性が異なる信号を送信することを特徴としている。
 このように、各PAの容量に基づいて、複数のCCの信号を加算した信号を送信することにより、PAPR特性が異なる信号を送信するので、容量の大きいPAを使用するアンテナに対して、複数のCCの信号が加算されたピーク電力の高い信号を割り当てることで、バックオフを考慮して送信電力を下げる必要がなく、伝送特性を向上させることができる。
 (10)また、本発明の無線通信システムは、複数のPA(Power Amplifier)および複数のアンテナを備える移動局装置、および送信方法または使用する周波数帯域の少なくとも一方を決定し、前記決定した結果を前記移動局装置に通知する基地局装置から構成される無線通信システムであって、前記移動局装置は、前記PAの能力を示す情報を前記基地局装置に対して通知し、前記基地局装置は、前記移動局装置から通知されたPAの能力に応じて、プリコーディングベクトルを適用する帯域幅およびプリコーディングベクトルによって位相回転を与える送信信号を決定することを特徴としている。
 このように、基地局装置が、移動局装置から通知されたPAの能力に応じて、プリコーディングベクトルを適用する帯域幅およびプリコーディングベクトルによって位相回転を与える送信信号を決定するので、移動局装置は、移動局装置がMIMOでデータ送信を行なう際に、使用するPAの容量が大きいアンテナに対して、クラスタ単位でプリコーディングを適用した信号を割り当てることができる。これにより、PAのバックオフを考慮せずに送信電力を決定し、空間多重された信号を受信側で分離しやすくなるので、伝送特性を向上させることができる。
 (11)また、本発明の無線通信システムは、複数のPA(Power Amplifier)および複数のアンテナを備える移動局装置、および送信方法または使用する周波数帯域の少なくとも一方を決定し、前記決定した結果を前記移動局装置に通知する基地局装置から構成される無線通信システムであって、前記基地局装置は、前記移動局装置から通知された前記PAの能力に応じて、前記移動局装置がデータを送信するための送信方法または周波数帯域の少なくとも一方を決定することを特徴としている。
 このように、基地局装置が、移動局装置から通知されたPAの能力に応じて、移動局装置がデータを送信するための送信方法または周波数帯域の少なくとも一方を決定するので、移動局装置は、移動局装置が複数のアンテナを用いた送信時に容量の大きいPAに対して、常に離散的な帯域の割り当てとし、容量の小さいPAに対して、常に連続的な帯域の割り当てとすることで、バックオフを考慮せずに送信電力を決定することができる。また、容量の大きいPAでは、連続的な帯域の割り当てを示す制御情報が通知する必要がなくなり、ブラインドデコーディングする制御情報のフォーマット数も減らすことができる。
 (12)また、本発明の移動局装置の制御プログラムは、複数のPA(Power Amplifier)および複数のアンテナを備える移動局装置の制御プログラムであって、前記各PAを用いて送信する送信信号を、前記各PAの能力に基づいて決定する処理と、前記各アンテナからPAPR(Peak to Average Power Ratio)特性が異なる信号を送信する処理と、を含む一連の処理を、コンピュータに読み取り可能および実行可能にコマンド化したことを特徴としている。
 このように、各PAを用いて送信する送信信号を、各PAの能力に基づいて決定し、各アンテナからPAPR(Peak to Average Power Ratio)特性が異なる信号を送信するので、PAPR特性に応じたPAの使用が可能となり、例えば、バックオフを考慮せずに送信電力を決定することができ、伝送特性を向上させることができる。
 (13)また、本発明の基地局装置の制御プログラムは、複数のPA(Power Amplifier)および複数のアンテナを備える移動局装置、および送信方法または使用する周波数帯域の少なくとも一方を決定し、前記決定した結果を前記移動局装置に通知する基地局装置から構成される無線通信システムに適用される基地局装置の制御プログラムであって、前記移動局装置から前記PAの能力を示す情報を受信する処理と、前記受信したPAの能力を示す情報に応じて、プリコーディングベクトルを適用する帯域幅およびプリコーディングベクトルによって位相回転を与える送信信号を決定する処理と、を含む一連の処理を、コンピュータに読み取り可能および実行可能にコマンド化したことを特徴としている。
 このように、移動局装置から通知されたPAの能力に応じて、プリコーディングベクトルを適用する帯域幅およびプリコーディングベクトルによって位相回転を与える送信信号を決定するので、移動局装置は、移動局装置がMIMOでデータ送信を行なう際に、使用するPAの容量が大きいアンテナに対して、クラスタ単位でプリコーディングを適用した信号を割り当てることができる。これにより、PAのバックオフを考慮せずに送信電力を決定し、空間多重された信号を受信側で分離しやすくなるので、伝送特性を向上させることができる。
 (14)また、本発明の基地局装置の制御プログラムは、複数のPA(Power Amplifier)および複数のアンテナを備える移動局装置、および送信方法または使用する周波数帯域の少なくとも一方を決定し、前記決定した結果を前記移動局装置に通知する基地局装置から構成される無線通信システムに適用される基地局装置の制御プログラムであって、前記移動局装置から前記PAの能力を示す情報を受信する処理と、前記受信したPAの能力を示す情報に応じて、前記移動局装置がデータを送信するための送信方法または周波数帯域の少なくとも一方を決定する処理と、を含む一連の処理を、コンピュータに読み取り可能および実行可能にコマンド化したことを特徴としている。
 このように、移動局装置から通知されたPAの能力に応じて、移動局装置がデータを送信するための送信方法または周波数帯域の少なくとも一方を決定するので、移動局装置は、移動局装置が複数のアンテナを用いた送信時に容量の大きいPAに対して、常に離散的な帯域の割り当てとし、容量の小さいPAに対して、常に連続的な帯域の割り当てとすることで、バックオフを考慮せずに送信電力を決定することができる。また、容量の大きいPAでは、連続的な帯域の割り当てを示す制御情報が通知する必要がなくなり、ブラインドデコーディングする制御情報のフォーマット数も減らすことができる。
 本発明によれば、移動局装置が複数のアンテナを用いてデータ送信する時にピーク電力の高い送信信号に対してPAの非線形性によるバックオフを考慮する必要がなくなり、より高い送信電力でピーク電力の高い信号の送信が可能となるので、伝送特性を向上させることができる。
本発明の第1の実施形態に係る送信装置である移動局装置の一例を示すブロック図である。 本発明の第1の実施形態に係る受信処理部104の構成例を示したブロック図である。 本発明の第1の実施形態に係る受信装置である基地局装置の一例を示すブロック図である。 本発明の第1の実施形態に係る移動局装置が複数の送信アンテナ109を用いたデータ送信において、送信アンテナ109毎に異なるCCを用いた場合を示す図である。 本発明の第3の実施形態において、MIMOでデータ送信する場合について、送信アンテナ109を2本有する場合の移動局装置の一例を示すブロック図である。 本発明の第3の実施形態において、空間多重した信号を受信する基地局装置の一例を示すブロック図である。 本発明の第3の実施形態において、プリコーディングを適用する一例を表す図である。 本発明の第3の実施形態において、SC-FDMAによる伝送について、プリコーディングを適用する一例を表す図である。 本発明の第3の実施形態において、送信アンテナ109を4本持つ移動局装置の一例を示すブロック図である。 本発明の第3の実施形態において、送信アンテナ109を4本持つ移動局装置の場合に、プリコーディングを適用する一例を表す図である。 本発明の第4の実施形態に係る移動局装置の一例を示すブロック図である。 本発明の第5の実施形態に係る移動局装置の一例を示すブロック図である。 本発明の第5の実施形態に係るSFBCの符号化方法を示す図である。 本発明の第6の実施形態に係る移動局装置の一例を示すブロック図である。
 以下、図面を参照して、本発明の実施形態について説明する。本実施形態では、送信装置は移動局装置であるとして説明する。図1は、本発明の第1の実施形態に係る送信装置である移動局装置の一例を示すブロック図である。ただし、本発明を説明するのに必要な最小限のブロック図としている。移動局装置では、複数のPAとアンテナを持ち、各々送信信号に同様の処理を行なうため、複数の送信アンテナを代表して、1つの送信アンテナから出力される信号について、図1を用いて説明する(送信アンテナ数をMとする)。符号ビットが変調部101-1に入力され、QPSK(Quaternary Phase Shift Keying;四相位相偏移変調)、16QAM(16-ary Quadrature Amplitude Modulation;16直交振幅変調)などの変調シンボルへ変調され、DFT部102-1で周波数領域の信号に変換される。一方、受信アンテナ103では基地局装置より通知される制御情報を受信し、無線部401でベースバンド周波数にダウンコンバートされ、受信処理部104において予め通知されている復号情報を用いて制御信号を得る。帯域割当情報取得部105では、制御信号に含まれる帯域の割り当て情報をマッピング部106-1へ入力する。
