WO2011051489A2 - Albumin variants - Google Patents
Albumin variants Download PDFInfo
- Publication number
- WO2011051489A2 WO2011051489A2 PCT/EP2010/066572 EP2010066572W WO2011051489A2 WO 2011051489 A2 WO2011051489 A2 WO 2011051489A2 EP 2010066572 W EP2010066572 W EP 2010066572W WO 2011051489 A2 WO2011051489 A2 WO 2011051489A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- albumin
- variant
- fragment
- hsa
- seq
- Prior art date
Links
- 108010088751 Albumins Proteins 0.000 title claims abstract description 373
- 102000009027 Albumins Human genes 0.000 title claims abstract description 372
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 236
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 235
- 229920001184 polypeptide Polymers 0.000 claims abstract description 233
- 230000004927 fusion Effects 0.000 claims abstract description 128
- 239000012634 fragment Substances 0.000 claims description 246
- 238000006467 substitution reaction Methods 0.000 claims description 160
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 127
- 230000027455 binding Effects 0.000 claims description 123
- 238000009739 binding Methods 0.000 claims description 123
- 238000000034 method Methods 0.000 claims description 89
- 150000001413 amino acids Chemical class 0.000 claims description 88
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 claims description 70
- 230000004075 alteration Effects 0.000 claims description 66
- 150000001875 compounds Chemical class 0.000 claims description 34
- 229910052698 phosphorus Inorganic materials 0.000 claims description 33
- 230000014509 gene expression Effects 0.000 claims description 30
- 230000009286 beneficial effect Effects 0.000 claims description 22
- 229910052700 potassium Inorganic materials 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 21
- 150000007523 nucleic acids Chemical class 0.000 claims description 21
- 102000039446 nucleic acids Human genes 0.000 claims description 20
- 108020004707 nucleic acids Proteins 0.000 claims description 20
- 230000001225 therapeutic effect Effects 0.000 claims description 20
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 229910052731 fluorine Inorganic materials 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000001963 growth medium Substances 0.000 claims description 5
- 229910052740 iodine Inorganic materials 0.000 claims description 5
- 239000008194 pharmaceutical composition Substances 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 125000004149 thio group Chemical group *S* 0.000 claims description 2
- 101710177940 IgG receptor FcRn large subunit p51 Proteins 0.000 claims 4
- 239000001589 sorbitan tristearate Substances 0.000 claims 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 271
- 102000008100 Human Serum Albumin Human genes 0.000 description 271
- 235000001014 amino acid Nutrition 0.000 description 97
- 210000002381 plasma Anatomy 0.000 description 60
- 108090000623 proteins and genes Proteins 0.000 description 57
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 46
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 46
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 46
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Chemical class OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 43
- 210000004027 cell Anatomy 0.000 description 43
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical class OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 42
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 40
- 102000007562 Serum Albumin Human genes 0.000 description 40
- 108010071390 Serum Albumin Proteins 0.000 description 40
- 108020004414 DNA Proteins 0.000 description 39
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 39
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 38
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical group OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 37
- 125000000539 amino acid group Chemical group 0.000 description 37
- 239000013612 plasmid Substances 0.000 description 37
- 239000002773 nucleotide Substances 0.000 description 36
- 125000003729 nucleotide group Chemical group 0.000 description 36
- 108091033319 polynucleotide Proteins 0.000 description 35
- 102000040430 polynucleotide Human genes 0.000 description 35
- 239000002157 polynucleotide Substances 0.000 description 35
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 33
- 108091026890 Coding region Proteins 0.000 description 29
- 102000004169 proteins and genes Human genes 0.000 description 28
- 102000005962 receptors Human genes 0.000 description 28
- 108020003175 receptors Proteins 0.000 description 28
- 125000003275 alpha amino acid group Chemical group 0.000 description 25
- 235000018102 proteins Nutrition 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 23
- 241000282414 Homo sapiens Species 0.000 description 22
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 18
- 239000013613 expression plasmid Substances 0.000 description 17
- 238000003780 insertion Methods 0.000 description 17
- 230000037431 insertion Effects 0.000 description 17
- 230000003993 interaction Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 108010076504 Protein Sorting Signals Proteins 0.000 description 15
- 238000012217 deletion Methods 0.000 description 15
- 230000037430 deletion Effects 0.000 description 15
- 238000000746 purification Methods 0.000 description 15
- 230000002829 reductive effect Effects 0.000 description 14
- 241000894007 species Species 0.000 description 14
- 238000001727 in vivo Methods 0.000 description 13
- 108010068617 neonatal Fc receptor Proteins 0.000 description 13
- 238000002965 ELISA Methods 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 230000035772 mutation Effects 0.000 description 12
- 238000010561 standard procedure Methods 0.000 description 12
- 230000009466 transformation Effects 0.000 description 12
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 11
- 239000002953 phosphate buffered saline Substances 0.000 description 11
- 108020004705 Codon Proteins 0.000 description 10
- 101001076407 Homo sapiens Interleukin-1 receptor antagonist protein Proteins 0.000 description 10
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 10
- 239000012228 culture supernatant Substances 0.000 description 10
- 238000004128 high performance liquid chromatography Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 9
- 239000005695 Ammonium acetate Substances 0.000 description 9
- 241000283707 Capra Species 0.000 description 9
- 241000283973 Oryctolagus cuniculus Species 0.000 description 9
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 229940043376 ammonium acetate Drugs 0.000 description 9
- 235000019257 ammonium acetate Nutrition 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- 210000004899 c-terminal region Anatomy 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 239000001632 sodium acetate Substances 0.000 description 9
- 235000017281 sodium acetate Nutrition 0.000 description 9
- 229940119178 Interleukin 1 receptor antagonist Drugs 0.000 description 8
- 241001494479 Pecora Species 0.000 description 8
- 241000700159 Rattus Species 0.000 description 8
- 230000009137 competitive binding Effects 0.000 description 8
- 230000021615 conjugation Effects 0.000 description 8
- 239000003407 interleukin 1 receptor blocking agent Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 241000700199 Cavia porcellus Species 0.000 description 7
- 241000699800 Cricetinae Species 0.000 description 7
- 241000283074 Equus asinus Species 0.000 description 7
- 241000287828 Gallus gallus Species 0.000 description 7
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 7
- 238000010367 cloning Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000002741 site-directed mutagenesis Methods 0.000 description 7
- 125000003396 thiol group Chemical group [H]S* 0.000 description 7
- 230000014616 translation Effects 0.000 description 7
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 6
- 108091034117 Oligonucleotide Proteins 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000000855 fermentation Methods 0.000 description 6
- 230000004151 fermentation Effects 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 239000002853 nucleic acid probe Substances 0.000 description 6
- 239000008363 phosphate buffer Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 238000013519 translation Methods 0.000 description 6
- 239000004471 Glycine Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 238000002703 mutagenesis Methods 0.000 description 5
- 231100000350 mutagenesis Toxicity 0.000 description 5
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 5
- 239000013615 primer Substances 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 238000002105 Southern blotting Methods 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 239000012876 carrier material Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 230000008488 polyadenylation Effects 0.000 description 4
- 229920000136 polysorbate Polymers 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 3
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- 102100029516 Basic salivary proline-rich protein 1 Human genes 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 3
- 102000005720 Glutathione transferase Human genes 0.000 description 3
- 108010070675 Glutathione transferase Proteins 0.000 description 3
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 description 3
- 101001125486 Homo sapiens Basic salivary proline-rich protein 1 Proteins 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 3
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 108700005078 Synthetic Genes Proteins 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- -1 e.g. Proteins 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 3
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 239000000833 heterodimer Substances 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 230000004481 post-translational protein modification Effects 0.000 description 3
- 238000002708 random mutagenesis Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 102220052102 rs35524245 Human genes 0.000 description 3
- 239000012146 running buffer Substances 0.000 description 3
- BYKRNSHANADUFY-UHFFFAOYSA-M sodium octanoate Chemical compound [Na+].CCCCCCCC([O-])=O BYKRNSHANADUFY-UHFFFAOYSA-M 0.000 description 3
- 239000001488 sodium phosphate Substances 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- 235000011008 sodium phosphates Nutrition 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 2
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 2
- 238000012492 Biacore method Methods 0.000 description 2
- 101100315624 Caenorhabditis elegans tyr-1 gene Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 101150015836 ENO1 gene Proteins 0.000 description 2
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 235000003332 Ilex aquifolium Nutrition 0.000 description 2
- 241000209027 Ilex aquifolium Species 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- STECJAGHUSJQJN-USLFZFAMSA-N LSM-4015 Chemical compound C1([C@@H](CO)C(=O)OC2C[C@@H]3N([C@H](C2)[C@@H]2[C@H]3O2)C)=CC=CC=C1 STECJAGHUSJQJN-USLFZFAMSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 2
- 101000930477 Mus musculus Albumin Proteins 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 230000004988 N-glycosylation Effects 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 102000002508 Peptide Elongation Factors Human genes 0.000 description 2
- 108010068204 Peptide Elongation Factors Proteins 0.000 description 2
- 101000832889 Scheffersomyces stipitis (strain ATCC 58785 / CBS 6054 / NBRC 10063 / NRRL Y-11545) Alcohol dehydrogenase 2 Proteins 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 2
- FZQSLXQPHPOTHG-UHFFFAOYSA-N [K+].[K+].O1B([O-])OB2OB([O-])OB1O2 Chemical compound [K+].[K+].O1B([O-])OB2OB([O-])OB1O2 FZQSLXQPHPOTHG-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 239000001166 ammonium sulphate Substances 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000011210 chromatographic step Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011026 diafiltration Methods 0.000 description 2
- 239000013024 dilution buffer Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000006167 equilibration buffer Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Chemical class 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 231100000219 mutagenic Toxicity 0.000 description 2
- 230000003505 mutagenic effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 2
- 229940116357 potassium thiocyanate Drugs 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 102220285717 rs1555461680 Human genes 0.000 description 2
- 102220026086 rs397518426 Human genes 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 235000020183 skimmed milk Nutrition 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 238000011830 transgenic mouse model Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- AYDAHOIUHVUJHQ-UHFFFAOYSA-N 1-(3',6'-dihydroxy-3-oxospiro[2-benzofuran-1,9'-xanthene]-5-yl)pyrrole-2,5-dione Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=CC=2)OC(=O)C1=CC=2N1C(=O)C=CC1=O AYDAHOIUHVUJHQ-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- 102220466243 Acyl-coenzyme A thioesterase MBLAC2_R170A_mutation Human genes 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 241000143060 Americamysis bahia Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010023063 Bacto-peptone Proteins 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- 101100327917 Caenorhabditis elegans chup-1 gene Proteins 0.000 description 1
- 101100273797 Caenorhabditis elegans pct-1 gene Proteins 0.000 description 1
- 108020004638 Circular DNA Proteins 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- 229920002271 DEAE-Sepharose Polymers 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 239000004277 Ferrous carbonate Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101150094690 GAL1 gene Proteins 0.000 description 1
- 102100028501 Galanin peptides Human genes 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 241000282575 Gorilla Species 0.000 description 1
- 101100322653 Homo sapiens ADH1A gene Proteins 0.000 description 1
- 101100121078 Homo sapiens GAL gene Proteins 0.000 description 1
- 101000742143 Homo sapiens Prenylated Rab acceptor protein 1 Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102220468791 Inositol 1,4,5-trisphosphate receptor type 2_Y167A_mutation Human genes 0.000 description 1
- 108010089308 Insulin Detemir Proteins 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 241000282553 Macaca Species 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102100038619 Prenylated Rab acceptor protein 1 Human genes 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710180012 Protease 7 Proteins 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 101100010928 Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) tuf gene Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 101900354623 Saccharomyces cerevisiae Galactokinase Proteins 0.000 description 1
- 101900084120 Saccharomyces cerevisiae Triosephosphate isomerase Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 101000930463 Sus scrofa Albumin Proteins 0.000 description 1
- 101150001810 TEAD1 gene Proteins 0.000 description 1
- 101150074253 TEF1 gene Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102100029898 Transcriptional enhancer factor TEF-1 Human genes 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 238000002617 apheresis Methods 0.000 description 1
- 125000000637 arginyl group Chemical class N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 238000002306 biochemical method Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 230000021235 carbamoylation Effects 0.000 description 1
- 238000012219 cassette mutagenesis Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 238000011157 data evaluation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- PQYUGUXEJHLOIL-UHFFFAOYSA-N diethoxysilyl triethyl silicate Chemical compound C(C)O[SiH](O[Si](OCC)(OCC)OCC)OCC PQYUGUXEJHLOIL-UHFFFAOYSA-N 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010039 intracellular degradation Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- UGOZVNFCFYTPAZ-IOXYNQHNSA-N levemir Chemical compound CCCCCCCCCCCCCC(=O)NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)CNC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H]1NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=2N=CNC=2)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=2N=CNC=2)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=2C=CC=CC=2)C(C)C)CSSC[C@@H]2NC(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)C(C)C)CSSC[C@H](NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CO)NC(=O)[C@H]([C@@H](C)O)NC2=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H](CSSC1)C(=O)N[C@@H](CC(N)=O)C(O)=O)CC1=CC=C(O)C=C1 UGOZVNFCFYTPAZ-IOXYNQHNSA-N 0.000 description 1
- 229940102988 levemir Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical class [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000006151 minimal media Substances 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 102220244677 rs1555802245 Human genes 0.000 description 1
- 102220087235 rs864622622 Human genes 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 238000012807 shake-flask culturing Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 125000000341 threoninyl group Chemical class [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 150000003668 tyrosines Chemical class 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/76—Albumins
- C07K14/765—Serum albumin, e.g. HSA
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/31—Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin
Definitions
- the present invention relates to variants of albumin or fragments thereof or fusion polypeptides comprising variant albumin or fragments thereof having a change in half-life compared to the albumin, fragment thereof or fusion polypeptide comprising albumin or a fragment thereof.
- Albumin is a protein naturally found in the blood plasma of mammals where it is the most abundant protein. It has important roles in maintaining the desired osmotic pressure of the blood and also in transport of various substances in the blood stream.
- Albumins have been characterized from many species including human, pig, mouse, rat, rabbit and goat and they share a high degree of sequence and structural homology.
- FcRn neonatal Fc receptor
- BrambeH neonatal Fc receptor
- FcRn is a membrane bound protein, expressed in many cell and tissue types. FcRn has been found to salvage albumin from intracellular degradation (Roopenian D. C. and Akilesh, S. (2007), Nat. Rev. Immunol 7, 715-725.). FcRn is a bifunctional molecule that contributes to maintaining a high level of IgGs and albumin in serum in mammals such as human beings.
- HSA Human serum albumin
- the plasma half-life of HSA has been found to be approximately 19 days.
- a natural variant having lower plasma half-life has been identified (Peach, R. J. and Brennan, S. 0.,(1991 ) Biochim Biophys Acta.1097:49-54) having the substitution D494N.
- This substitution generated an N- glycosylation site in this variant, which is not present in the wild-type albumin. It is not known whether the glycosylation or the amino acid change is responsible for the change in plasma half- life.
- Albumin has a long plasma half-life and because of this property it has been suggested for use in drug delivery.
- Albumin has been conjugated to pharmaceutically beneficial compounds (WO 2000/69902A), and it was found that the conjugate - maintained the long plasma half-life of albumin.
- the resulting plasma half-life of the conjugate was generally considerably longer than the plasma half-life of the beneficial therapeutic compound alone.
- albumin has been fused to therapeutically beneficial peptides (WO 2001/79271 A and WO 2003/59934 A) with the typical result that the fusion has the activity of the therapeutically beneficial peptide and a considerably longer plasma half-life than the plasma half-life of the therapeutically beneficial peptides alone.
- Galliano et al (1993) Biochim. Biophys.Acta 1225, 27-32 discloses a natural variant E505K.
- Minchiotti et a/.(1990) discloses a natural variant K536E.
- Minchiotti et al (1987) Biochim. Biophys. Acta 916, 41 1 -418 discloses a natural variant K574N.
- Takahashi et al (1987) Proc. Natl. Acad. Sci. USA 84, 4413-4417 discloses a natural variant D550G. Carlson et al (1992).
- Proc.Nat.Acad.Sci.USA 89, 8225- 8229 discloses a natural variant D550A.
- Albumin has the ability to bind a number of ligands and these become associated (associates) with albumin. This property has been utilized to extend the plasma half-life of drugs having the ability to noncovalently bind to albumin. This can also be achieved by binding a pharmaceutical beneficial compound, which has little or no albumin binding properties, to a moiety having albumin binding properties. See review article and reference therein, Kratz (2008). Journal of Controlled Release 132, 171 -183.
- Albumin is used in preparations of pharmaceutically beneficial compounds, in which such a preparation maybe for example, but not limited to, a nano particle or micro particle of albumin.
- delivery of a pharmaceutically beneficial compound or mixture of compounds may benefit from alteration in the albumins affinity to its receptor where the beneficial compound has been shown to associate with albumin for the means of delivery.
- the present invention provides variants of a parent albumin with improved properties compared to its parent.
- the invention provides variants of a parent albumin having altered plasma half-life compare to its parent.
- the present invention relates to isolated variants of albumin or fragments thereof, or fusion polypeptides comprising variant albumin or fragments thereof, of a parent albumin, comprising an alteration at one or more (several) positions corresponding to positions 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584 of the mature polypeptide of SEQ I D NO: 2, wherein the variant is not the variant consisting of SEQ ID NO: 2 with the substitution D494N, E501 K, K541 E, D550GA K573E or K574N.
- the alteration at one or more position may independently be selected among substitutions, insertions and deletions, where substitution are preferred.
- the present invention also relates to isolated polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of producing the variants.
- the present invention also relates to conjugates or associates comprising the variant albumin or fragment thereof according to the invention and a beneficial therapeutic moiety or to a fusion polypeptide comprising a variant albumin or fragment thereof of the invention and a fusion partner polypeptide.
- the invention further relates to compositions comprising the variant albumin, fragment thereof, fusion polypeptide comprising variant albumin or fragment thereof or conjugates comprising the variant albumin or fragment thereof, according to the invention or associates comprising the variant albumin or fragment thereof, according to the invention.
- the compositions are preferably pharmaceutical compositions.
- the invention further relates to a pharmaceutical composition
- a pharmaceutical composition comprising a variant albumin, fragment thereof, fusion polypeptide comprising variant albumin or fragment thereof or conjugates comprising the variant albumin or fragment thereof, or associates comprising the variant albumin or fragment thereof, wherein said variant albumin, fragment thereof, fusion polypeptide comprising variant albumin or fragment thereof or conjugates comprising the variant albumin or fragment or associates of variant albumin or fragment thereof has altered plasma half-life compared to the corresponding plasma half-life of the HSA or fragment thereof, fusion polypeptide comprising HSA or fragment thereof or conjugates or associates of HSA or, fragment thereof, comprising HSA or fragment thereof.
- Figure 1 shows a restriction map of the expression plasmid pDB4082.
- Figure 2 shows a restriction map of the expression plasmid pDB2305
- Figure 3 shows a restriction map of the expression plasmid pDB4005
- Figure 5 shows ELISA binding of shFcRn-GST to human serum albumin (HSA) variants (100-0.045 ⁇ / ⁇ ). Binding of WT, D494N, D494Q and D494A pH 6.0 and pH 7.4. Binding of WT, D494N, D494N/T496A and T496A at pH 6.0 and pH 7.4. Binding of WT, E495Q and E495A at pH 6.0 and pH 7.4.
- HSA human serum albumin
- Figure 6 shows representative sensorgrams of binding of 0.2 ⁇ of HSA variants to immobilized shFcRn (-4600 RU). WT, D494N, D494Q, D494A, D494N/T496A and T496A.
- Figure 7 shows representative sensorgrams of binding of 1 ⁇ of HSA variants to immobilized shFcRn (-1400 RU). WT, D494N, D494Q, D494A, D494N/T496A and T496A.
- Figure 8 shows relative binding of the HSA variants compared to WT based on two independent SPR experiments as shown (A) Figure 6 and (B) Figure 7.
- Figure 9 shows ELISA: (A) binding of shFcRn to albumins from human, donkey, bovine, sheep, goat and rabbit at pH 6.0. (B) binding of shFcRn to albumin from guinea pig, hamster, rat and chicken at pH 6.0. (C) binding of shFcRn to albumin from human, donkey, bovine, sheep, goat and rabbit at pH 7.4. (D) binding of shFcRn to albumin from guinea pig, hamster, rat and chicken at pH 7.4. (E) relative binding of the different albumins. Relative binding of human albumin to shFcRn is defined as 1.0. The ELISA values represent the mean of duplicates.
- Figure 10 shows SPR: Binding of shFcRn-GST to albumin from several species at pH 6.0 and pH 7.4. Representative sensorgrams showing binding of 5.0 ⁇ of albumin from different species; (A) human, (B) donkey, (C) bovine, (D) goat, (E) sheep, (F) rabbit, (G) dog, (H) guinea pig, (I) hamster, (J) rat, (K) mouse and (L) chicken. The albumin variants were injected over immobilized GST-tagged shFcRn (-2100 RU). Injections were performed at 25°C at a rate of 40 ⁇ /min.
- Figure 11 shows SPR sensorgrams of selected HSA mutants compared with wild-type HSA. 20 ⁇ of (A) WT and P499A (B) WT and K500A, (C) WT and K536A, (D) WT and P537A and (E) WT and K538A and (F) WT and K537A were injected over immobilized shFcRn at pH 6.0 (-1500 RU)
- Figure 12 shows SPR sensorgrams of HSA mutants compared with WT HSA. 10 ⁇ of (A)
- WT and K573A B) WT and K573C, (C) WT and K573F, (D) WT and K573G and (E) WT and K573L and (F) WT and K573M, (G) WT and K573Q, (H) WT and K573R and (I) WT and K573T and (J) WT and K573V injected over immobilized shFcRn at pH 5.5 and pH7.4. Injections were performed at 25°C at a flow rate of 80 ⁇ /min.
- Figure 13 shows SPR sensorgrams of HSA mutants compared with wild-type HSA. 10 ⁇ of (A) WT and K573D (B) WT and K573E, (C) WT and K573H, (D) WT and K573I and (E) WT and K573N and (F) WT and K573P, (G) WT and K573S, (H) WT and K573 * and (I) WT and K573W and (J) WT and K573Y injected over immobilized shFcRn at pH 5.5 and pH7.4. Injections were performed at 25°C at a flow rate of 80 ⁇ /min.
- Figure 14 shows SPR sensorgrams of HSA mutants compared with wild-type HSA. 20 ⁇ of (A) WT and E492G+K538H+K541 N+E542D (B) WT and E492T+N503K+K541A, (C) WT and
- Figure 15 shows SPR sensorgrams of HSA mutants compared with wild-type HSA. Twenty ⁇ of (A) WT, (B) H440Q, (C) H464Q and (D) H535Q injected over immobilized shFcRn at pH 6.0.
- Injections were performed at 25°C at a flow rate of 80 ⁇ /min.
- Figure 16 shows SPR sensorgrams of HSA mutant K500E compared with wild-type HSA.
- Figure 17 shows a restriction map of the expression plasmid pDB3017
- Figure 18 shows a restriction map of the expression plasmid pDB3021
- Figure 19 shows a restriction map of the expression plasmid pDB3056
- Figure 20 shows a restriction map of the expression plasmid pDB3165
- Figure 21 shows a restriction map of the expression plasmid pDB4172
- Figure 22 shows a restriction map of the expression plasmid pDB4267
- Figure 23 shows a restriction map of the expression plasmid pDB4285
- Figure 24 shows a GP-H P LC chromatogram of WT HSA and m utant K573 P H RP conjugates for shFcRn analysis. Injections of 25 ⁇ _ were made onto a TSK G3000SWXL column
- Figure 25 shows SDS PAGE separation followed by both visual (A) and ultraviolet (B) detection of the Fluorescein conjugated albumin.
- HSA::F5M Limaizes a monomer
- K573P::F5M Limaizes a monomer
- rHA standard Limaizes a monomer
- Figure 26 shows shFcRn binding properties of HSA variants. 10 ⁇ ⁇ of WT rHA and
- Figure 27 shows shFcRn binding properties of HSA variants. 10 ⁇ of WT rHA and
- K541 A(l) and WT rHA and K541 N(J) were injected over immobilised shFcRn at pH5.5.
- Figure 28 shows competitive binding of K573A and K573P measured by injecting shFcRn
- FIG. 29 shows competitive binding of HSA-FLAG variants measured by injecting shFcRn (100 nM) alone or together with different amounts of HSA-FLAG variants over immobilized HSA (-2500 RU) at pH6.0.
- Figure 30 shows competitive binding of HSA-IL1 Ra variants measured by injecting shFcRn (100 nM) alone or together with different amounts of HSA-IL1 Ra variants over immobilized HSA (-2500 RU) at pH6.0
- Figure 31 shows competitive binding of scFv-fused HSA variants measured by injecting shFcRn (100 nM) alone or together with different amounts of (A) scFv-HSA-FLAG variants or (B) HSA-scFv-FLAG variants over immobilized HSA (-2500 RU) at pH6.0.
