WO2011052192A1 - Wireless communication terminal device, wireless communication base station device, and sequence number determination method - Google Patents

Wireless communication terminal device, wireless communication base station device, and sequence number determination method Download PDF

Info

Publication number
WO2011052192A1
WO2011052192A1 PCT/JP2010/006330 JP2010006330W WO2011052192A1 WO 2011052192 A1 WO2011052192 A1 WO 2011052192A1 JP 2010006330 W JP2010006330 W JP 2010006330W WO 2011052192 A1 WO2011052192 A1 WO 2011052192A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
walsh sequence
transmission
base station
sequence number
Prior art date
Application number
PCT/JP2010/006330
Other languages
French (fr)
Japanese (ja)
Inventor
岩井敬
西尾昭彦
中尾正悟
小川佳彦
二木貞樹
福岡将
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011052192A1 publication Critical patent/WO2011052192A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • H04J13/0048Walsh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate

Definitions

  • the present invention relates to a radio communication terminal apparatus, a radio communication base station apparatus, and a sequence number determination method.
  • MU-MIMO Multiple User-Multiple Input Multiple ⁇ Output
  • LTE-Advanced which is an extension of 3GPP LTE and LTE.
  • MIMO is a technique in which a transmitter / receiver is equipped with a plurality of antennas and enables simultaneous spatial multiplexing transmission of different signal sequences at the same frequency.
  • MU-MIMO is a technology for performing MIMO communication between a plurality of wireless communication terminal devices (hereinafter simply referred to as terminals) and a wireless communication base station device (hereinafter simply referred to as a base station). Efficiency can be improved.
  • DM-RS Demodulation RS
  • CS cyclic shift
  • the DM-RS can be orthogonalized even between terminals having different DM-RS transmission bandwidths and transmission band positions by using Walsh sequences as DM-RS sequences.
  • Walsh sequences For example, refer nonpatent literature 1.
  • the degree of freedom of frequency scheduling in MU-MIMO multiplexing is improved, and further improvement in system performance can be expected.
  • the application method of the Walsh sequence to DM-RS is as follows.
  • LTE-Advanced or LTE
  • DM-RSs are arranged in two slots in one subframe, and two DM-RSs are transmitted in one subframe.
  • the terminal multiplies each of the two DM-RSs in one subframe by a Walsh sequence having a sequence length of 2 (for example, (1, 1) or (1, ⁇ 1)).
  • the base station multiplies each of the two DM-RSs in one subframe by the same Walsh sequence as that of the terminal (transmitting side), and adds the multiplied DM-RSs in phase.
  • the DM-RS from a certain terminal is added in-phase, so that the Walsh sequence different from the Walsh sequence multiplied by the DM-RS is obtained.
  • the DM-RS (interference component) multiplied by the sequence is out of phase.
  • the interference component can be completely canceled.
  • the DM-RS of each terminal is multiplied by a different Walsh sequence so that the DM-RS between the terminals is multiplied.
  • RS can be orthogonalized.
  • the base station uses the sequence number of the Walsh sequence used by each terminal (for example, the sequence number 0 of the Walsh sequence (1, 1) or the Walsh sequence (1 , -1) in order to instruct each terminal to add 1 bit of a signaling bit indicating a Walsh sequence number to the downlink control channel (PDCCH (Physical Downlink Control Channel in LTE))
  • PDCCH Physical Downlink Control Channel in LTE
  • An object of the present invention is to provide a terminal, a base station, and a sequence number determination method capable of preventing an increase in the number of signaling bits from a base station to a terminal even when a Walsh sequence is applied to DM-RS in LTE-Advanced.
  • the purpose is to provide.
  • the terminal of the present invention is used in a radio communication system in which any of a plurality of transmission parameters is set for each of a plurality of terminals, and the set transmission parameters are notified from the base station to the plurality of terminals.
  • a transmission parameter set in the terminal which is notified from the base station, based on a correspondence relationship in which the plurality of transmission parameters and Walsh sequence numbers are associated one-to-one.
  • a configuration is provided that includes a determining unit that determines a sequence number of a corresponding Walsh sequence, and a multiplying unit that multiplies the reference sequence for the Walsh sequence having the determined sequence number.
  • the base station of the present invention is used in a radio communication system in which any one of a plurality of transmission parameters is set for each of a plurality of terminals, and the set transmission parameters are notified from the base station to the plurality of terminals.
  • the base station apparatus is a transmission that notifies the transmission source terminal of the received reference signal based on a correspondence relationship in which the plurality of transmission parameters and sequence numbers of Walsh sequences are associated one-to-one.
  • a determining unit that determines a sequence number of the Walsh sequence corresponding to the parameter; a multiplying unit that multiplies the reference sequence signal by the determined Walsh sequence of the sequence number; and an in-phase addition process for the multiplied reference signal.
  • an in-phase addition unit for performing the configuration.
  • the sequence number determination method of the present invention is a wireless communication system in which any one of a plurality of transmission parameters is set for each of a plurality of terminals, and the set transmission parameters are notified from the base station to the plurality of terminals.
  • the transmission parameter notified from the base station to the terminal based on a correspondence relationship in which the plurality of transmission parameters and the sequence numbers of the Walsh sequence are associated one-to-one.
  • the sequence number of the Walsh sequence corresponding to is determined.
  • the present invention it is possible to prevent an increase in the number of signaling bits from a base station to a terminal even when a Walsh sequence is applied to DM-RS in LTE-Advanced.
  • the figure which shows the setting process of CS amount which concerns on Embodiment 1 of this invention The figure which shows the correspondence of the transmission bandwidth (RBG number) and Walsh sequence number concerning Embodiment 1 of this invention.
  • the figure which shows the moving average process which concerns on Embodiment 2 of this invention The figure which shows the change of the average SINR which concerns on Embodiment 2 of this invention.
  • the block diagram which shows the structure of the terminal which concerns on Embodiment 4 of this invention.
  • the block diagram which shows the structure of the base station which concerns on Embodiment 4 of this invention.
  • the figure which shows the correspondence of the MCS number which concerns on Embodiment 4 of this invention, and a Walsh sequence number The figure which shows the correspondence of the TBS number and Walsh sequence number which concern on Embodiment 4 of this invention.
  • the block diagram which shows the structure of the base station which concerns on Embodiment 5 of this invention.
  • each of a plurality of terminals for each of a plurality of terminals, one of a plurality of transmission parameters that can be set for each terminal is set, and the set transmission parameter is a base station. Is notified to multiple terminals.
  • the DM-RS transmission bandwidth is associated with the Walsh sequence number (Walsh sequence number) on a one-to-one basis.
  • terminal 100 The configuration of terminal 100 according to the present embodiment will be described with reference to FIG.
  • the reception RF unit 102 of the terminal 100 shown in FIG. 1 performs reception processing such as down-conversion and A / D conversion on the signal received via the antenna 101, and outputs the signal subjected to the reception processing to the demodulation unit 103.
  • the received signal includes scheduling information including transmission parameters indicating the transmission band position and transmission bandwidth (number of RSs) of signals (data and DM-RS) transmitted by terminal 100.
  • Demodulation section 103 performs demodulation processing on the scheduling information included in the signal input from reception RF section 102, and outputs the demodulated scheduling information to transmission band position setting section 104 and transmission bandwidth setting section 105. To do.
  • Transmission band position setting section 104 extracts a transmission band position of a signal (data and DM-RS) transmitted by the terminal included in scheduling information input from demodulation section 103, and maps the extracted transmission band position to mapping section Output to 109.
  • Transmission bandwidth setting section 105 extracts the transmission bandwidth of signals (data and DM-RS) transmitted by the terminal included in the scheduling information input from demodulation section 103, and generates the extracted transmission bandwidth. 106 and the determination unit 107.
  • the generation unit 106 is a DM-RS sequence having a sequence length corresponding to the transmission bandwidth input from the transmission bandwidth setting unit 105 (ZC (Zadoff-Chu) sequence in LTE. In the following description, a ZC sequence is used). ) Is generated. Then, generation unit 106 outputs the generated ZC sequence to multiplication unit 108.
  • the determination unit 107 has a rule table indicating a correspondence relationship in which a DM-RS transmission bandwidth (number of RBs) defined in advance for each cell or system is associated with a Walsh sequence Walsh sequence number on a one-to-one basis. . Then, the determination unit 107 refers to the rule table according to the transmission bandwidth input from the transmission bandwidth setting unit 105, and determines the Walsh sequence number (for example, the Walsh sequence (1, 1) Walsh sequence) used by the terminal. The sequence number 0 or Walsh sequence number 1) of the Walsh sequence (1, ⁇ 1) is determined.
  • the determination unit 107 has a one-to-one correspondence relationship between a plurality of transmission parameters indicating transmission bandwidths of signals (data and DM-RS) transmitted by each terminal and a Walsh sequence Walsh sequence number.
  • the Walsh sequence Walsh sequence number corresponding to the transmission parameter (here, the transmission bandwidth) addressed to the terminal notified from the base station is determined. Then, the determination unit 107 outputs the determined Walsh sequence number to the multiplication unit 108. Note that the correspondence (rule table) between the transmission bandwidth and the Walsh sequence number of the determination unit 107 will be described later.
  • the multiplication unit 108 multiplies the Walsh sequence of the Walsh sequence number input from the determination unit 107 by the ZC sequence (DM-RS sequence) input from the generation unit 106. Specifically, multiplication section 108 uses the Walsh sequence (sequence length 2) of the Walsh sequence number input from determination section 107 as a DM-RS ZC sequence arranged in each of two slots in one subframe. Multiply by. Multiplying section 108 then outputs the ZC sequence after the Walsh sequence multiplication to mapping section 109.
  • DM-RS sequence ZC sequence
  • Mapping section 109 maps the ZC sequence input from multiplication section 108 to a band corresponding to the transmission band of terminal 100 based on the transmission band position of the signal of terminal 100 input from transmission band position setting section 104. . Then, mapping section 109 outputs the mapped ZC sequence to IFFT section 110.
  • the IFFT unit 110 performs IFFT processing on the ZC sequence input from the mapping unit 109. Then, IFFT section 110 outputs the ZC sequence subjected to IFFT processing to CP (Cyclic Prefix) adding section 111.
  • CP adding section 111 adds the same signal as the tail part of the ZC sequence input from IFFT section 110 to the head as CP, and outputs the ZC sequence after the CP addition to transmission RF section 112.
  • Transmission RF section 112 performs transmission processing such as D / A conversion, up-conversion, amplification, etc. on the ZC sequence input from CP adding section 111, and uses the signal subjected to the transmission processing as a DM-RS from antenna 101 to the base station Send to.
  • terminal 100 performs encoding processing and modulation processing on transmission data, and assigns the transmission data to a band corresponding to the transmission band of terminal 100. Then, terminal 100 multiplexes transmission data allocated to a band corresponding to the transmission band of terminal 100 with a ZC sequence (DM-RS) (eg, time multiplexing), and transmits the multiplexed signal to the base station (FIG. Not shown).
  • DM-RS ZC sequence
  • the reception RF unit 202 of the base station 200 shown in FIG. 2 performs reception processing such as down-conversion and A / D conversion on the signal received via the antenna 201 and outputs the signal subjected to reception processing to the CP removal unit 203. To do.
  • CP removal section 203 removes the CP component added to the head of the signal input from reception RF section 202 and outputs the signal after CP removal to separation section 204.
  • the separation unit 204 separates the signal input from the CP removal unit 203 into DM-RS and data signal. Then, the separation unit 204 outputs the separated DM-RS to the FFT (Fast Fourier transform) unit 205, and outputs the data signal to the FFT unit 217.
  • FFT Fast Fourier transform
  • the FFT unit 205 performs FFT processing on the time-domain DM-RS input from the separation unit 204 and converts the time-domain to frequency-domain signal. Then, the FFT unit 205 outputs the DM-RS converted into the frequency domain to the demapping unit 207.
  • Transmission band position setting section 206 transmits the same transmission band position as the signal (data and DM-RS) transmission band position (ie, the transmission band of terminal 100) instructed by base station 200 to terminal 100 (FIG. 1).
  • the same value as the transmission band position used in the position setting unit 104) is set in the demapping unit 207 and the demapping unit 218.
  • demapping section 207 Based on the transmission band position input from transmission band position setting section 206, demapping section 207 extracts the DM-RS corresponding to the transmission band of the desired terminal from the DM-RS in the frequency domain input from FFT section 205. To do. Then, the demapping unit 207 outputs the extracted DM-RS to the multiplication unit 211.
  • Transmission bandwidth setting section 208 has the same transmission bandwidth as the transmission bandwidth of the signals (data and DM-RS) that base station 200 has instructed to terminal 100 (FIG. 1) (that is, the transmission bandwidth of terminal 100).
  • the transmission bandwidth used in the width setting unit 105 is set to the determination unit 209 and the generation unit 210.
  • the determination unit 209 has the same rule table as the rule table included in the determination unit 107 (FIG. 1) of the terminal 100. Then, the determination unit 209 refers to the rule table according to the transmission bandwidth input from the transmission bandwidth setting unit 208, and determines the Walsh sequence number used by the terminal 100 (for example, the Walsh sequence (1, 1)). The Walsh sequence number 0 or the Walsh sequence number 1) of the Walsh sequence (1, ⁇ 1) is determined. That is, the determination unit 209 has a one-to-one correspondence relationship between a plurality of transmission parameters indicating transmission bandwidths of signals (data and DM-RS) transmitted from each terminal and a Walsh sequence Walsh sequence number.
  • the Walsh sequence Walsh sequence number corresponding to the transmission parameter (in this case, the transmission bandwidth) notified to the received DM-RS transmission source terminal 100 is determined based on. Then, the determination unit 209 outputs the determined Walsh sequence number to the multiplication unit 211. Note that the correspondence relationship (rule table) between the transmission bandwidth and the Walsh sequence number of the determination unit 209 will be described later.
  • Generating section 210 generates a DM-RS sequence (ZC sequence) having a sequence length corresponding to the transmission bandwidth input from transmission bandwidth setting section 208 in the same manner as generating section 106 (FIG. 1) of terminal 100. To do. Then, generation unit 210 outputs the generated ZC sequence to division unit 213.
  • ZC sequence DM-RS sequence
  • the multiplying unit 211 multiplies the Walsh sequence of the Walsh sequence number input from the determining unit 209 by the DM-RS input from the demapping unit 207. Specifically, the multiplication unit 211 multiplies the Walsh sequence (sequence length 2) of the Walsh sequence number input from the determination unit 107 by the DM-RS respectively arranged in two slots in one subframe. Then, multiplier 211 outputs the DM-RS (that is, two DM-RSs) of each slot after the Walsh sequence multiplication to in-phase adder 212.
  • the in-phase addition unit 212 performs in-phase addition of the two DM-RSs input from the multiplication unit 211, and outputs the signal after the in-phase addition to the division unit 213.
  • the division unit 213 divides the signal input from the in-phase addition unit 212 by the ZC sequence (DM-RS sequence) input from the generation unit 210. Then, the division unit 213 outputs the division result (correlation value) to the IFFT (Inverse Fast Fourier Transform) unit 214.
  • ZC sequence DM-RS sequence
  • IFFT Inverse Fast Fourier Transform
  • the IFFT unit 214 performs IFFT processing on the signal (division result) input from the division unit 213. Then, IFFT unit 214 outputs the signal subjected to IFFT processing to mask processing unit 215.
  • the mask processing unit 215 performs a mask process on the signal input from the IFFT unit 214 to obtain a correlation value of a section (detection window or window portion) where a correlation value of a desired CS (cyclic shift) sequence exists. Extract. Then, the mask processing unit 215 outputs the extracted correlation value to a DFT (Discrete Fourier Transform) unit 216.
  • DFT Discrete Fourier Transform
  • the DFT unit 216 performs DFT processing on the correlation value input from the mask processing unit 215. Then, the DFT unit 216 outputs the correlation value subjected to the DFT process to the frequency domain equalization unit 219. Note that the signal output from the DFT unit 216 is a signal representing the frequency fluctuation of the propagation path (frequency response of the propagation path).
  • the FFT unit 217 performs FFT processing on the data signal in the time domain input from the separation unit 204, and converts the signal from the time domain to the frequency domain. Then, the FFT unit 217 outputs the data signal converted into the frequency domain to the demapping unit 218.
  • the demapping unit 218 extracts a data signal corresponding to the transmission band of the desired terminal from the signal input from the FFT unit 217 based on the transmission band position input from the transmission band position setting unit 206. Then, the demapping unit 218 outputs each extracted data signal to the frequency domain equalization unit 219.
  • the frequency domain equalization unit 219 performs equalization processing on the data signal input from the demapping unit 218 using the signal input from the DFT unit 216 (frequency response of the propagation path). Then, the frequency domain equalization unit 219 outputs the equalized signal to the IFFT unit 220.
  • the IFFT unit 220 performs IFFT processing on the data signal input from the frequency domain equalization unit 219. Then, IFFT section 220 outputs the data signal subjected to IFFT processing to demodulation section 221.
  • Demodulation section 221 performs demodulation processing on the data signal input from IFFT section 220 and outputs the demodulated data signal to decoding section 222.
  • the decoding unit 222 performs a decoding process on the data signal input from the demodulation unit 221 and extracts received data.
  • the base station 200 schedules a transmission band position or a transmission bandwidth of a signal (data and DM-RS) transmitted from each terminal to a plurality of terminals in a cell covered by the base station 200. Then, base station 200 modulates scheduling information indicating a scheduling result, and transmits the modulated scheduling information to each terminal using a downlink control channel (not shown).
  • 35 transmission bandwidths of 1 RB, 2 RB, 3 RB,..., 96 RB, 100 RB, and 108 RB can be set as the transmission bandwidth (number of RBs) of DM-RS.
  • the sequence length of the Walsh sequence is 2
  • the Walsh sequence number of the Walsh sequence (1, 1) is 0, and the Walsh sequence number of the Walsh sequence (1, ⁇ 1) is 1.
  • the Walsh sequence Walsh sequence number used for DM-RS is set to the DM-RS transmission bandwidth (35 types) that base station 200 can set for each terminal. There is a one-to-one correspondence.
  • the rule table shown in FIG. 3 is held by the determination unit 107 and the determination unit 209.
  • determining section 107 and determining section 209 determine the DM-RS of terminal 100 based on the correspondence shown in FIG.
  • the Walsh sequence number of the Walsh sequence to be used is determined to be 0.
  • determination section 107 and determination section 209 based on the correspondence shown in FIG.
  • the Walsh sequence number of the Walsh sequence used for the RS is determined as 1. The same applies to the transmission bandwidths 3RB to 108RB shown in FIG.
  • terminal 100 uses DM- based on the transmission bandwidth of signals (data and DM-RS) transmitted by terminal 100, which are transmission parameters transmitted by base station 200 using a downlink control channel.
  • the Walsh sequence used for the RS can be determined.
  • the terminal 100 can specify the Walsh sequence used by the terminal 100 without being notified from the base station 200, The signaling bit required for notification of the Walsh sequence number is not necessary. For this reason, even when applying a Walsh sequence to DM-RS in LTE-Advanced, it is possible to prevent an increase in signaling bits of a downlink control channel, and it is not necessary to newly add a control channel format.
  • different Walsh sequence numbers are associated with the transmission bandwidths having the closest number of RBs.
  • different Walsh sequence numbers 0 and 1 are included in a transmission bandwidth 10 RB and a transmission bandwidth 9 RB that is smaller than 10 RBs and the number of RBs is closest to 10 RBs. Each is associated.
  • different Walsh sequence numbers 0 and 1 are used for a transmission bandwidth 10 RB and a transmission bandwidth 12 RB having a transmission bandwidth larger than 10 RB and the number of RBs closest to 10 RB.
  • the transmission bandwidths (number of RBs) are arranged in ascending order of 35 transmission bandwidths (transmission parameters).
  • Walsh sequence numbers 0 and 1 are associated with each other alternately. That is, in the rule table shown in FIG. 3, for a plurality of transmission parameters (35 transmission bandwidths shown in FIG. 3) representing different qualities (transmission bandwidth), the two transmission parameters indicating the closest quality are used. , Different Walsh sequence numbers are associated with each other.
  • the determination unit 107 and the determination unit 209 respectively set two transmission parameters indicating the closest quality among a plurality of transmission parameters (35 transmission bandwidths shown in FIG. 3) indicating different qualities (transmission bandwidths).
  • the Walsh sequence number associated with the transmission parameter (transmission bandwidth) set in the terminal 100 is determined based on the correspondence relationship in which the associated Walsh sequence numbers are different from each other.
  • the base station 200 schedules transmission bandwidths having different transmission bandwidths and having the same associated Walsh sequence number to a plurality of terminals.
  • the base station 200 since a Walsh sequence having the same Walsh sequence number is used for the DM-RS of each terminal, there is a restriction that DM-RSs between terminals cannot be orthogonalized.
  • the base station 200 sets a transmission bandwidth 6RB for the terminal A and sets a transmission bandwidth 4RB (the broken line portion illustrated in FIG. 4) for the terminal B.
  • the Walsh sequence Walsh sequence numbers used for the DM-RSs of terminal A and terminal B are both 1 (W # 1 shown in FIG. 4).
  • the base station 200 (scheduler) can control the transmission bandwidth of each terminal. Therefore, when the transmission bandwidth differs between terminals and the Walsh sequence number of the Walsh sequence used for DM-RS between the terminals is the same (W # 1 in FIG. 4), the base station 200 (scheduler) Fine-tune the transmission bandwidth setting of one terminal. Specifically, the base station 200 sets the transmission bandwidth of one of the two terminals having different transmission bandwidths set and the same Walsh sequence number associated with the transmission bandwidth. Is increased or decreased by 1 RB. For example, as shown in FIG. 4, base station 200 reduces terminal B's transmission bandwidth 4RB (broken line portion shown in FIG. 4) by 1 RB and resets it to 3RB (solid line portion shown in FIG. 4).
  • the Walsh sequence Walsh sequence number used for the DM-RS of terminal B shown in FIG. 4 is 0 (W # 0 shown in FIG. 4) with reference to FIG. That is, the Walsh sequence Walsh sequence number used for the DM-RS of the terminal B (W # 0 shown in FIG. 4) and the Walsh sequence Walsh sequence number used for the DM-RS of the terminal A (W # 1 shown in FIG. 4). Can be different from each other.
  • the reception quality of the DM-RS hardly changes between the transmission bandwidths having the closest number of RBs.
  • the reception quality of the DM-RS transmitted by the terminal 100 is almost the same.
  • the transmission bandwidth set for the terminal is shifted by one settable transmission bandwidth, and the transmission bandwidth can be accommodated while minimizing the change in DM-RS reception quality.
  • the attached Walsh sequence number can be inverted. For this reason, the base station 200 (scheduler) has little influence on the system throughput performance by finely adjusting the transmission bandwidth set for one terminal in order to orthogonalize the DM-RS between the terminals.
  • the base station 200 can Is shifted by one settable transmission bandwidth, the DM-RS between terminals can be orthogonalized without degrading the reception quality of the DM-RS transmitted by the terminal 100. .
  • the base station 200 finely adjusts the transmission bandwidth of the terminal 100, the reception quality of the signals (data and DM-RS) transmitted by the terminal is adjusted by simultaneously finely adjusting the data coding rate or transmission power. The decrease can be suppressed.
  • the base station 200 (scheduler) reduces the transmission bandwidth of the terminal 100 from 4 RBs to 3 RBs in order to orthogonalize DM-RSs between terminals, the data coding rate may be increased to 4/3 times. Good.
  • base station 200 reduces the transmission bandwidth of terminal 100 from 4 RBs to 3 RBs in order to orthogonalize DM-RSs between terminals
  • the desired SINR that satisfies the required quality increases due to the reduction of the transmission bandwidth.
  • the transmission power of data may be increased by that amount.
  • the base station 200 may schedule the same transmission bandwidth (6 RB in FIG. 5) for each terminal.
  • the Walsh sequence having the same Walsh sequence number (W # 1 in FIG. 5) is used for the DM-RS of each terminal. Therefore, the base station 200, as shown in FIG. 5, between terminals having the same transmission bandwidth, has different CS amounts (in FIG. 5, CS # 0 and terminal B in terminal A as in LTE). CS # 1) is set. Thereby, even when the transmission bandwidth between terminals is the same, DM-RSs between terminals can be orthogonalized.
  • the DM-RS transmission bandwidth and the Walsh sequence Walsh sequence number are associated one-to-one.
  • the terminal can specify the Walsh sequence used for the DM-RS of the terminal based on the transmission bandwidth of the signal (data and DM-RS) of each terminal, which is the transmission parameter notified by the base station. it can. Therefore, according to the present embodiment, in LTE-Advanced, even when a Walsh sequence is applied to DM-RS, it is possible to prevent an increase in the number of signaling bits required for notification of the Walsh sequence number from the base station to the terminal. This eliminates the need to newly add a control channel format.
  • the base station (scheduler) is assigned to one terminal. Fine-tune (increase / decrease) the set transmission bandwidth by one.
  • DM-RSs between terminals can be orthogonalized without degrading the reception quality of DM-RSs transmitted by terminals with finely adjusted transmission bandwidths. That is, the degree of freedom of frequency scheduling in MU-MIMO multiplexing can be ensured.
  • Walsh sequence Walsh sequence numbers 0 and 1 are alternately associated with each other over transmission bandwidths 1RB to 108RB.
  • Walsh sequence Walsh sequence numbers 1 and 0 may be alternately associated over transmission bandwidths 1RB to 108RB (that is, 0 is inverted to 1 in FIG. 3 and 1 is set to 0). May be reversed).
  • the transmission bandwidth is not limited to the case where the number of RBs is used.
  • RBG Resource Block Group
  • transmission frequency resource allocation for example, Type 0 allocation
  • the number of RBGs that are transmission bandwidths that is, the total number of RBGs assigned to each terminal
  • the Walsh sequence Walsh sequence numbers may be associated on a one-to-one basis. Also, as shown in FIG.
  • different Walsh sequence numbers may be associated with the transmission bandwidths having the closest number of RBGs in the same manner as in FIG.
  • Embodiment 2 In the base station, when performing channel estimation using the DM-RS transmitted from each terminal, moving average processing is performed in the frequency domain in order to reduce noise components. For example, as shown in FIG. 7, the base station performs moving average (5 subcarrier average in FIG. 7) processing for each of a plurality of subcarriers corresponding to the received transmission band of DM-RS.
  • the ratio of the both end portions (that is, subcarriers whose channel estimation accuracy is degraded) to the entire DM-RS transmission bandwidth increases. That is, the smaller the DM-RS transmission bandwidth, the greater the degradation of channel estimation accuracy.
  • the average channel quality (SINR) of DM-RSs is increased.
  • the DM-RS transmission bandwidth is set to 1 RB with respect to the high-quality band selected by the base station based on the channel quality (DM-RS transmission bandwidth is 1 RB in FIG. 8). If it is increased, there is a possibility that the average SINR at 2 RBs after the increase will be lower.
  • the smaller the transmission bandwidth of the DM-RS the larger the ratio of the increase in the transmission bandwidth to the total transmission bandwidth of the DM-RS. That is, in order to make DM-RSs between terminals orthogonal to each other, when the base station performs fine adjustment to increase the transmission bandwidth as in Embodiment 1, the smaller the DM-RS transmission bandwidth, The influence of the increase in the transmission bandwidth on the reception quality of the DM-RS transmitted from the terminal becomes larger.
  • a terminal having a small transmission bandwidth is often a terminal having no capacity for transmission power. Therefore, when the required transmission power is increased by increasing the transmission bandwidth, that is, “a transmission power increase amount that increases due to an increase in transmission bandwidth> a transmission power decrease amount that can be suppressed by a decrease in coding rate”. In this case, the terminal becomes insufficient in transmission power, and the reception quality of the DM-RS is further deteriorated.
  • the base station finely adjusts (increases / decreases) the transmission bandwidth in order to orthogonalize the DM-RSs between the terminals as described above, the smaller the transmission bandwidth, The influence of the fine adjustment of the transmission bandwidth on the reception quality of the DM-RS transmitted from the terminal becomes larger.
  • the Walsh sequence number is determined based on a correspondence relationship in which the transmission bandwidth and the Walsh sequence number are associated one-to-one.
  • a transmission bandwidth of a signal transmitted by the terminal is a transmission bandwidth that is equal to or smaller than a threshold in a plurality of transmission bandwidths that can be set in the terminal, the Walsh sequence number notified from the base station Is used.
  • FIG. 9 shows the configuration of terminal 300 according to the present embodiment.
  • the same components as those shown in FIG. 9 are identical components as those shown in FIG. 9
  • the threshold setting unit 301 of the terminal 300 illustrated in FIG. 9 sets a DM-RS transmission bandwidth threshold, and outputs the set threshold to the determination unit 302.
  • the determination unit 302 acquires the Walsh sequence number based on the threshold value input from the threshold setting unit 301 by notification (scheduling information) from the base station 400 (described later), or is the same as in the first embodiment. Then, it is determined whether to determine the DM-RS transmission bandwidth and the Walsh sequence number based on a rule table (correspondence) in which the transmission sequence number and the Walsh sequence number are associated one by one. Specifically, when the transmission bandwidth input from the transmission bandwidth setting unit 105 is equal to or less than the threshold input from the threshold setting unit 301, the determination unit 302 includes the Walsh included in the scheduling information input from the demodulation unit 103. Extract the sequence number.
  • the determination unit 302 has a one-to-one correspondence between the DM-RS transmission bandwidth and the Walsh sequence number.
  • the Walsh sequence number corresponding to the transmission bandwidth input from the transmission bandwidth setting unit 105 is determined based on the correspondence relationship associated with. Then, the determination unit 302 outputs the obtained Walsh sequence number to the multiplication unit 108.
  • FIG. 10 shows the configuration of base station 400 according to the present embodiment.
  • the same components as those shown in FIG. 10 are identical to the same components as those shown in FIG. 10
  • the threshold setting unit 401 of the base station 400 shown in FIG. 10 sets the same value as the threshold setting unit 301 of the terminal 300 (FIG. 9) as the DM-RS transmission bandwidth threshold, and determines the set threshold. Output to 402.
  • determination unit 402 Based on the threshold value input from threshold value setting unit 401, determination unit 402 includes the Walsh sequence number in scheduling information and notifies terminal 300, or in the same way as in Embodiment 1, the transmission band of DM-RS It is determined whether the width and the Walsh sequence number are determined based on a rule table (correspondence) in which the width and the Walsh sequence number are associated one by one. Specifically, when the transmission bandwidth input from transmission bandwidth setting section 208 is equal to or smaller than the threshold input from threshold setting section 401, determination section 402 determines the Walsh sequence number by scheduling. Then, base station 400 notifies terminal 300 of scheduling information including the determined Walsh sequence number.
  • a rule table correspondence
  • the determination unit 402 when the transmission bandwidth input from the transmission bandwidth setting unit 208 is larger than the threshold input from the threshold setting unit 401, the determination unit 402 has a one-to-one correspondence between the DM-RS transmission bandwidth and the Walsh sequence number. The Walsh sequence number corresponding to the transmission bandwidth input from the transmission bandwidth setting unit 208 is determined based on the correspondence relationship associated with. Then, the determination unit 402 outputs the obtained Walsh sequence number to the multiplication unit 211.
  • the transmission bandwidth (number of RBs) of signals (data and DM-RS) of each terminal is 1RB, 2RB, 3RB, as in Embodiment 1 (FIG. 3). ..., 35 RBs, 96 RBs, 100 RBs, 108 RBs can be set.
  • the sequence length of the Walsh sequence is 2, the Walsh sequence number of the Walsh sequence (1, 1) is 0, and the Walsh sequence number of the Walsh sequence (1, -1) is 1.
  • threshold setting section 301 and threshold setting section 401 set 5 RBs as the transmission bandwidth threshold.
  • the implementation is performed.
  • the Walsh sequence Walsh sequence number used for DM-RS is associated with the DM-RS transmission bandwidth that base station 400 can set for each terminal on a one-to-one basis. That is, as shown in FIG. 11, among a plurality of transmission bandwidths (35 types) that can be set for each terminal, a part of transmission bandwidths (30 types) having a threshold value larger than 5 RBs and a Walsh sequence number are 1 Corresponding in a pair.
  • the rule table indicating the correspondence between transmission parameters (here, transmission bandwidth) that can be set for each terminal and Walsh sequence Walsh sequence numbers is the transmission parameter (transmission bandwidth) and Walsh. It includes a partial table (correspondence relationship after transmission bandwidth 6RB) in which the sequence number is associated one-to-one.
  • the partial table shown in FIG. 11 as in Embodiment 1 (FIG. 3), two transmissions indicating the closest quality in a plurality of transmission parameters (transmission bandwidths) representing different qualities (transmission bandwidths) are used. Different Walsh sequence numbers are associated with the parameters.
  • the determination unit 302 and the determination unit 402 when the transmission bandwidth of the signal transmitted by the terminal 300 is larger than the threshold 5RB, the DM-RS of the terminal 300 based on the correspondence relationship (partial table) illustrated in FIG.
  • the Walsh sequence number of the Walsh sequence to be used for is determined.
  • the transmission parameter (transmission bandwidth) in the rule table indicating the correspondence between the transmission parameters (here transmission bandwidth) that can be set in each terminal and the Walsh sequence number of the Walsh sequence
  • the Walsh sequence number 0 or 1 is assigned to each transmission bandwidth (1RB to 5RB). Both can be set.
  • the determination unit 402 of the base station 400 determines the Walsh sequence number when the transmission bandwidth input from the transmission bandwidth setting unit 208 is equal to or less than the threshold value 5RB (that is, any of the transmission bandwidths 1RB to 5RB). Decide either 0 or 1. Then, the base station 400 notifies the terminal 300 of scheduling information including one signaling bit indicating the Walsh sequence number determined by the determination unit 402. That is, as shown in FIG. 11, out of a plurality of transmission bandwidths (35 types) that can be set for each terminal, the base station 400 uses the Walsh sequence number 0 for a transmission bandwidth (5 types) with a threshold of 5 RB or less. , 1 is arbitrarily selected, and the selected Walsh sequence number is notified to the terminal 300.
  • the determination unit 302 of the terminal 300 indicates the Walsh indicated by one signaling bit included in the scheduling information notified from the base station 400. A sequence number (0 or 1) is extracted.
  • terminal 300 determines the Walsh sequence used for DM-RS based on the transmission bandwidth as in the first embodiment. Can be determined. That is, when the transmission bandwidth of the signal transmitted by terminal 300 is larger than the threshold, terminal 300, based on the transmission bandwidth that is the transmission parameter notified by base station 400, as in Embodiment 1.
