WO2011049105A1 - Polyimide precursor, and polyimide precursor solution - Google Patents

Polyimide precursor, and polyimide precursor solution Download PDF

Info

Publication number
WO2011049105A1
WO2011049105A1 PCT/JP2010/068436 JP2010068436W WO2011049105A1 WO 2011049105 A1 WO2011049105 A1 WO 2011049105A1 JP 2010068436 W JP2010068436 W JP 2010068436W WO 2011049105 A1 WO2011049105 A1 WO 2011049105A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
polyimide precursor
group
polyimide
carbon atoms
Prior art date
Application number
PCT/JP2010/068436
Other languages
French (fr)
Japanese (ja)
Inventor
洋行 涌井
豪 松岡
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to JP2011513813A priority Critical patent/JPWO2011049105A1/en
Publication of WO2011049105A1 publication Critical patent/WO2011049105A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles

Definitions

  • the present invention relates to a polyimide precursor and a polyimide precursor solution used for forming a surface protective film and an interlayer insulating film for improving the reliability of a semiconductor element.
  • polyimide resin is often used to form a surface protective film and an interlayer insulating film of a semiconductor element (see, for example, Non-Patent Document 1).
  • polyimide resin is required to have a significant performance improvement.
  • the main objective is to reduce the overall device warpage by reducing the thermal expansion difference with low thermal expansion substrates such as silicon wafers. Recently, however, this effect is conspicuous due to the extreme thinning of silicon wafers. Because it has started to appear.
  • the most effective method for reducing the thermal expansion of the polyimide resin is to make the polyimide chemical structure rigid.
  • polyimide resin obtained from p-phenylenediamine and 3,3 ′, 4,4′biphenyltetracarboxylic dianhydride (see, for example, Non-Patent Document 1) or benzoxazole in the main chain A polyimide resin having a structure (see, for example, Patent Document 1) has been proposed.
  • the polyimide resin obtained by such a method generally has poor adhesion to an inorganic substrate such as a silicon wafer. If the adhesion is poor, the polyimide resin is peeled off and swollen in the semiconductor manufacturing process, resulting in poor yield. That is, it is important to impart both low thermal expansion and high adhesion to the polyimide resin.
  • a technique of introducing a siloxane structure into a rigid polyimide structure is effective.
  • polyimide resin obtained by copolymerizing diaminobenzanilide and diamine having a siloxane structure for example, see Patent Document 2
  • acid dianhydride having a siloxane structure and fluorine in the side chain for example, see Patent Document 2
  • a polyimide resin obtained from a benzidine-type diamine having a system substituent for example, see Patent Document 3
  • the former has an amide bond and the latter has a fluorine atom, which is not necessarily a preferable method from the viewpoint of heat resistance, processability, and environmental adaptability.
  • An object of the present invention is to provide a polyimide precursor and a resin composition thereof suitably used as a material constituting a semiconductor device or the like, particularly in a site where dimensional stability, adhesion, and heat resistance are required. To do.
  • the present invention has the following configuration. 1.
  • the following general formula (Formula 1) (wherein R 1 is a tetravalent aromatic ring or aromatic heterocyclic group having 6 to 30 carbon atoms, X is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms) , R 2 represents a divalent aromatic ring group having a benzoxazole structure) and the following general formula (Formula 2) (wherein R 1 is a tetravalent having 6 to 30 carbon atoms)
  • the precursor is 0.10 ⁇ ⁇ B / (A + B) ⁇ ⁇ 0.30 and 0.2 g / d in N-methyl-2-pyrrolidone Polyimide precursor reduced viscosity when measured at 25 ° C. and dissolved such that the concentration of the resin is characterized in that it is a 0.1 ⁇ 5.0dl / g.
  • R 2 in the formula (Chemical Formula 1) is a divalent aromatic group having a benzoxazole structure, and the following general formulas (Chemical Formula 3) to (Chemical Formula 6) (wherein R 4 , R 5 , R 6 , R 7 is at least one selected from the group consisting of an aromatic ring group or a heterocyclic group each independently consisting of a single ring or a plurality of rings.
  • R 3 in the formula (Formula 2) is a divalent organic group having a siloxane structure, and is a structure represented by the following general formula (Formula 7) (wherein m represents an integer of 1 to 30). It is characterized by 1. ⁇ 2.
  • a polyimide precursor solution wherein the polyimide precursor according to any one of the above is dissolved in an organic solvent.
  • the polyimide precursor and its precursor solution of the present invention can reduce the difference in thermal expansion coefficient between the polyimide obtained after coating and thermal cyclization on a low thermal expansion substrate such as a silicon wafer and the substrate, and is good Since high adhesion and high heat resistance are manifested, it is possible to meet demands for improving the performance of semiconductor devices such as heat cycle resistance and heat shock resistance.
  • the present invention has the following general formula (Formula 1) (wherein R 1 is a tetravalent aromatic ring or aromatic heterocyclic group having 6 to 30 carbon atoms, X is a hydrogen atom or 1 to 30 carbon atoms.
  • a repeating unit represented by a valent organic group R 2 represents a divalent aromatic ring group having a benzoxazole structure, and the following general formula (Formula 2) (wherein R 1 has 6 to 30 carbon atoms)
  • a tetravalent aromatic ring or aromatic heterocyclic group, X is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms, and R 3 is a divalent organic group having a siloxane structure.
  • the R 1 component in the general formulas (Chemical Formula 1) and (Chemical Formula 2) is an aromatic ring or aromatic heterocyclic group having 6 to 30 carbon atoms in order to impart heat resistance to the polyimide.
  • Preferred specific examples of R 1 include pyromellitic acid, naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetratetracarboxylic acid, 2,3 ′, 3,4′-biphenyltetratetracarboxylic acid, 2,2 ′, 3,3′-biphenyltetratetracarboxylic acid, 3,3 ′, 4,4′-oxydiphenyltetracarboxylic acid, benzophenone-3,3 ′, 4,4′-tetracarboxylic acid, diphenylsulfone -3,3 ', 4,4'-tetracarboxylic acid, 4,4'-(2,2-hexafluoroisopropylidene)
  • More preferred specific examples for lowering the linear thermal expansion coefficient of polyimide include pyromellitic acid, naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetratetracarboxylic acid, 2,2 ′.
  • Examples include structures derived from -diphenyl-3,3 ', 4,4'-biphenyltetracarboxylic acid and 2,2'-diphenoxy-3,3', 4,4'-biphenyltetracarboxylic acid.
  • the R 2 component in the general formula (Formula 1) is not particularly limited as long as it is a divalent aromatic ring group having a benzoxazole structure, but in order to reduce the linear thermal expansion coefficient of polyimide, Formula (Chemical Formula 3) to (Chemical Formula 6) (wherein R 4 , R 5 , R 6 and R 7 each independently represents an aromatic ring group or a heterocyclic group composed of a single ring or a plurality of rings.
  • R 2 component It is preferably a divalent aromatic group having a benzoxazole structure represented by any one of Particularly preferable specific examples of the R 2 component include the following general formula (Chemical Formula 8) among the above general formula (Chemical Formula 3), particularly the following general formula (Chemical Formula 9) among the above general formula (Chemical Formula 4), Of the general formula (Chemical formula 5), the following general formulas (Chemical formula 10) to (Chemical formula 13) are particularly preferable, and among the general formula (Chemical formula 6), the following general formulas (Chemical formula 14) to (Chemical formula 16) are particularly preferable.