 マッピング部106-1は、帯域割当情報取得部105より入力された帯域の割り当て情報を基に周波数領域の信号の割り当てを行なう。帯域割り当て情報が連続的な帯域の場合は、DFT-S-OFDMであり、離散的な帯域の場合はClustered DFT-S-OFDMのアクセス方式が用いられることになる。IDFT部107-1より周波数領域から時間領域へ変換された信号は、伝搬路推定に用いられる参照信号が多重される。本図では省略しているが、ベースバンド周波数からアップコンバートされた後にPA部108-1で増幅され、送信アンテナ109-1(送信アンテナ109-1~109-Mを送信アンテナ109と表す)から出力される。以下、本実施形態ではPA部108-1に入力される信号はアンプコンバート処理が施された信号が入力されるものとする。本実施形態は記載していないが、CP(Cyclic Prefix;サイクリックプレフィックス)を時間領域の信号に付加しても良い。
 複数のアンテナを用いる場合には、同一時刻に同一の周波数を使用するMIMOや送信ダイバーシチがある。また、LTEで用いる帯域をコンポーネントキャリア(CC:Component Carrier)と呼び、LTE-Aでは後方互換性を保ちつつ帯域を拡張する方法として、LTE-Aの帯域を複数のLTEシステム(CC)を周波数軸で並べて統合し、複数のCCを同時に使用するキャリアアグリゲーション(CA)がサポートされる。また、複数のアンテナで異なるCCを同一時刻で用いるCAについても適用することが考えられる。
 LTEでは、制御情報をPDCCH(Physical Downlink Control Channel)と呼ばれるダウンリンクの無線リソースを用いた制御信号により通知し、DCI(Downlink Control Information)フォーマットと呼ばれるフィールドを用いて帯域の割り当てに関する情報が基地局装置から移動局装置へ通知される。DCIフォーマットにはアップリンクの連続的な帯域割り当てを示すフォーマット0やダウンリンクの連続的な帯域の割り当てを示すフォーマット1A、ダウンリンクの離散的な帯域の割り当てを示すフォーマット1などが存在する。LTE-Aにおいては、さらにアップリンクの離散的な帯域割り当てを示すフォーマットが追加される。DCIフォーマットは、各フォーマットによりサイズが決まっており、移動局装置はサイズを基にどのDCIフォーマットであるかを決め打ちして復号するブラインドデコーディングにより制御情報を得る。
 図2は、本発明の第1の実施形態に係る受信処理部104の構成例を示したブロック図である。図2を用いて、ブラインドデコーディングについて説明する。受信処理部104は、予め復号情報がフォーマット情報取得部1041に入力される。フォーマット情報取得部1041は、復号するフォーマットのサイズを復号部1042へ入力し、フォーマット情報をフォーマットチェック部1043へ入力する。復号部1042は、制御情報が割り当てられるサーチスペースと呼ばれる予め規定されている周波数位置の候補からフォーマット情報取得部1041より入力されたフォーマットサイズを基に受信信号に対して復号処理を行なう。ユーザ判別処理部1044において制御情報に付加されている巡回冗長検査(CRC:Cyclic Redundancy Check)ビットに対してユーザIDと排他的論理和をとり、マスクを行なう。
 巡回冗長検査部1045において、復号結果を巡回冗長検査により正しく復号できているかのチェックを行なう。復号結果が正しい場合、フォーマットチェック部1043において同一サイズのフォーマットを判別するビットの値から受信した制御情報を確認する。ただし、巡回冗長検査部1045において、復号結果が正しくない場合は他ユーザへの制御情報と判断し、サーチスペース内の別の信号に対して同様の受信処理を行なう。以上の処理を制御情報が正しく復号されるまで繰り返し行なう。正しく復号できた制御情報内に帯域割り当て情報が含まれている。
 図3は、本発明の第1の実施形態に係る受信装置である基地局装置の一例を示すブロック図である。基地局装置では、複数のアンテナを持っているが、受信ダイバーシチやMIMO分離やCAで送信された信号の受信などを行なうことが考えられるが、各々のアンテナの受信処理は基本的に同じであることから、複数の受信アンテナを代表して、1つの受信アンテナの受信処理を説明する(受信アンテナ数をMとする)。移動局装置から送信された信号を受信アンテナ201-1で受信する。本例では省略しているが、受信信号をベースバンド周波数にダウンコンバートし、CPが付加されている場合は、CPの除去を行なう。DFT部202-1では送信信号に含まれる伝搬路推定用信号を抽出し、伝搬路推定部203へ入力し、データ信号は周波数領域の信号に変換される。該信号が割り当てられている帯域の情報がバッファ204に保存されており、帯域割り当て情報がデマッピング部205-1に入力される。デマッピング部205-1では、帯域割り当て情報が入力され、周波数領域の信号から送信された信号を抽出する。
 伝搬路補償部206-1では、伝搬路推定部203より入力された送信に用いられた帯域の伝搬路情報を用いて、最小平均二乗誤差(MMSE:Minimum Mean Square Error)重みを乗算する等の無線伝搬路のひずみを補償する処理を施す。MIMOの場合は、それぞれの伝搬路補償部206-1より得られた信号から分離処理を行なう。受信ダイバーシチやMIMOでは、信号の合成が行なわれる。IDFT部207-1においては、時間領域の信号に変換され、復調部208-1に入力される。復調部208-1では、IDFT部207-1より入力された変調信号の復調処理を行なう。一方、伝搬路推定部203では、各々アンテナで受信された既知信号である伝搬路推定用信号より周波数応答を推定し、伝搬路補償部206-1と帯域割当決定部209に入力する。
 帯域割当決定部209では、送信ダイバーシチやMIMOではすべての送信アンテナ109-1~109-Mに対して同一の帯域割り当て、CAの適用時においてアンテナ毎に異なる帯域を割り当てることもある。帯域割り当て情報は、制御情報生成部210で送信する制御情報データにされ、送信処理部211で信号処理により送信信号に変換し、ベースバンド周波数からアップコンバートされ、送信アンテナ212より送信される。
 [第1の実施形態]
 本実施形態では、移動局装置が複数のアンテナとPAでデータ送信を行なう際に、移動局装置の持つPAの許容送信電力値の合計値が移動局装置の許容最大送信電力値より大きい場合、各々のアンテナで用いるPAの容量により、帯域の割り当て方法を変える一例について説明する。ただし、各PAの容量は予め移動局装置から基地局装置へ通知されているものとする。図1の構成の移動局装置がCAを行なう場合において、各CCで用いる符号化率や変調方式、帯域の割り当て情報などが基地局装置から制御情報として、移動局装置に通知される。
 図4は、本発明の第1の実施形態に係る移動局装置が複数の送信アンテナ109を用いたデータ送信において、送信アンテナ109毎に異なるCCを用いた場合を示す図である。図4のように、送信アンテナ109毎に異なるCCを用いることも可能である。送信アンテナ109毎に異なるCCを使用する場合は、移動局装置は送信アンテナ109毎に帯域の割り当てが行なわれるため、離散的な帯域を使用するClustered DFT-S-OFDMと連続的な帯域を使用するSC-FDMAを必要に応じて切り替えて使用することが可能である。Clustered DFT-S-OFDMとSC-FDMAは、信号のピーク電力が異なり、切り替えて使用する場合、必要な送信電力やバックオフとアンテナが使用するPAの容量から決定される。
 しかしながら、移動局装置の受信処理部104では、送信アンテナ109毎に使用するCCでアップリンクの連続的な帯域の割り当てと離散的な帯域の割り当てを示す制御情報のブラインドデコーディングを行なう必要があり、ブラインドデコーディングの最大の回数が増える。ところで、移動局装置の最大送信電力をTXMAXとした時に複数の送信アンテナ109がそれぞれ等電力で送信する場合、送信アンテナ109の1本当たりの最大送信電力は表1のようになる。そのため、PAの容量がTXMAXdBmであり、送信アンテナ109が2本の場合は3dBの余裕ができ、3dBm以下のバックオフを考慮する必要が無くなる。さらに送信アンテナ109が2本でPAの容量がTXMAX-3dBmの場合は従来と変わらずにバックオフを考慮する必要がある。よって、離散的な帯域の割り当てでも容量が大きいPAであれば、送信電力とバックオフの合計がPAの容量を上回りにくくなり、送信信号の歪みが発生しにくくなる。
Figure JPOXMLDOC01-appb-T000001