  • the Walsh sequence used for the DM-RS of the own terminal can be specified.
  • base station 400 switcheduler
  • Embodiment 1 sets different transmission bandwidths for a plurality of terminals, even if the Walsh sequence numbers associated with the transmission bandwidths are the same, Embodiment 1
  • the transmission bandwidth set for one terminal is finely adjusted (increased or decreased) by one.
  • DM-RSs between terminals can be orthogonalized without degrading the reception quality of DM-RSs transmitted by terminals with finely adjusted transmission bandwidths.
  • the terminal 300 when the transmission bandwidth of the signal transmitted by the terminal 300 is equal to or smaller than the threshold, that is, when the fine adjustment of the transmission bandwidth has a great influence on the reception quality of the DM-RS, the terminal 300 The Walsh sequence number notified from 400 is used. Thereby, base station 400 can flexibly set a Walsh sequence Walsh sequence number (0 or 1) for terminal 300 according to the scheduling status of each terminal. Thereby, when the transmission bandwidth of the signal transmitted by the terminal 300 is equal to or smaller than the threshold value, the base station 400 does not perform fine adjustment of the transmission bandwidth, and thus the terminal 300 uses the optimal transmission bandwidth to perform DM. -RS can be transmitted.
  • the base station notifies each terminal of the CS amount of the ZC sequence used as the DM-RS sequence.
  • the maximum number of multiplexed DM-RSs due to the difference in CS amount is assumed to be 6, and 3 bits are used for notification of the CS amount from the base station to the terminal.
  • the base station needs to increase the DM-RS detection window (increase the CS amount at the terminal). For example, when the DM-RS transmission bandwidth is small, as shown in FIG.
  • the time attenuation of the received signal level at the base station becomes moderate, and therefore the DM-RS transmission bandwidth is large (see FIG. 12A).
  • the detection window of DM-RS is enlarged. For this reason, the realistic maximum multiplexing number that can maintain the reception quality of DM-RS is about 4.
  • the base station performs FFT processing (FFT units 205 and 217 shown in FIG. 10) in order to convert the time domain received signal into the frequency domain. Since the FFT process is a process of multiplying a rectangular signal having a transmission bandwidth in the frequency domain, the received signal is a SINC function in the time domain (delay profile). Therefore, the time attenuation of the signal level in the time domain becomes gentler as the received signal has a smaller transmission bandwidth in the frequency domain.
  • FFT processing FFT units 205 and 217 shown in FIG. 10
  • the DM-RS transmission bandwidth is small, it is necessary to increase the CS amount set in the DM-RS, and the maximum multiplexing number is reduced. Therefore, it is necessary to notify the CS amount from the base station to the terminal.
  • the number of signaling bits can be reduced. For example, in LTE, when the maximum multiplexing number that can maintain DM-RS reception quality is 4 when the DM-RS transmission bandwidth is small, the number of signaling bits required for CS amount notification is 3 to 2 bits. Even if it is reduced, the performance of the system is not affected.
  • base station 400 further reduces the maximum multiplexing number when the transmission bandwidth of the signal transmitted by terminal 300 is equal to or smaller than the threshold, that is, to maintain the reception quality of DM-RS.
  • 1 bit of signaling bits required for notification of the Walsh sequence Walsh sequence number is added and 1 bit of signaling bits required for notification of the CS amount is reduced.
  • the base station 400 adds one bit of signaling bits required for notification of the Walsh sequence Walsh sequence number instead of reducing one bit of signaling bits required for notification of the CS amount.
  • base station 400 when the transmission bandwidth of a signal transmitted by terminal 300 is equal to or less than a threshold value 5 RB, base station 400 adds one bit of signaling bits required for notification of a Walsh sequence Walsh sequence number. In addition, the signaling bits required for notification of the CS number (CS amount) are reduced by 1 bit from 3 bits to 2 bits. Further, when the transmission bandwidth of the signal transmitted by terminal 300 is equal to or less than the threshold value 5 RB, terminal 300 changes how to read the signaling bits (3 bits) used for notification of the CS number (CS amount) included in the scheduling information. Thus, both the CS number (2 bits) and the Walsh sequence number (1 bit) are extracted.
  • base station 400 when the transmission bandwidth of a signal transmitted by terminal 300 is less than or equal to the threshold value 5RB, base station 400 notifies the CS number with 2 bits and the Walsh sequence number with 1 bit. To do.
  • base station 400 when the transmission bandwidth of the signal transmitted by terminal 300 is larger than threshold value 5RB, base station 400 notifies the CS number with 3 bits and does not notify the Walsh sequence number (that is, , 0 bit). That is, in FIG. 13, regardless of the transmission bandwidth of the signal transmitted by terminal 300, the total number of signaling bits for reporting both information of the CS number and the Walsh sequence number is 3 bits. .
  • the fine adjustment of the transmission bandwidth of the signal transmitted by the terminal 300 has a great influence on the reception quality of the DM-RS, that is, when the transmission bandwidth of the signal transmitted by the terminal 300 is equal to or less than the threshold.
  • the number of signaling bits required for the notification of the CS number (CS amount) is reduced by the number of signaling bits required for the notification of the Walsh sequence number. As a result, an increase in signaling bits can be prevented.
  • base station 400 uses the Walsh sequence number when reporting the CS number (CS amount) with 2 bits.
  • the CS number (CS amount) pattern to be notified may be changed in association with.
  • is a CS amount setting unit (time length obtained by dividing DM-RS symbol length by 8).
  • base station 400 when notifying Walsh sequence number 0 in FIG. 13, base station 400 notifies the CS amount of CS number (0, 2, 4, 6) ⁇ ⁇ in 2 bits, and Walsh sequence number 1 In this case, the CS amount of CS number (1, 3, 5, 7) ⁇ ⁇ is notified by 2 bits.
  • DM-RSs between terminals have different setting values for both the CS amount and the Walsh sequence number. That is, since the DM-RS between terminals can be orthogonalized in both the ZC sequence and the Walsh sequence, channel estimation accuracy can be further improved and reception quality can be improved.
  • the base station provides a Walsh sequence number to a terminal having a small transmission bandwidth such that fine adjustment of the transmission bandwidth has a large influence on the reception quality of DM-RS. (1 bit notification). Further, the base station reduces signaling bits (1 bit reduction) required for notification of the CS amount to a terminal having a small transmission bandwidth. Thereby, it is possible to prevent the reception quality of the DM-RS transmitted by the terminal having a small transmission bandwidth from deteriorating without increasing the signaling bit.
  • the terminal when the influence of the fine adjustment of the transmission bandwidth on the reception quality of DM-RS is small, that is, when the transmission bandwidth of the signal transmitted by the terminal is larger than the threshold, the terminal Similarly, the Walsh sequence number can be specified based on the correspondence relationship in which the transmission bandwidth and the Walsh sequence number are associated one-to-one.
  • the transmission bandwidth threshold (5 RBs in FIGS. 11 and 13) may be different for each cell.
  • a threshold suitable for each cell can be set by varying the transmission bandwidth threshold for each cell. Is possible.
  • the DM-RS transmission band position and the Walsh sequence number are associated one-to-one.
  • FIG. 14 shows the configuration of terminal 500 according to the present embodiment.
  • the same components as those shown in FIG. 14 are identical components as those shown in FIG. 14
  • the transmission band position of the signal transmitted from the terminal 500 is input from the transmission band position setting unit 104 to the determination unit 501 of the terminal 500 illustrated in FIG.
  • the determination unit 501 has a one-to-one correspondence between a transmission band position (start position or end position) that can be mapped to a DM-RS and defined in advance for each cell or system, and a Walsh sequence Walsh sequence number.
  • a rule table correspondence. Then, the determination unit 501 refers to the rule table (correspondence) according to the transmission band position input from the transmission band position setting unit 104, and determines the Walsh sequence number (for example, Walsh sequence (1, 1, 1) Walsh sequence number 0 or Walsh sequence (1, -1) Walsh sequence number 1) is determined.
  • the determination unit 501 has a one-to-one correspondence between a plurality of transmission parameters indicating transmission band positions to which signals (data and DM-RS) transmitted from each terminal can be mapped and a Walsh sequence Walsh sequence number. Based on the correspondence relationship, the Walsh sequence Walsh sequence number corresponding to the transmission parameter (the transmission band position in this case) addressed to the terminal notified from the base station is determined. Then, the determination unit 501 outputs the determined Walsh sequence number to the multiplication unit 108.
  • FIG. 15 shows the configuration of base station 600 according to the present embodiment.
  • the same components as those shown in FIG. 15 are identical.
  • the same transmission band position is input.
  • the determination unit 601 has the same rule table as the rule table included in the determination unit 501 (FIG. 14) of the terminal 500. Then, the determination unit 601 refers to the rule table according to the transmission band position (start position or end position) input from the transmission band position setting unit 206, and determines the Walsh sequence number (for example, Walsh) used by the terminal 500.
  • the Walsh sequence number 0 of the sequence (1,1) or the Walsh sequence number 1) of the Walsh sequence (1, -1) is determined.
  • the determination unit 601 associates a plurality of transmission parameters indicating transmission band positions to which signals (data and DM-RS) transmitted from each terminal can be mapped, and Walsh sequence Walsh sequence numbers on a one-to-one basis. Based on the correspondence relationship, the Walsh sequence Walsh sequence number corresponding to the transmission parameter (here, the transmission band position) notified to the transmission source terminal 500 of the received DM-RS is determined. Then, the determination unit 601 outputs the determined Walsh sequence number to the multiplication unit 211.
  • transmission band positions of RB numbers 0 to 5 as transmission band positions (start positions, that is, top RBs) of signals (data and DM-RS) of each terminal. Can be set. Also, in FIG. 16, the sequence length of the Walsh sequence is 2, the Walsh sequence number of the Walsh sequence (1, 1) is 0, and the Walsh sequence number of the Walsh sequence (1, -1) is 1.
  • Walsh sequence Walsh sequence numbers used for DM-RS are DM-RS transmission band positions (RB numbers 0 to 5) that can be set for each terminal. There is a one-to-one correspondence. The correspondence between the six transmission band positions (RB numbers 0 to 5) and the Walsh sequence numbers shown in FIG. 16 is held by the determination unit 501 and the determination unit 601.
  • the determination unit 501 and the determination unit 601 determine that the DM-RS transmission band position (start position) set in the terminal A is the RB number 0, the DM of the terminal A -Determine the Walsh sequence number of the Walsh sequence used for the RS as 0.
  • the determination unit 501 and the determination unit 601 may, when the DM-RS transmission band position (start position) set in the terminal B is RB number 1, the terminal B The Walsh sequence number used in the DM-RS is determined to be 1. The same applies to RB numbers 2 to 5 shown in FIG.
  • terminal 500 transmits signals (data and DM-RS) transmitted by terminal 500, which are transmission parameters transmitted by base station 600 using a downlink control channel.
  • the Walsh sequence used for DM-RS can be determined. That is, as shown in FIG. 16, by associating the transmission band position (RB number) and the Walsh sequence number in advance, terminal 500 specifies the Walsh sequence used by the terminal itself without being notified from base station 600. The signaling bit required for notification of the Walsh sequence number is not necessary.
  • different Walsh sequence numbers are associated between the transmission band positions having the closest RB numbers.
  • the transmission band position whose start position is RB number 1 and the transmission band positions whose start positions are RB number 0 and RB number 2 closest to RB number 1 are different from each other.
  • Walsh sequence numbers 1 and 0 are associated with each other.
  • the Walsh sequence number 0 is associated with the RB number of the transmission band position (start position). Is an odd number (RB numbers 1, 3, 5), Walsh sequence number 1 is associated. That is, when two Walsh sequences (Walsh sequence numbers 0 and 1) are used, as shown in FIG. 16, the Walsh sequence number 0 and the transmission band positions (transmission parameters) arranged in ascending order of the RB numbers. 1 are alternately associated.
  • the base station 600 schedules transmission band positions having different transmission bandwidths and having the same associated Walsh sequence number to a plurality of terminals.
  • the base station 600 (scheduler) schedules transmission band positions having different transmission bandwidths and having the same associated Walsh sequence number to a plurality of terminals.
  • a Walsh sequence having the same Walsh sequence number is used for the DM-RS of each terminal, there is a restriction that DM-RSs between terminals cannot be orthogonalized.
  • FIG. 17 when base station 600 sets the start position of the transmission band position for terminal A and terminal B to RB number 0, the Walsh sequence used for the DM-RS of terminal A and terminal B Both Walsh sequence numbers are 0 (W # 0 shown in FIG. 17).
  • the base station 600 can control the transmission band position of each terminal. Therefore, when the transmission band position is the same between terminals (that is, the Walsh sequence number is the same) (RB number 0, W # 0 in FIG. 17), base station 600 (scheduler) transmits one terminal. Fine-tune the band position setting. Specifically, base station 600 increases or decreases the setting of the transmission band position of one of the two terminals having the same transmission band position (that is, Walsh sequence number) by 1 RB number. For example, as shown in FIG. 17, base station 600 shifts RB number 0 (the broken line portion shown in FIG. 17), which is the transmission band position of terminal B, to RB number 1 (see FIG. 17) by shifting it to the high frequency side by 1 RB.
  • RB number 0 the broken line portion shown in FIG. 17
  • the Walsh sequence Walsh sequence number used for the DM-RS of terminal B shown in FIG. 17 is 1 (W # 1 shown in FIG. 17). That is, the Walsh sequence Walsh sequence number used for the DM-RS of terminal B (W # 1 shown in FIG. 17) and the Walsh sequence Walsh sequence number used for the DM-RS of terminal A (W # 0 shown in FIG. 17). Can be different from each other.
  • the transmission band position set in the terminal is shifted by one settable transmission bandwidth (that is, 1 RB number) while minimizing the change in DM-RS reception quality.
  • the Walsh sequence number associated with the transmission band position can be inverted. For this reason, the base station 600 (scheduler) finely adjusts the transmission band position (RB number) set for one terminal in order to orthogonalize the DM-RS between the terminals, and the influence on the system throughput performance is Few.
  • the base station 600 shifts the transmission band position (RB number) of one terminal by 1 RB so that the terminal 500 DM-RSs between terminals can be orthogonalized without degrading the reception quality of the DM-RSs transmitted by.
  • the DM-RS of each terminal is the same The Walsh sequence number (W # 1 in FIG. 5) is used. Therefore, when the DM-RS transmission band between terminals matches in the same transmission band (the same transmission bandwidth and the same transmission band position), base station 600 performs the same as in LTE. Thus, different CS amounts are set. Thereby, even when the transmission bands of DM-RSs between terminals match, DM-RSs between terminals can be orthogonalized.
  • the DM-RS transmission band position and the Walsh sequence Walsh sequence number are associated one-to-one.
  • the terminal can specify the Walsh sequence used for the DM-RS of the terminal based on the transmission band position of the signal (data and DM-RS) of each terminal, which is the transmission parameter notified by the base station. it can. Therefore, according to the present embodiment, in LTE-Advanced, even when a Walsh sequence is applied to DM-RS, it is possible to prevent an increase in the number of signaling bits required for notification of the Walsh sequence number from the base station to the terminal. This eliminates the need to newly add a control channel format.
  • the base station (scheduler) is assigned to one terminal. Finely adjust (increase / decrease) the set transmission band position by 1 RB.
  • DM-RSs between terminals can be orthogonalized without degrading the reception quality of DM-RSs transmitted by terminals with finely adjusted transmission band positions. That is, the degree of freedom of frequency scheduling in MU-MIMO multiplexing can be ensured.
  • the RB number at the start position of the transmission band position is associated with the Walsh sequence Walsh sequence number on a one-to-one basis.
  • the RB number at the end of the transmission band position may be associated with the Walsh sequence Walsh sequence number on a one-to-one basis.
  • the correspondence between the transmission band position and the Walsh sequence number may be different for each cell.
  • the correspondence relationship may be different between a femto base station and a macro base station having different transmission powers.
  • Walsh sequence Walsh sequence numbers used for signals transmitted in the same transmission band are different from each other and orthogonalized, so that inter-cell interference can be reduced.
  • the MCS (Modulation and Coding Scheme) number (MCS number) set for each terminal is associated with the Walsh sequence number on a one-to-one basis.
  • FIG. 18 shows the configuration of terminal 700 according to the present embodiment.
  • the same components as those shown in FIG. 18 are identical.
  • the MCS number setting unit 701 of the terminal 700 shown in FIG. 18 the MCS MCS number set for each terminal transmitted from the demodulating unit 103 using the downlink control channel from the base station (described later). The information shown is input. Then, the MCS number setting unit 701 extracts the MCS number of the signal transmitted from the terminal included in the information input from the demodulation unit 103 and outputs the extracted MCS number to the determination unit 702.
  • the determination unit 702 has a rule table (correspondence relationship) in which the MCS number and the Walsh sequence Walsh sequence number, which are defined in advance for each cell or system, are associated one-to-one. Then, the determination unit 702 refers to the rule table (correspondence) according to the MCS number input from the MCS number setting unit 701, and determines the Walsh sequence number (for example, Walsh sequence (1, 1)) used by the terminal itself. Walsh sequence number 0 or Walsh sequence number (1, ⁇ 1) Walsh sequence number 1) is determined. That is, the determination unit 702 is based on a correspondence relationship in which a plurality of transmission parameters indicating MCS numbers that can be set in transmission data transmitted by each terminal and a Walsh sequence Walsh sequence number are associated one-to-one. The Walsh sequence Walsh sequence number corresponding to the transmission parameter (in this case, the MCS number) addressed to itself is notified from the base station. Then, the determination unit 702 outputs the determined Walsh sequence number to the multiplication unit 108.
  • the rule table correspondence relationship
  • terminal 700 performs encoding processing and modulation processing on transmission data based on the MCS of the MCS number notified from the base station (not shown).
  • FIG. 19 shows the configuration of base station 800 according to the present embodiment.
  • the same components as those shown in FIG. 19 are identical.
  • the MCS number setting unit 801 of the base station 800 shown in FIG. 19 has the same MCS number as the MCS number instructed to the terminal 700 by the base station 800 (that is, the MCS number used in the MCS number setting unit 701 of the terminal 700). The same value) is set in the decoding unit 222 and the determination unit 802.
  • the determination unit 802 has the same rule table as the rule table included in the determination unit 702 (FIG. 18) of the terminal 700. Then, the determining unit 802 refers to the rule table according to the MCS number input from the MCS number setting unit 801, and the Walsh sequence number used by the terminal 700 (for example, the Walsh sequence (1, 1) Walsh sequence). The number 0 or the Walsh sequence number 1) of the Walsh sequence (1, ⁇ 1) is determined. That is, the determination unit 802 is based on a correspondence relationship in which a plurality of transmission parameters indicating MCS numbers that can be set in transmission data transmitted by each terminal and a Walsh sequence Walsh sequence number are associated one-to-one. The Walsh sequence Walsh sequence number corresponding to the transmission parameter (here, the MCS number) notified to the DM-RS transmission source terminal 700 is determined. Then, the determination unit 802 outputs the determined Walsh sequence number to the multiplication unit 211.
  • the decoding unit 222 demodulates the data signal input from the demodulation unit 221 based on the MCS of the MCS number input from the MCS number setting unit 801.
  • the base station 800 determines the MCS of transmission data transmitted by each terminal for a plurality of terminals in a cell covered by the base station 800.
  • Base station 800 transmits information indicating the MCS number of each terminal's MCS to each terminal using a downlink control channel (not shown).
  • 16 types of MCSs with MCS numbers 1 to 16 can be set as MCS of transmission data transmitted by each terminal, as shown in FIG.
  • the modulation scheme and the coding rate are set so that the transmission rate (bit rate) increases as the MCS number increases.
  • the sequence length of the Walsh sequence is 2
  • the Walsh sequence number of the Walsh sequence (1, 1) is 0,
  • the Walsh sequence number of the Walsh sequence (1, ⁇ 1) is 1.
  • the Walsh sequence Walsh sequence number used for DM-RS is 1 in the MCS MCS numbers (MCS numbers 1 to 16) that can be set in the transmission data transmitted by each terminal. Corresponding in a pair.
  • the rule table illustrated in FIG. 20 is held by the determination unit 702 and the determination unit 802.
  • the MCS number set in terminal 700 is 1 (modulation scheme: QPSK, coding rate: 1/8)
  • determination section 702 and determination section 802 are based on the correspondence shown in FIG.
  • the Walsh sequence number of the Walsh sequence used for the DM-RS of terminal 700 is determined to be 0.
  • the determination unit 702 and the determination unit 802 correspond to the correspondence relationship illustrated in FIG.
  • the Walsh sequence Walsh sequence number used for the DM-RS of terminal 700 is determined to be 1.
  • terminal 700 determines a Walsh sequence used for DM-RS based on the MCS number of transmission data transmitted by terminal 700, which is a transmission parameter transmitted by base station 800 using a downlink control channel. can do. That is, as shown in FIG. 20, by associating the MCS number and the Walsh sequence number in advance, the terminal 700 can identify the Walsh sequence used by the terminal without being notified from the base station 800, and the Walsh The signaling bit required for notification of the sequence number is not necessary.
  • MCS numbers 1 to 16 representing different qualities
  • different Walsh is used between MCSs having the nearest MCS numbers (that is, MCSs representing the nearest quality).
  • a sequence number is associated.
  • MCS number 2 and MCS number 1 and MCS number 3 closest to MCS number 2 are associated with different Walsh sequence numbers 1 and 0, respectively. That is, when two Walsh sequences (Walsh sequence numbers 0 and 1) are used, as shown in FIG. 20, for the MCS numbers (transmission parameters) arranged in ascending order of the transmission rate (bit rate), the Walsh sequence Numbers 0 and 1 are associated with each other alternately.
  • the base station 800 may set the same MCS for a plurality of terminals based on the channel quality of each terminal.
  • the base station 800 (scheduler) may set the same MCS for a plurality of terminals based on the channel quality of each terminal.
  • a Walsh sequence having the same Walsh sequence number is used for the DM-RS of each terminal, there is a restriction that DM-RSs between terminals cannot be orthogonalized.
  • the base station 800 (scheduler) can control MCS of transmission data transmitted by each terminal. Therefore, when the MCS numbers of the MCS are the same between terminals (that is, the Walsh sequence numbers are the same), the base station 800 (scheduler) finely adjusts the setting of the MCS number of one terminal. Specifically, base station 800 increases or decreases the setting of the MCS number set for one of the two terminals having the same MCS number by one. As shown in FIG. 20, different Walsh sequence numbers are associated with adjacent MCS numbers, respectively. For this reason, the base station 800 increases or decreases the setting of the MCS number set in one of the two terminals having the same MCS number by one to thereby increase the Walsh used for the DM-RS of both terminals. The Walsh sequence numbers of the sequences can be made different from each other.
  • the base station 800 (scheduler) has little influence on the system throughput performance by finely adjusting the MCS number set in one terminal in order to orthogonalize the DM-RS between the terminals.
  • the base station 800 shifts the MCS number of one terminal by one so that the reception performance of the terminal 700 is improved.
  • DM-RSs between terminals can be orthogonalized without degrading.
  • the base station 800 may change the MCS number adjustment (fine adjustment) method for Walsh sequence selection according to the currently set MCS modulation method.
  • QPSK is often set for a terminal having poor channel quality. Therefore, when the currently set MCS modulation scheme is QPSK (MCS numbers 1 to 8 in FIG. 20), base station 800 has a direction of decreasing MCS number (that is, the coding rate is lower, error The MCS number is adjusted so that the tolerance becomes stronger.
  • 16QAM and 64QAM are often set for terminals having good channel quality. Therefore, when the currently set MCS modulation scheme is 16QAM or 64QAM (MCS numbers 9 to 16 in FIG. 20), the base station 800 increases the MCS number (that is, the coding rate is higher). The MCS number is adjusted in the direction of higher throughput. Thereby, it is possible to further reduce the influence of the fine adjustment of the MCS number for the Walsh sequence selection by base station 800 on the reception performance of terminal 700.
  • the MCS MCS number set in the transmission data transmitted by the terminal and the Walsh sequence Walsh sequence number are associated one-to-one. Accordingly, the terminal can specify the Walsh sequence used for the DM-RS of the terminal based on the MCS number set for each terminal, which is a transmission parameter notified by the base station. Therefore, according to the present embodiment, in LTE-Advanced, even when a Walsh sequence is applied to DM-RS, it is possible to prevent an increase in the number of signaling bits required for notification of the Walsh sequence number from the base station to the terminal. This eliminates the need to newly add a control channel format.
  • different Walsh sequence numbers are associated between MCS numbers having the closest MCS number, that is, between MCS numbers having the closest quality. .
  • the base station uses one MCS number set for one terminal.
  • Walsh sequence numbers 0 and 1 are alternately associated with each other over MCS numbers 1 to 16.
  • Walsh sequence numbers 1 and 0 may be alternately associated over MCS numbers 1 to 16 (that is, 0 is inverted to 1 and 1 is set to 0 in FIG. 20). May be reversed).
  • a TBS (Transport Block Set) number may be used as shown in FIG. That is, as shown in FIG. 21, a TBS number defined in advance for each cell or system may be associated with a Walsh sequence Walsh sequence number on a one-to-one basis.
  • terminal IDs that are ID numbers unique to a plurality of terminals are associated with Walsh sequence numbers on a one-to-one basis.
  • FIG. 22 shows a configuration of terminal 900 according to the present embodiment.
  • the same components as those shown in FIG. 22 are identical to FIG. 22.
  • Each of the terminal ID setting unit 901 of terminal 900 shown in FIG. 22 is allocated (scheduled) with transmission resources transmitted from demodulating unit 103 using a downlink control channel from a base station (described later). Information indicating the terminal ID set in the terminal is input.
  • Terminal ID setting section 901 extracts the terminal ID of the own terminal included in the information input from demodulation section 103 and outputs the extracted terminal ID to determination section 902.
  • the determining unit 902 has a rule table (correspondence) in which a terminal ID and a Walsh sequence Walsh sequence number, which are defined in advance for each cell or system, are associated one-to-one. Then, the determination unit 902 refers to the rule table (correspondence) according to the terminal ID input from the terminal ID setting unit 901, and determines the Walsh sequence number (for example, Walsh sequence (1, 1)) used by the terminal itself. Walsh sequence number 0 or Walsh sequence number (1, ⁇ 1) Walsh sequence number 1) is determined. That is, the determination unit 902 is notified from the base station based on a correspondence relationship in which a plurality of transmission parameters indicating terminal IDs that can be set for each terminal and a Walsh sequence Walsh sequence number are associated one-to-one. The Walsh sequence Walsh sequence number corresponding to the transmission parameter (terminal ID in this case) addressed to the own device is determined. Then, the determination unit 902 outputs the determined Walsh sequence number to the multiplication unit 108.
  • a rule table correspondence
  • FIG. 23 shows a configuration of base station 1000 according to the present embodiment.
  • the same components as those shown in FIG. 23 are identical to those shown in FIG. 23.
  • the terminal ID setting unit 1001 of the base station 1000 shown in FIG. 23 has the same terminal ID as the terminal ID instructed to the terminal 900 by the base station 1000 (that is, the terminal ID used in the terminal ID setting unit 901 of the terminal 900). (Same value) is set in the determination unit 1002.
  • the determining unit 1002 has the same rule table as the rule table included in the determining unit 902 (FIG. 22) of the terminal 900. Then, the determination unit 1002 refers to the rule table according to the terminal ID input from the terminal ID setting unit 1001 and uses the Walsh sequence number used by the terminal 900 (for example, the Walsh sequence (1, 1) Walsh sequence). The number 0 or the Walsh sequence number 1) of the Walsh sequence (1, ⁇ 1) is determined. That is, the determining unit 1002 receives the received DM-RS based on a correspondence relationship in which a plurality of transmission parameters indicating terminal IDs that can be set for each terminal and a Walsh sequence number of the Walsh sequence are associated one-to-one. The Walsh sequence Walsh sequence number corresponding to the transmission parameter (terminal ID in this case) notified to the transmission source terminal 900 is determined. Then, the determination unit 1002 outputs the determined Walsh sequence number to the multiplication unit 211.
  • the base station 1000 controls to which terminal transmission resources are allocated to a plurality of terminals in a cell covered by the base station 1000. Then, base station 1000 sets a terminal ID unique to the terminal to a terminal to which transmission resources are allocated. Base station 1000 transmits information indicating the terminal ID of each terminal to each terminal using a downlink control channel (not shown).
  • the Walsh sequence Walsh sequence number used for the DM-RS is associated with the terminal ID set for each terminal on a one-to-one basis. For example, as shown in FIG. 24, when the terminal ID is an even number, Walsh sequence number 1 (W # 1 shown in FIG. 24) is associated, and when the terminal ID is an odd number, Walsh sequence number 0 ( W # 0) shown in FIG. 24 is associated.
  • the determination unit 902 and the determination unit 1002 determine the Walsh sequence number of the Walsh sequence used for the DM-RS of the terminal 900 as 0 when the terminal ID set in the terminal 900 is an odd number. Similarly, determining section 902 and determining section 1002 determine that the Walsh sequence Walsh sequence number used for the DM-RS of terminal 900 is 1 when the terminal ID set for terminal 900 is an even number.
  • the terminal 900 can determine the Walsh sequence used for the DM-RS based on the terminal ID of the terminal 900, which is a transmission parameter transmitted from the base station 1000 using the downlink control channel. That is, as shown in FIG. 24, by associating the terminal ID and the Walsh sequence number in advance, the terminal 900 can identify the Walsh sequence used by the terminal without being notified from the base station 1000, and the Walsh The signaling bit required for notification of the sequence number is not necessary.
  • the determination unit 902 and the determination unit 1002 determine different Walsh sequence numbers depending on whether the terminal ID is an odd number or an even number. That is, the determination unit 902 and the determination unit 1002 determine the same Walsh sequence number between terminals whose terminal IDs are odd (or even). Therefore, when the base station 1000 controls which terminals are allocated to transmission resources, there is a restriction that terminals having terminal IDs that are odd (or even) cannot be allocated to the same transmission band. For example, as shown in FIG. 24, the base station 1000 assigns another terminal with an odd terminal ID to the same transmission band as the terminal B with an odd terminal ID and a transmission bandwidth of 5 RBs. Can not. That is, as shown in FIG. 24, the base station 1000 needs to assign terminal B and terminal C, whose terminal IDs are odd numbers, to different transmission bands. The same applies to terminals with an even terminal ID.
  • base station 1000 when there are many terminals in a cell covered by base station 1000 (when there are many transmission resource allocation candidates), base station 1000 allocates terminals to the same transmission resource according to the terminal ID. Even in the case of restricting the DM-RS, it is possible to orthogonalize DM-RSs between terminals without degrading the system throughput performance.
  • the terminal ID and the Walsh sequence Walsh sequence number are associated one-to-one.
  • the terminal can specify the Walsh sequence used for the DM-RS of the terminal based on the terminal ID, which is the transmission parameter notified by the base station. Therefore, according to the present embodiment, in LTE-Advanced, even when a Walsh sequence is applied to DM-RS, it is possible to prevent an increase in the number of signaling bits required for notification of the Walsh sequence number from the base station to the terminal. This eliminates the need to newly add a control channel format.
  • DM-RSs between terminals are orthogonalized.
  • terminals having different terminal ID attributes are allocated to the same transmission resource.
  • the base station uses terminals with different terminal ID attributes that are close to the limited terminal performance as the same transmission resource. Can be assigned. For this reason, even when the base station restricts allocation of terminals to transmission resources according to the terminal ID, it is possible to ensure the degree of freedom of frequency scheduling in MU-MIMO multiplexing.
  • the correspondence relationship between the transmission bandwidth, the transmission band position, or the MCS number and the Walsh sequence number may be varied according to the terminal ID.
  • both the DM-RS transmission bandwidth and the terminal ID may be associated with the Walsh sequence number as shown in FIG.
  • the correspondence relationship between the DM-RS transmission bandwidth and the Walsh sequence number differs depending on whether the terminal ID is odd or even.
  • a threshold value may be set for the transmission bandwidth shown in FIG. 25 in the same manner as in the second embodiment.
  • the DM-RS transmission band position may be used instead of the transmission bandwidth shown in FIG. 25.
  • the transmission bandwidth shown in FIG. instead of this, the MCS number (or TBS number) of transmission data transmitted by the terminal may be used.
  • Walsh sequence number 1 is associated when the terminal ID is an even number
  • Walsh sequence number 0 is associated when the terminal ID is an odd number.
  • Walsh sequence number 0 when the terminal ID is an even number, Walsh sequence number 0 may be associated, and when the terminal ID is an odd number, Walsh sequence number 1 may be associated.
  • MU-MIMO multiplexing In the first to fourth embodiments, the case where MU-MIMO multiplexing is performed has been described. However, not limited to MU-MIMO multiplexing, SU-MIMO (Single-User-MIMO) multiplexing in which the transmission bandwidth, transmission band position, or MCS number of data transmitted by one terminal (transmission side) using a plurality of antennas is different from each other. In addition, the present invention can be similarly applied.
  • the terminal and the base station have the same rule table in advance and the transmission bandwidth of the DM-RS is associated with the Walsh sequence number.
  • the present invention does not require that the terminal and the base station have the same rule table in advance, and if the association equivalent to the association between the transmission bandwidth of the DM-RS and the Walsh sequence number can be performed, It is not necessary to use a table.
  • each transmission parameter transmission bandwidth, transmission band position, MCS number, and terminal ID
  • the Walsh sequence number is not limited even if the base station notifies each terminal to Implicit or Explicit. Good.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention can be applied to a mobile communication system or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a terminal that can prevent the number of signaling bits from a base station to a terminal from increasing even when applying Walsh sequences to DM-RS in LTE-Advanced. The provided terminal (100) is used in a wireless communication system in which one of a plurality of transmission parameters is set for each of a plurality of terminals, and a base station notifies the plurality of terminals of the set transmission parameters. On the basis of a one-to-one correspondence between the plurality of transmission parameters and Walsh sequence numbers, a determination unit (107) in the terminal determines the Walsh sequence number corresponding to the transmission parameter that was set for that terminal and sent from the base station. A multiplication unit (108) multiples a reference signal sequence by the Walsh sequence determined by the determination unit (107).