- Figure 32 shows binding of HSA, single, double and triple mutant variants to shFcRn.
- the present invention relates to isolated variants of albumin or fragments thereof, or fusion polypeptides comprising variant albumin or fragments thereof, of a parent albumin, comprising an alteration at one or more (several) positions corresponding to positions 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584 of the mature polypeptide of SEQ ID NO: 2, wherein the variant is not the variant consisting of SEQ ID NO: 2 with the substitution D494N, E501 K, K541 E, D550G,A, K573E or K574N..
- the alteration at one or more position may independently be selected among substitutions, insertions and deletions, where substitution are preferred.
- variant means a polypeptide derived from a parent albumin by one or more alteration(s), i.e., a substitution, insertion, and/or deletion, at one or more (several) positions.
- a substitution means a replacement of an amino acid occupying a position with a different amino acid;
- a deletion means removal of an amino acid occupying a position; and
- an insertion means adding 1 or more, preferably 1 -3 amino acids immediately adjacent to an amino acid occupying a position.
- Mutant means a polynucleotide encoding a variant.
- Wild-Type Albumin means albumin having the same amino acid sequence as naturally found in an animal or in a human being.
- Parent or Parent albumin means an albumin to which an alteration is made by the hand of man to produce the albumin variants of the present invention.
- the parent may be a naturally occurring (wild-type) polypeptide or an allele thereof, or even a variant thereof.
- FcRn and shFcRn The term “FcRn” means the human neonatal Fc receptor (FcRn). shFcRn is a soluble recombinant form of FcRn.
- smFcRn is a soluble recombinant form of the mouse neonatal Fc
- Isolated variant means a variant that is modified by the hand of man and separated completely or partially from at least one component with which it naturally occurs.
- the variant is at least 1 % pure, e.g., at least 5% pure, at least 10% pure, at least 20% pure, at least 40% pure, at least 60% pure, at least 80% pure, and at least 90% pure, as determined by SDS-PAGE or GP-HPLC.
- substantially pure variant means a preparation that contains at most 10%, at most 8%, at most 6%, at most 5%, at most 4%, at most 3%, at most 2%, at most 1 %, and at most 0.5% by weight of other polypeptide material with which it is natively or recombinantly associated.
- the variant is at least 92% pure, e.g., at least 94% pure, at least 95% pure, at least 96% pure, at least 97% pure, at least 98% pure, at least 99%, at least 99.5% pure, and 100% pure by weight of the total polypeptide material present in the preparation.
- the variants of the present invention are preferably in a substantially pure form. This can be accomplished, for example, by preparing the variant by well known recombinant methods and by purification methods.
- Mature polypeptide means a polypeptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc.
- the mature polypeptide is amino acids 1 to 585 of SEQ ID NO: 2, with the inclusion of any post-translational modifications.
- Mature polypeptide coding sequence means a polynucleotide that encodes a mature albumin polypeptide.
- the mature polypeptide coding sequence is nucleotides 1 to 1758 of SEQ ID NO: 1 .
- Sequence Identity The relatedness between two amino acid sequences or between two nucleotide sequences is described by the parameter "sequence identity”.
- the degree of sequence identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et ai, 2000, Trends Genet. 16: 276-277), preferably version 3.0.0 or later.
- the optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSU M62 (EMBOSS version of BLOSU M62) substitution matrix.
- the output of Needle labelled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:
- the degree of sequence identity between two deoxyribonucleotide sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, supra) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, supra), preferably version 3.0.0 or later.
- the optional parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix.
- the output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:
- fragment means a polypeptide having one or more (several) amino acids deleted from the amino and/or carboxyl terminus of an albumin and/or an internal region of albumin that has retained the ability to bind to FcRn. Fragments may consist of one uninterrupted sequence derived from HSA or it may comprise two or more sequences derived from HSA.
- the fragments according to the invention have a size of more than approximately 20 amino acid residues, preferably more than 30 amino acid residues, more preferred more than 40 amino acid residues, more preferred more than 50 amino acid residues, more preferred more than 75 amino acid residues, more preferred more than 100 amino acid residues, more preferred more than 200 amino acid residues, more preferred more than 300 amino acid residues, even more preferred more than 400 amino acid residues and most preferred more than 500 amino acid residues.
- allelic variant means any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences.
- An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.
- Coding sequence means a polynucleotide, which directly specifies the amino acid sequence of its translated polypeptide product.
- the boundaries of the coding sequence are generally determined by an open reading frame, which usually begins with the ATG start codon or alternative start codons such as GTG and TTG and ends with a stop codon such as TAA, TAG, and TGA.
- the coding sequence may be a DNA, cDNA, synthetic, or recombinant polynucleotide.
- cDNA means a DNA molecule that can be prepared by reverse transcription from a mature, spliced, mRNA molecule obtained from a eukaryotic cell. cDNA lacks intron sequences that may be present in the corresponding genomic DNA.
- the initial, primary RNA transcript is a precursor to mRNA that is processed through a series of steps, including splicing, before appearing as mature spliced mRNA.
- nucleic acid construct means a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or is modified to contain segments of nucleic acids in a manner that would not otherwise exist in nature or which is synthetic.
- nucleic acid construct is synonymous with the term “expression cassette” when the nucleic acid construct contains the control sequences required for expression of a coding sequence of the present invention.
- control sequences means all components necessary for the expression of a polynucleotide encoding a variant of the present invention.
- Each control sequence may be native or foreign to the polynucleotide encoding the variant or native or foreign to each other.
- control sequences include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, promoter, signal peptide sequence, and transcription terminator.
- the control sequences include a promoter, and transcriptional and translational stop signals.
- the control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences within the coding region of the polynucleotide encoding a variant.
- operably linked means a configuration in which a control sequence is placed at an appropriate position relative to the coding sequence of a polynucleotide such that the control sequence directs the expression of the coding sequence.
- expression includes any step involved in the production of the variant including, but not limited to, transcription, post-transcriptional modification, translation, post- translational modification, and secretion.
- Expression vector means a linear or circular DNA molecule that comprises a polynucleotide encoding a variant and is operably linked to additional nucleotides that provide for its expression.
- host cell means any cell type that is susceptible to transformation, transfection, transduction, and the like with a nucleic acid construct or expression vector comprising a polynucleotide of the present invention.
- host cell encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication.
- Plasma half-life is ideally determined in vivo in suitable individuals. However, since it is time consuming and expensive and there inevitable are ethical concerns connected with doing experiments in animals or man it is desirable to use an in vitro assay for determining whether plasma half-life is extended or reduced. It is known that the binding of albumin to its receptor FcRn is important for plasma half-life and the correlation between receptor binding and plasma half-life is that a higher affinity of albumin to its receptor leads to longer plasma half-life. Thus for the present invention a higher affinity of albumin to FcRn is considered indicative of an increased plasma half-life and a lower affinity of albumin to its receptor is considered indicative of a reduced plasma half-life.
- a longer plasma half-life with respect to a variant albumin of the invention means that the variant has longer plasma half-life than the corresponding albumin having the same sequences except for the alteration(s) in positions corresponding to 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584 in SEQ ID NO: 2.
- the mature polypeptide disclosed in SEQ ID NO: 2 is used to determine the corresponding amino acid residue in another albumin.
- the amino acid sequence of another albumin is aligned with the mature polypeptide disclosed in SEQ ID NO: 2, and based on the alignment, the amino acid position number corresponding to any amino acid residue in the mature polypeptide disclosed in SEQ ID NO: 2 is determined using the Needleman- Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277), preferably version 3.0.0 or later.
- EMBOSS European Molecular Biology Open Software Suite
- proteins of known structure For proteins of known structure, several tools and resources are available for retrieving and generating structural alignments. For example the SCOP superfamilies of proteins have been structurally aligned, and those alignments are accessible and downloadable.
- Two or more protein structures can be aligned using a variety of algorithms such as the distance alignment matrix (Holm and Sander, 1998, Proteins 33: 88-96) or combinatorial extension (Shindyalov and Bourne, 1998, Protein Engineering 11 : 739-747), and implementations of these algorithms can additionally be utilized to query structure databases with a structure of interest in order to discover possible structural homologs (e.g., Holm and Park, 2000, Bioinformatics 16: 566-567).
- albumin variants of the present invention the nomenclature described below is adapted for ease of reference.
- the accepted lUPAC single letter or three letter amino acid abbreviation is employed.
- An insertion of multiple amino acids is designated [Original amino acid, position, original amino acid, inserted amino acid #1 , inserted amino acid #2; etc.].
- the insertion of lysine and alanine after glycine at position 195 is indicated as "Gly195Glyl_ysAla” or "G195GKA”.
- the inserted amino acid residue(s) are numbered by the addition of lower case letters to the position number of the amino acid residue preceding the inserted amino acid residue(s).
- the sequence would thus be:
- variants comprising multiple alterations are separated by addition marks ("+"), e.g., "Arg170Tyr+Gly195Glu” or "R1 70Y+G 195E” representing a substitution of tyrosine and glutamic acid for arginine and glycine at positions 170 and 195, respectively.
- Albumins are proteins and constitute the most abundant protein in plasma in mammals and albumins from a long number of mammals have been characterized by biochemical methods and/or by sequence information.
- albumins e.g., human serum albumin (HSA)
- HSA human serum albumin
- HSA is a preferred albumin according to the invention and is a protein consisting of 585 amino acid residues and has a molecular weight of 67 kDa. In its natural form it is not glycosylated.
- the amino acid sequence of HSA is shown in SEQ ID NO: 2.
- natural alleles may exist having essentially the same properties as HSA but having one or more amino acid changes compared to SEQ ID NO: 2, and the inventors also contemplate the use of such natural alleles as parent albumin according to the invention.
- Albumins have generally a long plasma half-life of approximately 20 days or longer, e.g., HSA has a plasma half-life of 19 days. It is known that the long plasma half-life of HSA is mediated via interaction with its receptor FcRn, however, an understanding or knowledge of the exact mechanism behind the long half-life of HSA is not essential for the present invention.
- albumin means a protein having the same, or very similar three dimensional structure as HSA and having a long plasma half-life.
- albumin proteins can be mentioned human serum albumin, primate serum albumin, (such as chimpanzee serum albumin, gorilla serum albumin), rodent serum albumin (such as hamster serum albumin, guinea pig serum albumin, mouse albumin and rat serum albumin), bovine serum albumin, equine serum albumin, donkey serum albumin, rabbit serum albumin, goat serum albumin, sheep serum albumin, dog serum albumin, chicken serum albumin and pig serum albumin.
- HSA as disclosed in SEQ ID NO: 2 or any naturally occurring allele thereof, is the preferred albumin according to the invention.
- the parent albumin, a fragment thereof, or albumin part of a fusion polypeptide comprising albumin or a fragment thereof according to the invention has generally a sequence identity to the sequence of HSA shown in SEQ ID NO: 2 of at least 60%, preferably at least 70%, preferably at least 80%, preferably at least 85%, preferably at least 86%, preferably at least 87%, preferably at least 88%, preferably at least 89%, preferably at least 90%, preferably at least 91 %, preferably at least 92%, preferably at least 93%, preferably at least 94%, preferably at least 95%, more preferred at least 96%, more preferred at least 97%, more preferred at least 98% and most preferred at least 99%.
- the parent preferably comprises or consists of the amino acid sequence of SEQ ID NO: 2. In another aspect, the parent comprises or consists of the mature polypeptide of SEQ ID NO: 2.
- the parent is an allelic variant of the mature polypeptide of SEQ ID NO: 2.
- the parent is encoded by a polynucleotide that hybridizes under very low stringency conditions, low stringency conditions, medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 , (ii) the mature polypeptide coding sequence of SEQ ID NO: 1 , or (iii) the full-length complementary strand of (i) or (ii) (J. Sambrook, E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning, A Laboratory Manual, 2d edition, Cold Spring Harbor, New York).
- the polynucleotide of SEQ ID NO: 1 or a subsequence thereof, as well as the amino acid sequence of SEQ ID NO: 2 or a fragment thereof, may be used to design nucleic acid probes to identify and clone DNA encoding a parent from strains of different genera or species according to methods well known in the art.
- probes can be used for hybridization with the genomic or cDNA of the genus or species of interest, following standard Southern blotting procedures, in order to identify and isolate the corresponding gene therein.
- Such probes can be considerably shorter than the entire sequence, but should be at least 14, e.g., at least 25, at least 35, or at least 70 nucleotides in length.
- the nucleic acid probe is at least 100 nucleotides in length, e.g., at least 200 nucleotides, at least 300 nucleotides, at least 400 nucleotides, at least 500 nucleotides, at least 600 nucleotides, at least 700 nucleotides, at least 800 nucleotides, or at least 900 nucleotides in length.
- Both DNA and RNA probes can be used.
- the probes are typically labelled for detecting the corresponding gene (for example, with 32 P, 3 H, 35 S, biotin, or avidin). Such probes are encompassed by the present invention.
- a genomic DNA or cDNA library prepared from such other organisms may be screened for DNA that hybridizes with the probes described above and encodes a parent.
- Genomic or other DNA from such other organisms may be separated by agarose or polyacrylamide gel electrophoresis, or other separation techniques.
- DNA from the libraries or the separated DNA may be transferred to and immobilized on nitrocellulose or other suitable carrier material.
- the carrier material is used in a Southern blot.
- hybridization indicates that the polynucleotide hybridizes to a labelled nucleotide probe corresponding to the polynucleotide shown in SEQ ID NO: 1 , its complementary strand, or a subsequence thereof, under low to very high stringency conditions.
- Molecules to which the probe hybridizes can be detected using, for example, X-ray film or any other detection means known in the art.
- the nucleic acid probe is the mature polypeptide coding sequence of SEQ ID NO: 1. In another aspect, the nucleic acid probe is nucleotides 1 to 1785 of SEQ ID NO: 1 . In another aspect, the nucleic acid probe is a polynucleotide that encodes the polypeptide of SEQ ID NO: 2 or a fragment thereof. In another aspect, the nucleic acid probe is SEQ ID NO: 1 .
- very low to very high stringency conditions are defined as prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and either 25% formamide for very low and low stringencies, 35% formam ide for maxim m and maxim m-high stringencies, or 50% formamide for high and very high stringencies, following standard Southern blotting procedures for 12 to 24 hours optimally.
- the carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 45°C (very low stringency), 50°C (low stringency), 55°C (medium stringency), 60°C (medium-high stringency), 65°C (high stringency), or 70°C (very high stringency).
- stringency conditions are defined as prehybridization and hybridization at about 5°C to about 10°C below the calculated T m using the calculation according to Bolton and McCarthy (1962, Proc. Natl. Acad. Sci.
- the parent is encoded by a polynucleotide with a sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1 of at least 60%, e.g., at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, which encodes a polypeptide which is able to function as an albumin.
- the parent is encoded by a polynucleotide comprising or consisting of SEQ ID NO: 1.
- the invention relates to a method for preparing a variant albumin, fragment thereof, or fusion polypeptide comprising variant albumin or a fragment thereof comprising the steps of:
- the identification of one or more amino acid residue positions being important for the binding of albumin to FcRn, in albumin, fragment thereof or the albumin part of a fusion polypeptide can be done in several ways including, but not limited to, random mutagenesis followed by analysis of the generated mutants and comparison with the non-mutated parent molecule, and identification based on structural considerations optionally followed by generation of variants having the identified alterations and comparison with the non-mutated patent molecule.
- a preferred method for identification of one or more amino acid residue positions to be changed to in order to prepare a variant HSA having an altered binding to FcRn compared with natural HSA comprises the following steps:
- step iv) Optionally preparing variants of HSA at the positions identified in step iii) and confirming that the prepared variants have altered binding to FcRn compared with
- Step i) above may be done using the SPR assay described below.
- SPR assay described below.
- other methods may be used to identify non-human albumins having different binding properties to FcRn than HSA, and that the method is not dependent on how the non- human albumin, having different binding properties to FcRn, has been identified.
- the identified non-human albumin has a stronger binding to FcRn than HSA.
- non-human albumins having stronger binding to FcRn than HSA include donkey serum albumin, rabbit serum albumin, dog serum albumin, hamster serum albumin, guinea pig serum albumin, mouse serum albumin and rat serum albumin.
- Step ii) may be accomplished by considering the structure of FcRn, HSA and the binding complex of these two. In the absence of an available structure of the binding complex it is possible to use a model where the HSA structure is docked into the structure of the FcRn structure and thereby identify amino acid residues of HSA interacting with FcRn.
- the identified non-human albumin has a weaker binding to FcRn than HSA.
- non-human albumins having weaker binding to FcRn than HSA include bovine serum albumin, goat serum albumin, sheep serum albumin and chicken serum albumin.
- Step ii) may be accomplished by considering the structure of FcRn, HSA and the binding complex of these two. In absence of an available structure of the binding complex it is possible to use a model where the HSA structure is docked into the structure of the FcRn structure and thereby identify residues of HSA interacting with FcRn.
- an amino acid residues of HSA interacting with FcRn is considered any amino acid residues of HSA being located less than l OA from an amino acid in the FcRn or any amino acid residue that is involved in a hydrogen bond, a salt bridge or a polar or nonpolar interaction with an amino acid residue that is located less than l OA from an amino acid in the FcRn.
- the amino acid in HSA residues are located less than l OA from amino acids in the FcRn, more preferred less than 6A from amino acids in the FcRn and most preferred less than 3A from amino acids in the FcRn.
- Step iii) and iv) can be done using techniques well known to the skilled person.
- the present invention also relates to methods for obtaining a variant albumin or fragments thereof, or fusion polypeptides comprising the variant albumin or fragments thereof, or associates of variant albumin or fragment thereof comprising: (a) introducing into a parent albumin or fragments thereof, or fusion polypeptides comprising the parent albumin or fragments thereof an alteration at one or more (several) positions corresponding to positions 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584 of the mature polypeptide of SEQ I D NO: 2; and (b) recovering the variant albumin or fragments thereof, or fusion polypeptides comprising the variant albumin or fragments thereof.
- the variants can be prepared by those skilled persons using any mutagenesis procedure known in the art, such as site-directed mutagenesis, synthetic gene construction, semi-synthetic gene construction, random mutagenesis, shuffling, etc.
- Site-directed mutagenesis is a technique in which one or more (several) mutations are created at one or more defined sites in a polynucleotide encoding the parent.
- Site-directed mutagenesis can be accomplished in vitro by PCR involving the use of oligonucleotide primers containing the desired mutation. Site-directed mutagenesis can also be performed in vitro by cassette mutagenesis involving the cleavage by a restriction enzyme at a site in the plasmid comprising a polynucleotide encoding the parent and subsequent ligation of an oligonucleotide containing the mutation in the polynucleotide. Usually the restriction enzyme that digests at the plasmid and the oligonucleotide is the same, permitting ligation of the plasmid and insert to one another. See, e.g., Scherer and Davis, 1979, Proc. Natl. Acad. Sci. USA 76: 4949- 4955; and Barton et al., 1990, Nucleic Acids Res. 18: 7349-4966.
- Site-directed mutagenesis can also be accomplished in vivo by methods known in the art. See, e.g., U.S. Patent Application Publication No. 2004/0171 154; Storici et al., 2001 , Nature Biotechnol. 19: 773-776; Kren et al., 1998, Nat. Med. 4: 285-290; and Calissano and Macino, 1996, Fungal Genet. Newslett. 43: 15-16. Any site-directed mutagenesis procedure can be used in the present invention. There are many commercial kits available that can be used to prepare variants.
- Synthetic gene construction entails in vitro synthesis of a designed polynucleotide molecule to encode a polypeptide of interest. Gene synthesis can be performed utilizing a number of techniques, such as the multiplex microchip-based technology described by Tian et al. (2004, Nature 432: 1050-1054) and similar technologies wherein olgionucleotides are synthesized and assembled upon photo-programable microfluidic chips.
- Single or multiple amino acid substitutions, deletions, and/or insertions can be made and tested using known methods of mutagenesis, recombination, and/or shuffling, followed by a relevant screening procedure, such as those disclosed by Reidhaar-Olson and Sauer, 1988, Science 241 : 53-57; Bowie and Sauer, 1989, Proc. Natl. Acad. Sci. USA 86: 2152-2156; WO 95/17413; or WO 95/22625.
- Other methods that can be used include error-prone PCR, phage display (e.g., Lowman et al., 1991 , Biochemistry 30: 10832-10837; U.S. Patent No. 5,223,409; WO 92/06204) and region-directed mutagenesis (Derbyshire et al., 1986, Gene 46: 145; Ner et al., 1988, DNA 7: 127).
- Mutagenesis/shuffling methods can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides expressed by host cells (Ness et al., 1999, Nature Biotechnology 17: 893-896). Mutagenized DNA molecules that encode active polypeptides can be recovered from the host cells and rapidly sequenced using standard methods in the art. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide.
- Semi-synthetic gene construction is accomplished by combining aspects of synthetic gene construction, and/or site-directed mutagenesis, and/or random mutagenesis, and/or shuffling.
- Semisynthetic constuction is typified by a process utilizing polynucleotide fragments that are synthesized, in combination with PCR techniques. Defined regions of genes may th us be synthesized de novo, while other regions may be amplified using site-specific mutagenic primers, while yet other regions may be subjected to error-prone PCR or non-error prone PCR amplification. Polynucleotide sub sequences may then be shuffled. Variants
- the present invention also provides variant albumins or fragments thereof, or fusion polypeptides comprising the variant albumin or fragments thereof, of a parent albumin, comprising an alteration at one or more (several) positions corresponding to positions 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584 in SEQ ID NO: 2, wherein each alteration is independently a substitution, insertion or deletion with the provision that the and the variant is not SEQ ID NO: 2 having the substitution D494N, E501 K, K541 E, D550GA K573E or K574N..
- the variant albumin, a fragment thereof, or albumin part of a fusion polypeptide comprising variant albumin or a fragment thereof according to the invention has generally a sequence identity the sequence of HSA shown in SEQ ID NO: 2 of at least 60%, preferably at least 70%, preferably at least 80%, preferably at least 85%, preferably at least 90 %, more preferred at least 95%, more preferred at least 96%, more preferred at least 97%, more preferred at least 98% and most preferred at least 99%.
- the number of alterations in the variants of the present invention is 1 -20, e.g.,
- 1 -10 and 1 -5 such as 1 , 2, 3, 4, 5, 6, 7, 8, 9 or 10 alterations.
- the variant albumin, a fragment thereof or fusion polypeptide comprising the variant albumin or fragment thereof has altered plasma half-life compared with the corresponding parent albumin, fragment thereof, or fusion polypeptide comprising the variant albumin or fragment thereof.
- the parent albumin is HSA and the variant albumin, a fragment thereof or fusion polypeptide comprising the variant albumin or fragment thereof has altered plasma half-life compared with the HSA, the corresponding fragment or fusion polypeptide comprising HSA or fragment thereof.
- transgenic mouse having the natural mouse FcRn replaced with human FcRn has a higher serum albumin level than normal mouse; see (J Exp Med. (2003) 197(3):315-22).
- human FcRn has a higher affinity to mouse serum albumin than mouse FcRn has to mouse serum albumin and, therefore, the observed increase in serum albumin in the transgenic mice corresponds with a higher affinity between serum albumin and its receptor, confirming the correlation between albumin binding to FcRn and plasma half-life.
- variants of albumin that have little or no binding to FcRn have been shown to have reduced half-life in a mouse model, Kenanova et al (2009) J. Nucl. Med.; 50 (Supplement 2):1582).
- variant albumins having a KD that is lower than the KD for natural HSA is considered to have a higher plasma half-life than HSA and variant albumins having a KD that is higher than the KD for natural HSA is considered to have a lower plasma half-life than HSA.
- the variants of albumin or fragments thereof or fusion polypeptides comprising albumin or fragments thereof comprise one or more alterations, such as substitutions, deletions or insertions at one or more (several) positions corresponding to the positions in HSA selected from the group consisting of 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584.
- the substitution may be any substitution where the amino acid in the natural albumin sequence is substituted with a different amino acid selected among the remaining 19 natural occurring amino acids.
- a variant comprises an alteration at one or more (several) positions corresponding to positions 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584 in SEQ ID NO: 2.
- a variant comprises an alteration at two positions corresponding to any of 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584 in SEQ ID NO: 2.
- a variant comprises an alteration at three positions corresponding to any of positions 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584 in SEQ ID NO: 2.
- a variant comprises an alteration at each position corresponding to positions 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584 in SEQ ID NO: 2.
