WO2011051275A1 - Lithium sulfur battery - Google Patents
Lithium sulfur battery Download PDFInfo
- Publication number
- WO2011051275A1 WO2011051275A1 PCT/EP2010/066143 EP2010066143W WO2011051275A1 WO 2011051275 A1 WO2011051275 A1 WO 2011051275A1 EP 2010066143 W EP2010066143 W EP 2010066143W WO 2011051275 A1 WO2011051275 A1 WO 2011051275A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluoro substituted
- fluorosubstituted
- carbonate
- battery
- fluoro
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
- H01M4/606—Polymers containing aromatic main chain polymers
- H01M4/608—Polymers containing aromatic main chain polymers containing heterocyclic rings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- Lithium sulfur batteries or shortly in the context of the present invention,
- Li-S batteries are applicable as rechargeable power sources for a lot of devices, for example, for computers, cell phones, and many other electric components. They have a high theoretical specific energy of 2600 Wh/kg, and sulfur is relatively non-toxic. The battery is also a suitable energy source for electrically driven vehicles.
- the underlying principle is that they comprise a metal anode in an anode compartment and a cathode (for example, porous carbon), with a gel-polymer electrolyte membrane or a non-aqueous solvent which serve as ion-transporting medium.
- a membrane - for example, a Lisicon membrane or a Nasicon membrane - which is permeable for the metal cation, but impermeable for other compounds, serves to effectively separate anode and cathode compartments.
- the problem of the present invention is to provide a a Li-S battery.
- Another problem is to provide electrolyte solutions suitable for Li-S batteries.
- a Li-S battery comprising an electrolyte solvent which comprises or consists of at least one
- fluoro substituted organic compound which contains at least one heteroatom selected from the group consisting of oxygen, nitrogen, phosphorous, sulfur and silicon
- the fluoro substituted organic compound is selected from the group consisting of fluoro substituted carboxylic acid esters, fluoro substituted carboxylic acid amides, fluoro substituted fluorinated ethers, fluoro substituted carbamates, fluoro substituted cyclic carbonates, fluoro substituted acyclic carbonates, fluoro substituted ethers, perfluoroalkyl phosphoranes,
- Li-S battery has the same meaning as "lithium sulfur battery”.
- the electrolyte solvent is selected such that it is liquid at the temperature at which the battery is intended to be used. If the melting point of the respective fluoro substituted organic compound is low enough it can be used neat. The melting point of monofluoroethylene carbonate (“FIEC”) is about 22°C. Thus, it is preferred to apply this compound with a co- solvent with a lower melting point, e.g.
- the solvent is a solvent mixture.
- the mLi-S battery of the present invention preferably comprises a membrane permeable for the metal cations and comprises a thin, dense, substantially non-porous layer which is sandwiched by porous layers.
- metal denotes lithium
- a metal-air battery is disclosed in US-A 5,510,209.
- the metal is lithium, magnesium, sodium, calcium, aluminium or zinc.
- the battery described therein, for example, in fig. 1 of US-A 5,510,209, comprises a lithium foil anode, a polymer electrolyte (comprising polyacrylnitrile, a solvent, e.g. propylene carbonate or ethylene carbonate, and an electrolyte salt, e.g. LiPFg), a composite positive electrode current collector and an oxygen permeable membrane through which oxygen (from the surrounding air) is transported to the porous carbon electrode.
- a polymer electrolyte comprising polyacrylnitrile, a solvent, e.g. propylene carbonate or ethylene carbonate, and an electrolyte salt, e.g. LiPFg
- a composite positive electrode current collector e.g. LiPFg
- oxygen permeable membrane through which oxygen (from the surrounding air) is transported to the porous carbon electrode.
- the battery according to the present invention provides a lithium sulfur battery the solvent of which consists or comprises a fluoro substituted organic compound as defined above.
- a polymer can be present in the electrolyte, but it is not necessarily present in the battery of the current invention ; it is sufficient to provide the lithium ion transporting solvent or solvent mixture which contains or consist of a fluoro substituted organic compound.
- the electrolyte solvent is liquid at a temperature equal to or above -20°C.
- FIG. 1 describes a very suitable lithium battery B.
- the battery B comprises current collectors 1 and 2.
- the anode 3 comprises lithium metal.
- the cathode 4 comprises elemental sulfur, Li2S x and a fluoro substituted solvent.
- a thin, dense, substantially non-porous layer 5 is sandwiched by porous layers 6' and 6" .
- Non-porous layer 5 and porous layers 6', 6" may be a composite LISICON membrane.
- the battery is connected to an apparatus 7 (could be for example a cell phone) which is powered by the electric current provided by the battery B.
- the chemical processes in the Li-S cell include lithium dissolution from the anode surface during discharge, and lithium plating back on to the nominal anode while charging.
- Li is oxidized forming Li+.
- sulfur is reduced to polysulfides and finally to L12S :
- the Li+ ions pass to the anode to be reduced to Li metal.
- fluoro substituted organic compound is intended to include the plural, i.e. a mixture of two or more fluoro substituted organic compounds.
- the fluoro substituted organic compound can be applied as electrolyte solvent or as component of the electrolyte solvent of Li-S batteries in which the anode is in contact with the electrolyte solvent.
- the fluoro substituted organic compound can be applied as electrolyte solvent or as component of the electrolyte solvent of Li-S batteries in which the anode is in contact with the electrolyte solvent.
- the Li-S battery is of the type which contains a membrane between the anode and the cathode compartment.
- the anode contains lithium and the cathode comprises elemental sulfur and at least one solvent selected to at least partially dissolve the elemental sulfur and Li 2 S x .
- a substantially non-porous lithium-ion conductive membrane is provided between the anode and the cathode to keep sulfur and other reactive species from migrating between the anode and cathode.
- the non-porous membrane is for example a thin ceramic membrane.
- Li-S batteries in which solvents are used to dissolve sulfur and lithium sulfide and lithium polysulfides and which comprise a membrane between the anode and cathode compartments are described in US patent application publication 2009/0061288 which is incorporated herein by reference in its entirety for all purposes.
- Sulfur which is apolar dissolves in an apolar solvent such as benzene, fluorobenzene, toluene, trifluorotoluene, xylene, cyclohexane, tetrahydrofurane or 2-methyl
- Lithium sulfide and lithium polysulfides are polar compounds and thus dissolve in polar solvents such as a carbonate organic solvent or tetraglyme.
- the fluoro substituted organic compound is selected such that it does not react in undesired manner with Li + ions, with sulfur and with any of the lithium sulfides and lithium polysulfides formed.
- the compatibility of a suitable fluorinated organic compound can be identified by a test, e.g. by testing a respective battery in a certain number of charge-discharge cycles, controlling voltage and capacity.
- fluorinated organic solvents are presented.
- these compounds can be applied in admixture with other solvents, for example, non-halogenated solvents, or solvents which are chlorinated or they can constitute the sole solvent or solvents of the cathode compartment.
- solvents are applied which are not substituted by chlorine atoms.
- the solvents can be applied in batteries with liquid electrolytes and in batteries with gel state electrolytes.
- gel state electrolytes the non-aqueous solvents are gelled through the use of a gelling agent such as polyacrylonitrile, polyethylene oxide, polyvinylidene fluoride.
- a gelling agent such as polyacrylonitrile, polyethylene oxide, polyvinylidene fluoride.
- Polymerizable monomers that are added to the non-aqueous solvent system and polymerized in situ by the use of heat or radiation may also be used.
- Preferred fluorinated organic compounds are selected from the group consisting of monofluorinated, difluorinated, trifluorinated, polyfluorinated and perfluorinated organic compounds.
- polyfluorinated denotes compounds which are substituted by four or more fluorine atoms, but contain at least one hydrogen atom, or at least one chlorine atom, or at least one hydrogen atom and at least one chlorine atom.
- the monofluorinated, difluorinated, trifluorinated, polyfluorinated and perfluorinated organic compounds are not substituted by chlorine atoms.
- Perfluorinated are those compounds in which all hydrogen atoms are substituted by fluorine atoms.