  • the R 2 component include the following general formula (Chemical Formula 8) among the above general formula (Chemical Formula 3), particularly the following general formula (Chemical Formula 9) among the above general formula (Chemical Formula 4), Of the general formula (Chemical formula 5), the following general formulas (Chemical formula 10) to (Chemical formula 13) are particularly preferable, and among the general formula
  • the R 3 component in the general formula (Chemical Formula 2) is not particularly limited as long as it is a divalent organic group having a siloxane structure, but in order to impart heat resistance to the polyimide, the following general formula (Chemical Formula 7) ( In the formula, m represents an integer of 1 to 30).
  • a particularly preferred specific example is a structure represented by the following general formula (Formula 17).
  • the X component in the general formulas (Chemical Formula 1) and (Chemical Formula 2) is preferably a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • Specific examples of the monovalent organic group having 1 to 30 carbon atoms include methyl group, ethyl group, propan-1-yl group, propan-2-yl group, butan-1-yl group, butan-2-yl group, and 2-methyl. Examples include propan-1-yl group, 2-methylpropan-2-yl group, benzyl group, 2-hydroxybenzyl group, 3-hydroxybenzyl group, 4-hydroxybenzyl group and the like.
  • the total number (A + B) of the number of repeating units (A) represented by the formula (Chemical Formula 1) and the number of repeating units (B) represented by the Formula (Chemical Formula 2) in the polyimide precursor is not particularly limited, but in order to reduce the linear thermal expansion coefficient of polyimide and increase the heat resistance, it is preferably 60% or more, more preferably 70% or more, and 80% More preferably, it is the above.
  • the method for polymerizing the polyimide precursor of the present invention includes a polymerization method in which tetracarboxylic acid or a derivative thereof and a diamine are mixed in an organic solvent, but is not particularly limited to this polymerization method.
  • the monomer mixing ratio (molar ratio) when polymerizing the polyimide precursor of the present invention is expressed in terms of acid dianhydride / diamine, preferably 0.800 to 1.200 / 1.200 to 0.800. It is preferably 0.850 to 1.150 / 1.15 to 0.850, more preferably 0.900 to 1.100 / 1.100 to 0.900.
  • an end-capping agent such as dicarboxylic acid or a derivative thereof, tricarboxylic acid or a derivative thereof, aniline or a derivative thereof can be used for molecular end-capping.
  • Preferred for use in the present invention are phthalic anhydride, maleic anhydride, and ethynylaniline, and the use of maleic anhydride is more preferred.
  • the amount of the end-capping agent used is 0.001 to 1.0 mole ratio per mole of monomer component.
  • the organic solvent used for polymerizing the polyimide precursor of the present invention is not particularly limited as long as it dissolves both the raw material monomer and the polyimide precursor, and examples thereof include o-cresol, m-cresol, p. -Cresol, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, sulfolane, halogen These solvents can be used, and these solvents can be used alone or in combination.
  • the organic solvent may be used in an amount sufficient to dissolve the charged monomer, and is usually 1 to 50% by mass, preferably 5 to 30% by mass.
  • the polymerization reaction is continuously carried out in a temperature range of 0 to 80 ° C. for 10 minutes to 50 hours with stirring and / or mixing in an organic solvent.
  • the polymerization reaction can be divided or the temperature can be increased or decreased as necessary. It doesn't matter.
  • the order of addition of monomers and the like is not particularly limited, but it is preferable to add tetracarboxylic acid or a derivative thereof to the diamine solution.
  • an additive may be added for the purpose of improving the performance of the polyimide.
  • additives vary depending on the purpose and are not particularly limited. Further, the addition method and the addition time are not particularly limited. Examples of the additive include known organic and inorganic fillers such as metal oxides such as silicon oxide, titanium oxide, and aluminum oxide, and phosphates such as calcium phosphate, calcium hydrogen phosphate, and calcium pyrophosphate.
  • the polyimide precursor resin obtained by the reaction may be reprecipitated from the reaction solution using an appropriate poor solvent.
  • the poor solvent include acetone, methanol, ethanol, 2-propanol, and water, but are not particularly limited as long as they can be efficiently reprecipitated.
  • the solvent which removes the residual reaction solvent after reprecipitation It is preferable to use the solvent used at the time of reprecipitation.
  • the reduced viscosity is 0.1 to 5.0 dl / g when dissolved in N-methyl-2-pyrrolidone so as to have a resin concentration of 0.2 g / dl and measured at 25 ° C.
  • it is preferably 0.2 to 4.0 dl / g, 0.3 to 2 More preferably, it is 0.0 dl / g.
  • the reduced viscosity is less than 0.1 dl / g, the heat resistance of the imide film is remarkably impaired, and when the reduced viscosity is more than 5.0 dl / g, the viscosity of the polyimide precursor solution is increased and the handling property is remarkably deteriorated.
  • the reaction solution may be used as it is as a polyimide precursor solution, or the polyimide precursor reprecipitated from the reaction solution by the above method may be dissolved again in a solvent to obtain a polyimide precursor solution.
  • a solvent to obtain a polyimide precursor solution.
  • it is not particularly limited as long as it efficiently dissolves the polyimide precursor.
  • organic solvents such as -acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, ⁇ -butyrolactone, sulfolane, and halogenated phenols.
  • the means for mixing the polyimide precursor and the organic solvent is not particularly limited.
  • a normal stirring blade a method of mixing and stirring using a stirring blade for high viscosity, a multi-screw extruder, or Examples of the method include mixing and stirring using a method using a static mixer and the like, and further using a method using a mixing and dispersing machine for high viscosity such as a roll mill.
  • the composition of the polyimide precursor in the polyimide resin precursor solution obtained in the present invention is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. in this case. Since the viscosity is 0.1 to 1000 Pa ⁇ s, preferably 0.5 to 500 Pa ⁇ s, more preferably 1 to 10 Pa ⁇ s, as measured with a Brookfield viscometer, stable liquid feeding is possible. preferable.
  • polyimide precursor resin and polyimide precursor resin composition of the present invention From the polyimide precursor resin and polyimide precursor resin composition of the present invention, a polyimide resin, a polyimide coating film, and a polyimide film that have a low coefficient of linear expansion, high heat resistance, and high adhesion to a substrate such as a silicon wafer A polyimide molded body such as is obtained.
  • a method for obtaining the polyimide molded body is not particularly limited, and examples thereof include a method of applying the polyimide precursor resin composition to a substrate and then heating imidization.
  • the method for applying the polyimide precursor resin composition to the base material is not particularly limited, for example, a method of spin coating such as spin coating, a method using a squeegee such as a doctor blade, applicator, comma coater, Examples thereof include a screen printing method.
  • the substrate for applying the polyimide precursor resin composition to the substrate is not particularly limited.
  • an inorganic substrate such as a silicon wafer or a ceramic plate, or a metal substrate such as a copper foil or an SUS foil.
  • organic substrates such as polyimide films and polyethylene terephthalate films.