- the variant comprises the substitution Q417A,H of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution H440Q of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution H464Q of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution A490D of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution E492G, ⁇ , ⁇ , ⁇ of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution V493P,L of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution D494N,Q,A,E,P of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution E495Q,A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution T496A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution P499A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution K500E,G,D,A,S,C,P,H,F,N,W,T,M,Y,V,Q,L,I,R of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution E501 A,P,Q of the mature polypeptide of SEQ ID NO: 2. In another aspect, the variant comprises the substitution N503K,D,H of the mature polypeptide of SEQ ID NO: 2. In another aspect, the variant comprises the substitution A504E of the mature polypeptide of SEQ ID NO: 2. In another aspect, the variant comprises the substitution E505K, D of the mature polypeptide of SEQ ID NO: 2. In another aspect, the variant comprises the substitution T506F, S of the mature polypeptide of SEQ ID NO: 2. In another aspect, the variant comprises the substitution H510Q of the mature polypeptide of SEQ ID NO: 2. In another aspect, the variant comprises the substitution H535Q of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution K536A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution P537A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution K538A,H of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution T540S of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution K541A,D,G,N,E of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution E542P,D of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution D550N of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution K574N of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution Q580K of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution L575F of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution A577T,E of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution A578R,S of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution S579C,T of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution Q580K of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution A581 D of the mature polypeptide of SEQ I D NO: 2.
- the variant comprises the substitution A582T of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises the substitution G584A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 417.
- the amino acid at a position corresponding to position 417 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Ala or His.
- the variant comprises the substitution Q417A, H of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 440.
- the amino acid at a position corresponding to position 440 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Ala.
- the variant comprises the substitution H440Q of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 464.
- the amino acid at a position corresponding to position 464 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Ala.
- the variant comprises the substitution H464Q of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 490
- the amino acid at a position corresponding to position 490 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.
- the variant comprises the substitution A490G of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 492.
- the amino acid at a position corresponding to position 492 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Gly.
- the variant comprises the substitution E492G of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 493.
- the amino acid at a position corresponding to position 493 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Pro.
- the variant comprises the substitution V493P of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 494.
- the amino acid at a position corresponding to position 494 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Asn, Gin or Ala.
- the variant comprises the substitution D494N,Q, A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 495.
- the amino acid at a position corresponding to position 495 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Gin or Ala.
- the variant comprises the substitution E495Q or A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 496.
- the amino acid at a position corresponding to position 496 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Ala.
- the variant comprises the substitution T496A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 499.
- the amino acid at a position corresponding to position 499 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Ala.
- the variant comprises the substitution P499A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 500.
- the amino acid at a position corresponding to position 500 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Ala.
- the variant comprises the substitution K500E,G,D,A,S,C,P,H,F,N,W,T,M,Y,V,Q,L,I,R of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 501 .
- the amino acid at a position corresponding to position 501 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Ala or Gin to reduce affinity and Pro to increase affinity.
- the variant comprises the substitution E501A, Q, P of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 503.
- the amino acid at a position corresponding to position 503 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Asp or Lys or His.
- the variant comprises the substitution N503D, K, H of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 504.
- the amino acid at a position corresponding to position 504 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.
- the variant comprises the substitution A504 of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 505.
- the amino acid at a position corresponding to position 505 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.
- the variant comprises the substitution E505D of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 506.
- the amino acid at a position corresponding to position 506 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.
- the variant comprises the substitution T506S,F of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 510.
- the amino acid at a position corresponding to position 510 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Gin.
- the variant comprises the substitution H510Q of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 535.
- the amino acid at a position corresponding to position 535 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Gin.
- the variant comprises the substitution H535Q of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 536.
- the amino acid at a position corresponding to position 536 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Ala.
- the variant comprises the substitution K536A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 537.
- the amino acid at a position corresponding to position 537 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Ala.
- the variant comprises the substitution P537A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 538.
- the amino acid at a position corresponding to position 538 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Ala.
- the variant comprises the substitution K538H, A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 540.
- the amino acid at a position corresponding to position 540 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val.
- the variant comprises the substitution T540S of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 541 .
- the amino acid at a position corresponding to position 541 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Gly, Asp or Ala.
- the variant comprises the substitution K541 G, D A, N of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 542.
- the amino acid at a position corresponding to position 542 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Asp or Pro.
- the variant comprises the substitution E542D, P of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 550.
- the amino acid at a position corresponding to position 550 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Asn to reduce affinity, preferably with Glu to increase affinity.
- the variant comprises an alteration at a position corresponding to position 573.
- the amino acid at a position corresponding to position 573 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Tyr, Trp, Pro, His. Phe, Val, lie, Thr, Asn, Ser, Gly, Met, Cys, Ala, Glu, Gin, Arg, Leu, Asp.
- the variant comprises the substitution K573Y,W,P,H,F,V,I,T,N,S,G,M,C,A,E,Q,R,L,D of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 574.
- the amino acid at a position corresponding to position 574 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Asn.
- the variant comprises the substitution K574N of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 575.
- the amino acid at a position corresponding to position 575 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Phe.
- the variant comprises the substitution L575F of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 577.
- the amino acid at a position corresponding to position 577 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Thr or Glu.
- the variant comprises the substitution A577TE of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 578.
- the amino acid at a position corresponding to position 578 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Arg or Ser.
- the variant comprises the substitution A578R,S of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 579.
- the amino acid at a position corresponding to position 579 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Cys or Thr.
- the variant comprises the substitution S579C,T of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 580.
- the amino acid at a position corresponding to position 580 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Lys.
- the variant comprises the substitution Q580K of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 581 .
- the amino acid at a position corresponding to position 581 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Asp.
- the variant comprises the substitution A581 D of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 582.
- the amino acid at a position corresponding to position 582 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Thr.
- the variant comprises the substitution A582T of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at a position corresponding to position 584.
- the amino acid at a position corresponding to position 584 is substituted with Ala, Arg, Asn, Asp, Cys, Gin, Glu, Gly, His, lie, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, or Val, preferably with Ala.
- the variant comprises the substitution G584A of the mature polypeptide of SEQ ID NO: 2.
- the variant comprises an alteration at positions corresponding to positions 494 and 496 in SEQ ID NO: 2, such as those described above. In another aspect, the variant comprises alterations at positions corresponding to positions 492 and 493 in SEQ ID NO: 2, such as those described above.
- the variant comprises alterations at positions corresponding to positions 494 and 417 in SEQ ID NO: 2, such as those described above.
- the variant comprises alterations at positions corresponding to positions
- the variant comprises alterations at positions corresponding to positions 492 and 573 in SEQ ID NO: 2, such as those described above.
- the variant comprises alterations at positions corresponding to positions 492, 503, and 573 in SEQ ID NO: 2, such as those described above.
- the variant albumin or fragments thereof, or fusion polypeptides comprising the variant albumin or fragments thereof according to the invention contains one substitution at a position corresponding to a position in HSA selected from the group consisting of 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584 in SEQ ID NO: 2 provided that the variant albumin is not the variant consisting of SEQ ID NO: 2 with the substitution D494N, E501 K, K541 E, D550G,A, K573E or K574N.
- the variant albumin, fragment thereof or fusion polypeptides comprising variant albumin or a fragment thereof according to the invention may comprise additional substitutions, insertions or deletions
- the variant albumin or fragments thereof, or fusion polypeptides comprising variant albumin or fragments thereof according to the invention contains two, three, four, five , six, seven, eight, nine, ten, eleven, twelve , thirteen, fourteen fifteen, sixteen, seventeen, eighteen, nineteen twenty or even more substitutions at positions corresponding to positions in HSA selected from the group consisting of 417, 440, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574, 575, 577, 578, 579, 580, 581 , 582 and 584 of SEQ ID NO: 2.
- the variant albumin or fragments thereof, or fusion polypeptides comprising variant albumin or fragments thereof according to the invention may comprise additional substitutions, insertions or deletions at positions corresponding to other positions in HSA.
- variants of albumin or fragments thereof, or fusion polypeptides comprising variant albumin or a fragment thereof according to the invention have a plasma half-life that is longer than the plasma half-life of the parent albumin fragment thereof or fusion polypeptide comprising the parent albumin or a fragment thereof.
- examples according to this embodiment include variants of albumin or fragments thereof, or fusion polypeptides comprising variant albumin or a fragment thereof comprising a substitution in the position corresponding to 492, 503, 542, 550, 573, 574, 580, 581 , 582 or 584 in SEQ ID NO: 2.
- Preferred substitutions according to this embodiment of the invention include the substitution of the amino acid residue in the position corresponding to 492 in SEQ ID NO: 2 with a G residue, substitution of the amino acid residue in the position corresponding to 503 in SEQ I D NO: 2 with a H or a K residue, substitution of the amino acid residue in the position corresponding to 550 in SEQ ID NO: 2 with an E residue, the substitution of the amino acid residue in a position corresponding to 573 in SEQ ID NO: 2 with an Y,W,P,H,F,V,I,T,N,S,G,M,C,A,E,Q,R,L or a D, the substitution of the amino acid residue in a position corresponding to 574 in SEQ ID NO: 2 with an N residue, or the substitution of the amino acid residue in the position corresponding to 580 in SEQ I D NO: 2 with an K residue.
- Other preferred variants have a substitution in the position corresponding to 492 in SEQ ID NO: 2 with a G residue and a substitution in the position corresponding to 573 in SEQ ID NO: 2 with an A or a P residue.
- Other preferred variant has a number of substitutions corresponding to position 492 in SEQ ID NO: 2 with an H residue in position 503 in SEQ ID NO: 2.
- the variants of albumin or fragments thereof, or fusion polypeptides comprising variant albumin or fragments thereof according to the invention have a plasma half-life that is shorter than the plasma half-life of the parent albumin fragment thereof or fusion polypeptide comprising the parent albumin or a fragment thereof.
- examples according to this embodiment include variants of albumin or fragments thereof, or fusion polypeptides comprising variant albumin or a fragment thereof comprising a substitution in the position corresponding to 417, 440, 494, 495, 496, 499, 500, 501 , 536, 537, 538, 541 , 494+496 or 492+493 in SEQ I D NO: 2.
- substitutions include the substitutions corresponding to Q417A, H440Q, D494E+Q417H, D494N,Q,A, E495Q,A, T496A, D494N+T496A or, P499A, K500A, E501A , E501 Q, K536A, P537A , K538A, K541 G, K541A K541 D or D550N in SEQ ID NO: 2.
- variants of albumin or fragments thereof, or fusion polypeptides comprising variant albumin or a fragment thereof according to the invention have lost their ability to bind FcRn.
- variants of albumin or fragments thereof, or fusion polypeptides comprising variant albumin or fragments thereof is considered to have lost the ability to bind FcRn if the measured resonance units for the variant in the SPR assay described below is less than 10% of the measured resonance units for the corresponding parent albumin or fragment thereof.
- examples according to this embodiment include variants of albumin or fragments thereof, or fusion polypeptides comprising variant albumin or fragments thereof comprising a substitution at a position corresponding to 464, 500, 510 or 535 in SEQ ID NO: 2.
- Preferred substitutions include the substitutions corresponding to H464Q, K500A,P,C,S,A,D.G H510Q or H535Q in SEQ ID NO: 2.
- the variant albumin or fragments thereof, or fusion polypeptides comprising variant albumin or fragments thereof according to the invention may contain additional substitutions, deletions or insertions in other positions of the molecules.
- Such additional substitutions, deletions or insertions may be useful in order to alter other properties of the molecules such as but not limited to altered glycosylation; introduction of reactive groups of the surface such a thiol groups, removing/generating a carbamoylation site; etc.
- Residues that might be altered in order to provide reactive residues on the surface and which advantageously could be applied to the present invention has been disclosed in the unpublished patent application WO 2010/092135 (Included by reference).
- Particular preferred residues include the positions corresponding to positions in SEQ ID NO: 2 .
- the present invention also relates to isolated polynucleotides that encode any of the variants of the present invention.
- the present invention also relates to nucleic acid constructs comprising a polynucleotide encoding a variant of the present invention operably linked to one or more (several) control sequences that direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences.
- a polynucleotide may be manipulated in a variety of ways to provide for expression of a variant. Manipulation of the polynucleotide prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying polynucleotides utilizing recombinant DNA methods are well known in the art.
- the control sequence may be a promoter sequence, which is recognized by a host cell for expression of the polynucleotide.
- the promoter sequence contains transcriptional control sequences that mediate the expression of the variant.
- the promoter may be any nucleic acid sequence that shows transcriptional activity in the host cell including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.
- useful promoters are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1 ), Saccharomyces cerevisiae protease A (PRA1 ), Saccharomyces cerevisiae protease B (PRB1 ), Saccharomyces cerevisiae translation elongation factor (TEF1 ), Saccharomyces cerevisiae translation elongation factor (TEF2), Saccharomyces cerevisiae galactokinase (GAL1 ), Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde- 3-phosphate dehydrogenase (ADH1 , ADH2/GAP), Saccharomyces cerevisiae triose phosphate isomerase (TPI), Saccharomyces cerevisiae metallothionein (CUP1 ), and Saccharomyces cerevisiae 3-phosphoglycerate
- ENO-1 Sac
- the control sequence may also be a suitable transcription terminator sequence, which is recognized by a host cell to terminate transcription.
- the terminator sequence is operably linked to the 3'-terminus of the polynucleotide encoding the variant. Any terminator that is functional in the host cell may be used.
- Preferred terminators for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase, Saccharomyces cerevisiae cytochrome C (CYC1 ), Saccharomyces cerevisiae alcohol dehydrogenase (ADH1 ) and Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase.
- CYC1 Saccharomyces cerevisiae cytochrome C
- ADH1 Saccharomyces cerevisiae alcohol dehydrogenase
- Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase Other useful terminators for yeast host cells are described by Romanos et al., 1992, supra.
- the control sequence may also be a suitable leader sequence, a nontranslated region of an mRNA that is important for translation by the host cell.
- the leader sequence is operably linked to the 5'-terminus of the polynucleotide encoding the variant. Any leader sequence that is functional in the host cell may be used.
- Suitable leaders for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1 ), Saccharomyces cerevisiae 3-phosphoglycerate kinase, Saccharomyces cerevisiae alpha-factor, and Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).
- ENO-1 Saccharomyces cerevisiae enolase
- Saccharomyces cerevisiae 3-phosphoglycerate kinase Saccharomyces cerevisiae alpha-factor
- Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase ADH2/GAP
- the control sequence may also be a polyadenylation sequence, a sequence operably linked to the 3'-terminus of the variant-encoding sequence and, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence that is functional in the host cell may be used.
- the control sequence may also be a signal peptide coding region that encodes a signal peptide linked to the N-terminus of a variant and directs the variant into the cell's secretory pathway.
- the 5'-end of the coding sequence of the polynucleotide may inherently contain a signal peptide coding region naturally linked in translation reading frame with the segment of the coding region that encodes the variant.
- the 5'-end of the coding sequence may contain a signal peptide coding region that is foreign to the coding sequence.
- the foreign signal peptide coding region may be required where the coding sequence does not naturally contain a signal peptide coding region.
- the foreign signal peptide coding region may simply replace the natural signal peptide coding region in order to enhance secretion of the variant.
- any signal peptide coding region that directs the expressed variant into the secretory pathway of a host cell may be used.
- Useful signal peptides for yeast host cells are obtained from the genes for Saccharomyces cerevisiae alpha-factor and Saccharomyces cerevisiae invertase. Other useful signal peptide coding sequences are described by Romanos et al., 1992, supra.
- the propeptide region is positioned next to the N-terminus of the variant and the signal peptide region is positioned next to the N-terminus of the propeptide region.
- the variants of the present invention can be prepared using techniques well known to the skilled person.
- One convenient way is by cloning nucleic acid encoding the parent albumin or a fragment thereof or fusion polypeptide comprising albumin or a fragment thereof, modifying said nucleic acid to introduce the desired substitution(s) at one or more (several) positions corresponding to positions 417, 464, 490, 492, 493, 494, 495, 496, 499, 500, 501 , 503, 504, 505, 506, 510, 535, 536, 537, 538, 540, 541 , 542, 550, 573, 574 and 580 in SEQ ID NO: 2, where the variant is not the variant consisting of SEQ ID NO:2 with the substitution D494N, E501 K, K541 E, D550G,A, K573E or K574N., preparing a suitable genetic construct where the modified nucleic acid is placed in operative connection with suitable regulatory genetic elements, such as promoter,
- the variant polypeptide of the invention may also be connected to a signal sequence in order to have the variant polypeptide secreted into the growth medium during culturing of the transformed host organism. It is generally advantageous to have the variant polypeptide secreted into the growth medium in order to ease recovery and purification.
- Albumins have been successfully expressed as recombinant proteins in a range of hosts including fungi (including but not limited to Aspergillus (WO06066595), Kluyveromyces (Fleer 1991 , Bio/technology 9, 968-975), Pichia (Kobayashi 1998 Therapeutic Apheresis 2, 257-262) and Saccharomyces (Sleep 1990, Bio/technology 8, 42-46)), bacteria (Pandjaitab 2000, J. Allergy Clin. Immunol. 105, 279-285)), animals (Barash 1993, Transgenic Research 2, 266-276) and plants (including but not limited to potato and tobacco (Sijmons 1990, Bio/technology 8, 217 and Farran 2002, Transgenic Research 11 , 337-346).
- fungi including but not limited to Aspergillus (WO06066595), Kluyveromyces (Fleer 1991 , Bio/technology 9, 968-975), Pichia (Kobayashi 1998 Therapeutic Apheresis 2, 257-
- the variant polypeptide of the invention is preferably produced recombinantly in a suitable host cell.
- a suitable host cell capable of producing a polypeptide in suitable amounts may be used and it is within the skills of the average practitioner to select a suitable host cell according to the invention.
- a preferred host organism is yeast, preferably selected among Saccharomycacae, more preferred Saccharomyces cerevisiae.
- variant polypeptides of the invention may be recovered and purified from the growth medium using a combination of known separation techniques such as filtration, centrifugation, chromatography, and affinity separation techniques etc. It is within the skills of the average practitioner to purify the variants of the invention using a particular combination of such known separation steps.
- purification techniques that may be applied to the variants of the present invention can be mentioned the teaching of WO0044772.
- the variant polypeptides of the invention may be used for delivering a therapeutically beneficial compound to an animal or a human individual in need thereof.
- therapeutically beneficial compounds include, but are not limited, to labels and readily detectable compounds for use in diagnostics, such as various imaging techniques; pharmaceutical active compounds such as drugs, or specifically binding moieties such as antibodies.
- the variants of the invention may even be connected to two or more different therapeutically beneficial compounds, e.g., an antibody and a drug, which gives the combined molecule the ability to bind specifically to a desired target and thereby provide a high concentration of the connected drug at that particular target.
- the variants of albumin or fragments thereof according to the invention may also be fused with a non-albumin polypeptide fusion partner.
- the fusion partner may in principle be any polypeptide but generally it is preferred that the fusion partner is a polypeptide having therapeutic or diagnostic properties.
- Fusion polypeptides comprising albumin or fragments thereof are known in the art. It has been found that such fusion polypeptide comprising albumin or a fragment thereof and a fusion partner polypeptide have a longer plasma half-life compared to the unfused fusion partner polypeptide. According to the invention it is possible to alter the plasma half-life of the fusion polypeptides according to the invention compared to the corresponding fusion polypeptides of the prior art.
- One or more therapeutic polypeptides may be fused to the N-terminus, the C-terminus of albumin, inserted into a loop in the albumin structure or any combination thereof. It may or it may not comprise linker sequences separating the various components of the fusion polypeptide.
- WO 2001/79271 A and WO 2003/59934 A also contain examples of therapeutic polypeptides that may be fused to albumin or fragments thereof, and these examples apply also to the present invention.
- the variants of albumin or fragments thereof according to the invention may be conjugated to a second molecule using techniques known within the art.
- Said second molecule may comprise a diagnostic moiety, and in this embodiment the conjugate may be useful as a diagnostic tool such as in imaging; or the second molecule may be a therapeutic compound and in this embodiment the conjugate may be used for therapeutic purposes where the conjugate will have the therapeutic properties of the therapeutic compound as well as the long plasma half-life of the albumin.
- Conjugates of albumin and a therapeutic molecule are known in the art and it has been verified that such conjugates have long plasma half-life compared with the non-conjugated, free therapeutic molecule as such.
- the conjugates may conveniently be linked via a free thio group present on the surface of HSA (amino acid residue 34 of mature HSA) using well known chemistry.
- the variant albumin or fragment thereof is conjugated to a beneficial therapeutic compound and the conjugate is used for treatment of a condition in a patient in need thereof, which condition is responsive to the particular selected therapeutic compound.
- Techniques for conjugating such a therapeutically compound to the variant albumin or fragment thereof are known in the art.
- WO 2009/019314 discloses examples of techniques suitable for conjugating a therapeutically compound to a polypeptide which techniques can also be applied to the present invention.
- WO 2009/019314 discloses examples of compounds and moieties that may be conjugated to substituted transferrin and these examples may also be applied to the present invention. The teaching of WO 2009/019314 is included herein by reference.
- HSA contains in its natural form one free thiol group that conveniently may be used for conjugation.
- the variant albumin or fragment thereof may comprise further modifications provided to generate additional free thiol groups on the surface. This has the benefit that the payload of the variant albumin or fragment thereof is increased so that more than one molecule of the therapeutic compound can be conjugated to each molecule of variant albumin or fragment thereof, or two or more different therapeutic compounds may be conjugated to each molecule of variant albumin or fragment thereof, e.g., a compound having targeting properties such as an antibody specific for example a tumour; and a cytotoxic drug conjugated to the variant albumin or fragment thereof thereby creating a highly specific drug against a tumour.
- teaching of particular residues that may be modified to provide for further free thiol groups on the surface can be found in copending patent application WO 2010/092135, which is incorporated by reference.
- the variants of albumin or fragments thereof may further be used in form of "associates".
- the term "associate” is intended to mean a compound comprising a variant of albumin or a fragment thereof and another compound bound or associated to the variant albumin or fragment thereof by non-covalent binding.
- an associate consisting variant albumin and a lipid associated to albumin by a hydrophobic interaction.
- Such associates are known in the art and they may be prepared using well known techniques.
- an associate comprising variant albumin and paclitaxel.
- variant albumin or fragments thereof or fusion polypeptides comprising variant albumin or fragments thereof according to the invention have the benefit that their plasma half-life is altered compared to the parent albumin or fragments thereof or fusion polypeptides comprising parent albumin or fragments thereof.
- This has the advantage that the plasma half-life of conjugates comprising variant albumin or a fragment thereof or fusion polypeptide comprising variant albumin or a fragment thereof, or an associate comprising variant albumin or a fragment thereof according to the invention can be selected in accordance with the particular therapeutic purpose.
- a conjugate, associate or fusion polypeptide used for imaging purposes in animals or human beings where the imaging moiety has an very short half-life and a conjugate or a fusion polypeptide comprising HSA has a plasma half-life that is far longer than needed for the imaging purposes it would be advantageous to use a variant albumin or fragment thereof of the invention having a shorter plasma half-life than the parent albumin or fragment thereof, to provide conjugates of fusion polypeptides having a plasma half-life that is sufficiently long for the imaging purpose but sufficiently short to be cleared form the body of the particular patient on which it is applied.
- an associate or fusion polypeptide comprising a therapeutic compound effective to treat or alleviate a particular condition in a patient in need for such a treatment it would be advantageous to use the variant albumin or fragment thereof having a longer plasma half-life than the parent albumin or fragment thereof, to provide associates or conjugates or fusion polypeptides having longer plasma half-lives which would have the benefit that the administration of the associate or conjugate or fusion polypeptide of the invention would be needed less frequently or reduced dose with less side affects compared to the situation where the parent albumin or associates thereof or fragment thereof was used.
- compositions comprising the variant albumin, associates thereof or fragment thereof, variant albumin fragment or associates thereof or fusion polypeptide comprising variant albumin or fragment thereof according to the invention.
- the compositions are preferably pharmaceutical compositions.
- the composition may be prepared using techniques known in the area such as disclosed in recognized handbooks within the pharmaceutical field.
- compositions comprise a variant albumin or a fragment thereof according to the invention and a compound comprising a pharmaceutically beneficial moiety and an albumin binding domain (ABD).
- ABD means a site, moiety or domain capable of binding to circulating albumin in vivo and thereby conferring transport in the circulation of the ABD and any compound or moiety bound to said ABD.
- ABD's are known in the art and have been shown to bind very tight to albumin so a compound comprising an ABD bound to albumin will to a certain extent behave as a single molecule.
- the inventors have realized by using the variant albumin or fragment thereof according to the invention together with a compound comprising a pharmaceutically beneficial moiety and an ABD makes it possible to alter the plasma half-life of the compound comprising a pharmaceutically beneficial moiety and an ABD compared to the situation where said compound were injected as such in a patient having need thereof or administered in a formulation comprising natural albumin or a fragment thereof.
- the variant albumin or fragments thereof, conjugates comprising variant albumin or a fragment thereof or fusion polypeptide comprising variant albumin or a fragment thereof, or an associate comprising variant albumin or a fragment thereof according to the invention may also be incorporated into nano- or microparticles using techniques well known within the art. A preferred method for preparing nano- or microparticles that may be applied to the variant albumins or fragments thereof according to the invention is disclosed in WO 2004/071536, which is incorporated herein by reference.