- Preferred fluorinated organic compounds are selected from the group of fluoro substituted carboxylic acid esters, fluoro substituted carboxylic acid amides, fluoro substituted fluorinated ethers, fluoro substituted carbamates, fluoro substituted cyclic carbonates, fluoro substituted acyclic carbonates, fluoro substituted phosphites, fluoro substituted phosphoranes, fluoro substituted phosphoric acid esters, fluoro substituted phosphonic acid esters and saturated or unsaturated fluoro substituted heterocycles.
- Suitable fluorinated ethers are for example those as described in
- R is a linear alkyl group with 1 to 10 C atoms or a branched alkyl group with 3 to 10 C atoms,
- X is fluorine, chlorine or a perfluoroalkyl group with 1 to 6 C atoms which groups may include ether oxygen,
- n is an integer of 2 to 6 and
- n is an integer of 1 to 8
- X, m and n have the meaning given above.
- Suitable partially fluorinated carbamates are for example those described in US 6, 159,640, namely compounds of the formula R 1 R 2 N-C(0)OR 3 wherein R 1 and R independently are the same or different, and are linear Cl-C6-alkyl, branched C3-C6-alkyl, C3-C7-cycloalkyl, or R 1 and R 2 are connected directly or via one or more additional N and/or O atoms forming a ring with 3 to 7 members.
- additional N atoms in the ring are saturated with CI to C3 alkyl groups, and additionally, the carbon atoms of the ring may be substituted by Cl to C3 alkyl groups.
- R 1 and R 2 one or more hydrogen atoms may be substituted by fluorine atoms.
- R is a partially fluorinated or
- perfluorinated linear or branched alkyl group with 1 to 6 or, respectively, 3 to 6 carbon atoms, or a partially or perfluorinated cycloalkyl group with 3 to 7 C atoms, which may be substituted by one or more Cl to C6 alkyl groups.
- Suitable fluorinated acetamides are for example those described
- R 1 is a linear Cl - C6 alkyl group in which at least one hydrogen atom is replaced by fluorine, or a branched C3 - C6 alkyl group in which at least one hydrogen atom is replaced by fluorine, or a C3 - C7 cycloalkyl group optionally substituted one or more times by a linear CI - C6 alkyl group or branched C3 - C6 alkyl group or both in which at least one hydrogen atom of the cycloalkyl group or the optional linear or branched alkyl substituent or both is replaced by fluorine, and R 2 and R 3 independently represent an identical or different linear CI - C6 alkyl group, a branched C3 - C6 alkyl group or a C3 - C7 cycloalkyl group, or together with the amide nitrogen form a saturated five or six-membered nitrogen-containing ring, or are joined with one or more additional N
- Suitable partially fluorinated esters are for example those described in US 6,677,085 partially fluorinated compound derived from a diol corresponding to formula (IV) : R ⁇ O-O-fCHR ⁇ CH 2 ) m -0 ]n -R 2 (IV) wherein R 1 is a (CI - C8) alkyl group or a (C3 - C8) cycloalkyl group, wherein each of said groups is partially fluorinated or perfluorinated so that at least one hydrogen atom of the group is replaced by fluorine ;R is a (CI - C8) alkyl carbonyl or (C3 - C8) cycloalkyl carbonyl group, wherein said alkylcarbonyl or cycloalkylcarbonyl group may optionally be partially fluorinated or perfluorinated ;R is a hydrogen atom or a (CI - C8) alkyl or (C3 - C8) cycloalkyl group ;
- linear or branched fluoro substituted dialkyl carbonates and fluoro substituted alkylene carbonates are especially preferred.
- Suitable fluorinated dialkyl carbonates are those of formula (V)
- R 1 and R 2 can be the same or different with the proviso that at least one of R 1 and R 2" are substituted by at least one fluorine atom.
- R 1 and R 2 are preferably linear alkyl groups with 1 to 8 carbon atoms, preferably, 1 to 4 carbons, more preferably, with 1 to 3 carbon atoms ; branched alkyl groups with 3 to 8 carbon atoms, preferably with 3 carbon atoms ; or cyclic alkyl groups with 5 to 7 carbon atoms, preferably, 5 or 6 carbon atoms ; with the proviso that at least one of R 1 and R 2 is substituted by at least one fluorine atom.
- R 1 and R 2 denote linear alkyl groups with 1 to 3 carbon atoms, with the proviso that at least one of R 1 and R 2 is substituted by at least one fluorine atom.
- R 1 and R 2 are selected from the group consisting of methyl, fluoromethyl, difluoromethyl, trifluoromethyl, ethyl, l-fluoroethyl, 2-fluoroethyl, 1,1-difluoroethyl, 1,2-difluoroethyl, 2,2,2-trifluoroethyl and 1-fluoro-l-methylethyl.
- Most preferred compounds of formula (V) are methyl fluoromethyl carbonate, fluoromethyl ethyl carbonate, methyl
- 2,2,2-trifluoroethyl carbonate fluoromethyl 2,2,2-trifluoroethyl carbonate and bis-2,2,2-trifluoroethyl carbonate.
- Such compounds can be manufactured from phosgene, COFC1 or COF2, and the respective alcohols, or as described in unpublished EP patent application No. 09155665.2.
- fluoroalkyl (fluoro)alkyl carbonates of the general formula (Vi), FCHR-OC(0)-OR' wherein R denotes linear or branched alkyl with 1 to 5 C atoms or H and R' denotes linear or branched alkyl with 1 to 7 carbon atoms ; linear or branched alkyl with 2 to 7 carbon atoms, substituted by at least one fluorine atom ; phenyl ; phenyl, substituted by 1 or more CI to C3 alkyl groups atoms or phenyl substituted by 1 or more chlorine or fluorine atoms ; or benzyl
- fluoro substituted alkylene carbonates of formula (X) are applied.
- R 1 , R 2 , R 3 and R 4 are independently selected from H, linear alkyl groups with 1 to 3 carbon atoms and alkenyl groups with 2 or 3 carbon atom ; linear alkyl groups with 1 to 3 carbon atoms or an alkenyle group with 2 or 3 carbon atoms, substituted by at least one fluorine atom ; and fluorine, with the proviso that at least one of R 1 , R 2 , R 3 and R 4 is fluorine or an alkyl group substituted by at least one fluorine atom.
- R 1 , R2 , R 3 and R 4 are selected from H and F, with the proviso that at least one of R 1 , R 2 , R 3 and R 4 is fluorine.
- fluoroethylene carbonate but also cis- and trans- 4,5-difluoroethylene carbonate, 4,4-difluoroethylene carbonate, trifluoroethylene carbonate and tetrafluoroethylene carbonate are very suitable.
- These compounds can be manufactured by direct fluorination of ethylene carbonate. In the case of difluoro substituted ethylene carbonate, cis and trans-4,5-difluoroethylene carbonate and 4,4-difluoroethylene carbonate are obtained. These isomers can be separated by fractionated distillation.
- R x is a CI to C3 alkyl group or a CI to C3 alkyl group, substituted by at least one fluorine atom ; and R 2 , R 3 and R 4 are H or F, with the proviso that at least one of R 2 , R 3 and R 4 are F, or R x is a CI to C3 alkyl group, substituted by at least one fluorine atom.
- R 1 is methyl, ethyl or vinyl.
- Especially preferred compounds of this type are 4-fluoro-4-methyl-l,3- dioxolane-2-one, 4-fluoro-5-methyl- 1 ,3-dioxolane-2-one, 4-ethyl-4-fluoro- 1,3- dioxolane-2one, 5-ethyl-4-fluor-4-ethyl-l,3-dioxolan-2-one and 4,5-dimethyl-4- fluoro-l,3-dioxolane-2-one.
- the compounds are known and can be manufactured by fluorination of the respective non-fluorinated compounds or by chlorine-fluorine exchange of the respective chloro substituted compounds.
- the cyclization reaction is preferably catalyzed by a heterocyclic compound containing nitrogen, or by fluoride ions.
- the heterocyclic compound is an aromatic compound.
- pyridine or 2-methylimidazole can be used as catalyst.
- pyridines substituted by at least one dialkylamino group are very suitable.
- Other 4-dialkylaminopyridines, for example, those wherein alkyl denotes a CI to C3 alkyl group, are also considered to be suitable. According to a further preferred embodiment, 1 2
- R and R are CI to C3 alkyl groups or CI to C3 alkyl groups, substituted by at least one fluorine atom ;
- R and R 4 are H or F, with the proviso that at least one of R 3 and R 4 are F, or at least one of 1 2
- R and R is a CI to C3 alkyl group, substituted by at least one fluorine atom.