 よって、容量の大きいPA、例えば23dBmまで許容するPAを用いて信号を送信するCCでは、基地局装置は常に離散的な帯域の割り当てを示す制御情報のみを移動局装置に通知し、移動局装置は離散的な帯域の割り当てのフォーマットの制御情報のみブラインドデコーディングする。また、容量が小さいPA、例えば20dBmまで許容するPAが使用するCCでは、送信電力とバックオフの合計がPAの容量を超える場合があるため、基地局装置は連続的な帯域の割り当てと離散的な帯域の割り当てを示す制御情報の両方のフォーマットを通知し、あるいは、連続的な割り当てのフォーマットのみを通知し、移動局装置はその通知方法に従って、必要なフォーマットの制御情報のみをブラインドデコーディングする。
 本実施形態では、CAを適用する場合について説明したが、アンテナが同一のCCを用いる場合においてもアンテナ毎に同様の制御情報による通知を行なえば、本発明の範囲内とする。本実施形態を適用することにより、移動局装置が複数のアンテナを用いた送信をする際に、容量の大きいPAに対して、常に離散的な帯域の割り当てとすることで、バックオフを考慮せずに送信電力を決定することができる。そのため、容量の大きいPAでは、ブラインドデコーディングする制御情報のフォーマット数も減らせる。
 [第2の実施形態]
 本実施形態では、移動局装置が複数の送信アンテナ109でデータ送信を行なう際に、移動局装置の持つPAの許容送信電力値の合計値が移動局装置の許容最大送信電力値より大きい場合、各々の送信アンテナ109で用いるPAの容量により、離散的に割り当てる周波数領域の信号の分割数を変える一例について、説明する。ただし、各PAの容量は予め移動局装置から基地局装置へ通知されているものとする。LTEのダウンリンクでは、1つのCC内で割り当て可能なリソースブロック数に応じて、リソースブロックの整数倍からなるリソースブロックグループが定義されており、表2によって定義されている。
Figure JPOXMLDOC01-appb-T000002