- the present invention is also directed to the use of a variant of albumin or a fragment thereof or fusion polypeptides comprising variant albumin or fragments thereof, or a conjugate comprising a variant of albumin or a fragment thereof, or an associate comprising a variant of albumin or a fragment thereof for the manufacture of a pharmaceutical composition, where in the variant of albumin or a fragment thereof or fusion polypeptides comprising variant albumin or fragments thereof, or a conjugate comprising a variant of albumin or a fragment thereof, or an associate comprising a variant of albumin or a fragment thereof has an altered plasma half-life compared with HSA or the corresponding fragment thereof or fusion polypeptide comprising HSA or fragment thereof or conjugate comprising HSA.
- the corresponding fragment of HSA is intended to mean a fragment of HSA that aligns with and has same number of amino acids as the fragment of the variant albumin with which it is compared.
- the corresponding fusion polypeptide comprising HSA or conjugate comprising HSA is intended to mean molecules having same size and amino acid sequence as the fusion polypeptide of conjugate comprising variant albumin, with which it is compared.
- the variant of albumin or a fragment thereof or fusion polypeptides comprising variant albumin or fragments thereof, fragment thereof, or a conjugate comprising a variant of albumin or a fragment thereof has a plasma half-life that is higher than the plasma half-life of HSA or the corresponding fragment thereof or fusion polypeptide comprising HSA or fragment thereof.
- this may be expressed as the variant of albumin or a fragment thereof or fusion polypeptides comprising variant albumin or fragments thereof, fragment thereof, or a conjugate comprising a variant of albumin or a fragment thereof has a KD to FcRn that is lower that the corresponding KD for HSA or the corresponding fragment thereof or fusion polypeptide comprising HSA or fragment thereof.
- the variant of albumin or a fragment thereof or fusion polypeptides comprising variant albumin or fragments thereof, fragment thereof, or a conjugate comprising a variant of albumin or a fragment thereof is preferably the variant of albumin or a fragment thereof or fusion polypeptides comprising variant albumin or fragments thereof, fragment thereof, or a conjugate comprising a variant of albumin or a fragment thereof according to the invention.
- Wells were coated with wild-type HSA or variants diluted in phosphate buffered saline (PBS) to stated concentrations, incubated overnight at 4 C and then blocked with 4% skimmed milk (Acumedia) for 1 hour at room temperature. The wells were then washed four times with PBS/0.005% TWEEN® 20 (PBS/T) pH 6.0 before glutathione-S-transferase (GST) -fused ()shFcRn (0.5 ⁇ / ⁇ ) as described in FEBS J. 2008 Aug;275(16):4097-1 10.
- PBS phosphate buffered saline
- HRP horseradish peroxidase
- PBS/T horseradish peroxidase pH 6.0
- TMB substrate tetramethylbenzidine
- HBS-EP buffer (0.01 M HEPES, 0.15M NaCI, 3mM EDTA, 0.005% surfactant P20
- pH 7.4 0.05 M HEPES, 0.15M NaCI, 3mM EDTA, 0.005% surfactant P20
- 1.0-0.5 ⁇ of each HSA variant was injected over the surface at constant flow rate (40 ⁇ /ml) at 25 C.
- flow rate 40 ⁇ /ml
- HSA HSA
- WT HSA rHA
- RECOMBUMIN available from Novozymes Biopharma UK Ltd, Nottingham UK was used for the examples.
- Serum albumin from other species The albumins were recombinant wheres stated, produced using sequences provided from publicly available databases. Or purchased from commercial suppliers.
- FcRn Expression and purification of soluble Human (shFcRn) and Mouse (smFcRn) FcRn Methods for the generation of shFcRn and smFcRn expression plasmids, expression and purification of each heterodimer can be found in Berntzen et al. (2005) J. Immunol. Methods 298:93-104).AIternatively shFcRn FcRn heterodimer was produced by GeneArt AG (Germany). Sequences for the two sub units of the heterodimer can be found in SEQ ID NO: 3 and SEQ ID NO: 4. The soluble receptor was expressed in HEK293 cells and purified from culture supernatant using Ni-HiTrap chromatography columns. Example 1. Preparation of variants
- HSA mutant variants and HSA fusion variants were produced using several techniques. Standard molecular biology techniques were employed throughout such as described in Sambrook, J. and D. W. Russell, 2001 . Molecular Cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
- Synthetic DNA Nco ⁇ /Sac ⁇ fragments (859 bp) were generated by gene assembly (GeneArt AG, Germany) containing point mutations within the HSA-encoding gene (SEQ ID NO: 1 ) to introduce the desired amino acid substitution in the translated protein.
- Table 2 details the codons used to introduce the amino acid substitutions into the HSA-encoding gene.
- the nucleotide sequence of the synthetic fragment encoding unchanged amino acids was identical to that in pDB2243 (described in WO 00/44772).
- pDB3876 - pDB3886 The synthetic nucleotide fragments were ligated into ⁇ /col/Sacl-digested pDB2243 to produce plasmids pDB3876 - pDB3886 (Table 1 ).
- pDB3876 - pDB3886 (see Table 1 ) were each digested with ⁇ / ⁇ and Pvu ⁇ , the DNA fragments were separated through a 0.7% (w/v) TAE gel, and 2992bp fragments (' ⁇ / ⁇ cassettes' including PRB1 promoter, DNA encoding the fusion leader (FL) sequence (disclosed in WO 2010/092135), nucleotide sequence encoding HSA and ADH1 terminator; see Figure 1 ) were purified from the agarose gel using a Qiagen Gel Extraction Kit following the manufacturer's instructions.
- Disintegration plasmids pDB3887 - pDB3897 and pDB2244 were used to transform S. cerevisiae BXP10cir° (as previously described WO/2001/079480 as described below.
- pDB3897 HSA E492H n/a Not applicable.
- pDB3876-pDB3886 are sub-cloning plasmids. Table 2: Codons used to introduce amino acid substitutions into HSA
- Oligonucleotide pairs xAP094 (SEQ ID NO: 5)/xAP095 (SEQ ID NO: 6) and xAP096 (SEQ ID NO: 7)/xAP097 (SEQ ID NO: 8) were used to generate two HSA variants (D494N+E495Q+T496A and E495Q+T496A, respectively).
- Plasmid pDB3927 (disclosed in WO 2010/092135) was used as template DNA and the methodology recommended by the manufacturer of the kit was followed.
- pDB3995 and pDB3996 were digested with SsfEII/SsrBI and the linearised DNA molecules were purified using standard techniques.
- SsfEII/SsrBI digested DNA purified using a Qiagen PCR-Purification kit following the manufacturer's instructions, was mixed individually with 100ng / ⁇ cc65l/SamHI-digested pDB3936) (disclosed in WO 2010/092135) and used to directly transform S. cerevisiae BXP10cir° using the Sigma Yeast Transformation kit described below.
- Plasmid pDB3927 (disclosed in WO 2010/092135) (containing an identical nucleotide sequence encoding HSA as in pDB2243) was manipulated to amino acid substitutions within the mature HSA protein.
- Synthetic DNA fragments were generated (GeneArt AG, Germany or DNA2.0 Inc, USA) (Nco ⁇ /Bsu36 ⁇ , AvA ⁇ ISph ⁇ or Sac ⁇ /Sph ⁇ fragments), containing point mutations within the HSA-encoding gene to introduce the desired amino acid substitution(s) into the translated protein sequence.
- Table 2 details the codons used to introduce the amino acid substitutions into the HSA- encoding gene.
- the nucleotide sequence of the synthetic fragment encoding unchanged amino acids i.e.
- Bam ⁇ /Sal ⁇ fragments containing point mutations in the nucleotide sequence encoding HSA were generated by gene assembly (DNA2.0 Inc, USA) and ligated into Bam ⁇ /Sal ⁇ - digested pDB3964 (described in WO 2010/092135) to produce plasmids pDB3986-pDB3989 (Table 3).
- Plasmids pDB3883 (Table 1 ), pDB4094 and pDB4095 (Table 3) were digested with Ncol/Sacl and 857bp fragments from each digest were purified before being ligated into Ncol/Sacl- digested pDB4006 or pDB41 10 (8.688kb) (Table 3) to produce pDB4156-pDB4161.
- Expression plasmids were generated in vivo (i.e. via homologous recombination in S. cerevisiae; a technique referred to as gap repair or in vivo cloning- see Orr-Weaver & Szostak. 1983. Proc. Natl. Acad. Sci. USA. 80:4417-4421 ). Modified plasmids listed in Table 3 were digested with SsfEII/SsrBI and the linearised DNA molecules were purified using standard techniques.
- XAP223 (SEQ ID NO: 21 ) lie ATT
- XAP194 (SEQ ID NO: 41 ) lie ATT
- XAP201 (SEQ ID NO: 48) Ser TCT ATAAG C CTAAG G C AG CTTG ACTTG CAG CAACAAG 1 1 1 ACCCTCCTCG
- PCR was used to produce two permutation libraries in which the codons encoding amino acid 500 or 573 of mature HSA were changed (mutated) to alternative non-wild type amino acids and a termination codons (K5XXSTOP).
- Mutagenic oligonucletides (Table 4 and Table 5), were designed to amplify HSA- encoding DNA and incorporate the desired changes. That is, for the changes at position 500, pDB4082 ( Figure 1 ) was used as a template DNA.
- pDB4082 is a derivative of pDB2305 (disclosed in EP1788084) and was produced as follows.
- pDB2305 ( Figure 2) was digested with Nsi ⁇ /Spe ⁇ and the yielded 8.779kb ⁇ /s/ ' l fragment was self-ligated to produce pDB4005 ( Figure 3).
- a synthetic DNA fragment (Bsa ⁇ ISph ⁇ ) was generated by gene assembly (DNA2.0 Inc, USA) (SEQ ID NO: 1 ) (containing 3' region of the PRB1 promoter, modified fusion leader sequence, nucleotide sequence encoding HSA and 5' region of the modified ADH ⁇ terminator), and ligated into /-//ndlll/Spftl-digested pDB4005 ( Figure 3) to produce pDB4082.
- the Hind ⁇ ⁇ site in PRB ⁇ promoter site has been removed and a Sacl l site within the nucleotide sequence encoding HSA has been introduced.
- the nucleotide sequence encoding HSA corresponding to that between the Sa/I / Hind ⁇ sites was generated using the New England Biolabs Phusion kit (Table 6) and oligonucleotides listed in Table 4.
- Table 7 describes the PCR method employed.
- the permutation library at amino acid position 573 in HSA was generated using pDB3927 as template DNA and involved amplifying the albumin-encoding DNA corresponding to that between the Nco ⁇ and Bsu3Q ⁇ sites using oligonucleotides detailed in Table 5.
- each PCR-product was purified using a Qiagen PCR-clean up kit (according to the manufactures instructions), digested with Sal ⁇ /Hind ⁇ (position 500 library) or Nco ⁇ /Bsu36 ⁇ (position 573 library). The digested DNAs were then purified using a Qiagen PCR-clean up kit and ligated into Sa/I/ Hind ⁇ - or Nco ⁇ /Bsu36 ⁇ - digested pDB4082 or pDB3927, respectively, replacing the equivalent native sequence. Ligations were transformed into E.
- coli DH5a subsequent plasmids isolated from transformants using a Qiagen miniprep kit (according to the manufacturer's instructions) and the correct constructs identified by restriction analysis.
- the specific changes in each plasmid were confirmed by sequencing.
- the resultants plasmids were used to generate expression plasmids and albumin fusion producing yeast by in vivo cloning as described above. That is, S. cerevisiae was transformed using the Sigma Yeast Transformation kit (described below), using a mixture of a 100 ng SsiEII/esrBI-digeste HSA variant containing plasmid and 100 ng Acc65 ⁇ /Bam ⁇ digested pDB3936.
- S. cerevisiae BXP10 cir° (as previously described WO/2001 /079480) or Strain A cir° (described in WO/2005/061718) was streaked on to YEPD plates (1 % (w/v) yeast extract, 2% (w/v) Bactopeptone, 2% (w/v) glucose), 1 .5% agar) and allowed to grow for 4 days at 30°C prior to transformation.
- YEPD plates (1 % (w/v) yeast extract, 2% (w/v) Bactopeptone, 2% (w/v) glucose), 1 .5% agar
- BMMD BMMD agar plates
- the composition of BMMD is described by Sleep et al., (2001 ), Yeast, 18, 403. Plates were incubated at 30°C for 4 days before individual colonies were patched on to fresh BMMD plates. Yeast strain numbers are detailed in Table 1 .
- BMMD broth was inoculated with a heavy loop of each yeast patch and grown for 24h at 30°C with orbital shaking at 200rpm.
- Cells were harvested by centrifugation at 1 900 ⁇ g for 5 min in a Sorval RT600 centrifuge, 15ml_ supernatant was removed and replaced by trehalose 40% (w/v). The cells were resuspended and transferred to cyrovials (1 mL) for storage at -80°C.
- BMMD (recipe 0.17% (w/v) yeast nitrogen base without amino acid and ammonium sulphate (Difco), 37.8mM ammonium sulphate, 29mM citric acid, 142mM disodium hydrogen orthophosphate dehydrate pH6.5, 2% (w/v) glucose) media (10ml_) was inoculated with each yeast strain and grown for 12h at 30°C with orbital shaking at 200rpm. An aliquot of each starter culture (4ml_) was used to inoculate 2 200ml_ BMMD media and grown for 36h at 30°C with orbital shaking at 200rpm. Cells were harvested by filtration through 0.2 ⁇ vacuum filter membranes (Stericup, Millipore) including a GF-D prefilter (Whatman) and the supernatant retained for purification. Primary concentration
- Retained culture supernatant was concentrated using Tangential Flow Filtration using a Pall Filtron LV system fitted with a Omega 10KD (0.093sq.m2) filter (LV CentramateTM cassette, Pall Filtron) with a transmembrane pressure of 20psi and a recirculation rate of 180ml_.min "1 .
- a Pall Filtron LV system fitted with a Omega 10KD (0.093sq.m2) filter (LV CentramateTM cassette, Pall Filtron) with a transmembrane pressure of 20psi and a recirculation rate of 180ml_.min "1 .
- Sucrose was kept at growth-limiting concentrations by controlling the rate of feed to a set nominal growth rate.
- the feed consisted of fermentation media containing 50% (w/v) sucrose, all essentially as described by Collins. (Collins, S.H., (1990) Production of secreted proteins in yeast, in: T.J.R. Harris (Ed.) Protein production by biotechnology, Elsevier, London, pp. 61 -77).
- GP-HPLC quantitation Purified albumin variants, fusions and conjugates were analysed by GP-H PLC and quantification as follows. Injections of 25 ⁇ _ were made onto a 7.8mm id x 300mm length TSK G3000SWXL column (Tosoh Bioscience), with a 6.0mm id x 40mm length TSK SW guard column (Tosoh Bioscience).
- Samples were chromatographed in 25mM sodium phosphate, 100mM sodium sulphate, 0.05% (w/v) sodium azide, pH 7.0 at 1 mL/min, Samples were quantified by UV detection at 280nm, by peak area, relative to a recombinant human albumin standard of known concentration (10mg/ml_) and corrected for their relative extinction coefficients.
- Albumin variants were purified from shake flask (either culture supernatant or concentrated culture supernatant) using a single chromatographic step using an albumin affinity matrix (AlbuPureTM - ProMetic Biosciences, Inc.). Chromatography was performed at a constant linear velocity of 240cm/h throughout. Culture supernatant was applied to a 6cm bed height, 2.0ml_ packed bed pre-equilibrated with 50mM sodium acetate pH5.3. Following load the column was washed with 10 column volume (CV) of equilibration buffer, then 50mM ammonium acetate pH8.0 (10CV).
- CV column volume
- Albumin-fusion variants were purified from shake flask culture supernatant using a single chromatographic step using an albumin affinity matrix (AlbuPureTM - ProMetic Biosciences, Inc.). Chromatography was performed at a constant linear velocity of 240cm/h throughout. Culture supernatant or concentrated culture supernatant was applied to a 6cm bed height, 2.0ml_ packed bed pre-equilibrated with 50mM sodium acetate pH5.3. Following load the column was washed with 10 column volume (cv) equilibration buffer then 50mM ammonium acetate pH8.0 (10cv).
- Albumin variants were purified from high cell density fed batch fermentation supernatants after separation by centrifugation, using a Sorvall RC 3C centrifuge (DuPont). Culture supernatant was chromatographed through an 1 1 cm bed height column 8.6ml_ packed bed packed with a custom synthesised albumin affinity matrix (AlbuPureTM - ProMetic Biosciences, Inc.) as described above. Product was eluted using elution buffers describe above at a flow rate of 120cm/h. The eluate fraction(s) was analysed by GP-HPLC.
- HSA Essentially fatty acid-free HSA (Sigma-Aldrich) was further purified by size exclusion chromatography as described in Andersen et al (2010). J.Biol.Chem. 285, (7),4826-4836. Ten ⁇ of monomeric HSA and rHA were analysed using SPR as described above and the data presented in Figure 4.
- the variants were analysed using ELISA at pH 6.0 and pH 7.4. Results are disclosed in Figure 5. The ELISA values represent the mean of duplicates. The variants were analysed using SPR analysis at pH 6.0 and pH 7.4. Results are disclosed for a representative number of variants in Figure 6 using a concentration of the variants of 0.2 ⁇ and in Figure 7 using a concentration of the variants of 1 ⁇ .
- CM5 chips using CM5 chips and immobilization of smFcRn-GST and shFcRn-GST variants or smFcRn was performed using the amine coupling kit (GE Healthcare). Protein samples (10 g/ml) were injected in 10 mM sodium acetate at pH 4.5 (GE Healthcare), all as described by the manufacturer. Unreacted moieties on the surface were blocked with 1 M ethanolamine.
- phosphate buffer (67 mM phosphate buffer, 0.15 M NaCI, 0.005% TWEEN® 20) at pH 6.0 or pH 7.4, or HBS-P buffer (0.01 M HEPES, 0.15 M NaCI, 0.005% surfactant P20) at pH 7.4 were used as running buffer or dilution buffer.
- Kinetic measurements were performed using a low density immobilized surface (100-200 resonance units (RU)).
- the KD's were generated using the BIAevaluation 4.1 software) A Langmuir 1 : 1 ligand model was used throughout. The kinetic values represent the average of triplicates. ND means: Not determined. NA means: Not acquired
- animal albumin (either Sigma-Aldrich or Calbiochem) were further purified as described in Andersen et al (2010). J.Biol.Chem. 285, (7),4826-4836.
- the binding of donkey serum albumin, bovine serum albumin, goat serum albumin, sheep serum albumin, rabbit serum albumin, dog serum albumin, hamster serum albumin, guinea pig albumin, rat serum albumin and chicken serum albumin to shFcRn was determined using the techniques described in Materials and Methods..
- the ELISA results are disclosed in Figure 9 A-D and the relative bindings summarized in Figure 9 E.
- Relative binding responses are categorized from strongest (++++) to weakest (+) and no binding (- ) ⁇
- binding constants for variants according to the invention were determined according to the methods described in Materials and Methods.
- the KD's were generated using the BIAevaluation 4.1 software) A Langmuir 1 :1 ligand model was used throughout. The kinetic values represent the average of triplicates. ND means: Not determined.
- Example 1 variants of HSA having the substitutions Q417A and D494E+Q417H were constructed.
- the kinetic properties of these variants were tested using the methods in Materials and Methods and are shown in Table 12.
- Table 12 Binding constants of HSA variants for shFcRn
- Example 1 variants of HSA having the substitutions P499A, K500A, K536A, P537A, K538A and K573A were constructed.
- the receptor binding properties of these variants were tested as described in Materials and Methods. Results are shown in Figure 1 1 .
- variants P499A, K536A, P537A and K538A had a reduced binding affinity to shFcRn relative to HSA.
- variant K500A had almost completely lost its ability to bind to shFcRn and K573A had an increased binding affinity to shFcRn both relative to HSA.
- Example 1 variants of HSA having the substitutions E501A and E501 Q were constructed.
- the kinetic properties of these variants were tested as described in Materials and Methods.
- Example 1 variants of HSA having a substitution at position 573 were constructed. All variants at position 573 were generated and the receptor binding properties of these variants were tested as described in Materials and Methods but with SPR analysis performed at pH5.5. Results are shown in the table 14 below and Figure 12 and 13.
- the steady state affinity constant was obtained using an equilibrium (Req) binding model supplied by the BIAevaluation 4.1 software.
- the kinetic values represent the average of duplicates
- d Not determined (ND).
- the results show that all variants having substitution in position 573 have improved binding to shFcRn compared with WT HSA.
- the variants K573F, K573H, K573P, K573W and K573Y have more than 10 fold lower KD to shFcRn than the parent HSA.
- the variant K573STOP is a truncated albumin having a stop codon in position 573.
- the sensorgram for the K573STOP variant show significantly reduced binding compare to the WT HSA and generated a high KD.
- the increased affinity that we have shown for the variant K573E, a natural variant characterized by Otagiri (2009). Biol.Pharm. Bull. 32(4) 527-534, is predicted to have increased half-life in vivo.
- Example 15 Analysis of HSA variants in position 500 Using the method of Example 1 variants of HSA having a substitution at position 500 were constructed. All variants at position 500 were generated and the receptor binding properties of these variants were tested. Biacore X, Biacore X100 and Sensor Chip CM5 were used for all analyses, both supplied by G E Healthcare.
- shFcRn produced by GeneArt AG (Germany) (diluted to " ⁇ g/rmL in 10mM sodium acetate pH5.0 (G E Healthcare)) was immobilised on flow cell 2 (FC2) to levels between 1600 - 2200 response u nits (RU ) via standard amine cou pling as per manufacturers instructions (G E Healthcare).
- FC1 flow cell 1
- FC1 flow cell 1
- 3-5 start up cycles were run first, with running buffer (67mM phosphate buffer, 0.15M NaCI, 0.005% Tween 20 at pH5.75 ⁇ 0.25) only, followed by regeneration.
- WT rHA and K500 library variants were injected at various concentrations (1 ⁇ - 150 ⁇ ) for 90s at a constant flow rate of (30 ⁇ / ⁇ - ⁇ ) at 25 °C followed by regeneration of the surface using HBS-EP buffer pH7.4 (G E Healthcare) until approximate initial baseline RU was restored (usually 12s pulse would suffice).
- Table 17 Kinetics of HSA K500 single point mutants.
- Plasmids containing expression cassettes for the production of scFv (vHvL) genetically- fused to HSA, at either the N- or C-terminus or both, were modified to allow the production of albumin fusions using in vivo cloning (describe above). That is, pDB3017 ( Figure 17), pDB3021 ( Figure 18), pDB3056 ( Figure 19) were digested with Nsi ⁇ /Spe ⁇ and Nsi ⁇ fragments corresponding 9.51 1 kb, 9.569kb and 8.795kb, respectively, were purified using standard techniques. Purified Nsi ⁇ fragments were self-ligated and used to transform chemically competent E. coli DH5a to produce pDB4168, pDB4169 and pDB4170, respectively (Table 18).
- pDB3165 (containing the bivalent fusion) ( Figure 20) was digested with A/oil and the expression cassette (4.506kb fragment) was purified before being ligated into ⁇ / ⁇ -digested pDB3927 to produce pDB4172 ( Figure 21 , Table 18).
- Synthetic Sal ⁇ /Bsu36 ⁇ DNA fragments (269bp), which contain point mutations within the albumin encoding nucleotide sequence to introduce amino acid substitutions corresponding to K500A, or D550N or K573P into the translated albumin protein sequence, were generated by gene assembly (GeneArt AG, Germany).
- the Sal ⁇ /Bsu36 ⁇ fragments were individually ligated into Sa/l/Sst/36l-digested pDB4168-pDB4170 and pDB4172 and used to transform chemically competent E. coli DH5a using standard techniques to generate plasmids pDB4265 - pDB4276 (Table 18).
- a DNA fragment was generated by PCR (using standard techniques), to introduce a K573A substitution in the translated albumin protein sequence.
- PCR was performed using the New England Biolabs Phusion kit using pDB4267 ( Figure 22) as template DNA and oligonucleotides xAP238 (SEQ ID NO: 53) and xAP239 (SEQ ID NO: 54):
- Table 19 describes PCR cycling.
- PCR-product was purified, digested with Sal ⁇ /Bsu36 ⁇ , and the fragment (269bp) isolated was ligated into Sa/l/Sst/36l-digested pDB4168-pDB4170 and pDB4172 and used to transform chemically competent E. coli DH5a.
- Resulting plasmids (pDB4277 - pDB4280) are listed in Table 18.
- the nucleotide sequence encoding the FLAG tag was removed from plasmids pDB4168 and pDB4268-4270 (plasmids for the expression of scFv N-terminally fused to HSA and HSA muteins K500A, D550N and K573P, respectively.
- pDB4168 and pDB4268-4270 (Table 18) were digested with Bsu36 ⁇ /Sph ⁇ to remove a 231 bp product comprising 3' region of HSA-encoding gene, nucleotide sequence encoding FLAG tag and 5' region of ADH 1 terminator.