  • the heating conditions for heating imidization of the polyimide precursor resin composition are not particularly limited, but after preheating at a temperature of 50 ° C. to 150 ° C., preferably 60 ° C. to 130 ° C., 20 ° C. / Min or less, preferably 10 ° C / min or less.
  • a preferable example is a condition where the temperature is increased at a rate of temperature increase of 5 ° C./min or less and the final heating is performed at a temperature of 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 350 ° C. or higher.
  • the glass transition temperature is 250 ° C. or higher, preferably 270 ° C. or higher, more preferably 300 ° C. or higher, while being closely adhered to a substrate such as a silicon wafer, and the thermal decomposition temperature (5% weight loss temperature).
  • a polyimide resin, a polyimide coating film and a polyimide film can be obtained which are as low as 5 to 25 ppm / ° C. or less.
  • Glass transition temperature of polyimide film The obtained polyimide film was subjected to DSC measurement under the following conditions, and the glass transition point (Tg) was determined under the following measurement conditions in accordance with JIS K7121.
  • Adhesion rate of polyimide resin coating film A 1 mm x 1 mm grid (100 squares) was created in accordance with JIS K 5600 on the obtained silicon wafer with a polyimide resin coating film, and a cello tape (registered trademark) peel test was performed. , The remaining film rate was defined as the adhesion rate.
  • PMDA pyromellitic dianhydride
  • DAMBO 5-amino-2- (p-aminophenyl) benzoxazole (Chemical Formula 9)
  • PBABO 2,2′-p-phenylenebis (5-aminobenzoxazole) (Chemical formula 14)
  • 5,4-DAPBBO 2,6- (4,4′-diaminodiphenyl) benzo [1,2-d: 5,4-d ′] bisoxazole
  • 4,5-DAPBBO 2,6- (4,4′-diaminodiphenyl) benzo [1,2-d: 4,5-d ′] bisoxazole
  • APDS 1,3-bis (3-aminopropyl) -1,1,3,3, -tetramethyldisiloxane
  • ODA 4,4′-diaminodiphenyl ether MA: maleic anhydride
  • Example 1 The inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, and then 5-amino-2- (p-aminophenyl) benzoxazole 20.27 g (0.090 mol), 1, 3- (3 -Aminopropyl) -1,1,3,3-tetramethyldisiloxane 2.63 g (0.010 mol) and N-methyl-2-pyrrolidone 178.16 g were introduced and completely dissolved. When 20.07 g (0.092 mol) of anhydride and 1.57 g (0.016 mol) of maleic anhydride were introduced and stirred at a reaction temperature of 25 ° C.
  • a yellow polyimide precursor resin solution was obtained.
  • the reduced viscosity of the obtained polyimide precursor resin was 0.60 dl / g.
  • 5 g of the obtained polyimide precursor resin solution was introduced into 200 g of 2-propanol to obtain a solid polyimide precursor resin. Further, the polyimide precursor resin was washed with 2-propanol, and then at 60 ° C. for 24 hours.
  • two silicon wafers having a diameter of 8 inches were prepared, and the obtained polyimide precursor resin solution was spin-coated on each of the two sheets under a condition of 2000 rpm ⁇ 30 seconds using a spin coater, and then heated at 60 ° C. on a hot plate. By drying for 30 minutes, two silicon wafers with polyimide precursor resin were obtained.
  • the polyimide precursor resin was peeled from one of the two obtained silicon wafers with a polyimide precursor resin, and fixed to a metal frame.
  • the polyimide precursor resin coating film fixed to the metal frame and the remaining one of the two silicon wafers with the polyimide precursor resin were put into a muffle furnace under a nitrogen atmosphere, and the temperature was increased from 100 ° C.
  • the temperature was raised over a period of time, and heating was further performed at a temperature of 350 ° C. for 60 minutes to obtain a polyimide film and a silicon wafer with a polyimide resin.
  • the obtained polyimide film had a thickness of 5 ⁇ m, a linear thermal expansion coefficient of 0.5 ppm / ° C., a glass transition temperature of 380 ° C., and a thermal decomposition temperature of 550 ° C.
  • the adhesive rate was 50%. *
  • Examples 2 to 10 In the same manner as in Example 1, adjust the polyimide precursor solution at the blending ratio shown in Table 1 and Table 2, and further create a polyimide film and a polyimide resin coated silicon wafer by the same method as in Example 1. The linear thermal expansion coefficient, glass transition temperature, thermal decomposition temperature, and adhesion rate were evaluated. The results are shown in Tables 1 and 2.
  • the polyimide precursor of the present invention and the resin composition thereof can be applied to a low thermal expansion substrate such as a silicon wafer, and the difference in thermal expansion coefficient between the polyimide obtained after thermal cyclization and the substrate can be reduced, and is good. Adhesiveness and high heat resistance are manifested, so it can meet the demands for improving the performance of semiconductor devices such as heat cycle resistance and heat shock resistance, and meet the market needs for higher functionality, smaller and thinner electronic devices. I can respond. Therefore, it is important to contribute to the industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Disclosed are: a polyimide precursor which is suitable for use as a constituent material for a semiconductor device, especially for use in portions that require dimensional stability, adhesion and heat resistance; and a resin composition of the polyimide precursor. Specifically disclosed is a polyimide precursor which contains at least a repeating unit represented by general formula (1) (wherein R1 represents a tetravalent aromatic ring or aromatic heterocyclic ring group having 6-30 carbon atoms; X represents a hydrogen atom or a monovalent organic group having 1-30 carbon atoms; and R2 represents a divalent aromatic ring group having a benzoxazole structure) and a repeating unit represented by general formula (2) (wherein R1 represents a tetravalent aromatic ring or aromatic heterocyclic ring group having 6-30 carbon atoms; X represents a hydrogen atom or a monovalent organic group having 1-30 carbon atoms; and R3 represents a divalent organic group having a siloxane structure). The polyimide precursor is characterized in that the molar relation between the repeating unit (A) represented by formula (1) and the repeating unit (B) represented by formula (2) satisfies 0.10 ≤ {B/(A + B)} ≤ 0.30 when obtained from the NMR proton peak area ratio, and the reduced viscosity as measured at 25˚C by dissolving the polyimide precursor in N-methyl-2-pyrrolidone so as to have a resin concentration of 0.2 g/dl is 0.1-5.0 dl/g.

Description

ポリイミド前駆体及びポリイミド前駆体溶液Polyimide precursor and polyimide precursor solution
本発明は、半導体素子の信頼性向上のための表面保護膜や層間絶縁膜の形成に使用されるポリイミド前駆体およびポリイミド前駆体溶液に関する。 The present invention relates to a polyimide precursor and a polyimide precursor solution used for forming a surface protective film and an interlayer insulating film for improving the reliability of a semiconductor element.