Description

無線通信端末装置、無線通信基地局装置および系列番号決定方法Wireless communication terminal apparatus, wireless communication base station apparatus, and sequence number determination method
 本発明は、無線通信端末装置、無線通信基地局装置および系列番号決定方法に関する。 The present invention relates to a radio communication terminal apparatus, a radio communication base station apparatus, and a sequence number determination method.
 3GPP LTEおよびLTEの発展形であるLTE-Advancedの上り回線では、MU-MIMO(Multiple User-Multiple Input Multiple Output)が適用される。MIMOは、送受信装置に複数のアンテナを装備し、同一周波数で異なる信号系列の同時空間多重化伝送を可能とする技術である。また、MU-MIMOは、複数の無線通信端末装置(以下、単に端末という)と無線通信基地局装置(以下、単に基地局という)との間でMIMO通信を行う技術であり、システムの周波数利用効率を向上させることができる。 MU-MIMO (Multiple User-Multiple Input Multiple 適用 Output) is applied to the uplink of LTE-Advanced, which is an extension of 3GPP LTE and LTE. MIMO is a technique in which a transmitter / receiver is equipped with a plurality of antennas and enables simultaneous spatial multiplexing transmission of different signal sequences at the same frequency. MU-MIMO is a technology for performing MIMO communication between a plurality of wireless communication terminal devices (hereinafter simply referred to as terminals) and a wireless communication base station device (hereinafter simply referred to as a base station). Efficiency can be improved.
 MU-MIMOでは、各端末の送信データを基地局側で分離するために、データ復調用参照信号(DM-RS:Demodulation RS)を端末間で直交化させる必要がある。LTEでは、DM-RS用系列の巡回シフト(CS:Cyclic Shift)量を端末間で異ならせることで、端末間のDM-RSを直交化させている。ただし、端末間のDM-RSの直交性をCS量によって維持するためには、MU-MIMO多重させる複数端末のDM-RSの送信帯域幅と送信帯域位置とを一致させる必要があり、周波数スケジューリングに制約がある。 In MU-MIMO, it is necessary to orthogonalize a data demodulation reference signal (DM-RS: Demodulation RS) between terminals in order to separate transmission data of each terminal on the base station side. In LTE, DM-RSs between terminals are orthogonalized by varying the amount of cyclic shift (CS) of DM-RS sequences between terminals. However, in order to maintain the orthogonality of DM-RS between terminals by the CS amount, it is necessary to match the DM-RS transmission bandwidth and transmission band position of a plurality of terminals to be MU-MIMO multiplexed, and frequency scheduling There are restrictions.
 そこで、LTE-Advancedでは、DM-RS用系列として、さらに、Walsh系列を用いることで、DM-RSの送信帯域幅と送信帯域位置とが異なる端末間でも、DM-RSを直交化させることが検討されている(例えば、非特許文献1参照)。これにより、MU-MIMO多重における周波数スケジューリングの自由度が向上し、システム性能の更なる改善が期待できる。 Therefore, in LTE-Advanced, the DM-RS can be orthogonalized even between terminals having different DM-RS transmission bandwidths and transmission band positions by using Walsh sequences as DM-RS sequences. (For example, refer nonpatent literature 1). As a result, the degree of freedom of frequency scheduling in MU-MIMO multiplexing is improved, and further improvement in system performance can be expected.
 LTE-Advancedで検討されているDM-RSへのWalsh系列の適用方法は以下の通りである。LTE-Advanced(または、LTE)では、1サブフレーム内の2つのスロットそれぞれにDM-RSが配置され、1サブフレームで2つのDM-RSが送信される。端末(送信側)は、1サブフレーム内の2つのDM-RSのそれぞれに、系列長2のWalsh系列(例えば、(1,1)または(1,-1))を乗算する。一方、基地局(受信側)は、1サブフレーム内の2つのDM-RSのそれぞれに、端末(送信側)と同一のWalsh系列を乗算し、乗算後のDM-RSを同相加算する。ここで、1サブフレーム内の2つのDM-RS間でチャネルの時間変動が無ければ、ある端末からのDM-RSを同相加算することで、そのDM-RSに乗算されたWalsh系列と異なるWalsh系列が乗算されたDM-RS(干渉成分)は逆相となる。これより、干渉成分を完全に打ち消すことができる。このようにして、DM-RSの送信帯域幅または送信帯域位置が異なる場合でも、チャネルの時間変動が無ければ、各端末のDM-RSに異なるWalsh系列を乗算することで、端末間のDM-RSを直交化できる。 The application method of the Walsh sequence to DM-RS, which is being studied by LTE-Advanced, is as follows. In LTE-Advanced (or LTE), DM-RSs are arranged in two slots in one subframe, and two DM-RSs are transmitted in one subframe. The terminal (transmission side) multiplies each of the two DM-RSs in one subframe by a Walsh sequence having a sequence length of 2 (for example, (1, 1) or (1, −1)). On the other hand, the base station (receiving side) multiplies each of the two DM-RSs in one subframe by the same Walsh sequence as that of the terminal (transmitting side), and adds the multiplied DM-RSs in phase. Here, if there is no channel time variation between two DM-RSs in one subframe, the DM-RS from a certain terminal is added in-phase, so that the Walsh sequence different from the Walsh sequence multiplied by the DM-RS is obtained. The DM-RS (interference component) multiplied by the sequence is out of phase. As a result, the interference component can be completely canceled. In this way, even if the transmission bandwidth or transmission band position of the DM-RS is different, if there is no time variation of the channel, the DM-RS of each terminal is multiplied by a different Walsh sequence so that the DM-RS between the terminals is multiplied. RS can be orthogonalized.
 上述したように、DM-RSにWalsh系列を適用する場合、基地局は、各端末が用いるWalsh系列の系列番号(例えば、Walsh系列(1,1)の系列番号0、または、Walsh系列(1,-1)の系列番号1)を各端末に指示するために、下り回線の制御チャネル(LTEではPDCCH(Physical Downlink Control Channel))に、Walsh系列の系列番号を示すシグナリングビットを1ビット追加する必要がある。 As described above, when applying the Walsh sequence to the DM-RS, the base station uses the sequence number of the Walsh sequence used by each terminal (for example, the sequence number 0 of the Walsh sequence (1, 1) or the Walsh sequence (1 , -1) in order to instruct each terminal to add 1 bit of a signaling bit indicating a Walsh sequence number to the downlink control channel (PDCCH (Physical Downlink Control Channel in LTE)) There is a need.
 この場合、基地局から各端末へのシグナリングビット数が増加するため、制御チャネル用フォーマットを新たに追加する必要がある。制御チャネル用フォーマットが増えると、端末でのフォーマット検出に要する受信処理量が増加してしまう。また、基地局から各端末へのシグナリングビット数が増加すると、基地局がスケジューリングする端末数(つまり、制御チャネル数)に比例して、システムのオーバーヘッドが増加し、スループット性能が低下してしまう。 In this case, since the number of signaling bits from the base station to each terminal increases, it is necessary to newly add a control channel format. As the number of control channel formats increases, the amount of reception processing required for format detection at the terminal increases. Further, when the number of signaling bits from the base station to each terminal increases, the system overhead increases in proportion to the number of terminals scheduled by the base station (that is, the number of control channels), and the throughput performance decreases.
 本発明の目的は、LTE-Advancedにおいて、DM-RSにWalsh系列を適用する場合でも、基地局から端末へのシグナリングビット数の増加を防止することができる端末、基地局および系列番号決定方法を提供することを目的とする。 An object of the present invention is to provide a terminal, a base station, and a sequence number determination method capable of preventing an increase in the number of signaling bits from a base station to a terminal even when a Walsh sequence is applied to DM-RS in LTE-Advanced. The purpose is to provide.
 本発明の端末は、複数の端末のそれぞれに対して、複数の送信パラメータのうちいずれかが設定され、設定された送信パラメータが基地局から前記複数の端末へ通知される無線通信システムにおいて用いられる端末であって、前記複数の送信パラメータとWalsh系列の系列番号とが1対1で対応付けられている対応関係に基づいて、前記基地局から通知される、自端末に設定された送信パラメータに対応するWalsh系列の系列番号を決定する決定手段と、決定された前記系列番号のWalsh系列を参照信号用系列に乗算する乗算手段と、を具備する構成を採る。 The terminal of the present invention is used in a radio communication system in which any of a plurality of transmission parameters is set for each of a plurality of terminals, and the set transmission parameters are notified from the base station to the plurality of terminals. A transmission parameter set in the terminal, which is notified from the base station, based on a correspondence relationship in which the plurality of transmission parameters and Walsh sequence numbers are associated one-to-one. A configuration is provided that includes a determining unit that determines a sequence number of a corresponding Walsh sequence, and a multiplying unit that multiplies the reference sequence for the Walsh sequence having the determined sequence number.
 本発明の基地局は、複数の端末のそれぞれに対して、複数の送信パラメータのうちいずれかが設定され、設定された送信パラメータが基地局から前記複数の端末へ通知される無線通信システムにおいて用いられる無線通信基地局装置であって、前記複数の送信パラメータとWalsh系列の系列番号とが1対1で対応付けられている対応関係に基づいて、受信した参照信号の送信元端末に通知した送信パラメータに対応するWalsh系列の系列番号を決定する決定手段と、決定された前記系列番号のWalsh系列を、前記参照信号に乗算する乗算手段と、乗算後の前記参照信号に対して同相加算処理を行う同相加算手段と、を具備する構成を採る。 The base station of the present invention is used in a radio communication system in which any one of a plurality of transmission parameters is set for each of a plurality of terminals, and the set transmission parameters are notified from the base station to the plurality of terminals. The base station apparatus is a transmission that notifies the transmission source terminal of the received reference signal based on a correspondence relationship in which the plurality of transmission parameters and sequence numbers of Walsh sequences are associated one-to-one. A determining unit that determines a sequence number of the Walsh sequence corresponding to the parameter; a multiplying unit that multiplies the reference sequence signal by the determined Walsh sequence of the sequence number; and an in-phase addition process for the multiplied reference signal. And an in-phase addition unit for performing the configuration.
 本発明の系列番号決定方法は、複数の端末のそれぞれに対して、複数の送信パラメータのうちいずれかが設定され、設定された送信パラメータが基地局から前記複数の端末へ通知される無線通信システムにおいて用いられる系列番号決定方法であって、前記複数の送信パラメータとWalsh系列の系列番号とが1対1で対応付けられた対応関係に基づいて、前記基地局から前記端末へ通知される送信パラメータに対応するWalsh系列の系列番号を決定する構成を採る。 The sequence number determination method of the present invention is a wireless communication system in which any one of a plurality of transmission parameters is set for each of a plurality of terminals, and the set transmission parameters are notified from the base station to the plurality of terminals. The transmission parameter notified from the base station to the terminal based on a correspondence relationship in which the plurality of transmission parameters and the sequence numbers of the Walsh sequence are associated one-to-one. The sequence number of the Walsh sequence corresponding to is determined.
 本発明によれば、LTE-Advancedにおいて、DM-RSにWalsh系列を適用する場合でも、基地局から端末へのシグナリングビット数の増加を防止することができる。 According to the present invention, it is possible to prevent an increase in the number of signaling bits from a base station to a terminal even when a Walsh sequence is applied to DM-RS in LTE-Advanced.
本発明の実施の形態1に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る送信帯域幅(RB数)とWalsh系列番号との対応関係を示す図The figure which shows the correspondence of the transmission bandwidth (RB number) which concerns on Embodiment 1 of this invention, and a Walsh sequence number. 本発明の実施の形態1に係る送信帯域幅の微調整処理を示す図The figure which shows the fine adjustment process of the transmission bandwidth which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るCS量の設定処理を示す図The figure which shows the setting process of CS amount which concerns on Embodiment 1 of this invention 本発明の実施の形態1に係る送信帯域幅(RBG数)とWalsh系列番号との対応関係を示す図The figure which shows the correspondence of the transmission bandwidth (RBG number) and Walsh sequence number concerning Embodiment 1 of this invention. 本発明の実施の形態2に係る移動平均処理を示す図The figure which shows the moving average process which concerns on Embodiment 2 of this invention 本発明の実施の形態2に係る平均SINRの変化を示す図The figure which shows the change of the average SINR which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る送信帯域幅(RB数)とWalsh系列番号との対応関係を示す図The figure which shows the correspondence of the transmission bandwidth (RB number) which concerns on Embodiment 2 of this invention, and a Walsh sequence number. 本発明の実施の形態2に係るZC系列の検出窓を示す図(送信帯域幅が小さい場合)The figure which shows the detection window of the ZC series which concerns on Embodiment 2 of this invention (when transmission bandwidth is small) 本発明の実施の形態2に係るZC系列の検出窓を示す図(送信帯域幅が大きい場合)The figure which shows the detection window of the ZC series which concerns on Embodiment 2 of this invention (when transmission bandwidth is large) 本発明の実施の形態2に係る送信帯域幅(RB数)とCS番号とWalsh系列番号との対応関係を示す図The figure which shows the correspondence of the transmission bandwidth (RB number), CS number, and Walsh sequence number concerning Embodiment 2 of this invention. 本発明の実施の形態3に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る送信帯域位置(RB番号)とWalsh系列番号との対応関係を示す図The figure which shows the correspondence of the transmission band position (RB number) which concerns on Embodiment 3 of this invention, and a Walsh sequence number. 本発明の実施の形態3に係る送信帯域位置(RB番号)の微調整処理を示す図The figure which shows the fine adjustment process of the transmission band position (RB number) based on Embodiment 3 of this invention. 本発明の実施の形態4に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係るMCS番号とWalsh系列番号との対応関係を示す図The figure which shows the correspondence of the MCS number which concerns on Embodiment 4 of this invention, and a Walsh sequence number 本発明の実施の形態4に係るTBS番号とWalsh系列番号との対応関係を示す図The figure which shows the correspondence of the TBS number and Walsh sequence number which concern on Embodiment 4 of this invention. 本発明の実施の形態5に係る端末の構成を示すブロック図The block diagram which shows the structure of the terminal which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る基地局の構成を示すブロック図The block diagram which shows the structure of the base station which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る送信リソースの割当例を示す図The figure which shows the example of allocation of the transmission resource which concerns on Embodiment 5 of this invention. 本発明の実施の形態5のバリエーションを示す図The figure which shows the variation of Embodiment 5 of this invention
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明の各実施の形態に係る無線通信システムでは、複数の端末それぞれに対して、各端末に設定可能な複数の送信パラメータのうちいずれかが設定され、設定された送信パラメータが基地局から複数の端末へ通知される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the radio communication system according to each embodiment of the present invention, for each of a plurality of terminals, one of a plurality of transmission parameters that can be set for each terminal is set, and the set transmission parameter is a base station. Is notified to multiple terminals.
 (実施の形態1)
 本実施の形態では、DM-RSの送信帯域幅とWalsh系列の系列番号(Walsh系列番号)とを1対1で対応付ける。
(Embodiment 1)
In the present embodiment, the DM-RS transmission bandwidth is associated with the Walsh sequence number (Walsh sequence number) on a one-to-one basis.
 本実施の形態に係る端末100の構成について、図1を用いて説明する。 The configuration of terminal 100 according to the present embodiment will be described with reference to FIG.
 図1に示す端末100の受信RF部102は、アンテナ101を介して受信した信号にダウンコンバート、A/D変換等の受信処理を施し、受信処理を施した信号を復調部103に出力する。なお、受信信号には、端末100が送信する信号(データおよびDM-RS)の送信帯域位置および送信帯域幅(RS数)等を示す送信パラメータを含むスケジューリング情報が含まれる。 The reception RF unit 102 of the terminal 100 shown in FIG. 1 performs reception processing such as down-conversion and A / D conversion on the signal received via the antenna 101, and outputs the signal subjected to the reception processing to the demodulation unit 103. The received signal includes scheduling information including transmission parameters indicating the transmission band position and transmission bandwidth (number of RSs) of signals (data and DM-RS) transmitted by terminal 100.
 復調部103は、受信RF部102から入力される信号に含まれるスケジューリング情報に対して復調処理を施し、復調処理を施したスケジューリング情報を送信帯域位置設定部104および送信帯域幅設定部105に出力する。 Demodulation section 103 performs demodulation processing on the scheduling information included in the signal input from reception RF section 102, and outputs the demodulated scheduling information to transmission band position setting section 104 and transmission bandwidth setting section 105. To do.
 送信帯域位置設定部104は、復調部103から入力されるスケジューリング情報に含まれる、自端末が送信する信号(データおよびDM-RS)の送信帯域位置を抽出し、抽出した送信帯域位置をマッピング部109に出力する。 Transmission band position setting section 104 extracts a transmission band position of a signal (data and DM-RS) transmitted by the terminal included in scheduling information input from demodulation section 103, and maps the extracted transmission band position to mapping section Output to 109.
 送信帯域幅設定部105は、復調部103から入力されるスケジューリング情報に含まれる、自端末が送信する信号(データおよびDM-RS)の送信帯域幅を抽出し、抽出した送信帯域幅を生成部106および決定部107に出力する。 Transmission bandwidth setting section 105 extracts the transmission bandwidth of signals (data and DM-RS) transmitted by the terminal included in the scheduling information input from demodulation section 103, and generates the extracted transmission bandwidth. 106 and the determination unit 107.
 生成部106は、送信帯域幅設定部105から入力される送信帯域幅に対応する系列長のDM-RS用系列(LTEではZC(Zadoff-Chu)系列。以下の説明では、ZC系列とする。)を生成する。そして、生成部106は、生成したZC系列を乗算部108に出力する。 The generation unit 106 is a DM-RS sequence having a sequence length corresponding to the transmission bandwidth input from the transmission bandwidth setting unit 105 (ZC (Zadoff-Chu) sequence in LTE. In the following description, a ZC sequence is used). ) Is generated. Then, generation unit 106 outputs the generated ZC sequence to multiplication unit 108.
 決定部107は、セル毎またはシステムで予め定義されたDM-RSの送信帯域幅(RB数)と、Walsh系列のWalsh系列番号とを1対1で対応付けた対応関係を示すルールテーブルを有する。そして、決定部107は、送信帯域幅設定部105から入力される送信帯域幅に従ってルールテーブルを参照して、自端末が用いるWalsh系列のWalsh系列番号(例えば、Walsh系列(1,1)のWalsh系列番号0、または、Walsh系列(1,-1)のWalsh系列番号1)を決定する。つまり、決定部107は、各端末が送信する信号(データおよびDM-RS)の送信帯域幅を示す複数の送信パラメータと、Walsh系列のWalsh系列番号とが1対1で対応付けられた対応関係に基づいて、基地局から通知される自端末宛ての送信パラメータ(ここでは送信帯域幅)に対応するWalsh系列のWalsh系列番号を決定する。そして、決定部107は、決定したWalsh系列番号を乗算部108に出力する。なお、決定部107が有する送信帯域幅とWalsh系列番号との対応関係(ルールテーブル)については後述する。 The determination unit 107 has a rule table indicating a correspondence relationship in which a DM-RS transmission bandwidth (number of RBs) defined in advance for each cell or system is associated with a Walsh sequence Walsh sequence number on a one-to-one basis. . Then, the determination unit 107 refers to the rule table according to the transmission bandwidth input from the transmission bandwidth setting unit 105, and determines the Walsh sequence number (for example, the Walsh sequence (1, 1) Walsh sequence) used by the terminal. The sequence number 0 or Walsh sequence number 1) of the Walsh sequence (1, −1) is determined. That is, the determination unit 107 has a one-to-one correspondence relationship between a plurality of transmission parameters indicating transmission bandwidths of signals (data and DM-RS) transmitted by each terminal and a Walsh sequence Walsh sequence number. The Walsh sequence Walsh sequence number corresponding to the transmission parameter (here, the transmission bandwidth) addressed to the terminal notified from the base station is determined. Then, the determination unit 107 outputs the determined Walsh sequence number to the multiplication unit 108. Note that the correspondence (rule table) between the transmission bandwidth and the Walsh sequence number of the determination unit 107 will be described later.
 乗算部108は、決定部107から入力されるWalsh系列番号のWalsh系列を、生成部106から入力されるZC系列(DM-RS用系列)に乗算する。具体的には、乗算部108は、決定部107から入力されるWalsh系列番号のWalsh系列(系列長2)を、1サブフレーム内の2つのスロットにそれぞれ配置されるDM-RS用のZC系列に乗算する。そして、乗算部108は、Walsh系列乗算後のZC系列をマッピング部109に出力する。 The multiplication unit 108 multiplies the Walsh sequence of the Walsh sequence number input from the determination unit 107 by the ZC sequence (DM-RS sequence) input from the generation unit 106. Specifically, multiplication section 108 uses the Walsh sequence (sequence length 2) of the Walsh sequence number input from determination section 107 as a DM-RS ZC sequence arranged in each of two slots in one subframe. Multiply by. Multiplying section 108 then outputs the ZC sequence after the Walsh sequence multiplication to mapping section 109.
 マッピング部109は、送信帯域位置設定部104から入力される端末100の信号の送信帯域位置に基づいて、乗算部108から入力されるZC系列を、端末100の送信帯域に対応した帯域にマッピングする。そして、マッピング部109は、マッピングしたZC系列をIFFT部110に出力する。 Mapping section 109 maps the ZC sequence input from multiplication section 108 to a band corresponding to the transmission band of terminal 100 based on the transmission band position of the signal of terminal 100 input from transmission band position setting section 104. . Then, mapping section 109 outputs the mapped ZC sequence to IFFT section 110.
 IFFT部110は、マッピング部109から入力されるZC系列にIFFT処理を施す。そして、IFFT部110は、IFFT処理を施したZC系列をCP(Cyclic Prefix)付加部111に出力する。 The IFFT unit 110 performs IFFT processing on the ZC sequence input from the mapping unit 109. Then, IFFT section 110 outputs the ZC sequence subjected to IFFT processing to CP (Cyclic Prefix) adding section 111.
 CP付加部111は、IFFT部110から入力されるZC系列の後尾部分と同じ信号をCPとして先頭に付加し、CP付加後のZC系列を送信RF部112に出力する。 CP adding section 111 adds the same signal as the tail part of the ZC sequence input from IFFT section 110 to the head as CP, and outputs the ZC sequence after the CP addition to transmission RF section 112.
 送信RF部112は、CP付加部111から入力されるZC系列にD/A変換、アップコンバート、増幅等の送信処理を施し、送信処理を施した信号をDM-RSとして、アンテナ101から基地局へ送信する。 Transmission RF section 112 performs transmission processing such as D / A conversion, up-conversion, amplification, etc. on the ZC sequence input from CP adding section 111, and uses the signal subjected to the transmission processing as a DM-RS from antenna 101 to the base station Send to.
 なお、端末100は、送信データに対して符号化処理および変調処理を施し、送信データを、端末100の送信帯域に対応した帯域に割り当てる。そして、端末100は、端末100の送信帯域に対応した帯域に割り当てた送信データを、ZC系列(DM-RS)と多重(例えば、時間多重)して、多重信号を基地局へ送信する(図示せず)。 Note that terminal 100 performs encoding processing and modulation processing on transmission data, and assigns the transmission data to a band corresponding to the transmission band of terminal 100. Then, terminal 100 multiplexes transmission data allocated to a band corresponding to the transmission band of terminal 100 with a ZC sequence (DM-RS) (eg, time multiplexing), and transmits the multiplexed signal to the base station (FIG. Not shown).
 次に、本実施の形態に係る基地局200の構成について、図2を用いて説明する。 Next, the configuration of base station 200 according to the present embodiment will be described using FIG.
 図2に示す基地局200の受信RF部202は、アンテナ201を介して受信した信号にダウンコンバート、A/D変換等の受信処理を施し、受信処理を施した信号をCP除去部203に出力する。 The reception RF unit 202 of the base station 200 shown in FIG. 2 performs reception processing such as down-conversion and A / D conversion on the signal received via the antenna 201 and outputs the signal subjected to reception processing to the CP removal unit 203. To do.
 CP除去部203は、受信RF部202から入力される信号の先頭に付加されたCP成分を除去し、CP除去後の信号を分離部204に出力する。 CP removal section 203 removes the CP component added to the head of the signal input from reception RF section 202 and outputs the signal after CP removal to separation section 204.
 分離部204は、CP除去部203から入力される信号を、DM-RSとデータ信号とに分離する。そして、分離部204は、分離したDM-RSをFFT(Fast Fourier transform)部205に出力し、データ信号をFFT部217に出力する。 The separation unit 204 separates the signal input from the CP removal unit 203 into DM-RS and data signal. Then, the separation unit 204 outputs the separated DM-RS to the FFT (Fast Fourier transform) unit 205, and outputs the data signal to the FFT unit 217.
 FFT部205は、分離部204から入力される時間領域のDM-RSにFFT処理を施し、時間領域から周波数領域の信号に変換する。そして、FFT部205は、周波数領域に変換したDM-RSをデマッピング部207に出力する。 The FFT unit 205 performs FFT processing on the time-domain DM-RS input from the separation unit 204 and converts the time-domain to frequency-domain signal. Then, the FFT unit 205 outputs the DM-RS converted into the frequency domain to the demapping unit 207.
 送信帯域位置設定部206は、基地局200が端末100(図1)に対して指示した、信号(データおよびDM-RS)の送信帯域位置と同一の送信帯域位置(つまり、端末100の送信帯域位置設定部104で用いた送信帯域位置と同じ値)をデマッピング部207およびデマッピング部218に設定する。 Transmission band position setting section 206 transmits the same transmission band position as the signal (data and DM-RS) transmission band position (ie, the transmission band of terminal 100) instructed by base station 200 to terminal 100 (FIG. 1). The same value as the transmission band position used in the position setting unit 104) is set in the demapping unit 207 and the demapping unit 218.
 デマッピング部207は、送信帯域位置設定部206から入力される送信帯域位置に基づいて、FFT部205から入力される周波数領域のDM-RSから所望端末の送信帯域に対応するDM-RSを抽出する。そして、デマッピング部207は、抽出したDM-RSを乗算部211に出力する。 Based on the transmission band position input from transmission band position setting section 206, demapping section 207 extracts the DM-RS corresponding to the transmission band of the desired terminal from the DM-RS in the frequency domain input from FFT section 205. To do. Then, the demapping unit 207 outputs the extracted DM-RS to the multiplication unit 211.
 送信帯域幅設定部208は、基地局200が端末100(図1)に対して指示した、信号(データおよびDM-RS)の送信帯域幅と同一の送信帯域幅(つまり、端末100の送信帯域幅設定部105で用いた送信帯域幅と同じ値)を決定部209および生成部210に設定する。 Transmission bandwidth setting section 208 has the same transmission bandwidth as the transmission bandwidth of the signals (data and DM-RS) that base station 200 has instructed to terminal 100 (FIG. 1) (that is, the transmission bandwidth of terminal 100). The transmission bandwidth used in the width setting unit 105 is set to the determination unit 209 and the generation unit 210.
 決定部209は、端末100の決定部107(図1)が有するルールテーブルと同一のルールテーブルを有する。そして、決定部209は、送信帯域幅設定部208から入力される送信帯域幅に従ってルールテーブルを参照して、端末100が用いたWalsh系列のWalsh系列番号(例えば、Walsh系列(1,1)のWalsh系列番号0、または、Walsh系列(1,-1)のWalsh系列番号1)を決定する。つまり、決定部209は、各端末が送信する信号(データおよびDM-RS)の送信帯域幅を示す複数の送信パラメータと、Walsh系列のWalsh系列番号とが1対1で対応付けられた対応関係に基づいて、受信したDM-RSの送信元端末100に通知した送信パラメータ(ここでは送信帯域幅)に対応するWalsh系列のWalsh系列番号を決定する。そして、決定部209は、決定したWalsh系列番号を乗算部211に出力する。なお、決定部209が有する送信帯域幅とWalsh系列番号との対応関係(ルールテーブル)については後述する。 The determination unit 209 has the same rule table as the rule table included in the determination unit 107 (FIG. 1) of the terminal 100. Then, the determination unit 209 refers to the rule table according to the transmission bandwidth input from the transmission bandwidth setting unit 208, and determines the Walsh sequence number used by the terminal 100 (for example, the Walsh sequence (1, 1)). The Walsh sequence number 0 or the Walsh sequence number 1) of the Walsh sequence (1, −1) is determined. That is, the determination unit 209 has a one-to-one correspondence relationship between a plurality of transmission parameters indicating transmission bandwidths of signals (data and DM-RS) transmitted from each terminal and a Walsh sequence Walsh sequence number. The Walsh sequence Walsh sequence number corresponding to the transmission parameter (in this case, the transmission bandwidth) notified to the received DM-RS transmission source terminal 100 is determined based on. Then, the determination unit 209 outputs the determined Walsh sequence number to the multiplication unit 211. Note that the correspondence relationship (rule table) between the transmission bandwidth and the Walsh sequence number of the determination unit 209 will be described later.
 生成部210は、端末100の生成部106(図1)と同様にして、送信帯域幅設定部208から入力される送信帯域幅に対応する系列長のDM-RS用系列(ZC系列)を生成する。そして、生成部210は、生成したZC系列を除算部213に出力する。 Generating section 210 generates a DM-RS sequence (ZC sequence) having a sequence length corresponding to the transmission bandwidth input from transmission bandwidth setting section 208 in the same manner as generating section 106 (FIG. 1) of terminal 100. To do. Then, generation unit 210 outputs the generated ZC sequence to division unit 213.
 乗算部211は、決定部209から入力されるWalsh系列番号のWalsh系列を、デマッピング部207から入力されるDM-RSに乗算する。具体的には、乗算部211は、決定部107から入力されるWalsh系列番号のWalsh系列(系列長2)を、1サブフレーム内の2つのスロットにそれぞれ配置されたDM-RSに乗算する。そして、乗算部211は、Walsh系列乗算後の各スロットのDM-RS(つまり、2つのDM-RS)を、同相加算部212に出力する。 The multiplying unit 211 multiplies the Walsh sequence of the Walsh sequence number input from the determining unit 209 by the DM-RS input from the demapping unit 207. Specifically, the multiplication unit 211 multiplies the Walsh sequence (sequence length 2) of the Walsh sequence number input from the determination unit 107 by the DM-RS respectively arranged in two slots in one subframe. Then, multiplier 211 outputs the DM-RS (that is, two DM-RSs) of each slot after the Walsh sequence multiplication to in-phase adder 212.