- a Bsu36 ⁇ /Sph ⁇ fragment (207bp), comprising 3' region of HSA-encoding gene and 5' region of mADH1 terminator (SEQ ID1 ) from pDB4181 was ligated into est/36l/Sp/?l-digested pDB4168 and pDB4268-pDB4270 using standard techniques. Ligation mixtures were used to transform chemically competent E. coli DH5a using standard techniques to generate plasmids pDB4281 -pDB4284 (Table 18)
- pDB4265-pDB4284 were digested with fisiEII/fisrBI and the linearised DNA molecules were purified using standard techniques.
- One hundred ng SsiEII/SsrBI DNA samples were mixed with 100ng /Acc65l/SamHI-digested pDB3936 and used to transform S. cerevisiae BXP10cir° using the Sigma Yeast Transformation kit described below.
- the expression plasmid was generated in the yeast by homologous recombination (in vivo cloning) between the albumin-fusion containing plasmid (pDB4265-pDB4280) (Table 18) and pDB3936.
- Plasmids pDB3017, pDB3021 , pDB3056 and pDB3165 were used to transform S. cerevisiae Strain Acir 0 (described in WO/2005/061718) using the Sigma Yeast Transformation kit described below.
- the nucleotide sequence encoding human IL-1 RA (interleukin-1 receptor antagonist)
- the nucleotide sequence of the 708bp synthetic fragment (Bsu36l/Sphl fragment) is given in SEQ ID NO: 55 and includes the 3'region of the gene encoding HSA, the nucleotide sequence encoding a GS linker, the nucleotide sequence encoding human I L-1 RA (N84Q to abolish the N-linked glycosylation motif) and the 5' region of the ADH 1 terminator.
- the synthetic DNA fragment could be ligated into Bsu36l/Sphl-digested pDB3927 to produce pDB2588.
- Plasmids containing the expression cassettes for the production of IL-1 RA genetically fused to the C-terminus of HSA and the HSA variants K500A, D550N, K573A and K573P were prepared as follows.
- pDB2588 was digested with Bsu36l/Sphl and a 705bp fragment containing the '3 region of the HSA encoding gene, nucleotide sequence encoding a GS linker, nucleotide sequence encoding human IL1 -RA (N84Q) and the 5' region of a modified S.
- cerevisiae ADH1 terminator (SEQ ID3) was purified using standard techniques then ligated into Bsu36l/Sphl-digested pDB4006 (containing HSA K573A expression cassette), pDB4010 (containing HSA D550N expression cassette), pDB4086 (containing HSA K500A expression cassette), pDB41 10 (containing HSA K573P expression cassette) to generate pDB4287, pDB4286, pDB4285 and pDB4288, respectively (for an example, see Figure 23).
- pDB4285-pDB4288 were digested with Nsi l/Pvu l and the linearised DNA molecules were purified using standard techniques.
- Nsil/Pvul- digested DNA samples were mixed with 100ng Acc65l/BamHI-digested pDB3936 (9721 bp) (i.e. in vivo cloning) and used to transform S. cerevisiae (i.e. by in vivo cloning) using the Sigma Yeast Transformation kit described below.
- the fusion polypeptides were analysed for their binding to FcRn using the SPR method described above and following results were obtained:
- Table 20 Kinetics of HSA fusion variants.
- Example 8 it was shown that the K500A variant did not significantly bind shFcRn, in Example 10 it was shown that the K573P and K573A variants bind shFcRn stronger than HSA and in Example 1 1 it was shown that the D550N variant binds FcRn weaker than HSA.
- fusion polypeptides in different configurations: C-terminal fusions with a small moiety (HSA-FLAG), C-terminal fusions with a larger polypeptide (HSA-IL1 RA); N-terminal fusions with polypeptide (scFv-HSA); N- and C-terminal fusions (scFv-HSA-FLAG and scFv-HSA-scFv- FLAG).
- Example 17 Conjugation of Horseradish peroxidase protein to Albumin and the K573P variant.
- recombinant albumin (RecombuminTM) was used as a control molecule.
- RecombuminTM recombinant albumin
- a final 200mg/mL albumin K573P variant of the invention was purified from a fed batch fermentation by means described in Material and Methods.
- a two step purification was carried out; The first step used a column (bed volume approximately 400ml_, bed height 1 1 cm) packed with AlbuPureTM matrix (ProMetic). This was equilibrated with 50mM sodium acetate, pH 5.3 and loaded with neat culture supernatant, at approximately pH 5.5-6.5, to approximately 20 mg/mL matrix.
- the eluate from the first step was diluted approximately two fold with water to give a conductivity of 2.5 ⁇ 0.5 mS/cm after adjustment to pH 5.5 ⁇ 0.3 with acetic acid.
- This was loaded onto a DEAE-Sepharose Fast Flow (GE Healthcare) column (bed volume approximately 400ml_, bed height 1 1 cm), equilibrated with 80mM sodium acetate, 5mM octanoate, pH 5.5. Loading was approximately 30mg protein/mL matrix.
- the column was washed with approximately 5 column volumes of 80mM sodium acetate, 5mM octanoate, pH 5.5.
- the eluate from the first step was diluted approximately two fold with water to give a conductivity of 2.5 ⁇ 0.5 mS/cm after adjustment to pH 5.5 ⁇ 0.3 with acetic acid.
- This was loaded onto a DEAE-Sepharose Fast Flow (GE Healthcare) column (bed volume approximately 400ml_, bed height 1 1 cm), equi
- the bound protein was eluted using two column volumes of 1 10mM potassium tetraborate, 200mM sodium chloride, approximately pH 9.0.
- the flow rate was 183mL/min during the load and wash steps, and 169mL/min during the elution step.
- the eluate was concentrated and diafiltered against 145mM NaCI, using a Pall Centramate Omega 10,000 Nominal MWCO membrane, to give a final protein concentration of approximately 200mg/mL.
- Both 200mg/mL stock solutions of the rHA and K573P variant albumin were diluted down to 5mg/mL, using phosphate buffer saline (PBS), pH adjusted to pH 6.5-6.7.
- PBS phosphate buffer saline
- 2mg of the EZ-Link® Maleimide Activated Horseradish Peroxidase (HRP) was mixed with either 1 mL of the 5mg/ML rHA or K573P variant albumin.
- This mixture ensured an approximate 2 fold molar excess of the albumin, or K573P variant albumin. This mixture was minimally incu bated at 4 °C, for 24 hours. The reaction mixtures were then checked for conjugation, using GP-HPLC.
- Example 18 Conjugation of Fluorescein to Albumin and the K573P variant.
- the two same albumin samples used in Example 17, were also the start materials for this example. I.e. Approximately 200mg/ml_ rHA or the K573P albumin variant.
- Fluorescein-5-Maleimide was dissolved in dimethylformamide, to give a final concentration of 25mg/ml_. This was then further diluted into 18mls of PBS, pH adjusted to approximately pH 6.5. To this solution either 1 ml of 200mg/ml_ rHA or 1 ml_ of 200mg/ml_ K573P variant was added. This gave an approximate 20 fold final molar excess of F5M. These samples were incubated and allowed to conjugate overnight at 4°C, in the dark, to allow the maleimide groups on the F5M to react with predominantly the free sulfhydryl, present in both albumin species.
- Example 19 Further albumin variants.
- Figure 30A and 30B shows the effect on shFcRn binding for the albumin variants.
- Table 22 Kinetics of the HSA C-terminal swapped variant interactions with shFcRn.
- HSA-MouseC i 3.7+0.1 1 .3+0.0 i: 0.3
- Example 21 Competitive binding analysis of variant albumin fusions
- the competitive binding hierarchy was identical for the variants fusions of HSA-FLAG and , N+C-terminal scFv HSA-FLAG to the hierarchy of the individual HSA variants (unfused and fused) affinity data.
- the IL1 Ra variants K573P, K573A, and the K500A were as predicted, however the D550N appears to inhibit more efficiently than the WT fusion.
- HSA E492G+K573A HSA E492G+ N503K+ K573A, unlike HSA E492G+ N503H + K573A, had marginally improved binding beyond that of HSA K573A.
- the combination variants containing K573P did not show improved binding over the K573P single variant.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Toxicology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Peptides Or Proteins (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (37)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012535864A JP2013509170A (en) | 2009-10-30 | 2010-11-01 | Albumin variant |
EP18188293.7A EP3421491A3 (en) | 2009-10-30 | 2010-11-01 | Albumin variants |
EP10771471.9A EP2493921B1 (en) | 2009-10-30 | 2010-11-01 | Albumin variants |
MX2014010841A MX367177B (en) | 2009-10-30 | 2010-11-01 | Albumin variants. |
CN201080060322.5A CN102741280B (en) | 2009-10-30 | 2010-11-01 | Albumin variants |
BR112012009450A BR112012009450A2 (en) | 2009-10-30 | 2010-11-01 | albumin variants |
GB1209553.5A GB2488077A (en) | 2009-10-30 | 2010-11-01 | Albumin variants |
ES10771471T ES2700230T3 (en) | 2009-10-30 | 2010-11-01 | Albumin variants |
MX2012004793A MX2012004793A (en) | 2009-10-30 | 2010-11-01 | Albumin variants. |
AU2010311332A AU2010311332B2 (en) | 2009-10-30 | 2010-11-01 | Albumin variants |
US13/504,326 US8748380B2 (en) | 2009-10-30 | 2010-11-01 | Albumin variants |
RU2012122173A RU2607374C2 (en) | 2009-10-30 | 2010-11-01 | Versions of albumin |
KR1020127013398A KR101874834B1 (en) | 2009-10-30 | 2010-11-01 | Albumin variants |
CA2776241A CA2776241A1 (en) | 2009-10-30 | 2010-11-01 | Albumin variants |
US13/882,653 US20130225496A1 (en) | 2010-11-01 | 2011-11-01 | Albumin Variants |
EP11778866.1A EP2635598A1 (en) | 2010-11-01 | 2011-11-01 | Albumin variants |
CN2011800638125A CN103347893A (en) | 2010-11-01 | 2011-11-01 | Albumin variants |
PCT/EP2011/069188 WO2012059486A1 (en) | 2010-11-01 | 2011-11-01 | Albumin variants |
IL218858A IL218858B (en) | 2009-10-30 | 2012-03-27 | Albumin variants |
US14/262,244 US20140234311A1 (en) | 2009-10-30 | 2014-04-25 | Albumin variants |
US14/863,836 US20160075762A1 (en) | 2009-10-30 | 2015-09-24 | Albumin variants |
US14/863,868 US20160075763A1 (en) | 2009-10-30 | 2015-09-24 | Albumin variants |
US14/863,752 US20160075760A1 (en) | 2009-10-30 | 2015-09-24 | Albumin variants |
US14/863,780 US20160075761A1 (en) | 2009-10-30 | 2015-09-24 | Albumin variants |
US14/863,655 US20160075757A1 (en) | 2009-10-30 | 2015-09-24 | Albumin variants |
US14/863,719 US20160075759A1 (en) | 2009-10-30 | 2015-09-24 | Albumin variants |
US14/863,597 US20160075756A1 (en) | 2009-10-30 | 2015-09-24 | Albumin variants |
US14/863,685 US20160075758A1 (en) | 2009-10-30 | 2015-09-24 | Albumin variants |
US14/863,628 US20160009787A1 (en) | 2009-10-30 | 2015-09-24 | Albumin variants |
US15/709,261 US20180105577A1 (en) | 2009-10-30 | 2017-09-19 | Albumin variants |
US15/709,227 US20180072792A1 (en) | 2009-10-30 | 2017-09-19 | Albumin variants |
US15/709,263 US20180105578A1 (en) | 2009-10-30 | 2017-09-19 | Albumin variants |
US15/709,169 US20180105576A1 (en) | 2009-10-30 | 2017-09-19 | Albumin variants |
US15/870,349 US20180162925A1 (en) | 2009-10-30 | 2018-01-12 | Albumin variants |
US15/870,376 US20180222963A1 (en) | 2009-10-30 | 2018-01-12 | Albumin variants |
US15/979,319 US10696732B2 (en) | 2009-10-30 | 2018-05-14 | Albumin variants |
US16/882,019 US20200385442A1 (en) | 2009-10-30 | 2020-05-22 | Albumin variants |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09174698 | 2009-10-30 | ||
EP09174698.2 | 2009-10-30 | ||
US32717110P | 2010-04-23 | 2010-04-23 | |
US61/327,171 | 2010-04-23 | ||
US34800110P | 2010-05-25 | 2010-05-25 | |
US61/348,001 | 2010-05-25 | ||
EP10174162.7 | 2010-08-26 | ||
EP10174162 | 2010-08-26 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/504,326 A-371-Of-International US8748380B2 (en) | 2009-10-30 | 2010-11-01 | Albumin variants |
US14/262,244 Division US20140234311A1 (en) | 2009-10-30 | 2014-04-25 | Albumin variants |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011051489A2 true WO2011051489A2 (en) | 2011-05-05 |
WO2011051489A3 WO2011051489A3 (en) | 2011-06-23 |
Family
ID=43922679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/066572 WO2011051489A2 (en) | 2009-10-30 | 2010-11-01 | Albumin variants |
Country Status (14)
Country | Link |
---|---|
US (19) | US8748380B2 (en) |
EP (2) | EP3421491A3 (en) |
JP (3) | JP2013509170A (en) |
KR (1) | KR101874834B1 (en) |
CN (2) | CN102741280B (en) |
AU (1) | AU2010311332B2 (en) |
BR (1) | BR112012009450A2 (en) |
CA (1) | CA2776241A1 (en) |
ES (1) | ES2700230T3 (en) |
GB (1) | GB2488077A (en) |
IL (1) | IL218858B (en) |
MX (1) | MX2012004793A (en) |
RU (1) | RU2607374C2 (en) |
WO (1) | WO2011051489A2 (en) |
Cited By (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012059486A1 (en) | 2010-11-01 | 2012-05-10 | Novozymes Biopharma Dk A/S | Albumin variants |
WO2012150319A1 (en) | 2011-05-05 | 2012-11-08 | Novozymes Biopharma Dk A/S | Albumin variants |
EP2536756A1 (en) * | 2010-02-16 | 2012-12-26 | MedImmune, LLC | Hsa-related compositions and methods of use |
WO2013006675A1 (en) | 2011-07-05 | 2013-01-10 | Novozymes Biopharma Uk Limited | Albumin formulation and use |
WO2013010840A2 (en) | 2011-07-18 | 2013-01-24 | Arts Biologics A/S | Long acting biologically active luteinizing hormone (lh) compound |
WO2013075066A2 (en) | 2011-11-18 | 2013-05-23 | Eleven Biotherapeutics, Inc. | Proteins with improved half-life and other properties |
WO2013135896A1 (en) | 2012-03-16 | 2013-09-19 | Novozymes Biopharma Dk A/S | Albumin variants |
WO2013167750A2 (en) | 2012-05-11 | 2013-11-14 | Prorec Bio Ab | Method for diagnosis and treatment of prolactin associated disorders |
WO2014005596A1 (en) | 2012-07-03 | 2014-01-09 | Aarhus Universitet | Modified payload molecules and their interactions and uses |
US20140128326A1 (en) * | 2012-11-08 | 2014-05-08 | Novozymes Biopharma Dk A/S | Albumin variants |
US8748380B2 (en) | 2009-10-30 | 2014-06-10 | Novozymes Biopharma Dk A/S | Albumin variants |
WO2014125082A1 (en) | 2013-02-16 | 2014-08-21 | Novozymes Biopharma Dk A/S | Pharmacokinetic animal model |
WO2015014228A1 (en) | 2013-08-01 | 2015-02-05 | 江苏泰康生物医药有限公司 | Glp-1 analog fusion protein and preparation method and use thereof |
WO2015066550A1 (en) | 2013-10-31 | 2015-05-07 | Resolve Therapeutics, Llc | Therapeutic nuclease-albumin fusions and methods |
US9045564B2 (en) | 2011-02-15 | 2015-06-02 | Medimmune, Llc | HSA-related compositions and methods of use |
WO2015063611A3 (en) * | 2013-11-01 | 2015-11-05 | University Of Oslo | Albumin variants and uses thereof |
WO2016025645A1 (en) | 2014-08-12 | 2016-02-18 | Massachusetts Institute Of Technology | Synergistic tumor treatment with il-2, a therapeutic antibody, and an immune checkpoint blocker |
WO2016025642A1 (en) | 2014-08-12 | 2016-02-18 | Massachusetts Institute Of Technology | Synergistic tumor treatment with il-2 and integrin-binding-fc-fusion protein |
WO2016064817A1 (en) | 2014-10-22 | 2016-04-28 | Armo Biosciences, Inc. | Methods of using interleukin-10 for treating diseases and disorders |
US9388231B2 (en) | 2012-07-13 | 2016-07-12 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
WO2016145307A1 (en) | 2015-03-12 | 2016-09-15 | Medimmune, Llc | Method of purifying albumin-fusion proteins |
WO2016166360A1 (en) | 2015-04-17 | 2016-10-20 | Bayer Pharma Aktiengesellschaft | Bispecific antibody constructs for cdh3 and cd3 |
US9499605B2 (en) | 2011-03-03 | 2016-11-22 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
WO2017021362A1 (en) | 2015-07-31 | 2017-02-09 | Amgen Research (Munich) Gmbh | Antibody constructs for flt3 and cd3 |
WO2017021349A1 (en) | 2015-07-31 | 2017-02-09 | Amgen Research (Munich) Gmbh | Bispecific antibody constructs binding dll3 and cd3 |
WO2017021354A1 (en) | 2015-07-31 | 2017-02-09 | Amgen Research (Munich) Gmbh | Antibody constructs for cd70 and cd3 |
WO2017021370A1 (en) | 2015-07-31 | 2017-02-09 | Amgen Research (Munich) Gmbh | Bispecific antibody constructs binding egfrviii and cd3 |
WO2017021356A1 (en) | 2015-07-31 | 2017-02-09 | Amgen Research (Munich) Gmbh | Bispecific antibody constructs binding mesothelin and cd3 |
WO2017112847A1 (en) | 2015-12-22 | 2017-06-29 | Albumedix A/S | Improved protein expression strains |
WO2017117631A1 (en) | 2016-01-07 | 2017-07-13 | Csl Limited | Mutated truncated von willebrand factor |
WO2017184590A1 (en) | 2016-04-18 | 2017-10-26 | The Broad Institute Inc. | Improved hla epitope prediction |
US9823255B2 (en) | 2013-06-17 | 2017-11-21 | Armo Biosciences, Inc. | Method for assessing protein identity and stability |
WO2018065491A1 (en) | 2016-10-04 | 2018-04-12 | Albumedix A/S | Uses of recombinant yeast-derived serum albumin |
US9943568B2 (en) | 2013-04-18 | 2018-04-17 | Armo Biosciences, Inc. | Methods of using pegylated interleukin-10 for treating cancer |
WO2018082758A1 (en) | 2016-11-04 | 2018-05-11 | Aarhus Universitet | Identification and treatment of tumors characterized by an overexpression of the neonatal fc receptor |
WO2018096396A1 (en) * | 2016-11-22 | 2018-05-31 | University Of Oslo | Albumin variants and uses thereof |
WO2018115953A1 (en) | 2016-12-21 | 2018-06-28 | Prometic Pharma Smt Limited | Methods and compositions for preventing or minimizing epithelial-mesenchymal transition |
US10010588B2 (en) | 2013-08-30 | 2018-07-03 | Armo Biosciences, Inc. | Methods of using pegylated interleukin-10 for treating hyperlipidemia |
WO2018148671A1 (en) | 2017-02-12 | 2018-08-16 | Neon Therapeutics, Inc. | Hla-based methods and compositions and uses thereof |
WO2018234518A1 (en) | 2017-06-22 | 2018-12-27 | CSL Behring Lengnau AG | Modulation of fviii immunogenicity by truncated vwf |
WO2018234349A1 (en) | 2017-06-20 | 2018-12-27 | Albumedix Ltd | Improved protein expression strains |
US10195274B2 (en) | 2015-05-28 | 2019-02-05 | Armo Biosciences Inc. | Method of modulating a chimeric antigen receptor t cell immune response by administering IL-10 |
WO2019036605A2 (en) | 2017-08-17 | 2019-02-21 | Massachusetts Institute Of Technology | Multiple specificity binders of cxc chemokines and uses thereof |
US10233228B2 (en) | 2010-04-09 | 2019-03-19 | Albumedix Ltd | Albumin derivatives and variants |
WO2019075519A1 (en) * | 2017-10-18 | 2019-04-25 | Csl Limited | Human serum albumin variants and uses thereof |
US10293043B2 (en) | 2014-06-02 | 2019-05-21 | Armo Biosciences, Inc. | Methods of lowering serum cholesterol |
WO2019104385A1 (en) | 2017-11-29 | 2019-06-06 | Csl Limited | Method of treating or preventing ischemia-reperfusion injury |
US10350270B2 (en) | 2014-10-14 | 2019-07-16 | Armo Biosciences, Inc. | Interleukin-15 compositions and uses thereof |
WO2019140196A1 (en) | 2018-01-12 | 2019-07-18 | Amgen Inc. | Anti-pd-1 antibodies and methods of treatment |
US10398761B2 (en) | 2015-08-25 | 2019-09-03 | Armo Biosciences, Inc. | Methods of using combinations of PEG-IL-10 and IL-15 for treating cancers |
WO2019218009A1 (en) | 2018-05-16 | 2019-11-21 | Csl Limited | Soluble complement receptor type 1 variants and uses thereof |
US10548954B2 (en) | 2010-07-09 | 2020-02-04 | Bioverativ Therapeutics Inc. | Factor IX polypeptides and methods of use thereof |
WO2020025792A1 (en) | 2018-08-03 | 2020-02-06 | Amgen Research (Munich) Gmbh | Antibody constructs for cldn18.2 and cd3 |
WO2020049151A1 (en) | 2018-09-06 | 2020-03-12 | Bavarian Nordic A/S | Storage improved poxvirus compositions |
WO2020072700A1 (en) | 2018-10-02 | 2020-04-09 | Dana-Farber Cancer Institute, Inc. | Hla single allele lines |
US10618970B2 (en) | 2015-02-03 | 2020-04-14 | Armo Biosciences, Inc. | Method of treating cancer with IL-10 and antibodies that induce ADCC |
US10633428B2 (en) | 2015-08-20 | 2020-04-28 | Albumedix Ltd | Albumin variants and conjugates |
US10640504B2 (en) | 2017-09-08 | 2020-05-05 | Amgen Inc. | Inhibitors of KRAS G12C and methods of using the same |
WO2020092202A2 (en) | 2018-10-29 | 2020-05-07 | Biogen Ma Inc. | Humanized and stabilized fc5 variants for enhancement of blood brain barrier transport |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
WO2020187848A1 (en) | 2019-03-18 | 2020-09-24 | Biontech Cell & Gene Therapies Gmbh | Lnterleukin-2 receptor (il2r) and interleukin-2 (il2) variants for specific activation of immune effector cells |
WO2020200481A1 (en) | 2019-04-05 | 2020-10-08 | Biontech Rna Pharmaceuticals Gmbh | Treatment involving interleukin-2 (il2) and interferon (ifn) |
US10801070B2 (en) | 2013-11-25 | 2020-10-13 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer |
US10835585B2 (en) | 2015-05-20 | 2020-11-17 | The Broad Institute, Inc. | Shared neoantigens |
WO2020252039A1 (en) | 2019-06-12 | 2020-12-17 | Biontech Us Inc. | Neoantigen compositions and uses thereof |
EP3753567A1 (en) | 2011-10-11 | 2020-12-23 | Viela Bio, Inc. | Cd40l-specific tn3-derived scaffolds and methods of use thereof |
WO2021044362A1 (en) | 2019-09-06 | 2021-03-11 | Novartis Ag | Therapeutic fusion proteins |