- Especially preferred compounds of this type are 4-fluoro-5-(l-fluoroethyl)- 1 ,3-dioxolan-2-one, 4-fluoro-5-(2-fluoroethyl)- 1 ,3-dioxolan-2-one, 4- trifluoromethyl-4-methyl- 1 ,3-dioxolan-2-one, 4-trifluoromethyl-4-methyl-5- fluoro- 1 ,3-dioxolan-2-one and 4-(2,2,2-trifluoroethyl)-4-methyl-5-fluoro- 1,3- dioxolan-2-one.
- Tris-(2,2,2- trifluoroethyl) phosphate is the preferred compound. It can be prepared from PCI3 and trifluoroethanol, optionally in the presence of a base, e.g. an amine.
- Still another group of compounds are perfluoroalkyl phosphoranes of formula (XII), (CnF 2 n+m) 5 P wherein n is 1, 2, 3, 4, 5, 6, 7 or 8, and m is +1 or - 1. They can be prepared from pentaalkyl phosphanes via electrofluorination analogously to the process described in US 6,264,818.
- R-P(0)R!R 2 are also suitable.
- R is a CI to C4 alkyl group ; a CI to C4 alkyl group, substituted by at least 1 fluorine atom ; or a fluoro substituted C2 to C4 alkoxy group ;
- R 1 and R 2 are the same or different and represent C2 to C4 alkoxy groups, substituted by at least one fluorine atom.
- Preferred compounds of this type are methyl bis-(2,2,2- trifluoroethyl) phosphonate, ethyl bis-(2,2,2-trifluoroethyl) phosphonate, and tris-(2,2,2-trifluoroethyl) phosphate.
- Fluoro substituted carbonic acid esters of formula (XIV), R-C(0)OR 1 are also suitable.
- R denotes preferably CI to C3 and R 1 preferably denotes a CI to C3 alkyl group with the proviso that at least one of R and R 1 are substituted by at least one fluorine atom.
- These compounds are suitable for batteries which are operated at low temperatures as described in US patent application publication 2008/0305401.
- Another group of suitable compounds are those of formula (XV),
- R is a
- R 1 is CI to C4 alkyl ; CI to C4 alkyl, substituted by one or more fluorine atoms ; or phenyl.
- R is preferably CF3, CHF2, or C2F5 ; and R 1 is preferably methyl or ethyl.
- the most preferred compound is 4-Ethoxy-l,l,l-trifluoro-3-buten-2-one (ETFBO). These compounds can be prepared by the addition of the respective carboxylic acid chlorides to the respective vinyl ether and subsequent dehydrochlorination.
- ETFBO for example, can be prepared from trifluoroacetyl chloride and ethyl vinyl ether. ETFBO is also available e.g. from Solvay Fluor GmbH, Hannover, Germany.
- perfluorinated ethers Suitable perfluorinated polyethers are described, for example, in WO 02/38718. These perfluorinated polyethers consist essentially of carbon, fluorine and oxygen atoms and comprise at least two, preferably three, C-O-C ether linkages, or a mixture of several compounds satisfying that definition. Often, the oxygen atoms in the perfluoropolyether are exclusively present within the C-O-C ether linkages.
- the perfluoropolyethers generally have a molecular weight of about 200 or more. Generally they have a molecular weight of less than about 1500. If the polyether is a mixture of several substances, the molecular weight is the weight- average molecular weight.
- the perfluoropolyether has a boiling point greater than or equal to 40°C at 101.3 kPa.
- the perfluoropolyether generally has a boiling point less or equal to about 200°C at 101.3 kPa.
- these perfluoropolyethers often are a mixture of individual substances.
- the kinematic viscosity of the perfluoropolyether is less than or equal to 1 cSt (Centistoke) at 25°C.
- the kinematic viscosity is at least 0.3 cSt at 25°C.
- the preferred perfluoro polyethers are the products marketed by Solvay Solexis under the names GALDEN ® and FOMBLIN ® .
- Examples include :
- GALDEN HT 55 boiling point 57°C at 101.3 kPA ; average molecular weight 340
- GALDEN HT 70 boiling point 66°C at 101.3 kPa ; average molecular weight 410 FOMBLIN PFS 1 : boiling point 90°C at 101.3 kPa ; average molecular weight 460
- Partially fluorinated polyethers are the hydrofluoro ethers marketed by 3M under the name NOVEC ® .
- the GALDEN ® and FOMBLIN ® systems are usually multicomponent systems having a boiling point in the range from 40 to 76°C.
- fluoro substituted compounds which are suitable as fluoro substituted compound are lithium fluoro(oxalate)borate and lithium difluoro(oxalato)borate. They are no solvents but an electrolyte salt additive.
- fluorinated heterocycles are suitable, especially, fluorinated dioxolanes, fluorinated oxazolidines, fluorinated imidazolindines, fluorinated dihydroimidazoles, fluorinated 2,3-dihydroimidazoles, fluorinated pyrroles, fluorinated thiophenes, fluorinated thiazoles and fluorinated imidazoles.
- Suitable fluorinated dioxolanes are for example 2,2-difluoro- l,3-dioxolane (US 5,750,730) and 2-fluoro-4,4,5,5-tetramethyl- l,3-dioxolane, available from chemstep, France.
- Suitable fluorinated oxazolidines are for example 2,2-difluoro-3- methyloxazolidine and 4,5-difluoro-3-methyloxazolidine-2-one, available from chemstep.
- Suitable fluorinated imidazolidines are for example 2,2-difluoro- l,3- dimethylimidazolidine, available from abcr, and l,3-dibutyl-2,2- difluoroimidazolidineavailable from Apollo.
- Suitable fluorinated 2,3-dihydroimidazoles are for example 2,2-difluoro- l,3-dimethyl-2,3-dihydro- lH- imidazole and l-ethyl-2-fluoro-3-methyl-2,3- dihydro- lH-imidazole, available from chemstep.
- Suitable fluorinated imidazoles are for example l-(trifluoromethyl)-lH- imidazole, available from selectlab, and 2-fluoro- l-(methoxymethyl)-lH- imidazole, available from chemstep.
- a suitable fluorinated pyrrole is for example 2-ethyl-5-fluoro-l-methyl- lH-pyrrole, available from chemstep.
- a suitable fluorinated thiophene is for example 2-fluorothiophene, available from apacpharma.
- a suitable fluorinated thiazole is for example 4-fluorothiazole, available from chemstep.
- fluoro substituted organic liquids e.g. 4,5-dimethyl-3-perfluorooctyl- 1,2,4-triazolium tetrafluoroborate.
- fluoro substituted compounds which are members of the group consisting of fluoro substituted carboxylic acid esters, fluoro substituted carboxylic acid amides, fluoro substituted fluorinated ethers, fluoro substituted carbamates, fluoro substituted cyclic carbonates, fluoro substituted acyclic carbonates, fluoro substituted ethers, perfluoroalkyl phosphoranes,
- fluoro substituted phosphites fluoro substituted phosphates, fluoro substituted phosphonates and fluoro substituted heterocycles, or which preferably are present additionally to the F-substituted esters, amides, ethers, carbamates, cyclic or acyclic carbonates, phosphoranes, phosphites, phosphates, phosphonates and heterocycles mentioned above, are those described in WO2007/042471. That document discloses suitable compounds for the present invention selected from the group of aromatic compounds consisting of l-acetoxy-2-fluorobenzene,
- difluoroacetophenone encompasses the isomers with the fluorine substitution in the 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-position on the aromatic ring.
- fluorobenzophenone encompasses in particular the isomers 2-fluorobenzophenone and 4-fluorobenzophenone.
- difluorobenzophenone encompasses the isomers with the fluorine substitution in the 2,3'-, 2,3-, 2,4'-, 2,4-, 2,5-, 2,6-, 3,3'-, 3,4'-, 3,4-, 3,5- and 4,4'-position.
- fluorophenylacetonitrile encompasses the isomers with the fluorine substitution in the 2-, 3- and 4-position.
- the compounds can be synthesized in a known manner and are also commercially available, for example from ABCR GmbH & Co. KG, Düsseldorf, Germany.
- the fluorinated organic compounds mentioned above can be used as the only solvent, i.e. in the form of a single solvent, or they are applied in admixture with one or more organic solvents which are not fluorosubstituted. They can be applied together with linear or cyclic ethers, esters, ketones, saturated or unsaturated alkanes, aromatic hydrocarbons and especially organic carbonates. Alkyl carbonates and alkylene carbonates are the preferred solvent. Often, ethylene carbonate (EC) is comprised in the solvent.
- the solvent may further contain, low viscosity agents, e.g.
- ethers like 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyldioxolane, dimethylcarbonate, ethylmethyl carbonate, diethyl carbonate and any mixtures thereof.
- Nitriles e.g. acetonitrile, and t-amyl benzene, and thio substituted compounds, for example, ethylene- 1,3-dioxolane- 2-thione (ethylene
- thiocarbonate are also highly suitable non-fluorinated solvents or additives.
- the solvent may also additionally contain benzene, fluorobenzene, toluene, trifluorotoluene, xylene or cyclohexane.
- Lithium bis(oxalato)borate can also be applied. It is no solvent, but an electrolyte salt additive.
- Preferred mixtures comprise at least one compound selected from the group consisting of monofluoroethylene carbonate, cis-difluoroethylene carbonate, trans-difluoroethylene carbonate, 4,4- difluoroethylene carbonate, 4-fluoro-4-methyl- 1 ,3-dioxolane-2-one, 4-fluoro-4-ethyl- 1 ,3-dioxolane-2-one, 4-trifluoromethyl- 1 ,3-dioxolane-2-one, 2,2,2-trifluoroethyl-methyl carbonate, 2,2,2-trifluoroethyl-fluoromethyl carbonate, and at least one non-fluorinated organic compound selected from the group consisting of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate.
- the battery solvent contains 0.1 to 100 % by weight of the
- the fluorinated organic compound is contained in the electrolyte solvent in an amount of equal to or more than 3 % by weight. Often, it is contained in an amount of equal to or less than 50 % by weight, preferably, equal to or less than 30 % by weight.
- ionic liquids can be applied in a mixture with any of the fluoro substituted compounds mentioned above.
- Very suitable ionic liquids are those based on imidazolium, and pyridinium
- phosphonium or tetraalkylammonium compounds can also be applied.
- Representative ionic liquids are tosylate, triflate, hexafluorophosphate, bis-(fluorosulfonyl)amide, bis-(trifluoromethylsulfonyl)amide and
- a first layer for example, which is in contact with the active metal, may be partially or completely composed of Li 3 N, Li 3 P, Lil, LiBr, LiCl, LiF and LiPON.
- a second layer may be composed of material that is substantially impervious, ionically conductive and chemically compatible with the first material (or its precursor).
- suitable materials include glassy or amorphous metal ion conductors, for example, phosphorus-based or oxide based glasses, phosphorus-oxynitride-based glass, selenide -based glass, gallium-based glass, germanium-based glass and boracite glass.
- Ceramic active metal ion conductors such as lithium beta-alumina, sodium beta-alumina, Li superionic conductor (LISICON), Na superionic conductor (NASICON) and the like, and glass- ceramic active metal ion conductors are also suitable. Specific examples, e.g. LiPON, are found in US 7,390,591 in column 4, lines 1 to 39.
- the layers may further comprise additional components, e.g. polymers, for example, polymer-iodine complexes like polyethylene-iodine, or polymer electrolytes to form flexible composite sheets of material which may be used as second layer of the protective composite.
- polymers for example, polymer-iodine complexes like polyethylene-iodine, or polymer electrolytes to form flexible composite sheets of material which may be used as second layer of the protective composite.
- polymers for example, polymer-iodine complexes like polyethylene-iodine, or polymer electrolytes to form flexible composite sheets of material which may be used as second layer of the protective composite.
- polymers for example, polymer-iodine complexes like polyethylene-iodine, or polymer electrolytes to form flexible composite sheets of material which may be used as second layer of the protective composite.
- the cathode is preferably one of those described in column 15 of
- Suitable cathodes include Li x Co0 2 , Li x Ni0 2 , Li x Mn 2 0 4 , LiFeP0 4 , Ag x V 2 0 5 , Cu x V 2 0 5 , V 2 0 5 , V 6 0 13 , FeS 2 and TiS 2 .
- the advantage of the battery cells of the present invention is an improved flame protection and energy density at lower weight and reduced costs.
- Another aspect of the present invention concerns an electrolyte solution, comprising
- fluoro substituted organic compound containing at least one heteroatom selected from the group consisting of oxygen, nitrogen, phosphorous, sulfur and silicon
- fluoro substituted organic compound is selected from the group consisting of fluoro substituted carboxylic acid esters, fluoro substituted carboxylic acid amides, fluoro substituted fluorinated ethers, fluoro substituted carbamates, fluoro substituted cyclic carbonates, fluoro substituted acyclic carbonates, fluoro substituted ethers, perfluoroalkyl phosphoranes, fluoro substituted phosphites, fluoro substituted phosphates, fluoro substituted phosphonates and fluoro substituted heterocycles,
- M is Li
- M 2 X y is Li 2 S y and y is 1, 2, 3, 4, 6 or 8.
- the solution comprises an electrolyte salt selected from the group consisting of LiBF 4 , LiCI0 4 , LiAsF 6 , LiP0 2 F 2 , LiPF 6 and LiN(CF 3 S0 2 ) 2 .
- the concentration of the electrolyte salt is preferably 1 + 0.1 molar.
- fluorinated organic compounds are those described above in detail. Fluoroethylene carbonate, cis- and trans-4,5-difluoroethylene carbonate, 4,4-difluoroethylene carbonate, trifluoroethylene carbonate and
- Still another aspect of the present invention concerns the use of a fluoro substituted organic compound which comprises at least one heteroatom selected from the group consisting of oxygen, nitrogen, phosphorous, sulfur and silicon as sole solvent or in admixture with at least one non-fluoro substituted solvent, or of lithium bis(oxalato)borate or lithium difluoro(oxalato)borate in the cathode compartment of a lithium oxygen battery, a lithium sulfur battery, or a magnesium-oxygen battery, preferably in a lithium sulfur battery.
- the fluoro substituted organic compound is selected from the group consisting of fluoro substituted carboxylic acid esters, fluoro substituted carboxylic acid amides, fluoro substituted fluorinated ethers, fluoro substituted carbamates, fluoro substituted cyclic carbonates, fluoro substituted acyclic carbonates, fluoro substituted ethers, perfluoroalkyl phosphoranes, fluoro substituted phosphites, fluoro substituted phosphates, fluoro substituted phosphonates and fluoro substituted heterocycles.
- F1EC is fluoroethylene carbonate.
- Monofluoroethylene carbonate was added in 10 mL portions. After each addition the mixture was stirred for 10 minutes at 25°C. The sulfur was dissolved after addition of 180 mL.
- Monofluoroethylene carbonate was added in 10 mL portions. After each addition the mixture was stirred for 10 minutes at 25°C. The lithium sulfide was dissolved after addition of 250 mL.
- Monofluoroethylene carbonate was added in 10 mL portions. After each addition the mixture was stirred for 10 minutes at 25°C. The lithium polysulfide was dissolved after addition of 100 mL.
- Example 5 A lithium sulfur battery
- a lithium- sulfur battery which corresponds to the battery type of figure 1 of US patent application publication 2009/0061288. It comprises two current collectors.
- the anode contains lithium.
- the cathode contains elemental sulfur and Li2S x (lithium monosulfide and/or lithium polysulfide) and a solvent.
- the solvent is selected such that it at least partially dissolves the elemental sulfur and the Li2S x .
- the battery further contains a substantially non-porous lithium- ion conductive membrane between the anode compartment and the cathode compartment.
- the membrane is for example a LISICON membrane as available from Ceramatec Inc., Salt Lake City, USA, e.g. a membrane based on
- the membrane can be infused with a lithium salt, e.g. LiPFg, to conduct lithium ions between anode and the membrane.
- the solvent in the cathode compartment is selected from one of the mixtures compiled in table 1.
- F1EC monofluoroethylene carbonate
- F2EC difluoroethylene carbonate (mixture containing cis-4,5, trans-4,5 and 4,4-isomers)
- F3EC trifluoroethylene carbonate
- F4EC tetrafluoroethylene carbonate
- F1DMC fluoromethyl methyl carbonate
- FMTFEC fluoromethyl 2,2,2-trifluoroethyl carbonate
- lithium metal is oxidized at the anode to produce lithium ions and electrons.
- the electrons pass through a power consuming equipment, and the lithium ions are conducted through the membrane to the cathode where they react with sulfur gradually forming a high polysulfide (e.g. L12S or Li2Sg).
- the voltage may drop form 2.5 V to 2.1 V.
- Example 6 A lithium polysulfide battery
- At least one of the solutions of sulfur, lithium sulfide or lithium polysulfide as described in examples 1, 2 and 4 are mixed in the appropriate amount with the respective other solvent indicated in table 1 to provide the solution of sulfur, lithium sulfide or lithium polysulfide in the respective solvent as applied in the battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080053528.5A CN102668232B (en) | 2009-10-27 | 2010-10-26 | Lithium-sulfur cell |
IN3375DEN2012 IN2012DN03375A (en) | 2009-10-27 | 2010-10-26 | |
JP2012535784A JP2013508927A (en) | 2009-10-27 | 2010-10-26 | Lithium sulfur battery |
US13/504,094 US20120214043A1 (en) | 2009-10-27 | 2010-10-26 | Lithium sulfur battery |
EP10770821A EP2494648A1 (en) | 2009-10-27 | 2010-10-26 | Lithium sulfur battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09174210 | 2009-10-27 | ||
EP09174210.6 | 2009-10-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011051275A1 true WO2011051275A1 (en) | 2011-05-05 |
Family
ID=42041746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/066143 WO2011051275A1 (en) | 2009-10-27 | 2010-10-26 | Lithium sulfur battery |
Country Status (8)
Country | Link |
---|---|
US (1) | US20120214043A1 (en) |
EP (1) | EP2494648A1 (en) |
JP (1) | JP2013508927A (en) |
KR (1) | KR20120101414A (en) |
CN (1) | CN102668232B (en) |
IN (1) | IN2012DN03375A (en) |
TW (1) | TW201140902A (en) |
WO (1) | WO2011051275A1 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2989683A1 (en) * | 2012-04-23 | 2013-10-25 | Commissariat Energie Atomique | FLUORINATED COMPOUNDS FOR USE AS ORGANIC SOLVENT FOR LITHIUM SALTS |
US20140045078A1 (en) * | 2011-04-26 | 2014-02-13 | Solvay Sa | Lithium air battery cell |
WO2014027003A1 (en) * | 2012-08-14 | 2014-02-20 | Solvay Sa | Use of low concentrations of fluorinated organic compounds as solvent additives |
CN104221203A (en) * | 2012-03-19 | 2014-12-17 | 国立大学法人横浜国立大学 | Alkali metal-sulfur secondary cell |
WO2014204547A3 (en) * | 2013-04-01 | 2015-02-26 | The University Of North Carolina At Chapel Hill | Ion conducting fluoropolymer carbonates for alkali metal ion batteries |
WO2015025045A1 (en) * | 2013-08-23 | 2015-02-26 | Commissariat à l'énergie atomique et aux énergies alternatives | Fluorated compounds usable as an organic solvent for lithium salts |
WO2016044088A1 (en) * | 2014-09-19 | 2016-03-24 | E. I. Du Pont De Nemours And Company | Nonaqueous electrolyte compositions |
US9540312B2 (en) | 2015-02-03 | 2017-01-10 | Blue Current, Inc. | Non-flammable electrolyte composition including carbonate-terminated perfluoropolymer and phosphate-terminated or phosphonate-terminated perfluoropolymer and battery using same |
US9673450B2 (en) | 2011-09-02 | 2017-06-06 | Solvay Sa | Lithium ion battery |
US20170222290A1 (en) * | 2014-03-28 | 2017-08-03 | International Business Machines Corporation | Lithium oxygen battery and electrolyte composition |
US9748604B2 (en) | 2012-10-19 | 2017-08-29 | The University Of North Carolina At Chapel Hill | Ion conducting polymers and polymer blends for alkali metal ion batteries |
US9893337B2 (en) | 2008-02-13 | 2018-02-13 | Seeo, Inc. | Multi-phase electrolyte lithium batteries |
US9917329B2 (en) | 2016-05-10 | 2018-03-13 | Seeo, Inc. | Fluorinated electrolytes with nitrile groups |
US9923236B2 (en) | 2015-04-07 | 2018-03-20 | Seeo, Inc. | Fluorinated alkali ion electrolytes with cyclic carbonate groups |
US9923245B2 (en) | 2015-04-03 | 2018-03-20 | Seeo, Inc. | Fluorinated alkali ion electrolytes with urethane groups |
US9979050B2 (en) | 2011-09-02 | 2018-05-22 | Solvay Sa | Fluorinated electrolyte compositions |
US10038216B2 (en) | 2015-06-09 | 2018-07-31 | Seeo, Inc. | PEO-based graft copolymers with pendant fluorinated groups for use as electrolytes |
US10044066B2 (en) | 2012-06-01 | 2018-08-07 | Solvary SA | Fluorinated electrolyte compositions |
US10044063B2 (en) | 2015-05-12 | 2018-08-07 | Seeo, Inc. | Copolymers of PEO and fluorinated polymers as electrolytes for lithium batteries |
US10074874B2 (en) | 2012-06-01 | 2018-09-11 | Solvay Sa | Additives to improve electrolyte performance in lithium ion batteries |
WO2019115541A1 (en) * | 2017-12-13 | 2019-06-20 | Basf Se | Electrolyte composition comprising oligomeric silyl ester phosphonates |
CN111224166A (en) * | 2019-12-12 | 2020-06-02 | 中国科学院大连化学物理研究所 | Ether electrolyte, preparation method and application thereof |
US10686220B2 (en) | 2013-04-04 | 2020-06-16 | Solvay Sa | Nonaqueous electrolyte compositions |
EP3591755A4 (en) * | 2017-03-31 | 2021-04-14 | Daikin Industries, Ltd. | Electrolyte solution, electrochemical device, lithium ion secondary battery and module |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10320033B2 (en) | 2008-01-30 | 2019-06-11 | Enlighten Innovations Inc. | Alkali metal ion battery using alkali metal conductive ceramic separator |
CN105206793B (en) | 2009-08-24 | 2017-12-22 | 赛昂能源有限公司 | Stripping system for electrochemical cell |
CA2770733C (en) | 2009-11-05 | 2018-10-16 | Ceramatec, Inc. | Solid-state sodium-based secondary cell having a sodium ion conductive ceramic separator |
US10020543B2 (en) | 2010-11-05 | 2018-07-10 | Field Upgrading Usa, Inc. | Low temperature battery with molten sodium-FSA electrolyte |
US10056651B2 (en) | 2010-11-05 | 2018-08-21 | Field Upgrading Usa, Inc. | Low temperature secondary cell with sodium intercalation electrode |
EP2720303B1 (en) * | 2011-06-11 | 2017-05-31 | Positec Power Tools (Suzhou) Co., Ltd | Electrode composite material, method thereof, positive electrode and battery including the same |
US10224577B2 (en) | 2011-11-07 | 2019-03-05 | Field Upgrading Usa, Inc. | Battery charge transfer mechanisms |
KR102114716B1 (en) * | 2012-09-06 | 2020-05-26 | 필드 업그레이딩 유에스에이, 인코포레이티드 | Sodium-halogen secondary cell |
US10854929B2 (en) | 2012-09-06 | 2020-12-01 | Field Upgrading Usa, Inc. | Sodium-halogen secondary cell |
US9431682B2 (en) | 2012-12-19 | 2016-08-30 | Ceramatec, Inc. | Degradation protection of solid alkali ion conductive electrolyte membrane |
US9728768B2 (en) | 2013-03-15 | 2017-08-08 | Sion Power Corporation | Protected electrode structures and methods |
US9160036B2 (en) | 2013-03-15 | 2015-10-13 | GM Global Technology Operations LLC | Electrolyte additives for lithium sulfur rechargeable batteries |
US10862105B2 (en) | 2013-03-15 | 2020-12-08 | Sion Power Corporation | Protected electrode structures |
US10103380B2 (en) * | 2013-08-16 | 2018-10-16 | Lg Chem, Ltd. | Cathode for lithium-sulfur battery and preparation method therefor |
KR101558669B1 (en) * | 2013-10-31 | 2015-10-07 | 현대자동차주식회사 | A cathode for lithium sulfur battery and a method for preparing thereof |
DE102014202180A1 (en) * | 2014-02-06 | 2015-08-06 | Volkswagen Aktiengesellschaft | Electrolyte compositions for lithium-sulfur batteries |
KR101618428B1 (en) | 2014-02-07 | 2016-05-09 | 고려대학교 산학협력단 | Electrode structure for a lithium-sulfur secondary cell and method of manufacturing the same |
JP6746062B2 (en) | 2014-02-19 | 2020-08-26 | シオン・パワー・コーポレーション | Electrode protection using electrolyte-suppressed ionic conductors |
US10490796B2 (en) | 2014-02-19 | 2019-11-26 | Sion Power Corporation | Electrode protection using electrolyte-inhibiting ion conductor |
WO2015160334A1 (en) * | 2014-04-15 | 2015-10-22 | Uchicago Argonne, Llc | Lithium-sulfur batteries |
WO2015166636A1 (en) * | 2014-05-02 | 2015-11-05 | ソニー株式会社 | Electrolyte solution, battery, battery pack, electronic device, electric vehicle, electricity storage device and electric power system |
US9859554B2 (en) * | 2014-07-03 | 2018-01-02 | GM Global Technology Operations LLC | Negative electrode material for lithium-based batteries |
JP5822044B1 (en) * | 2015-04-17 | 2015-11-24 | 宇部興産株式会社 | Non-aqueous electrolyte, and lithium ion secondary battery and lithium ion capacitor using the same |
CN106207260A (en) * | 2015-05-25 | 2016-12-07 | 松下知识产权经营株式会社 | Electrolyte and battery |
CN106207256B (en) * | 2015-05-25 | 2021-01-15 | 松下知识产权经营株式会社 | Electrolyte solution and battery |
KR20180071377A (en) | 2015-11-13 | 2018-06-27 | 시온 파워 코퍼레이션 | Additives for electrochemical cells |
KR102050838B1 (en) * | 2016-04-22 | 2019-12-03 | 주식회사 엘지화학 | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof |
JP6890297B2 (en) * | 2016-06-14 | 2021-06-18 | パナソニックIpマネジメント株式会社 | Electrolyte for batteries and batteries |
EP3404748B1 (en) * | 2017-05-19 | 2022-07-27 | Sion Power Corporation | Electrochemical cells comprising additives |
KR102664549B1 (en) | 2017-05-19 | 2024-05-09 | 시온 파워 코퍼레이션 | Passivation agent for electrochemical cells |
CN108933274A (en) * | 2017-05-26 | 2018-12-04 | 中国科学院上海硅酸盐研究所 | A kind of lithium-sulfur cell electrolyte and its application |
KR102244905B1 (en) | 2017-07-28 | 2021-04-26 | 주식회사 엘지화학 | Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same |
CN109390629B (en) * | 2017-08-08 | 2020-12-11 | 宁德时代新能源科技股份有限公司 | Electrolyte and battery |
KR102328258B1 (en) | 2017-10-17 | 2021-11-18 | 주식회사 엘지에너지솔루션 | Electrolyte for lithium metal battery and lithium metal battery comprising thereof |
FR3080222B1 (en) * | 2018-04-11 | 2020-03-20 | Saft | LITHIUM / SULFUR ELECTROCHEMICAL ELEMENT |
JP7064068B2 (en) * | 2018-05-10 | 2022-05-10 | エルジー エナジー ソリューション リミテッド | Lithium metal secondary battery with improved safety and battery module containing it |
CN108808092B (en) * | 2018-09-04 | 2020-10-09 | 四川华昆能源有限责任公司 | Active electrolyte, preparation method and application |
CN110416612A (en) * | 2019-07-25 | 2019-11-05 | 东莞市坤乾新能源科技有限公司 | A kind of novel electrolyte and battery of secondary lithium-sulfur battery |
CN110556509A (en) * | 2019-08-14 | 2019-12-10 | 南京大学 | Method for performing surface protection and passivation treatment on metallic lithium cathode by using fluorine-containing organic matter, product and application |
US20220278309A1 (en) * | 2019-08-22 | 2022-09-01 | Saft | Lithium-sulfur battery with improved performances |
JP7340147B2 (en) * | 2019-12-27 | 2023-09-07 | トヨタ自動車株式会社 | Non-aqueous electrolytes and non-aqueous electrolyte secondary batteries |
KR20220033455A (en) * | 2020-09-09 | 2022-03-16 | 주식회사 엘지에너지솔루션 | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same |
US20230163359A1 (en) * | 2020-10-29 | 2023-05-25 | Lg Energy Solution, Ltd. | Lithium-sulfur secondary battery comprising cyclic carbonate-containing electrolyte |
KR20220099660A (en) * | 2021-01-07 | 2022-07-14 | 주식회사 엘지에너지솔루션 | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising the same |
KR20230000593A (en) * | 2021-06-25 | 2023-01-03 | 주식회사 엘지에너지솔루션 | Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising the same |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2441276A1 (en) * | 1978-11-01 | 1980-06-06 | Villamos Ipari Kutato Intezet | Fuel cell or metal air cell electrode - immersed in electrolyte having oxygen dissolution capacity |
US4407907A (en) * | 1980-12-23 | 1983-10-04 | Tokyo Shibaura Denki Kabushiki Kaisha | Air electrode |
US5510209A (en) | 1995-01-05 | 1996-04-23 | Eic Laboratories, Inc. | Solid polymer electrolyte-based oxygen batteries |
US5750730A (en) | 1996-01-10 | 1998-05-12 | Sanyo Chemical Industries, Ltd. | Fluorine-containing dioxolane compound, electrolytic solution composition, battery and capacitor |
WO1999019931A1 (en) * | 1997-10-10 | 1999-04-22 | Polyplus Battery Company, Inc. | Liquid electrolyte lithium-sulfur batteries |
EP0915566A2 (en) | 1997-11-10 | 1999-05-12 | Nec Corporation | Reset circuit for flipflop |
EP0917421A1 (en) | 1997-11-12 | 1999-05-19 | Vero Electronics Limited | Electrical contacts for housings |
US5916708A (en) | 1996-05-13 | 1999-06-29 | Hoechst Aktiengesellschaft | Fluorine-containing solvents for lithium batteries having increased safety |
US6159640A (en) | 1997-06-13 | 2000-12-12 | Hoechst Research & Technology Gmbh & Co. Kg | Electrolyte system for lithium batteries and use of said system, and method for increasing the safety of lithium batteries |
WO2001035483A1 (en) * | 1999-11-12 | 2001-05-17 | Moltech Corporation | Lithium batteries |
US6264818B1 (en) | 1998-10-09 | 2001-07-24 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Electrochemical synthesis of perfluoroalkylfluorophosphoranes |
US20020012846A1 (en) * | 1999-11-23 | 2002-01-31 | Skotheim Terje A. | Lithium anodes for electrochemical cells |
WO2002038718A2 (en) | 2000-11-08 | 2002-05-16 | Solvay (Société Anonyme) | Solvent compositions |
US6489064B2 (en) | 1998-12-19 | 2002-12-03 | Solvay Fluor Und Derivate Gmbh | Electrolyte system for lithium batteries, the use thereof, and method for enhancing the safety of lithium batteries |
US6544688B1 (en) * | 2000-09-20 | 2003-04-08 | Moltech Corporation | Cathode current collector for electrochemical cells |
US6677085B2 (en) | 1998-12-19 | 2004-01-13 | Solvay Fluor Und Derivate Gmbh | Electrolyte system for lithium batteries, the use thereof, and method for enhancing the safety of lithium batteries |
US20040229128A1 (en) * | 2003-05-13 | 2004-11-18 | Noh Hyung-Gon | Non-aqueous electrolyte and a lithium secondary battery comprising the same |
WO2007042471A1 (en) | 2005-10-10 | 2007-04-19 | Solvay Fluor Gmbh | Fluorinated additives for lithium ion batteries |
US7390591B2 (en) | 2002-10-15 | 2008-06-24 | Polyplus Battery Company | Ionically conductive membranes for protection of active metal anodes and battery cells |
US20080305401A1 (en) | 2007-01-25 | 2008-12-11 | Smart Marshall C | Lithium-ion electrolytes with fluoroester co-solvents |