 同相加算部212は、乗算部211から入力される2つのDM-RSを同相加算し、同相加算後の信号を除算部213に出力する。 The in-phase addition unit 212 performs in-phase addition of the two DM-RSs input from the multiplication unit 211, and outputs the signal after the in-phase addition to the division unit 213.
 除算部213は、同相加算部212から入力される信号を、生成部210から入力されるZC系列(DM-RS用系列)で除算する。そして、除算部213は、除算結果(相関値)をIFFT(Inverse Fast Fourier Transform)部214に出力する。 The division unit 213 divides the signal input from the in-phase addition unit 212 by the ZC sequence (DM-RS sequence) input from the generation unit 210. Then, the division unit 213 outputs the division result (correlation value) to the IFFT (Inverse Fast Fourier Transform) unit 214.
 IFFT部214は、除算部213から入力される信号(除算結果)にIFFT処理を施す。そして、IFFT部214は、IFFT処理を施した信号をマスク処理部215に出力する。 The IFFT unit 214 performs IFFT processing on the signal (division result) input from the division unit 213. Then, IFFT unit 214 outputs the signal subjected to IFFT processing to mask processing unit 215.
 マスク処理部215は、IFFT部214から入力される信号にマスク処理を施すことにより、所望のCS(巡回シフト)系列の相関値が存在する区間(検出窓、または、ウィンドウ部分)の相関値を抽出する。そして、マスク処理部215は、抽出した相関値をDFT(Discrete Fourier Transform)部216に出力する。 The mask processing unit 215 performs a mask process on the signal input from the IFFT unit 214 to obtain a correlation value of a section (detection window or window portion) where a correlation value of a desired CS (cyclic shift) sequence exists. Extract. Then, the mask processing unit 215 outputs the extracted correlation value to a DFT (Discrete Fourier Transform) unit 216.
 DFT部216は、マスク処理部215から入力される相関値にDFT処理を施す。そして、DFT部216は、DFT処理を施した相関値を周波数領域等化部219に出力する。なお、DFT部216から出力される信号は、伝搬路の周波数変動(伝搬路の周波数応答)を表す信号である。 The DFT unit 216 performs DFT processing on the correlation value input from the mask processing unit 215. Then, the DFT unit 216 outputs the correlation value subjected to the DFT process to the frequency domain equalization unit 219. Note that the signal output from the DFT unit 216 is a signal representing the frequency fluctuation of the propagation path (frequency response of the propagation path).
 一方、FFT部217は、分離部204から入力される時間領域のデータ信号にFFT処理を施し、時間領域から周波数領域の信号に変換する。そして、FFT部217は、周波数領域に変換したデータ信号をデマッピング部218に出力する。 Meanwhile, the FFT unit 217 performs FFT processing on the data signal in the time domain input from the separation unit 204, and converts the signal from the time domain to the frequency domain. Then, the FFT unit 217 outputs the data signal converted into the frequency domain to the demapping unit 218.
 デマッピング部218は、送信帯域位置設定部206から入力される送信帯域位置に基づいて、FFT部217から入力される信号から所望端末の送信帯域に対応したデータ信号を抽出する。そして、デマッピング部218は、抽出された各データ信号を周波数領域等化部219に出力する。 The demapping unit 218 extracts a data signal corresponding to the transmission band of the desired terminal from the signal input from the FFT unit 217 based on the transmission band position input from the transmission band position setting unit 206. Then, the demapping unit 218 outputs each extracted data signal to the frequency domain equalization unit 219.
 周波数領域等化部219は、DFT部216から入力される信号(伝搬路の周波数応答)を用いて、デマッピング部218から入力されるデータ信号に等化処理を施す。そして、周波数領域等化部219は、等化処理を施した信号をIFFT部220に出力する。 The frequency domain equalization unit 219 performs equalization processing on the data signal input from the demapping unit 218 using the signal input from the DFT unit 216 (frequency response of the propagation path). Then, the frequency domain equalization unit 219 outputs the equalized signal to the IFFT unit 220.
 IFFT部220は、周波数領域等化部219から入力されるデータ信号にIFFT処理を施す。そして、IFFT部220は、IFFT処理を施したデータ信号を復調部221に出力する。 The IFFT unit 220 performs IFFT processing on the data signal input from the frequency domain equalization unit 219. Then, IFFT section 220 outputs the data signal subjected to IFFT processing to demodulation section 221.
 復調部221は、IFFT部220から入力されるデータ信号に復調処理を施し、復調処理を施したデータ信号を復号部222に出力する。 Demodulation section 221 performs demodulation processing on the data signal input from IFFT section 220 and outputs the demodulated data signal to decoding section 222.
 復号部222は、復調部221から入力されるデータ信号に復号処理を施し、受信データを抽出する。 The decoding unit 222 performs a decoding process on the data signal input from the demodulation unit 221 and extracts received data.
 なお、基地局200は、自局がカバーするセル内の複数の端末に対して、各端末が送信する信号(データおよびDM-RS)の送信帯域位置または送信帯域幅等をスケジューリングする。そして、基地局200は、スケジューリング結果を示すスケジューリング情報を変調して、変調後のスケジューリング情報を、下り回線の制御チャネルを用いて各端末へ送信する(図示せず)。 Note that the base station 200 schedules a transmission band position or a transmission bandwidth of a signal (data and DM-RS) transmitted from each terminal to a plurality of terminals in a cell covered by the base station 200. Then, base station 200 modulates scheduling information indicating a scheduling result, and transmits the modulated scheduling information to each terminal using a downlink control channel (not shown).
 次に、端末100の決定部107(図1)および基地局200の決定部209(図2)におけるWalsh系列のWalsh系列番号の設定例について説明する。 Next, an example of setting a Walsh sequence Walsh sequence number in the determining unit 107 (FIG. 1) of the terminal 100 and the determining unit 209 (FIG. 2) of the base station 200 will be described.
 以下の説明では、各端末の信号(データおよびDM-RS)の送信帯域幅(RB数)として、RB数の素因数が2,3,5となる送信帯域幅(LTEでは、1RB=180kHz)を用いる。具体的には、図3に示すように、DM-RSの送信帯域幅(RB数)として、1RB,2RB,3RB,…,96RB,100RB,108RBの35通りの送信帯域幅が設定可能となる。また、図3では、Walsh系列の系列長を2とし、Walsh系列(1,1)のWalsh系列番号を0とし、Walsh系列(1,-1)のWalsh系列番号を1とする。 In the following description, as a transmission bandwidth (number of RBs) of signals (data and DM-RS) of each terminal, a transmission bandwidth (1 RB = 180 kHz in LTE) where the prime factor of the number of RBs is 2, 3, and 5 is used. Use. Specifically, as shown in FIG. 3, 35 transmission bandwidths of 1 RB, 2 RB, 3 RB,..., 96 RB, 100 RB, and 108 RB can be set as the transmission bandwidth (number of RBs) of DM-RS. . In FIG. 3, the sequence length of the Walsh sequence is 2, the Walsh sequence number of the Walsh sequence (1, 1) is 0, and the Walsh sequence number of the Walsh sequence (1, −1) is 1.
 図3に示すように、本実施の形態では、DM-RSに用いるWalsh系列のWalsh系列番号は、基地局200が各端末に対して設定可能なDM-RSの送信帯域幅(35通り)に1対1で対応付けられる。図3に示すルールテーブルは、決定部107および決定部209で保持される。 As shown in FIG. 3, in the present embodiment, the Walsh sequence Walsh sequence number used for DM-RS is set to the DM-RS transmission bandwidth (35 types) that base station 200 can set for each terminal. There is a one-to-one correspondence. The rule table shown in FIG. 3 is held by the determination unit 107 and the determination unit 209.
 よって、例えば、決定部107および決定部209は、端末100に設定されたDM-RSの送信帯域幅が1RBの場合には、図3に示す対応関係に基づいて、端末100のDM-RSに用いるWalsh系列のWalsh系列番号を0に決定する。同様にして、例えば、決定部107および決定部209は、端末100に設定されたDM-RSの送信帯域幅が2RBの場合には、図3に示す対応関係に基づいて、端末100のDM-RSに用いるWalsh系列のWalsh系列番号を1に決定する。図3に示す送信帯域幅3RB~108RBについても同様である。 Therefore, for example, when the DM-RS transmission bandwidth set for terminal 100 is 1 RB, determining section 107 and determining section 209 determine the DM-RS of terminal 100 based on the correspondence shown in FIG. The Walsh sequence number of the Walsh sequence to be used is determined to be 0. Similarly, for example, when the transmission bandwidth of the DM-RS set in terminal 100 is 2 RBs, determination section 107 and determination section 209, based on the correspondence shown in FIG. The Walsh sequence number of the Walsh sequence used for the RS is determined as 1. The same applies to the transmission bandwidths 3RB to 108RB shown in FIG.
 このように、端末100は、基地局200が下り回線の制御チャネルを用いて送信する送信パラメータである、端末100が送信する信号(データおよびDM-RS)の送信帯域幅に基づいて、DM-RSに用いるWalsh系列を決定することができる。 In this way, terminal 100 uses DM- based on the transmission bandwidth of signals (data and DM-RS) transmitted by terminal 100, which are transmission parameters transmitted by base station 200 using a downlink control channel. The Walsh sequence used for the RS can be determined.
 つまり、図3に示すように、送信帯域幅とWalsh系列番号とを予め対応付けることにより、端末100は、自端末が使用するWalsh系列を基地局200から通知されることなく特定することができ、Walsh系列番号の通知に要するシグナリングビットが不要になる。このため、LTE-Advancedにおいて、DM-RSにWalsh系列を適用する場合でも、下り回線の制御チャネルのシグナリングビットの増加を防止することができ、制御チャネル用フォーマットを新たに追加する必要が無くなる。 That is, as shown in FIG. 3, by associating the transmission bandwidth with the Walsh sequence number in advance, the terminal 100 can specify the Walsh sequence used by the terminal 100 without being notified from the base station 200, The signaling bit required for notification of the Walsh sequence number is not necessary. For this reason, even when applying a Walsh sequence to DM-RS in LTE-Advanced, it is possible to prevent an increase in signaling bits of a downlink control channel, and it is not necessary to newly add a control channel format.
 また、図3に示すルールテーブル(対応関係)において、RB数が最も近い送信帯域幅間には、異なるWalsh系列番号が対応付けられている。例えば、図3に示すように、送信帯域幅10RBと、10RBよりも小さい送信帯域幅であって、RB数が10RBに最も近い送信帯域幅9RBとには、互いに異なるWalsh系列番号0および1がそれぞれ対応付けられている。同様に、図3に示すように、送信帯域幅10RBと、10RBよりも大きい送信帯域幅であって、RB数が10RBに最も近い送信帯域幅12RBとには、互いに異なるWalsh系列番号0および1がそれぞれ対応付けられている。すなわち、2つのWalsh系列(Walsh系列番号0および1)を用いる場合には、図3に示すように、送信帯域幅(RB数)の昇順に並んだ35通りの送信帯域幅(送信パラメータ)に対して、Walsh系列番号0と1とが交互に対応付けられる。つまり、図3に示すルールテーブルでは、互いに異なる品質(送信帯域幅)を表す複数の送信パラメータ(図3に示す35通りの送信帯域幅)において、最も近い品質を示す2つの送信パラメータに対して、互いに異なるWalsh系列番号がそれぞれ対応付けられる。 Further, in the rule table (correspondence relationship) shown in FIG. 3, different Walsh sequence numbers are associated with the transmission bandwidths having the closest number of RBs. For example, as illustrated in FIG. 3, different Walsh sequence numbers 0 and 1 are included in a transmission bandwidth 10 RB and a transmission bandwidth 9 RB that is smaller than 10 RBs and the number of RBs is closest to 10 RBs. Each is associated. Similarly, as shown in FIG. 3, different Walsh sequence numbers 0 and 1 are used for a transmission bandwidth 10 RB and a transmission bandwidth 12 RB having a transmission bandwidth larger than 10 RB and the number of RBs closest to 10 RB. Are associated with each other. That is, when two Walsh sequences (Walsh sequence numbers 0 and 1) are used, as shown in FIG. 3, the transmission bandwidths (number of RBs) are arranged in ascending order of 35 transmission bandwidths (transmission parameters). On the other hand, Walsh sequence numbers 0 and 1 are associated with each other alternately. That is, in the rule table shown in FIG. 3, for a plurality of transmission parameters (35 transmission bandwidths shown in FIG. 3) representing different qualities (transmission bandwidth), the two transmission parameters indicating the closest quality are used. , Different Walsh sequence numbers are associated with each other.
 すなわち、決定部107および決定部209は、互いに異なる品質(送信帯域幅)を表す複数の送信パラメータ(図3に示す35通りの送信帯域幅)において、最も近い品質を示す2つの送信パラメータにそれぞれ対応付けられたWalsh系列番号が互いに異なる上記対応関係に基づいて、端末100に設定された送信パラメータ(送信帯域幅)と対応付けられたWalsh系列番号を決定する。 That is to say, the determination unit 107 and the determination unit 209 respectively set two transmission parameters indicating the closest quality among a plurality of transmission parameters (35 transmission bandwidths shown in FIG. 3) indicating different qualities (transmission bandwidths). The Walsh sequence number associated with the transmission parameter (transmission bandwidth) set in the terminal 100 is determined based on the correspondence relationship in which the associated Walsh sequence numbers are different from each other.
 ここで、基地局200(スケジューラ)が、異なる送信帯域幅であって、対応付けられたWalsh系列番号が同一となる送信帯域幅を、複数の端末に対してスケジューリングする場合があり得る。この場合、各端末のDM-RSには同一Walsh系列番号のWalsh系列が用いられるため、端末間のDM-RSを直交化できなくなる制約がある。例えば、図4に示すように、基地局200が、端末Aに対して送信帯域幅6RBを設定し、端末Bに対して送信帯域幅4RB(図4に示す破線部分)を設定する。この場合、図3に示すように、端末Aおよび端末BのDM-RSに用いるWalsh系列のWalsh系列番号は双方とも1(図4に示すW#1)となる。 Here, there is a case where the base station 200 (scheduler) schedules transmission bandwidths having different transmission bandwidths and having the same associated Walsh sequence number to a plurality of terminals. In this case, since a Walsh sequence having the same Walsh sequence number is used for the DM-RS of each terminal, there is a restriction that DM-RSs between terminals cannot be orthogonalized. For example, as illustrated in FIG. 4, the base station 200 sets a transmission bandwidth 6RB for the terminal A and sets a transmission bandwidth 4RB (the broken line portion illustrated in FIG. 4) for the terminal B. In this case, as shown in FIG. 3, the Walsh sequence Walsh sequence numbers used for the DM-RSs of terminal A and terminal B are both 1 (W # 1 shown in FIG. 4).
 しかし、基地局200(スケジューラ)は、各端末の送信帯域幅を制御することができる。そこで、端末間で送信帯域幅が異なり、かつ、端末間のDM-RSに用いるWalsh系列のWalsh系列番号が同一(図4ではW#1)となる場合には、基地局200(スケジューラ)は、一方の端末の送信帯域幅の設定を微調整する。具体的には、基地局200は、設定された送信帯域幅が異なり、かつ、送信帯域幅に対応付けられたWalsh系列番号が同一である2つの端末のうち一方の端末の送信帯域幅の設定を1RBだけ増減する。例えば、図4に示すように、基地局200は、端末Bの送信帯域幅4RB(図4に示す破線部分)を、1RBだけ減らして3RB(図4に示す実線部分)に設定し直す。これにより、図4に示す端末BのDM-RSに用いるWalsh系列のWalsh系列番号は、図3を参照して0(図4に示すW#0)となる。つまり、端末BのDM-RSに用いるWalsh系列のWalsh系列番号(図4に示すW#0)と、端末AのDM-RSに用いるWalsh系列のWalsh系列番号(図4に示すW#1)とを互いに異ならせることができる。 However, the base station 200 (scheduler) can control the transmission bandwidth of each terminal. Therefore, when the transmission bandwidth differs between terminals and the Walsh sequence number of the Walsh sequence used for DM-RS between the terminals is the same (W # 1 in FIG. 4), the base station 200 (scheduler) Fine-tune the transmission bandwidth setting of one terminal. Specifically, the base station 200 sets the transmission bandwidth of one of the two terminals having different transmission bandwidths set and the same Walsh sequence number associated with the transmission bandwidth. Is increased or decreased by 1 RB. For example, as shown in FIG. 4, base station 200 reduces terminal B's transmission bandwidth 4RB (broken line portion shown in FIG. 4) by 1 RB and resets it to 3RB (solid line portion shown in FIG. 4). Thereby, the Walsh sequence Walsh sequence number used for the DM-RS of terminal B shown in FIG. 4 is 0 (W # 0 shown in FIG. 4) with reference to FIG. That is, the Walsh sequence Walsh sequence number used for the DM-RS of the terminal B (W # 0 shown in FIG. 4) and the Walsh sequence Walsh sequence number used for the DM-RS of the terminal A (W # 1 shown in FIG. 4). Can be different from each other.
 ここで、図3に示す35通りの送信帯域幅のうち、RB数が最も近い送信帯域幅間では、DM-RSの受信品質はほとんど変わらない。例えば、図4に示すように、端末Bが送信帯域幅4RBを用いても、送信帯域幅3RBを用いても、双方の送信帯域幅の差は1RB(LTEでは1RB=180kHz)しか変わらないため、端末100が送信するDM-RSの受信品質はほとんど変わらない。つまり、図3において、端末に設定される送信帯域幅を、設定可能な送信帯域幅1つ分だけずらすだけで、DM-RSの受信品質の変化を最小限に抑えつつ、送信帯域幅に対応付けられたWalsh系列番号を反転させることができる。このため、基地局200(スケジューラ)が、端末間のDM-RSを直交化させるために、一方の端末に設定した送信帯域幅を微調整することによるシステムスループット性能への影響は少ない。 Here, among the 35 transmission bandwidths shown in FIG. 3, the reception quality of the DM-RS hardly changes between the transmission bandwidths having the closest number of RBs. For example, as shown in FIG. 4, regardless of whether terminal B uses transmission bandwidth 4RB or transmission bandwidth 3RB, the difference between the two transmission bandwidths is only 1 RB (1RB = 180 kHz in LTE). The reception quality of the DM-RS transmitted by the terminal 100 is almost the same. In other words, in FIG. 3, the transmission bandwidth set for the terminal is shifted by one settable transmission bandwidth, and the transmission bandwidth can be accommodated while minimizing the change in DM-RS reception quality. The attached Walsh sequence number can be inverted. For this reason, the base station 200 (scheduler) has little influence on the system throughput performance by finely adjusting the transmission bandwidth set for one terminal in order to orthogonalize the DM-RS between the terminals.
 すなわち、端末間で送信帯域幅が異なり、かつ、端末間のDM-RSに用いるWalsh系列のWalsh系列番号が同一(図4ではW#1)となる場合でも、基地局200は、一方の端末の送信帯域幅を、設定可能な送信帯域幅1つ分だけずらすことで、端末100が送信するDM-RSの受信品質を劣化させることなく、端末間のDM-RSを直交化させることができる。 That is, even when the transmission bandwidth differs between terminals and the Walsh sequence number of the Walsh sequence used for the DM-RS between the terminals is the same (W # 1 in FIG. 4), the base station 200 can Is shifted by one settable transmission bandwidth, the DM-RS between terminals can be orthogonalized without degrading the reception quality of the DM-RS transmitted by the terminal 100. .
 なお、基地局200が端末100の送信帯域幅を微調整する際、データの符号化率または送信電力を同時に微調整することで、端末が送信する信号(データおよびDM-RS)の受信品質の低下を抑えることができる。例えば、基地局200(スケジューラ)が端末間のDM-RSを直交化させるために、端末100の送信帯域幅を4RBから3RBに減らす場合、データの符号化率を4/3倍に上げてもよい。または、基地局200(スケジューラ)が端末間のDM-RSを直交化させるために、端末100の送信帯域幅を4RBから3RBに減らす場合、送信帯域幅の減少により要求品質を満たす所望SINRが増加した分だけデータの送信電力を増加させてもよい。これにより、端末100の送信電力に余力がある場合には、データの伝送レートを低下させることなく、端末が送信する信号の受信品質を維持することができる。 Note that when the base station 200 finely adjusts the transmission bandwidth of the terminal 100, the reception quality of the signals (data and DM-RS) transmitted by the terminal is adjusted by simultaneously finely adjusting the data coding rate or transmission power. The decrease can be suppressed. For example, when the base station 200 (scheduler) reduces the transmission bandwidth of the terminal 100 from 4 RBs to 3 RBs in order to orthogonalize DM-RSs between terminals, the data coding rate may be increased to 4/3 times. Good. Alternatively, when base station 200 (scheduler) reduces the transmission bandwidth of terminal 100 from 4 RBs to 3 RBs in order to orthogonalize DM-RSs between terminals, the desired SINR that satisfies the required quality increases due to the reduction of the transmission bandwidth. The transmission power of data may be increased by that amount. Thereby, when the transmission power of the terminal 100 has a surplus, the reception quality of the signal transmitted by the terminal can be maintained without reducing the data transmission rate.
 また、図5に示すように、基地局200(スケジューラ)が、各端末に対して同一の送信帯域幅(図5では6RB)をスケジューリングする場合があり得る。この場合、各端末のDM-RSには同一Walsh系列番号(図5ではW#1)のWalsh系列が用いられる。そこで、基地局200は、送信帯域幅が同一である端末間には、図5に示すように、LTEと同様にして、互いに異なるCS量(図5では端末AにCS#0、端末BにCS#1)を設定する。これにより、端末間の送信帯域幅が同一である場合でも、端末間のDM-RSを直交化させることができる。 Also, as shown in FIG. 5, the base station 200 (scheduler) may schedule the same transmission bandwidth (6 RB in FIG. 5) for each terminal. In this case, the Walsh sequence having the same Walsh sequence number (W # 1 in FIG. 5) is used for the DM-RS of each terminal. Therefore, the base station 200, as shown in FIG. 5, between terminals having the same transmission bandwidth, has different CS amounts (in FIG. 5, CS # 0 and terminal B in terminal A as in LTE). CS # 1) is set. Thereby, even when the transmission bandwidth between terminals is the same, DM-RSs between terminals can be orthogonalized.
 このように、本実施の形態によれば、DM-RSの送信帯域幅とWalsh系列のWalsh系列番号とが1対1で対応付けられる。これにより、端末は、基地局が通知する送信パラメータである、各端末の信号(データおよびDM-RS)の送信帯域幅に基づいて、自端末のDM-RSに用いるWalsh系列を特定することができる。よって、本実施の形態によれば、LTE-Advancedにおいて、DM-RSにWalsh系列を適用する場合でも、基地局から端末へのWalsh系列番号の通知に要するシグナリングビット数の増加を防止することができ、かつ、制御チャネル用フォーマットを新たに追加する必要が無くなる。 Thus, according to the present embodiment, the DM-RS transmission bandwidth and the Walsh sequence Walsh sequence number are associated one-to-one. Thereby, the terminal can specify the Walsh sequence used for the DM-RS of the terminal based on the transmission bandwidth of the signal (data and DM-RS) of each terminal, which is the transmission parameter notified by the base station. it can. Therefore, according to the present embodiment, in LTE-Advanced, even when a Walsh sequence is applied to DM-RS, it is possible to prevent an increase in the number of signaling bits required for notification of the Walsh sequence number from the base station to the terminal. This eliminates the need to newly add a control channel format.
 さらに、本実施の形態によれば、各端末に設定可能な複数の送信帯域幅のうち、最も近い送信帯域幅間、つまり、最も近い品質の送信帯域幅間には、互いに異なるWalsh系列番号が対応付けられる。これにより、複数の端末に対して異なる送信帯域幅を設定した際に、それらの送信帯域幅に対応付けられたWalsh系列番号が同一となる場合でも、基地局(スケジューラ)は、一方の端末に設定した送信帯域幅を1つ分だけ微調整(増減)する。これにより、送信帯域幅を微調整した端末が送信するDM-RSの受信品質を劣化させることなく、端末間のDM-RSを直交化させることができる。つまり、MU-MIMO多重における周波数スケジューリングの自由度を確保することができる。 Furthermore, according to the present embodiment, among the transmission bandwidths that can be set for each terminal, between different transmission bandwidths, that is, between transmission bandwidths of the closest quality, different Walsh sequence numbers. It is associated. Thus, when different transmission bandwidths are set for a plurality of terminals, even if the Walsh sequence numbers associated with the transmission bandwidths are the same, the base station (scheduler) is assigned to one terminal. Fine-tune (increase / decrease) the set transmission bandwidth by one. As a result, DM-RSs between terminals can be orthogonalized without degrading the reception quality of DM-RSs transmitted by terminals with finely adjusted transmission bandwidths. That is, the degree of freedom of frequency scheduling in MU-MIMO multiplexing can be ensured.
 なお、本実施の形態では、図3に示すように、送信帯域幅1RB~108RBに渡って、Walsh系列のWalsh系列番号0と1とを交互に対応付ける場合について説明した。しかし、本発明では、送信帯域幅1RB~108RBに渡って、Walsh系列のWalsh系列番号1と0とを交互に対応付けてもよい(つまり、図3において0を1に反転させ、1を0に反転させてもよい)。 In the present embodiment, as shown in FIG. 3, a case has been described in which Walsh sequence numbers 0 and 1 are alternately associated with each other over transmission bandwidths 1RB to 108RB. However, in the present invention, Walsh sequence Walsh sequence numbers 1 and 0 may be alternately associated over transmission bandwidths 1RB to 108RB (that is, 0 is inverted to 1 in FIG. 3 and 1 is set to 0). May be reversed).
 また、本実施の形態では、送信帯域幅としてRB数を用いる場合について説明したが、送信帯域幅は、RB数を用いる場合に限らない。例えば、LTEの下り回線で用いられる送信用周波数リソース割当(例えば、Type0割当)のように、各端末の送信帯域幅を、複数のRBをまとめたRBG(Resource Block Group)単位で設定する場合には、送信帯域幅としてRBG数を用いてもよい。例えば、図6に示すように、送信帯域幅であるRBG数(つまり、各端末に割り当てられたRBG総数)と、Walsh系列のWalsh系列番号とを1対1で対応付ければよい。また、図6に示すように、RBG数が最も近い送信帯域幅間には、図3と同様にして、互いに異なるWalsh系列番号を対応付けてもよい。これにより、基地局(スケジューラ)は、複数の端末に対して異なる送信帯域幅を設定した際に、それらの送信帯域幅に対応付けられたWalsh系列番号が同一となる場合でも、送信帯域幅(RBG数)を微調整すればよい。つまり、基地局は、送信帯域幅を微調整するだけで、本実施の形態と同様、MU-MIMO多重における周波数スケジューリングの自由度を確保することができる。 In the present embodiment, the case where the number of RBs is used as the transmission bandwidth has been described. However, the transmission bandwidth is not limited to the case where the number of RBs is used. For example, when the transmission bandwidth of each terminal is set in units of RBG (Resource Block Group) in which a plurality of RBs are combined, such as transmission frequency resource allocation (for example, Type 0 allocation) used in the LTE downlink. May use the number of RBGs as the transmission bandwidth. For example, as shown in FIG. 6, the number of RBGs that are transmission bandwidths (that is, the total number of RBGs assigned to each terminal) and the Walsh sequence Walsh sequence numbers may be associated on a one-to-one basis. Also, as shown in FIG. 6, different Walsh sequence numbers may be associated with the transmission bandwidths having the closest number of RBGs in the same manner as in FIG. Thereby, when the base station (scheduler) sets different transmission bandwidths for a plurality of terminals, even if the Walsh sequence numbers associated with the transmission bandwidths are the same, the transmission bandwidth ( The RBG number) may be finely adjusted. That is, the base station can ensure the degree of freedom of frequency scheduling in MU-MIMO multiplexing just by finely adjusting the transmission bandwidth as in the present embodiment.
 (実施の形態2)
 基地局では、各端末から送信されたDM-RSを用いてチャネル推定を行う際、雑音成分を低減させるために、周波数領域で移動平均処理を行う。例えば、図7に示すように、基地局は、受信したDM-RSの送信帯域に対応する複数のサブキャリアそれぞれについて、移動平均(図7では5サブキャリア平均)処理を行う。
(Embodiment 2)
In the base station, when performing channel estimation using the DM-RS transmitted from each terminal, moving average processing is performed in the frequency domain in order to reduce noise components. For example, as shown in FIG. 7, the base station performs moving average (5 subcarrier average in FIG. 7) processing for each of a plurality of subcarriers corresponding to the received transmission band of DM-RS.
 しかしながら、DM-RSの送信帯域の両端部分の数サブキャリア(図7では両端それぞれ4サブキャリア)では、移動平均処理に用いるサブキャリア数(移動平均数)が少なくなるため、平均化効果が得られず、チャネル推定精度が劣化してしまう。 However, with several subcarriers at both ends of the DM-RS transmission band (4 subcarriers at each end in FIG. 7), the number of subcarriers used for moving average processing (moving average number) is reduced, so that an averaging effect is obtained. In other words, the channel estimation accuracy deteriorates.
 また、DM-RSの送信帯域幅が小さいほど、DM-RSの全送信帯域に対する上記両端部分(すなわち、チャネル推定精度が劣化するサブキャリア)の割合は大きくなる。すなわち、DM-RSの送信帯域幅が小さいほど、チャネル推定精度の劣化が大きくなる。 Also, as the DM-RS transmission bandwidth is smaller, the ratio of the both end portions (that is, subcarriers whose channel estimation accuracy is degraded) to the entire DM-RS transmission bandwidth increases. That is, the smaller the DM-RS transmission bandwidth, the greater the degradation of channel estimation accuracy.
 つまり、端末間のDM-RSを互いに直交化させるために、実施の形態1のようにして、基地局が送信帯域幅を減らす微調整を行う際(例えば、図4)、DM-RSの送信帯域幅が小さいほど、端末から送信されるDM-RSの受信品質に対して、送信帯域幅の減少が与える影響はより大きくなる。 In other words, in order to make the DM-RSs between terminals orthogonal to each other, as in Embodiment 1, when the base station performs fine adjustment to reduce the transmission bandwidth (for example, FIG. 4), transmission of DM-RSs The smaller the bandwidth is, the greater the influence that the reduction of the transmission bandwidth has on the reception quality of the DM-RS transmitted from the terminal.
 また、端末間のDM-RSを互いに直交化させるために、実施の形態1のようにして、基地局が送信帯域幅を増やす微調整を行う際、DM-RSの平均的なチャネル品質(SINR)が劣化してしまい、スループット性能が劣化してしまう可能性がある。例えば、図8に示すように、基地局がチャネル品質に基づいて選択した高品質な帯域(図8ではDM-RSの送信帯域幅が1RB)に対して、DM-RSの送信帯域幅を1RB増加させると、増加後の2RBにおける平均SINRの方が低くなる可能性がある。 Further, in order to make the DM-RSs between terminals orthogonal to each other, when the base station performs fine adjustment to increase the transmission bandwidth as in Embodiment 1, the average channel quality (SINR) of DM-RSs is increased. ) May deteriorate and throughput performance may deteriorate. For example, as shown in FIG. 8, the DM-RS transmission bandwidth is set to 1 RB with respect to the high-quality band selected by the base station based on the channel quality (DM-RS transmission bandwidth is 1 RB in FIG. 8). If it is increased, there is a possibility that the average SINR at 2 RBs after the increase will be lower.
 ここで、基地局による送信帯域幅を増やす微調整において、DM-RSの送信帯域幅が小さいほど、DM-RSの全送信帯域幅に対する送信帯域幅の増加分の割合が大きくなる。つまり、端末間のDM-RSを互いに直交化させるために、実施の形態1のようにして、基地局が送信帯域幅を増やす微調整を行う際、DM-RSの送信帯域幅が小さいほど、端末から送信されるDM-RSの受信品質に対して、送信帯域幅の増加が与える影響はより大きくなる。 Here, in the fine adjustment to increase the transmission bandwidth by the base station, the smaller the transmission bandwidth of the DM-RS, the larger the ratio of the increase in the transmission bandwidth to the total transmission bandwidth of the DM-RS. That is, in order to make DM-RSs between terminals orthogonal to each other, when the base station performs fine adjustment to increase the transmission bandwidth as in Embodiment 1, the smaller the DM-RS transmission bandwidth, The influence of the increase in the transmission bandwidth on the reception quality of the DM-RS transmitted from the terminal becomes larger.