近年、メモリやマイクロプロセッサーなどの主要デバイスの生産性向上に対応するように半導体素子の高集積化と大型化とが進められ、また、情報機器用デバイスの薄型パッケージングに対応するように封止樹脂パッケージの薄型化と小型化とが進められてきている。そして、これら事情に伴って、これらに使用される表面保護膜や層間絶縁膜に対しても耐熱サイクル性、耐熱ショック性などの大幅な性能向上が要求されるようになってきている。 In recent years, semiconductor devices have been highly integrated and large-sized to cope with productivity improvements of major devices such as memory and microprocessors, and sealed to accommodate thin packaging of information device devices. Thinning and downsizing of resin packages have been promoted. Along with these circumstances, the surface protective film and interlayer insulating film used for these have been required to significantly improve performance such as heat cycle resistance and heat shock resistance.
一方、半導体素子の表面保護膜や層間絶縁膜の形成にはポリイミド樹脂がしばしば使用されており(例えば、非特許文献1参照)、上述の表面保護膜や層間絶縁膜への性能向上の要求と相まって、ポリイミド樹脂にも大幅な性能向上が要求されるようになってきている。特に最近では、ポリイミド樹脂の低熱膨張化に対する要望が強くなってきている。シリコンウェハなどの低熱膨張基材との熱膨張差を小さくしてデバイス全体の反りを低減させることが主たる目的であるが、最近では、シリコンウェハの極端な薄型化に相まって、この効果が顕著に現れて始めてきているからである。 On the other hand, polyimide resin is often used to form a surface protective film and an interlayer insulating film of a semiconductor element (see, for example, Non-Patent Document 1). In combination, polyimide resin is required to have a significant performance improvement. In particular, recently, there has been a strong demand for low thermal expansion of polyimide resins. The main objective is to reduce the overall device warpage by reducing the thermal expansion difference with low thermal expansion substrates such as silicon wafers. Recently, however, this effect is conspicuous due to the extreme thinning of silicon wafers. Because it has started to appear.
ポリイミド樹脂を低熱膨張化させる手法としては、ポリイミドの化学構造を剛直な構造にする手法が最も有効である。この手法を用いたものとして、p-フェニレンジアミンと3,3’、4,4’ビフェニルテトラカルボン酸二無水物とから得られるポリイミド樹脂(例えば、非特許文献1参照)や主鎖にベンゾオキサゾール構造を有するポリイミド樹脂(例えば、特許文献1参照)などが提案されている。ただし、このような手法によって得られたポリイミド樹脂は、シリコンウェハなどの無機基材に対する密着性が総じて悪い。密着性が悪いと半導体製造工程でポリイミド樹脂の剥離や膨れが発生して歩留まりが悪くなる。すなわち、ポリイミド樹脂に対して低熱膨張化と高密着性を両立させて付与することが重要となる。 The most effective method for reducing the thermal expansion of the polyimide resin is to make the polyimide chemical structure rigid. Using this method, polyimide resin obtained from p-phenylenediamine and 3,3 ′, 4,4′biphenyltetracarboxylic dianhydride (see, for example, Non-Patent Document 1) or benzoxazole in the main chain A polyimide resin having a structure (see, for example, Patent Document 1) has been proposed. However, the polyimide resin obtained by such a method generally has poor adhesion to an inorganic substrate such as a silicon wafer. If the adhesion is poor, the polyimide resin is peeled off and swollen in the semiconductor manufacturing process, resulting in poor yield. That is, it is important to impart both low thermal expansion and high adhesion to the polyimide resin.
特開平7-316294号公報JP 7-316294 A 特開平6-345866号公報JP-A-6-345866 特開平10-326011号公報Japanese Patent Laid-Open No. 10-326011 特開2004-285129号公報JP 2004-285129 A
低熱膨張化と高密着性を両立させる手法としては、剛直なポリイミド構造にシロキサン構造を導入する手法が有効である。この手法を用いたものとして、ジアミノベンズアニリドとシロキサン構造を有するジアミンを共重合させて得られたポリイミド樹脂(例えば、特許文献2参照)や、シロキサン構造を有する酸二無水物と側鎖にフッ素系置換基を有するベンジジン型ジアミンから得られたポリイミド樹脂(例えば、特許文献3参照)などが提案されている。しかしながら、前者はアミド結合を有する点で、後者はフッ素原子を有する点で、耐熱性、加工性、環境適応性の観点から必ずしも好ましい手法であるとはいえない。 As a technique for achieving both low thermal expansion and high adhesion, a technique of introducing a siloxane structure into a rigid polyimide structure is effective. Using this technique, polyimide resin obtained by copolymerizing diaminobenzanilide and diamine having a siloxane structure (for example, see Patent Document 2), acid dianhydride having a siloxane structure and fluorine in the side chain. A polyimide resin obtained from a benzidine-type diamine having a system substituent (for example, see Patent Document 3) has been proposed. However, the former has an amide bond and the latter has a fluorine atom, which is not necessarily a preferable method from the viewpoint of heat resistance, processability, and environmental adaptability.
また、他の手法として、剛直な酸二無水物と剛直なジアミンから得られるポリイミドの末端に感光性基を付与した感光性ポリイミド樹脂が提案されている(例えば、特許文献4参照)。しかし、この手法では光架橋助剤が多量に添加されているため、これにおいても耐熱性の観点から必ずしも好ましい手法であるとはいえない。 As another technique, a photosensitive polyimide resin in which a photosensitive group is added to a terminal of a polyimide obtained from a rigid acid dianhydride and a rigid diamine has been proposed (for example, see Patent Document 4). However, since a large amount of photocrosslinking assistant is added in this method, it is not always a preferable method from the viewpoint of heat resistance.
本発明は、半導体デバイスなどを構成する材料として、特に寸法安定性、密着性、耐熱性が必要とされる部位に好適に利用されるポリイミド前駆体及びその樹脂組成物を提供することを目的とする。 An object of the present invention is to provide a polyimide precursor and a resin composition thereof suitably used as a material constituting a semiconductor device or the like, particularly in a site where dimensional stability, adhesion, and heat resistance are required. To do.
本発明者らは、かかる状況に鑑み鋭意研究を続けた結果、次なる発明に到達した。すなわち本発明は以下の構成になるものである。
1.下記の一般式(化1)(式中、Rは炭素数6~30の4価の芳香族環または芳香族複素環基、Xは水素原子もしくは炭素数1~30の1価の有機基、Rはベンゾオキサゾール構造を有する2価の芳香族環基を示す)で表される繰り返し単位と下記の一般式(化2)(式中、Rは炭素数6~30の4価の芳香族環または芳香族複素環基、Xは水素原子もしくは炭素数1~30の1価の有機基、Rはシロキサン構造を有する2価の有機基
)で表される繰り返し単位を少なくとも含むポリイミド前駆体であって、前記式(化1)で表される繰り返し単位数をAとし、前記式(化2)で表される繰り返し単位数をBとした場合に、0.10≦{B/(A+B)}≦0.30の関係を満たしており、N-メチル-2-ピロリドン中に0.2g/dlの樹脂濃度となるように溶解させて25℃で測定した時の還元粘度が0.1~5.0dl/gであることを特徴とするポリイミド前駆体。
As a result of continuing intensive studies in view of such circumstances, the present inventors have reached the next invention. That is, the present invention has the following configuration.