 また、LTEのダウンリンクの離散配置は最小の割り当て単位をリソースブロックグループの単位で割り当てることが決まっている。同様に、Clustered DFT-S-OFDMでも、離散配置によりスケジューリングの柔軟性が増し、周波数選択ダイバーシチ効果も高まり、スループットが高くなるが、ピーク電力も分割数に応じて高くなる。
 移動局装置が複数の送信アンテナ109を用いて、各送信アンテナ109で異なるCCを使用するCAのデータ送信をする場合には、基地局装置の帯域割当決定部209において、各送信アンテナ109に対して帯域の割り当てを決定し、制御情報により通知する。ここで、本実施形態では送信アンテナ109とPAが一対一で関連付けられているものとする。帯域の割り当てを決定する際には、容量の小さいPAを用いる送信アンテナ109に対しては、PAの非線形性を考慮する必要があるため、バックオフを考慮してクラスタサイズを決定し、容量の大きいPAを用いる送信アンテナ109ではバックオフを考慮せずにより小さいクラスタサイズで割り当てを決定する。例えば、容量の小さいPAを20dBmまで許容するPAとし、容量の大きいPAを23dBmまで許容するPAとすると、以下の表3の様に送信アンテナ109が用いるPAの容量とクラスタサイズを決めても良い。
Figure JPOXMLDOC01-appb-T000003