 また、送信帯域幅が小さい端末は、送信電力に余力が無い端末であることが多い。そのため、送信帯域幅を増やすことにより必要な送信電力が増加してしまう場合、つまり、「送信帯域幅の増加により増えてしまう送信電力増加量>符号化率低下により抑えられる送信電力低下量」となる場合には、端末では送信電力不足となり、DM-RSの受信品質がさらに劣化する。 In addition, a terminal having a small transmission bandwidth is often a terminal having no capacity for transmission power. Therefore, when the required transmission power is increased by increasing the transmission bandwidth, that is, “a transmission power increase amount that increases due to an increase in transmission bandwidth> a transmission power decrease amount that can be suppressed by a decrease in coding rate”. In this case, the terminal becomes insufficient in transmission power, and the reception quality of the DM-RS is further deteriorated.
 このように、端末間のDM-RSを互いに直交化させるために、実施の形態1のようにして、基地局が送信帯域幅を微調整(増減)する際には、送信帯域幅が小さいほど、端末から送信されるDM-RSの受信品質に対して、送信帯域幅の微調整が与える影響はより大きくなる。 As described above, when the base station finely adjusts (increases / decreases) the transmission bandwidth in order to orthogonalize the DM-RSs between the terminals as described above, the smaller the transmission bandwidth, The influence of the fine adjustment of the transmission bandwidth on the reception quality of the DM-RS transmitted from the terminal becomes larger.
 そこで、本実施の形態では、端末は、各端末に設定可能な複数の送信帯域幅において、自端末が送信する信号の送信帯域幅が、閾値より大きい送信帯域幅の場合、実施の形態1と同様、送信帯域幅とWalsh系列番号とが1対1で対応付けられた対応関係に基づいてWalsh系列番号を決定する。これに対して、端末は、端末に設定可能な複数の送信帯域幅において、自端末が送信する信号の送信帯域幅が、閾値以下の送信帯域幅の場合、基地局から通知されるWalsh系列番号を用いる。 Therefore, in the present embodiment, when a terminal transmits a plurality of transmission bandwidths that can be set for each terminal and the transmission bandwidth of a signal transmitted by the terminal is larger than a threshold, Similarly, the Walsh sequence number is determined based on a correspondence relationship in which the transmission bandwidth and the Walsh sequence number are associated one-to-one. On the other hand, when a transmission bandwidth of a signal transmitted by the terminal is a transmission bandwidth that is equal to or smaller than a threshold in a plurality of transmission bandwidths that can be set in the terminal, the Walsh sequence number notified from the base station Is used.
 図9に本実施の形態に係る端末300の構成を示す。なお、図9において、図1に示した構成部と同一の構成部には同一符号を付し説明を省略する。 FIG. 9 shows the configuration of terminal 300 according to the present embodiment. In FIG. 9, the same components as those shown in FIG.
 図9に示す端末300の閾値設定部301は、DM-RSの送信帯域幅の閾値を設定し、設定した閾値を決定部302に出力する。 The threshold setting unit 301 of the terminal 300 illustrated in FIG. 9 sets a DM-RS transmission bandwidth threshold, and outputs the set threshold to the determination unit 302.
 決定部302は、まず、閾値設定部301から入力される閾値に基づいて、Walsh系列番号を、基地局400(後述する)からの通知(スケジューリング情報)により取得するか、実施の形態1と同様にして、DM-RSの送信帯域幅とWalsh系列番号とを1対1で対応付けたルールテーブル(対応関係)に基づいて決定するかを判断する。具体的には、送信帯域幅設定部105から入力される送信帯域幅が閾値設定部301から入力される閾値以下の場合、決定部302は、復調部103から入力されるスケジューリング情報に含まれるWalsh系列番号を抽出する。一方、送信帯域幅設定部105から入力される送信帯域幅が閾値設定部301から入力される閾値より大きい場合、決定部302は、DM-RSの送信帯域幅とWalsh系列番号とが1対1で対応付けられた対応関係に基づいて、送信帯域幅設定部105から入力される送信帯域幅に対応するWalsh系列番号を決定する。そして、決定部302は、得られたWalsh系列番号を乗算部108に出力する。 First, the determination unit 302 acquires the Walsh sequence number based on the threshold value input from the threshold setting unit 301 by notification (scheduling information) from the base station 400 (described later), or is the same as in the first embodiment. Then, it is determined whether to determine the DM-RS transmission bandwidth and the Walsh sequence number based on a rule table (correspondence) in which the transmission sequence number and the Walsh sequence number are associated one by one. Specifically, when the transmission bandwidth input from the transmission bandwidth setting unit 105 is equal to or less than the threshold input from the threshold setting unit 301, the determination unit 302 includes the Walsh included in the scheduling information input from the demodulation unit 103. Extract the sequence number. On the other hand, when the transmission bandwidth input from the transmission bandwidth setting unit 105 is larger than the threshold input from the threshold setting unit 301, the determination unit 302 has a one-to-one correspondence between the DM-RS transmission bandwidth and the Walsh sequence number. The Walsh sequence number corresponding to the transmission bandwidth input from the transmission bandwidth setting unit 105 is determined based on the correspondence relationship associated with. Then, the determination unit 302 outputs the obtained Walsh sequence number to the multiplication unit 108.
 次に、図10に本実施の形態に係る基地局400の構成を示す。なお、図10において、図2に示した構成部と同一の構成部には同一符号を付し説明を省略する。 Next, FIG. 10 shows the configuration of base station 400 according to the present embodiment. In FIG. 10, the same components as those shown in FIG.
 図10に示す基地局400の閾値設定部401は、DM-RSの送信帯域幅の閾値として、端末300(図9)の閾値設定部301と同一の値を設定し、設定した閾値を決定部402に出力する。 The threshold setting unit 401 of the base station 400 shown in FIG. 10 sets the same value as the threshold setting unit 301 of the terminal 300 (FIG. 9) as the DM-RS transmission bandwidth threshold, and determines the set threshold. Output to 402.
 決定部402は、閾値設定部401から入力される閾値に基づいて、Walsh系列番号を、スケジューリング情報に含めて端末300に通知するか、実施の形態1と同様にして、DM-RSの送信帯域幅とWalsh系列番号とを1対1で対応付けたルールテーブル(対応関係)に基づいて決定するかを判断する。具体的には、送信帯域幅設定部208から入力される送信帯域幅が閾値設定部401から入力される閾値以下の場合、決定部402は、Walsh系列番号をスケジューリングにより決定する。そして、基地局400は、決定したWalsh系列番号を含むスケジューリング情報を端末300へ通知する。一方、送信帯域幅設定部208から入力される送信帯域幅が閾値設定部401から入力される閾値より大きい場合、決定部402は、DM-RSの送信帯域幅とWalsh系列番号とが1対1で対応付けられた対応関係に基づいて、送信帯域幅設定部208から入力される送信帯域幅に対応するWalsh系列番号を決定する。そして、決定部402は、得られたWalsh系列番号を乗算部211に出力する。 Based on the threshold value input from threshold value setting unit 401, determination unit 402 includes the Walsh sequence number in scheduling information and notifies terminal 300, or in the same way as in Embodiment 1, the transmission band of DM-RS It is determined whether the width and the Walsh sequence number are determined based on a rule table (correspondence) in which the width and the Walsh sequence number are associated one by one. Specifically, when the transmission bandwidth input from transmission bandwidth setting section 208 is equal to or smaller than the threshold input from threshold setting section 401, determination section 402 determines the Walsh sequence number by scheduling. Then, base station 400 notifies terminal 300 of scheduling information including the determined Walsh sequence number. On the other hand, when the transmission bandwidth input from the transmission bandwidth setting unit 208 is larger than the threshold input from the threshold setting unit 401, the determination unit 402 has a one-to-one correspondence between the DM-RS transmission bandwidth and the Walsh sequence number. The Walsh sequence number corresponding to the transmission bandwidth input from the transmission bandwidth setting unit 208 is determined based on the correspondence relationship associated with. Then, the determination unit 402 outputs the obtained Walsh sequence number to the multiplication unit 211.
 以下、本実施の形態に係る端末300(図9)の決定部302および基地局400(図10)の決定部402におけるWalsh系列番号の設定例について説明する。 Hereinafter, setting examples of Walsh sequence numbers in determination section 302 of terminal 300 (FIG. 9) and determination section 402 of base station 400 (FIG. 10) according to the present embodiment will be described.
 以下の説明では、各端末の信号(データおよびDM-RS)の送信帯域幅(RB数)として、図11に示すように、実施の形態1(図3)と同様、1RB,2RB,3RB,…,96RB,100RB,108RBの35通りの送信帯域幅が設定可能となる。また、図11では、Walsh系列の系列長を2とし、Walsh系列(1,1)のWalsh系列番号を0とし、Walsh系列(1,-1)のWalsh系列番号を1とする。また、図11では、閾値設定部301および閾値設定部401は、送信帯域幅の閾値として5RBを設定する。 In the following description, as shown in FIG. 11, the transmission bandwidth (number of RBs) of signals (data and DM-RS) of each terminal is 1RB, 2RB, 3RB, as in Embodiment 1 (FIG. 3). ..., 35 RBs, 96 RBs, 100 RBs, 108 RBs can be set. In FIG. 11, the sequence length of the Walsh sequence is 2, the Walsh sequence number of the Walsh sequence (1, 1) is 0, and the Walsh sequence number of the Walsh sequence (1, -1) is 1. In FIG. 11, threshold setting section 301 and threshold setting section 401 set 5 RBs as the transmission bandwidth threshold.
 図11に示すように、送信帯域幅設定部105または送信帯域幅設定部208から入力される送信帯域幅が閾値5RBより大きい場合(つまり、送信帯域幅6RB~108RBのいずれかの場合)、実施の形態1と同様、DM-RSに用いるWalsh系列のWalsh系列番号は、基地局400が各端末に対して設定可能なDM-RSの送信帯域幅に1対1で対応付けられる。つまり、図11に示すように、各端末に設定可能な複数の送信帯域幅(35通り)のうち、閾値が5RBより大きい一部の送信帯域幅(30通り)と、Walsh系列番号とは1対1で対応付けられる。 As shown in FIG. 11, when the transmission bandwidth input from the transmission bandwidth setting unit 105 or the transmission bandwidth setting unit 208 is larger than the threshold value 5RB (that is, any of the transmission bandwidths 6RB to 108RB), the implementation is performed. As in the first embodiment, the Walsh sequence Walsh sequence number used for DM-RS is associated with the DM-RS transmission bandwidth that base station 400 can set for each terminal on a one-to-one basis. That is, as shown in FIG. 11, among a plurality of transmission bandwidths (35 types) that can be set for each terminal, a part of transmission bandwidths (30 types) having a threshold value larger than 5 RBs and a Walsh sequence number are 1 Corresponding in a pair.
 すなわち、図11に示すように、各端末に設定可能な送信パラメータ(ここでは送信帯域幅)とWalsh系列のWalsh系列番号との対応関係を示すルールテーブルは、送信パラメータ(送信帯域幅)とWalsh系列番号とが1対1で対応付けられた部分テーブル(送信帯域幅6RB以降における対応関係)を含む。なお、図11に示す部分テーブルでは、実施の形態1(図3)と同様、互いに異なる品質(送信帯域幅)を表す複数の送信パラメータ(送信帯域幅)において、最も近い品質を示す2つの送信パラメータに対して、互いに異なるWalsh系列番号がそれぞれ対応付けられる。 That is, as shown in FIG. 11, the rule table indicating the correspondence between transmission parameters (here, transmission bandwidth) that can be set for each terminal and Walsh sequence Walsh sequence numbers is the transmission parameter (transmission bandwidth) and Walsh. It includes a partial table (correspondence relationship after transmission bandwidth 6RB) in which the sequence number is associated one-to-one. In the partial table shown in FIG. 11, as in Embodiment 1 (FIG. 3), two transmissions indicating the closest quality in a plurality of transmission parameters (transmission bandwidths) representing different qualities (transmission bandwidths) are used. Different Walsh sequence numbers are associated with the parameters.
 よって、決定部302および決定部402は、端末300が送信する信号の送信帯域幅が閾値5RBより大きい場合には、図11に示す対応関係(部分テーブル)に基づいて、端末300のDM-RSに用いるWalsh系列のWalsh系列番号を決定する。 Therefore, the determination unit 302 and the determination unit 402, when the transmission bandwidth of the signal transmitted by the terminal 300 is larger than the threshold 5RB, the DM-RS of the terminal 300 based on the correspondence relationship (partial table) illustrated in FIG. The Walsh sequence number of the Walsh sequence to be used for is determined.
 一方、図11に示すように、各端末に設定可能な送信パラメータ(ここでは送信帯域幅)とWalsh系列のWalsh系列番号との対応関係を示すルールテーブルのうち、送信パラメータ(送信帯域幅)とWalsh系列番号とが1対1で対応付けられた部分テーブル(送信帯域幅6RB以降における対応関係)以外のテーブルでは、各送信帯域幅(1RB~5RB)に対して、Walsh系列番号0または1のいずれも設定可能となる。 On the other hand, as shown in FIG. 11, the transmission parameter (transmission bandwidth) in the rule table indicating the correspondence between the transmission parameters (here transmission bandwidth) that can be set in each terminal and the Walsh sequence number of the Walsh sequence, In a table other than the partial table (correspondence relationship after the transmission bandwidth 6RB) that is associated with the Walsh sequence number on a one-to-one basis, the Walsh sequence number 0 or 1 is assigned to each transmission bandwidth (1RB to 5RB). Both can be set.
 よって、基地局400の決定部402は、送信帯域幅設定部208から入力される送信帯域幅が閾値5RB以下の場合(つまり、送信帯域幅1RB~5RBのいずれかの場合)、Walsh系列番号を0または1のいずれかに決定する。そして、基地局400は、決定部402が決定したWalsh系列番号を示す1ビットのシグナリングビットを含むスケジューリング情報を端末300へ通知する。つまり、図11に示すように、各端末に設定可能な複数の送信帯域幅(35通り)のうち、閾値が5RB以下の送信帯域幅(5通り)では、基地局400は、Walsh系列番号0,1を任意に選択して、選択したWalsh系列番号を端末300へ通知する。 Therefore, the determination unit 402 of the base station 400 determines the Walsh sequence number when the transmission bandwidth input from the transmission bandwidth setting unit 208 is equal to or less than the threshold value 5RB (that is, any of the transmission bandwidths 1RB to 5RB). Decide either 0 or 1. Then, the base station 400 notifies the terminal 300 of scheduling information including one signaling bit indicating the Walsh sequence number determined by the determination unit 402. That is, as shown in FIG. 11, out of a plurality of transmission bandwidths (35 types) that can be set for each terminal, the base station 400 uses the Walsh sequence number 0 for a transmission bandwidth (5 types) with a threshold of 5 RB or less. , 1 is arbitrarily selected, and the selected Walsh sequence number is notified to the terminal 300.
 そして、端末300の決定部302は、送信帯域幅設定部105から入力される送信帯域幅が閾値5RB以下の場合、基地局400から通知されるスケジューリング情報に含まれる1ビットのシグナリングビットが示すWalsh系列番号(0または1)を抽出する。 Then, when the transmission bandwidth input from the transmission bandwidth setting unit 105 is equal to or less than the threshold value 5 RB, the determination unit 302 of the terminal 300 indicates the Walsh indicated by one signaling bit included in the scheduling information notified from the base station 400. A sequence number (0 or 1) is extracted.
 このようにして、端末300は、端末300が送信する信号の送信帯域幅が閾値より大きい場合には、実施の形態1と同様、その送信帯域幅に基づいて、DM-RSに用いるWalsh系列を決定することができる。つまり、端末300が送信する信号の送信帯域幅が閾値より大きい場合には、実施の形態1と同様にして、端末300は、基地局400が通知する送信パラメータである送信帯域幅に基づいて、自端末のDM-RSに用いるWalsh系列を特定することができる。また、基地局400(スケジューラ)は、複数の端末に対して異なる送信帯域幅を設定した際に、それらの送信帯域幅に対応付けられたWalsh系列番号が同一となる場合でも、実施の形態1と同様、一方の端末に設定した送信帯域幅を1つ分だけ微調整(増減)する。これにより、送信帯域幅を微調整した端末が送信するDM-RSの受信品質を劣化させることなく、端末間のDM-RSを直交化させることができる。 In this way, when the transmission bandwidth of the signal transmitted by terminal 300 is larger than the threshold, terminal 300 determines the Walsh sequence used for DM-RS based on the transmission bandwidth as in the first embodiment. Can be determined. That is, when the transmission bandwidth of the signal transmitted by terminal 300 is larger than the threshold, terminal 300, based on the transmission bandwidth that is the transmission parameter notified by base station 400, as in Embodiment 1. The Walsh sequence used for the DM-RS of the own terminal can be specified. Further, when base station 400 (scheduler) sets different transmission bandwidths for a plurality of terminals, even if the Walsh sequence numbers associated with the transmission bandwidths are the same, Embodiment 1 Similarly, the transmission bandwidth set for one terminal is finely adjusted (increased or decreased) by one. As a result, DM-RSs between terminals can be orthogonalized without degrading the reception quality of DM-RSs transmitted by terminals with finely adjusted transmission bandwidths.
 これに対し、端末300は、端末300が送信する信号の送信帯域幅が閾値以下の場合、つまり、送信帯域幅の微調整がDM-RSの受信品質に与える影響が大きい場合には、基地局400から通知されるWalsh系列のWalsh系列番号を用いる。これにより、基地局400は、各端末のスケジューリング状況に応じて、端末300に対してWalsh系列のWalsh系列番号(0または1)を柔軟に設定することができる。これにより、端末300が送信する信号の送信帯域幅が閾値以下の場合には、基地局400で送信帯域幅の微調整が行われないため、端末300は、最適な送信帯域幅を用いてDM-RSを送信することができる。 On the other hand, when the transmission bandwidth of the signal transmitted by the terminal 300 is equal to or smaller than the threshold, that is, when the fine adjustment of the transmission bandwidth has a great influence on the reception quality of the DM-RS, the terminal 300 The Walsh sequence number notified from 400 is used. Thereby, base station 400 can flexibly set a Walsh sequence Walsh sequence number (0 or 1) for terminal 300 according to the scheduling status of each terminal. Thereby, when the transmission bandwidth of the signal transmitted by the terminal 300 is equal to or smaller than the threshold value, the base station 400 does not perform fine adjustment of the transmission bandwidth, and thus the terminal 300 uses the optimal transmission bandwidth to perform DM. -RS can be transmitted.
 ここで、LTEでは、基地局は、DM-RS用系列として用いるZC系列のCS量を、各端末に対して通知している。例えば、LTEでは、CS量の違いによるDM-RSの最大多重数を6と想定し、基地局から端末へのCS量の通知に3ビット用いる。しかしながら、DM-RSの送信帯域幅が小さい場合には、DM-RSの送信帯域幅が大きい場合と比較して、基地局での受信信号レベルの時間減衰が緩やかになる。このため、基地局では、信号電力を得るため、または、他の端末との干渉を防止するために、DM-RSの検出窓を大きくする(端末でのCS量を大きくする)必要がある。例えば、DM-RSの送信帯域幅が小さい場合には、図12Aに示すように、基地局での受信信号レベルの時間減衰が緩やかになるため、DM-RSの送信帯域幅が大きい場合(図12B)と比較して、DM-RSの検出窓を大きくする。このため、DM-RSの受信品質を維持できる現実的な最大多重数は4程度となる。 Here, in LTE, the base station notifies each terminal of the CS amount of the ZC sequence used as the DM-RS sequence. For example, in LTE, the maximum number of multiplexed DM-RSs due to the difference in CS amount is assumed to be 6, and 3 bits are used for notification of the CS amount from the base station to the terminal. However, when the DM-RS transmission bandwidth is small, the time attenuation of the received signal level at the base station is moderate compared to when the DM-RS transmission bandwidth is large. For this reason, in order to obtain signal power or to prevent interference with other terminals, the base station needs to increase the DM-RS detection window (increase the CS amount at the terminal). For example, when the DM-RS transmission bandwidth is small, as shown in FIG. 12A, the time attenuation of the received signal level at the base station becomes moderate, and therefore the DM-RS transmission bandwidth is large (see FIG. 12A). Compared with 12B), the detection window of DM-RS is enlarged. For this reason, the realistic maximum multiplexing number that can maintain the reception quality of DM-RS is about 4.
 また、基地局(受信側)では、時間領域の受信信号を周波数領域に変換するためにFFT処理(図10に示すFFT部205および217)を行う。FFT処理は、周波数領域において、送信帯域幅の矩形信号を乗算する処理であるので、時間領域(遅延プロファイル)では、受信信号はSINC関数となる。そのため、受信信号は、周波数領域での送信帯域幅が小さいほど、時間領域での信号レベルの時間減衰は緩やかになる。 Also, the base station (receiving side) performs FFT processing ( FFT units 205 and 217 shown in FIG. 10) in order to convert the time domain received signal into the frequency domain. Since the FFT process is a process of multiplying a rectangular signal having a transmission bandwidth in the frequency domain, the received signal is a SINC function in the time domain (delay profile). Therefore, the time attenuation of the signal level in the time domain becomes gentler as the received signal has a smaller transmission bandwidth in the frequency domain.
 よって、DM-RSの送信帯域幅が小さい場合には、DM-RSに設定するCS量を大きくする必要があり、最大多重数が減少するため、基地局から端末へのCS量の通知に要するシグナリングビット数を削減することができる。例えば、LTEにおいて、DM-RSの送信帯域幅が小さい場合にDM-RSの受信品質を維持できる最大多重数が4の場合には、CS量の通知に要するシグナリングビット数を3ビットから2ビットに削減してもシステムの性能に影響は与えない。 Therefore, when the DM-RS transmission bandwidth is small, it is necessary to increase the CS amount set in the DM-RS, and the maximum multiplexing number is reduced. Therefore, it is necessary to notify the CS amount from the base station to the terminal. The number of signaling bits can be reduced. For example, in LTE, when the maximum multiplexing number that can maintain DM-RS reception quality is 4 when the DM-RS transmission bandwidth is small, the number of signaling bits required for CS amount notification is 3 to 2 bits. Even if it is reduced, the performance of the system is not affected.
 そこで、本実施の形態では、さらに、基地局400は、端末300が送信する信号の送信帯域幅が閾値以下の場合、すなわち、DM-RSの受信品質を維持するために最大多重数が減少する場合には、Walsh系列のWalsh系列番号の通知に要するシグナリングビットを1ビット追加するとともに、CS量の通知に要するシグナリングビットを1ビット削減する。換言すると、基地局400は、CS量の通知に要するシグナリングビットを1ビット削減する代わりに、Walsh系列のWalsh系列番号の通知に要するシグナリングビットを1ビット追加する。 Therefore, in the present embodiment, base station 400 further reduces the maximum multiplexing number when the transmission bandwidth of the signal transmitted by terminal 300 is equal to or smaller than the threshold, that is, to maintain the reception quality of DM-RS. In this case, 1 bit of signaling bits required for notification of the Walsh sequence Walsh sequence number is added and 1 bit of signaling bits required for notification of the CS amount is reduced. In other words, the base station 400 adds one bit of signaling bits required for notification of the Walsh sequence Walsh sequence number instead of reducing one bit of signaling bits required for notification of the CS amount.
 具体的には、図13に示すように、端末300が送信する信号の送信帯域幅が閾値5RB以下の場合、基地局400は、Walsh系列のWalsh系列番号の通知に要するシグナリングビットを1ビット追加するとともに、CS番号(CS量)の通知に要するシグナリングビットを3ビットから2ビットへ1ビットだけ削減する。また、端末300が送信する信号の送信帯域幅が閾値5RB以下の場合、端末300は、スケジューリング情報に含まれる、CS番号(CS量)の通知に用いられるシグナリングビット(3ビット)の読み方を変えて、CS番号(2ビット)およびWalsh系列番号(1ビット)の双方を抽出する。 Specifically, as illustrated in FIG. 13, when the transmission bandwidth of a signal transmitted by terminal 300 is equal to or less than a threshold value 5 RB, base station 400 adds one bit of signaling bits required for notification of a Walsh sequence Walsh sequence number. In addition, the signaling bits required for notification of the CS number (CS amount) are reduced by 1 bit from 3 bits to 2 bits. Further, when the transmission bandwidth of the signal transmitted by terminal 300 is equal to or less than the threshold value 5 RB, terminal 300 changes how to read the signaling bits (3 bits) used for notification of the CS number (CS amount) included in the scheduling information. Thus, both the CS number (2 bits) and the Walsh sequence number (1 bit) are extracted.
 つまり、図13に示すように、端末300が送信する信号の送信帯域幅が閾値5RB以下の場合には、基地局400は、CS番号を2ビットで通知し、Walsh系列番号を1ビットで通知する。一方、図13に示すように、端末300が送信する信号の送信帯域幅が閾値5RBより大きい場合には、基地局400は、CS番号を3ビットで通知し、Walsh系列番号を通知しない(つまり、0ビット)。すなわち、図13では、端末300が送信する信号の送信帯域幅がいずれの場合であっても、CS番号およびWalsh系列番号の2つの情報を双方通知するためのシグナリングビットの合計は3ビットとなる。 That is, as shown in FIG. 13, when the transmission bandwidth of a signal transmitted by terminal 300 is less than or equal to the threshold value 5RB, base station 400 notifies the CS number with 2 bits and the Walsh sequence number with 1 bit. To do. On the other hand, as shown in FIG. 13, when the transmission bandwidth of the signal transmitted by terminal 300 is larger than threshold value 5RB, base station 400 notifies the CS number with 3 bits and does not notify the Walsh sequence number (that is, , 0 bit). That is, in FIG. 13, regardless of the transmission bandwidth of the signal transmitted by terminal 300, the total number of signaling bits for reporting both information of the CS number and the Walsh sequence number is 3 bits. .
 これにより、端末300が送信する信号の送信帯域幅の微調整がDM-RSの受信品質に与える影響が大きい場合、つまり、端末300が送信する信号の送信帯域幅が閾値以下の場合に、基地局400から端末300へWalsh系列のWalsh系列番号を通知する際、Walsh系列番号の通知に要するシグナリングビット数分だけ、CS番号(CS量)の通知に要するシグナリングビット数を削減する。これにより、結果として、シグナリングビットの増加を防止することができる。 Accordingly, when the fine adjustment of the transmission bandwidth of the signal transmitted by the terminal 300 has a great influence on the reception quality of the DM-RS, that is, when the transmission bandwidth of the signal transmitted by the terminal 300 is equal to or less than the threshold, When notifying the Walsh sequence Walsh sequence number from the station 400 to the terminal 300, the number of signaling bits required for the notification of the CS number (CS amount) is reduced by the number of signaling bits required for the notification of the Walsh sequence number. As a result, an increase in signaling bits can be prevented.
 なお、図13に示すように、端末300が送信する信号の送信帯域幅が閾値5RB以下の場合には、基地局400は、CS番号(CS量)を2ビットで通知する際、Walsh系列番号と関連付けて、通知するCS番号(CS量)のパターンを変更してもよい。例えば、CS量の設定単位(DM-RSシンボル長を8で割った時間長)をΔとする。この場合、基地局400は、図13において、Walsh系列番号0を通知する場合には、CS番号(0,2,4,6)×ΔのCS量を2ビットで通知し、Walsh系列番号1を通知する場合には、CS番号(1,3,5,7)×ΔのCS量を2ビットで通知する。これにより、送信帯域幅が閾値以下となる端末間でMU-MIMO多重する場合には、端末間のDM-RSは、CS量およびWalsh系列番号の双方の設定値が互いに異なる。つまり、端末間のDM-RSをZC系列およびWalsh系列の双方の系列において直交化できるので、チャネル推定精度をさらに改善することができ、受信品質を向上させることができる。 As shown in FIG. 13, when the transmission bandwidth of the signal transmitted by terminal 300 is equal to or less than the threshold value 5RB, base station 400 uses the Walsh sequence number when reporting the CS number (CS amount) with 2 bits. The CS number (CS amount) pattern to be notified may be changed in association with. For example, Δ is a CS amount setting unit (time length obtained by dividing DM-RS symbol length by 8). In this case, when notifying Walsh sequence number 0 in FIG. 13, base station 400 notifies the CS amount of CS number (0, 2, 4, 6) × Δ in 2 bits, and Walsh sequence number 1 In this case, the CS amount of CS number (1, 3, 5, 7) × Δ is notified by 2 bits. As a result, when MU-MIMO multiplexing is performed between terminals whose transmission bandwidth is equal to or less than the threshold, DM-RSs between terminals have different setting values for both the CS amount and the Walsh sequence number. That is, since the DM-RS between terminals can be orthogonalized in both the ZC sequence and the Walsh sequence, channel estimation accuracy can be further improved and reception quality can be improved.
 このように、本実施の形態によれば、基地局は、送信帯域幅の微調整がDM-RSの受信品質に与える影響が大きいような、送信帯域幅が小さい端末に対して、Walsh系列番号を通知(1ビット通知)する。さらに、基地局は、送信帯域幅が小さい端末に対して、CS量の通知に要するシグナリングビットを削減(1ビット削減)する。これにより、シグナリングビットを増加させることなく、送信帯域幅が小さい端末が送信するDM-RSの受信品質が劣化してしまうことを防止できる。また、端末は、送信帯域幅の微調整がDM-RSの受信品質に与える影響が小さい場合、つまり、自端末が送信する信号の送信帯域幅が閾値よりも大きい場合には、実施の形態1と同様、送信帯域幅とWalsh系列番号とが1対1で対応付けられた対応関係に基づいて、Walsh系列番号を特定することができる。 As described above, according to the present embodiment, the base station provides a Walsh sequence number to a terminal having a small transmission bandwidth such that fine adjustment of the transmission bandwidth has a large influence on the reception quality of DM-RS. (1 bit notification). Further, the base station reduces signaling bits (1 bit reduction) required for notification of the CS amount to a terminal having a small transmission bandwidth. Thereby, it is possible to prevent the reception quality of the DM-RS transmitted by the terminal having a small transmission bandwidth from deteriorating without increasing the signaling bit. Further, when the influence of the fine adjustment of the transmission bandwidth on the reception quality of DM-RS is small, that is, when the transmission bandwidth of the signal transmitted by the terminal is larger than the threshold, the terminal Similarly, the Walsh sequence number can be specified based on the correspondence relationship in which the transmission bandwidth and the Walsh sequence number are associated one-to-one.
 なお、本実施の形態において、送信帯域幅の閾値(図11および図13では5RB)をセル毎に異ならせてもよい。例えば、セルの伝搬環境(遅延スプレッド等)によって、CS量に応じた最大多重数が異なる場合でも、セル毎に送信帯域幅の閾値を異ならせることで、各セルに適した閾値を設定することが可能となる。 In the present embodiment, the transmission bandwidth threshold (5 RBs in FIGS. 11 and 13) may be different for each cell. For example, even if the maximum multiplexing number according to the CS amount varies depending on the cell propagation environment (delay spread, etc.), a threshold suitable for each cell can be set by varying the transmission bandwidth threshold for each cell. Is possible.
 (実施の形態3)
 本実施の形態では、DM-RSの送信帯域位置とWalsh系列番号とを1対1で対応付ける。
(Embodiment 3)
In the present embodiment, the DM-RS transmission band position and the Walsh sequence number are associated one-to-one.
 図14に本実施の形態に係る端末500の構成を示す。なお、図14において、図1に示した構成部と同一の構成部には同一符号を付し説明を省略する。 FIG. 14 shows the configuration of terminal 500 according to the present embodiment. In FIG. 14, the same components as those shown in FIG.