1. The following general formula (Formula 1) (wherein R 1 is a tetravalent aromatic ring or aromatic heterocyclic group having 6 to 30 carbon atoms, X is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms) , R 2 represents a divalent aromatic ring group having a benzoxazole structure) and the following general formula (Formula 2) (wherein R 1 is a tetravalent having 6 to 30 carbon atoms) A polyimide containing at least a repeating unit represented by an aromatic ring or an aromatic heterocyclic group, X is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms, and R 3 is a divalent organic group having a siloxane structure. When the number of repeating units represented by the formula (Chemical Formula 1) is A and the number of repeating units represented by the Formula (Chemical Formula 2) is B, the precursor is 0.10 ≦ {B / (A + B)} ≦ 0.30 and 0.2 g / d in N-methyl-2-pyrrolidone Polyimide precursor reduced viscosity when measured at 25 ° C. and dissolved such that the concentration of the resin is characterized in that it is a 0.1 ~ 5.0dl / g.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
2.前記式(化1)のRがベンゾオキサゾール構造を有する2価の芳香族基であり、下記の一般式(化3)~(化6)(式中、R、R、R、Rは、それぞれ独立して単環または複数の環から構成される芳香族環基または複素環基を表す)からなる群から選ばれる少なくとも1種からなることを特徴とする1.に記載のポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000009
2. R 2 in the formula (Chemical Formula 1) is a divalent aromatic group having a benzoxazole structure, and the following general formulas (Chemical Formula 3) to (Chemical Formula 6) (wherein R 4 , R 5 , R 6 , R 7 is at least one selected from the group consisting of an aromatic ring group or a heterocyclic group each independently consisting of a single ring or a plurality of rings. The polyimide precursor described in 1.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
3.前記式(化2)のRがシロキサン構造を有する2価の有機基であり、下記の一般式(化7)(式中、mは1~30の整数を表す)に示される構造であることを特徴とする1.~2.に記載のポリイミド前駆体。
Figure JPOXMLDOC01-appb-C000013
3. R 3 in the formula (Formula 2) is a divalent organic group having a siloxane structure, and is a structure represented by the following general formula (Formula 7) (wherein m represents an integer of 1 to 30). It is characterized by 1. ~ 2. The polyimide precursor described in 1.
Figure JPOXMLDOC01-appb-C000014
4.1.~3。のいずれかに記載のポリイミド前駆体が有機溶剤に溶解していることを特徴とするポリイミド前駆体溶液。
Figure JPOXMLDOC01-appb-C000014
4.1. ~ 3. A polyimide precursor solution, wherein the polyimide precursor according to any one of the above is dissolved in an organic solvent.
本発明のポリイミド前駆体およびその前駆体溶液は、シリコンウェハなどの低熱膨張基材の上に塗布、熱環化した後に得られるポリイミドと基材との熱膨張係数の差を小さくでき、なおかつ良好な密着性と高い耐熱性が発現するので、耐熱サイクル性、耐熱ショック性など、半導体デバイスの性能向上の要求に応えることができる。 The polyimide precursor and its precursor solution of the present invention can reduce the difference in thermal expansion coefficient between the polyimide obtained after coating and thermal cyclization on a low thermal expansion substrate such as a silicon wafer and the substrate, and is good Since high adhesion and high heat resistance are manifested, it is possible to meet demands for improving the performance of semiconductor devices such as heat cycle resistance and heat shock resistance.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明は、下記の一般式(化1)(式中、Rは炭素数6~30の4価の芳香族環または芳香族複素環基、Xは水素原子もしくは炭素数1~30の1価の有機基、Rはベンゾオキサゾール構造を有する2価の芳香族環基を示す)で表される繰り返し単位と下記の一般式(化2)(式中、Rは炭素数6~30の4価の芳香族環または芳香族複素環基、Xは水素原子もしくは炭素数1~30の1価の有機基、Rはシロキサン構造を有する2価の
有機基)で表される繰り返し単位を少なくとも含むポリイミド前駆体であって、前記式(化1)で表される繰り返し単位数をAとし、前記式(化2)で表される繰り返し単位数をBとした場合に、0.10≦{B/(A+B)}≦0.30の関係を満たしており、N-メチル-2-ピロリドン中に0.2g/dlの樹脂濃度となるように溶解させて25℃で測定した時の還元粘度が0.1~5.0dl/gであることを特徴とする。
The present invention has the following general formula (Formula 1) (wherein R 1 is a tetravalent aromatic ring or aromatic heterocyclic group having 6 to 30 carbon atoms, X is a hydrogen atom or 1 to 30 carbon atoms. A repeating unit represented by a valent organic group, R 2 represents a divalent aromatic ring group having a benzoxazole structure, and the following general formula (Formula 2) (wherein R 1 has 6 to 30 carbon atoms) A tetravalent aromatic ring or aromatic heterocyclic group, X is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms, and R 3 is a divalent organic group having a siloxane structure. When the number of repeating units represented by the formula (Chemical Formula 1) is A and the number of repeating units represented by the Formula (Chemical Formula 2) is B, it is 0.10. ≦ {B / (A + B)} ≦ 0.30 is satisfied, and 0 in N-methyl-2-pyrrolidone Reduced viscosity as measured at 25 ° C. and dissolved at a resin concentration of 2 g / dl is characterized in that it is a 0.1 ~ 5.0dl / g.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
前記一般式(化1)および(化2)中のR成分としては、ポリイミドに耐熱性を持たせるためにも、炭素数6~30の芳香族環または芳香族複素環基であることが好ましい。Rの好ましい具体例としては、ピロメリット酸、ナフタレンテトラカルボン酸、3,3’,4,4’―ビフェニルテトラテトラカルボン酸、2,3’,3,4’―ビフェニルテトラテトラカルボン酸、2,2’,3,3’―ビフェニルテトラテトラカルボン酸、3,3’,4,4’-オキシジフェニルテトラカルボン酸、ベンゾフェノン-3,3’,4,4’―テトラカルボン酸、ジフェニルスルホン-3,3’,4,4’―テトラカルボン酸、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸、ジフェニルメロフェニックジアンハイドライド、2,2’-ジフェニル-3,3’,4,4’―ビフェニルテトラカルボン酸、2,2’-ジフェノキシ-3,3’,4,4’―ビフェニルテトラカルボン酸などといったテトラカルボン酸由来の構造などが挙げられ、ポリイミドの線熱膨張係数を低くするためのより好ましい具体例として、ピロメリット酸、ナフタレンテトラカルボン酸、3,3’,4,4’―ビフェニルテトラテトラカルボン酸、2,2’-ジフェニル-3,3’,4,4’―ビフェニルテトラカルボン酸、2,2’-ジフェノキシ-3,3’,4,4’―ビフェニルテトラカルボン酸由来の構造が挙げられる。 The R 1 component in the general formulas (Chemical Formula 1) and (Chemical Formula 2) is an aromatic ring or aromatic heterocyclic group having 6 to 30 carbon atoms in order to impart heat resistance to the polyimide. preferable. Preferred specific examples of R 1 include pyromellitic acid, naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetratetracarboxylic acid, 2,3 ′, 3,4′-biphenyltetratetracarboxylic acid, 2,2 ′, 3,3′-biphenyltetratetracarboxylic acid, 3,3 ′, 4,4′-oxydiphenyltetracarboxylic acid, benzophenone-3,3 ′, 4,4′-tetracarboxylic acid, diphenylsulfone -3,3 ', 4,4'-tetracarboxylic acid, 4,4'-(2,2-hexafluoroisopropylidene) diphthalic acid, diphenyl melophene dianhydride, 2,2'-diphenyl-3,3 ' , 4,4′-biphenyltetracarboxylic acid, 2,2′-diphenoxy-3,3 ′, 4,4′-biphenyltetracarboxylic acid, etc. More preferred specific examples for lowering the linear thermal expansion coefficient of polyimide include pyromellitic acid, naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetratetracarboxylic acid, 2,2 ′. Examples include structures derived from -diphenyl-3,3 ', 4,4'-biphenyltetracarboxylic acid and 2,2'-diphenoxy-3,3', 4,4'-biphenyltetracarboxylic acid.