US10975442B2 (en) | 2014-12-19 | 2021-04-13 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
US10993997B2 (en) | 2014-12-19 | 2021-05-04 | The Broad Institute, Inc. | Methods for profiling the t cell repertoire |
EP3819007A1 (en) | 2019-11-11 | 2021-05-12 | Amgen Research (Munich) GmbH | Dosing regimen for anti-bcma agents |
WO2021111143A1 (en) | 2019-12-04 | 2021-06-10 | Albumedix Limited | Methods and compositions produced thereby |
WO2021150824A1 (en) | 2020-01-22 | 2021-07-29 | Amgen Research (Munich) Gmbh | Combinations of antibody constructs and inhibitors of cytokine release syndrome and uses thereof |
WO2021183861A1 (en) | 2020-03-12 | 2021-09-16 | Amgen Inc. | Method for treatment and prophylaxis of crs in patients comprising a combination of bispecifc antibodies binding to cds x cancer cell and tnfalpha or il-6 inhibitor |
WO2021180943A1 (en) | 2020-03-12 | 2021-09-16 | Bavarian Nordic A/S | Compositions improving poxvirus stability |
WO2021185775A1 (en) | 2020-03-16 | 2021-09-23 | Biontech Cell & Gene Therapies Gmbh | Antigen-specific t cell receptors and t cell epitopes |
US11183272B2 (en) | 2018-12-21 | 2021-11-23 | Biontech Us Inc. | Method and systems for prediction of HLA class II-specific epitopes and characterization of CD4+ T cells |
WO2021236638A1 (en) | 2020-05-19 | 2021-11-25 | Amgen Inc. | Mageb2 binding constructs |
WO2022060901A1 (en) | 2020-09-16 | 2022-03-24 | Amgen Inc. | Methods for administering therapeutic doses of bispecific t-cell engaging molecules for the treatment of cancer |
WO2022096700A1 (en) | 2020-11-06 | 2022-05-12 | Amgen Research (Munich) Gmbh | Polypeptide constructs selectively binding to cldn6 and cd3 |
WO2022096704A1 (en) | 2020-11-06 | 2022-05-12 | Amgen Inc. | Antigen binding domain with reduced clipping rate |
WO2022096698A1 (en) | 2020-11-06 | 2022-05-12 | Amgen Inc. | Polypeptide constructs binding to cd3 |
WO2022103781A1 (en) | 2020-11-10 | 2022-05-19 | Amgen Inc. | Methods for administering a bcma x cd3 binding molecule |
WO2022132596A2 (en) | 2020-12-14 | 2022-06-23 | Biontech Us Inc. | Tissue-specific antigens for cancer immunotherapy |
US11413332B2 (en) | 2013-11-11 | 2022-08-16 | Armo Biosciences, Inc. | Methods of using interleukin-10 for treating diseases and disorders |
US11434302B2 (en) | 2016-02-03 | 2022-09-06 | Amgen Research (Munich) Gmbh | Bispecific T cell engaging antibody constructs |
US11452768B2 (en) | 2013-12-20 | 2022-09-27 | The Broad Institute, Inc. | Combination therapy with neoantigen vaccine |
US11541103B2 (en) | 2017-08-03 | 2023-01-03 | Amgen Inc. | Interleukin-21 mutein/ anti-PD-1 antibody conjugates |
US11549149B2 (en) | 2017-01-24 | 2023-01-10 | The Broad Institute, Inc. | Compositions and methods for detecting a mutant variant of a polynucleotide |
US11555061B2 (en) | 2009-02-11 | 2023-01-17 | Albumedix, Ltd | Albumin variants and conjugates |
US11661462B2 (en) | 2014-07-31 | 2023-05-30 | Amgen Research (Munich) Gmbh | Optimized cross-species specific bispecific single chain antibody contructs |
US11725237B2 (en) | 2013-12-05 | 2023-08-15 | The Broad Institute Inc. | Polymorphic gene typing and somatic change detection using sequencing data |
WO2024015892A1 (en) | 2022-07-13 | 2024-01-18 | The Broad Institute, Inc. | Hla-ii immunopeptidome methods and systems for antigen discovery |
WO2024077256A1 (en) | 2022-10-07 | 2024-04-11 | The General Hospital Corporation | Methods and compositions for high-throughput discovery ofpeptide-mhc targeting binding proteins |
WO2024077044A1 (en) | 2022-10-05 | 2024-04-11 | Amgen Inc. | Combination therapies comprising t-cell redirecting therapies and agonistic anti-il-2r antibodies or fragments thereof |
WO2024089258A1 (en) | 2022-10-28 | 2024-05-02 | Aarhus Universitet | Albumin conjugated to cpg oligodeoxynucleotides as super-boosters of immune response |
WO2024170756A1 (en) | 2023-02-17 | 2024-08-22 | Ablynx N.V. | Polypeptides binding to the neonatal fc receptor |
US12071484B2 (en) | 2011-06-13 | 2024-08-27 | Csl Limited | Nucleic acids encoding antibodies against human granulocyte-colony stimulating factor receptor (G-CSFR) and method of expressing encoded protein |
WO2024200573A1 (en) | 2023-03-27 | 2024-10-03 | LAVA Therapeutics N.V. | Nectin-4 binding agents and methods of use |
EP4442251A1 (en) | 2023-04-05 | 2024-10-09 | Albumedix Ltd | Formulations and uses thereof |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6555543B2 (en) | 2000-08-04 | 2003-04-29 | Dmi Biosciences, Inc. | Method of using diketopiperazines and composition containing them |
KR20150080004A (en) | 2003-05-15 | 2015-07-08 | 앰피오 파마슈티컬스 인코퍼레이티드 | Treatment of t-cell mediated diseases |
JP5856843B2 (en) | 2008-05-27 | 2016-02-10 | アンピオ ファーマシューティカルズ,インコーポレイテッド | Pharmaceutical composition using diketopiperazine |
CA2800173C (en) | 2010-05-21 | 2019-05-14 | Ulrik Nielsen | Bi-specific fusion proteins |
MY172699A (en) | 2011-10-10 | 2019-12-10 | Ampio Pharmaceuticals Inc | Implantable medical devices with increased immune tolerance, and methods for making and implanting |
WO2013055734A1 (en) | 2011-10-10 | 2013-04-18 | Ampio Pharmaceuticals, Inc. | Treatment of degenerative joint disease |
MX355446B (en) | 2011-10-28 | 2018-04-18 | Ampio Pharmaceuticals Inc | Treatment of rhinitis. |
BR112015017958A2 (en) * | 2013-02-01 | 2017-07-11 | Ampio Pharmaceuticals Inc | methods for producing diketopiperazine and compositions containing diketopiperazine |
EP2968315B1 (en) | 2013-03-15 | 2020-06-03 | Ampio Pharmaceuticals, Inc. | Compositions for the mobilization, homing, expansion and differentiation of stem cells and methods of using the same |
TWI683666B (en) | 2013-03-15 | 2020-02-01 | 美商百歐維拉提夫治療公司 | Factor ix polypeptide formulations |
WO2016028790A1 (en) | 2014-08-18 | 2016-02-25 | Ampio Pharmaceuticals, Inc. | Treatment of joint conditions |
JP2016179951A (en) * | 2015-03-23 | 2016-10-13 | 学校法人 中央大学 | Transgenic animal serum albumin, hemoglobin-transgenic animal serum albumin complex, artificial plasma expander, and artificial oxygen carrier |
JP2018517708A (en) | 2015-06-05 | 2018-07-05 | ニューヨーク・ユニバーシティ | Compositions and methods for anti-staphylococcal biological agents |
US11389512B2 (en) | 2015-06-22 | 2022-07-19 | Ampio Pharmaceuticals, Inc. | Use of low molecular weight fractions of human serum albumin in treating diseases |
CN115960249A (en) | 2015-10-02 | 2023-04-14 | 银溪制药股份有限公司 | Bispecific therapeutic proteins for tissue repair |
US20200270335A1 (en) | 2015-12-23 | 2020-08-27 | Biogen Ma Inc. | Dkk2 cysteine rich domain 2 containing proteins and uses thereof |
US11110122B2 (en) * | 2016-06-03 | 2021-09-07 | New York University | Methods and reagents for modulating macrophage phenotype |
US10268924B2 (en) * | 2016-12-05 | 2019-04-23 | Sap Se | Systems and methods for integrated cargo inspection |
KR102599445B1 (en) * | 2018-10-25 | 2023-11-08 | 닛폰세이테츠 가부시키가이샤 | Coating liquid for forming an insulating film for grain-oriented electrical steel sheets, grain-oriented electrical steel sheets, and method for manufacturing grain-oriented electrical steel sheets |
GB202004514D0 (en) | 2020-03-27 | 2020-05-13 | Inst De Medicina Molecular Joaeo Lobo Antunes | Treatment of Immunosuppressive Cancer |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0286424A1 (en) | 1987-04-09 | 1988-10-12 | Delta Biotechnology Limited | Yeast vector |
WO1992006204A1 (en) | 1990-09-28 | 1992-04-16 | Ixsys, Inc. | Surface expression libraries of heteromeric receptors |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
WO1995017413A1 (en) | 1993-12-21 | 1995-06-29 | Evotec Biosystems Gmbh | Process for the evolutive design and synthesis of functional polymers based on designer elements and codes |
WO1995022625A1 (en) | 1994-02-17 | 1995-08-24 | Affymax Technologies N.V. | Dna mutagenesis by random fragmentation and reassembly |
WO2000044772A2 (en) | 1999-01-30 | 2000-08-03 | Delta Biotechnology Limited | Human serum albumin |
WO2000069902A1 (en) | 1999-05-17 | 2000-11-23 | Conjuchem, Inc. | Long lasting fusion peptide inhibitors or viral infection |
WO2001079480A1 (en) | 2000-04-12 | 2001-10-25 | Human Genome Sciences, Inc. | Albumin fusion proteins |
WO2003059934A2 (en) | 2001-12-21 | 2003-07-24 | Human Genome Sciences, Inc. | Albumin fusion proteins |
WO2004071536A1 (en) | 2003-02-17 | 2004-08-26 | Upperton Limited | Conjugates for medical imaging comprising carrier, targeting moiety and a contrast agent |
US20040171154A1 (en) | 2001-07-27 | 2004-09-02 | Francesca Storici | Systems for in vivo site-directed mutagenesis using oligonucleotides |
WO2005061718A1 (en) | 2003-12-23 | 2005-07-07 | Delta Biotechnology Limited | Gene expression technique |
WO2006066595A2 (en) | 2004-12-22 | 2006-06-29 | Novozymes A/S | Recombinant production of serum albumin |
EP1788084A1 (en) | 2004-08-06 | 2007-05-23 | Juridical Foundation The Chemo-Sero-Therapeutic Research Institute | Yeast promoter |
WO2009019314A1 (en) | 2007-08-08 | 2009-02-12 | Novozymes A/S | Transferrin variants and conjugates |
WO2010092135A2 (en) | 2009-02-11 | 2010-08-19 | Novozymes Biopharma Uk Ltd. | Albumin variants and conjugates |
Family Cites Families (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9019919D0 (en) | 1990-09-12 | 1990-10-24 | Delta Biotechnology Ltd | Purification of proteins |
US5625041A (en) | 1990-09-12 | 1997-04-29 | Delta Biotechnology Limited | Purification of proteins |
US2714586A (en) | 1951-06-25 | 1955-08-02 | Phillips Petroleum Co | Washing urea and thiourea containing adducts |
US4302386A (en) | 1978-08-25 | 1981-11-24 | The Ohio State University | Antigenic modification of polypeptides |
US4741900A (en) | 1982-11-16 | 1988-05-03 | Cytogen Corporation | Antibody-metal ion complexes |
US4757006A (en) | 1983-10-28 | 1988-07-12 | Genetics Institute, Inc. | Human factor VIII:C gene and recombinant methods for production |
JPS60169498A (en) | 1984-02-10 | 1985-09-02 | Kyowa Hakko Kogyo Co Ltd | Adult t cell leukemic viral antigen peptide derivative |
EP0218712B1 (en) | 1985-04-12 | 1992-02-26 | Genetics Institute, Inc. | Novel procoagulant proteins |
GR860984B (en) | 1985-04-17 | 1986-08-18 | Zymogenetics Inc | Expression of factor vii and ix activities in mammalian cells |
ATE125865T1 (en) | 1987-08-28 | 1995-08-15 | Novo Nordisk As | RECOMBINANT HUMICOLA LIPASE AND METHOD FOR PRODUCING RECOMBINANT HUMICOLA LIPASES. |
GB8725529D0 (en) | 1987-10-30 | 1987-12-02 | Delta Biotechnology Ltd | Polypeptides |
IL88326A (en) | 1987-11-18 | 1993-03-15 | Gist Brocades Nv | Purification of serum albumin |
US5075222A (en) | 1988-05-27 | 1991-12-24 | Synergen, Inc. | Interleukin-1 inhibitors |
GB8909916D0 (en) | 1989-04-29 | 1989-06-14 | Delta Biotechnology Ltd | Polypeptides |
US5766883A (en) | 1989-04-29 | 1998-06-16 | Delta Biotechnology Limited | Polypeptides |
FR2650598B1 (en) | 1989-08-03 | 1994-06-03 | Rhone Poulenc Sante | DERIVATIVES OF ALBUMIN WITH THERAPEUTIC FUNCTION |
US5073627A (en) | 1989-08-22 | 1991-12-17 | Immunex Corporation | Fusion proteins comprising GM-CSF and IL-3 |
US5208020A (en) | 1989-10-25 | 1993-05-04 | Immunogen Inc. | Cytotoxic agents comprising maytansinoids and their therapeutic use |
GB8927722D0 (en) | 1989-12-07 | 1990-02-07 | British Bio Technology | Proteins and nucleic acids |
DE4000939A1 (en) | 1990-01-15 | 1991-07-18 | Brem Gottfried Prof Dr Dr | METHOD FOR OBTAINING ANTIBODIES |
JP3230091B2 (en) | 1990-06-25 | 2001-11-19 | ウェルファイド株式会社 | Method for suppressing coloration of human serum albumin |
US5698426A (en) | 1990-09-28 | 1997-12-16 | Ixsys, Incorporated | Surface expression libraries of heteromeric receptors |
CA2058820C (en) | 1991-04-25 | 2003-07-15 | Kotikanyad Sreekrishna | Expression cassettes and vectors for the secretion of human serum albumin in pichia pastoris cells |
US5264586A (en) | 1991-07-17 | 1993-11-23 | The Scripps Research Institute | Analogs of calicheamicin gamma1I, method of making and using the same |
FR2686899B1 (en) | 1992-01-31 | 1995-09-01 | Rhone Poulenc Rorer Sa | NOVEL BIOLOGICALLY ACTIVE POLYPEPTIDES, THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM. |
US5663060A (en) | 1992-04-07 | 1997-09-02 | Emory University | Hybrid human/animal factor VIII |
ZA932522B (en) | 1992-04-10 | 1993-12-20 | Res Dev Foundation | Immunotoxins directed against c-erbB-2(HER/neu) related surface antigens |
DE4226971C2 (en) | 1992-08-14 | 1997-01-16 | Widmar Prof Dr Tanner | Modified fungal cells and processes for the production of recombinant products |
US5728553A (en) | 1992-09-23 | 1998-03-17 | Delta Biotechnology Limited | High purity albumin and method of producing |
DE69329503T2 (en) | 1992-11-13 | 2001-05-03 | Idec Pharma Corp | Therapeutic use of chimeric and labeled antibodies directed against a differentiation antigen, the expression of which is restricted to human B lymphocyte, for the treatment of B cell lymphoma |
WO1995003402A1 (en) | 1993-07-22 | 1995-02-02 | Merck & Co., Inc. | EXPRESSION OF HUMAN INTERLEUKIN-1β IN A TRANSGENIC ANIMAL |
US6811773B1 (en) | 1993-12-22 | 2004-11-02 | Human Genome Sciences, Inc. | Human monocyte colony inhibitory factor (M-CIF) polypeptides |
GB9404270D0 (en) * | 1994-03-05 | 1994-04-20 | Delta Biotechnology Ltd | Yeast strains and modified albumins |
US5773001A (en) | 1994-06-03 | 1998-06-30 | American Cyanamid Company | Conjugates of methyltrithio antitumor agents and intermediates for their synthesis |
US7597886B2 (en) | 1994-11-07 | 2009-10-06 | Human Genome Sciences, Inc. | Tumor necrosis factor-gamma |
US5712374A (en) | 1995-06-07 | 1998-01-27 | American Cyanamid Company | Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates |
US5714586A (en) | 1995-06-07 | 1998-02-03 | American Cyanamid Company | Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates |
US5716808A (en) | 1995-11-09 | 1998-02-10 | Zymogenetics, Inc. | Genetic engineering of pichia methanolica |
US5955349A (en) | 1996-08-26 | 1999-09-21 | Zymogenetics, Inc. | Compositions and methods for producing heterologous polypeptides in Pichia methanolica |
GB9526733D0 (en) | 1995-12-30 | 1996-02-28 | Delta Biotechnology Ltd | Fusion proteins |
US6509313B1 (en) | 1996-02-28 | 2003-01-21 | Cornell Research Foundation, Inc. | Stimulation of immune response with low doses of cytokines |
CN1230997A (en) | 1996-07-17 | 1999-10-06 | 津莫吉尼蒂克斯公司 | Transformation of pichia methanolica |
US5736383A (en) | 1996-08-26 | 1998-04-07 | Zymogenetics, Inc. | Preparation of Pichia methanolica auxotrophic mutants |
US6274305B1 (en) | 1996-12-19 | 2001-08-14 | Tufts University | Inhibiting proliferation of cancer cells |
US6605699B1 (en) | 1997-01-21 | 2003-08-12 | Human Genome Sciences, Inc. | Galectin-11 polypeptides |
US7196164B2 (en) | 1997-07-08 | 2007-03-27 | Human Genome Sciences, Inc. | Secreted protein HHTLF25 |
US7053190B2 (en) | 1997-03-07 | 2006-05-30 | Human Genome Sciences, Inc. | Secreted protein HRGDF73 |
US6506569B1 (en) | 1997-05-30 | 2003-01-14 | Human Genome Sciences, Inc. | Antibodies to human tumor necrosis factor receptor TR10 |
US5948609A (en) | 1997-12-03 | 1999-09-07 | Carter; Daniel C. | Oxygen-transporting albumin-based blood replacement composition and blood volume expander |
WO2000008207A1 (en) | 1998-08-06 | 2000-02-17 | Syntron Bioresearch, Inc. | Uric acid assay device with stabilized uricase reagent composition |
AU3128000A (en) | 1998-12-23 | 2000-07-31 | Human Genome Sciences, Inc. | Peptidoglycan recognition proteins |
EP1178786A4 (en) | 1999-05-21 | 2006-03-01 | American Bioscience Inc | Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof |
MXPA02009221A (en) | 2000-03-22 | 2005-07-25 | Octagene Gmbh | Production of recombinant blood clotting factors in human cell lines. |
US20030091565A1 (en) | 2000-08-18 | 2003-05-15 | Beltzer James P. | Binding polypeptides and methods based thereon |
EP1366077B1 (en) | 2000-09-15 | 2011-05-25 | Coley Pharmaceutical GmbH | PROCESS FOR HIGH THROUGHPUT SCREENING OF CpG-BASED IMMUNO-AGONIST/ANTAGONIST |
WO2002055110A2 (en) | 2000-10-25 | 2002-07-18 | Genzyme Corp | Methods for treating blood coagulation disorders |
WO2002043658A2 (en) | 2000-11-06 | 2002-06-06 | The Jackson Laboratory | Fcrn-based therapeutics for the treatment of auto-immune disorders |
KR20080085082A (en) | 2000-12-07 | 2008-09-22 | 일라이 릴리 앤드 캄파니 | Glp-1 fusion proteins |
US7175988B2 (en) | 2001-02-09 | 2007-02-13 | Human Genome Sciences, Inc. | Human G-protein Chemokine Receptor (CCR5) HDGNR10 |
US7507413B2 (en) | 2001-04-12 | 2009-03-24 | Human Genome Sciences, Inc. | Albumin fusion proteins |
EP2228389B1 (en) | 2001-04-13 | 2015-07-08 | Human Genome Sciences, Inc. | Antibodies against vascular endothelial growth factor 2 |
AUPR446701A0 (en) | 2001-04-18 | 2001-05-17 | Gene Stream Pty Ltd | Transgenic mammals for pharmacological and toxicological studies |
WO2002102830A1 (en) | 2001-06-15 | 2002-12-27 | New Century Pharmaceuticals, Inc. | Human albumin animal models for drug evaluation, toxicology and immunogenicity studies |
AUPR622301A0 (en) | 2001-07-09 | 2001-08-02 | Novapharm Research (Australia) Pty Ltd | Infection control system |
CN1405182A (en) * | 2001-08-10 | 2003-03-26 | 中国人民解放军军事医学科学院生物工程研究所 | Serum albumin and granulocyte colony stimulating factor fusion protein |
ES2500918T3 (en) | 2001-12-21 | 2014-10-01 | Human Genome Sciences, Inc. | Albumin and interferon beta fusion proteins |
US20080167238A1 (en) | 2001-12-21 | 2008-07-10 | Human Genome Sciences, Inc. | Albumin Fusion Proteins |
JP2005516607A (en) | 2002-02-07 | 2005-06-09 | デルタ バイオテクノロジー リミテッド | HIV inhibitory protein |
EP1572936A2 (en) | 2002-03-05 | 2005-09-14 | Eli Lilly And Company | Heterologous g-csf fusion proteins |
WO2003102136A2 (en) | 2002-05-30 | 2003-12-11 | Human Genome Sciences, Inc. | Antibodies that specifically bind to neurokinin b |
CN1241946C (en) | 2002-07-01 | 2006-02-15 | 美国福源集团 | Human serum albumins recombined merge protein having hyperplasia stimulation function to multiple cells |
GB0217347D0 (en) | 2002-07-26 | 2002-09-04 | Univ Edinburgh | Novel albumins |
AU2003257032A1 (en) | 2002-08-02 | 2004-02-23 | Human Genome Sciences, Inc. | Antibodies against c3a receptor |
WO2004058044A2 (en) | 2002-11-19 | 2004-07-15 | Drg International, Inc. | Diagnostic method for diseases by screening for hepcidin in human or animal tissues, blood or body fluids and therapeutic uses therefor |
CA2513213C (en) | 2003-01-22 | 2013-07-30 | Human Genome Sciences, Inc. | Albumin fusion proteins |
GB0305989D0 (en) | 2003-03-15 | 2003-04-23 | Delta Biotechnology Ltd | Agent |
US20070041987A1 (en) | 2003-03-19 | 2007-02-22 | Daniel Carter | Fragments or polymers of albumin with tunable vascular residence time for use in therapeutic delivery and vaccine development |
WO2004092405A2 (en) | 2003-04-15 | 2004-10-28 | Xenon Pharmaceuticals Inc. | Juvenile hemochromatosis gene (hfe2a), expression products and uses thereof |
WO2004101620A2 (en) | 2003-05-01 | 2004-11-25 | Compound Therapeutics, Inc. | Serum albumin scaffold-based proteins and uses thereof |
US7569215B2 (en) | 2003-07-18 | 2009-08-04 | Massachusetts Institute Of Technology | Mutant interleukin-2 (IL-2) polypeptides |
US6949961B2 (en) | 2003-10-06 | 2005-09-27 | Semiconductor Components Industries, L.L.C. | Power switch structure with low RDSon and low current limit |
WO2005082423A2 (en) | 2003-11-18 | 2005-09-09 | Beth Israel Deaconess Medical Center | Serum albumin conjugated to fluorescent substances for imaging |
US9057061B2 (en) | 2003-12-23 | 2015-06-16 | Novozymes Biopharma Dk A/S | Gene expression technique |
GB0329722D0 (en) | 2003-12-23 | 2004-01-28 | Delta Biotechnology Ltd | Modified plasmid and use thereof |
JP4649954B2 (en) | 2003-12-26 | 2011-03-16 | ニプロ株式会社 | Albumin with enhanced antibacterial activity |
CA2486245C (en) | 2003-12-26 | 2013-01-08 | Nipro Corporation | Albumin having enhanced antimicrobial activity |
KR100671005B1 (en) | 2004-01-15 | 2007-01-18 | 고려대학교 산학협력단 | Biomarker proteins for diagnosing the exposure to PAH |
RU2369404C2 (en) * | 2004-02-09 | 2009-10-10 | Хьюман Дженом Сайенсиз, Инк. | Fused proteins of albumine |
SI1729795T1 (en) | 2004-02-09 | 2016-04-29 | Human Genome Sciences, Inc. | Albumin fusion proteins |
JP4492156B2 (en) | 2004-03-03 | 2010-06-30 | ニプロ株式会社 | Protein containing serum albumin domain |
US20060018859A1 (en) | 2004-07-16 | 2006-01-26 | Carter Daniel C | Modified human serum albumin with reduced or eliminated affinity to chemical or biological contaminants at Cys 34 |