 図14に示す端末500の決定部501には、送信帯域位置設定部104から、端末500が送信する信号の送信帯域位置が入力される。また、決定部501は、セル毎またはシステムで予め定義された、DM-RSがマッピングされ得る送信帯域位置(開始位置または終了位置)と、Walsh系列のWalsh系列番号とを1対1で対応付けたルールテーブル(対応関係)を有する。そして、決定部501は、送信帯域位置設定部104から入力される送信帯域位置に従ってルールテーブル(対応関係)を参照して、自端末が用いるWalsh系列のWalsh系列番号(例えば、Walsh系列(1,1)のWalsh系列番号0、または、Walsh系列(1,-1)のWalsh系列番号1)を決定する。つまり、決定部501は、各端末が送信する信号(データおよびDM-RS)がマッピングされ得る送信帯域位置を示す複数の送信パラメータと、Walsh系列のWalsh系列番号とが1対1で対応付けられた対応関係に基づいて、基地局から通知される自端末宛ての送信パラメータ(ここでは送信帯域位置)に対応するWalsh系列のWalsh系列番号を決定する。そして、決定部501は、決定したWalsh系列番号を乗算部108に出力する。 The transmission band position of the signal transmitted from the terminal 500 is input from the transmission band position setting unit 104 to the determination unit 501 of the terminal 500 illustrated in FIG. Also, the determination unit 501 has a one-to-one correspondence between a transmission band position (start position or end position) that can be mapped to a DM-RS and defined in advance for each cell or system, and a Walsh sequence Walsh sequence number. A rule table (correspondence). Then, the determination unit 501 refers to the rule table (correspondence) according to the transmission band position input from the transmission band position setting unit 104, and determines the Walsh sequence number (for example, Walsh sequence (1, 1, 1) Walsh sequence number 0 or Walsh sequence (1, -1) Walsh sequence number 1) is determined. That is, the determination unit 501 has a one-to-one correspondence between a plurality of transmission parameters indicating transmission band positions to which signals (data and DM-RS) transmitted from each terminal can be mapped and a Walsh sequence Walsh sequence number. Based on the correspondence relationship, the Walsh sequence Walsh sequence number corresponding to the transmission parameter (the transmission band position in this case) addressed to the terminal notified from the base station is determined. Then, the determination unit 501 outputs the determined Walsh sequence number to the multiplication unit 108.
 次に、図15に本実施の形態に係る基地局600の構成を示す。なお、図15において、図2に示した構成部と同一の構成部には同一符号を付し説明を省略する。 Next, FIG. 15 shows the configuration of base station 600 according to the present embodiment. In FIG. 15, the same components as those shown in FIG.
 図15に示す基地局600の決定部601には、送信帯域位置設定部206から、基地局600が端末500(図14)に対して指示した、信号(データおよびDM-RS)の送信帯域位置と同一の送信帯域位置が入力される。また、決定部601は、端末500の決定部501(図14)が有するルールテーブルと同一のルールテーブルを有する。そして、決定部601は、送信帯域位置設定部206から入力される送信帯域位置(開始位置または終了位置)に従ってルールテーブルを参照して、端末500が用いたWalsh系列のWalsh系列番号(例えば、Walsh系列(1,1)のWalsh系列番号0、または、Walsh系列(1,-1)のWalsh系列番号1)を決定する。つまり、決定部601は、各端末が送信する信号(データおよびDM-RS)がマッピングされ得る送信帯域位置を示す複数の送信パラメータと、Walsh系列のWalsh系列番号とが1対1で対応付けられた対応関係に基づいて、受信したDM-RSの送信元端末500に通知した送信パラメータ(ここでは送信帯域位置)に対応するWalsh系列のWalsh系列番号を決定する。そして、決定部601は、決定したWalsh系列番号を乗算部211に出力する。 15 includes a transmission band position of a signal (data and DM-RS) that the base station 600 has instructed to the terminal 500 (FIG. 14) from the transmission band position setting unit 206. The same transmission band position is input. Further, the determination unit 601 has the same rule table as the rule table included in the determination unit 501 (FIG. 14) of the terminal 500. Then, the determination unit 601 refers to the rule table according to the transmission band position (start position or end position) input from the transmission band position setting unit 206, and determines the Walsh sequence number (for example, Walsh) used by the terminal 500. The Walsh sequence number 0 of the sequence (1,1) or the Walsh sequence number 1) of the Walsh sequence (1, -1) is determined. That is, the determination unit 601 associates a plurality of transmission parameters indicating transmission band positions to which signals (data and DM-RS) transmitted from each terminal can be mapped, and Walsh sequence Walsh sequence numbers on a one-to-one basis. Based on the correspondence relationship, the Walsh sequence Walsh sequence number corresponding to the transmission parameter (here, the transmission band position) notified to the transmission source terminal 500 of the received DM-RS is determined. Then, the determination unit 601 outputs the determined Walsh sequence number to the multiplication unit 211.
 以下、本実施の形態に係る端末500(図14)の決定部501および基地局600(図15)の決定部601におけるWalsh系列番号の設定例について説明する。 Hereinafter, setting examples of Walsh sequence numbers in determination section 501 of terminal 500 (FIG. 14) and determination section 601 of base station 600 (FIG. 15) according to the present embodiment will be described.
 以下の説明では、各端末の信号(データおよびDM-RS)の送信帯域位置(開始位置、つまり、先頭RB)として、図16に示すように、RB番号0~5の6通りの送信帯域位置が設定可能となる。また、図16では、Walsh系列の系列長を2とし、Walsh系列(1,1)のWalsh系列番号を0とし、Walsh系列(1,-1)のWalsh系列番号を1とする。 In the following description, as shown in FIG. 16, there are six transmission band positions of RB numbers 0 to 5 as transmission band positions (start positions, that is, top RBs) of signals (data and DM-RS) of each terminal. Can be set. Also, in FIG. 16, the sequence length of the Walsh sequence is 2, the Walsh sequence number of the Walsh sequence (1, 1) is 0, and the Walsh sequence number of the Walsh sequence (1, -1) is 1.
 図16に示すように、本実施の形態では、DM-RSに用いるWalsh系列のWalsh系列番号は、各端末に設定可能なDM-RSの送信帯域位置(RB番号0~5の6通り)に1対1で対応付けられる。図16に示す、6通りの送信帯域位置(RB番号0~5)と、Walsh系列番号との対応関係は、決定部501および決定部601で保持される。 As shown in FIG. 16, in the present embodiment, Walsh sequence Walsh sequence numbers used for DM-RS are DM-RS transmission band positions (RB numbers 0 to 5) that can be set for each terminal. There is a one-to-one correspondence. The correspondence between the six transmission band positions (RB numbers 0 to 5) and the Walsh sequence numbers shown in FIG. 16 is held by the determination unit 501 and the determination unit 601.
 よって、例えば、決定部501および決定部601は、図16に示すように、端末Aに設定されたDM-RSの送信帯域位置(開始位置)がRB番号0の場合には、端末AのDM-RSに用いるWalsh系列のWalsh系列番号を0に決定する。同様にして、例えば、決定部501および決定部601は、図16に示すように、端末Bに設定されたDM-RSの送信帯域位置(開始位置)がRB番号1の場合には、端末BのDM-RSに用いるWalsh系列のWalsh系列番号を1に決定する。図16に示すRB番号2~5についても同様である。 Therefore, for example, as shown in FIG. 16, the determination unit 501 and the determination unit 601 determine that the DM-RS transmission band position (start position) set in the terminal A is the RB number 0, the DM of the terminal A -Determine the Walsh sequence number of the Walsh sequence used for the RS as 0. Similarly, for example, as illustrated in FIG. 16, the determination unit 501 and the determination unit 601 may, when the DM-RS transmission band position (start position) set in the terminal B is RB number 1, the terminal B The Walsh sequence number used in the DM-RS is determined to be 1. The same applies to RB numbers 2 to 5 shown in FIG.
 このように、端末500(図16では、端末Aおよび端末B)は、基地局600が下り回線の制御チャネルを用いて送信する送信パラメータである、端末500が送信する信号(データおよびDM-RS)の送信帯域位置に基づいて、DM-RSに用いるWalsh系列を決定することができる。つまり、図16に示すように、送信帯域位置(RB番号)とWalsh系列番号とを予め対応付けることにより、端末500は、自端末が使用するWalsh系列を基地局600から通知されることなく特定することができ、Walsh系列番号の通知に要するシグナリングビットが不要になる。 Thus, terminal 500 (terminal A and terminal B in FIG. 16) transmits signals (data and DM-RS) transmitted by terminal 500, which are transmission parameters transmitted by base station 600 using a downlink control channel. ), The Walsh sequence used for DM-RS can be determined. That is, as shown in FIG. 16, by associating the transmission band position (RB number) and the Walsh sequence number in advance, terminal 500 specifies the Walsh sequence used by the terminal itself without being notified from base station 600. The signaling bit required for notification of the Walsh sequence number is not necessary.
 また、図16に示すように、RB番号が最も近い送信帯域位置間には、異なるWalsh系列番号が対応付けられている。例えば、図16に示すように、開始位置がRB番号1である送信帯域位置と、開始位置がRB番号1に最も近いRB番号0およびRB番号2である各送信帯域位置とには、互いに異なるWalsh系列番号1および0がそれぞれ対応付けられている。換言すると、図16では、送信帯域位置(開始位置)のRB番号が偶数の場合(RB番号0,2,4)はWalsh系列番号0が対応付けられ、送信帯域位置(開始位置)のRB番号が奇数の場合(RB番号1,3,5)はWalsh系列番号1が対応付けられる。すなわち、2つのWalsh系列(Walsh系列番号0および1)を用いる場合には、図16に示すように、RB番号の昇順に並んだ送信帯域位置(送信パラメータ)に対して、Walsh系列番号0と1とが交互に対応付けられる。 Also, as shown in FIG. 16, different Walsh sequence numbers are associated between the transmission band positions having the closest RB numbers. For example, as shown in FIG. 16, the transmission band position whose start position is RB number 1 and the transmission band positions whose start positions are RB number 0 and RB number 2 closest to RB number 1 are different from each other. Walsh sequence numbers 1 and 0 are associated with each other. In other words, in FIG. 16, when the RB number of the transmission band position (start position) is an even number ( RB numbers 0, 2, 4), the Walsh sequence number 0 is associated with the RB number of the transmission band position (start position). Is an odd number ( RB numbers 1, 3, 5), Walsh sequence number 1 is associated. That is, when two Walsh sequences (Walsh sequence numbers 0 and 1) are used, as shown in FIG. 16, the Walsh sequence number 0 and the transmission band positions (transmission parameters) arranged in ascending order of the RB numbers. 1 are alternately associated.
 ここで、基地局600(スケジューラ)が、異なる送信帯域幅であって、対応付けられたWalsh系列番号が同一となる送信帯域位置を、複数の端末に対してスケジューリングする場合があり得る。この場合、各端末のDM-RSには同一Walsh系列番号のWalsh系列が用いられるため、端末間のDM-RSを直交化できなくなる制約がある。例えば、図17に示すように、基地局600が、端末Aおよび端末Bに対して送信帯域位置の開始位置をRB番号0に設定すると、端末Aおよび端末BのDM-RSに用いるWalsh系列のWalsh系列番号は双方とも0(図17に示すW#0)となる。 Here, there may be a case where the base station 600 (scheduler) schedules transmission band positions having different transmission bandwidths and having the same associated Walsh sequence number to a plurality of terminals. In this case, since a Walsh sequence having the same Walsh sequence number is used for the DM-RS of each terminal, there is a restriction that DM-RSs between terminals cannot be orthogonalized. For example, as shown in FIG. 17, when base station 600 sets the start position of the transmission band position for terminal A and terminal B to RB number 0, the Walsh sequence used for the DM-RS of terminal A and terminal B Both Walsh sequence numbers are 0 (W # 0 shown in FIG. 17).
 しかし、基地局600(スケジューラ)は、各端末の送信帯域位置を制御することができる。そこで、端末間で送信帯域位置が同一(つまり、Walsh系列番号が同一)(図17ではRB番号0,W#0)となる場合には、基地局600(スケジューラ)は、一方の端末の送信帯域位置の設定を微調整する。具体的には、基地局600は、送信帯域位置(つまり、Walsh系列番号)が同一である2つの端末のうち一方の端末の送信帯域位置の設定を1RB番号分だけ増減する。例えば、図17に示すように、基地局600は、端末Bの送信帯域位置であるRB番号0(図17に示す破線部分)を、1RBだけ高周波数側にずらしてRB番号1(図17に示す実線部分)に設定し直す。これにより、図17に示す端末BのDM-RSに用いるWalsh系列のWalsh系列番号は1(図17に示すW#1)となる。つまり、端末BのDM-RSに用いるWalsh系列のWalsh系列番号(図17に示すW#1)と、端末AのDM-RSに用いるWalsh系列のWalsh系列番号(図17に示すW#0)とを互いに異ならせることができる。 However, the base station 600 (scheduler) can control the transmission band position of each terminal. Therefore, when the transmission band position is the same between terminals (that is, the Walsh sequence number is the same) (RB number 0, W # 0 in FIG. 17), base station 600 (scheduler) transmits one terminal. Fine-tune the band position setting. Specifically, base station 600 increases or decreases the setting of the transmission band position of one of the two terminals having the same transmission band position (that is, Walsh sequence number) by 1 RB number. For example, as shown in FIG. 17, base station 600 shifts RB number 0 (the broken line portion shown in FIG. 17), which is the transmission band position of terminal B, to RB number 1 (see FIG. 17) by shifting it to the high frequency side by 1 RB. Set to the solid line). As a result, the Walsh sequence Walsh sequence number used for the DM-RS of terminal B shown in FIG. 17 is 1 (W # 1 shown in FIG. 17). That is, the Walsh sequence Walsh sequence number used for the DM-RS of terminal B (W # 1 shown in FIG. 17) and the Walsh sequence Walsh sequence number used for the DM-RS of terminal A (W # 0 shown in FIG. 17). Can be different from each other.
 ここで、図17に示すRB番号0~5の送信帯域位置において、RB番号が1RB(LTEでは1RB=180kHz)だけずれても、DM-RSの受信品質はほとんど変わらない。つまり、図16において、端末に設定される送信帯域位置を、設定可能な送信帯域幅1つ分(つまり、1RB番号)だけずらすだけで、DM-RSの受信品質の変化を最小限に抑えつつ、送信帯域位置に対応付けられたWalsh系列番号を反転させることができる。このため、基地局600(スケジューラ)が、端末間のDM-RSを直交化させるために、一方の端末に設定した送信帯域位置(RB番号)を微調整することによるシステムスループット性能への影響は少ない。 Here, in the transmission band positions of RB numbers 0 to 5 shown in FIG. 17, even if the RB number is shifted by 1 RB (1 RB = 180 kHz in LTE), the reception quality of the DM-RS hardly changes. That is, in FIG. 16, the transmission band position set in the terminal is shifted by one settable transmission bandwidth (that is, 1 RB number) while minimizing the change in DM-RS reception quality. The Walsh sequence number associated with the transmission band position can be inverted. For this reason, the base station 600 (scheduler) finely adjusts the transmission band position (RB number) set for one terminal in order to orthogonalize the DM-RS between the terminals, and the influence on the system throughput performance is Few.
 すなわち、端末間で送信帯域位置が同一(つまり、Walsh系列番号が同一)となる場合でも、基地局600は、一方の端末の送信帯域位置(RB番号)を1RB分だけずらすことで、端末500が送信するDM-RSの受信品質を劣化させることなく、端末間のDM-RSを直交化させることができる。 That is, even when the transmission band position is the same between terminals (that is, the Walsh sequence number is the same), the base station 600 shifts the transmission band position (RB number) of one terminal by 1 RB so that the terminal 500 DM-RSs between terminals can be orthogonalized without degrading the reception quality of the DM-RSs transmitted by.
 また、端末間のDM-RSの送信帯域が、同一の送信帯域(つまり、同一の送信帯域幅であり、かつ、同一の送信帯域位置)で一致する場合、各端末のDM-RSには同一Walsh系列番号(図5ではW#1)のWalsh系列が用いられる。そこで、基地局600は、端末間のDM-RSの送信帯域が、同一の送信帯域(同一の送信帯域幅であり、かつ、同一の送信帯域位置)で一致する場合には、LTEと同様にして、互いに異なるCS量を設定する。これにより、端末間のDM-RSの送信帯域が一致する場合でも、端末間のDM-RSを直交化させることができる。 Also, when the transmission band of DM-RS between terminals matches in the same transmission band (that is, the same transmission bandwidth and the same transmission band position), the DM-RS of each terminal is the same The Walsh sequence number (W # 1 in FIG. 5) is used. Therefore, when the DM-RS transmission band between terminals matches in the same transmission band (the same transmission bandwidth and the same transmission band position), base station 600 performs the same as in LTE. Thus, different CS amounts are set. Thereby, even when the transmission bands of DM-RSs between terminals match, DM-RSs between terminals can be orthogonalized.
 このように、本実施の形態によれば、DM-RSの送信帯域位置とWalsh系列のWalsh系列番号とが1対1で対応付けられる。これにより、端末は、基地局が通知する送信パラメータである、各端末の信号(データおよびDM-RS)の送信帯域位置に基づいて、自端末のDM-RSに用いるWalsh系列を特定することができる。よって、本実施の形態によれば、LTE-Advancedにおいて、DM-RSにWalsh系列を適用する場合でも、基地局から端末へのWalsh系列番号の通知に要するシグナリングビット数の増加を防止することができ、かつ、制御チャネル用フォーマットを新たに追加する必要が無くなる。 Thus, according to this embodiment, the DM-RS transmission band position and the Walsh sequence Walsh sequence number are associated one-to-one. Thereby, the terminal can specify the Walsh sequence used for the DM-RS of the terminal based on the transmission band position of the signal (data and DM-RS) of each terminal, which is the transmission parameter notified by the base station. it can. Therefore, according to the present embodiment, in LTE-Advanced, even when a Walsh sequence is applied to DM-RS, it is possible to prevent an increase in the number of signaling bits required for notification of the Walsh sequence number from the base station to the terminal. This eliminates the need to newly add a control channel format.
 さらに、本実施の形態によれば、各端末に設定可能な複数の送信帯域位置(開始位置または終了位置)のうち、最も近い送信帯域位置間(例えば、隣接するRB番号同士)には、互いに異なるWalsh系列番号が対応付けられる。これにより、複数の端末に対して異なる送信帯域位置を設定した際に、それらの送信帯域位置に対応付けられたWalsh系列番号が同一となる場合でも、基地局(スケジューラ)は、一方の端末に設定した送信帯域位置を1RB分だけ微調整(増減)する。これにより、送信帯域位置を微調整した端末が送信するDM-RSの受信品質を劣化させることなく、端末間のDM-RSを直交化させることができる。つまり、MU-MIMO多重における周波数スケジューリングの自由度を確保することができる。 Furthermore, according to the present embodiment, among a plurality of transmission band positions (start position or end position) that can be set for each terminal, between the closest transmission band positions (for example, adjacent RB numbers), Different Walsh sequence numbers are associated. Thereby, when different transmission band positions are set for a plurality of terminals, even if the Walsh sequence numbers associated with these transmission band positions are the same, the base station (scheduler) is assigned to one terminal. Finely adjust (increase / decrease) the set transmission band position by 1 RB. Thereby, DM-RSs between terminals can be orthogonalized without degrading the reception quality of DM-RSs transmitted by terminals with finely adjusted transmission band positions. That is, the degree of freedom of frequency scheduling in MU-MIMO multiplexing can be ensured.
 なお、本実施の形態では、図16および図17に示すように、送信帯域位置の開始位置のRB番号と、Walsh系列のWalsh系列番号とを1対1で対応付ける場合について説明した。しかし、本発明では、送信帯域位置の終了位置のRB番号と、Walsh系列のWalsh系列番号とを1対1で対応付けてもよい。 In the present embodiment, as shown in FIGS. 16 and 17, a case has been described in which the RB number at the start position of the transmission band position is associated with the Walsh sequence Walsh sequence number on a one-to-one basis. However, in the present invention, the RB number at the end of the transmission band position may be associated with the Walsh sequence Walsh sequence number on a one-to-one basis.
 また、本実施の形態において、送信帯域位置とWalsh系列番号との対応関係は、セル毎に異ならせてもよい。例えば、送信電力が異なるフェムト基地局とマクロ基地局との間で、上記対応関係を異ならせてもよい。上記対応関係を異ならせたセル間では、同一送信帯域で送信した信号に用いられるWalsh系列のWalsh系列番号が互いに異なり直交化するため、セル間干渉を低減することができる。 In the present embodiment, the correspondence between the transmission band position and the Walsh sequence number may be different for each cell. For example, the correspondence relationship may be different between a femto base station and a macro base station having different transmission powers. Between cells having different correspondences, Walsh sequence Walsh sequence numbers used for signals transmitted in the same transmission band are different from each other and orthogonalized, so that inter-cell interference can be reduced.
 (実施の形態4)
 本実施の形態では、各端末に設定されたMCS(Modulation and Coding Scheme)の番号(MCS番号)とWalsh系列番号とを1対1で対応付ける。
(Embodiment 4)
In the present embodiment, the MCS (Modulation and Coding Scheme) number (MCS number) set for each terminal is associated with the Walsh sequence number on a one-to-one basis.
 図18に本実施の形態に係る端末700の構成を示す。なお、図18において、図1に示した構成部と同一の構成部には同一符号を付し説明を省略する。 FIG. 18 shows the configuration of terminal 700 according to the present embodiment. In FIG. 18, the same components as those shown in FIG.
 図18に示す端末700のMCS番号設定部701には、復調部103から、基地局(後述する)から下り回線の制御チャネルを用いて送信された、各端末に設定されたMCSのMCS番号を示す情報が入力される。そして、MCS番号設定部701は、復調部103から入力される情報に含まれる、自端末が送信する信号のMCS番号を抽出し、抽出したMCS番号を決定部702に出力する。 In the MCS number setting unit 701 of the terminal 700 shown in FIG. 18, the MCS MCS number set for each terminal transmitted from the demodulating unit 103 using the downlink control channel from the base station (described later). The information shown is input. Then, the MCS number setting unit 701 extracts the MCS number of the signal transmitted from the terminal included in the information input from the demodulation unit 103 and outputs the extracted MCS number to the determination unit 702.
 決定部702は、セル毎またはシステムで予め定義された、MCS番号と、Walsh系列のWalsh系列番号とを1対1で対応付けたルールテーブル(対応関係)を有する。そして、決定部702は、MCS番号設定部701から入力されるMCS番号に従ってルールテーブル(対応関係)を参照して、自端末が用いるWalsh系列のWalsh系列番号(例えば、Walsh系列(1,1)のWalsh系列番号0、または、Walsh系列(1,-1)のWalsh系列番号1)を決定する。つまり、決定部702は、各端末が送信する送信データに設定可能なMCS番号を示す複数の送信パラメータと、Walsh系列のWalsh系列番号とが1対1で対応付けられた対応関係に基づいて、基地局から通知される自装置宛ての送信パラメータ(ここではMCS番号)に対応するWalsh系列のWalsh系列番号を決定する。そして、決定部702は、決定したWalsh系列番号を乗算部108に出力する。 The determination unit 702 has a rule table (correspondence relationship) in which the MCS number and the Walsh sequence Walsh sequence number, which are defined in advance for each cell or system, are associated one-to-one. Then, the determination unit 702 refers to the rule table (correspondence) according to the MCS number input from the MCS number setting unit 701, and determines the Walsh sequence number (for example, Walsh sequence (1, 1)) used by the terminal itself. Walsh sequence number 0 or Walsh sequence number (1, −1) Walsh sequence number 1) is determined. That is, the determination unit 702 is based on a correspondence relationship in which a plurality of transmission parameters indicating MCS numbers that can be set in transmission data transmitted by each terminal and a Walsh sequence Walsh sequence number are associated one-to-one. The Walsh sequence Walsh sequence number corresponding to the transmission parameter (in this case, the MCS number) addressed to itself is notified from the base station. Then, the determination unit 702 outputs the determined Walsh sequence number to the multiplication unit 108.
 また、端末700は、基地局から通知されたMCS番号のMCSに基づいて、送信データに対して符号化処理および変調処理を施す(図示せず)。 Also, terminal 700 performs encoding processing and modulation processing on transmission data based on the MCS of the MCS number notified from the base station (not shown).
 次に、図19に本実施の形態に係る基地局800の構成を示す。なお、図19において、図2に示した構成部と同一の構成部には同一符号を付し説明を省略する。 Next, FIG. 19 shows the configuration of base station 800 according to the present embodiment. In FIG. 19, the same components as those shown in FIG.
 図19に示す基地局800のMCS番号設定部801は、基地局800が端末700に対して指示したMCS番号と同一のMCS番号(つまり、端末700のMCS番号設定部701で用いたMCS番号と同じ値)を復号部222および決定部802に設定する。 The MCS number setting unit 801 of the base station 800 shown in FIG. 19 has the same MCS number as the MCS number instructed to the terminal 700 by the base station 800 (that is, the MCS number used in the MCS number setting unit 701 of the terminal 700). The same value) is set in the decoding unit 222 and the determination unit 802.
 決定部802は、端末700の決定部702(図18)が有するルールテーブルと同一のルールテーブルを有する。そして、決定部802は、MCS番号設定部801から入力されるMCS番号に従ってルールテーブルを参照して、端末700が用いたWalsh系列のWalsh系列番号(例えば、Walsh系列(1,1)のWalsh系列番号0、または、Walsh系列(1,-1)のWalsh系列番号1)を決定する。つまり、決定部802は、各端末が送信する送信データに設定可能なMCS番号を示す複数の送信パラメータと、Walsh系列のWalsh系列番号とが1対1で対応付けられた対応関係に基づいて、受信したDM-RSの送信元端末700に通知した送信パラメータ(ここではMCS番号)に対応するWalsh系列のWalsh系列番号を決定する。そして、決定部802は、決定したWalsh系列番号を乗算部211に出力する。 The determination unit 802 has the same rule table as the rule table included in the determination unit 702 (FIG. 18) of the terminal 700. Then, the determining unit 802 refers to the rule table according to the MCS number input from the MCS number setting unit 801, and the Walsh sequence number used by the terminal 700 (for example, the Walsh sequence (1, 1) Walsh sequence). The number 0 or the Walsh sequence number 1) of the Walsh sequence (1, −1) is determined. That is, the determination unit 802 is based on a correspondence relationship in which a plurality of transmission parameters indicating MCS numbers that can be set in transmission data transmitted by each terminal and a Walsh sequence Walsh sequence number are associated one-to-one. The Walsh sequence Walsh sequence number corresponding to the transmission parameter (here, the MCS number) notified to the DM-RS transmission source terminal 700 is determined. Then, the determination unit 802 outputs the determined Walsh sequence number to the multiplication unit 211.
 復号部222は、MCS番号設定部801から入力されるMCS番号のMCSに基づいて、復調部221から入力されるデータ信号を復調する。 The decoding unit 222 demodulates the data signal input from the demodulation unit 221 based on the MCS of the MCS number input from the MCS number setting unit 801.
 また、基地局800は、自局がカバーするセル内の複数の端末に対して、各端末が送信する送信データのMCSを決定する。そして、基地局800は、各端末のMCSのMCS番号を示す情報を、下り回線の制御チャネルを用いて各端末へ送信する(図示せず)。 Also, the base station 800 determines the MCS of transmission data transmitted by each terminal for a plurality of terminals in a cell covered by the base station 800. Base station 800 transmits information indicating the MCS number of each terminal's MCS to each terminal using a downlink control channel (not shown).
 次に、本実施の形態に係る端末700(図18)の決定部702および基地局800(図19)の決定部802におけるWalsh系列番号の設定例について説明する。 Next, setting examples of Walsh sequence numbers in determining section 702 of terminal 700 (FIG. 18) and determining section 802 of base station 800 (FIG. 19) according to the present embodiment will be described.
 以下の説明では、各端末が送信する送信データのMCSとして、図20に示すように、MCS番号1~16の16通りのMCSが設定可能となる。なお、図20では、MCS番号が大きくなるほど伝送レート(ビットレート)が高くなるように、変調方式および符号化率が設定されている。また、図20では、Walsh系列の系列長を2とし、Walsh系列(1,1)のWalsh系列番号を0とし、Walsh系列(1,-1)のWalsh系列番号を1とする。 In the following description, 16 types of MCSs with MCS numbers 1 to 16 can be set as MCS of transmission data transmitted by each terminal, as shown in FIG. In FIG. 20, the modulation scheme and the coding rate are set so that the transmission rate (bit rate) increases as the MCS number increases. In FIG. 20, the sequence length of the Walsh sequence is 2, the Walsh sequence number of the Walsh sequence (1, 1) is 0, and the Walsh sequence number of the Walsh sequence (1, −1) is 1.
 図20に示すように、本実施の形態では、DM-RSに用いるWalsh系列のWalsh系列番号は、各端末が送信する送信データに設定可能なMCSのMCS番号(MCS番号1~16)に1対1で対応付けられる。図20に示すルールテーブルは、決定部702および決定部802で保持される。 As shown in FIG. 20, in the present embodiment, the Walsh sequence Walsh sequence number used for DM-RS is 1 in the MCS MCS numbers (MCS numbers 1 to 16) that can be set in the transmission data transmitted by each terminal. Corresponding in a pair. The rule table illustrated in FIG. 20 is held by the determination unit 702 and the determination unit 802.
 よって、例えば、決定部702および決定部802は、端末700に設定されたMCS番号が1(変調方式:QPSK、符号化率:1/8)の場合には、図20に示す対応関係に基づいて、端末700のDM-RSに用いるWalsh系列のWalsh系列番号を0に決定する。同様にして、例えば、決定部702および決定部802は、端末700に設定されたMCS番号が2(変調方式:QPSK、符号化率:1/6)の場合には、図20に示す対応関係に基づいて、端末700のDM-RSに用いるWalsh系列のWalsh系列番号を1に決定する。図20に示すMCS番号3~16についても同様である。 Therefore, for example, when the MCS number set in terminal 700 is 1 (modulation scheme: QPSK, coding rate: 1/8), determination section 702 and determination section 802 are based on the correspondence shown in FIG. Then, the Walsh sequence number of the Walsh sequence used for the DM-RS of terminal 700 is determined to be 0. Similarly, for example, when the MCS number set in the terminal 700 is 2 (modulation method: QPSK, coding rate: 1/6), the determination unit 702 and the determination unit 802 correspond to the correspondence relationship illustrated in FIG. Based on, the Walsh sequence Walsh sequence number used for the DM-RS of terminal 700 is determined to be 1. The same applies to MCS numbers 3 to 16 shown in FIG.
 このように、端末700は、基地局800が下り回線の制御チャネルを用いて送信する送信パラメータである、端末700が送信する送信データのMCS番号に基づいて、DM-RSに用いるWalsh系列を決定することができる。つまり、図20に示すように、MCS番号とWalsh系列番号とを予め対応付けることにより、端末700は、自端末が使用するWalsh系列を基地局800から通知されることなく特定することができ、Walsh系列番号の通知に要するシグナリングビットが不要になる。 Thus, terminal 700 determines a Walsh sequence used for DM-RS based on the MCS number of transmission data transmitted by terminal 700, which is a transmission parameter transmitted by base station 800 using a downlink control channel. can do. That is, as shown in FIG. 20, by associating the MCS number and the Walsh sequence number in advance, the terminal 700 can identify the Walsh sequence used by the terminal without being notified from the base station 800, and the Walsh The signaling bit required for notification of the sequence number is not necessary.