 前記一般式(化1)中のR成分としては、ベンゾオキサゾール構造を有する2価の芳香族環基であれば特に限定されないが、ポリイミドの線熱膨張係数を低くするために、下記の一般式(化3)~(化6)(式中、R、R、R、Rは、それぞれ独立して単環または複数の環から構成される芳香族環基または複素環基を表す)のいずれかで表されるベンゾオキサゾール構造を有する2価の芳香族基であることが好ましい。R成分の特に好ましい具体例としては、前記一般式(化3)のうち特に下記一般式(化8)が、前記一般式(化4)のうち特に下記一般式(化9)が、前記一般式(化5)のうち特に下記一般式(化10)~(化13)が、前記一般式(化6)のうち特に下記一般式(化14)~(化16)が、それぞれ好ましい。 The R 2 component in the general formula (Formula 1) is not particularly limited as long as it is a divalent aromatic ring group having a benzoxazole structure, but in order to reduce the linear thermal expansion coefficient of polyimide, Formula (Chemical Formula 3) to (Chemical Formula 6) (wherein R 4 , R 5 , R 6 and R 7 each independently represents an aromatic ring group or a heterocyclic group composed of a single ring or a plurality of rings. It is preferably a divalent aromatic group having a benzoxazole structure represented by any one of Particularly preferable specific examples of the R 2 component include the following general formula (Chemical Formula 8) among the above general formula (Chemical Formula 3), particularly the following general formula (Chemical Formula 9) among the above general formula (Chemical Formula 4), Of the general formula (Chemical formula 5), the following general formulas (Chemical formula 10) to (Chemical formula 13) are particularly preferable, and among the general formula (Chemical formula 6), the following general formulas (Chemical formula 14) to (Chemical formula 16) are particularly preferable.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 前記一般式(化2)中のR3成分としては、シロキサン構造を有する2価の有機基であ
れば特に限定されないが、ポリイミドに耐熱性を持たせるために、下記一般式(化7)(式中、mは1~30の整数を表す)に示される構造であることが好ましい。特に好ましい具体例としては、下記一般式(化17)に示される構造が挙げられる。
The R 3 component in the general formula (Chemical Formula 2) is not particularly limited as long as it is a divalent organic group having a siloxane structure, but in order to impart heat resistance to the polyimide, the following general formula (Chemical Formula 7) ( In the formula, m represents an integer of 1 to 30). A particularly preferred specific example is a structure represented by the following general formula (Formula 17).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 前記一般式(化1)および(化2)中のX成分としては、水素原子もしくは炭素数1~30の1価の有機基であることが好ましい。炭素数1~30の1価の有機基の具体例としては、メチル基、エチル基、プロパンー1-イル基、プロパンー2-イル基、ブタンー1-イル基、ブタンー2-イル基、2―メチルプロパンー1-イル基、2―メチルプロパンー2-イル基、ベンジル基、2-ヒドロキシベンジル基、3-ヒドロキシベンジル基、4-ヒドロキシベンジル基などが挙げられる。 The X component in the general formulas (Chemical Formula 1) and (Chemical Formula 2) is preferably a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms. Specific examples of the monovalent organic group having 1 to 30 carbon atoms include methyl group, ethyl group, propan-1-yl group, propan-2-yl group, butan-1-yl group, butan-2-yl group, and 2-methyl. Examples include propan-1-yl group, 2-methylpropan-2-yl group, benzyl group, 2-hydroxybenzyl group, 3-hydroxybenzyl group, 4-hydroxybenzyl group and the like.
本発明では、前記式(化1)で表される繰り返し単位数をAとし、前記式(化2)で表される繰り返し単位数をBとした場合に、0.10≦{B/(A+B)}≦0.30の関係を満たしていることが必要であるが、密着性と低線熱膨張係数をバランスよく両立させるためには、0.15≦{B/(A+B)}≦0.25となっていることがより好ましい。{B
/(A+B)}<0.10となるとシリコンウェーハなどの基材への密着性が発現しない
し、{B/(A+B)}>0.30となるとポリイミドの線熱膨張係数が高くなってしまい、なおかつ耐熱性を損ねる。
In the present invention, when A is the number of repeating units represented by the formula (Formula 1) and B is the number of repeating units represented by the Formula (Formula 2), 0.10 ≦ {B / (A + B) )} ≦ 0.30 must be satisfied, but in order to achieve a good balance between adhesion and low linear thermal expansion coefficient, 0.15 ≦ {B / (A + B)} ≦ 0. More preferably, it is 25. {B
/(A+B)}<0.10, adhesion to a substrate such as a silicon wafer does not appear, and if {B / (A + B)}> 0.30, the linear thermal expansion coefficient of polyimide increases. Furthermore, heat resistance is impaired.
本発明では、ポリイミド前駆体中に占める前記式(化1)で表される繰り返し単位数(A)と前記式(化2)で表される繰り返し単位数(B)との総和(A+B)の割合は特に限定されるものではないが、ポリイミドの線熱膨張係数を低く、耐熱性を高くするためには、60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましい。 In the present invention, the total number (A + B) of the number of repeating units (A) represented by the formula (Chemical Formula 1) and the number of repeating units (B) represented by the Formula (Chemical Formula 2) in the polyimide precursor. The ratio is not particularly limited, but in order to reduce the linear thermal expansion coefficient of polyimide and increase the heat resistance, it is preferably 60% or more, more preferably 70% or more, and 80% More preferably, it is the above.
 本発明のポリイミド前駆体を重合する方法としては、テトラカルボン酸又はその誘導体とジアミン類とを有機溶媒中で混合する重合法が挙げられるが、この重合法に特に限定されるわけではない。 The method for polymerizing the polyimide precursor of the present invention includes a polymerization method in which tetracarboxylic acid or a derivative thereof and a diamine are mixed in an organic solvent, but is not particularly limited to this polymerization method.
本発明のポリイミド前駆体を重合する際のモノマー混合比(モル比)は、酸二無水物/ジアミンの表記方法で、好ましくは0.800~1.200/1.200~0.800、より好ましくは0.850~1.150/1.15~0.850、更に好ましくは0.900~1.100/1.100~0.900である。 The monomer mixing ratio (molar ratio) when polymerizing the polyimide precursor of the present invention is expressed in terms of acid dianhydride / diamine, preferably 0.800 to 1.200 / 1.200 to 0.800. It is preferably 0.850 to 1.150 / 1.15 to 0.850, more preferably 0.900 to 1.100 / 1.100 to 0.900.