US20060051859A1 (en) * | 2004-09-09 | 2006-03-09 | Yan Fu | Long acting human interferon analogs |
CA2580141C (en) | 2004-09-23 | 2013-12-10 | Genentech, Inc. | Cysteine engineered antibodies and conjugates |
WO2006073195A1 (en) | 2005-01-07 | 2006-07-13 | Biomarker Science Co., Ltd | Method for predicting or diagnosing diabetes and kit for predicting or diagnosing diabetes |
US20060178301A1 (en) | 2005-02-04 | 2006-08-10 | Mathias Jurs | Albumin-fused ciliary neurotrophic factor |
WO2006118772A2 (en) | 2005-04-29 | 2006-11-09 | The Jackson Laboratory | Fcrn antibodies and uses thereof |
GB0512707D0 (en) | 2005-06-22 | 2005-07-27 | Delta Biotechnology Ltd | Gene expression technique |
CN101287750A (en) * | 2005-08-12 | 2008-10-15 | 人类基因科学公司 | Albumin fusion proteins |
JP2009504157A (en) * | 2005-08-12 | 2009-02-05 | ヒューマン ジノーム サイエンシーズ, インコーポレイテッド | Albumin fusion protein |
US8008257B2 (en) * | 2005-10-20 | 2011-08-30 | University Of Ottawa Heart Institute | ANF fusion proteins |
MX2008008076A (en) | 2005-12-22 | 2008-11-28 | Conjuchem Biotechnologies Inc | Process for the production of preformed conjugates of albumin and a therapeutic agent. |
EP1816201A1 (en) | 2006-02-06 | 2007-08-08 | CSL Behring GmbH | Modified coagulation factor VIIa with extended half-life |
WO2007112940A2 (en) | 2006-03-31 | 2007-10-11 | Ablynx N.V. | Albumin-derived amino acid sequence, use thereof for increasing the half-life of therapeutic proteins and of other therapeutic compounds and entities, and constructs comprising the same |
EP2474318A1 (en) | 2006-06-07 | 2012-07-11 | Human Genome Sciences, Inc. | Albumin fusion proteins |
WO2007144173A1 (en) | 2006-06-14 | 2007-12-21 | Csl Behring Gmbh | Proteolytically cleavable fusion protein comprising a blood coagulation factor |
US9139611B2 (en) | 2006-07-13 | 2015-09-22 | Novozymes Biopharma Dk A/S | Process for preparing particles of proteinaceous material |
JP4983148B2 (en) | 2006-08-18 | 2012-07-25 | ニプロ株式会社 | Glycan-containing albumin, method for producing the same, and use thereof |
KR20090060294A (en) | 2006-09-08 | 2009-06-11 | 암브룩스, 인코포레이티드 | Modified human plasma polypeptide or fc scaffolds and their uses |
US20100129846A1 (en) | 2006-12-07 | 2010-05-27 | Power3 Medical Products, Inc. | Isoform specificities of blood serum proteins and their use as differentially expressed protein biomarkers for diagnosis of breast cancer |
US8906356B2 (en) | 2007-11-05 | 2014-12-09 | Massachusetts Institute Of Technology | Mutant interleukin-2 (IL-2) polypeptides |
CA2611540C (en) | 2007-11-09 | 2017-05-30 | Nipro Corporation | Sugar chain-containing albumin as a drug carrier to the liver |
EP2245064B1 (en) | 2007-12-21 | 2014-07-23 | Medimmune Limited | BINDING MEMBERS FOR INTERLEUKIN-4 RECEPTOR ALPHA (IL-4Ralpha) |
PL2288715T3 (en) | 2008-04-11 | 2015-03-31 | Merrimack Pharmaceuticals Inc | Human serum albumin linkers and conjugates thereof |
US20110112040A1 (en) | 2008-04-28 | 2011-05-12 | President And Fellows Of Harvard College | Supercharged proteins for cell penetration |
AU2009270793A1 (en) | 2008-07-18 | 2010-01-21 | Oragenics, Inc. | Compositions for the detection and treatment of colorectal cancer |
KR20110112301A (en) * | 2008-11-18 | 2011-10-12 | 메리맥 파마슈티컬즈, 인크. | Human serum albumin linkers and conjugates thereof |
US20120009123A1 (en) | 2008-12-05 | 2012-01-12 | Abraxis Bioscience, Llc | Albumin binding peptide-mediated disease targeting |
CN102307905B (en) | 2008-12-10 | 2015-11-25 | 斯克利普斯研究院 | Chemical reactivity alpha-non-natural amino acid is utilized to produce carrier-peptide conjugate |
AU2010234459A1 (en) | 2009-04-08 | 2011-11-03 | The Regents Of The University Of California | Human protein scaffold with controlled serum pharmacokinetics |
EP2424877A4 (en) | 2009-04-28 | 2013-01-02 | Harvard College | Supercharged proteins for cell penetration |
WO2010138814A2 (en) | 2009-05-29 | 2010-12-02 | The Brigham And Women's Hospital, Inc. | Disrupting fcrn-albumin interactions |
ES2548030T3 (en) | 2009-06-01 | 2015-10-13 | Medimmune, Llc | Molecules with prolonged half-lives and uses thereof |
KR101286721B1 (en) | 2009-06-05 | 2013-07-16 | 한국과학기술연구원 | Recombinant albumins fused with poly-cysteine peptide and the methods for preparing the same |
RU2547592C2 (en) | 2009-07-20 | 2015-04-10 | Нэйшнл Ченг Кунг Юниверсити | αvβ3 INTEGRIN SELECTIVE POLYPEPTIDES CONJUGATED WITH VARIANT OF HUMAN SERUM ALBUMIN (HSA), AND THEIR PHARMACEUTICAL APPLICATIONS |
EP2456787A4 (en) | 2009-07-24 | 2013-01-30 | Univ Leland Stanford Junior | Cytokine compositions and methods of use thereof |
DK2889624T3 (en) | 2009-08-10 | 2018-12-10 | Ucl Business Plc | Reversible covalent bonding of functional molecules |
US20110172398A1 (en) | 2009-10-02 | 2011-07-14 | Boehringer Ingelheim International Gmbh | Bispecific binding molecules for anti-angiogenesis therapy |
JP2013507132A (en) | 2009-10-10 | 2013-03-04 | ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ | IL-17 family cytokine composition and use |
CA2776241A1 (en) | 2009-10-30 | 2011-05-05 | Novozymes Biopharma Dk A/S | Albumin variants |
US9044436B2 (en) | 2009-12-23 | 2015-06-02 | National Cheng Kung University | Compositions and methods for the treatment of angiogenesis-related eye diseases |
CN101875693B (en) | 2010-01-22 | 2012-07-18 | 成都正能生物技术有限责任公司 | Albumin variant having anti-angiogenesis activity and preparation method thereof |
CN104610454A (en) | 2010-02-16 | 2015-05-13 | 米迪缪尼有限公司 | HSA-related compositions and methods of use |
WO2011124718A1 (en) | 2010-04-09 | 2011-10-13 | Novozymes A/S | Albumin derivatives and variants |
CA2800173C (en) | 2010-05-21 | 2019-05-14 | Ulrik Nielsen | Bi-specific fusion proteins |
WO2011161127A1 (en) | 2010-06-21 | 2011-12-29 | Medimmune, Llc | Protease variants of human neprilysin |
US9012609B2 (en) | 2010-08-13 | 2015-04-21 | Glaxosmithkline Intellectual Property Development Limited | Anti-serum albumin binding variants |
US20130225496A1 (en) | 2010-11-01 | 2013-08-29 | Novozymes Biopharma Dk A/S | Albumin Variants |
JP2014510518A (en) | 2011-02-15 | 2014-05-01 | メディミューン,エルエルシー | HSA related compositions and methods of use |
US9045564B2 (en) | 2011-02-15 | 2015-06-02 | Medimmune, Llc | HSA-related compositions and methods of use |
GB2491006A (en) * | 2011-05-05 | 2012-11-21 | Novozymes Biopharma Uk Ltd | Albumin variants |
WO2013010840A2 (en) | 2011-07-18 | 2013-01-24 | Arts Biologics A/S | Long acting biologically active luteinizing hormone (lh) compound |
EP2780364A2 (en) | 2011-11-18 | 2014-09-24 | Eleven Biotherapeutics, Inc. | Proteins with improved half-life and other properties |
US9944691B2 (en) | 2012-03-16 | 2018-04-17 | Albumedix A/S | Albumin variants |
WO2014005596A1 (en) | 2012-07-03 | 2014-01-09 | Aarhus Universitet | Modified payload molecules and their interactions and uses |
US20140128326A1 (en) * | 2012-11-08 | 2014-05-08 | Novozymes Biopharma Dk A/S | Albumin variants |
CN105007722A (en) | 2013-02-16 | 2015-10-28 | 诺维信生物制药丹麦公司 | Pharmacokinetic animal model |
WO2014179657A1 (en) | 2013-05-03 | 2014-11-06 | Eleven Biotherapeutics, Inc. | Albumin variants binding to fcrn |
US20160222087A1 (en) | 2013-09-13 | 2016-08-04 | Novozymes Biopharma Dk A/S | Albumin variants |
JP6306700B2 (en) * | 2013-11-01 | 2018-04-04 | ユニバーシティ オブ オスロUniversity of Oslo | Modified albumin and use thereof |
BR112018003179A2 (en) | 2015-08-20 | 2018-09-25 | Albumedix As | albumin conjugates and variants |
-
2010
- 2010-11-01 CA CA2776241A patent/CA2776241A1/en not_active Abandoned
- 2010-11-01 AU AU2010311332A patent/AU2010311332B2/en not_active Ceased
- 2010-11-01 WO PCT/EP2010/066572 patent/WO2011051489A2/en active Application Filing
- 2010-11-01 GB GB1209553.5A patent/GB2488077A/en not_active Withdrawn
- 2010-11-01 RU RU2012122173A patent/RU2607374C2/en not_active IP Right Cessation
- 2010-11-01 BR BR112012009450A patent/BR112012009450A2/en not_active Application Discontinuation
- 2010-11-01 JP JP2012535864A patent/JP2013509170A/en active Pending
- 2010-11-01 ES ES10771471T patent/ES2700230T3/en active Active
- 2010-11-01 KR KR1020127013398A patent/KR101874834B1/en active IP Right Grant
- 2010-11-01 CN CN201080060322.5A patent/CN102741280B/en active Active
- 2010-11-01 EP EP18188293.7A patent/EP3421491A3/en not_active Withdrawn
- 2010-11-01 CN CN201510731661.6A patent/CN105567699A/en active Pending
- 2010-11-01 EP EP10771471.9A patent/EP2493921B1/en active Active
- 2010-11-01 MX MX2012004793A patent/MX2012004793A/en active IP Right Grant
- 2010-11-01 US US13/504,326 patent/US8748380B2/en active Active
-
2012
- 2012-03-27 IL IL218858A patent/IL218858B/en not_active IP Right Cessation
-
2014
- 2014-04-25 US US14/262,244 patent/US20140234311A1/en not_active Abandoned
-
2015
- 2015-09-24 US US14/863,597 patent/US20160075756A1/en not_active Abandoned
- 2015-09-24 US US14/863,836 patent/US20160075762A1/en not_active Abandoned
- 2015-09-24 US US14/863,752 patent/US20160075760A1/en not_active Abandoned
- 2015-09-24 US US14/863,868 patent/US20160075763A1/en not_active Abandoned
- 2015-09-24 US US14/863,780 patent/US20160075761A1/en not_active Abandoned
- 2015-09-24 US US14/863,655 patent/US20160075757A1/en not_active Abandoned
- 2015-09-24 US US14/863,685 patent/US20160075758A1/en not_active Abandoned
- 2015-09-24 US US14/863,628 patent/US20160009787A1/en not_active Abandoned
- 2015-09-24 US US14/863,719 patent/US20160075759A1/en not_active Abandoned
-
2016
- 2016-03-23 JP JP2016058592A patent/JP6306628B2/en not_active Expired - Fee Related
-
2017
- 2017-09-19 US US15/709,261 patent/US20180105577A1/en not_active Abandoned
- 2017-09-19 US US15/709,169 patent/US20180105576A1/en not_active Abandoned
- 2017-09-19 US US15/709,263 patent/US20180105578A1/en not_active Abandoned
- 2017-09-19 US US15/709,227 patent/US20180072792A1/en not_active Abandoned
-
2018
- 2018-01-12 US US15/870,376 patent/US20180222963A1/en not_active Abandoned
- 2018-01-12 US US15/870,349 patent/US20180162925A1/en not_active Abandoned
- 2018-01-22 JP JP2018008115A patent/JP6703016B2/en active Active
- 2018-05-14 US US15/979,319 patent/US10696732B2/en active Active
-
2020
- 2020-05-22 US US16/882,019 patent/US20200385442A1/en not_active Abandoned
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0286424A1 (en) | 1987-04-09 | 1988-10-12 | Delta Biotechnology Limited | Yeast vector |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
WO1992006204A1 (en) | 1990-09-28 | 1992-04-16 | Ixsys, Inc. | Surface expression libraries of heteromeric receptors |
WO1995017413A1 (en) | 1993-12-21 | 1995-06-29 | Evotec Biosystems Gmbh | Process for the evolutive design and synthesis of functional polymers based on designer elements and codes |
WO1995022625A1 (en) | 1994-02-17 | 1995-08-24 | Affymax Technologies N.V. | Dna mutagenesis by random fragmentation and reassembly |
WO2000044772A2 (en) | 1999-01-30 | 2000-08-03 | Delta Biotechnology Limited | Human serum albumin |
WO2000069902A1 (en) | 1999-05-17 | 2000-11-23 | Conjuchem, Inc. | Long lasting fusion peptide inhibitors or viral infection |
WO2001079271A1 (en) | 2000-04-12 | 2001-10-25 | Principia Pharmaceutical Corporation | Albumin fusion proteins |
WO2001079480A1 (en) | 2000-04-12 | 2001-10-25 | Human Genome Sciences, Inc. | Albumin fusion proteins |
US20040171154A1 (en) | 2001-07-27 | 2004-09-02 | Francesca Storici | Systems for in vivo site-directed mutagenesis using oligonucleotides |
WO2003059934A2 (en) | 2001-12-21 | 2003-07-24 | Human Genome Sciences, Inc. | Albumin fusion proteins |
WO2004071536A1 (en) | 2003-02-17 | 2004-08-26 | Upperton Limited | Conjugates for medical imaging comprising carrier, targeting moiety and a contrast agent |
WO2005061718A1 (en) | 2003-12-23 | 2005-07-07 | Delta Biotechnology Limited | Gene expression technique |
EP1788084A1 (en) | 2004-08-06 | 2007-05-23 | Juridical Foundation The Chemo-Sero-Therapeutic Research Institute | Yeast promoter |
WO2006066595A2 (en) | 2004-12-22 | 2006-06-29 | Novozymes A/S | Recombinant production of serum albumin |
WO2009019314A1 (en) | 2007-08-08 | 2009-02-12 | Novozymes A/S | Transferrin variants and conjugates |
WO2010092135A2 (en) | 2009-02-11 | 2010-08-19 | Novozymes Biopharma Uk Ltd. | Albumin variants and conjugates |
Non-Patent Citations (66)
Title |
---|
ANDERSEN ET AL., CLINICAL BIOCHEMISTRY, vol. 43, 2010, pages 367 - 372 |
ANDERSEN ET AL., EUR. J. IMMUNOL, vol. 36, 2006, pages 3044 - 3051 |
ANDERSEN ET AL., J.BIOL.CHEM., vol. 285, no. 7, 2010, pages 4826 - 4836 |
ANDERSEN ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 285, no. 7, 2010, pages 4826 - 36 |
ATSCHUL ET AL., NUCLEIC ACIDS RES., vol. 25, 1997, pages 3389 - 3402 |
BARASH, TRANSGENIC RESEARCH, vol. 2, 1993, pages 266 - 276 |
BARTON ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 7349 - 4966 |
BERNTZEN ET AL., J. IMMUNOL. METHODS, vol. 298, 2005, pages 93 - 104 |
BOSSE ET AL., J. CLIN. PHARMACOL., vol. 45, 2005, pages 57 - 67 |
BOWIE; SAUER, PROC. NATL. ACAD. SCI. USA, vol. 86, 1989, pages 2152 - 2156 |
CALISSANO; MACINO, FUNGAL GENET. NEWSLETT., vol. 43, 1996, pages 15 - 16 |
CARLSON ET AL., PROC.NAT.ACAD.SCI.USA, vol. 89, 1992, pages 8225 - 8229 |
CHAUDHURY ET AL., BIOCHEMISTRY, vol. 45, 2006, pages 4983 - 4990 |
COLLINS, S.H.: "Protein production by biotechnology", 1990, ELSEVIER, article "Production of secreted proteins in yeast", pages: 61 - 77 |
DERBYSHIRE ET AL., GENE, vol. 46, 1986, pages 145 |
ELBLE, BIOTECHNIQUES, vol. 13, 1992, pages 18 |
EVANS ET AL., PROTEIN EXPRESSION AND PURIFICATION, vol. 73, 2010, pages 113 - 124 |
FARRAN, TRANSGENIC RESEARCH, vol. 11, 2002, pages 337 - 346 |
FEBS J., vol. 275, no. 16, August 2008 (2008-08-01), pages 4097 - 110 |
FLEER, BIOLTECHNOLOGY, vol. 9, 1991, pages 968 - 975 |
GALLIANO ET AL., BIOCHIM. BIOPHYS.ACTA, vol. 1225, 1993, pages 27 - 32 |
GOUGH ET AL., J. MOL. BIOL., vol. 313, 2000, pages 903 - 919 |
GUO; SHERMAN, MOL. CELLULAR BIOL., vol. 15, 1995, pages 5983 - 5990 |
HOLM; PARK, BIOINFORMATICS, vol. 16, 2000, pages 566 - 567 |
HOLM; SANDER, PROTEINS, vol. 33, 1998, pages 88 - 96 |
ITO ET AL., J. BACTERIOL., vol. 153, 1983, pages 16 |
IWAO, B.B.A. PROTEINS AND PROTEOMICS, vol. 1774, 2007, pages 1582 - 1590 |
J EXP MED., vol. 197, no. 3, 2003, pages 315 - 22 |
J. SAMBROOK; E.F. FRITSCH; T. MANIATIS: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR |
JONES, J. MOL. BIOL., vol. 287, 1999, pages 797 - 815 |
KENANOVA ET AL., J. NUCL. MED., vol. 50, no. 2, 2009, pages 1582 |
KOBAYASHI, THERAPEUTIC APHERESIS, vol. 2, 1998, pages 257 - 262 |
KRATZ, JOURNAL OF CONTROLLED RELEASE, vol. 132, 2008, pages 171 - 183 |
KREN ET AL., NAT. MED., vol. 4, 1998, pages 285 - 290 |
KURTZHALS P ET AL., BIOCHEM. J., vol. 312, 1995, pages 725 - 731 |
LARKIN ET AL., BIOINFORMATICS, vol. 23, 2007, pages 2947 - 2948 |
LINDAHL; ELOFSSON, J. MOL. BIOL., vol. 295, 2000, pages 613 - 615 |
LOWMAN ET AL., BIOCHEMISTRY, vol. 30, 1991, pages 10832 - 10837 |
MCGUFFIN; JONES, BIOINFORMATICS, vol. 19, 2003, pages 874 - 881 |
MINCHIOTTI ET AL., BIOCHIM. BIOPHYS. ACTA, vol. 916, 1987, pages 411 - 418 |
NEEDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453 |
NER ET AL., DNA, vol. 7, 1988, pages 127 |
NESS ET AL., NATURE BIOTECHNOLOGY, vol. 17, 1999, pages 893 - 896 |
OBER ET AL., INT. IMMUNOL, vol. 13, 2001, pages 1551 - 1559 |
ORR-WEAVER; SZOSTAK, PROC. NATL. ACAD. SCI. USA., vol. 80, 1983, pages 4417 - 4421 |
OTAGIRI ET AL., BIOL. PHARM, BULL., vol. 32, no. 4, 2009, pages 527 - 534 |
OTAGIRI, BIOL.PHARM. BULL., vol. 32, no. 4, 2009, pages 527 - 534 |
PANDJAITAB, J. ALLERGY CLIN. IMMUNOL., vol. 105, 2000, pages 279 - 285 |
PEACH, R. J.; BRENNAN, S. 0., BIOCHIM BIOPHYS ACTA, vol. 1097, 1991, pages 49 - 54 |
PETERS, T., JR.: "All about Albumin: Biochemistry, Genetics and Medical, Applications", 1996, ACADEMIC PRESS, INC., pages: 10 |
REIDHAAR-OLSON; SAUER, SCIENCE, vol. 241, 1988, pages 53 - 57 |
RICE ET AL., THE EUROPEAN MOLECULAR BIOLOGY OPEN SOFTWARE SUITE, 2000 |
RICE ET AL.: "The European Molecular Biology Open Software Suite", TRENDS GENET., vol. 16, 2000, pages 276 - 277, XP004200114, DOI: doi:10.1016/S0168-9525(00)02024-2 |
ROMANOS ET AL., YEAST, vol. 8, 1992, pages 423 - 488 |
ROOPENIAN D. C.; AKILESH, S., NAT. REV. IMMUNOL7, 2007, pages 715 - 725 |
SAMBROOK, J.; D. W. RUSSELL: "Molecular Cloning: a laboratory manual", 2001, COLD SPRING HARBOR LABORATORY PRESS |
SCHERER; DAVIS, PROC. NATL. ACAD. SCI. USA, vol. 76, 1979, pages 4949 - 4955 |
SHINDYALOV; BOURNE, PROTEIN ENGINEERING, vol. 11, 1998, pages 739 - 747 |
SIJMONS, BIOLTECHNOLOGY, vol. 8, 1990, pages 217 |
SLEEP ET AL., YEAST, vol. 18, 2001, pages 403 |
SLEEP, BIOLTECHNOLOGY, vol. 8, 1990, pages 42 - 46 |
SLEEP, D. ET AL., BIO/TECHNOLOGY, vol. 9, 1991, pages 183 - 187 |
STORICI ET AL., NATURE BIOTECHNOL., vol. 19, 2001, pages 773 - 776 |
TAKAHASHI ET AL., PROC. NATL. ACAD. SCI. USA, vol. 84, 1987, pages 4413 - 4417 |
TIAN ET AL., NATURE, vol. 432, 2004, pages 1050 - 1054 |
WU ET AL., PEDS, vol. 23, no. 10, 2010, pages 789 - 798 |
Cited By (184)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11555061B2 (en) | 2009-02-11 | 2023-01-17 | Albumedix, Ltd | Albumin variants and conjugates |
US10696732B2 (en) | 2009-10-30 | 2020-06-30 | Albumedix, Ltd | Albumin variants |
US8748380B2 (en) | 2009-10-30 | 2014-06-10 | Novozymes Biopharma Dk A/S | Albumin variants |
US8697650B2 (en) | 2010-02-16 | 2014-04-15 | Medimmune, Llc | HSA-related compositions and methods of use |
US9120875B2 (en) | 2010-02-16 | 2015-09-01 | Medimmune, Llc | HSA-related compositions and methods of use |
EP2536756A1 (en) * | 2010-02-16 | 2012-12-26 | MedImmune, LLC | Hsa-related compositions and methods of use |
EP2536756A4 (en) * | 2010-02-16 | 2013-08-14 | Medimmune Llc | Hsa-related compositions and methods of use |
US10233228B2 (en) | 2010-04-09 | 2019-03-19 | Albumedix Ltd | Albumin derivatives and variants |
US10568943B2 (en) | 2010-07-09 | 2020-02-25 | Bioverativ Therapeutics Inc. | Factor IX polypeptides and methods of use thereof |
US10561714B2 (en) | 2010-07-09 | 2020-02-18 | Bioverativ Therapeutics Inc. | Factor IX polypeptides and methods of use thereof |
US10548954B2 (en) | 2010-07-09 | 2020-02-04 | Bioverativ Therapeutics Inc. | Factor IX polypeptides and methods of use thereof |
US10898554B1 (en) | 2010-07-09 | 2021-01-26 | Bioverativ Therapeutics Inc. | Factor IX polypeptides and methods of use thereof |
WO2012059486A1 (en) | 2010-11-01 | 2012-05-10 | Novozymes Biopharma Dk A/S | Albumin variants |
US20130225496A1 (en) * | 2010-11-01 | 2013-08-29 | Novozymes Biopharma Dk A/S | Albumin Variants |
US9045564B2 (en) | 2011-02-15 | 2015-06-02 | Medimmune, Llc | HSA-related compositions and methods of use |
US10155803B2 (en) | 2011-03-03 | 2018-12-18 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
US10711051B2 (en) | 2011-03-03 | 2020-07-14 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
US9499605B2 (en) | 2011-03-03 | 2016-11-22 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
US8822417B2 (en) | 2011-05-05 | 2014-09-02 | Novozymes Biopharma DIC A/S | Albumin variants |
WO2012150319A1 (en) | 2011-05-05 | 2012-11-08 | Novozymes Biopharma Dk A/S | Albumin variants |
GB2491006A (en) * | 2011-05-05 | 2012-11-21 | Novozymes Biopharma Uk Ltd | Albumin variants |
US12071484B2 (en) | 2011-06-13 | 2024-08-27 | Csl Limited | Nucleic acids encoding antibodies against human granulocyte-colony stimulating factor receptor (G-CSFR) and method of expressing encoded protein |
WO2013006675A1 (en) | 2011-07-05 | 2013-01-10 | Novozymes Biopharma Uk Limited | Albumin formulation and use |
WO2013010840A2 (en) | 2011-07-18 | 2013-01-24 | Arts Biologics A/S | Long acting biologically active luteinizing hormone (lh) compound |
EP3753567A1 (en) | 2011-10-11 | 2020-12-23 | Viela Bio, Inc. | Cd40l-specific tn3-derived scaffolds and methods of use thereof |
US11555062B2 (en) | 2011-10-11 | 2023-01-17 | Viela Bio, Inc. | Methods of administering a composition comprising a Tn3 scaffold and a CD40L-specific monomer |
US11104720B2 (en) | 2011-10-11 | 2021-08-31 | Viela Bio, Inc. | Nucleic acids encoding a Tn3 scaffold comprising a CD40L-specific monomer subunit |
US10711050B2 (en) | 2011-11-18 | 2020-07-14 | Albumedix Ltd | Variant serum albumin with improved half-life and other properties |
WO2013075066A2 (en) | 2011-11-18 | 2013-05-23 | Eleven Biotherapeutics, Inc. | Proteins with improved half-life and other properties |