 また、図20に示すように、互いに異なる品質を表す16個のMCS(MCS番号1~16)のうち、MCS番号が最も近いMCS(つまり、最も近い品質を表すMCS)間には、異なるWalsh系列番号が対応付けられている。例えば、図20に示すように、MCS番号2と、MCS番号2に最も近いMCS番号1およびMCS番号3とには、互いに異なるWalsh系列番号1および0がそれぞれ対応付けられている。すなわち、2つのWalsh系列(Walsh系列番号0および1)を用いる場合には、図20に示すように、伝送レート(ビットレート)の昇順に並んだMCS番号(送信パラメータ)に対して、Walsh系列番号0と1とが交互に対応付けられる。 Also, as shown in FIG. 20, among 16 MCSs (MCS numbers 1 to 16) representing different qualities, different Walsh is used between MCSs having the nearest MCS numbers (that is, MCSs representing the nearest quality). A sequence number is associated. For example, as shown in FIG. 20, MCS number 2 and MCS number 1 and MCS number 3 closest to MCS number 2 are associated with different Walsh sequence numbers 1 and 0, respectively. That is, when two Walsh sequences (Walsh sequence numbers 0 and 1) are used, as shown in FIG. 20, for the MCS numbers (transmission parameters) arranged in ascending order of the transmission rate (bit rate), the Walsh sequence Numbers 0 and 1 are associated with each other alternately.
 ここで、基地局800(スケジューラ)が、各端末のチャネル品質に基づいて、複数の端末に対して同一のMCSを設定する場合があり得る。この場合、各端末のDM-RSには同一Walsh系列番号のWalsh系列が用いられるため、端末間のDM-RSを直交化できなくなる制約がある。 Here, the base station 800 (scheduler) may set the same MCS for a plurality of terminals based on the channel quality of each terminal. In this case, since a Walsh sequence having the same Walsh sequence number is used for the DM-RS of each terminal, there is a restriction that DM-RSs between terminals cannot be orthogonalized.
 しかし、基地局800(スケジューラ)は、各端末が送信する送信データのMCSを制御することができる。そこで、端末間でMCSのMCS番号が同一(つまり、Walsh系列番号が同一)となる場合には、基地局800(スケジューラ)は、一方の端末のMCS番号の設定を微調整する。具体的には、基地局800は、MCS番号が同一である2つの端末のうち一方の端末に設定されたMCS番号の設定を1つ分だけ増減する。図20に示すように、隣接するMCS番号には、互いに異なるWalsh系列番号がそれぞれ対応付けられている。このため、基地局800は、MCS番号が同一である2つの端末のうち一方の端末に設定されたMCS番号の設定を1つ分だけ増減することで、双方の端末のDM-RSに用いるWalsh系列のWalsh系列番号を互いに異ならせることができる。 However, the base station 800 (scheduler) can control MCS of transmission data transmitted by each terminal. Therefore, when the MCS numbers of the MCS are the same between terminals (that is, the Walsh sequence numbers are the same), the base station 800 (scheduler) finely adjusts the setting of the MCS number of one terminal. Specifically, base station 800 increases or decreases the setting of the MCS number set for one of the two terminals having the same MCS number by one. As shown in FIG. 20, different Walsh sequence numbers are associated with adjacent MCS numbers, respectively. For this reason, the base station 800 increases or decreases the setting of the MCS number set in one of the two terminals having the same MCS number by one to thereby increase the Walsh used for the DM-RS of both terminals. The Walsh sequence numbers of the sequences can be made different from each other.
 ここで、図20に示すMCS番号1~16のMCSにおいて、MCS番号が1つだけずれると、DM-RSに用いられるWalsh系列のWalsh系列番号は異なるのに対して、送信データの伝送レート(ビットレート)、つまり、端末700の受信性能はほとんど変わらない。つまり、図20において、端末に設定されるMCS番号を、1つ分だけずらすだけで、送信データの伝送レート(ビットレート)、つまり、端末の受信性能の変化を最小限に抑えつつ、MCS番号に対応付けられたWalsh系列番号を反転させることができる。このため、基地局800(スケジューラ)が、端末間のDM-RSを直交化させるために、一方の端末に設定したMCS番号を微調整することによるシステムスループット性能への影響は少ない。 Here, in the MCSs with MCS numbers 1 to 16 shown in FIG. 20, if the MCS number is shifted by one, the Walsh sequence Walsh sequence number used for the DM-RS is different, whereas the transmission rate of the transmission data ( Bit rate), that is, the reception performance of the terminal 700 is hardly changed. That is, in FIG. 20, by shifting the MCS number set in the terminal by one, the transmission rate (bit rate) of transmission data, that is, the MCS number while minimizing the change in reception performance of the terminal is minimized. The Walsh sequence number associated with can be reversed. For this reason, the base station 800 (scheduler) has little influence on the system throughput performance by finely adjusting the MCS number set in one terminal in order to orthogonalize the DM-RS between the terminals.
 すなわち、端末間でMCSのMCS番号が同一(つまり、Walsh系列番号が同一)となる場合でも、基地局800は、一方の端末のMCS番号を1つ分だけずらすことで、端末700の受信性能を劣化させることなく、端末間のDM-RSを直交化させることができる。 That is, even when the MCS numbers of the MCS are the same between terminals (that is, the Walsh sequence number is the same), the base station 800 shifts the MCS number of one terminal by one so that the reception performance of the terminal 700 is improved. DM-RSs between terminals can be orthogonalized without degrading.
 ここで、基地局800は、Walsh系列選択のためのMCS番号の調整(微調整)方法を、現在設定しているMCSの変調方式に応じて変えてもよい。例えば、QPSKはチャネル品質が劣悪である端末に対して設定する場合が多い。そこで、基地局800は、現在設定しているMCSの変調方式がQPSKの場合(図20のMCS番号1~8)には、MCS番号が小さくなる方向(つまり、符号化率がより低く、誤り耐性がより強くなる方向)にMCS番号を調整する。一方、16QAMおよび64QAMはチャネル品質が良好である端末に対して設定する場合が多い。そこで、基地局800は、現在設定しているMCSの変調方式が16QAMまたは64QAMの場合(図20のMCS番号9~16)には、MCS番号が大きくなる方向(つまり、符号化率がより高く、スループットがより高い方向)にMCS番号を調整する。これにより、基地局800がWalsh系列選択のためのMCS番号の微調整が、端末700の受信性能に与える影響をより低減することができる。 Here, the base station 800 may change the MCS number adjustment (fine adjustment) method for Walsh sequence selection according to the currently set MCS modulation method. For example, QPSK is often set for a terminal having poor channel quality. Therefore, when the currently set MCS modulation scheme is QPSK (MCS numbers 1 to 8 in FIG. 20), base station 800 has a direction of decreasing MCS number (that is, the coding rate is lower, error The MCS number is adjusted so that the tolerance becomes stronger. On the other hand, 16QAM and 64QAM are often set for terminals having good channel quality. Therefore, when the currently set MCS modulation scheme is 16QAM or 64QAM (MCS numbers 9 to 16 in FIG. 20), the base station 800 increases the MCS number (that is, the coding rate is higher). The MCS number is adjusted in the direction of higher throughput. Thereby, it is possible to further reduce the influence of the fine adjustment of the MCS number for the Walsh sequence selection by base station 800 on the reception performance of terminal 700.
 このように、本実施の形態によれば、端末が送信する送信データに設定されるMCSのMCS番号とWalsh系列のWalsh系列番号とが1対1で対応付けられる。これにより、端末は、基地局が通知する送信パラメータである、各端末に設定されたMCS番号に基づいて、自端末のDM-RSに用いるWalsh系列を特定することができる。よって、本実施の形態によれば、LTE-Advancedにおいて、DM-RSにWalsh系列を適用する場合でも、基地局から端末へのWalsh系列番号の通知に要するシグナリングビット数の増加を防止することができ、かつ、制御チャネル用フォーマットを新たに追加する必要が無くなる。 As described above, according to the present embodiment, the MCS MCS number set in the transmission data transmitted by the terminal and the Walsh sequence Walsh sequence number are associated one-to-one. Accordingly, the terminal can specify the Walsh sequence used for the DM-RS of the terminal based on the MCS number set for each terminal, which is a transmission parameter notified by the base station. Therefore, according to the present embodiment, in LTE-Advanced, even when a Walsh sequence is applied to DM-RS, it is possible to prevent an increase in the number of signaling bits required for notification of the Walsh sequence number from the base station to the terminal. This eliminates the need to newly add a control channel format.
 さらに、本実施の形態によれば、設定可能な複数のMCS番号のうち、MCS番号が最も近いMCS番号間、つまり、最も近い品質のMCS番号間には、互いに異なるWalsh系列番号が対応付けられる。これにより、複数の端末に対して設定したMCSが同一となる場合(つまり、Walsh系列番号が同一)となる場合でも、基地局(スケジューラ)は、一方の端末に設定したMCS番号を1つ分だけ微調整(増減)することで、MCS番号を微調整した端末の受信性能を劣化させることなく、端末間のDM-RSを直交化させることができる。つまり、MU-MIMO多重における周波数スケジューリングの自由度を確保することができる。 Furthermore, according to the present embodiment, among the settable MCS numbers, different Walsh sequence numbers are associated between MCS numbers having the closest MCS number, that is, between MCS numbers having the closest quality. . As a result, even when the MCSs set for a plurality of terminals are the same (that is, the Walsh sequence numbers are the same), the base station (scheduler) uses one MCS number set for one terminal. By finely adjusting (increasing / decreasing) only, it is possible to orthogonalize DM-RSs between terminals without degrading the reception performance of terminals with finely adjusted MCS numbers. That is, the degree of freedom of frequency scheduling in MU-MIMO multiplexing can be ensured.
 なお、本実施の形態では、図20に示すように、MCS番号1~16に渡って、Walsh系列のWalsh系列番号0と1とを交互に対応付ける場合について説明した。しかし、本発明では、MCS番号1~16に渡って、Walsh系列のWalsh系列番号1と0とを交互に対応付けてもよい(つまり、図20において0を1に反転させ、1を0に反転させてもよい)。 In the present embodiment, as shown in FIG. 20, a case has been described in which Walsh sequence numbers 0 and 1 are alternately associated with each other over MCS numbers 1 to 16. However, in the present invention, Walsh sequence numbers 1 and 0 may be alternately associated over MCS numbers 1 to 16 (that is, 0 is inverted to 1 and 1 is set to 0 in FIG. 20). May be reversed).
 また、本実施の形態では、MCS番号の代わりに、図21に示すように、TBS(Transport Block Set)番号を用いてもよい。すなわち、図21に示すように、セル毎またはシステムで予め定義されたTBS番号と、Walsh系列のWalsh系列番号とを1対1で対応付けてもよい。 In this embodiment, instead of the MCS number, a TBS (Transport Block Set) number may be used as shown in FIG. That is, as shown in FIG. 21, a TBS number defined in advance for each cell or system may be associated with a Walsh sequence Walsh sequence number on a one-to-one basis.
 (実施の形態5)
 本実施の形態では、複数の端末に固有のID番号である端末IDとWalsh系列番号とを1対1で対応付ける。
(Embodiment 5)
In the present embodiment, terminal IDs that are ID numbers unique to a plurality of terminals are associated with Walsh sequence numbers on a one-to-one basis.
 図22に本実施の形態に係る端末900の構成を示す。なお、図22において、図1に示した構成部と同一の構成部には同一符号を付し説明を省略する。 FIG. 22 shows a configuration of terminal 900 according to the present embodiment. In FIG. 22, the same components as those shown in FIG.
 図22に示す端末900の端末ID設定部901には、復調部103から、基地局(後述する)から下り回線の制御チャネルを用いて送信された、送信リソースを割り当てた(スケジューリングされた)各端末に設定された端末IDを示す情報が入力される。そして、端末ID設定部901は、復調部103から入力される情報に含まれる、自端末の端末IDを抽出し、抽出した端末IDを決定部902に出力する。 Each of the terminal ID setting unit 901 of terminal 900 shown in FIG. 22 is allocated (scheduled) with transmission resources transmitted from demodulating unit 103 using a downlink control channel from a base station (described later). Information indicating the terminal ID set in the terminal is input. Terminal ID setting section 901 extracts the terminal ID of the own terminal included in the information input from demodulation section 103 and outputs the extracted terminal ID to determination section 902.
 決定部902は、セル毎またはシステムで予め定義された、端末IDと、Walsh系列のWalsh系列番号とを1対1で対応付けたルールテーブル(対応関係)を有する。そして、決定部902は、端末ID設定部901から入力される端末IDに従ってルールテーブル(対応関係)を参照して、自端末が用いるWalsh系列のWalsh系列番号(例えば、Walsh系列(1,1)のWalsh系列番号0、または、Walsh系列(1,-1)のWalsh系列番号1)を決定する。つまり、決定部902は、各端末に設定可能な端末IDを示す複数の送信パラメータと、Walsh系列のWalsh系列番号とが1対1で対応付けられた対応関係に基づいて、基地局から通知される自装置宛ての送信パラメータ(ここでは端末ID)に対応するWalsh系列のWalsh系列番号を決定する。そして、決定部902は、決定したWalsh系列番号を乗算部108に出力する。 The determining unit 902 has a rule table (correspondence) in which a terminal ID and a Walsh sequence Walsh sequence number, which are defined in advance for each cell or system, are associated one-to-one. Then, the determination unit 902 refers to the rule table (correspondence) according to the terminal ID input from the terminal ID setting unit 901, and determines the Walsh sequence number (for example, Walsh sequence (1, 1)) used by the terminal itself. Walsh sequence number 0 or Walsh sequence number (1, −1) Walsh sequence number 1) is determined. That is, the determination unit 902 is notified from the base station based on a correspondence relationship in which a plurality of transmission parameters indicating terminal IDs that can be set for each terminal and a Walsh sequence Walsh sequence number are associated one-to-one. The Walsh sequence Walsh sequence number corresponding to the transmission parameter (terminal ID in this case) addressed to the own device is determined. Then, the determination unit 902 outputs the determined Walsh sequence number to the multiplication unit 108.
 次に、図23に本実施の形態に係る基地局1000の構成を示す。なお、図23において、図2に示した構成部と同一の構成部には同一符号を付し説明を省略する。 Next, FIG. 23 shows a configuration of base station 1000 according to the present embodiment. In FIG. 23, the same components as those shown in FIG.
 図23に示す基地局1000の端末ID設定部1001は、基地局1000が端末900に対して指示した端末IDと同一の端末ID(つまり、端末900の端末ID設定部901で用いた端末IDと同じ値)を決定部1002に設定する。 The terminal ID setting unit 1001 of the base station 1000 shown in FIG. 23 has the same terminal ID as the terminal ID instructed to the terminal 900 by the base station 1000 (that is, the terminal ID used in the terminal ID setting unit 901 of the terminal 900). (Same value) is set in the determination unit 1002.
 決定部1002は、端末900の決定部902(図22)が有するルールテーブルと同一のルールテーブルを有する。そして、決定部1002は、端末ID設定部1001から入力される端末IDに従ってルールテーブルを参照して、端末900が用いたWalsh系列のWalsh系列番号(例えば、Walsh系列(1,1)のWalsh系列番号0、または、Walsh系列(1,-1)のWalsh系列番号1)を決定する。つまり、決定部1002は、各端末に設定可能な端末IDを示す複数の送信パラメータと、Walsh系列のWalsh系列番号とが1対1で対応付けられた対応関係に基づいて、受信したDM-RSの送信元端末900に通知した送信パラメータ(ここでは端末ID)に対応するWalsh系列のWalsh系列番号を決定する。そして、決定部1002は、決定したWalsh系列番号を乗算部211に出力する。 The determining unit 1002 has the same rule table as the rule table included in the determining unit 902 (FIG. 22) of the terminal 900. Then, the determination unit 1002 refers to the rule table according to the terminal ID input from the terminal ID setting unit 1001 and uses the Walsh sequence number used by the terminal 900 (for example, the Walsh sequence (1, 1) Walsh sequence). The number 0 or the Walsh sequence number 1) of the Walsh sequence (1, −1) is determined. That is, the determining unit 1002 receives the received DM-RS based on a correspondence relationship in which a plurality of transmission parameters indicating terminal IDs that can be set for each terminal and a Walsh sequence number of the Walsh sequence are associated one-to-one. The Walsh sequence Walsh sequence number corresponding to the transmission parameter (terminal ID in this case) notified to the transmission source terminal 900 is determined. Then, the determination unit 1002 outputs the determined Walsh sequence number to the multiplication unit 211.
 また、基地局1000は、自局がカバーするセル内の複数の端末に対して、送信リソースをどの端末に割り当てるかを制御する。そして、基地局1000は、送信リソースを割り当てる端末に対して、その端末固有の端末IDを設定する。そして、基地局1000は、各端末の端末IDを示す情報を、下り回線の制御チャネルを用いて各端末へ送信する(図示せず)。 In addition, the base station 1000 controls to which terminal transmission resources are allocated to a plurality of terminals in a cell covered by the base station 1000. Then, base station 1000 sets a terminal ID unique to the terminal to a terminal to which transmission resources are allocated. Base station 1000 transmits information indicating the terminal ID of each terminal to each terminal using a downlink control channel (not shown).
 次に、本実施の形態に係る端末900(図22)の決定部902および基地局1000(図23)の決定部1002におけるWalsh系列番号の設定例について説明する。 Next, setting examples of Walsh sequence numbers in determining section 902 of terminal 900 (FIG. 22) and determining section 1002 of base station 1000 (FIG. 23) according to the present embodiment will be described.
 本実施の形態では、DM-RSに用いるWalsh系列のWalsh系列番号は、各端末に設定された端末IDに1対1で対応付けられる。例えば、図24に示すように、端末IDが偶数の場合には、Walsh系列番号1(図24に示すW#1)が対応付けられ、端末IDが奇数の場合には、Walsh系列番号0(図24に示すW#0)が対応付けられる。 In the present embodiment, the Walsh sequence Walsh sequence number used for the DM-RS is associated with the terminal ID set for each terminal on a one-to-one basis. For example, as shown in FIG. 24, when the terminal ID is an even number, Walsh sequence number 1 (W # 1 shown in FIG. 24) is associated, and when the terminal ID is an odd number, Walsh sequence number 0 ( W # 0) shown in FIG. 24 is associated.
 よって、決定部902および決定部1002は、端末900に設定された端末IDが奇数の場合には、端末900のDM-RSに用いるWalsh系列のWalsh系列番号を0に決定する。同様にして、決定部902および決定部1002は、端末900に設定された端末IDが偶数の場合には、端末900のDM-RSに用いるWalsh系列のWalsh系列番号を1に決定する。 Therefore, the determination unit 902 and the determination unit 1002 determine the Walsh sequence number of the Walsh sequence used for the DM-RS of the terminal 900 as 0 when the terminal ID set in the terminal 900 is an odd number. Similarly, determining section 902 and determining section 1002 determine that the Walsh sequence Walsh sequence number used for the DM-RS of terminal 900 is 1 when the terminal ID set for terminal 900 is an even number.
 このように、端末900は、基地局1000が下り回線の制御チャネルを用いて送信する送信パラメータである、端末900の端末IDに基づいて、DM-RSに用いるWalsh系列を決定することができる。つまり、図24に示すように、端末IDとWalsh系列番号とを予め対応付けることにより、端末900は、自端末が使用するWalsh系列を基地局1000から通知されることなく特定することができ、Walsh系列番号の通知に要するシグナリングビットが不要になる。 As described above, the terminal 900 can determine the Walsh sequence used for the DM-RS based on the terminal ID of the terminal 900, which is a transmission parameter transmitted from the base station 1000 using the downlink control channel. That is, as shown in FIG. 24, by associating the terminal ID and the Walsh sequence number in advance, the terminal 900 can identify the Walsh sequence used by the terminal without being notified from the base station 1000, and the Walsh The signaling bit required for notification of the sequence number is not necessary.
 上述したように、決定部902および決定部1002は、端末IDが奇数の場合と、偶数の場合とで互いに異なるWalsh系列番号を決定する。すなわち、決定部902および決定部1002は、端末IDが奇数(または偶数)である端末間には同一のWalsh系列番号を決定する。そのため、基地局1000は、送信リソースにどの端末を割り当てるかを制御する際には、端末IDが奇数(または偶数)である端末同士を同一送信帯域に割り当てることができない制約がある。例えば、図24に示すように、基地局1000は、端末IDが奇数であり、送信帯域幅が5RBである端末Bと同一送信帯域には、端末IDが奇数である他の端末を割り当てることができない。すなわち、図24に示すように、基地局1000は、端末IDが奇数である端末Bと端末Cとを、互いに異なる送信帯域に割り当てる必要がある。なお、端末IDが偶数の端末についても同様である。 As described above, the determination unit 902 and the determination unit 1002 determine different Walsh sequence numbers depending on whether the terminal ID is an odd number or an even number. That is, the determination unit 902 and the determination unit 1002 determine the same Walsh sequence number between terminals whose terminal IDs are odd (or even). Therefore, when the base station 1000 controls which terminals are allocated to transmission resources, there is a restriction that terminals having terminal IDs that are odd (or even) cannot be allocated to the same transmission band. For example, as shown in FIG. 24, the base station 1000 assigns another terminal with an odd terminal ID to the same transmission band as the terminal B with an odd terminal ID and a transmission bandwidth of 5 RBs. Can not. That is, as shown in FIG. 24, the base station 1000 needs to assign terminal B and terminal C, whose terminal IDs are odd numbers, to different transmission bands. The same applies to terminals with an even terminal ID.
 しかし、基地局1000がカバーするセル内に端末が多く存在する場合(送信リソースの割当候補が多く存在する場合)には、端末IDが奇数の端末および端末IDが偶数の端末の双方とも十分に存在する。よって、基地局1000が上記制約により割り当てられない端末が存在する場合でも、上記制約により割り当てられない端末と受信性能が近く、端末IDの属性(奇数または偶数)が反対の端末を割り当てることができるため、システムスループット性能への影響は少ない。 However, when there are many terminals in the cell covered by base station 1000 (when there are many transmission resource allocation candidates), both terminals with odd terminal IDs and terminals with even terminal IDs are sufficient. Exists. Therefore, even when there is a terminal to which the base station 1000 is not assigned due to the restriction, a terminal having a reception performance close to that of the terminal not assigned due to the restriction and having an opposite terminal ID attribute (odd or even) can be assigned. Therefore, there is little impact on system throughput performance.
 すなわち、基地局1000がカバーするセル内に端末が多く存在する場合(送信リソースの割当候補が多く存在する場合)には、基地局1000は、端末IDに応じて同一送信リソースへの端末の割当を制限する場合でも、システムスループット性能を劣化させることなく、端末間のDM-RSを直交化させることができる。 That is, when there are many terminals in a cell covered by base station 1000 (when there are many transmission resource allocation candidates), base station 1000 allocates terminals to the same transmission resource according to the terminal ID. Even in the case of restricting the DM-RS, it is possible to orthogonalize DM-RSs between terminals without degrading the system throughput performance.
 このように、本実施の形態によれば、端末IDとWalsh系列のWalsh系列番号とが1対1で対応付けられる。これにより、端末は、基地局が通知する送信パラメータである、端末IDに基づいて、自端末のDM-RSに用いるWalsh系列を特定することができる。よって、本実施の形態によれば、LTE-Advancedにおいて、DM-RSにWalsh系列を適用する場合でも、基地局から端末へのWalsh系列番号の通知に要するシグナリングビット数の増加を防止することができ、かつ、制御チャネル用フォーマットを新たに追加する必要が無くなる。 Thus, according to the present embodiment, the terminal ID and the Walsh sequence Walsh sequence number are associated one-to-one. Thereby, the terminal can specify the Walsh sequence used for the DM-RS of the terminal based on the terminal ID, which is the transmission parameter notified by the base station. Therefore, according to the present embodiment, in LTE-Advanced, even when a Walsh sequence is applied to DM-RS, it is possible to prevent an increase in the number of signaling bits required for notification of the Walsh sequence number from the base station to the terminal. This eliminates the need to newly add a control channel format.
 さらに、本実施の形態によれば、基地局がカバーするセル内に端末が多く存在する場合(送信リソースの割当候補が多く存在する場合)には、端末間のDM-RSを直交化させるために、端末IDの属性が異なる端末同士を同一送信リソースに割り当てる。これにより、基地局が端末IDに応じて送信リソースへの端末の割当を制限する場合でも、基地局は、制限された端末の性能に近く、端末IDの属性が異なる端末同士を同一送信リソースに割り当てることができる。このため、基地局が端末IDに応じて送信リソースへの端末の割当を制限する場合でも、MU-MIMO多重における周波数スケジューリングの自由度を確保することができる。 Furthermore, according to the present embodiment, when there are many terminals in a cell covered by a base station (when there are many transmission resource allocation candidates), DM-RSs between terminals are orthogonalized. In addition, terminals having different terminal ID attributes are allocated to the same transmission resource. As a result, even when the base station restricts the allocation of terminals to transmission resources according to the terminal ID, the base station uses terminals with different terminal ID attributes that are close to the limited terminal performance as the same transmission resource. Can be assigned. For this reason, even when the base station restricts allocation of terminals to transmission resources according to the terminal ID, it is possible to ensure the degree of freedom of frequency scheduling in MU-MIMO multiplexing.
 なお、本実施の形態は、実施の形態1~4と組み合わせてもよい。すなわち、送信帯域幅、送信帯域位置またはMCS番号と、Walsh系列番号との対応関係を、端末IDに応じて異ならせてもよい。例えば、本実施の形態と実施の形態1とを組み合わせて、図25に示すように、DM-RSの送信帯域幅および端末IDの双方と、Walsh系列番号とを対応付けてもよい。図25では、DM-RSの送信帯域幅とWalsh系列番号との対応関係は、端末IDが奇数の場合と偶数の場合とで互いに異なる。また、実施の形態2と同様にして図25に示す送信帯域幅に対して閾値を設定してもよい。また、実施の形態3と同様にして、図25に示す送信帯域幅の代わりにDM-RSの送信帯域位置を用いてもよく、実施の形態4と同様にして、図25に示す送信帯域幅の代わりに、端末が送信する送信データのMCS番号(またはTBS番号)を用いてもよい。 Note that this embodiment may be combined with Embodiments 1 to 4. That is, the correspondence relationship between the transmission bandwidth, the transmission band position, or the MCS number and the Walsh sequence number may be varied according to the terminal ID. For example, combining the present embodiment and the first embodiment, both the DM-RS transmission bandwidth and the terminal ID may be associated with the Walsh sequence number as shown in FIG. In FIG. 25, the correspondence relationship between the DM-RS transmission bandwidth and the Walsh sequence number differs depending on whether the terminal ID is odd or even. Further, a threshold value may be set for the transmission bandwidth shown in FIG. 25 in the same manner as in the second embodiment. Similarly to the third embodiment, the DM-RS transmission band position may be used instead of the transmission bandwidth shown in FIG. 25. Similarly to the fourth embodiment, the transmission bandwidth shown in FIG. Instead of this, the MCS number (or TBS number) of transmission data transmitted by the terminal may be used.
 また、図24では、端末IDが偶数の場合にはWalsh系列番号1が対応付けられ、端末IDが奇数の場合にはWalsh系列番号0が対応付けられる場合について説明した。しかし、本実施の形態では、端末IDが偶数の場合にはWalsh系列番号0が対応付けられ、端末IDが奇数の場合にはWalsh系列番号1が対応付けられてもよい。 Further, in FIG. 24, the case has been described in which Walsh sequence number 1 is associated when the terminal ID is an even number, and Walsh sequence number 0 is associated when the terminal ID is an odd number. However, in the present embodiment, when the terminal ID is an even number, Walsh sequence number 0 may be associated, and when the terminal ID is an odd number, Walsh sequence number 1 may be associated.
 以上、本発明の各実施の形態について説明した。 The embodiments of the present invention have been described above.
 なお、上記実施の形態1~4では、MU-MIMO多重を行う場合について説明した。しかし、MU-MIMO多重に限らず、1つの端末(送信側)が複数のアンテナで送信するデータの送信帯域幅、送信帯域位置またはMCS番号が互いに異なる、SU-MIMO(Single User-MIMO)多重にも、本発明を同様に適用することができる。 In the first to fourth embodiments, the case where MU-MIMO multiplexing is performed has been described. However, not limited to MU-MIMO multiplexing, SU-MIMO (Single-User-MIMO) multiplexing in which the transmission bandwidth, transmission band position, or MCS number of data transmitted by one terminal (transmission side) using a plurality of antennas is different from each other. In addition, the present invention can be similarly applied.
 また、上記実施の形態では、端末および基地局が同一のルールテーブルを予め有して、DM-RSの送信帯域幅と、Walsh系列番号との対応付けする場合について説明した。しかし、本発明は、端末と基地局とが同一のルールテーブルを予め有する必要はなく、DM-RSの送信帯域幅と、Walsh系列番号との対応付けと等価の対応付けを行えれば、ルールテーブルを用いなくてもよい。 In the above embodiment, the case has been described in which the terminal and the base station have the same rule table in advance and the transmission bandwidth of the DM-RS is associated with the Walsh sequence number. However, the present invention does not require that the terminal and the base station have the same rule table in advance, and if the association equivalent to the association between the transmission bandwidth of the DM-RS and the Walsh sequence number can be performed, It is not necessary to use a table.
 また、上記実施の形態において、各送信パラメータ(送信帯域幅、送信帯域位置、MCS番号および端末ID)とWalsh系列番号との対応関係は、基地局が各端末にImplicitまたはExplicitに通知してもよい。 In the above embodiment, the correspondence between each transmission parameter (transmission bandwidth, transmission band position, MCS number, and terminal ID) and the Walsh sequence number is not limited even if the base station notifies each terminal to Implicit or Explicit. Good.
 また、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。 Further, although cases have been described with the above embodiment as examples where the present invention is configured by hardware, the present invention can also be realized by software.
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Further, each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. Although referred to as LSI here, it may be referred to as IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 2009年10月27日出願の特願2009-246807の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the specification, drawings and abstract included in the Japanese application of Japanese Patent Application No. 2009-246807 filed on Oct. 27, 2009 is incorporated herein by reference.
 本発明は、移動体通信システム等に適用することができる。 The present invention can be applied to a mobile communication system or the like.
 100,300,500,700,900 端末
 200,400,600,800,1000 基地局
 101,201 アンテナ
 102,202 受信RF部
 103,221 復調部
 104,206 送信帯域位置設定部
 105,208 送信帯域幅設定部
 106,210 生成部
 107,209,302,402,501,601,702,802,902,1002 決定部
 108,211 乗算部
 109 マッピング部
 110,214,220 IFFT部
 111 CP付加部
 112 送信RF部
 203 CP除去部
 204 分離部
 205,217 FFT部
 207,218 デマッピング部
 212 同相加算部
 213 除算部
 215 マスク処理部
 216 DFT部
 219 周波数領域等化部
 222 復号部
 301,401 閾値設定部
 701,801 MCS番号設定部
 901,1001 端末ID設定部
100, 300, 500, 700, 900 Terminal 200, 400, 600, 800, 1000 Base station 101, 201 Antenna 102, 202 Receiving RF unit 103, 221 Demodulating unit 104, 206 Transmission band position setting unit 105, 208 Transmission bandwidth Setting unit 106, 210 Generation unit 107, 209, 302, 402, 501, 601, 702, 802, 902, 1002 Determination unit 108, 211 Multiplication unit 109 Mapping unit 110, 214, 220 IFFT unit 111 CP addition unit 112 Transmission RF Unit 203 CP removal unit 204 separation unit 205, 217 FFT unit 207, 218 demapping unit 212 in-phase addition unit 213 division unit 215 mask processing unit 216 DFT unit 219 frequency domain equalization unit 222 decoding unit 301, 401 threshold setting unit 701 80 MCS number setting unit 901 and 1001 terminal ID setting unit