 本発明では、分子末端封鎖のためにジカルボン酸又はその誘導体、トリカルボン酸又はその誘導体、アニリンまたはその誘導体などの末端封止剤を用いることが出来る。本発明で好ましく用いられるのは、無水フタル酸、無水マレイン酸、エチニルアニリンであり、無水マレイン酸の使用がより好ましい。末端封止剤の使用量は、モノマー成分1モル当たり0.001~1.0モル比である。 In the present invention, an end-capping agent such as dicarboxylic acid or a derivative thereof, tricarboxylic acid or a derivative thereof, aniline or a derivative thereof can be used for molecular end-capping. Preferred for use in the present invention are phthalic anhydride, maleic anhydride, and ethynylaniline, and the use of maleic anhydride is more preferred. The amount of the end-capping agent used is 0.001 to 1.0 mole ratio per mole of monomer component.
 本発明のポリイミド前駆体を重合する際に使用する有機溶媒としては、原料モノマー及びポリイミド前駆体のいずれをも溶解するものであれば特に限定されないが、例えば、o-クレゾール、m-クレゾール、p-クレゾール、N-メチル-2-ピロリドン,N-アセチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、スルホラン、ハロゲン化フェノール類等があげられ、これらの溶媒は,単独あるいは混合して使用することができる。有機溶媒の使用量は、仕込みモノマーを溶解するのに十分な量であればよく、通常は1~50質量%であり好ましくは5~30質量%の固形分を含むものであればよい。 The organic solvent used for polymerizing the polyimide precursor of the present invention is not particularly limited as long as it dissolves both the raw material monomer and the polyimide precursor, and examples thereof include o-cresol, m-cresol, p. -Cresol, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, γ-butyrolactone, sulfolane, halogen These solvents can be used, and these solvents can be used alone or in combination. The organic solvent may be used in an amount sufficient to dissolve the charged monomer, and is usually 1 to 50% by mass, preferably 5 to 30% by mass.
 重合反応は、有機溶媒中で撹拌及び/又は混合しながら、0~80℃の温度範囲で、10分~50時間連続して進められるが、必要により重合反応を分割したり、温度を上下させてもかまわない。この場合に、モノマー等の添加順序には特に制限はないが、ジアミン類の溶液中にテトラカルボン酸又はその誘導体を添加するのが好ましい。 The polymerization reaction is continuously carried out in a temperature range of 0 to 80 ° C. for 10 minutes to 50 hours with stirring and / or mixing in an organic solvent. The polymerization reaction can be divided or the temperature can be increased or decreased as necessary. It doesn't matter. In this case, the order of addition of monomers and the like is not particularly limited, but it is preferable to add tetracarboxylic acid or a derivative thereof to the diamine solution.
 本発明では更に、ポリイミドの性能向上を目的として、添加物を加えても良い。これら、添加物は、その目的によって様々であり、特に限定されるものではない。
 また、添加方法、添加時期においても特に限定されるものではない。添加物の例としては、酸化珪素、酸化チタン、酸化アルミニウム、等の金属酸化物、リン酸カルシウム、リン酸水素カルシウム、ピロリン酸カルシウム等のリン酸塩など、有機、無機の公知のフィラーが挙げられる。
In the present invention, an additive may be added for the purpose of improving the performance of the polyimide. These additives vary depending on the purpose and are not particularly limited.
Further, the addition method and the addition time are not particularly limited. Examples of the additive include known organic and inorganic fillers such as metal oxides such as silicon oxide, titanium oxide, and aluminum oxide, and phosphates such as calcium phosphate, calcium hydrogen phosphate, and calcium pyrophosphate.
 本発明では、反応によって得られたポリイミド前駆体樹脂を適当な貧溶媒を用いて反応溶液から再沈殿させても良い。貧溶媒としては、アセトン、メタノール、エタノール、2-プロパノール、水などが挙げられるが、効率よく再沈殿させることができるものであれば、特にこれらに限定されない。また、再沈殿した後の残存反応溶媒を除去する溶媒についても特に限定されないが、再沈殿させた際に用いた溶媒を使用することが好ましい。 In the present invention, the polyimide precursor resin obtained by the reaction may be reprecipitated from the reaction solution using an appropriate poor solvent. Examples of the poor solvent include acetone, methanol, ethanol, 2-propanol, and water, but are not particularly limited as long as they can be efficiently reprecipitated. Moreover, although it does not specifically limit about the solvent which removes the residual reaction solvent after reprecipitation, It is preferable to use the solvent used at the time of reprecipitation.
本発明では、N-メチル-2-ピロリドン中に0.2g/dlの樹脂濃度となるように溶解させて25℃で測定した時の還元粘度が0.1~5.0dl/gであることが必要であるが、ポリイミド前駆体溶液のハンドリング性とポリイミドフィルムの耐熱性とをよりバランスよく両立させるためには、0.2~4.0dl/gであることが好ましく、0.3~2.0dl/gであることがより好ましい。還元粘度が0.1dl/gを下回るとリイミドフィルムの耐熱性を著しく損ね、また還元粘度が5.0dl/gを上回るとポリイミド前駆体溶液の粘度が高くなってハンドリング性が著しく悪くなる。 In the present invention, the reduced viscosity is 0.1 to 5.0 dl / g when dissolved in N-methyl-2-pyrrolidone so as to have a resin concentration of 0.2 g / dl and measured at 25 ° C. However, in order to balance the handling property of the polyimide precursor solution and the heat resistance of the polyimide film in a balanced manner, it is preferably 0.2 to 4.0 dl / g, 0.3 to 2 More preferably, it is 0.0 dl / g. When the reduced viscosity is less than 0.1 dl / g, the heat resistance of the imide film is remarkably impaired, and when the reduced viscosity is more than 5.0 dl / g, the viscosity of the polyimide precursor solution is increased and the handling property is remarkably deteriorated.
 本発明では、反応溶液をそのままポリイミド前駆体溶液として利用しても良いし、反応溶液から上記手法で再沈殿させたポリイミド前駆体を再び溶媒に溶解させてポリイミド前駆体溶液を得てもよい。後者の場合、ポリイミド前駆体を効率よく溶解させるものであれば、特に限定されるものではないが、例として、o-クレゾール、m-クレゾール、p-クレゾール、N-メチル-2-ピロリドン,N-アセチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、スルホラン、ハロゲン化フェノール類等の有機溶剤が挙げられる。 In the present invention, the reaction solution may be used as it is as a polyimide precursor solution, or the polyimide precursor reprecipitated from the reaction solution by the above method may be dissolved again in a solvent to obtain a polyimide precursor solution. In the latter case, it is not particularly limited as long as it efficiently dissolves the polyimide precursor. For example, o-cresol, m-cresol, p-cresol, N-methyl-2-pyrrolidone, N And organic solvents such as -acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, γ-butyrolactone, sulfolane, and halogenated phenols.