 ただし、NClusterは、容量の小さいPAのクラスタを構成するリソースブロック数であり、NRBGはリソースブロックグループを構成するリソースブロック数とする。
 上記の方法により、決定された帯域の割り当て情報は、制御情報として送信アンテナ212から各送信アンテナ109が使用するCCより通知される。移動局装置は通知された制御情報を基に周波数領域でデータをマッピングし、各々のCCから送信を行なう。ただし、本実施形態では、最小の割り当て可能な帯域幅をリソースブロック単位としたが、容量の大きいPAを用いる送信アンテナ109に対して、サブキャリア単位にしても良いし、容量の小さいPAを用いる送信アンテナ109のクラスタを構成するリソースブロック数より小さい帯域幅であれば本発明の範囲内とする。また、本実施形態では送信アンテナ109毎に異なるCCを使用するCAによるデータ送信時において説明したが、送信アンテナ109毎に制御情報で帯域の割り当てを通知し、送信アンテナ109が用いるPAの容量によりクラスタサイズを変える場合には、複数の送信アンテナ109が同一のCCからのデータ送信時も本実施形態と同一とする。
 本実施形態を適用することにより、移動局装置が複数の送信アンテナ109を用いた送信をする際に、容量の大きいPAに対して、クラスタサイズを小さくすることで、バックオフを考慮せずに送信電力を決定することができ、高い周波数選択ダイバーシチ利得が得られ、伝送特性を向上させることができる。また、第1、第2の実施形態では、あらかじめPAの容量を基地局装置に通知し、ブラインドデコーディングが効率的に行なえることを効果として示したが、あらかじめ通知しない場合でも、CC毎のリソースブロックの割り当て方(連続/非連続、クラスタサイズの多/少、割りあてられるリソースブロック数の多・少等)により適応的に送信アンテナ109を切り替えることで、PAの出力端の信号が飽和することにより歪む確率を減らすことも可能になる。
 [第3の実施形態]
 本実施形態では、移動局装置がMIMOでデータ送信を行なう際に、移動局装置の持つPAの許容送信電力値の合計値が移動局装置の許容最大送信電力値より大きい場合、各々の送信アンテナ109で用いるPAの容量を考慮して、プリコーディングの適用方法を変える一例について、説明する。ただし、各PAの容量は予め移動局装置から基地局装置へ通知されているものとする。
 図5は、本発明の第3の実施形態において、MIMOでデータ送信する場合について、送信アンテナ109を2本有する場合の移動局装置の一例を示すブロック図である。移動局装置は、MIMO送信を行なう場合に、基地局装置より制御情報として、送信信号に乗算するプリコーディングのマトリックスを表すPMI(Precoding Matrix Indicator)を帯域割り当て情報と一緒に受信アンテナ103で受信する。受信した制御情報は、無線部401に入力され、ベースバンド周波数にダウンコンバートされる。続いて、図1と同様に制御情報受信処理が施される。帯域割当情報取得部105では、制御情報に含まれる帯域割り当て情報をマッピング部106-1と106-2へ入力し、PMI情報取得部402では制御情報に含まれるPMIの情報をプリコーディング部403-1と403-2に入力する。
 一方、符号ビットは、図1と同様にDFT部102-1、102-2まで処理が行なわれ、周波数領域の信号が生成される。プリコーディング部403-1と403-2ではPMI情報に基づき、各送信アンテナ109の伝搬路に応じた位相回転を与えるプリコーディングベクトル(Precoding Vector、送信重みとも呼称される)を乗算することで、空間多重する信号が逆相加算により品質劣化するのを抑える。送信アンテナ109が2本の場合は、どちらか一方にのみ位相回転を与えるだけでよく、受信側で空間多重された信号が適切に合成される。また、プリコーディングは周波数領域の信号により狭い帯域幅での適用が好ましく、特にClustered DFT-S-OFDMのような離散的に帯域を使用する場合においてはクラスタの配置によって、クラスタ毎に伝搬路が大きく違うことがあるため、クラスタ単位でのプリコーディングが好ましい。ただし、プリコーディングをクラスタより狭い帯域で適用すると、ピーク電力が上がるためにPAの非線形性を考慮し、バックオフ分の送信出力を下げる必要がある。
 図6は、本発明の第3の実施形態において、空間多重した信号を受信する基地局装置の一例を示すブロック図である。本実施形態では、受信アンテナを2本として説明するが、受信アンテナが3本以上でも同様である。基地局装置では、図3と同様にデマッピング部205-1と205-2より帯域割り当て情報を基に抽出された周波数領域の信号が信号分離部501に入力される。信号分離部501では、空間多重されている信号の分離を行ない、分離した信号をIDFT部207-1と207-2でそれぞれ時間領域の信号に変換する。
 一方、伝搬路推定部203では、各受信アンテナ201の伝搬路推定値を帯域割当決定部209とプリコーディング決定部502に入力する。プリコーディング決定部502では、送信アンテナ109が2本のMIMOの場合、1本の送信アンテナ109に対して位相回転を与えるプリコーディングを決定し、PMIの情報を制御情報生成部210に入力し、制御情報として、帯域割り当て情報と一緒に送信アンテナ212より送信する。ここで、プリコーディングを決定する際に、送信アンテナ109が用いるPAの容量によりプリコーディングを適用する帯域幅を決定する。
 図7は、本発明の第3の実施形態において、プリコーディングを適用する一例を表す図である。送信アンテナ109-2が容量の大きいPAを用いるものとした場合は、ピーク電力が高くなるプリコーディングをクラスタ単位で変えたとしても送信電力を下げる必要がないため、プリコーディングベクトルのPV#1、PV#2、…、PV#5はそれぞれのクラスタを配置する周波数帯域での伝搬路に基づき決定する。送信アンテナ109-2が容量の小さいPAを用いる場合は、バックオフの考慮が必要なため、PV#1=PV#2=…=PV#5とする。全部のクラスタに単一の位相回転を与える処理となり、プリコーディングを適用してもプリコーディングを施さない場合と同じピーク電力となる。本実施形態では、送信アンテナ109-2にプリコーディングを適用したが、送信アンテナ109-1で使用するPAの容量が大きい場合は送信アンテナ109-1に対して、クラスタ毎にプリコーディングを適用しても良い。また、本実施形態ではClustered DFT-S-OFDMの場合について説明したが、SC-FDMAにおいても適用可能である。
 図8は、本発明の第3の実施形態において、SC-FDMAによる伝送について、プリコーディングを適用する一例を表す図である。SC-FDMAによる伝送について、送信アンテナ109-2が用いるPAの容量が大きい場合には、図8のようにリソースブロック単位でPV#1~PV#5を伝搬路に応じて異なるプリコーディングベクトルを適用し、送信アンテナ109が用いるPAの容量が小さい場合はPV#1=PV#2=…=PV#5としても良い。また、SC-FDMAのプリコーディングベクトルを適用する単位をリソースブロックの整数倍やサブキャリア単位としてもよい。Clustered DFT-S-OFDMも同様にクラスタより狭い帯域幅に対してプリコーディングベクトルを適用しても良い。
 図9は、本発明の第3の実施形態において、送信アンテナ109を4本持つ移動局装置の一例を示すブロック図である。送信アンテナ109が4本の場合においては、空間多重される信号が増える。そのため、PMI情報取得部402では、受信したPMI情報よりプリコーディングベクトルを送信アンテナ109-1~109-4毎に入力する。
 図10は、本発明の第3の実施形態において、送信アンテナ109を4本持つ移動局装置の場合に、プリコーディングを適用する一例を表す図である。プリコーディングは、図10のように3本の送信アンテナ109から送信する信号に対して、位相回転を与える。送信アンテナ109-1~送信アンテナ109-4の中で使用するPAの容量が大きい送信アンテナ109のみをクラスタ単位でプリコーディングベクトルを変更する。
 例えば、送信アンテナ109-4のみが使用するPAの容量が大きい場合は、PV#21=PV#22=…=PV#25、PV#31=PV#32=…=PV#35とし、PV#41~PV#45はクラスタを配置する周波数帯域の伝搬路により決定する。ただし、PV#21とPV#31はそれぞれの送信アンテナ109-2、109-3の伝搬路により決定するものとする。また、本実施形態ではプリコーディングによる位相回転を適用しない送信アンテナ109を送信アンテナ109-1としたが、別の送信アンテナ109にしても良く、使用するPAの容量が小さい送信アンテナ109としても良い。本実施形態において、使用するPAの容量が大きい送信アンテナ109に対してクラスタ単位でのプリコーディングとして説明したが、リソースブロック単位やサブキャリア単位でのプリコーディングとしても良い。
 本実施形態を適用することにより、移動局装置がMIMOでデータ送信を行なう際に、使用するPAの容量が大きい送信アンテナ109に対して、クラスタ単位でプリコーディングを適用することにより、PAのバックオフを考慮せずに送信電力を決定し、空間多重された信号を受信側で分離しやすくなることから、伝送特性を向上させることができる。
 [第4の実施形態]
 本実施形態では、移動局装置が複数の送信アンテナ109を用いてデータ送信する際に、移動局装置の持つPAの許容送信電力値の合計値が移動局装置の許容最大送信電力値より大きい場合において、データと制御情報を同時に送信する必要があるときに、各々の送信アンテナ109で用いるPAの容量を考慮して、データと制御情報を多重して送信する送信アンテナ109を決定する一例について、説明する。LTE-Aでは、移動局装置が持つ送信アンテナ109が増えることや複数のCCを使用するCAが仕様化されることから、PUCCHで移動局装置から基地局装置に通知するACK、NACKやCQI(Channel Quality Indication)などの制御情報が増加する。そのため、データ送信と制御情報を同一時刻に送信するマルチキャリア送信も可能とすることが検討されている。