Claims (10)

  1.  複数の端末装置のそれぞれに対して、複数の送信パラメータのうちいずれかが設定され、設定された送信パラメータが基地局装置から前記複数の端末装置へ通知される通信システムにおいて用いられる端末装置であって、
     前記複数の送信パラメータとWalsh系列の系列番号とが1対1で対応付けられている対応関係に基づいて、前記基地局装置から通知される、自装置に設定された送信パラメータに対応するWalsh系列の系列番号を決定する決定手段と、
     決定された前記系列番号のWalsh系列を参照信号用系列に乗算する乗算手段と、
     を具備する端末装置。
    A terminal device used in a communication system in which any one of a plurality of transmission parameters is set for each of a plurality of terminal devices, and the set transmission parameters are notified from the base station device to the plurality of terminal devices. And
    The Walsh sequence corresponding to the transmission parameter set in the base station device, which is notified from the base station device, based on the correspondence relationship in which the plurality of transmission parameters and the sequence numbers of the Walsh sequence are associated one-to-one. Determining means for determining the sequence number of
    Multiplying means for multiplying the Walsh sequence of the determined sequence number by the reference signal sequence;
    A terminal device comprising:
  2.  前記対応関係では、最も近い品質を示す2つの送信パラメータに対して、互いに異なる前記系列番号がそれぞれ対応付けられる、
     請求項1記載の端末装置。
    In the correspondence relationship, the different transmission sequence numbers are associated with the two transmission parameters indicating the closest quality,
    The terminal device according to claim 1.
  3.  前記送信パラメータは、前記端末装置が送信する信号の送信帯域幅である、
     請求項1記載の端末装置。
    The transmission parameter is a transmission bandwidth of a signal transmitted by the terminal device.
    The terminal device according to claim 1.
  4.  前記決定手段は、自装置に設定された送信パラメータが、閾値より大きい前記送信帯域幅を表す送信パラメータの場合、前記対応関係に基づいてWalsh系列の系列番号を決定し、自装置に設定された送信パラメータが、前記閾値以下の前記送信帯域幅を表す送信パラメータの場合、前記基地局装置から通知されるWalsh系列の系列番号を用いる、
     請求項3記載の端末装置。
    When the transmission parameter set in the own device is a transmission parameter representing the transmission bandwidth larger than a threshold, the determination unit determines a sequence number of the Walsh sequence based on the correspondence relationship and is set in the own device. When the transmission parameter is a transmission parameter representing the transmission bandwidth equal to or less than the threshold, a Walsh sequence number notified from the base station device is used.
    The terminal device according to claim 3.
  5.  前記送信パラメータは、前記端末装置が送信する信号がマッピングされる送信帯域位置である、
     請求項1記載の端末装置。
    The transmission parameter is a transmission band position to which a signal transmitted by the terminal device is mapped.
    The terminal device according to claim 1.
  6.  前記送信パラメータは、前記端末装置に設定されたMCSを示すMCS番号、または、前記端末装置に設定されたTBSを示すTBS番号である、
     請求項1記載の端末装置。
    The transmission parameter is an MCS number indicating MCS set in the terminal device, or a TBS number indicating TBS set in the terminal device.
    The terminal device according to claim 1.
  7.  前記送信パラメータは、前記複数の端末装置に固有のID番号である、
     請求項1記載の端末装置。
    The transmission parameter is an ID number unique to the plurality of terminal devices.
    The terminal device according to claim 1.
  8.  複数の端末装置のそれぞれに対して、複数の送信パラメータのうちいずれかを設定し、設定された送信パラメータを前記複数の端末装置へ通知する基地局装置であって、
     前記複数の送信パラメータとWalsh系列の系列番号とが1対1で対応付けられている対応関係に基づいて、受信した参照信号の送信元端末装置に通知した送信パラメータに対応するWalsh系列の系列番号を決定する決定手段と、
     決定された前記系列番号のWalsh系列を、前記参照信号に乗算する乗算手段と、
     を具備する基地局装置。
    For each of a plurality of terminal devices, a base station device that sets one of a plurality of transmission parameters and notifies the plurality of terminal devices of the set transmission parameters,
    The sequence number of the Walsh sequence corresponding to the transmission parameter notified to the transmission source terminal device of the received reference signal based on the correspondence relationship in which the plurality of transmission parameters and the sequence number of the Walsh sequence are associated one-to-one. A determination means for determining
    Multiplying means for multiplying the reference signal by the determined Walsh sequence of the sequence number;
    A base station apparatus comprising:
  9.  前記乗算後の前記参照信号に対して同相加算処理を行う同相加算手段、を更に具備する、
     請求項8に記載の基地局装置。
    In-phase addition means for performing in-phase addition processing on the reference signal after the multiplication,
    The base station apparatus according to claim 8.
  10.  複数の端末装置のそれぞれに対して、複数の送信パラメータのうちいずれかを設定し、設定された送信パラメータを前記複数の端末装置へ通知する基地局装置において用いられる系列番号決定方法であって、
     前記複数の送信パラメータとWalsh系列の系列番号とが1対1で対応付けられた対応関係に基づいて、前記基地局装置から前記端末装置へ通知される送信パラメータに対応するWalsh系列の系列番号を決定する、
     系列番号決定方法。
    A sequence number determination method used in a base station apparatus that sets one of a plurality of transmission parameters for each of a plurality of terminal apparatuses and notifies the set transmission parameters to the plurality of terminal apparatuses,
    Based on the correspondence relationship in which the plurality of transmission parameters and Walsh sequence number are associated one-to-one, the sequence number of the Walsh sequence corresponding to the transmission parameter notified from the base station device to the terminal device is decide,
    Sequence number determination method.
PCT/JP2010/006330 2009-10-27 2010-10-26 Wireless communication terminal device, wireless communication base station device, and sequence number determination method WO2011052192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-246807 2009-10-27
JP2009246807 2009-10-27

Publications (1)

Publication Number Publication Date
WO2011052192A1 true WO2011052192A1 (en) 2011-05-05

Family

ID=43921626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006330 WO2011052192A1 (en) 2009-10-27 2010-10-26 Wireless communication terminal device, wireless communication base station device, and sequence number determination method

Country Status (1)

Country Link
WO (1) WO2011052192A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3GPP TSG RAN WG1 Meeting #51, R1-074865", 9 November 2007, article NOKIA SIEMENS NETWORKS ET AL.: "UL DM RS for Multi-bandwidth Multi-user MIMO", pages: 1 - 3 *
"3GPP TSG RAN WG1 Meeting #57, Rl-091772", 8 May 2009, article NOKIA SIEMENS NETWORK: "Reference Signal structure for LET-Advanced UL SU-MIMO", pages: 4 - 5 *

Similar Documents

Publication Publication Date Title
US11716727B2 (en) Integrated circuit
EP2560315B1 (en) Radio communication apparatus and pilot symbol transmission method
RU2426236C2 (en) Method of transmitting control signals on uplink channel in wireless communication system
JP5372073B2 (en) Integrated circuits in multicarrier communications.
EP2495905B1 (en) Wireless communication system, base station device, mobile station device, wireless communication method, and integrated circuit
AU2017390583A1 (en) Device and node in a wireless communication system for transmitting uplink control information
CN110393030B (en) OFDM communication system having method for determining subcarrier offset for OFDM symbol generation
US9237049B2 (en) Wireless communication base station device, wireless communication mobile station device, and propagation path estimation method
JP2006287895A (en) Radio transmission device and radio reception device
JP5607806B2 (en) Terminal device and transmission signal transmission method
KR20110098998A (en) Wireless communication terminal apparatus, wireless communication base station apparatus, and cluster constellation setting method
WO2006137495A1 (en) Radio communication base station device and radio communication method in multi-carrier communications
US9496918B2 (en) Multicarrier communication system employing explicit frequency hopping
WO2018117139A1 (en) Base station device, terminal device, and communication method
KR101339507B1 (en) Method for Transmitting Codeword
JP6856726B2 (en) Communication equipment, communication methods and integrated circuits
WO2012140847A1 (en) Transmitter apparatus, receiver apparatus, signal generating method and quality estimating method
WO2011120584A1 (en) Sequence hopping in a communication system
WO2011052192A1 (en) Wireless communication terminal device, wireless communication base station device, and sequence number determination method
WO2010146867A1 (en) Wireless transmission apparatus and transmission power control method
JP2010200077A (en) Mobile communication system, base station device, mobile station device, and mobile communication method
WO2010084821A1 (en) Mobile communication system, base station apparatus, mobile station apparatus and mobile communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP