WO2011049409A9 - Mannose 6-phosphate isomerase, mutants thereof, and use thereof - Google Patents

Mannose 6-phosphate isomerase, mutants thereof, and use thereof Download PDF

Info

Publication number
WO2011049409A9
WO2011049409A9 PCT/KR2010/007295 KR2010007295W WO2011049409A9 WO 2011049409 A9 WO2011049409 A9 WO 2011049409A9 KR 2010007295 W KR2010007295 W KR 2010007295W WO 2011049409 A9 WO2011049409 A9 WO 2011049409A9
Authority
WO
WIPO (PCT)
Prior art keywords
mannose
phosphate isomerase
mutant
seq
enzyme
Prior art date
Application number
PCT/KR2010/007295
Other languages
French (fr)
Korean (ko)
Other versions
WO2011049409A3 (en
WO2011049409A2 (en
Inventor
오덕근
염수진
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100062366A external-priority patent/KR101063960B1/en
Priority claimed from KR1020100067901A external-priority patent/KR101063961B1/en
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to US13/503,081 priority Critical patent/US8609391B2/en
Publication of WO2011049409A2 publication Critical patent/WO2011049409A2/en
Publication of WO2011049409A9 publication Critical patent/WO2011049409A9/en
Publication of WO2011049409A3 publication Critical patent/WO2011049409A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides

Definitions

  • the present invention relates to a novel mannose 6-phosphate isomerase, a mutant enzyme and a method for producing el-ribose using the enzyme, and more particularly mannose-6-phosphate isomerization.
  • Recombinant expression vectors comprising the enzyme, the mutant enzyme and the corresponding gene, microorganisms transformed therewith, and methods for producing the mannose-6-phosphate isomerase or its mutants in large quantities using the same and the mannose-6-phosphate
  • the present invention relates to a production method for obtaining el-ribose in high yield using an isomerase or a mutant thereof.
  • L-ribose is the starting material for the synthesis of many L-type saccharide drugs, the antiviral methyl-L-riboflanoside ("Bezimidavir” TM). ), And the global market for el-ribose and its derivatives was about $ 1.1 billion in 2001.
  • non-double oil 1263 double oil 94 (BW1263W94, Glaxo Wellcome), which has recently been developed as a new anti-herpes drug
  • L-FMAU Bukwang & Triangle
  • L-ribose has been produced by chemical synthesis mainly from L-arabinose, L-xylose, di-glucose, di-galactose, di-ribose or di-manno-1,4-lactone (Akagi, M., et. al., Chem. Pharm. Bull. (Tokyo) 50: 866, 2002; Takahashi, H., et al., Org. Lett. 4: 2401, 2002; Yun, M., et al., Tetrahedron Lett. 46 : 5903, 2005).
  • this chemical synthesis method has several serious problems in its production process.
  • El-biological production research method is keulribiji Ella pneumoniae (Klebsiella pneumonia) derived arabinose isomerase, Pseudomonas shoe Cherry (Pseudomonas stutzeri) derived from rhamnose isomerase (L-rhamnose isomerase) of ribose, Streptomyces Ruby Geonosis (Streptomyces rubiginosus) derived from xylose isomerase (D-xylose isomease) and Lactococcus lactis Cocos (Lactococcus lactis) derived from galactose-6-phosphate isomerase, but using the enzyme (galactose-6-phosphate isomerase) , the enzyme They have a broad substrate specificity that can convert El-Riblos to El-Ribose, but their conversion is very slow.
  • mannose-6-phosphate isomerase derived from Bacillus subtilis Yeom SJ, et al. , Appl. Environ.Microbiol. 75: 4705, 2009.
  • mannose-6-phosphate isomerase derived from Bacillus subtilis is an enzyme derived from mesophilic bacteria and has a limitation in dissolving a large amount of substrate because of low thermal stability and low reaction temperature. Therefore, in order to overcome this, it is urgent to develop economical biological methods that have high L-ribose productivity, high thermal stability, and overcome the limitations of substrate solubility.
  • the present invention solves the above problems and the object of the present invention is to provide a novel mannose-6-phosphate isomerase.
  • Another object of the present invention is to provide a mutant of the novel mannose-6-phosphate isomerase.
  • Still another object of the present invention is to provide a method of preparing the mannose-6-phosphate isomerase.
  • Still another object of the present invention is to provide a method of preparing a mutant of the mannose-6-phosphate isomerase.
  • Another object of the present invention is to provide a method for producing high yield of el-ribose.
  • the present invention provides a mannose-6-phosphate isomerase used in the production of L-ribose.
  • the mannose-6-phosphate isomerase is it not limited thereto preferably one derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) or geo Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) strains .
  • the isomerization enzyme preferably has an amino acid sequence of SEQ ID NO: 1 or 2, but induces one or more mutations in these sequences to have mannose-6-phosphate isomerase activity of the present invention. All mutant enzymes are included in the scope of the present invention,
  • mutant enzymes include, but are not limited to:
  • the amino acids of residues 21, 74, and 134 of 6-phosphate isomerase were respectively converted to glutamic acid (E), threonine (T), and arginine (R) in lysine (K), asparagine (N), and methionine (M), respectively.
  • the mutant of g) comprises an alanine (N) as the amino acid of residue 90 of the mannose 6-phosphate isomerase of SEQ ID NO: 2
  • N alanine
  • Preferred is, but is not limited to, a mannose 6-phosphate isomerase mutant converted to A) and the amino acid of residue 129 converted from leucine (L) to phenylalanine (F).
  • the present invention also provides a gene encoding the enzyme of the present invention.
  • the gene preferably has a nucleotide sequence of any one of SEQ ID NO: 3 or 4, but having a homology of 80% or more with these nucleotide sequences in consideration of the degeneracy of the genetic code, etc.
  • All genes having functional mannose-6-phosphate isomerase activity or functional fragments thereof for the purpose of the present invention are also included in the scope of the present invention, and examples thereof include, but are not limited to, the nucleotide sequences set forth in SEQ ID NOs: 5 to 12. No.
  • the present invention also provides a recombinant expression vector comprising a mannose-6-phosphate isomerase gene having a nucleotide sequence of any one of SEQ ID NO: 3 to SEQ ID NO: 12.
  • the recombinant expression vector is preferably an expression vector pET 28 (+) a / mannose-6-phosphate isomerase or pTrc 99a / mannose-6-phosphate isomerase, but is not limited thereto.
  • the present invention a) culturing the microorganism transformed with the expression vector of the present invention
  • the present invention also provides a method for producing el-ribose using the mannose-6-phosphate isomerase or a mutant thereof of the present invention.
  • the present invention also provides a composition for producing ribose comprising the mannose 6-phosphate isomerase of the present invention or a mutant thereof.
  • the mannose-6-phosphate isomerase gene of the present invention is isolated from Thermos thermophilus or Geobacilli thermodinitripicans strain.
  • chromosomal DNA is obtained from a Thermos thermophilus or Geobacillus thermodinitripicans strain with a mannose-6-phosphate isomerase gene.
  • PCR polymerase chain reaction
  • the PCR amplification fragment thus obtained is a fragment having a homology close to 100% to the mannose-6-phosphate isomerase gene of the Thermos thermophilus or Geobacilli thermodinititripicans strain, and colony hybridi. A high S / N ratio can be expected as a probe at the time of aging, and the stringency control of hybridization is facilitated.
  • the PCR amplification fragments are labeled with appropriate reagents, and colony hybridization is performed on the chromosomal DNA library to select mannose-6-phosphate isomerase genes (Current Protocols in Molecular Biology, Vol. 1, p. 603). , 1994).
  • the DNA fragment containing the mannose-6-phosphate isomerase gene was obtained by recovering the plasmid from the E. coli selected by the above method using alkaline method (Current Protocols in Molecular Biology, Vol. 1, p. 161, 1994). Can be. After determining the nucleotide sequence by the above method, it is possible to obtain the entire gene of the present invention by hybridizing the DNA fragment prepared by digestion by restriction enzymes of the DNA fragment having the nucleotide sequence as a probe.
  • the transformed microorganism of the present invention is obtained by introducing the recombinant vector of the present invention into a host suitable for the expression vector used when producing the recombinant vector.
  • a host suitable for the expression vector used when producing the recombinant vector for example, when a bacterium such as E. coli is used as a host, the recombinant vector according to the present invention is capable of autonomous replication in the host, and at the same time, a DNA containing a promoter, mannose-6-phosphate isomerase gene, and transcription. It is preferable to have a structure required for expression of the termination sequence.
  • pET 28 (+) a or pTrc 99a was used, but any expression vector satisfying the above requirements can be used.
  • Production of the mannose-6-phosphate isomerase mutant comprises culturing a transformant obtained by transforming a host with a recombinant vector having a gene encoding the same, and culturing the transformant into a culture (cultured cell or culture supernatant). It is performed by generating and accumulating mannose-6-phosphate isomerase, which is a gene product, and acquiring the enzyme from the culture.
  • Acquisition and purification of the mannose-6-phosphate isomerase of the present invention is carried out by centrifuging the cells or supernatants from the cultures obtained, followed by cell disruption, affinity chromatography, cation or anion exchange chromatography, or the like. It can carry out by combining.
  • the present invention provides a mannose-6-phosphate isomerase or a mutant thereof and a recombinant expression vector comprising the corresponding gene, a microorganism transformed therewith and a method for producing a large amount of mannose-6-phosphate isomerase using these, and the mannose It is effective to provide a production method for obtaining high yield of L-ribose using -6-phosphate isomerase.
  • the mannose-6-phosphate isomerase of the present invention can produce a high yield of ribose, which is a raw material of medicines by a high specificity and environmentally friendly method, and the produced L-ribose starts the synthesis of medicines per sugar of various L-type nucleic acids. It can be usefully used as a substance.
  • Figure 1 shows the enzymatic activity of the metal ion species of mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain of the present invention
  • Figure 2 shows the enzyme activity of the metal ion concentration .
  • Figure 3 shows the enzyme activities of the pH of the mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strains of the invention ( ⁇ : PIPES buffer; ⁇ : EPPS buffer), 4 temperature It shows the enzyme activity according to.
  • Thermo filler scan shows the temperature stability of the measurement results of the mannose-6-phosphate isomerase derived from (Thermus thermophilus) strain ( ⁇ of the present invention: 65 °C; ⁇ : 70 °C ; ⁇ : 75 °C; ⁇ : 80 ° C. and ⁇ : 85 ° C.).
  • Figure 6 is a mannose-6-phosphate isomerase of El derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain according to the invention shows the hourly production of ribose.
  • Figure 7 shows the conversion of ribose by a mannose-6-phosphate isomerase and the mutant enzyme (closed circle) derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strains of the invention in a substrate concentration 10 Mm.
  • Figure 8 shows a gene sequence of the mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain of the present invention.
  • Figure 9 shows the gene sequence of the mutant enzyme R142N of mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain of the present invention.
  • Figure 10 shows the cleavage map of a recombinant expression vector containing the gene of the mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain of the present invention.
  • Figure 11 shows in comparison an enzyme activity according to the kind of the inorganic salt Geo Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) a mannose-6-phosphate isomerase derived from a strain of the present invention.
  • Figure 13 shows in comparison an enzyme activity according to the pH of geo Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) a mannose-6-phosphate isomerase derived from a strain of the present invention.
  • Figure 14 illustrates in comparison the enzyme activity according to the temperature of the thermopile di Gio Bacillus NITRY pecan switch (Geobacillus thermodenitrificans) a mannose-6-phosphate isomerase derived from a strain of the present invention.
  • Figure 15 shows the stability measurement in accordance with the temperature of the thermopile di Gio Bacillus NITRY pecan switch (Geobacillus thermodenitrificans) a mannose-6-phosphate isomerase derived from a strain of the present invention.
  • Figure 16 shows the production of ribose by a mannose-6-phosphate isomerase derived from Bacillus Geo Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) strains of the invention in a substrate concentration 300g / l.
  • Figure 17-21 are geo Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) Mutant 1 (18), which are mutant enzymes of the mannose-6-phosphate isomerase (Fig. 17) derived from a strain of the present invention, Mutant 2 (FIG. 19), the gene sequences of Mutant 3 (FIG. 20), and Mutant 4 (FIG. 21) are shown.
  • FIG. 22 is an illustration showing a cleavage map of the expression vector containing the gene of the mannose-6-phosphate isomerase derived from Bacillus Geo Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) strain.
  • FIG. 23-24 show the relative activities of the point mutants compared to the wild type of amino acid residues 90 (FIG. 23) and 129 (FIG. 24) substitution point mutants.
  • Figure 25 shows the relative activity of amino acids residues 90 and 129 of the mannose-6-phosphate isomerase of the present invention compared to the wild type of single and double mutant enzymes.
  • mannose-6-phosphate isomerase In order to produce a mannose-6-phosphate isomerase of the present invention, a mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain it was first separated.
  • Thermos Thermophilus KCCM 40897 strain in which the gene sequence and the amino acid sequence are already specified, is selected, and a known DNA sequence (Genebank Accession No. AP008226) of mannose-6-phosphate isomerase derived therefrom is selected. On the basis of the following primers were devised.
  • SEQ ID NO: 14 (Reverse primer): 5'-TTT GAATTC ACTCACGCCCCCTCCTT-3 '
  • the primers were designed with Nde I and EcoR I restriction enzyme cleavage portions, respectively, and amplified the nucleotide sequence of the gene by polymerase chain reaction (PCR).
  • the recombinant expression vector thus obtained is transformed into E. coli ER 2566 strain by a conventional transformation method, the transformed microorganism is cultured for the production of L-ribose by adding 20% glycerin (glycerine) solution Frozen before.
  • Mannose-6-phosphate for the production of isomerase and separating the geo Bacillus Thermo di NITRY pecan's one mannose-6-phosphate isomerase derived from (Geobacillus thermodenitrificans) strains before.
  • SEQ ID NO: 15 (Forward primer): 5'-TTT GAATTC ATGCATCAAGAACCGATTTTTC-3 '
  • SEQ ID NO: 16 (Reverse primer): 5'-TTT AAGCTT TTATTTGCTTGTCCGTGG-3 '
  • the primers of the mannose-6-phosphate isomerase gene were designed with EcoR I and Hind III restriction enzyme cleavage portions. PCR was performed using the primers to amplify the nucleotide sequence of the gene. A large amount of mannose-6-phosphate isomerase gene was inserted into the plasmid vector pTRC 99a (Novagen) using each restriction enzyme to prepare pTRC 99a / mannose-6-phosphate isomerase.
  • the recombinant expression vector thus obtained was transformed into E. coli ER 2566 strain by a conventional transformation method.
  • the transformed microorganism was stored frozen before the culture for the production of ribose by adding a 20% glycerin (glycerine) solution.
  • the frozen E. coli ER 2566 strain was inoculated into a test tube containing 3 ml of LB medium, and the absorbance was 2.0 at 600 nm.
  • the spawn culture was performed with a shake incubator at 37 ° C. until. Then, the seed cultured culture was added to a 2,000 ml flask containing 500 ml of LB medium to carry out the main culture.
  • the mannose-6-phosphate isomerase produced by overexpression as described above the culture medium of the transformed strain was washed twice with 0.85% sodium chloride (NaCl) by centrifugation at 6,000 ⁇ g for 30 minutes at 4 °C. Next, 50 mM sodium phosphate, 300 mM sodium chloride, 10 mM imidazole and 0.1 mM protease inhibitor (phenylmethylsulfonyl fluoride) were added to disrupt the cell solution with a sonicator.
  • NaCl sodium chloride
  • protease inhibitor phenylmethylsulfonyl fluoride
  • the cell lysate was again centrifuged at 13,000 ⁇ g for 20 minutes at 4 ° C., the cell pellet was removed, and only the cell supernatant was obtained for a fast protein liquid chromatography system (Bio-Rad Laboratories, Hercules, CA, USA). Histrap HP adsorption column using His-tag was used as an enzyme solution for the production of L-ribose.
  • Example 2 In order to investigate the specificity of mannose-6-phosphate isomerase obtained in Example 2 for metal ions, the activity of the enzyme was treated with 10 mM EDTA, and metal ions (Mn 2+ , Zn 2+ , Ba 2+ , Cu). 2+ , Co 2+ , Ca 2+ , Mg 2+ , Ni 2+ , Fe 2+ ) and the reaction was measured as follows.
  • Enzyme reaction was performed using 50 mM PIPES (piperazine- N, N' -bis (2-ethane sulfonic acid)) buffer solution (pH 7.0) containing 10 mM L-ribulose, each metal ion and 0.05 unit / ml enzyme. 5 minutes at 75 ° C, and the reaction was stopped again by adding a final concentration of 200 mM hydrogen chloride (HCl).
  • PIPES piperazine- N, N' -bis (2-ethane sulfonic acid)
  • the enzyme activity was measured using L-ribulose as a substrate, and the enzyme activity (unit) of the enzyme activity was defined as the amount to produce 1 ⁇ mol of L-ribose per minute at pH 7.0 and 75 ° C. It was.
  • the concentration of ribose and ribulose, and the analysis of other sugars in the determination of enzymatic activity can be determined by using a bio-liquid chromatography (Bio-LC) system equipped with an electrochemical detector and a CarboPacPA column ( Dionex ICS-3000, Sunnylvale, Calif., USA), wherein the Carbopack PA column was passed 200 mM sodium hydroxide (NaOH) at 1 ° C./min at 30 ° C.
  • Bio-LC bio-liquid chromatography
  • CarboPacPA column Dionex ICS-3000, Sunnylvale, Calif., USA
  • Thermos Thermofiller ( Thermus thermophilus ) Mannose-6-phosphate isomerase derived from 2+ ) was the most effective, and the optimal concentration was 0.5mM.
  • Geobacillus Thermodinitripicans (Geobacillus) of thermodenitrificans) Ribose isomerase by mannose-6-phosphate isomerase is cobalt (Co 2+ ) was the most effective, and the optimum concentration of the metal salt for enzyme was 1 mM.
  • the mannose-6-phosphate isomerase of the present invention was shown to be affected by copper or cobalt metal ions, confirming that it is an enzyme dependent on metal ions (see FIGS. 1, 2, 11, and 12).
  • Example 1 In order to investigate the activity of the mannose-6-phosphate isomerase obtained in Example 1 according to the pH and temperature change, the enzyme and the substrate were reacted under various pH and temperature conditions and the enzyme activity was compared.
  • the enzyme reaction temperature was ranged from 60 ° C. to 90 ° C. in a range of 10 mM L-ribulose, 0.5 mM copper (or 1 mM cobalt; for geobacillus), 1.5 units (or 2). unit: in case of Geobacillus) / ml
  • the reaction was carried out for 20 minutes using 50 mM Pipes (PIPES) buffer containing the enzyme, and the reaction was stopped by adding a final concentration of 200 mM hydrogen chloride.
  • PPES Pipes
  • the optimum temperature was found to be 70 ° C. for Geobacillus and 75 ° C. for Thermos, respectively (see FIGS. 4 and 14).
  • the geobacillus thermodynic tripicans after 338 hours at 65 °C, 73 hours at 65 °C, 27 hours at 70 °C, 17 hours at 75 °C, 6.2 hours at 80 °C Geobacillus thermodenitrificans The enzyme activity was reduced by half.
  • the filler's Thermo sseomeoseu (Thermus thermophilus) for the mannose-6-phosphate isomerase derived from a strain El was used as substrate - regardless of the re-fire agarose concentration of any image shows a conversion yield of about 70% 50, 100, 200 And 36, 71, 140, 211 g / l of el-ribose, respectively, at 300 g / l of el-ribulose.
  • mannose 6-phosphate isomerase For the production of mannose 6-phosphate isomerase, the mannose 6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain it was first separated.
  • Thermo filler's (Thermus thermophilus) DNA base sequence (Genebank Accession Number AP008226) of the known mannose 6-phosphate isomerase, evaluate whether KCCM 40879 strain, and derived therefrom with a gene sequence and amino acid sequence has already been specified Based on the primer (primer) was devised.
  • the primers were designed with Nde I and EcoR I restriction enzyme cleavage sites, respectively. PCR was performed using the primers to amplify the nucleotide sequence of the gene. A large amount of mannose 6-phosphate isomerase gene was inserted into plasmid vector pET 28 (+) (Novagen) using restriction enzymes Nde I and EcoR I to prepare pET 28 (+) a / mannose 6-phosphate isomerase. It was.
  • Primers were designed to construct mutant vectors of mannose 6-phosphate isomerase (see Table 1). Mutation was induced using the primers and the Quick-Change kit (Stratagene, Beverly, MA) to construct a pET 28 (+) a / mannose 6-phosphate isomerase mutant vector.
  • the recombinant expression vector thus obtained was transformed into E. coli ER 2566 strain by a conventional transformation method.
  • the transformed microorganism was stored frozen before the culture for the production of ribose by adding a 20% glycerin (glycerine) solution.
  • Table 1 shows primers for constructing mutant vectors of mannose 6-phosphate isomerase.
  • Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) PCR mutagenesis kit ( ClonTech Laboratories, Palo Alto. CA, USA) is random in a mannose-6-phosphate isomerase derived from a strain to mutagenic (Random mutagenesis) PTrc99a / mannose-6-phosphate isomerase mutant vector was prepared.
  • the recombinant expression vector thus obtained was transformed into E. coli ER 2566 strain by a conventional transformation method.
  • the transformed microorganism was stored frozen before the culture for the production of ribose by adding a 20% glycerin (glycerine) solution.
  • the recombinant E. coli ER 2566 strain prepared in Example 6 was inoculated into a test tube containing 3 ml of LB medium and inoculated at 600 nm.
  • the spawn cultivation was performed by shaking incubator at 37 degreeC until absorbance became 2.0.
  • the seed cultured culture was then added to a 2,000 ml flask containing 500 ml of LB medium to carry out the main culture.
  • 0.1 mM IPTG was added to induce mass expression of mannose 6-phosphate isomerase.
  • the stirring rate during the process was adjusted to 200rpm, the culture temperature was maintained at 37 °C, and after the addition of IPTG, the stirring rate was adjusted to 150rpm, the culture temperature was adjusted to 16 °C.
  • mannose 6-phosphate isomerase and the mutant enzyme produced as overexpressed as described above were centrifuged at 6,000 ⁇ g for 30 minutes at 6,000 ⁇ g and twice with 0.85% sodium chloride (NaCl). After washing, the cell solution was crushed by adding 50 mM sodium phosphate, 300 mM sodium chloride, 10 mM imidazole, 0.1 mM protease inhibitor (phenylmethylsulfonyl fluoride).
  • the cell lysate was again centrifuged at 13,000 ⁇ g for 20 minutes at 4 ° C., the cell pellet was removed, and only the cell supernatant was obtained, followed by a fast protein liquid chromatography system (Bio-Rad Laboratories, Hercules, CA, USA). ) was equipped with a HisTrap HP adsorption column using a heat-tag and separated as an enzyme solution used for ribose production.
  • Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) In order to mass-produce a mannose-6-phosphate isomerase mutant derived from the strain, produced in Example 5, and stored frozen The recombinant E. coli strain ER 2566 to LB The seed was inoculated into a test tube containing 3 ml of medium, and the seed culture was performed with a shake incubator at 37 ° C. until absorbance was 2.0 at 600 nm. The seed cultured culture was then added to a 2,000 ml flask containing 500 ml of LB medium to carry out the main culture.
  • the mannose-6-phosphate isomerase mutant produced by overexpression as described above was centrifuged at 6,000 ⁇ g for 30 minutes at 6,000 ⁇ g, and twice with 0.85% sodium chloride (NaCl). After washing, the cell solution was crushed with a sonicator by adding 50 mM PIPES (pH 7.0) buffer solution and 0.1 mM protease inhibitor (phenylmethylsulfonyl fluoride). The cell lysate was heat-treated at 70 ° C. for 10 minutes and then again centrifuged at 13,000 ⁇ g at 4 ° C. for 20 minutes, cell pellets were removed, and only cell supernatant was obtained to obtain a fast protein liquid chromatography system. Rad Laboratories, Hercules, Calif., USA) was equipped with an anion resin Hi Trap TM HP adsorption column and separated as an enzyme solution used for the production of L-ribose.
  • PIPES pH 7.0
  • protease inhibitor phenylmethyl
  • the enzymatic reaction was performed at 75 ° C. for 5 minutes using 50 mM PIPES buffer solution (pH 7.0) containing 10 mM ribulose, 0.5 mM Cu 2+ metal ions, followed by addition of 200 mM hydrogen chloride. The reaction was stopped.
  • the enzyme activity was measured using ribose as a substrate, and the enzyme activity (unit) of the enzyme activity was defined as the amount to produce 1 nmole of ribose per minute at pH 7.0 and 75 °C to facilitate the comparative analysis.
  • Table 2 shows the specific activity and kinetic parameters of mannose 6-phosphate isomerase and its mutant enzymes for el-ribulose.
  • Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) derived from a strain mannose-6-phosphate isomerase and El of the mutant-enzyme activity for the re-fire agarose was carried out the measurement and the comparison experiments.
  • the enzymatic reaction was performed for 5 minutes at 70 ° C. using 50 mM PIPES buffer solution (pH 7.0) containing 10 mM ribulose, 1 mM Co 2+ metal ions, followed by addition of 200 mM hydrogen chloride. The reaction was stopped.
  • the enzyme activity was measured using L-ribulose as a substrate, and the enzyme activity of 1 unit (unit) of the enzyme activity was defined as the amount to produce 1 nmole of ribose per minute at pH 7.0 and 70 °C, comparative analysis It was smooth.
  • Table 3 shows the enzymatic activity of mannose-6-phosphate isomerase and mutant enzymes against el-ribulose.
  • the two most active residues were screened by screening mannose 6-phosphate isomerase derived from the strain of Geobacillus thermodenitrificans. The residues with the highest activity were selected by substitution with different amino acids.
  • N90 residue and the L129 residue are converted into amino acids having different properties, and then point mutations are performed with the following N90A, N90D, N90E, N90H, N90K, N90L, N90Y, L129A, L129F, L129H, L129W, and L129Y.
  • the activity test was compared with mannose-6-phosphate isomerase derived from wild type Geobacillus thermodinitripicans strain.
  • the screening test of this experiment was performed by ketose assay using error prone PCR using Clontech Diversify PCR Random Mutagenesis Kit.
  • the resulting mutants were converted to one residue each using a QuikChange Site-Directed Mutagenesis Kit from Stratagene, replaced with another amino acid, or subjected to two mutations.
  • the activity was compared to the reaction with the existing MPi.
  • the reaction was performed with 10 mmol / L L-ribulose with 0.5 mg / ml of enzyme containing co-factor 1 mM Co 2+ in 50 mmole / L PIPES buffer.
  • the specific activity was measured by comparing the reaction at 70 minutes for 10 minutes (see FIGS. 23 and 24).
  • doble mutations of N90A and L129F together confirmed higher activity (see FIG. 25).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a novel mannose 6-phosphate isomerase enzyme, mutants thereof, and a method of manufacturing L-ribose with such mutant enzymes. More particularly, the invention relates to mannose 6-phosphate isomerase enzymes and variants thereof, recombinant expression vectors containing expression genes thereof, microorganisms transformed to express such genes, manufacturing methods for producing large quantities of mannose 6-phosphate isomerase enzyme and its mutants, and production methods for high yields of L-ribose made with the mannose 6-phosphate isomerase mutant enzymes.

Description

신규한 만노스-6-인산 이성화효소, 그 돌연변이체 및 그 용도Novel mannose-6-phosphate isomerase, its mutants and uses thereof
본 발명은 신규한 만노스-6-인산 이성화효소(mannose 6-phosphate isomerase), 그 돌연변이체 효소 및 그 효소를 이용한 엘-리보스를 제조하는 방법에 관한 것으로, 더욱 상세하게는 만노스-6-인산 이성화효소, 그 돌연변이체 효소 그리고 그 해당 유전자를 포함하는 재조합 발현 벡터, 이로 형질전환된 미생물 및 이들을 이용하여 만노스-6-인산 이성화효소 또는 그 돌연변이체를 대량으로 얻는 제조방법과 상기 만노스-6-인산 이성화효소 또는 그 돌연변이체를 이용하여 엘-리보스를 고수율로 얻는 생산방법에 관한 것이다. The present invention relates to a novel mannose 6-phosphate isomerase, a mutant enzyme and a method for producing el-ribose using the enzyme, and more particularly mannose-6-phosphate isomerization. Recombinant expression vectors comprising the enzyme, the mutant enzyme and the corresponding gene, microorganisms transformed therewith, and methods for producing the mannose-6-phosphate isomerase or its mutants in large quantities using the same and the mannose-6-phosphate The present invention relates to a production method for obtaining el-ribose in high yield using an isomerase or a mutant thereof.
엘-리보스(L-ribose)는 많은 엘-형태(L-type)의 핵산당 의약품들의 합성 시작물질로서, 항바이러스제인 메틸-엘-리보플라노사이드(methyl-L-riboflanoside; "Bezimidavir"TM) 등의 합성에 사용되며, 엘-리보스 및 그 유도체의 세계시장은 2001년 약 11억불이었다. L-ribose is the starting material for the synthesis of many L-type saccharide drugs, the antiviral methyl-L-riboflanoside ("Bezimidavir" TM). ), And the global market for el-ribose and its derivatives was about $ 1.1 billion in 2001.
또한, 최근에는 새로운 항포진제(Antiherpes)로 개발되고 있는 비더블유1263더블유94(BW1263W94, Glaxo Wellcome)와 B형 간염 치료제로 개발되고 있는 엘-에프엠에이유(L-FMAU, Bukwang & Triangle)등의 핵심 중간체로서 그 수요가 급증하고 있어, 산업적으로 이용가능한 제조방법을 개발하는 것은 동분야 많은 연구진들의 관심의 대상이다.In addition, non-double oil 1263 double oil 94 (BW1263W94, Glaxo Wellcome), which has recently been developed as a new anti-herpes drug, and L-FMAU, Bukwang & Triangle, which is being developed for the treatment of hepatitis B, etc. As demand is rising as a key intermediate, the development of industrially available manufacturing methods is of interest to many researchers in the field.
엘-리보스는 주로 엘-아라비노스, 엘-자일로스, 디-글루코스, 디-갈락토스, 디-리보스 또는 디-만노-1,4-락톤으로부터 화학 합성법으로 생산되어 왔다(Akagi, M., et al., Chem. Pharm. Bull.(Tokyo) 50:866, 2002; Takahashi, H., et al., Org. Lett. 4:2401, 2002; Yun, M., et al., Tetrahedron Lett. 46:5903, 2005). 그러나, 이러한 화학적 합성 방법은 그 생산 과정에 있어 여러 가지 심각한 문제점을 가진다.L-ribose has been produced by chemical synthesis mainly from L-arabinose, L-xylose, di-glucose, di-galactose, di-ribose or di-manno-1,4-lactone (Akagi, M., et. al., Chem. Pharm. Bull. (Tokyo) 50: 866, 2002; Takahashi, H., et al., Org. Lett. 4: 2401, 2002; Yun, M., et al., Tetrahedron Lett. 46 : 5903, 2005). However, this chemical synthesis method has several serious problems in its production process.
실제로 고온 및 고압을 요구하는 작업 환경상의 위험성, 화학 반응 후 부가적인 당류의 생성으로 인한 복잡한 리보스의 분리 및 정제 과정, 그리고 이 과정에서 생성되는 화학적 폐기물로 인한 환경오염 문제 등이 유발되고 있다.Indeed, there are risks in the working environment that require high temperatures and pressures, the separation and purification of complex ribose due to the formation of additional sugars after chemical reactions, and the environmental pollution caused by chemical waste generated in this process.
상기와 같은 단점을 극복하기 위하여, 최근에는 리비톨 또는 엘-리불로오스로부터 생물학적 엘-리보스를 제조하는 방법이 연구되고 있다.In order to overcome such drawbacks, a method of preparing biological el-ribose from ribitol or el-ribulose has recently been studied.
또한, 엔에이디-의존적인 만니톨-1-탈수소효소(NAD-dependent mannitol-1-dehydrogenase)를 포함하는 재조합 대장균을 사용하여 100g/l 리비톨로부터 발효 72시간 만에 55% 전환 수율을 얻었지만 엘-리보스의 생산성은 엘-아라비노스로부터 만드는 화학 합성법보다 약 28배가 낮았다(Woodyer R. N., et al., Appl. Environ. Microbiol. 74:2967, 2008; Jumppanen, J., et al., U.S. patent 6,140,498). In addition, using recombinant E. coli containing ND-dependent mannitol-1-dehydrogenase, 55% conversion yield was obtained from 100 g / l ribitol in 72 hours after fermentation. The productivity of ribose is about 28 times lower than the chemical synthesis made from El-Arabinose (Woodyer RN, et al., Appl. Environ. Microbiol. 74: 2967, 2008; Jumppanen, J., et al., US patent 6,140 , 498). ).
한편, 엘-리보스의 생물학적인 생산 연구 방법으로는 클리비지엘라 뉴모니아(Klebsiella pneumonia) 유래 아라비노스 이성화효소, 슈도모나스 슈체리(Pseudomonas stutzeri) 유래 람노스 이성화효소(L-rhamnose isomerase), 스트렙토마이세스 루비지노시스(Streptomyces rubiginosus) 유래 자일로스 이성화효소(D-xylose isomease) 및 락토코코스 락티스(Lactococcus lactis) 유래 갈락토스-6-인산 이성화효소(galactose-6-phosphate isomerase)를 이용하고 있으나, 상기 효소들을 광범위한 기질 특이성을 지니고 있어서 엘-리블로스를 엘-리보스로 전환시킬 수는 있지만 그 전환속도는 매우 느리다.Meanwhile, El-biological production research method is keulribiji Ella pneumoniae (Klebsiella pneumonia) derived arabinose isomerase, Pseudomonas shoe Cherry (Pseudomonas stutzeri) derived from rhamnose isomerase (L-rhamnose isomerase) of ribose, Streptomyces Ruby Geonosis (Streptomyces rubiginosus) derived from xylose isomerase (D-xylose isomease) and Lactococcus lactis Cocos (Lactococcus lactis) derived from galactose-6-phosphate isomerase, but using the enzyme (galactose-6-phosphate isomerase) , the enzyme They have a broad substrate specificity that can convert El-Riblos to El-Ribose, but their conversion is very slow.
최근 본 발명자들은 바실러스 서브틸리스(Bacillus subtilis) 유래의 만노스-6-인산 이성화효소를 이용하여 엘-리불로오스를 엘-리보스로 전환하여 생산성이 낮은 문제를 극복하였다(Yeom S. J., et al., Appl. Environ. Microbiol. 75:4705, 2009). 그러나, 바실러스 서브틸리스 유래의 만노스-6-인산 이성화효소는 중온균 유래의 효소로서 열 안정성의 문제와 반응 온도가 낮기 때문에 다량의 기질 용해에 한계가 있다. 따라서, 이를 극복하기 위해 엘-리보스 생산성이 높고, 열 안정성이 높으면서 기질 용해도의 한계를 극복한 경제적인 생물학적인 방법의 개발이 시급하다.Recently, the present inventors have overcome the problem of low productivity by converting el-ribulose to el-ribose using mannose-6-phosphate isomerase derived from Bacillus subtilis (Yeom SJ, et al. , Appl. Environ.Microbiol. 75: 4705, 2009). However, mannose-6-phosphate isomerase derived from Bacillus subtilis is an enzyme derived from mesophilic bacteria and has a limitation in dissolving a large amount of substrate because of low thermal stability and low reaction temperature. Therefore, in order to overcome this, it is urgent to develop economical biological methods that have high L-ribose productivity, high thermal stability, and overcome the limitations of substrate solubility.
본 발명은 상기의 문제점을 해결하고 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 신규한 만노스-6-인산 이성화효소를 제공하는 것이다.The present invention solves the above problems and the object of the present invention is to provide a novel mannose-6-phosphate isomerase.
본 발명의 다른 목적은 신규한 만노스-6-인산 이성화효소의 돌연변이체를 제공하는 것이다.Another object of the present invention is to provide a mutant of the novel mannose-6-phosphate isomerase.
본 발명의 또 다른 목적은 상기 만노스-6-인산 이성화효소를 제조하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method of preparing the mannose-6-phosphate isomerase.
본 발명의 또 다른 목적은 상기 만노스-6-인산 이성화효소의 돌연변이체를 제조하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method of preparing a mutant of the mannose-6-phosphate isomerase.
본 발명의 또 다른 목적은 고수율의 엘-리보스의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing high yield of el-ribose.
상기 목적을 달성하기 위하여, 본 발명은 엘-리보스(L-ribose)의 생산에 사용되는 만노스-6-인산 이성화효소(mannose-6-phosphate isomerase)를 제공한다.In order to achieve the above object, the present invention provides a mannose-6-phosphate isomerase used in the production of L-ribose.
본 발명의 바람직한 실시예에 있어서,상기 만노스-6-인산 이성화효소는 써머스 써모필러스(Thermus thermophilus) 또는 지오바실러스 써모디니트리피칸스(Geobacillus thermodenitrificans)균주로부터 유래한 것이 바람직하나 이에 한정되지 아니한다.In a preferred embodiment of the invention, the mannose-6-phosphate isomerase is it not limited thereto preferably one derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) or geo Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) strains .
본 발명의 바람직한 구체예에 있어서, 상기 이성화 효소는 서열번호 1 또는 2의 아미노산 서열을 가지는 것이 바람직하나 이들 서열에서 하나 이상의 돌연변이를 유발하여 본 발명이 목적하는 만노스-6-인산 이성화효소 활성을 가지는 모든 돌연변이체 효소도 본 발명의 권리범위에 포함되며,In a preferred embodiment of the present invention, the isomerization enzyme preferably has an amino acid sequence of SEQ ID NO: 1 or 2, but induces one or more mutations in these sequences to have mannose-6-phosphate isomerase activity of the present invention. All mutant enzymes are included in the scope of the present invention,
이들 돌연변이체 효소의 예는 다음과 같으나 이에 한정되지 아니한다:Examples of these mutant enzymes include, but are not limited to:
a)서열번호 1의 만노스 6-인산 이성화효소의 142번 잔기의 아미노산을 아르지닌(Arg)에서 아스파라긴(Asn)으로 변환시킨 돌연변이체;b) 서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 21번, 74번, 134번 잔기의 아미노산을 각각 라이신(K), 아스파라진(N), 메티오닌(M)에서 각각 글루탐산(E), 트레오닌(T), 아르지닌(R)으로 변환시킨 돌연변이체;c) 서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 67번, 238번 잔기의 아미노산을 각각 글루탐산(E), 트레오닌(T)에서 각각 글라이신(G), 아이소루신(I)으로 변환시킨 돌연변이체;d)서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 124번 잔기의 아미노산을 라이신(K)에서 아르지닌(R)으로 변환시킨 돌연변이체;e) 서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 129번 잔기의 아미노산을 루신(L)에서 페닐알라닌(F) 또는 타이로신(Y)으로 변환시킨 돌연변이체; f) 서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 90번 잔기의 아미노산을 아스파라진(N)에서 알라닌(A),아스파트산(D),히스티딘(H) 또는 류신(L)으로 변환시킨 돌연변이체로 구성된 군으로부터 선택된 만노스 6-인산 이성화효소 돌연변이체;및 g) 상기 b) 내지 f) 중 어느 하나 이상의 단일 포인트 돌연변이의 조합으로 둘 이상의 해당 잔기에서 원래 아미노산이 b) 내지 f) 중 어느 하나 이상의 해당 돌연변이 아미노산으로 변환시킨 둘 이상의 해당 잔기에서 돌연변이가 수행된 돌연변이체.a) a mutant obtained by converting an amino acid of residue 142 of mannose 6-phosphate isomerase of SEQ ID NO: 1 from arginine (Arg) to asparagine (Asn); b) a mannose 6-phosphate isomerase of SEQ ID NO: 2; The amino acids of residues 21, 74, and 134 of 6-phosphate isomerase were respectively converted to glutamic acid (E), threonine (T), and arginine (R) in lysine (K), asparagine (N), and methionine (M), respectively. C) the amino acids of residues 67 and 238 of mannose 6-phosphate isomerase as set forth in SEQ ID NO: 2 in glycamic acid (E) and threonine (T), respectively; (G), a mutant converted to isoleucine (I); d) the amino acid of residue 124 of mannose 6-phosphate isomerase as set forth in SEQ ID NO: 2 in the lysine (K) Mutants converted to R); e) mannose 6-phosphate isomers as set forth in SEQ ID NO: 2 Enzyme (mannose 6-phosphate isomerase) 129 that converts the number of amino acid residues from the leucine (L) to phenylalanine (F) or tyrosine (Y) mutants; f) The amino acid of residue 90 of mannose 6-phosphate isomerase as set forth in SEQ ID NO: 2 is substituted with alanine (A), aspartic acid (D), histidine (H) in asparagine (N) or A mannose 6-phosphate isomerase mutant selected from the group consisting of mutants converted to leucine (L); and g) a combination of a single point mutation of any one or more of b) to f), wherein the original amino acid b A mutant wherein the mutation is carried out at two or more corresponding residues converted to the corresponding mutant amino acids of any one or more of) through f).
본 발명의 다른 일 구현예에 있어서, 상기 g)의 돌연변이체는 서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 90번 잔기의 아미노산을 아스파라진(N)에서 알라닌(A)으로 변환시키고, 129번 잔기의 아미노산을 류신(L)에서 페닐알라닌(F)으로 변환시킨 만노스 6-인산 이성화효소 돌연변이체인 것이 바람직하나 이에 한정되지 아니한다.In another embodiment of the present invention, the mutant of g) comprises an alanine (N) as the amino acid of residue 90 of the mannose 6-phosphate isomerase of SEQ ID NO: 2 Preferred is, but is not limited to, a mannose 6-phosphate isomerase mutant converted to A) and the amino acid of residue 129 converted from leucine (L) to phenylalanine (F).
또한 본 발명은 상기 본 발명의 효소를 코딩하는 유전자를 제공한다.The present invention also provides a gene encoding the enzyme of the present invention.
본 발명의 일 구체예에 있어서, 상기 유전자는 서열번호 3 또는 4 중 어느 하나의 염기서열을 가지는 것이 바람직하나 유전자 코드의 디제너레시 등을 고려하여 이들 염기서열과 80% 이상의 상동성을 가지며 본 발명의 목적인 만노스-6-인산 이성화효소 활성을 가지는 모든 유전자 또는 그 기능적인 단편도 본 발명의 권리범위에 포함되며, 그들의 예는 서열번호 5 내지 서열번호 12에 기재된 염기서열을 포함하나 이에 한정되지 아니한다.In one embodiment of the invention, the gene preferably has a nucleotide sequence of any one of SEQ ID NO: 3 or 4, but having a homology of 80% or more with these nucleotide sequences in consideration of the degeneracy of the genetic code, etc. All genes having functional mannose-6-phosphate isomerase activity or functional fragments thereof for the purpose of the present invention are also included in the scope of the present invention, and examples thereof include, but are not limited to, the nucleotide sequences set forth in SEQ ID NOs: 5 to 12. No.
또한 본 발명은 서열번호 3 내지 서열번호 12 중 어느 하나의 염기서열을 가지는 만노스-6-인산 이성화효소 유전자를 포함하는 재조합 발현 벡터을 제공한다.The present invention also provides a recombinant expression vector comprising a mannose-6-phosphate isomerase gene having a nucleotide sequence of any one of SEQ ID NO: 3 to SEQ ID NO: 12.
본 발명의 일 구현예에 있어서,상기 재조합 발현벡터는 발현벡터 pET 28(+)a/mannose-6-phosphate isomerase 또는 pTrc 99a/만노스-6-인산 이성화 효소인 것이 바람직하나 이에 한정되지 아니한다.In one embodiment of the present invention, the recombinant expression vector is preferably an expression vector pET 28 (+) a / mannose-6-phosphate isomerase or pTrc 99a / mannose-6-phosphate isomerase, but is not limited thereto.
또한 본 발명은 a) 본 발명의 발현벡터로 형질전환된 미생물을 배양하고;In addition, the present invention a) culturing the microorganism transformed with the expression vector of the present invention;
b) 상기 미생물로부터 만노스 6-인산 이성화효소를 분리하는 단계를 포함하는 본 발명의 만노스 6-인산 이성화효소 또는 그 돌연변이체 효소를 제조하는 방법을 제공한다.b) providing a method of preparing mannose 6-phosphate isomerase or a mutant enzyme thereof of the present invention comprising the step of separating mannose 6-phosphate isomerase from the microorganism.
또한 본 발명은 상기 본 발명의 만노스-6-인산 이성화효소 또는 그 돌연변이체를 이용하여 엘-리보스를 생산하는 방법을 제공한다.The present invention also provides a method for producing el-ribose using the mannose-6-phosphate isomerase or a mutant thereof of the present invention.
또한 본 발명은 상기 본 발명의 만노스 6-인산 이성화효소 또는 그 돌연변이체를 포함하는 리보스 생산용 조성물을 제공한다.The present invention also provides a composition for producing ribose comprising the mannose 6-phosphate isomerase of the present invention or a mutant thereof.
본 발명의 만노스-6-인산 이성화효소 유전자는 써머스 써모필러스(Thermus thermophilus) 또는 지오바실러스 써모디니트리피칸스 균주로부터 분리된 것이다. 먼저, 만노스-6-인산 이성화효소 유전자를 가진 써머스 써모필러스(Thermus thermophilus) 또는 지오바실러스 써모디니트리피칸스 균주로부터 염색체 DNA를 취득한다. 다음에, 설계한 올리고뉴클레오타이드를 프라이머로 하고, 지오바실러스 써모디니트리피칸스 균주의 염색체 DNA를 주형으로 해서 폴리머라제 연쇄반응(PCR)을 행하여, 만노스-6-인산 이성화효소 유전자를 부분적으로 증폭한다. 이와 같이 해서 얻게 된 PCR 증폭 단편은 써머스 써모필러스(Thermus thermophilus) 또는 지오바실러스 써모디니트리피칸스 균주의 만노스-6-인산 이성화효소 유전자에 100% 가까운 상동성을 가진 단편으로서, 콜로니하이브리디제이션을 행할 때의 프로브로서 높은 S/N비를 기대할 수 있는 동시에, 하이브리디제이션의 스트린전시 (stringency)제어를 용이하게 한다. 상기의 PCR 증폭 단편을 적당한 시약을 사용해서 표지하고, 상기 염색체 DNA라이브러리에 대해서 콜로니 하이브리디제이션을 행하여, 만노스-6-인산 이성화효소 유전자를 선발한다 (Current Protocols in Molecular Biology, 1권, 603페이지, 1994년).The mannose-6-phosphate isomerase gene of the present invention is isolated from Thermos thermophilus or Geobacilli thermodinitripicans strain. First, chromosomal DNA is obtained from a Thermos thermophilus or Geobacillus thermodinitripicans strain with a mannose-6-phosphate isomerase gene. Next, a polymerase chain reaction (PCR) is carried out using the designed oligonucleotide as a primer, the chromosomal DNA of the Geobacillus thermodinitiphipicans strain as a template, and partially amplify the mannose-6-phosphate isomerase gene. do. The PCR amplification fragment thus obtained is a fragment having a homology close to 100% to the mannose-6-phosphate isomerase gene of the Thermos thermophilus or Geobacilli thermodinititripicans strain, and colony hybridi. A high S / N ratio can be expected as a probe at the time of aging, and the stringency control of hybridization is facilitated. The PCR amplification fragments are labeled with appropriate reagents, and colony hybridization is performed on the chromosomal DNA library to select mannose-6-phosphate isomerase genes (Current Protocols in Molecular Biology, Vol. 1, p. 603). , 1994).
상기의 방법에 의해 선발된 대장균으로부터 알칼리법(Current Protocols in Molecular Biology, 1권, 161페이지, 1994년)을 사용해서 플라스미드를 회수함으로써, 만노스-6-인산 이성화효소 유전자를 함유하는 DNA단편을 얻을 수 있다. 또한, 상기 방법에 의해 염기서열을 결정한 후에는, 상기 염기서열을 가진 DNA단편의 제한효소에 의한 분해에 의해 조제한 DNA단편을 프로브로 해서 하이브리다이즈함으로써 본 발명의 전체 유전자를 얻는 것이 가능하다. The DNA fragment containing the mannose-6-phosphate isomerase gene was obtained by recovering the plasmid from the E. coli selected by the above method using alkaline method (Current Protocols in Molecular Biology, Vol. 1, p. 161, 1994). Can be. After determining the nucleotide sequence by the above method, it is possible to obtain the entire gene of the present invention by hybridizing the DNA fragment prepared by digestion by restriction enzymes of the DNA fragment having the nucleotide sequence as a probe.
본 발명의 형질전환된 미생물은, 본 발명의 재조합벡터를, 상기 재조합벡터를 제작할 때에 사용한 발현벡터에 적합한 숙주 속에 도입함으로써 얻게 된다. 예를 들면 대장균 등의 세균을 숙주로서 사용하는 경우는, 본 발명에 관한 재조합벡터는, 그 자신이 숙주 속에서 자율복제 가능한 동시에, 프로모터, 만노스-6-인산 이성화효소 유전자를 함유하는 DNA 및 전사종결서열 등의 발현에 필요한 구성을 가진 것임이 바람직하다. 본 발명에 사용된 발현벡터로서는 pET 28(+)a 또는 pTrc 99a를 사용하였으나 상기의 요건을 만족하는 발현벡터이면 어느 것이나 사용가능하다.The transformed microorganism of the present invention is obtained by introducing the recombinant vector of the present invention into a host suitable for the expression vector used when producing the recombinant vector. For example, when a bacterium such as E. coli is used as a host, the recombinant vector according to the present invention is capable of autonomous replication in the host, and at the same time, a DNA containing a promoter, mannose-6-phosphate isomerase gene, and transcription. It is preferable to have a structure required for expression of the termination sequence. As the expression vector used in the present invention, pET 28 (+) a or pTrc 99a was used, but any expression vector satisfying the above requirements can be used.
본 발명에 관한 만노스-6-인산 이성화효소 돌연변이체의 제조는, 이것을 코딩하는 유전자를 가진 재조합벡터에 의해 숙주를 형질전환해서 얻은 형질전환체를 배양하고, 배양물(배양균체 또는 배양상청액)속에 유전자 산물인 만노스-6-인산 이성화효소를 생성 축적시켜, 배양물로부터 효소를 취득함으로써 행하여진다.Production of the mannose-6-phosphate isomerase mutant according to the present invention comprises culturing a transformant obtained by transforming a host with a recombinant vector having a gene encoding the same, and culturing the transformant into a culture (cultured cell or culture supernatant). It is performed by generating and accumulating mannose-6-phosphate isomerase, which is a gene product, and acquiring the enzyme from the culture.
본 발명의 만노스-6-인산 이성화효소의 취득 및 정제는, 얻게 되는 배양물 중으로부터, 균체 또는 상청액을 원심 회수하여, 균체파쇄, 친화성크로마토그래피, 양이온 또는 음이온교환크로마토그래피 등을 단독으로 또는 조합함으로써 행할 수 있다. Acquisition and purification of the mannose-6-phosphate isomerase of the present invention is carried out by centrifuging the cells or supernatants from the cultures obtained, followed by cell disruption, affinity chromatography, cation or anion exchange chromatography, or the like. It can carry out by combining.
본 발명은 만노스-6-인산 이성화효소 또는 그 돌연변이체 및 해당 유전자를 포함하는 재조합 발현벡터, 이로 형질전환 된 미생물 및 이들을 이용하여 만노스-6-인산 이성화효소를 대량으로 얻는 제조방법, 그리고 상기 만노스-6-인산 이성화효소를 이용하여 엘-리보스를 고수율로 얻는 생산방법을 제공하는 효과가 있다.The present invention provides a mannose-6-phosphate isomerase or a mutant thereof and a recombinant expression vector comprising the corresponding gene, a microorganism transformed therewith and a method for producing a large amount of mannose-6-phosphate isomerase using these, and the mannose It is effective to provide a production method for obtaining high yield of L-ribose using -6-phosphate isomerase.
본 발명의 만노스-6-인산 이성화효소는 높은 특이성과 친환경적인 방법으로 의약품의 원료 물질인 리보스를 높은 수율로 생산할 수 있으며, 이렇게 생산된 엘-리보스는 다양한 엘-형태의 핵산당 의약품의 합성 시작물질로서 유용하게 사용될 수 있다. The mannose-6-phosphate isomerase of the present invention can produce a high yield of ribose, which is a raw material of medicines by a high specificity and environmentally friendly method, and the produced L-ribose starts the synthesis of medicines per sugar of various L-type nucleic acids. It can be usefully used as a substance.
도 1은 본 발명의 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소의 금속이온 종류에 따른 효소 활성도를 나타낸 것이고, 도 2는 금속이온 농도에 따른 효소 활성도를 나타낸 것이다. Figure 1 shows the enzymatic activity of the metal ion species of mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain of the present invention, Figure 2 shows the enzyme activity of the metal ion concentration .
도 3은 본 발명의 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소의 pH에 따른 효소 활성도를 나타낸 것이고(●: PIPES 완충액; ○: EPPS 완충액), 도 4는 온도에 따른 효소 활성도를 나타낸 것이다.Figure 3 shows the enzyme activities of the pH of the mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strains of the invention (●: PIPES buffer; ○: EPPS buffer), 4 temperature It shows the enzyme activity according to.
도 5는 본 발명의 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소의 온도 안정성 측정 결과를 나타낸 것이다(●: 65℃; ■: 70℃; ▲: 75℃; ○: 80℃; 및 □: 85℃).5 is sseomeoseu Thermo filler scan shows the temperature stability of the measurement results of the mannose-6-phosphate isomerase derived from (Thermus thermophilus) strain (● of the present invention: 65 ℃; ■: 70 ℃ ; ▲: 75 ℃; ○ : 80 ° C. and □: 85 ° C.).
도 6은 본 발명에 따른 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소의 엘-리보스의 시간별 생산량을 나타낸 것이다.Figure 6 is a mannose-6-phosphate isomerase of El derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain according to the invention shows the hourly production of ribose.
도 7은 기질 농도 10 Mm 에서 본 발명의 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소와 돌연변이 효소(closed circle)에 의한 리보오스의 전환율을 나타낸 것이다. Figure 7 shows the conversion of ribose by a mannose-6-phosphate isomerase and the mutant enzyme (closed circle) derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strains of the invention in a substrate concentration 10 Mm.
도 8은 본 발명의 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소의 유전자 서열을 나타낸 것이다.Figure 8 shows a gene sequence of the mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain of the present invention.
도 9는 본 발명의 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소의 R142N 돌연변이 효소의 유전자 서열을 나타낸 것이다.Figure 9 shows the gene sequence of the mutant enzyme R142N of mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain of the present invention.
도 10은 본 발명의 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소의 유전자를 포함하는 재조합 발현 벡터의 개열지도를 나타낸 것이다. Figure 10 shows the cleavage map of a recombinant expression vector containing the gene of the mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain of the present invention.
도 11은 본 발명의 지오바실러스 써모디니트리피칸스 (Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화효소의 무기염 종류에 따른 효소 활성도를 비교하여 나타낸 것이다.Figure 11 shows in comparison an enzyme activity according to the kind of the inorganic salt Geo Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) a mannose-6-phosphate isomerase derived from a strain of the present invention.
도 12는 본 발명의 지오바실러스 써모디니트리피칸스 (Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화효소의 최적 무기염의 농도에 따른 효소 활성도를 비교하여 나타낸 것이다.12 shows in comparison an enzyme activity according to the optimum concentration of the inorganic salt Geo Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) a mannose-6-phosphate isomerase derived from a strain of the present invention.
도 13은 본 발명의 지오바실러스 써모디니트리피칸스 (Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화효소의 pH에 따른 효소 활성도를 비교하여 나타낸 것이다.Figure 13 shows in comparison an enzyme activity according to the pH of geo Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) a mannose-6-phosphate isomerase derived from a strain of the present invention.
도 14는 본 발명의 지오바실러스 써모디니트리피칸스 (Geobacillus thermodenitrificans) 균주로부터 유래한만노스-6-인산 이성화효소의 온도에 따른 효소 활성도를 비교하여 나타낸 것이다.Figure 14 illustrates in comparison the enzyme activity according to the temperature of the thermopile di Gio Bacillus NITRY pecan switch (Geobacillus thermodenitrificans) a mannose-6-phosphate isomerase derived from a strain of the present invention.
도 15는 본 발명의 지오바실러스 써모디니트리피칸스 (Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화효소의 온도에 따른 안정성 측정 결과를 나타낸 것이다. Figure 15 shows the stability measurement in accordance with the temperature of the thermopile di Gio Bacillus NITRY pecan switch (Geobacillus thermodenitrificans) a mannose-6-phosphate isomerase derived from a strain of the present invention.
도 16은 기질 농도 300g/ℓ 에서 본 발명의 지오바실러스 써모디니트리피칸스 (Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화효소에 의한 리보스의 생산량을 나타낸 것이다.Figure 16 shows the production of ribose by a mannose-6-phosphate isomerase derived from Bacillus Geo Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) strains of the invention in a substrate concentration 300g / ℓ.
도 17-21은 본 발명의 지오바실러스 써모디니트리피칸스 (Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화 효소 (도 17)의 돌연변이 효소들인 Mutant 1(도 18),Mutant 2(도 19),Mutant 3(도 20), 및 Mutant 4(도 21)의 유전자 서열을 나타낸 것이다.Figure 17-21 are geo Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) Mutant 1 (18), which are mutant enzymes of the mannose-6-phosphate isomerase (Fig. 17) derived from a strain of the present invention, Mutant 2 (FIG. 19), the gene sequences of Mutant 3 (FIG. 20), and Mutant 4 (FIG. 21) are shown.
도 22는 지오바실러스 써모디니트리피칸스 (Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화효소의 유전자를 포함하는 발현벡터의 개열지도를 나타낸 그림이다.22 is an illustration showing a cleavage map of the expression vector containing the gene of the mannose-6-phosphate isomerase derived from Bacillus Geo Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) strain.
도 23-24는 점 돌연변이체에서 아미노산 잔기 90번(도 23)과 129번(도 24) 치환 점 돌연변이체의 야생형과 비교한 상대적 활성도를 나타낸 것이다.23-24 show the relative activities of the point mutants compared to the wild type of amino acid residues 90 (FIG. 23) and 129 (FIG. 24) substitution point mutants.
도 25는 본 발명의 만노스-6-인산 이성화 효소의 아미노산 잔기 90번과 129번에서 단일 돌연변이 및 이중 돌연변이 효소들의 야생형과 비교한 상대적 활성도를 나타낸 것이다.Figure 25 shows the relative activity of amino acids residues 90 and 129 of the mannose-6-phosphate isomerase of the present invention compared to the wild type of single and double mutant enzymes.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1. 만노스-6-인산 이성화효소 유전자를 포함하는 재조합 발현벡터 및 형질전환 미생물의 제조Example 1 Preparation of Recombinant Expression Vector and Transgenic Microorganism Comprising Mannose-6-Phosphate Isomerase Gene
1-1:1-1: 써머스 써모필러Thermos Thermofiller 스(( Thermus thermophilusThermus thermophilus ) 균주로부터 유래한 만노스-6-인산 이성화효소) Mannose-6-phosphate isomerase derived from strain
본 발명의 만노스-6-인산 이성화효소를 제조하기 위하여, 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소를 먼저 분리하였다.In order to produce a mannose-6-phosphate isomerase of the present invention, a mannose-6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain it was first separated.
구체적으로, 유전자 염기서열과 아미노산 서열이 이미 특정되어 있는 써머스 써모필러스 KCCM 40897 균주를 선별하고, 이로부터 유래한 만노스-6-인산 이성화효소의 공지의 DNA 염기서열(Genebank Accession No. AP008226)을 기초로 하여 다음의 프라이머(primer)를 고안하였다.Specifically, the Thermos Thermophilus KCCM 40897 strain, in which the gene sequence and the amino acid sequence are already specified, is selected, and a known DNA sequence (Genebank Accession No. AP008226) of mannose-6-phosphate isomerase derived therefrom is selected. On the basis of the following primers were devised.
서열번호 13(정방향 프라이머): 5'-TTTCATATGAGGCGGTTGGAGCCCAA-3'SEQ ID NO: 13 (Forward primer): 5'-TTT CATATG AGGCGGTTGGAGCCCAA-3 '
서열번호 14(역방향 프라이머): 5'-TTTGAATTCACTCACGCCCCCTCCTT-3'SEQ ID NO: 14 (Reverse primer): 5'-TTT GAATTC ACTCACGCCCCCTCCTT-3 '
상기 프라이머는 각각 Nde Ⅰ과 EcoR Ⅰ 제한효소 절단부분으로 설계되었으며, 상기 프라이머를 이용한 중합효소 연쇄반응(PCR)을 실시하여 해당 유전자의 염기서열을 증폭하였다. The primers were designed with Nde I and EcoR I restriction enzyme cleavage portions, respectively, and amplified the nucleotide sequence of the gene by polymerase chain reaction (PCR).
대량으로 얻은 만노스-6-인산 이성화효소 유전자는 제한효소 Nde Ⅰ 및 EcoR Ⅰ을 사용하여 플라스미드 벡터 pET 28(+)(Novagen사 제품)에 삽입하여 pET 28(+)a/만노스-6-인산 이성화효소를 제작하였다. A large amount of mannose-6-phosphate isomerase gene was inserted into the plasmid vector pET 28 (+) (manufactured by Novagen) using restriction enzymes Nde I and EcoR I and isomerized to pET 28 (+) a / mannose-6-phosphate An enzyme was produced.
상기와 같이 얻은 재조합 발현벡터는 통상적인 형질전환 방법에 의하여 대장균 ER 2566 균주에 형질 전환하고, 상기 형질전환 된 미생물은 20% 글리세린(glycerine) 용액을 첨가하여 엘-리보스의 생산을 위한 배양을 실시하기 전에 냉동 보관하였다.The recombinant expression vector thus obtained is transformed into E. coli ER 2566 strain by a conventional transformation method, the transformed microorganism is cultured for the production of L-ribose by adding 20% glycerin (glycerine) solution Frozen before.
1-2:1-2: 지오바실러스 써모디니트리피칸스 Geo Bacillus Thermodini Tripicans (( Geobacillus thermodenitrificansGeobacillus thermodenitrificans ) 균주로부터 유래한 만노스-6-인산 이성화 효소) Mannose-6-phosphate isomerase derived from strain
만노스-6-인산 이성화 효소를 제조하기 위하여, 지오바실러스 써모디니트리피칸스 (Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화 효소를 먼저 분리하였다. Mannose-6-phosphate for the production of isomerase, and separating the geo Bacillus Thermo di NITRY pecan's one mannose-6-phosphate isomerase derived from (Geobacillus thermodenitrificans) strains before.
구체적으로 유전자 염기서열과 아미노산 서열이 이미 특정되어 있는 지오바실러스 써모디니트리피칸스 균주를 선별하고(Dae-Heoun Baek, Yujin Lee, Hong-Sig Sin, and Deok-Kun (2004) J Microbiol. Biotechnol. 14: 312-316), 이로부터 유래한 만노스-6-인산 이성화 효소의 공지의 DNA 염기서열(Genebank Accession Number CP000557)을 기초로 하여 다음의 프라이머(primer)를 고안하였다.Specifically, gene sequence and amino acid sequence of the chipping chamber Russ Thermo di NITRY already specified screened pecan's strain and (Dae-Heoun Baek, Yujin Lee , Hong-Sig Sin, and Deok-Kun (2004) J Microbiol. Biotechnol. 14: 312-316) and the following primers were devised based on the known DNA sequence (Genebank Accession Number CP000557) of mannose-6-phosphate isomerase derived therefrom.
만노스-6-인산 이성화 효소 Mannose-6-phosphate isomerase
서열번호 15(정방향 프라이머): 5'-TTTGAATTCATGCATCAAGAACCGATTTTTC-3'SEQ ID NO: 15 (Forward primer): 5'-TTT GAATTC ATGCATCAAGAACCGATTTTTC-3 '
서열번호 16(역방향 프라이머): 5'-TTTAAGCTTTTATTTGCTTGTCCGTGG-3'SEQ ID NO: 16 (Reverse primer): 5'-TTT AAGCTT TTATTTGCTTGTCCGTGG-3 '
상기 만노스-6-인산 이성화 효소 유전자의 프라이머는 EcoR Ⅰ과 Hind Ⅲ 제한효소 절단부분으로 설계되었다. 상기 프라이머를 이용한 중합효소 연쇄반응(PCR)을 실시하여 해당 유전자의 염기서열을 증폭하였다. 대량으로 얻은 만노스-6-인산 이성화 효소 유전자는 각각의 제한효소를 사용하여 플라스미드 벡터 pTRC 99a(Novagen 사)에 삽입하여 pTRC 99a/만노스-6-인산 이성화 효소를 제작하였다.The primers of the mannose-6-phosphate isomerase gene were designed with EcoR I and Hind III restriction enzyme cleavage portions. PCR was performed using the primers to amplify the nucleotide sequence of the gene. A large amount of mannose-6-phosphate isomerase gene was inserted into the plasmid vector pTRC 99a (Novagen) using each restriction enzyme to prepare pTRC 99a / mannose-6-phosphate isomerase.
상기와 같이 얻은 재조합 발현 벡터는 통상적인 형질전환 방법에 의하여 대장균 ER 2566 균주에 형질 전환하였다. 또한, 상기 형질전환된 미생물은 20% 글리세린(glycerine) 용액을 첨가하여 리보스의 생산을 위한 배양을 실시하기 전에 냉동 보관하였다.The recombinant expression vector thus obtained was transformed into E. coli ER 2566 strain by a conventional transformation method. In addition, the transformed microorganism was stored frozen before the culture for the production of ribose by adding a 20% glycerin (glycerine) solution.
실시예 2. 만노스-6-인산 이성화효소의 제조Example 2 Preparation of Mannose-6-Phosphate Isomerase
본 발명의 만노스-6-인산 이성화효소를 대량 생산하기 위하여, 냉동 보관된 재조합 대장균 ER 2566 균주를 LB 배지 3㎖가 들어있는 시험관(test tube)에 접종하고, 600㎚에서 흡광도가 2.0이 될 때까지 37℃의 진탕 배양기로 종균 배양을 실시하였다. 그런 다음, 상기 종균 배양된 배양액을 LB 배지 500㎖가 들어있는 2,000㎖ 플라스크에 첨가하여 본 배양을 실시하였다.In order to mass produce the mannose-6-phosphate isomerase of the present invention, the frozen E. coli ER 2566 strain was inoculated into a test tube containing 3 ml of LB medium, and the absorbance was 2.0 at 600 nm. The spawn culture was performed with a shake incubator at 37 ° C. until. Then, the seed cultured culture was added to a 2,000 ml flask containing 500 ml of LB medium to carry out the main culture.
또한, 600㎚에서 흡광도가 0.6이 될 때, 0.1mM IPTG를 첨가하여 만노스-6-인산 이성화효소의 대량 발현을 유도하였다. 이때, 교반 속도는 200rpm, 배양 온도는 37℃로 유지하였으며, IPTG 첨가 후에는 교반 속도 150rpm, 배양 온도 16℃로 조정하여 배양하였다.In addition, when the absorbance reached 0.6 at 600 nm, 0.1 mM IPTG was added to induce mass expression of mannose-6-phosphate isomerase. At this time, the stirring speed was maintained at 200rpm, the culture temperature was maintained at 37 ℃, after the addition of IPTG was adjusted to the stirring speed 150rpm, culture temperature 16 ℃ and incubated.
또한, 상기와 같이 과발현 되어 생산된 만노스-6-인산 이성화효소는, 상기 형질전환된 균주의 배양액을 6,000×g로 4℃에서 30분 동안 원심분리하여 0.85% 염화나트륨(NaCl)으로 두 번 세척한 다음, 50mM 제일인산나트륨, 300mM 염화나트륨, 10mM 이미다졸(immidazole), 0.1mM 단백분해 효소 저해제(phenylmethylsulfonyl fluoride)를 첨가하여 상기 세포 용액을 파쇄기(sonicator)로 파쇄하였다. 상기 세포 파쇄물은 다시 13,000×g로 4℃에서 20분 동안 원심분리하고, 세포 펠렛을 제거한 후 세포 상등액만을 얻어 고속 단백질 액체 크로마토그래피(fast protein liquid chromatography system; Bio-Rad Laboratories, Hercules, CA, USA)에 히스텍(His-tag)를 이용한 히스트램 에이치피(Histrap HP) 흡착 컬럼을 장착하여 엘-리보스 생산에 사용되는 효소액으로서 분리하였다.In addition, the mannose-6-phosphate isomerase produced by overexpression as described above, the culture medium of the transformed strain was washed twice with 0.85% sodium chloride (NaCl) by centrifugation at 6,000 × g for 30 minutes at 4 ℃. Next, 50 mM sodium phosphate, 300 mM sodium chloride, 10 mM imidazole and 0.1 mM protease inhibitor (phenylmethylsulfonyl fluoride) were added to disrupt the cell solution with a sonicator. The cell lysate was again centrifuged at 13,000 × g for 20 minutes at 4 ° C., the cell pellet was removed, and only the cell supernatant was obtained for a fast protein liquid chromatography system (Bio-Rad Laboratories, Hercules, CA, USA). Histrap HP adsorption column using His-tag was used as an enzyme solution for the production of L-ribose.
실시예 3. 만노스-6-인산 이성화효소의 금속 특이성 조사Example 3 Investigation of Metal Specificity of Mannose-6-Phosphate Isomerase
상기 실시예 2에서 얻은 만노스-6-인산 이성화효소의 금속이온에 대한 특이성을 조사하기 위하여, 상기 효소의 활성은 10mM EDTA로 처리하고 금속 이온(Mn2+, Zn2+, Ba2+, Cu2+, Co2+, Ca2+, Mg2+, Ni2+, Fe2+)을 첨가하여 반응시킨 후 다음과 같이 활성을 측정하였다.In order to investigate the specificity of mannose-6-phosphate isomerase obtained in Example 2 for metal ions, the activity of the enzyme was treated with 10 mM EDTA, and metal ions (Mn 2+ , Zn 2+ , Ba 2+ , Cu). 2+ , Co 2+ , Ca 2+ , Mg 2+ , Ni 2+ , Fe 2+ ) and the reaction was measured as follows.
효소반응은 10mM 엘-리불로오스, 각각의 금속이온과 0.05unit/㎖ 효소가 포함된 50mM PIPES(piperazine-N,N'-bis(2-ethane sulfonic acid)) 완충용액(pH 7.0)을 사용하여 75℃에서 5분 동안 수행하고, 다시 최종 농도 200mM 염화수소(HCl)를 첨가하여 상기 반응을 정지시켰다.Enzyme reaction was performed using 50 mM PIPES (piperazine- N, N' -bis (2-ethane sulfonic acid)) buffer solution (pH 7.0) containing 10 mM L-ribulose, each metal ion and 0.05 unit / ml enzyme. 5 minutes at 75 ° C, and the reaction was stopped again by adding a final concentration of 200 mM hydrogen chloride (HCl).
본 발명에서 효소활성은 엘-리불로오스를 기질로 사용해 측정하였으며, 상기 효소활성의 효소 1단위(unit)는 pH 7.0과 75℃에서 분당 1μmol의 엘-리보스를 생산하는 양으로 정의하여 비교 분석하였다. In the present invention, the enzyme activity was measured using L-ribulose as a substrate, and the enzyme activity (unit) of the enzyme activity was defined as the amount to produce 1 μmol of L-ribose per minute at pH 7.0 and 75 ° C. It was.
또한, 효소활성 측정 시 리보스 및 리불로오스의 농도, 그리고 다른 당들의 분석은 전기화학적 검출기(electrochemical detector) 및 카보팩 피에이(CarboPacPA) 칼럼이 장착된 바이오 액체 크로마토그래피(Bio-LC) 시스템(Dionex ICS-3000, Sunnylvale, CA, USA)을 이용하였으며, 이때 상기 카보팩 피에이 컬럼은 30℃에서 1㎖/분 속도로 200mM 수산화나트륨(NaOH)을 통과시켰다.In addition, the concentration of ribose and ribulose, and the analysis of other sugars in the determination of enzymatic activity can be determined by using a bio-liquid chromatography (Bio-LC) system equipped with an electrochemical detector and a CarboPacPA column ( Dionex ICS-3000, Sunnylvale, Calif., USA), wherein the Carbopack PA column was passed 200 mM sodium hydroxide (NaOH) at 1 ° C./min at 30 ° C.
그 결과, 정제된 효소와 EDTA를 처리한 효소는 활성이 없었으며, 실험한 금속염 중에서 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소는 구리(Cu2+)가 가장 효과적이었고, 농도별 실험 결과 최적 농도는 0.5mM 이었으며, 지오바실러스 써모디니트리피칸스(Geobacillus thermodenitrificans) 유래의 만노스-6-인산 이성화 효소에 의한 리보스 이성화 효소는 코발트(Co2+)가 가장 효과적이었고, 농도별 테스트 결과 효소에 대한 금속염 모두 최적농도는 1 mM이었다.As a result, the purified enzyme and the enzyme treated with EDTA had no activity.Thermos Thermofiller(Thermus thermophilus) Mannose-6-phosphate isomerase derived from2+) Was the most effective, and the optimal concentration was 0.5mM.Geobacillus Thermodinitripicans (Geobacillus)of thermodenitrificans) Ribose isomerase by mannose-6-phosphate isomerase is cobalt (Co2+) Was the most effective, and the optimum concentration of the metal salt for enzyme was 1 mM.
상기 결과로부터, 본 발명의 만노스-6-인산 이성화효소는 구리 또는 코발트 금속 이온의 영향을 받는 것으로 나타나 금속 이온에 대해 의존성 효소임을 확인하였다(도 1, 도 2, 도 11 및 도 12 참조).From the above results, the mannose-6-phosphate isomerase of the present invention was shown to be affected by copper or cobalt metal ions, confirming that it is an enzyme dependent on metal ions (see FIGS. 1, 2, 11, and 12).
실시예 4. 만노스-6-인산 이성화효소의 활성도 조사Example 4 Investigation of Activity of Mannose-6-Phosphate Isomerase
상기 실시예 1에서 얻은 만노스-6-인산 이성화효소의 pH 및 온도 변화에 따른 활성도를 조사하기 위하여, 다양한 pH 및 온도 조건 하에서 효소와 기질을 반응시키고 효소 활성을 비교하였다.In order to investigate the activity of the mannose-6-phosphate isomerase obtained in Example 1 according to the pH and temperature change, the enzyme and the substrate were reacted under various pH and temperature conditions and the enzyme activity was compared.
4-1. 만노스-6-인산 이성화효소 활성에 미치는 pH 효과4-1. PH effect on mannose-6-phosphate isomerase activity
먼저, 상기 효소 활성에 대한 pH 효과를 조사하기 위하여, 기질로서 10mM 엘-리불로오스와 0.5mM 구리(또는 1 mM 코발트;지오바실러스 경우), 1.5 unit(또는 2 unit: 지오바실러스 경우)/㎖ 효소가 포함된 50mM 피페스(PIPES) 완충액 및 10mM 엘-리불로오스, 0.5mM 구리(또는 1 mM 코발트;지오바실러스 경우)와 0.05unit/㎖ 효소가 포함된 EPPS(N-(2-hydroxyethyl) piperazine-N-(3-propane sulfonic acid)) 완충액을 사용하여 pH 7.5에서 pH 8.5 범위까지 효소반응을 실시하되, 구체적으로 75℃에서 5분 동안 수행하고 다시 최종 농도 200mM 염화수소를 첨가하여 반응을 정지시켰다.First, to investigate the pH effect on the enzyme activity, 10 mM L-ribulose and 0.5 mM copper (or 1 mM cobalt; for geobacillus), 1.5 unit (or 2 unit: for geobacillus) / ml as substrates 50 mM PIPES buffer with enzyme and EPPS (N- (2-hydroxyethyl) with 10 mM L-ribulose, 0.5 mM copper (or 1 mM cobalt; for Geobacillus) and 0.05 unit / ml enzyme) Enzymatic reaction is carried out using a piperazine- N- (3-propane sulfonic acid)) buffer from pH 7.5 to pH 8.5. Specifically, the reaction is stopped at 75 ° C. for 5 minutes and stopped again by adding a final concentration of 200 mM hydrogen chloride. I was.
그 결과, 최적 pH는 7.0인 것으로 확인되었다(도 3 및 13 참조).As a result, the optimum pH was found to be 7.0 (see FIGS. 3 and 13).
4-2. 만노스-6-인산 이성화효소 활성에 미치는 온도 효과4-2. Effect of temperature on mannose-6-phosphate isomerase activity
상기 효소의 활성에 대한 온도 효과를 조사하기 위하여, 효소 반응 온도를 60℃에서 90℃ 범위까지 10mM 엘-리불로오스, 0.5mM 구리(또는 1 mM 코발트;지오바실러스 경우), 1.5 unit(또는 2 unit: 지오바실러스 경우)/㎖ 효소가 포함된 50mM 피페스(PIPES) 완충액을 사용하여 각각 20분씩 반응시킨 후 최종 농도 200mM 염화수소를 첨가하여 반응을 정지시켰다.In order to investigate the effect of temperature on the activity of the enzyme, the enzyme reaction temperature was ranged from 60 ° C. to 90 ° C. in a range of 10 mM L-ribulose, 0.5 mM copper (or 1 mM cobalt; for geobacillus), 1.5 units (or 2). unit: in case of Geobacillus) / ml The reaction was carried out for 20 minutes using 50 mM Pipes (PIPES) buffer containing the enzyme, and the reaction was stopped by adding a final concentration of 200 mM hydrogen chloride.
그 결과, 최적 온도는 각각 지오바실러스의 경우에는 70℃이고 써머스의 경우에는 75℃인 것으로 확인되었다(도 4 및 14 참조).As a result, the optimum temperature was found to be 70 ° C. for Geobacillus and 75 ° C. for Thermos, respectively (see FIGS. 4 and 14).
4-3. 만노스-6-인산 이성화효소의 온도 안정성 조사4-3. Investigation of Temperature Stability of Mannose-6-phosphate Isomerase
상기 효소의 온도 안정성을 조사하기 위하여, 온도 65℃에서 85℃까지의 범위에서 10mM 엘-리불로오스, 0.5mM 구리(또는 1 mM 코발트;지오바실러스 경우), 0.05unit/㎖ 효소가 포함된 pH 7.0인 50mM PIPES 완충액을 사용하여 각각 효소활성이 절반으로 줄어드는 시간까지 반응시킨 다음, 최종 농도 200mM 염화수소를 첨가하여 반응을 정지시켜 만노스-6-인산 이성화효소의 활성을 측정하였다.In order to investigate the temperature stability of the enzyme, a pH containing 10 mM L-ribulose, 0.5 mM copper (or 1 mM cobalt; in the case of Geobacillus), 0.05 unit / ml enzyme in the temperature range of 65 to 85 ° C The reaction was carried out using 50 mM PIPES buffer of 7.0 until the time when the enzyme activity was reduced by half, and then the reaction was stopped by adding the final concentration of 200 mM hydrogen chloride to measure the activity of mannose-6-phosphate isomerase.
그 결과, 온도 65℃에서는 22시간, 70℃에서는 10시간, 75℃에서는 5.5시간, 80℃에서는 2.2시간 및 85℃에서는 0.3시간이 경과시 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소 활성이 절반으로 줄어드는 것을 확인할 수 있었다(도 5 참조).As a result, in the temperature 65 ℃ 22 hours, in 70 10 hours, 75 ℃ 5.5 hours, the elapsed time 0.3 hours 2.2 hours and 85 ℃ in 80 ℃ sseomeoseu Thermo filler's mannose derived from (Thermus thermophilus) strain 6-phosphate isomerase activity was found to be reduced by half (see FIG. 5).
또한 도 15에 나타난 바와 같이, 온도 60℃에서는 338시간, 65℃는 73시간, 70℃는 27시간, 75℃는 17시간, 그리고 80℃에서는 6.2시간 경과 시 상기 지오바실러스 써모디니트리피칸스 (Geobacillus thermodenitrificans)유래한 효소 활성이 절반으로 줄어드는 것을 확인할 수 있었다.In addition, as shown in FIG. 15, the geobacillus thermodynic tripicans after 338 hours at 65 ℃, 73 hours at 65 ℃, 27 hours at 70 ℃, 17 hours at 75 ℃, 6.2 hours at 80 ℃ Geobacillus thermodenitrificans The enzyme activity was reduced by half.
4-4. 만노스-6-인산 이성화효소 활성에 미치는 기질 농도 효과4-4. Effect of Substrate Concentration on Mannose-6-Phosphate Isomerase Activity
상기 효소의 활성에 대한 온도 효과를 조사하기 위하여, 온도 75℃에서 85℃까지의 범위에서 50, 100, 200 및 300g/ℓ엘-리불로오스, 0.5mM 구리(또는 1 mM 코발트;지오바실러스 경우), 20unit/㎖ 효소가 포함된 pH 7.0인 50mM PIPES 완충액을 사용하여 3시간 반응시킨 다음, 최종 농도 200mM 염화수소를 첨가하여 반응을 정지시켜 만노스-6-인산 이성화효소의 활성을 측정하였다.In order to investigate the effect of temperature on the activity of the enzyme, 50, 100, 200 and 300 g / L- ribulose, 0.5 mM copper (or 1 mM cobalt; Geobacillus case) in the temperature range from 75 ℃ to 85 ℃ ), And the reaction was stopped for 3 hours using 50 mM PIPES buffer containing pH 7.0 containing 20 units / ml enzyme, and then the reaction was stopped by adding a final concentration of 200 mM hydrogen chloride to measure the activity of mannose-6-phosphate isomerase.
그 결과, 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스-6-인산 이성화효소의 경우 기질로 사용한 엘-리불로오스 농도와 무관하게 모두 약 70%의 전환수율을 나타내어 50, 100, 200 및 300g/ℓ의 엘-리불로오스에서 각각 36, 71, 140, 211g/ℓ의 엘-리보스가 생산되었다.As a result, the filler's Thermo sseomeoseu (Thermus thermophilus) for the mannose-6-phosphate isomerase derived from a strain El was used as substrate - regardless of the re-fire agarose concentration of any image shows a conversion yield of about 70% 50, 100, 200 And 36, 71, 140, 211 g / l of el-ribose, respectively, at 300 g / l of el-ribulose.
실시예 5. 만노스-6-인산 이성화효소를 이용한 엘-리보스의 생산Example 5 Production of El-Ribose Using Mannose-6-Phosphate Isomerase
본 발명의 만노스-6-인산 이성화효소를 이용한 엘-리보스의 생산성을 확인하기 위하여, 상기에서 확인한 효소의 최적 pH 7.0 및 효소활성이 절반으로 줄어든 시간을 고려한 온도(75℃)에서 300g/ℓ의 엘-리불로오스를 기질로 하여 엘-리보스의 시간별 생산량을 측정하였다. 이때 사용한 반응 용액은 300g/ℓ엘-리불로오스, 0.5mM 구리, 25unit/㎖ 효소가 포함된 pH 7.0인 50mM PIPES 완충액이었다.In order to confirm the productivity of El-ribose using the mannose-6-phosphate isomerase of the present invention, 300 g / L at the temperature (75 ° C) considering the optimal pH 7.0 and the time when the enzyme activity was reduced by half Hourly production of El-ribose was measured using L-ribulose as a substrate. The reaction solution used was 50 mM PIPES buffer at pH 7.0 containing 300 g / L L-ribulose, 0.5 mM copper, 25 units / ml enzyme.
써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 효소의 경우 반응 2.5시간 후에 300g/ℓ의 엘-리불로오스에서 213g/ℓ의 엘-리보스가 생산되어 시간당 85.2g/ℓ의 생산성과 71%의 전환수율을 나타내었다(도 6 참조). For enzymes derived from the Thermos thermophilus strain, 213 g / l of L-ribose was produced in 300 g / l of L-ribulose after 2.5 hours of reaction, yielding 85.2 g / l of productivity and 71% of the time. Conversion yield is shown (see FIG. 6).
또한 지오바실러스 써모디니트리피칸스 (Geobacillus thermodenitrificans)유래한 효소의 경우, 반응 2.2 시간 후에 300 g/ℓ의 리불로오스에서 210 g/ℓ의 리보스가 생산되어 시간당 87.5 g/ℓ의 생산성과 70% 전환수율을 나타내었다(도 16 참조).Further Geo Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) if the derived enzyme, after reaction 2.2 hours is 300 g / ℓ Li fire agarose in ribose of 210 g / ℓ of the production productivity per hour, 87.5 g / ℓ and 70 % Conversion yield is shown (see FIG. 16).
현재까지 리보스의 생산 중 가장 높은 생산성을 나타낸 것은 Molybdic acid를 사용한 화학합성법은 엘-아라비노스 로부터 23% 전환수율과 시간당 20 g/ℓ 생산성을 나타내었다(Jumppanen, J., J. Nurmi, and O. Pastinen. October 2000. Process for the continuous production of high purity of L-ribose. U.S. patent 6,140,498.). To date, the highest productivity of ribose production has been achieved by chemical synthesis using Molybdic acid, which yields 23% conversion from L-Arabinose and 20 g / l per hour. Productivity was shown (Jumppanen, J., J. Nurmi, and O. Pastinen. October 2000. Process for the continuous production of high purity of L-ribose. U.S. patent 6,140,498.).
실시예 6: 만노스 6-인산 이성화 효소 유전자와 그에 따른 돌연변이를 포함하는 재조합 발현 벡터 및 형질전환 미생물의 제조Example 6 Preparation of Recombinant Expression Vectors and Transgenic Microorganisms Comprising Mannose 6-Phosphate Isomerase Gene and Mutations accordingly
6-1:6-1: 써머스 써모필러스Thermos Thermophilus (( Thermus thermophilusThermus thermophilus ) 균주로부터 유래한 만노스 6-인산 이성화 효소 돌연변이체) Mannose 6-phosphate isomerase mutant derived from strain
만노스 6-인산 이성화 효소를 제조하기 위하여, 써머스 써모필러스(Thermus thermophilus) 균주로부터 유래한 만노스 6-인산 이성화 효소를 먼저 분리하였다. For the production of mannose 6-phosphate isomerase, the mannose 6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) strain it was first separated.
구체적으로 유전자 염기서열과 아미노산 서열이 이미 특정되어 있는 써머스 써모필러스(Thermus thermophilus) KCCM 40879 균주를 선별하고, 이로부터 유래한 만노스 6-인산 이성화 효소의 공지의 DNA 염기서열(Genebank Accession Number AP008226)을 기초로 하여 프라이머(primer)를 고안하였다.Specifically sseomeoseu Thermo filler's (Thermus thermophilus) DNA base sequence (Genebank Accession Number AP008226) of the known mannose 6-phosphate isomerase, evaluate whether KCCM 40879 strain, and derived therefrom with a gene sequence and amino acid sequence has already been specified Based on the primer (primer) was devised.
상기 프라이머는 각각 Nde I과 EcoR I 제한효소 절단부분으로 설계되었다. 상기 프라이머를 이용한 중합효소 연쇄반응(PCR)을 실시하여 해당 유전자의 염기서열을 증폭하였다. 대량으로 얻은 만노스 6-인산 이성화 효소 유전자는 제한효소 Nde I 및 EcoR I을 사용하여 플라스미드 벡터 pET 28(+)(Novagen 사)에 삽입하여 pET 28(+)a/만노스 6-인산 이성화 효소를 제작하였다.The primers were designed with Nde I and EcoR I restriction enzyme cleavage sites, respectively. PCR was performed using the primers to amplify the nucleotide sequence of the gene. A large amount of mannose 6-phosphate isomerase gene was inserted into plasmid vector pET 28 (+) (Novagen) using restriction enzymes Nde I and EcoR I to prepare pET 28 (+) a / mannose 6-phosphate isomerase. It was.
만노스 6-인산 이성화 효소의 돌연변이벡터를 제작하기 위하여 프라이머(primer)를 고안하였다(표 1 참조). 상기 프라이머와 Quick-Change kit (Stratagene, Beverly, MA)를 이용하여 돌연변이를 유발하여 pET 28(+)a/만노스 6-인산 이성화 효소 돌연변이벡터를 제작하였다.Primers were designed to construct mutant vectors of mannose 6-phosphate isomerase (see Table 1). Mutation was induced using the primers and the Quick-Change kit (Stratagene, Beverly, MA) to construct a pET 28 (+) a / mannose 6-phosphate isomerase mutant vector.
상기와 같이 얻은 재조합 발현 벡터는 통상적인 형질전환 방법에 의하여 대장균 ER 2566 균주에 형질 전환하였다. 또한, 상기 형질전환된 미생물은 20% 글리세린(glycerine) 용액을 첨가하여 리보스의 생산을 위한 배양을 실시하기 전에 냉동 보관하였다.The recombinant expression vector thus obtained was transformed into E. coli ER 2566 strain by a conventional transformation method. In addition, the transformed microorganism was stored frozen before the culture for the production of ribose by adding a 20% glycerin (glycerine) solution.
표 1
Figure PCTKR2010007295-appb-T000001
Table 1
Figure PCTKR2010007295-appb-T000001
표 1은 만노스 6-인산 이성화 효소의 돌연변이벡터를 제작하기 위하여 프라이머(primer)이다.Table 1 shows primers for constructing mutant vectors of mannose 6-phosphate isomerase.
6-2:지6-2: 오바실러스 써모디니트리피칸스Obacillus Thermodini Tripicans (( Geobacillus thermodenitrificansGeobacillus thermodenitrificans ) 균주로부터 유래한 만노스 6-인산 이성화 효소 돌연변이체) Mannose 6-phosphate isomerase mutant derived from strain
오바실러스 써모디니트리피칸스(Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화 효소의 무작이 돌연변이 (Random mutagenesis)를 유발하기 위하여 PCR mutagenesis kit (ClonTech Laboratories, Palo Alto. CA, USA) 을 이용하여 pTrc99a/만노스-6-인산 이성화 효소 돌연변이벡터를 제작하였다.If five Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) PCR mutagenesis kit ( ClonTech Laboratories, Palo Alto. CA, USA) is random in a mannose-6-phosphate isomerase derived from a strain to mutagenic (Random mutagenesis) PTrc99a / mannose-6-phosphate isomerase mutant vector was prepared.
상기와 같이 얻은 재조합 발현 벡터는 통상적인 형질전환 방법에 의하여 대장균 ER 2566 균주에 형질 전환하였다. 또한, 상기 형질전환된 미생물은 20% 글리세린(glycerine) 용액을 첨가하여 리보스의 생산을 위한 배양을 실시하기 전에 냉동 보관하였다.The recombinant expression vector thus obtained was transformed into E. coli ER 2566 strain by a conventional transformation method. In addition, the transformed microorganism was stored frozen before the culture for the production of ribose by adding a 20% glycerin (glycerine) solution.
실시예 7: 만노스 6-인산 이성화효소 및 돌연변이 효소의 제조Example 7 Preparation of Mannose 6-Phosphate Isomerase and Mutant Enzymes
7-1:7-1: 써머스 써모필러스Thermos Thermophilus (( Thermus thermophilusThermus thermophilus ) 균주로부터 유래한 만노스 6-인산 이성화 효소 돌연변이체) Mannose 6-phosphate isomerase mutant derived from strain
만노스 6-인산 이성화효소 및 돌연변이 효소를 대량 생산하기 위하여, 상기 실시예 6에서 제작하고, 냉동 보관된 재조합 대장균 ER 2566 균주를 LB 배지 3㎖이 들어있는 시험관(test tube)에 접종하고 600㎚에서 흡광도가 2.0이 될 때까지 37℃의 진탕 배양기로 종균 배양을 실시하였다. 그 다음 상기 종균 배양된 배양액을 LB 배지 500㎖이 들어있는 2,000㎖ 플라스크에 첨가하여 본 배양을 실시하였다. 또한, 600㎚에서의 흡광도가 0.6 이 될 때, 0.1mM IPTG를 첨가하여 만노스 6-인산 이성화효소의 대량 발현을 유도하였다. 상기 과정 중의 교반 속도는 200rpm, 배양 온도는 37℃가 유지하도록 조절하고, IPTG를 첨가한 후에 교반 속도는 150rpm, 배양 온도는 16℃로 조정하여 배양하였다.In order to mass produce mannose 6-phosphate isomerase and mutant enzyme, the recombinant E. coli ER 2566 strain prepared in Example 6 was inoculated into a test tube containing 3 ml of LB medium and inoculated at 600 nm. The spawn cultivation was performed by shaking incubator at 37 degreeC until absorbance became 2.0. The seed cultured culture was then added to a 2,000 ml flask containing 500 ml of LB medium to carry out the main culture. In addition, when the absorbance at 600 nm became 0.6, 0.1 mM IPTG was added to induce mass expression of mannose 6-phosphate isomerase. The stirring rate during the process was adjusted to 200rpm, the culture temperature was maintained at 37 ℃, and after the addition of IPTG, the stirring rate was adjusted to 150rpm, the culture temperature was adjusted to 16 ℃.
또한, 상기와 같이 과발현되어 생산된 만노스 6-인산 이성화효소 및 돌연변이 효소는, 상기 형질전환된 균주의 배양액을 6,000×g로 4℃에서 30분 동안 원심분리하고, 0.85% 염화나트륨(NaCl)으로 두번 세척한 다음 50mM 제일인산 나트륨, 300mM 염화나트륨, 10mM 이미다졸(immidazole), 0.1mM 단백분해 효소 저해제(phenylmethylsulfonyl fluoride)를 첨가하여 상기 세포 용액을 파쇄기(sonicator)로 파쇄하였다. 상기 세포 파쇄물은 다시 13,000×g로 4℃에서 20분 동안 원심분리하고 세포 펠렛은 제거한 다음 세포 상등액만을 얻어 고속 단백질 액체 크로마토그라피(fast protein liquid chromatography system(Bio-Rad Laboratories, Hercules, CA, USA))에 히스 텍(His-tag)를 이용한 히스트랩 에이치피(HisTrap HP) 흡착 컬럼을 장착 하여 리보스 생산에 사용되는 효소액으로서 분리하였다.In addition, the mannose 6-phosphate isomerase and the mutant enzyme produced as overexpressed as described above were centrifuged at 6,000 × g for 30 minutes at 6,000 × g and twice with 0.85% sodium chloride (NaCl). After washing, the cell solution was crushed by adding 50 mM sodium phosphate, 300 mM sodium chloride, 10 mM imidazole, 0.1 mM protease inhibitor (phenylmethylsulfonyl fluoride). The cell lysate was again centrifuged at 13,000 × g for 20 minutes at 4 ° C., the cell pellet was removed, and only the cell supernatant was obtained, followed by a fast protein liquid chromatography system (Bio-Rad Laboratories, Hercules, CA, USA). ) Was equipped with a HisTrap HP adsorption column using a heat-tag and separated as an enzyme solution used for ribose production.
7-2:지7-2: 오바실러스 써모디니트리피칸스Obacillus Thermodini Tripicans (( Geobacillus thermodenitrificansGeobacillus thermodenitrificans ) 균주로부터 유래한 만노스 6-인산 이성화 효소 돌연변이체) Mannose 6-phosphate isomerase mutant derived from strain
오바실러스 써모디니트리피칸스(Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화효소 돌연변이체를 대량 생산하기 위하여, 상기 실시예 5에서 제작하고, 냉동 보관된 재조합 대장균 ER 2566 균주를 LB 배지 3㎖이 들어있는 시험관(test tube)에 접종하고 600㎚에서 흡광도가 2.0이 될 때까지 37℃의 진탕 배양기로 종균 배양을 실시하였다. 그 다음 상기 종균 배양된 배양액을 LB 배지 500㎖이 들어있는 2,000㎖ 플라스크에 첨가하여 본 배양을 실시하였다. 또한, 600㎚에서의 흡광도가 0.6 이 될 때, 0.1mM IPTG를 첨가하여 만노스-6-인산 이성화효소의 대량 발현을 유도하였다. 상기 과정 중의 교반 속도는 200rpm, 배양 온도는 37℃가 유지하도록 조절하고, 아이피티지를 첨가한 후에 같은 조건으로 5시간동안 배양하였다.If five Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) In order to mass-produce a mannose-6-phosphate isomerase mutant derived from the strain, produced in Example 5, and stored frozen The recombinant E. coli strain ER 2566 to LB The seed was inoculated into a test tube containing 3 ml of medium, and the seed culture was performed with a shake incubator at 37 ° C. until absorbance was 2.0 at 600 nm. The seed cultured culture was then added to a 2,000 ml flask containing 500 ml of LB medium to carry out the main culture. In addition, when the absorbance at 600 nm became 0.6, 0.1 mM IPTG was added to induce mass expression of mannose-6-phosphate isomerase. The stirring speed during the process was adjusted to 200rpm, the culture temperature was maintained at 37 ℃, and after incubating for 5 hours under the same conditions after the addition of the IP.
또한, 상기와 같이 과발현되어 생산된 만노스-6-인산 이성화효소 돌연변이체는, 상기 형질전환된 균주의 배양액을 6,000× g로 4℃에서 30분 동안 원심분리하고, 0.85% 염화나트륨(NaCl)으로 두번 세척한 다음 50 mM PIPES (pH 7.0)완충용액과 0.1 mM 단백분해 효소 저해제(phenylmethylsulfonyl fluoride)를 첨가하여 상기 세포 용액을 초음파파쇄기(sonicator)로 파쇄하였다. 상기 세포 파쇄물은 70℃에서 10분간 열처리를 한 후 다시 13,000× g로 4℃에서 20분 동안 원심분리하고 세포 펠렛은 제거한 다음 세포 상등액만을 얻어 고속 단백질 액체 크로마토그라피(fast protein liquid chromatography system(Bio-Rad Laboratories, Hercules, CA, USA))에 음이온 수지인 하이트랩 에이치피(Hi TrapTM HP) 흡착 컬럼을 장착 하여 엘-리보스 생산에 사용되는 효소액으로서 분리하였다.In addition, the mannose-6-phosphate isomerase mutant produced by overexpression as described above was centrifuged at 6,000 × g for 30 minutes at 6,000 × g, and twice with 0.85% sodium chloride (NaCl). After washing, the cell solution was crushed with a sonicator by adding 50 mM PIPES (pH 7.0) buffer solution and 0.1 mM protease inhibitor (phenylmethylsulfonyl fluoride). The cell lysate was heat-treated at 70 ° C. for 10 minutes and then again centrifuged at 13,000 × g at 4 ° C. for 20 minutes, cell pellets were removed, and only cell supernatant was obtained to obtain a fast protein liquid chromatography system. Rad Laboratories, Hercules, Calif., USA) was equipped with an anion resin Hi Trap TM HP adsorption column and separated as an enzyme solution used for the production of L-ribose.
실시예 8: 만노스 6-인산 이성화효소와 돌연변이 효소의 엘-리불로오스에 대한 specific activity 및 kinetic parameterExample 8 Specific Activity and Kinetic Parameters of Mannose 6-Phosphate Isomerase and Mutant Enzyme for L-Ribulose
8-1:8-1: 써머스 써모필러스Thermos Thermophilus (( Thermus thermophilusThermus thermophilus ) 균주로부터 유래한 만노스 6-인산 이성화 효소 돌연변이체) Mannose 6-phosphate isomerase mutant derived from strain
만노스 6-인산 이성화효소 및 돌연변이 효소의 엘-리불로오스에 대한 specific activity를 측정 및 비교하는 실험을 수행하였다.Experiments were performed to measure and compare the specific activity of mannose 6-phosphate isomerase and mutant enzymes against el-ribulose.
상기 효소 반응은 10 mM 리불로오스, 0.5 mM Cu2+의 금속 이온이 포함된 50 mM PIPES 완충용액(pH 7.0)을 사용하여 75℃에서 5분 동안 수행하였고, 다시 최종 농도 200 mM 염화 수소을 첨가하여 상기 반응을 정지시켰다. 본 발명에서는 효소 활성은 리보오스를 기질로 사용하여 측정되었고, 상기 효소 활성의 효소 1 단위(unit)는 pH 7.0와 75℃에서 분당 1 nmole의 리보오스를 생산하는 양으로 정의하여 비교분석을 원활히 하였다. 또한, 효소 활성의 측정 시 리보오스 농도 및 리불로오스 농도 그리고 다른 당들의 분석은 전기화학적 검출기(electrochemical detector) 및 카보팩 피에이(CarboPacPA) 컬럼 이 장착된 바이오 액체 크로마토그래피(Bio-LC) 시스템 (Dionex ICS-3000, Sunnylvale, CA)을 이용하여 진행되었다. 이 때, 상기 카보팩 피에이(CarboPacPA) 컬럼은 30℃에서 1 ㎖/분 속도로 200 mM 수산화 나트륨을 통과시키도록 하였다.The enzymatic reaction was performed at 75 ° C. for 5 minutes using 50 mM PIPES buffer solution (pH 7.0) containing 10 mM ribulose, 0.5 mM Cu 2+ metal ions, followed by addition of 200 mM hydrogen chloride. The reaction was stopped. In the present invention, the enzyme activity was measured using ribose as a substrate, and the enzyme activity (unit) of the enzyme activity was defined as the amount to produce 1 nmole of ribose per minute at pH 7.0 and 75 ℃ to facilitate the comparative analysis. In addition, the analysis of ribose and ribulose concentrations and other sugars in the measurement of enzyme activity was carried out using a bio-liquid chromatography (Bio-LC) system equipped with an electrochemical detector and a CarboPacPA column. Dionex ICS-3000, Sunnylvale, CA). At this time, the CarboPacPA column was allowed to pass 200 mM sodium hydroxide at 30 ° C. at a rate of 1 ml / min.
그 결과, R142N 돌연변이 효소에서 wild 효소에 비해 엘-리불로오스를 기질로 하였을때 활성이 1.4배 증가하는 것을 확인할 수 있었다. 이에따른 kinetic 실험을 수행한 결과 catalytic efficiency가 374 mM-1s-1 인 wild 효소에 비해 R142N 돌연변이 효소는 579 mM-1s-1 로써 1.5배 향상됨을 확인 할 수 있었다. 이는 현재까지 엘 리불로스에서 엘 리보오스 전환하는 효소 반응 중에서 가장 높은 수치임을 확인할 수 있었다(표 2 참조).As a result, it was confirmed that the activity was increased by 1.4-fold when L- ribulose substrate as compared to wild enzyme in the R142N mutant enzyme. As a result of the kinetic experiments, it was confirmed that the R142N mutant enzyme was 579 mM -1 s -1, which is 1.5 times higher than the wild enzyme having a catalytic efficiency of 374 mM -1 s -1 . It was confirmed that this is the highest level of enzyme reaction of el ribose to el ribose to date (see Table 2).
표 2
Figure PCTKR2010007295-appb-T000002
TABLE 2
Figure PCTKR2010007295-appb-T000002
표 2는 만노스 6-인산 이성화 효소와 그 돌연변이 효소의 엘-리불로스에 대한 specific activity 및 kinetic parameters를 나타낸 것이다.Table 2 shows the specific activity and kinetic parameters of mannose 6-phosphate isomerase and its mutant enzymes for el-ribulose.
8-2:지8-2: 오바실러스 써모디니트리피칸스Obacillus Thermodini Tripicans (( Geobacillus thermodenitrificansGeobacillus thermodenitrificans ) 균주로부터 유래한 만노스 6-인산 이성화 효소 돌연변이체) Mannose 6-phosphate isomerase mutant derived from strain
오바실러스 써모디니트리피칸스(Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화효소와 그 돌연변이체의 엘-리불로오스에 대한 효소 활성을 측정 및 비교하는 실험을 수행하였다.If five Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) derived from a strain mannose-6-phosphate isomerase and El of the mutant-enzyme activity for the re-fire agarose was carried out the measurement and the comparison experiments.
상기 효소 반응은 10 mM 리불로오스, 1 mM Co2+의 금속 이온이 포함된 50 mM PIPES 완충용액(pH 7.0)을 사용하여 70℃에서 5분 동안 수행하였고, 다시 최종 농도 200 mM 염화 수소을 첨가하여 상기 반응을 정지시켰다. 본 발명에서는 효소 활성은 엘-리불로오스를 기질로 사용하여 측정되었고, 상기 효소 활성의 효소 1 단위(unit)는 pH 7.0와 70℃에서 분당 1 nmole의 리보오스를 생산하는 양으로 정의하여 비교분석을 원활히 하였다. 또한, 효소 활성의 측정 시 리보오스 농도 및 리불로오스 농도 그리고 다른 당들의 분석은 전기화학적 검출기(electrochemical detector) 및 카보팩 피에이(CarboPacPA) 컬럼 이 장착된 바이오 액체 크로마토그래피(Bio-LC) 시스템 (Dionex ICS-3000, Sunnylvale, CA)을 이용하여 진행되었다. 이 때, 상기 카보팩 피에이(CarboPacPA) 컬럼은 30℃에서 1 ㎖/분 속도로 200 mM 수산화 나트륨을 통과시키도록 하였다.The enzymatic reaction was performed for 5 minutes at 70 ° C. using 50 mM PIPES buffer solution (pH 7.0) containing 10 mM ribulose, 1 mM Co 2+ metal ions, followed by addition of 200 mM hydrogen chloride. The reaction was stopped. In the present invention, the enzyme activity was measured using L-ribulose as a substrate, and the enzyme activity of 1 unit (unit) of the enzyme activity was defined as the amount to produce 1 nmole of ribose per minute at pH 7.0 and 70 ℃, comparative analysis It was smooth. In addition, the analysis of ribose and ribulose concentrations and other sugars in the measurement of enzyme activity was carried out using a bio-liquid chromatography (Bio-LC) system equipped with an electrochemical detector and a CarboPacPA column. Dionex ICS-3000, Sunnylvale, CA). At this time, the CarboPacPA column was allowed to pass 200 mM sodium hydroxide at 30 ° C. at a rate of 1 ml / min.
그 결과, 4개의 돌연변이 효소에서 wild 효소에 비해 엘 리불로오스를 기질로 하였을 때 활성이 1.2~1.4배 증가하는 것을 확인할 수 있었다. 이때 엘 리불로스에 대한 wild 효소의 specific activity 는 504 U/mg 임을 확인하였다 (표 1 참조). 그에 따른 돌연변이 효소의 DNA 염기 서열및 아미노산 서열을 wild 효소와 비교해본결과, 1~3개의 포인트가 돌연변이가 유발된 것을 확인할 수 있었다. 이는 현재까지 리보스의 생산 중 가장 높은 생산성을 나타낸 것은 지오바실러스 써모디니트리피칸스(Geobacillus thermodenitrificans) 균주 유래의 만노스-6-인산 이성화 효소였지만, 그에 따른 돌연 변이 효소가 보다 높은 활성을 보임을 확인할 수 있었다. 이것은 돌연변이 효소가 보고된 생물학적 엘-리보스 생산에서 가장 높은 생산성을 가진 지오바실러스 써모디니트리피칸스(Geobacillus thermodenitrificans)로부터 유래한 만노스-6-인산 이성화 효소를 능가하는 엘-리보스 생산 효소임을 나타낸다.As a result, it was confirmed that activity was increased by 1.2-1.4 times when erythrose was used as a substrate in comparison with wild enzyme in four mutant enzymes. At this time, it was confirmed that the specific activity of wild enzyme for elibulose was 504 U / mg (see Table 1). As a result of comparing the DNA base sequence and amino acid sequence of the mutant enzyme with the wild enzyme, it was confirmed that 1 to 3 points of mutation were induced. This is not to show a five Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans), but mannose-6-phosphate isomerase strain derived, mutant enzyme has higher activity hence showing the highest productivity of the production of ribose to the present I could confirm it. It biological El with a mutant enzyme report shows that the enzyme produces ribose - if five Bacillus Thermo di NITRY pecan switch (Geobacillus thermodenitrificans) a mannose-6-phosphate isomerase El surpassing derived from having the highest productivity in the production of ribose .
표 3
Enzyme Mutation point Relative activity (%)
Wild None 100
Mutant 1 K21E, N74T, M134R 121
Mutant 2 E67G, T238I 132
Mutant 3 K124R, L129F 131
Mutant 4 N90D 125
TABLE 3
Enzyme Mutation point Relative activity (%)
Wild None 100
Mutant 1 K21E, N74T, M134R 121
Mutant 2 E67G, T238I 132
Mutant 3 K124R, L129F 131
Mutant 4 N90D 125
표 3은 만노스-6-인산 이성화 효소와 돌연변이 효소들의 엘-리불로스에 대한 효소 활성을 나타낸 것이다.Table 3 shows the enzymatic activity of mannose-6-phosphate isomerase and mutant enzymes against el-ribulose.
8-3:지8-3: 오바실러스 써모디니트리피칸스Obacillus Thermodini Tripicans (( Geobacillus thermodenitrificansGeobacillus thermodenitrificans ) 균주로부터 유래한 다른 만노스 6-인산 이성화 효소 돌연변이체Other mannose 6-phosphate isomerase mutants derived from strain
지오바실러스 써모디니트리피칸스(Geobacillus thermodenitrificans) 균주로부터 유래한 만노스-6-인산 이성화효소(mannose 6-phosphate isomerase)를 선별검사(screening)하여 얻은 활성 높은 잔기중에 활성이 가장 높은 두 가지 잔기를 각기 다른 아미노산으로 치환하여 활성이 가장 높은 잔기를 선별하였다.The two most active residues were screened by screening mannose 6-phosphate isomerase derived from the strain of Geobacillus thermodenitrificans. The residues with the highest activity were selected by substitution with different amino acids.
구체적으로 N90잔기와 L129잔기를 각각 다른 성질의 아미노산으로 전환하여 아래 N90A, N90D, N90E, N90H, N90K, N90L, N90Y, L129A, L129F, L129H, L129W, L129Y로 점돌연변이를 진행하여, 기존 야생형(wild type)의 지오바실러스 써모디니트리피칸스 균주로부터 유래한 만노스-6-인산 이성화효소와 활성 실험을 비교하였다. Specifically, the N90 residue and the L129 residue are converted into amino acids having different properties, and then point mutations are performed with the following N90A, N90D, N90E, N90H, N90K, N90L, N90Y, L129A, L129F, L129H, L129W, and L129Y. The activity test was compared with mannose-6-phosphate isomerase derived from wild type Geobacillus thermodinitripicans strain.
본 실험의 선별검사는 Clontech Diversify PCR Random Mutagenesis Kit을 이용하여 실수유발 PCR (error prone PCR)진행하여 케토오스 정량법(ketose assay)를 통해 선별하였다. 그렇게 얻은 돌연변이체(mutant)를 Stratagene에서 나온 QuikChange Site-Directed Mutagenesis Kit를 이용하여 각각 하나의 잔기로 변환, 다른 아미노산으로 치환 혹은 두 개의 돌연변이를 진행하였다. 또한 그 활성은 기존 MPi와 함께 반응을 비교 진행하였다. 반응은 50 mmole/L 피페스버퍼(PIPES buffer)에 보인자(co-factor) 1 mM Co2+를 포함한 0.5 mg/ml의 enzyme을 10 mmol/L 엘-리불로오스(L-ribulose)와 70 에서 10분간 반응하여 고유 활성도(specific activity)를 측정하여 비교하였다.(도 23 및 도 24 참조)The screening test of this experiment was performed by ketose assay using error prone PCR using Clontech Diversify PCR Random Mutagenesis Kit. The resulting mutants were converted to one residue each using a QuikChange Site-Directed Mutagenesis Kit from Stratagene, replaced with another amino acid, or subjected to two mutations. In addition, the activity was compared to the reaction with the existing MPi. The reaction was performed with 10 mmol / L L-ribulose with 0.5 mg / ml of enzyme containing co-factor 1 mM Co 2+ in 50 mmole / L PIPES buffer. The specific activity was measured by comparing the reaction at 70 minutes for 10 minutes (see FIGS. 23 and 24).
8-4: 지오바실러스 써모디니트리피칸스 균주로부터 유래한 만노스-6-인산 이성화효소 두개의 점 돌연변이체 및 생산성 분석8-4: Analysis of Two Point Mutants and Productivity of Mannose-6-Phosphate Isomerase Derived from Geobacillus Thermodinitripicans Strain
지오바실러스 써모디니트리피칸스 균주로부터 유래한 만노스-6-인산 이성화효소를 선별 검사하여 얻은 활성 높은 잔기들중 활성이 가장 높은 두가지 잔기를 한번에 double mutation시켜 그 활성을 비교하였다.Among the highly active residues obtained by screening for mannose-6-phosphate isomerase derived from the Geobacillus thermodinitripicans strain, the two most active residues were double-mutated and compared for their activities.
구체적으로 N90A와 L129F를 함께 doble mutation시켜 더 높아지는 활성을 확인하였다(도 25 참조)Specifically, doble mutations of N90A and L129F together confirmed higher activity (see FIG. 25).
실시예 9: 만노스 6-인산 이성화효소와 돌연변이 효소를 이용한 엘 리불로오스로부터 엘 리보스의 전환 비교Example 9 Comparison of El Ribose to El Ribose Conversion Using Mannose 6-Phosphate Isomerase and Mutant Enzymes
만노스 6-인산 이성화효소와 돌연변이 효소를 이용한 리보스의 생산 방법을 개발하기 위하여, 상기에서 확인한 효소의 최적 pH 7.0 및 효소활성이 절반으로 줄어든 시간을 고려한 온도(65 ℃)에서 10 mM 리불로오스를 가지고 리보스의 시간별 생산량을 측정하였다.In order to develop a method for producing ribose using mannose 6-phosphate isomerase and a mutant enzyme, 10 mM ribulose was prepared at a temperature (65 ° C) considering the optimum pH 7.0 and the time when the enzyme activity was reduced by half. The hourly yield of ribose was measured.
그 결과, 반응 70분 후에 10 mM의 리불로오스에서 리보스로 전환되는 전환율이 wild 효소에서는 51%, R142N 돌연변이 효소는 64% 임을 확인하였다( 도 7 참조). 이는 현재까지 리보스의 생산 중 가장 높은 생산성을 나타낸 것은 써머스 써모필러스(Thermus thermophilus) 유래의 만노스 6-인산 이성화 효소였지만, 그에 따른 돌연 변이 효소인 R142N 돌연변이 효소가 보다 높은 활성을 보임을 확인 할 수 있었다. 이것은 R142N 돌연변이 효소가 보고된 생물학적 엘-리보스 생산에서 가장 높은 생산성 및 생산농도를 가진 써머스 써모필러스(Thermus thermophilus)로부터 유래한 만노스 6-인산 이성화 효소를 능가하는 엘-리보스 생산 효소임을 나타낸다.As a result, it was confirmed that 70 minutes after the reaction, the conversion rate from ribulose to ribose was 51% for wild enzyme and 64% for R142N mutant enzyme (see FIG. 7). This can be confirmed to show it's sseomeoseu Thermo filler (Thermus thermophilus) The origin of the mannose 6-phosphate isomerase, but, mutant enzymes, R142N mutant enzyme is higher activities hence showing the highest productivity of the production of ribose to the present there was. Biological El with a mutant enzyme R142N report shows that the enzyme produces ribose-El that surpassed the mannose 6-phosphate isomerase derived from Thermococcus sseomeoseu pillar's (Thermus thermophilus) with the highest productivity and production levels in ribose production.
이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (15)

  1. 엘-리보스(L-ribose)의 생산에 사용되는 만노스-6-인산 이성화효소(mannose-6-phosphate isomerase).Mannose-6-phosphate isomerase used for the production of L-ribose.
  2. 제 1항에 있어서,상기 만노스-6-인산 이성화효소는 써머스 써모필러스(Thermus thermophilus) 또는 지오바실러스 써모디니트리피칸스(Geobacillus thermodenitrificans)균주로부터 유래한 것을 특징으로 하는 만노스-6-인산 이성화효소.The method of claim 1, wherein the mannose-6-phosphate isomerase is sseomeoseu Thermo filler's (Thermus thermophilus) or geo Bacillus Thermo di NITRY pecan's mannose-6-phosphate isomerase, characterized in that derived from the strain (Geobacillus thermodenitrificans) enzyme.
  3. 제 1항에 있어서, 상기 이성화 효소는 서열번호 1 또는 2의 아미노산 서열을 가지는 것을 특징으로 하는 만노스-6-인산 이성화효소. The mannose-6-phosphate isomerase of claim 1, wherein the isomerase has an amino acid sequence represented by SEQ ID NO: 1 or 2.
  4. 제 1항 내지 제3 항 중 어느 한 항의 효소를 코딩하는 유전자.A gene encoding the enzyme of any one of claims 1 to 3.
  5. 제 4항에 있어서, 상기 유전자는 서열번호 3 또는 4의 염기서열을 가지는 유전자.The gene of claim 4, wherein the gene has a nucleotide sequence of SEQ ID NO: 3 or 4. 6.
  6. 서열번호 서열번호 3 내지 서열번호 12 중 어느 하나의 염기서열을 가지는 만노스-6-인산 이성화효소 유전자를 포함하는 재조합 발현 벡터. Recombinant expression vector comprising a mannose-6-phosphate isomerase gene having the nucleotide sequence of any one of SEQ ID NO: 3 to SEQ ID NO: 12.
  7. 제 6항에 있어서,The method of claim 6,
    상기 재조합 발현벡터는 발현벡터 pET 28(+)a/mannose-6-phosphate isomerase 또는 pTrc 99a/만노스-6-인산 이성화 효소인 재조합 발현벡터.The recombinant expression vector is a recombinant expression vector pET 28 (+) a / mannose-6-phosphate isomerase or pTrc 99a / mannose-6- phosphate isomerase.
  8. a)제 6항 또는 제 7항의 발현벡터로 형질전환된 미생물을 배양하고;a) culturing the microorganism transformed with the expression vector of claim 6;
    b) 상기 미생물로부터 만노스 6-인산 이성화효소를 분리하는 단계를 포함하는 제 1항 내지 제3항 중 어느 한 항의 만노스 6-인산 이성화효소를 제조하는 방법.b) A method for preparing mannose 6-phosphate isomerase according to any one of claims 1 to 3, comprising the step of separating mannose 6-phosphate isomerase from the microorganism.
  9. 제 1항 내지 제3항 중 어느 한 항의 만노스-6-인산 이성화효소를 이용하여 엘-리보스를 생산하는 방법.A method for producing L-ribose using the mannose-6-phosphate isomerase of any one of claims 1 to 3.
  10. a)서열번호 1의 만노스 6-인산 이성화효소의 142번 잔기의 아미노산을 아르지닌(Arg)에서 아스파라긴(Asn)으로 변환시킨 돌연변이체;a) a mutant obtained by converting an amino acid of residue 142 of mannose 6-phosphate isomerase of SEQ ID NO: 1 from arginine (Arg) to asparagine (Asn);
    b) 서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 21번, 74번, 134번 잔기의 아미노산을 각각 라이신(K), 아스파라진(N), 메티오닌(M)에서 각각 글루탐산(E), 트레오닌(T), 아르지닌(R)으로 변환시킨 돌연변이체;b) the amino acids of residues 21, 74 and 134 of mannose 6-phosphate isomerase of SEQ ID NO: 2 in lysine (K), asparagine (N) and methionine (M), respectively Mutants converted to glutamic acid (E), threonine (T), and arginine (R), respectively;
    c) 서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 67번, 238번 잔기의 아미노산을 각각 글루탐산(E), 트레오닌(T)에서 각각 글라이신(G), 아이소루신(I)으로 변환시킨 돌연변이체;c) The amino acids of residues 67 and 238 of mannose 6-phosphate isomerase as set forth in SEQ ID NO: 2 were respectively converted into glycine (G) and isoleucine in glutamic acid (E) and threonine (T), respectively. Mutants converted to I);
    d)서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 124번 잔기의 아미노산을 라이신(K)에서 아르지닌(R)으로 변환시킨 돌연변이체;d) a mutant obtained by converting the amino acid of residue 124 of mannose 6-phosphate isomerase described in SEQ ID NO: 2 from lysine (K) to arginine (R);
    e) 서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 129번 잔기의 아미노산을 루신(L)에서 페닐알라닌(F) 또는 타이로신(Y)으로 변환시킨 돌연변이체; e) a mutant in which amino acid at residue 129 of mannose 6-phosphate isomerase described in SEQ ID NO: 2 is converted from leucine (L) to phenylalanine (F) or tyrosine (Y);
    f) 서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 90번 잔기의 아미노산을 아스파라진(N)에서 알라닌(A),아스파트산(D),히스티딘(H) 또는 류신(L)으로 변환시킨 돌연변이체로 구성된 군으로부터 선택된 만노스 6-인산 이성화효소 돌연변이체;및f) The amino acid of residue 90 of mannose 6-phosphate isomerase as set forth in SEQ ID NO: 2 is substituted with alanine (A), aspartic acid (D), histidine (H) in asparagine (N) or Mannose 6-phosphate isomerase mutants selected from the group consisting of mutants converted to leucine (L); and
    g) 상기 b) 내지 f) 중 어느 하나 이상의 단일 포인트 돌연변이의 조합으로 둘 이상의 해당 잔기에서 원래 아미노산이 b) 내지 f) 중 어느 하나 이상의 해당 돌연변이 아미노산으로 변환시킨 둘 이상의 해당 잔기에서 돌연변이가 수행된 돌연변이체g) a combination of single point mutations of any one or more of b) to f) wherein mutations have been carried out at two or more corresponding residues wherein the original amino acid has been converted from the two or more corresponding residues to the corresponding mutant amino acids of any one or more of b) to f) Mutant
    로 구성된 군으로부터 선택된 하나 이상의 만노스 6-인산 이성화효소 돌연변이체 효소.At least one mannose 6-phosphate isomerase mutant enzyme selected from the group consisting of:
  11. 제 10항의 만노스 6-인산 이성화효소 돌연변이체를 코딩하는 유전자.A gene encoding the mannose 6-phosphate isomerase mutant of claim 10.
  12. 제 11항에 있어서, 상기 유전자는 서열번호 2 내지 서열번호 12에 기재된 염기서열을 가지는 유전자.The gene of claim 11, wherein the gene has a nucleotide sequence set forth in SEQ ID NO: 2 to SEQ ID NO: 12.
  13. 제 10항에 있어서, 상기 g)의 돌연변이체는 서열번호 2에 기재된 만노스 6-인산 이성화효소 (mannose 6-phosphate isomerase)의 90번 잔기의 아미노산을 아스파라진(N)에서 알라닌(A)으로 변환시키고, 129번 잔기의 아미노산을 류신(L)에서 페닐알라닌(F)으로 변환시킨 만노스 6-인산 이성화효소 돌연변이체 효소.The mutant of g) converts the amino acid of residue 90 of mannose 6-phosphate isomerase as set forth in SEQ ID NO: 2 from asparagine (N) to alanine (A). And mannose 6-phosphate isomerase mutant enzyme wherein amino acid of residue 129 is converted from leucine (L) to phenylalanine (F).
  14. 제 10항의 만노스 6-인산 이성화효소 돌연변이체를 포함하는 리보스 생산용 조성물.A composition for producing ribose comprising the mannose 6-phosphate isomerase mutant of claim 10.
  15. 제 10항의 만노스-6-인산 이성화효소 돌연변이체를 이용하여 엘-리보스를 생산하는 방법.A method for producing el-ribose using the mannose-6-phosphate isomerase mutant of claim 10.
PCT/KR2010/007295 2009-10-23 2010-10-22 Mannose 6-phosphate isomerase, mutants thereof, and use thereof WO2011049409A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/503,081 US8609391B2 (en) 2009-10-23 2010-10-22 Mannose-6-phosphate isomerase, mutant thereof, and use thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20090101300 2009-10-23
KR10-2009-0101300 2009-10-23
KR10-2010-0062366 2010-06-29
KR1020100062366A KR101063960B1 (en) 2009-10-23 2010-06-29 Novel mannose-6-phosphate isomerase and variants thereof and uses thereof
KR1020100067901A KR101063961B1 (en) 2010-07-14 2010-07-14 Novel mannose 6-phosphate isomerase mutant and use of the same
KR10-2010-0067901 2010-07-14

Publications (3)

Publication Number Publication Date
WO2011049409A2 WO2011049409A2 (en) 2011-04-28
WO2011049409A9 true WO2011049409A9 (en) 2011-09-15
WO2011049409A3 WO2011049409A3 (en) 2011-11-17

Family

ID=43900853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/007295 WO2011049409A2 (en) 2009-10-23 2010-10-22 Mannose 6-phosphate isomerase, mutants thereof, and use thereof

Country Status (1)

Country Link
WO (1) WO2011049409A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104531656B (en) * 2015-01-05 2018-02-09 安徽省农业科学院水稻研究所 A kind of Phophomannose isomerase gene and its application from chlorella

Also Published As

Publication number Publication date
WO2011049409A3 (en) 2011-11-17
WO2011049409A2 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
WO2014196811A1 (en) Production method for tagatose
WO2018182345A1 (en) Composition for tagatose production and method for tagatose production using same
WO2017018863A1 (en) Hexuronate c4-epimerase mutant with improved conversion activity, and method for producing d-tagatose by using same
WO2018021896A1 (en) Hexuronate c4-epimerase variant having improved d-tagatose conversion activity, and d-tagatose production method using same
WO2018182355A1 (en) Composition for producing tagatose and production method of tagatose using same
WO2018182354A1 (en) Composition for tagatose production and method for tagatose production using same
WO2018093153A1 (en) Novel d-psicose 3-epimerase and method for preparing d-psicose using same
WO2019027173A2 (en) Novel psicose-6-phosphate phosphatase, composition for producing psicose including said enzyme, method for producing psicose using said enzyme
WO2015093831A1 (en) Recombinant microorganism having increased d(-) 2,3-butanediol productivity, and method for producing d(-) 2,3-butanediol by using same
WO2015133678A1 (en) L-arabinose isomerase variant having improved conversion activity and method for producing d-tagatose using same
WO2019098723A1 (en) Novel d-psicose-3-epimerase and method for producing d-psicose by using same
WO2011049409A2 (en) Mannose 6-phosphate isomerase, mutants thereof, and use thereof
KR20100091017A (en) Method for production of l-ribose from l-arabinose by two-step enzyme reactions
WO2019112368A1 (en) Novel psicose-6-phosphate phosphatase, composition for producing psicose comprising same, and method for producing psicose using same
KR101008556B1 (en) Method for Production of L?ribose
WO2014137148A1 (en) L-arabinose isomerase variant having improved conversion activity, and method for producing d-tagatose by using same
WO2012008748A2 (en) Mannose 6-phosphate isomerase mutant derived from geobacillus thermodenitrificans, and production method of l-ribose using same
WO2017164616A1 (en) Methods for preparing 3'-amino-2',3'-dideoxyguanosine by using nucleoside phosphorylases derived from bacillus and adenosine deaminase derived from lactococcus
KR101063960B1 (en) Novel mannose-6-phosphate isomerase and variants thereof and uses thereof
WO2013073775A1 (en) Novel method for preparing metabolites of atorvastatin using bacterial cytochrome p450 and composition therefor
KR101063961B1 (en) Novel mannose 6-phosphate isomerase mutant and use of the same
WO2020067786A1 (en) Novel fructose-4-epimerase and tagatose production method using same
KR101155507B1 (en) Novel mannose 6-phosphate isomerase mutant and use of the same
KR101246852B1 (en) Novel mannose 6-phosphate isomerase mutant and use of the same
KR101247351B1 (en) Novel mannose 6-phosphate isomerase mutant and use of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10825234

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13503081

Country of ref document: US

Ref document number: 12012500783

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10825234

Country of ref document: EP

Kind code of ref document: A2