 図11は、本発明の第4の実施形態に係る移動局装置の一例を示すブロック図である。ここで、移動局装置のPAの構成について、PA部108-1が容量の小さいPAとし、PA部108-2は容量の大きいPAとする。また、送信に用いる送信アンテナ109を2本として説明しているが、3本以上においても適用可能である。移動局装置では、基地局装置からダウンリンクで受信したデータに対するACK、NACKやダウンリンクのための制御情報として定期的に基地局装置へ送信するCQI、RI(Rank Indication)、PMIなどを制御情報生成部601で生成する。制御情報は、送信処理部602において時間領域の信号に変換される。一方、IDFT部107-2は時間領域の送信データの信号を出力する。ここで、データ送信と制御情報の送信を同一タイミングで行なう必要がある場合は、マルチキャリア化によるピーク電力の高い送信信号となることから、容量の大きいPA部108-2を用いることが好ましい。そのため、送信処理部602からの出力である制御情報の信号をIDFT部107-2からの出力と加算し、PA部108-2を介し、送信アンテナ109-2から送信される。
 また、容量の小さいPA部108-1ではピーク電力の高い信号を送信すると、PAの非線形性により送信信号に歪みが生じるため、制御情報を多重せずにデータ信号のみを送信アンテナ109-1で送信する。制御情報とデータの時間領域の信号を加算した信号は、マルチキャリアとなることからピーク電力が高くなるため、PAの非線形性からバックオフを考慮した送信電力制御が必要になる。本実施形態では、データ送信と同一タイミングで制御情報を送信する必要がある場合に、使用するPAの容量が大きい送信アンテナ109へ制御情報の時間領域の信号を加算するため、データと制御情報の同時送信によるピーク電力の増加に伴うバックオフ分については送信電力を下げる必要がない。
 本実施形態を適用することにより、移動局装置が複数の送信アンテナ109を用いたデータ送信をする際に、データと制御情報の同時送信が必要な場合、容量の大きいPAを使用する送信アンテナ109に対して制御情報の信号を加算することで、バックオフを考慮して送信電力を下げる必要がなく、伝送特性を向上させることができる。
 [第5の実施形態]
 本実施形態では、複数の送信アンテナ109を有する移動局装置がSFBC(Space Frequency Block Code)でデータ送信する際に、移動局装置の持つPAの許容送信電力値の合計値が移動局装置の許容最大送信電力値より大きい場合において、各々の送信アンテナ109で用いるPAの容量を考慮して、SFBCの符号化によるピーク電力の高い信号の割り当てを決定する一例について、説明する。
 図12は、本発明の第5の実施形態に係る移動局装置の一例を示すブロック図である。ここで、移動局装置のPAの構成について、PA部108-1が容量の大きいPAとし、PA部108-2は容量の小さいPAとする。セルエッジの移動局装置では送信電力が不足し、所望の通信品質を確保できない場合がある。そのような移動局装置では、セルエッジでも所望の通信品質を満たすために、送信ダイバーシチ法であるSFBCを適用することが考えられる。
 図12の移動局装置は、SFBCを用いる移動局装置であり、DFT部102-1、102-2から周波数領域の信号がそれぞれ送信信号処理部701-1、701-2に入力される。ここで、送信ダイバーシチでは同一のデータを送信するため、DFT部102-1と102-2は同じ信号が出力されることから、変調部101、DFT部102は1つでも良い。送信信号処理部701-1、701-2ではSFBCの符号化が行なわれる。SFBCの符号化では、送信信号の片方のみがピーク電力が高くなり、もう片方はピーク電力が変わらない。本実施形態では容量の大きいPA部108-1を用いて送信される信号に対して、ピーク電力の高くなるSFBCの符号化をする。そのため、本実施形態では送信信号処理部701-1の処理がピーク電力の高くなる処理となる。
 図13は、本発明の第5の実施形態に係るSFBCの符号化方法を示す図である。本実施形態では送信信号処理部701-1ではS(1)、S(2)、…、S(N)の周波数領域の信号に対して行なう。2サブキャリア単位で符号化が行なわれ、k-1番目とk番目のサブキャリであれば、S(k-1)、S(k)の信号をS(k)*、―S(k-1)*と符号化する。ただし、X*はXの複素共役とする。また、送信信号処理部701-2は入力信号と同じS(1)、S(2)、…、S(N)を出力する。送信信号処理部701-1より出力される信号はマッピング部106-1、IDFT部107-1、PA部108-1を介し、送信アンテナ109-1から送信される。送信アンテナ109-2からの送信処理も同様のため、説明を省略する。容量の小さいPAを用いてピーク電力の高い信号を送信する場合は、PAの非線形性により送信信号に歪みが生じるため、バックオフを考慮して送信電力を下げる必要がある。
 本実施形態では、容量の大きいPAを用いる送信アンテナ109の信号を選択してピーク電力の高くなる符号化を施すことで、符号化によるピーク電力の増加分を考慮し、送信電力を下げる必要はなくなる。本実施形態を適用することにより、移動局装置がSFBCを用いたデータ送信する場合において、容量の大きいPAを使用する送信アンテナ109に対して、SFBCの符号化によりピーク電力の高い信号を割り当てることで、バックオフを考慮して送信電力を下げる必要がなく、伝送特性を向上させることができる。
 [第6の実施形態]
 本実施形態では、移動局装置が複数の送信アンテナ109でデータ送信し、CAを適用する際に、移動局装置の持つPAの許容送信電力値の合計値が移動局装置の許容最大送信電力値より大きい場合において、各々の送信アンテナ109で用いるPAの容量を考慮して、複数のCCを使用する送信アンテナ109を決定する一例について説明する。ただし、各PAの容量は予め移動局装置から基地局装置へ通知されているものとする。複数のCCに同一タイミングでデータ送信を行なうCAについて、CC毎に使用するPAが異なる場合や使用するCCを一つのPAを用いてデータ送信する等が考えられる。ただし、CAにおいては一つのCCに対して、一つのDFTを用いたシングルキャリアの信号を周波数領域で割り当てる。一つのPAを用いて複数のCCより信号を送信するCAにおいては、マルチキャリア化し、ピーク電力の高い信号を送信することとなる。
 図14は、本発明の第6の実施形態に係る移動局装置の一例を示すブロック図である。PA部108-1は容量の小さいPAとし、PA部801-2は容量の大きいPAとする。本実施形態の移動局装置は、容量の小さいPAと容量の大きいPAの両方を持つ場合について説明するが、本実施形態と本質的に同じであれば、移動局装置が異なるPAの構成であっても本発明と同様とする。送信アンテナ109-1は、容量の小さいPAを用いるため、ピーク電力の高い複数のCCの信号を送信すると、PAの非線形性により送信信号に歪みが生じる。また、バックオフを考慮して送信電力を下げるなどが必要になることから、1つのCCに対する信号のみを送信する。それに対し、送信アンテナ802-2は容量の大きいPA部801-2を用いるため、複数のCCの信号を送信することによるピーク電力の増加分のバックオフを考慮する必要がなく、送信電力を下げる必要がない。そのため、送信アンテナ802-2から送信する信号は、IDFT部803-2とIDFT部803-3でそれぞれ異なるCCへ送信する時間領域の信号を生成し、加算したものを送信する。
 本実施形態を適用することにより、移動局装置がCAを用いたデータ送信する場合において、容量の大きいPAを使用する送信アンテナ802-2に対して、複数のCCへ送信する信号が加算されたピーク電力の高い信号を割り当てることで、バックオフを考慮して送信電力を下げる必要がなく、伝送特性の向上させることができる。
 本発明に関わる移動局装置および基地局装置で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU等を制御するプログラム(コンピュータを機能させるプログラム)である。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAMに蓄積され、その後、各種ROMやHDDに格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。プログラムを格納する記録媒体としては、半導体媒体(例えば、ROM、不揮発性メモリカード等)、光記録媒体(例えば、DVD、MO、MD、CD、BD等)、磁気記録媒体(例えば、磁気テープ、フレキシブルディスク等)等のいずれであってもよい。
 また、ロードしたプログラムを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムの指示に基づき、オペレーティングシステムあるいは他のアプリケーションプログラム等と共同して処理することにより、本発明の機能が実現される場合もある。また市場に流通させる場合には、可搬型の記録媒体にプログラムを格納して流通させたり、インターネット等のネットワークを介して接続されたサーバコンピュータに転送したりすることができる。この場合、サーバコンピュータの記憶装置も本発明に含まれる。
 また、上述した実施形態における移動局装置および基地局装置の一部、または全部を典型的には集積回路であるLSIとして実現してもよい。移動局装置および基地局装置の各機能ブロックは個別にチップ化してもよいし、一部、または全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
103 受信アンテナ
104 受信処理部
105 帯域割当情報取得部
108(108-1、108-M) PA部
109(109-1、109-M) 送信アンテナ
1041 フォーマット情報取得部
201(201-1、201-M) 受信アンテナ
209 帯域割当決定部
212 送信アンテナ
210 制御情報生成部
402 PMI情報取得部
403(403-1、403-2) プリコーディング部
501 信号分離部
502 プリコーディング決定部
601 制御情報生成部 
602 送信処理部
701(701-1、701-2) 送信信号処理部
801(801-2) PA部
802(802-2) 送信アンテナ
803(803-2、803-3) IDFT部