JP2009032415A (en) * | 2007-07-24 | 2009-02-12 | Toyota Motor Corp | Air battery system |
US20090061288A1 (en) | 2007-09-05 | 2009-03-05 | John Howard Gordon | Lithium-sulfur battery with a substantially non-pourous membrane and enhanced cathode utilization |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002110237A (en) * | 2000-08-17 | 2002-04-12 | Samsung Sdi Co Ltd | Positive electrode active material composition for lithium-sulfur battery, its manufacturing method and lithium-sulfur battery |
US7645543B2 (en) * | 2002-10-15 | 2010-01-12 | Polyplus Battery Company | Active metal/aqueous electrochemical cells and systems |
JP2005108724A (en) * | 2003-09-30 | 2005-04-21 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
JP2005166536A (en) * | 2003-12-04 | 2005-06-23 | Sanyo Electric Co Ltd | Non-aqueous electrolyte secondary battery |
US7514180B2 (en) * | 2004-03-16 | 2009-04-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | Battery with molten salt electrolyte and protected lithium-based negative electrode material |
JP2007207484A (en) * | 2006-01-31 | 2007-08-16 | Sony Corp | Nonaqueous electrolyte composition and nonaqueous electrolyte secondary battery using this |
EP2320501B1 (en) * | 2008-08-06 | 2015-09-30 | Mitsui Chemicals, Inc. | Nonaqueous electrolyte solution and lithium secondary battery |
KR101135502B1 (en) * | 2008-12-22 | 2012-04-16 | 삼성에스디아이 주식회사 | Lithium secondary battery |
-
2010
- 2010-10-26 CN CN201080053528.5A patent/CN102668232B/en not_active Expired - Fee Related
- 2010-10-26 EP EP10770821A patent/EP2494648A1/en not_active Withdrawn
- 2010-10-26 IN IN3375DEN2012 patent/IN2012DN03375A/en unknown
- 2010-10-26 KR KR1020127013630A patent/KR20120101414A/en not_active Application Discontinuation
- 2010-10-26 JP JP2012535784A patent/JP2013508927A/en active Pending
- 2010-10-26 WO PCT/EP2010/066143 patent/WO2011051275A1/en active Application Filing
- 2010-10-26 US US13/504,094 patent/US20120214043A1/en not_active Abandoned
- 2010-10-27 TW TW099136718A patent/TW201140902A/en unknown
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2441276A1 (en) * | 1978-11-01 | 1980-06-06 | Villamos Ipari Kutato Intezet | Fuel cell or metal air cell electrode - immersed in electrolyte having oxygen dissolution capacity |
US4407907A (en) * | 1980-12-23 | 1983-10-04 | Tokyo Shibaura Denki Kabushiki Kaisha | Air electrode |
US5510209A (en) | 1995-01-05 | 1996-04-23 | Eic Laboratories, Inc. | Solid polymer electrolyte-based oxygen batteries |
US5750730A (en) | 1996-01-10 | 1998-05-12 | Sanyo Chemical Industries, Ltd. | Fluorine-containing dioxolane compound, electrolytic solution composition, battery and capacitor |
US5916708A (en) | 1996-05-13 | 1999-06-29 | Hoechst Aktiengesellschaft | Fluorine-containing solvents for lithium batteries having increased safety |
US6159640A (en) | 1997-06-13 | 2000-12-12 | Hoechst Research & Technology Gmbh & Co. Kg | Electrolyte system for lithium batteries and use of said system, and method for increasing the safety of lithium batteries |
WO1999019931A1 (en) * | 1997-10-10 | 1999-04-22 | Polyplus Battery Company, Inc. | Liquid electrolyte lithium-sulfur batteries |
EP0915566A2 (en) | 1997-11-10 | 1999-05-12 | Nec Corporation | Reset circuit for flipflop |
EP0917421A1 (en) | 1997-11-12 | 1999-05-19 | Vero Electronics Limited | Electrical contacts for housings |
US6264818B1 (en) | 1998-10-09 | 2001-07-24 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Electrochemical synthesis of perfluoroalkylfluorophosphoranes |
US6489064B2 (en) | 1998-12-19 | 2002-12-03 | Solvay Fluor Und Derivate Gmbh | Electrolyte system for lithium batteries, the use thereof, and method for enhancing the safety of lithium batteries |
US6677085B2 (en) | 1998-12-19 | 2004-01-13 | Solvay Fluor Und Derivate Gmbh | Electrolyte system for lithium batteries, the use thereof, and method for enhancing the safety of lithium batteries |
WO2001035483A1 (en) * | 1999-11-12 | 2001-05-17 | Moltech Corporation | Lithium batteries |
US20020012846A1 (en) * | 1999-11-23 | 2002-01-31 | Skotheim Terje A. | Lithium anodes for electrochemical cells |
US6544688B1 (en) * | 2000-09-20 | 2003-04-08 | Moltech Corporation | Cathode current collector for electrochemical cells |
WO2002038718A2 (en) | 2000-11-08 | 2002-05-16 | Solvay (Société Anonyme) | Solvent compositions |
US7390591B2 (en) | 2002-10-15 | 2008-06-24 | Polyplus Battery Company | Ionically conductive membranes for protection of active metal anodes and battery cells |
US20040229128A1 (en) * | 2003-05-13 | 2004-11-18 | Noh Hyung-Gon | Non-aqueous electrolyte and a lithium secondary battery comprising the same |
WO2007042471A1 (en) | 2005-10-10 | 2007-04-19 | Solvay Fluor Gmbh | Fluorinated additives for lithium ion batteries |
US20080305401A1 (en) | 2007-01-25 | 2008-12-11 | Smart Marshall C | Lithium-ion electrolytes with fluoroester co-solvents |
JP2009032415A (en) * | 2007-07-24 | 2009-02-12 | Toyota Motor Corp | Air battery system |
US20090061288A1 (en) | 2007-09-05 | 2009-03-05 | John Howard Gordon | Lithium-sulfur battery with a substantially non-pourous membrane and enhanced cathode utilization |
Non-Patent Citations (2)
Title |
---|
RAUH R D ET AL: "A LITHIUM/DISSOLVED SULFUR BATTERY WITH AN ORGANIC ELECTROLYTE", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, ELECTROCHEMICAL SOCIETY. MANCHESTER, NEW HAMPSHIRE, US, vol. 126, no. 4, 1 January 1979 (1979-01-01), pages 523 - 527, XP009027153, ISSN: 0013-4651 * |
See also references of EP2494648A1 * |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10158109B2 (en) | 2008-02-13 | 2018-12-18 | Seeo, Inc. | Multi-phase electrolyte lithium batteries |
US9893337B2 (en) | 2008-02-13 | 2018-02-13 | Seeo, Inc. | Multi-phase electrolyte lithium batteries |
US20140045078A1 (en) * | 2011-04-26 | 2014-02-13 | Solvay Sa | Lithium air battery cell |
US9673450B2 (en) | 2011-09-02 | 2017-06-06 | Solvay Sa | Lithium ion battery |
US9979050B2 (en) | 2011-09-02 | 2018-05-22 | Solvay Sa | Fluorinated electrolyte compositions |
US20150072248A1 (en) * | 2012-03-19 | 2015-03-12 | National University Corporation Yokohama National University | Alkali metal-sulfur-based secondary battery |
CN104221203A (en) * | 2012-03-19 | 2014-12-17 | 国立大学法人横浜国立大学 | Alkali metal-sulfur secondary cell |
US9406975B2 (en) * | 2012-03-19 | 2016-08-02 | National University Corporation Yokohama National University | Alkali metal-sulfur-based secondary battery |
CN104221203B (en) * | 2012-03-19 | 2017-04-12 | 国立大学法人横浜国立大学 | Alkali metal-sulfur secondary cell |
US20150093654A1 (en) * | 2012-04-23 | 2015-04-02 | Commissariat à l'énergie atomique et aux énergies alternatives | Composition for a lithium battery comprising at least one specific fluorinated compound as an organic solvent and at least one lithium salt |
FR2989683A1 (en) * | 2012-04-23 | 2013-10-25 | Commissariat Energie Atomique | FLUORINATED COMPOUNDS FOR USE AS ORGANIC SOLVENT FOR LITHIUM SALTS |
WO2013160206A1 (en) * | 2012-04-23 | 2013-10-31 | Commissariat à l'énergie atomique et aux énergies alternatives | Composition for a lithium battery including at least one specific fluorinated compound as an organic solvent and at least one lithium salt |
US10044066B2 (en) | 2012-06-01 | 2018-08-07 | Solvary SA | Fluorinated electrolyte compositions |
US10074874B2 (en) | 2012-06-01 | 2018-09-11 | Solvay Sa | Additives to improve electrolyte performance in lithium ion batteries |
WO2014027003A1 (en) * | 2012-08-14 | 2014-02-20 | Solvay Sa | Use of low concentrations of fluorinated organic compounds as solvent additives |
US9748604B2 (en) | 2012-10-19 | 2017-08-29 | The University Of North Carolina At Chapel Hill | Ion conducting polymers and polymer blends for alkali metal ion batteries |
US9755273B2 (en) | 2013-04-01 | 2017-09-05 | The University Of North Carolina At Chapel Hill | Ion conducting fluoropolymer carbonates for alkali metal ion batteries |
CN105210227A (en) * | 2013-04-01 | 2015-12-30 | 北卡罗来纳-查佩尔山大学 | Ion conducting fluoropolymer carbonates for alkali metal ion batteries |
WO2014204547A3 (en) * | 2013-04-01 | 2015-02-26 | The University Of North Carolina At Chapel Hill | Ion conducting fluoropolymer carbonates for alkali metal ion batteries |
US10916805B2 (en) | 2013-04-04 | 2021-02-09 | Solvay Sa | Nonaqueous electrolyte compositions |
US10686220B2 (en) | 2013-04-04 | 2020-06-16 | Solvay Sa | Nonaqueous electrolyte compositions |
FR3009829A1 (en) * | 2013-08-23 | 2015-02-27 | Commissariat Energie Atomique | FLUORINATED COMPOUNDS FOR USE AS ORGANIC SOLVENT FOR LITHIUM SALTS |
WO2015025045A1 (en) * | 2013-08-23 | 2015-02-26 | Commissariat à l'énergie atomique et aux énergies alternatives | Fluorated compounds usable as an organic solvent for lithium salts |
US20170222290A1 (en) * | 2014-03-28 | 2017-08-03 | International Business Machines Corporation | Lithium oxygen battery and electrolyte composition |
US10957953B2 (en) * | 2014-03-28 | 2021-03-23 | International Business Machines Corporation | Lithium oxygen battery and electrolyte composition |
WO2016044088A1 (en) * | 2014-09-19 | 2016-03-24 | E. I. Du Pont De Nemours And Company | Nonaqueous electrolyte compositions |
US10227288B2 (en) | 2015-02-03 | 2019-03-12 | Blue Current, Inc. | Functionalized fluoropolymers and electrolyte compositions |
US10077231B2 (en) | 2015-02-03 | 2018-09-18 | Blue Current, Inc. | Functionalized fluoropolymers and electrolyte compositions |
US9540312B2 (en) | 2015-02-03 | 2017-01-10 | Blue Current, Inc. | Non-flammable electrolyte composition including carbonate-terminated perfluoropolymer and phosphate-terminated or phosphonate-terminated perfluoropolymer and battery using same |
US10308587B2 (en) | 2015-02-03 | 2019-06-04 | Blue Current, Inc. | Functionalized fluoropolymers and electrolyte compositions |
US9923245B2 (en) | 2015-04-03 | 2018-03-20 | Seeo, Inc. | Fluorinated alkali ion electrolytes with urethane groups |
US9923236B2 (en) | 2015-04-07 | 2018-03-20 | Seeo, Inc. | Fluorinated alkali ion electrolytes with cyclic carbonate groups |
US10044063B2 (en) | 2015-05-12 | 2018-08-07 | Seeo, Inc. | Copolymers of PEO and fluorinated polymers as electrolytes for lithium batteries |
US10658698B2 (en) | 2015-06-09 | 2020-05-19 | Seeo, Inc. | Peo-based graft copolymers with pendant fluorinated groups for use as electrolytes |
US10038216B2 (en) | 2015-06-09 | 2018-07-31 | Seeo, Inc. | PEO-based graft copolymers with pendant fluorinated groups for use as electrolytes |
US9917329B2 (en) | 2016-05-10 | 2018-03-13 | Seeo, Inc. | Fluorinated electrolytes with nitrile groups |
EP3591755A4 (en) * | 2017-03-31 | 2021-04-14 | Daikin Industries, Ltd. | Electrolyte solution, electrochemical device, lithium ion secondary battery and module |
WO2019115541A1 (en) * | 2017-12-13 | 2019-06-20 | Basf Se | Electrolyte composition comprising oligomeric silyl ester phosphonates |
US11936002B2 (en) | 2017-12-13 | 2024-03-19 | Basf Se | Electrolyte composition comprising oligomeric silyl ester phosphonates |
CN111224166A (en) * | 2019-12-12 | 2020-06-02 | 中国科学院大连化学物理研究所 | Ether electrolyte, preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
IN2012DN03375A (en) | 2015-10-23 |
TW201140902A (en) | 2011-11-16 |
EP2494648A1 (en) | 2012-09-05 |
US20120214043A1 (en) | 2012-08-23 |
JP2013508927A (en) | 2013-03-07 |
KR20120101414A (en) | 2012-09-13 |
CN102668232A (en) | 2012-09-12 |
CN102668232B (en) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120214043A1 (en) | Lithium sulfur battery | |
US20140045078A1 (en) | Lithium air battery cell | |
Li et al. | Progress in electrolytes for rechargeable Li-based batteries and beyond | |
US10038217B2 (en) | Polymer composition with electrophilic groups for stabilization of lithium sulfur batteries | |
EP2408051B1 (en) | Electrolyte for electrochemical device, electrolyte solution using same, and nonaqueous electrolyte battery | |
US8722242B2 (en) | Electrolyte for magnesium battery | |
JP5681627B2 (en) | Electrolytic solution and lithium ion secondary battery using the same | |
EP3786171A1 (en) | Modified ionic liquids containing phosphorus | |
US11050087B2 (en) | Silane functionalized ionic liquids | |
KR102636271B1 (en) | Systems for ionic liquid-based electrolytes for high-energy batteries | |
TW201306355A (en) | Lithium air battery cell | |
WO2021015264A1 (en) | Nonaqueous electrolyte solution, nonaqueous electrolyte battery and compound | |
JP2007059402A (en) | Organic electrolyte and lithium battery adopting it | |
KR102266993B1 (en) | New Compound and Electrolyte of Lithium Secondary Battery Containing the Same | |
KR20180022983A (en) | A compound used as an additive in an electrolyte for an ion-circulating battery | |
JP2015092471A (en) | Electrolyte and lithium ion secondary battery | |
US20230006255A1 (en) | Electrolyte composition with fluorinated acyclic ester and fluorinated cyclic carbonate | |
KR20220078599A (en) | composition | |
KR20220110240A (en) | Electrolyte composition containing fluorinated acyclic carbonate and fluorinated cyclic carbonate | |
KR20210107060A (en) | Modified Ionic Liquids Containing Boron | |
WO2014027003A1 (en) | Use of low concentrations of fluorinated organic compounds as solvent additives | |
US20240105992A1 (en) | Nonaqueous Electrolytic Solution, Nonaqueous Electrolytic Solution Battery, and Compound | |
WO2024208953A1 (en) | Electrolyte comprising sulfonamides and lithium salts, electrochemical cell and battery comprising said electrolyte, method of preparation and uses thereof | |
WO2014016271A1 (en) | Use of peroxides in metal air batteries | |
KR20230085373A (en) | Solid electrolyte for secondary battery and secondary battery comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080053528.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10770821 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010770821 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3375/DELNP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13504094 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012535784 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127013630 Country of ref document: KR Kind code of ref document: A |