WO2013075066A3 (en) * | 2011-11-18 | 2013-07-04 | Eleven Biotherapeutics, Inc. | Variant serum albumin with improved half -life and other properties |
WO2013135896A1 (en) | 2012-03-16 | 2013-09-19 | Novozymes Biopharma Dk A/S | Albumin variants |
AU2013234299B2 (en) * | 2012-03-16 | 2017-06-22 | Albumedix Ltd. | Albumin variants |
CN104736559A (en) * | 2012-03-16 | 2015-06-24 | 诺维信生物制药丹麦公司 | Albumin variants |
JP2015512893A (en) * | 2012-03-16 | 2015-04-30 | ノボザイムス バイオファーマ デーコー アクティーゼルスカブ | Albumin variant |
US9944691B2 (en) | 2012-03-16 | 2018-04-17 | Albumedix A/S | Albumin variants |
EP3330283A2 (en) | 2012-03-16 | 2018-06-06 | Albumedix A/S | Albumin variants |
US10329340B2 (en) | 2012-03-16 | 2019-06-25 | Albumedix Ltd | Albumin variants |
EP3330283A3 (en) * | 2012-03-16 | 2018-07-11 | Albumedix A/S | Albumin variants |
WO2013167750A2 (en) | 2012-05-11 | 2013-11-14 | Prorec Bio Ab | Method for diagnosis and treatment of prolactin associated disorders |
WO2014005596A1 (en) | 2012-07-03 | 2014-01-09 | Aarhus Universitet | Modified payload molecules and their interactions and uses |
US11248037B2 (en) | 2012-07-13 | 2022-02-15 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
US10358479B2 (en) | 2012-07-13 | 2019-07-23 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
US9388231B2 (en) | 2012-07-13 | 2016-07-12 | Zymeworks Inc. | Multivalent heteromultimer scaffold design and constructs |
EP2917233A1 (en) * | 2012-11-08 | 2015-09-16 | Novozymes Biopharma DK A/S | Albumin variants |
US10501524B2 (en) | 2012-11-08 | 2019-12-10 | Albumedix Ltd | Albumin variants |
JP2015535300A (en) * | 2012-11-08 | 2015-12-10 | ノボザイムス バイオファーマ デーコー アクティーゼルスカブ | Albumin variant |
US10934341B2 (en) | 2012-11-08 | 2021-03-02 | Albumedix, Ltd. | Albumin variants |
RU2670063C2 (en) * | 2012-11-08 | 2018-10-17 | Альбумедикс А/С | Albumin variants |
US20140128326A1 (en) * | 2012-11-08 | 2014-05-08 | Novozymes Biopharma Dk A/S | Albumin variants |
CN105452290A (en) * | 2012-11-08 | 2016-03-30 | 诺维信生物制药丹麦公司 | Albumin variants |
GB2512156A (en) * | 2012-11-08 | 2014-09-24 | Novozymes Biopharma Dk As | Albumin variants |
WO2014072481A1 (en) * | 2012-11-08 | 2014-05-15 | Novozymes Biopharma Dk A/S | Albumin variants |
EP3318124A2 (en) | 2013-02-16 | 2018-05-09 | Albumedix A/S | Pharmacokinetic animal model |
EP3318124A3 (en) * | 2013-02-16 | 2018-05-30 | Albumedix A/S | Pharmacokinetic animal model |
WO2014125082A1 (en) | 2013-02-16 | 2014-08-21 | Novozymes Biopharma Dk A/S | Pharmacokinetic animal model |
US9943568B2 (en) | 2013-04-18 | 2018-04-17 | Armo Biosciences, Inc. | Methods of using pegylated interleukin-10 for treating cancer |
US10357545B2 (en) | 2013-04-18 | 2019-07-23 | Armo Biosciences, Inc. | Methods of using interleukin-10 for treating solid tumors |
US9823255B2 (en) | 2013-06-17 | 2017-11-21 | Armo Biosciences, Inc. | Method for assessing protein identity and stability |
US10209261B2 (en) | 2013-06-17 | 2019-02-19 | Armo Biosciences Inc. | Method for assessing protein identity and stability |
WO2015014228A1 (en) | 2013-08-01 | 2015-02-05 | 江苏泰康生物医药有限公司 | Glp-1 analog fusion protein and preparation method and use thereof |
US10010588B2 (en) | 2013-08-30 | 2018-07-03 | Armo Biosciences, Inc. | Methods of using pegylated interleukin-10 for treating hyperlipidemia |
US10988745B2 (en) | 2013-10-31 | 2021-04-27 | Resolve Therapeutics, Llc | Therapeutic nuclease-albumin fusions and methods |
WO2015066550A1 (en) | 2013-10-31 | 2015-05-07 | Resolve Therapeutics, Llc | Therapeutic nuclease-albumin fusions and methods |
WO2015066557A1 (en) | 2013-10-31 | 2015-05-07 | Resolve Therapeutics, Llc | Therapeutic nuclease molecules with altered glycosylation and methods |
CN105992770A (en) * | 2013-11-01 | 2016-10-05 | 奥斯陆大学 | Albumin variants and uses thereof |
CN105992770B (en) * | 2013-11-01 | 2021-06-25 | 奥斯陆大学 | Variants of albumin and uses thereof |
US10781245B2 (en) | 2013-11-01 | 2020-09-22 | University Of Oslo | Albumin variants and uses thereof |
WO2015063611A3 (en) * | 2013-11-01 | 2015-11-05 | University Of Oslo | Albumin variants and uses thereof |
US10208102B2 (en) | 2013-11-01 | 2019-02-19 | University Of Oslo | Albumin variants and uses thereof |
US11413332B2 (en) | 2013-11-11 | 2022-08-16 | Armo Biosciences, Inc. | Methods of using interleukin-10 for treating diseases and disorders |
US10801070B2 (en) | 2013-11-25 | 2020-10-13 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer |
US11834718B2 (en) | 2013-11-25 | 2023-12-05 | The Broad Institute, Inc. | Compositions and methods for diagnosing, evaluating and treating cancer by means of the DNA methylation status |
US11725237B2 (en) | 2013-12-05 | 2023-08-15 | The Broad Institute Inc. | Polymorphic gene typing and somatic change detection using sequencing data |
US11452768B2 (en) | 2013-12-20 | 2022-09-27 | The Broad Institute, Inc. | Combination therapy with neoantigen vaccine |
US10293043B2 (en) | 2014-06-02 | 2019-05-21 | Armo Biosciences, Inc. | Methods of lowering serum cholesterol |
US11661462B2 (en) | 2014-07-31 | 2023-05-30 | Amgen Research (Munich) Gmbh | Optimized cross-species specific bispecific single chain antibody contructs |
EP3646879A1 (en) | 2014-08-12 | 2020-05-06 | Massachusetts Institute Of Technology | Synergistic tumor treatment with il-2 and integrin-binding-fc-fusion protein |
WO2016025647A1 (en) | 2014-08-12 | 2016-02-18 | Massachusetts Institute Of Technology | Synergistic tumor treatment with il-2, a therapeutic antibody, and a cancer vaccine |
WO2016025642A1 (en) | 2014-08-12 | 2016-02-18 | Massachusetts Institute Of Technology | Synergistic tumor treatment with il-2 and integrin-binding-fc-fusion protein |
WO2016025645A1 (en) | 2014-08-12 | 2016-02-18 | Massachusetts Institute Of Technology | Synergistic tumor treatment with il-2, a therapeutic antibody, and an immune checkpoint blocker |
US10350270B2 (en) | 2014-10-14 | 2019-07-16 | Armo Biosciences, Inc. | Interleukin-15 compositions and uses thereof |
WO2016064817A1 (en) | 2014-10-22 | 2016-04-28 | Armo Biosciences, Inc. | Methods of using interleukin-10 for treating diseases and disorders |
US10143726B2 (en) | 2014-10-22 | 2018-12-04 | Armo Biosciences, Inc. | Methods of using interleukin-10 for treating diseases and disorders |
US10653751B2 (en) | 2014-10-22 | 2020-05-19 | Armo Biosciences Inc. | Methods of treating cancer metastasis by using interleukin-10 |
US11939637B2 (en) | 2014-12-19 | 2024-03-26 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
US10993997B2 (en) | 2014-12-19 | 2021-05-04 | The Broad Institute, Inc. | Methods for profiling the t cell repertoire |
US10975442B2 (en) | 2014-12-19 | 2021-04-13 | Massachusetts Institute Of Technology | Molecular biomarkers for cancer immunotherapy |
US10618970B2 (en) | 2015-02-03 | 2020-04-14 | Armo Biosciences, Inc. | Method of treating cancer with IL-10 and antibodies that induce ADCC |
EP3842451A1 (en) | 2015-03-12 | 2021-06-30 | MedImmune, LLC | Method of purifying albumin-fusion proteins |
WO2016145307A1 (en) | 2015-03-12 | 2016-09-15 | Medimmune, Llc | Method of purifying albumin-fusion proteins |
US11926666B2 (en) | 2015-04-17 | 2024-03-12 | Amgen Research (Munich) Gmbh | Bispecific antibody constructs for CDH3 and CD3 |
EP4276116A2 (en) | 2015-04-17 | 2023-11-15 | Amgen Research (Munich) GmbH | Bispecific antibody constructs for cdh3 and cd3 |
US11028171B2 (en) | 2015-04-17 | 2021-06-08 | Amgen Research (Munich) Gmbh | Bispecific antibody constructs for CDH3 and CD3 |
WO2016166360A1 (en) | 2015-04-17 | 2016-10-20 | Bayer Pharma Aktiengesellschaft | Bispecific antibody constructs for cdh3 and cd3 |
US10835585B2 (en) | 2015-05-20 | 2020-11-17 | The Broad Institute, Inc. | Shared neoantigens |
US10195274B2 (en) | 2015-05-28 | 2019-02-05 | Armo Biosciences Inc. | Method of modulating a chimeric antigen receptor t cell immune response by administering IL-10 |
US11884720B2 (en) | 2015-07-31 | 2024-01-30 | Amgen Research (Munich) Gmbh | Antibody constructs for MSLN and CD3 |
EP4327885A2 (en) | 2015-07-31 | 2024-02-28 | Amgen Research (Munich) GmbH | Antibody constructs for msln and cd3 |
US11447567B2 (en) | 2015-07-31 | 2022-09-20 | Amgen Research (Munich) Gmbh | Antibody constructs for FLT3 and CD3 |
US11591396B2 (en) | 2015-07-31 | 2023-02-28 | Amgen Research (Munich) Gmbh | Antibody constructs for DLL3 and CD3 |
US10683351B2 (en) | 2015-07-31 | 2020-06-16 | Amgen Research (Munich) Gmbh | Antibody constructs for DLL3 and CD3 |
EP4382169A2 (en) | 2015-07-31 | 2024-06-12 | Amgen Research (Munich) GmbH | Antibody constructs for dll3 and cd3 |
WO2017021354A1 (en) | 2015-07-31 | 2017-02-09 | Amgen Research (Munich) Gmbh | Antibody constructs for cd70 and cd3 |
WO2017021349A1 (en) | 2015-07-31 | 2017-02-09 | Amgen Research (Munich) Gmbh | Bispecific antibody constructs binding dll3 and cd3 |
WO2017021362A1 (en) | 2015-07-31 | 2017-02-09 | Amgen Research (Munich) Gmbh | Antibody constructs for flt3 and cd3 |
WO2017021356A1 (en) | 2015-07-31 | 2017-02-09 | Amgen Research (Munich) Gmbh | Bispecific antibody constructs binding mesothelin and cd3 |
EP3912999A1 (en) | 2015-07-31 | 2021-11-24 | Amgen Research (Munich) GmbH | Bispecific antibody constructs binding egfrviii and cd3 |
US10519241B2 (en) | 2015-07-31 | 2019-12-31 | Amgen Research (Munich) Gmbh | Antibody constructs for EGFRVIII and CD3 |
US11155629B2 (en) | 2015-07-31 | 2021-10-26 | Amgen Research (Munich) Gmbh | Method for treating glioblastoma or glioma with antibody constructs for EGFRVIII and CD3 |
EP4219562A2 (en) | 2015-07-31 | 2023-08-02 | Amgen Research (Munich) GmbH | Antibody constructs for flt3 and cd3 |
US10294300B2 (en) | 2015-07-31 | 2019-05-21 | Amgen Research (Munich) Gmbh | Antibody constructs for DLL3 and CD3 |
US10851170B2 (en) | 2015-07-31 | 2020-12-01 | Amgen Research (Munich) Gmbh | Antibody constructs for CD70 and CD3 |
WO2017021370A1 (en) | 2015-07-31 | 2017-02-09 | Amgen Research (Munich) Gmbh | Bispecific antibody constructs binding egfrviii and cd3 |
EP3865514A1 (en) | 2015-07-31 | 2021-08-18 | Amgen Research (Munich) GmbH | Bispecific antibody constructs binding dll3 and cd3 |
US10633428B2 (en) | 2015-08-20 | 2020-04-28 | Albumedix Ltd | Albumin variants and conjugates |
US10398761B2 (en) | 2015-08-25 | 2019-09-03 | Armo Biosciences, Inc. | Methods of using combinations of PEG-IL-10 and IL-15 for treating cancers |
WO2017112847A1 (en) | 2015-12-22 | 2017-06-29 | Albumedix A/S | Improved protein expression strains |
US10023618B2 (en) | 2015-12-22 | 2018-07-17 | Albumedix A/S | Protein expression strains |
US10806774B2 (en) | 2016-01-07 | 2020-10-20 | CSL Behring Lengnau AG | Mutated truncated von Willebrand Factor |
WO2017117631A1 (en) | 2016-01-07 | 2017-07-13 | Csl Limited | Mutated truncated von willebrand factor |
US11434302B2 (en) | 2016-02-03 | 2022-09-06 | Amgen Research (Munich) Gmbh | Bispecific T cell engaging antibody constructs |
WO2017184590A1 (en) | 2016-04-18 | 2017-10-26 | The Broad Institute Inc. | Improved hla epitope prediction |
EP3603391A1 (en) | 2016-10-04 | 2020-02-05 | Albumedix Ltd | Uses of recombinant yeast-derived serum albumin |
WO2018065491A1 (en) | 2016-10-04 | 2018-04-12 | Albumedix A/S | Uses of recombinant yeast-derived serum albumin |
WO2018082758A1 (en) | 2016-11-04 | 2018-05-11 | Aarhus Universitet | Identification and treatment of tumors characterized by an overexpression of the neonatal fc receptor |
WO2018096396A1 (en) * | 2016-11-22 | 2018-05-31 | University Of Oslo | Albumin variants and uses thereof |
WO2018115953A1 (en) | 2016-12-21 | 2018-06-28 | Prometic Pharma Smt Limited | Methods and compositions for preventing or minimizing epithelial-mesenchymal transition |
US11549149B2 (en) | 2017-01-24 | 2023-01-10 | The Broad Institute, Inc. | Compositions and methods for detecting a mutant variant of a polynucleotide |
EP4287191A2 (en) | 2017-02-12 | 2023-12-06 | BioNTech US Inc. | Hla-based methods and compositions and uses thereof |
US11650211B2 (en) | 2017-02-12 | 2023-05-16 | Biontech Us Inc. | HLA-based methods and compositions and uses thereof |
WO2018148671A1 (en) | 2017-02-12 | 2018-08-16 | Neon Therapeutics, Inc. | Hla-based methods and compositions and uses thereof |
WO2018234349A1 (en) | 2017-06-20 | 2018-12-27 | Albumedix Ltd | Improved protein expression strains |
US11130979B2 (en) | 2017-06-20 | 2021-09-28 | Albumedix Ltd | Protein expression strains |
US11396670B2 (en) | 2017-06-20 | 2022-07-26 | Albumedix Limited | Protein expression strains |
EP4026908A1 (en) | 2017-06-20 | 2022-07-13 | Albumedix Ltd | Improved protein expression strains |
WO2018234518A1 (en) | 2017-06-22 | 2018-12-27 | CSL Behring Lengnau AG | Modulation of fviii immunogenicity by truncated vwf |
US11141466B2 (en) | 2017-06-22 | 2021-10-12 | CSL Behring Lengnau AG | Modulation of FVIII immunogenicity by truncated VWF |
US11541103B2 (en) | 2017-08-03 | 2023-01-03 | Amgen Inc. | Interleukin-21 mutein/ anti-PD-1 antibody conjugates |
WO2019036605A2 (en) | 2017-08-17 | 2019-02-21 | Massachusetts Institute Of Technology | Multiple specificity binders of cxc chemokines and uses thereof |
US10640504B2 (en) | 2017-09-08 | 2020-05-05 | Amgen Inc. | Inhibitors of KRAS G12C and methods of using the same |
CN111247165A (en) * | 2017-10-18 | 2020-06-05 | Csl有限公司 | Human serum albumin variants and uses thereof |
AU2018350370B2 (en) * | 2017-10-18 | 2023-05-04 | Csl Limited | Human serum albumin variants and uses thereof |
CN111247165B (en) * | 2017-10-18 | 2023-11-10 | Csl有限公司 | Human serum albumin variants and uses thereof |
WO2019075519A1 (en) * | 2017-10-18 | 2019-04-25 | Csl Limited | Human serum albumin variants and uses thereof |
US11466073B2 (en) | 2017-10-18 | 2022-10-11 | Csl Limited | Human serum albumin variants and uses thereof |
WO2019104385A1 (en) | 2017-11-29 | 2019-06-06 | Csl Limited | Method of treating or preventing ischemia-reperfusion injury |
WO2019140196A1 (en) | 2018-01-12 | 2019-07-18 | Amgen Inc. | Anti-pd-1 antibodies and methods of treatment |
US11518808B2 (en) | 2018-01-12 | 2022-12-06 | Amgen Inc. | Anti-PD-1 antibodies and methods of treatment |
EP4410379A2 (en) | 2018-05-16 | 2024-08-07 | CSL Ltd. | Soluble complement receptor type 1 variants and uses thereof |
WO2019218009A1 (en) | 2018-05-16 | 2019-11-21 | Csl Limited | Soluble complement receptor type 1 variants and uses thereof |
WO2020025792A1 (en) | 2018-08-03 | 2020-02-06 | Amgen Research (Munich) Gmbh | Antibody constructs for cldn18.2 and cd3 |
US11692031B2 (en) | 2018-08-03 | 2023-07-04 | Amgen Research (Munich) Gmbh | Antibody constructs for CLDN18.2 and CD3 |
WO2020049151A1 (en) | 2018-09-06 | 2020-03-12 | Bavarian Nordic A/S | Storage improved poxvirus compositions |
WO2020072700A1 (en) | 2018-10-02 | 2020-04-09 | Dana-Farber Cancer Institute, Inc. | Hla single allele lines |
WO2020092202A2 (en) | 2018-10-29 | 2020-05-07 | Biogen Ma Inc. | Humanized and stabilized fc5 variants for enhancement of blood brain barrier transport |
WO2020131586A2 (en) | 2018-12-17 | 2020-06-25 | The Broad Institute, Inc. | Methods for identifying neoantigens |
US11183272B2 (en) | 2018-12-21 | 2021-11-23 | Biontech Us Inc. | Method and systems for prediction of HLA class II-specific epitopes and characterization of CD4+ T cells |
WO2020187848A1 (en) | 2019-03-18 | 2020-09-24 | Biontech Cell & Gene Therapies Gmbh | Lnterleukin-2 receptor (il2r) and interleukin-2 (il2) variants for specific activation of immune effector cells |
WO2020200481A1 (en) | 2019-04-05 | 2020-10-08 | Biontech Rna Pharmaceuticals Gmbh | Treatment involving interleukin-2 (il2) and interferon (ifn) |
WO2020252039A1 (en) | 2019-06-12 | 2020-12-17 | Biontech Us Inc. | Neoantigen compositions and uses thereof |
WO2021044362A1 (en) | 2019-09-06 | 2021-03-11 | Novartis Ag | Therapeutic fusion proteins |
EP3819007A1 (en) | 2019-11-11 | 2021-05-12 | Amgen Research (Munich) GmbH | Dosing regimen for anti-bcma agents |
WO2021094000A1 (en) | 2019-11-11 | 2021-05-20 | Amgen Research (Munich) Gmbh | Dosing regimen for anti-bcma agents |
EP4424709A2 (en) | 2019-11-11 | 2024-09-04 | Amgen Research (Munich) GmbH | Dosing regimen for anti-bcma agents |
WO2021111143A1 (en) | 2019-12-04 | 2021-06-10 | Albumedix Limited | Methods and compositions produced thereby |
WO2021150824A1 (en) | 2020-01-22 | 2021-07-29 | Amgen Research (Munich) Gmbh | Combinations of antibody constructs and inhibitors of cytokine release syndrome and uses thereof |
WO2021183861A1 (en) | 2020-03-12 | 2021-09-16 | Amgen Inc. | Method for treatment and prophylaxis of crs in patients comprising a combination of bispecifc antibodies binding to cds x cancer cell and tnfalpha or il-6 inhibitor |
WO2021180943A1 (en) | 2020-03-12 | 2021-09-16 | Bavarian Nordic A/S | Compositions improving poxvirus stability |
WO2021185775A1 (en) | 2020-03-16 | 2021-09-23 | Biontech Cell & Gene Therapies Gmbh | Antigen-specific t cell receptors and t cell epitopes |
WO2021236638A1 (en) | 2020-05-19 | 2021-11-25 | Amgen Inc. | Mageb2 binding constructs |
WO2022060901A1 (en) | 2020-09-16 | 2022-03-24 | Amgen Inc. | Methods for administering therapeutic doses of bispecific t-cell engaging molecules for the treatment of cancer |
WO2022096698A1 (en) | 2020-11-06 | 2022-05-12 | Amgen Inc. | Polypeptide constructs binding to cd3 |
WO2022096700A1 (en) | 2020-11-06 | 2022-05-12 | Amgen Research (Munich) Gmbh | Polypeptide constructs selectively binding to cldn6 and cd3 |
WO2022096704A1 (en) | 2020-11-06 | 2022-05-12 | Amgen Inc. | Antigen binding domain with reduced clipping rate |
WO2022103781A1 (en) | 2020-11-10 | 2022-05-19 | Amgen Inc. | Methods for administering a bcma x cd3 binding molecule |
WO2022132596A2 (en) | 2020-12-14 | 2022-06-23 | Biontech Us Inc. | Tissue-specific antigens for cancer immunotherapy |
WO2024015892A1 (en) | 2022-07-13 | 2024-01-18 | The Broad Institute, Inc. | Hla-ii immunopeptidome methods and systems for antigen discovery |
WO2024077044A1 (en) | 2022-10-05 | 2024-04-11 | Amgen Inc. | Combination therapies comprising t-cell redirecting therapies and agonistic anti-il-2r antibodies or fragments thereof |
WO2024077256A1 (en) | 2022-10-07 | 2024-04-11 | The General Hospital Corporation | Methods and compositions for high-throughput discovery ofpeptide-mhc targeting binding proteins |
WO2024089258A1 (en) | 2022-10-28 | 2024-05-02 | Aarhus Universitet | Albumin conjugated to cpg oligodeoxynucleotides as super-boosters of immune response |
WO2024170756A1 (en) | 2023-02-17 | 2024-08-22 | Ablynx N.V. | Polypeptides binding to the neonatal fc receptor |
WO2024200573A1 (en) | 2023-03-27 | 2024-10-03 | LAVA Therapeutics N.V. | Nectin-4 binding agents and methods of use |
EP4442251A1 (en) | 2023-04-05 | 2024-10-09 | Albumedix Ltd | Formulations and uses thereof |
WO2024209085A1 (en) | 2023-04-05 | 2024-10-10 | Albumedix Ltd | Formulations and uses thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200385442A1 (en) | Albumin variants | |
EP1427750B1 (en) | Modified transferrin fusion proteins | |
US20160152686A1 (en) | Fibronectin based scaffold domains linked to serum albumin or moiety binding thereto | |
EP1951277A2 (en) | Natriuretic peptide modified transferrin fusion proteins | |
JP2020100633A (en) | Albumin variants | |
AU2015205821B2 (en) | Albumin variants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080060322.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10771471 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 218858 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010311332 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2776241 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/004793 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2010311332 Country of ref document: AU Date of ref document: 20101101 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012535864 Country of ref document: JP Ref document number: 13504326 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4307/CHENP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20127013398 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 1209553 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20101101 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1209553.5 Country of ref document: GB Ref document number: 2012122173 Country of ref document: RU Ref document number: 2010771471 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012009450 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012009450 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120420 |