Claims (14)

  1.  複数のPA(Power Amplifier)および複数のアンテナを備える送信装置であって、
     前記各PAを用いて送信する送信信号を、前記各PAの能力に基づいて決定し、
     前記各アンテナからPAPR(Peak to Average Power Ratio)特性が異なる信号を送信することを特徴とする送信装置。
  2.  送信信号を時間周波数変換により周波数信号に変換し、前記周波数信号を複数のクラスタに分割し、離散的に帯域への割り当てを行なう信号を、送信するPAPR特性が異なる信号の少なくとも一つとすることを特徴とする請求項1記載の送信装置。
  3.  送信信号を時間周波数変換により周波数信号に変換し、前記周波数信号を連続的な帯域への割り当てを行なう信号を、送信するPAPR特性が異なる信号の少なくとも一つとすることを特徴とする請求項1記載の送信装置。
  4.  異なるPAPR特性を有する信号として、前記周波数信号をクラスタに分割し、異なるクラスタサイズの信号を送信することを特徴とする請求項2記載の送信装置。
  5.  送信に使用するキャリア数が異なる信号を送信することにより、PAPR特性が異なる信号を送信することを特徴とする請求項1記載の送信装置。
  6.  前記キャリア数が異なる信号のうち、キャリア数が多い信号には、データ送信用のキャリアと制御信号送信用のキャリアとが含まれることを特徴とする請求項5記載の送信装置。
  7.  プリコーディングベクトルを適用する帯域幅が異なる信号を送信することにより、PAPR特性が異なる信号を送信することを特徴とする請求項1記載の送信装置。
  8.  送信信号を時間周波数変換により周波数信号に変換し、SFBC(Space Frequency Block Code)符号化した信号を送信することにより、PAPR特性が異なる信号を送信することを特徴とする請求項1記載の送信装置。
  9.  複数のCC(Component Carrier)の信号を加算した信号を送信することにより、PAPR特性が異なる信号を送信することを特徴とする請求項1記載の送信装置。
  10.  複数のPA(Power Amplifier)および複数のアンテナを備える移動局装置、および送信方法または使用する周波数帯域の少なくとも一方を決定し、前記決定した結果を前記移動局装置に通知する基地局装置から構成される無線通信システムであって、
     前記移動局装置は、前記PAの能力を示す情報を前記基地局装置に対して通知し、
     前記基地局装置は、前記移動局装置から通知されたPAの能力に応じて、プリコーディングベクトルを適用する帯域幅およびプリコーディングベクトルによって位相回転を与える送信信号を決定することを特徴とする無線通信システム。
  11.  複数のPA(Power Amplifier)および複数のアンテナを備える移動局装置、および送信方法または使用する周波数帯域の少なくとも一方を決定し、前記決定した結果を前記移動局装置に通知する基地局装置から構成される無線通信システムであって、
     前記基地局装置は、前記移動局装置から通知された前記PAの能力に応じて、前記移動局装置がデータを送信するための送信方法または周波数帯域の少なくとも一方を決定することを特徴とする無線通信システム。
  12.  複数のPA(Power Amplifier)および複数のアンテナを備える移動局装置の制御プログラムであって、
     前記各PAを用いて送信する送信信号を、前記各PAの能力に基づいて決定する処理と、
     前記各アンテナからPAPR(Peak to Average Power Ratio)特性が異なる信号を送信する処理と、を含む一連の処理を、コンピュータに読み取り可能および実行可能にコマンド化したことを特徴とする移動局装置の制御プログラム。
  13.  複数のPA(Power Amplifier)および複数のアンテナを備える移動局装置、および送信方法または使用する周波数帯域の少なくとも一方を決定し、前記決定した結果を前記移動局装置に通知する基地局装置から構成される無線通信システムに適用される基地局装置の制御プログラムであって、
     前記移動局装置から前記PAの能力を示す情報を受信する処理と、
     前記受信したPAの能力を示す情報に応じて、プリコーディングベクトルを適用する帯域幅およびプリコーディングベクトルによって位相回転を与える送信信号を決定する処理と、を含む一連の処理を、コンピュータに読み取り可能および実行可能にコマンド化したことを特徴とする基地局装置の制御プログラム。
  14.  複数のPA(Power Amplifier)および複数のアンテナを備える移動局装置、および送信方法または使用する周波数帯域の少なくとも一方を決定し、前記決定した結果を前記移動局装置に通知する基地局装置から構成される無線通信システムに適用される基地局装置の制御プログラムであって、
     前記移動局装置から前記PAの能力を示す情報を受信する処理と、
     前記受信したPAの能力を示す情報に応じて、前記移動局装置がデータを送信するための送信方法または周波数帯域の少なくとも一方を決定する処理と、を含む一連の処理を、コンピュータに読み取り可能および実行可能にコマンド化したことを特徴とする基地局装置の制御プログラム。
PCT/JP2010/063561 2009-10-29 2010-08-10 送信装置、無線通信システム、移動局装置の制御プログラムおよび基地局装置の制御プログラム WO2011052280A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800485021A CN102598564A (zh) 2009-10-29 2010-08-10 发送装置、无线通信系统、移动台装置的控制程序及基站装置的控制程序
EP10826415A EP2506472A1 (en) 2009-10-29 2010-08-10 Transmission device, wireless communication system, control program for mobile station device, and control program for base station device
US13/504,912 US9031589B2 (en) 2009-10-29 2010-08-10 Transmission apparatus, wireless communication system, mobile station apparatus control program, and base station apparatus control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009249414A JP2011097367A (ja) 2009-10-29 2009-10-29 送信装置、無線通信システム、移動局装置の制御プログラムおよび基地局装置の制御プログラム
JP2009-249414 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011052280A1 true WO2011052280A1 (ja) 2011-05-05

Family

ID=43921710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063561 WO2011052280A1 (ja) 2009-10-29 2010-08-10 送信装置、無線通信システム、移動局装置の制御プログラムおよび基地局装置の制御プログラム

Country Status (5)

Country Link
US (1) US9031589B2 (ja)
EP (1) EP2506472A1 (ja)
JP (1) JP2011097367A (ja)
CN (2) CN102598564A (ja)
WO (1) WO2011052280A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013086670A1 (zh) * 2011-12-12 2013-06-20 华为技术有限公司 多载波共用多功率放大器时的信号分配方法、装置和基站
US20220311484A1 (en) * 2011-04-19 2022-09-29 Sun Patent Trust Pre-coding method and pre-coding device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5483472B2 (ja) * 2011-08-01 2014-05-07 日本電信電話株式会社 回線割当装置および回線割当方法
JP6011251B2 (ja) 2012-11-01 2016-10-19 富士通株式会社 無線通信装置及び無線通信方法
JP2015164259A (ja) * 2014-02-28 2015-09-10 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信方法及び無線通信システム
US10454739B2 (en) * 2015-01-23 2019-10-22 Texas Instruments Incorporated Transmission scheme for SC-FDMA with two DFT-precoding stages
US10693696B2 (en) * 2016-11-22 2020-06-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving signals in wireless communication system
US10693698B2 (en) * 2017-06-21 2020-06-23 Qualcomm Incorporated Techniques for carrier sharing between radio access technologies
EP3925044B1 (en) 2019-02-12 2024-05-01 Telefonaktiebolaget LM Ericsson (publ) An apparatus and a method in a wireless communications network
US11653370B2 (en) * 2019-02-22 2023-05-16 Samsung Electronics Co., Ltd. Method of transmitting and receiving user equipment management information in wireless communication system and electronic device for performing the method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252509A (ja) * 2004-03-03 2005-09-15 Nec Corp マルチキャリア伝送用非線形歪補償回路
WO2007029406A1 (ja) * 2005-09-07 2007-03-15 Nec Corporation 適応無線/変調装置、受信装置、無線通信システム及び無線通信方法
WO2009004733A1 (ja) * 2007-07-05 2009-01-08 Panasonic Corporation Mimo送信装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590985C (zh) * 1998-08-18 2010-02-17 比阿恩凤凰公司 多层载波离散多音通信技术
RU2544781C2 (ru) * 2005-11-04 2015-03-20 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Способ задания подполос в системе связи с несколькими несущими и устройство - базовая станция радиосвязи
JP2007158913A (ja) * 2005-12-07 2007-06-21 Nec Corp 送信機
US9949278B2 (en) * 2006-09-11 2018-04-17 Qualcomm Incorporated Dynamic power amplifier backoff
EP2078402B1 (en) * 2006-11-01 2012-01-04 QUALCOMM Incorporated Joint use of multi-carrier and single-carrier multiplexing schemes for wireless communication
US9131465B2 (en) * 2007-06-08 2015-09-08 Samsung Electronics Co., Ltd. Methods and apparatus for mapping control channels to resources in OFDM systems
CN101350646B (zh) * 2007-07-20 2012-12-19 中兴通讯股份有限公司 一种用于智能天线系统降低峰值功率的装置与方法
US20100091900A1 (en) * 2008-10-10 2010-04-15 Qualcomm Incorporated Apparatus and method for ofdm modulated signal transmission with reduced peak-to-average power ratio
US8699609B2 (en) * 2008-11-27 2014-04-15 Optis Cellular Technology, Llc Methods and arrangements for peak to average power ratio reduction
TW201603611A (zh) * 2009-02-09 2016-01-16 內數位專利控股公司 利佣多載波無線傳送器/接收器單元之上鏈功率控制裝置及方法
US8731497B2 (en) * 2009-02-18 2014-05-20 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement in a communication system
US8514883B2 (en) * 2009-04-24 2013-08-20 Interdigital Patent Holdings, Inc. Method and apparatus for sending hybrid automatic repeat request feedback for component carrier aggregation
US8433251B2 (en) * 2009-09-28 2013-04-30 Qualcomm Incorporated Control information signaling
US8379536B2 (en) * 2009-10-08 2013-02-19 Qualcomm Incorporated Downlink control information for efficient decoding
US20110085588A1 (en) * 2009-10-09 2011-04-14 Motorola-Mobility, Inc. Method for precoding based on antenna grouping

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005252509A (ja) * 2004-03-03 2005-09-15 Nec Corp マルチキャリア伝送用非線形歪補償回路
WO2007029406A1 (ja) * 2005-09-07 2007-03-15 Nec Corporation 適応無線/変調装置、受信装置、無線通信システム及び無線通信方法
WO2009004733A1 (ja) * 2007-07-05 2009-01-08 Panasonic Corporation Mimo送信装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) Physical Channels and Modulation", 3GPP TS 36.211 (V8.7.0
ALCATEL-LUCENT SHANGHAI BELL ET AL.: "CM/PAPR Reduction of Aggregated Carriers for Uplink of LTE-Advanced", RL-093363, 3GPP, 24 August 2009 (2009-08-24), XP008155921, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1RL1/TSGR158/Docs/R1-093363.zip> *
ERICSSON: "Carrier aggregation", RL-083750, 3GPP, 29 September 2008 (2008-09-29), XP008155912, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_54b/Docs/R1-083750.zip> *
INTERDIGITAL COMMUNICATIONS, LLC: "CM Analysis of ULTransmission for LTE-A", RL-082807, 3GPP, 18 August 2008 (2008-08-18), XP008155913, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_54/Docs/R1-082807.zip> *
NTT DOCOMO: "UL MIMO Transmission Schemes in LTE-Advanced", RL-084250, 3GPP, 10 November 2008 (2008-11-10), XP008155950, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1 RL1/TSGR1 55/Docs/R1-084250.zip> *
PANASONIC: "Comparison between Clustered DFT-s- OFDM and OFDM for supporting non-contiguous RB allocation within a component carrier", RL- 084583, 3GPP, 10 November 2008 (2008-11-10), XP008155915, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_55/Docs/Rl-084583.zip> *
RESEARCH IN MOTION, LIMITED: "On LTE-A Uplink Transmission Scheme in one Component Carrier", RL-090025, 3GPP, 12 January 2009 (2009-01-12), XP008155920, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_55b/Docs/Rl-090025.zip> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220311484A1 (en) * 2011-04-19 2022-09-29 Sun Patent Trust Pre-coding method and pre-coding device
US11695457B2 (en) * 2011-04-19 2023-07-04 Sun Patent Trust Pre-coding method and pre-coding device
WO2013086670A1 (zh) * 2011-12-12 2013-06-20 华为技术有限公司 多载波共用多功率放大器时的信号分配方法、装置和基站

Also Published As

Publication number Publication date
CN104202283B (zh) 2018-03-09
JP2011097367A (ja) 2011-05-12
EP2506472A1 (en) 2012-10-03
CN104202283A (zh) 2014-12-10
CN102598564A (zh) 2012-07-18
US20120258762A1 (en) 2012-10-11
US9031589B2 (en) 2015-05-12

Similar Documents

Publication Publication Date Title
WO2011052280A1 (ja) 送信装置、無線通信システム、移動局装置の制御プログラムおよび基地局装置の制御プログラム
EP2603047B1 (en) Mobile station apparatus, communication system, communication method, integrated circuit, and circuit device
EP2618628B1 (en) Mobile station device, communications system, communications method, and integrated circuit
JP4969682B2 (ja) 移動局装置、通信システム、通信方法および集積回路
JP5719012B2 (ja) 基地局装置、リソース割当て方法及び集積回路
JP2013502853A (ja) 無線通信システムにおける情報の伝送
EP3288203A1 (en) Terminal device and base station device
JP5490773B2 (ja) 基地局装置および通信方法
JP5797299B2 (ja) 基地局装置、送信装置、送信方法および受信方法
US20120094709A1 (en) Wireless transmission apparatus and transmission power control method
JP5497095B2 (ja) 移動局装置、通信システム、通信方法および集積回路
JP5643569B2 (ja) 制御局装置
JP2014131112A (ja) 無線送信装置、制御装置、無線通信システムおよび通信方法
JP2011142538A (ja) 基地局装置、移動局装置、無線通信システム、基地局装置の制御プログラム、移動局装置の制御プログラムおよび集積回路
JP2012134787A (ja) 移動局装置、通信システム、通信方法および集積回路
JP2011211322A (ja) 移動局装置、基地局装置、通信方法、集積回路、無線通信システムおよび制御プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048502.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826415

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010826415

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13504912

Country of ref document: US