 本発明では、ポリイミド前駆体と有機溶剤を混合させる手段として、特に限定はしないが、例えば、通常の攪拌翼、高粘度用の攪拌翼を用いて混合攪拌する方法、多軸の押し出し機、あるいはスタティックミキサーなどを用いる方法、更には、ロールミルなどの高粘度用混合分散機を用いる方法を用いて混合攪拌することが挙げられる。 In the present invention, the means for mixing the polyimide precursor and the organic solvent is not particularly limited. For example, a normal stirring blade, a method of mixing and stirring using a stirring blade for high viscosity, a multi-screw extruder, or Examples of the method include mixing and stirring using a method using a static mixer and the like, and further using a method using a mixing and dispersing machine for high viscosity such as a roll mill.
 本発明で得られるポリイミド樹脂前駆体溶液中のポリイミド前駆体の組成としては、好ましくは1~50質量%、より好ましくは5~30質量%を含有することが挙げられる。この場合。その粘度はブルックフィールド粘度計による測定で0.1~1000Pa・s、好ましくは0.5~500Pa・s、より好ましくは1~10Pa・sのものが、安定した送液が可能であることから好ましい。 The composition of the polyimide precursor in the polyimide resin precursor solution obtained in the present invention is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. in this case. Since the viscosity is 0.1 to 1000 Pa · s, preferably 0.5 to 500 Pa · s, more preferably 1 to 10 Pa · s, as measured with a Brookfield viscometer, stable liquid feeding is possible. preferable.
 本発明のポリイミド前駆体樹脂およびポリイミド前駆体樹脂組成物から、線膨張係数が低く、耐熱性が高く、シリコンウェハ等の基材に対して高度に密着する、ポリイミド樹脂およびポリイミド塗膜およびポリイミドフィルムなどのポリイミド成形体が得られる。 From the polyimide precursor resin and polyimide precursor resin composition of the present invention, a polyimide resin, a polyimide coating film, and a polyimide film that have a low coefficient of linear expansion, high heat resistance, and high adhesion to a substrate such as a silicon wafer A polyimide molded body such as is obtained.
前記ポリイミド成形体を得る方法としては、特に限定されるわけではないが、例えば、前記ポリイミド前駆体樹脂組成物を基材に塗布した後に加熱イミド化する方法などが挙げられる。 A method for obtaining the polyimide molded body is not particularly limited, and examples thereof include a method of applying the polyimide precursor resin composition to a substrate and then heating imidization.
 前記ポリイミド前駆体樹脂組成物を基材に塗布する方法としては、特に限定されるものではないが、例えば、スピンコートなど回転塗布する方法、ドクターブレードやアプリケーター、コンマコーターなどスキージを利用する方法、スクリーン印刷法などの方法が挙げられる。 The method for applying the polyimide precursor resin composition to the base material is not particularly limited, for example, a method of spin coating such as spin coating, a method using a squeegee such as a doctor blade, applicator, comma coater, Examples thereof include a screen printing method.
前記ポリイミド前駆体樹脂組成物を基材に塗布する際の基材としては、特に限定されるものではないが、例えば、シリコンウェハやセラミック板などの無機基板、銅箔やSUS箔などの金属基板、ポリイミドフィルムやポリエチレンテレフタレートフィルムなどの有機基板などが挙げられる。 The substrate for applying the polyimide precursor resin composition to the substrate is not particularly limited. For example, an inorganic substrate such as a silicon wafer or a ceramic plate, or a metal substrate such as a copper foil or an SUS foil. And organic substrates such as polyimide films and polyethylene terephthalate films.
前記ポリイミド前駆体樹脂組成物を加熱イミド化する加熱条件としては、特に限定されるわけではないが、50℃~150℃、好ましくは60℃~130℃の温度で予備加熱した後に、20℃/分以下、好ましくはより10℃/分以下。より好ましくは5℃/分以下の昇温速度で昇温し、250℃以上、好ましくは300℃以上、より好ましくは350℃以上の温度で最終加熱する条件などが好ましい例として挙げられる。 The heating conditions for heating imidization of the polyimide precursor resin composition are not particularly limited, but after preheating at a temperature of 50 ° C. to 150 ° C., preferably 60 ° C. to 130 ° C., 20 ° C. / Min or less, preferably 10 ° C / min or less. A preferable example is a condition where the temperature is increased at a rate of temperature increase of 5 ° C./min or less and the final heating is performed at a temperature of 250 ° C. or higher, preferably 300 ° C. or higher, more preferably 350 ° C. or higher.
 かかる条件により、シリコンウェハ等の基材に高度に密着しながら、ガラス転移温度が250℃以上、好ましくは270℃以上、さらに好ましくは300℃以上と高く、熱分解温度(5%重量減少温度)が400℃以上、好ましくは450℃以上、さらに好ましくは500℃以上と高く、50-200℃における線膨張係数が0~35ppm/℃、好ましくは0.1~30ppm/℃以下、より好ましくは0.5~25ppm/℃以下と低い、ポリイミド樹脂ならびにポリイミド塗膜ならびにポリイミドフィルムを得ることができる。 Under such conditions, the glass transition temperature is 250 ° C. or higher, preferably 270 ° C. or higher, more preferably 300 ° C. or higher, while being closely adhered to a substrate such as a silicon wafer, and the thermal decomposition temperature (5% weight loss temperature). Is 400 ° C. or higher, preferably 450 ° C. or higher, more preferably 500 ° C. or higher, and the linear expansion coefficient at 50-200 ° C. is 0 to 35 ppm / ° C., preferably 0.1 to 30 ppm / ° C., more preferably 0. A polyimide resin, a polyimide coating film and a polyimide film can be obtained which are as low as 5 to 25 ppm / ° C. or less.
 以下、本発明を実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例における物性の評価方法は以下の通りである。
1.ポリイミド前駆体樹脂の還元粘度(ηsp/C)
 樹脂濃度が0.2g/dlとなるようにN-メチル-2-ピロリドンに溶解した溶液をウベローゼ型の粘度管により25℃で測定した。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these. In addition, the evaluation method of the physical property in the following examples is as follows.
1. Reduced viscosity of polyimide precursor resin (ηsp / C)
A solution dissolved in N-methyl-2-pyrrolidone so that the resin concentration was 0.2 g / dl was measured at 25 ° C. with an Ubellose type viscosity tube.
2.(化1)で表される繰り返し単位数(A)と(化2)で表される繰り返し単位数(B)との関係(B/(A+B))を算出する方法
 得られたポリイミド前駆体樹脂をDMSO-d6に溶解させ、25℃の温度で核磁気共鳴(NMR)分析を行ってシロキサン構造を有する2価の有機基由来のプロトンとベンゾオキサゾール構造を有する2価の有機基由来の芳香族プロトンを同定することにより、そのピーク面積比からB/(A+B)を算出した。
2. Method of calculating the relationship (B / (A + B)) between the number of repeating units represented by (Chemical formula 1) (A) and the number of repeating units represented by (Chemical formula 2) (B) Obtained polyimide precursor resin Is dissolved in DMSO-d6 and subjected to nuclear magnetic resonance (NMR) analysis at a temperature of 25 ° C., and a proton derived from a divalent organic group having a siloxane structure and an aromatic derived from a divalent organic group having a benzoxazole structure. By identifying protons, B / (A + B) was calculated from the peak area ratio.
3.ポリイミドフィルムの線熱膨張係数(CTE)
 得られたポリイミドフィルムを、下記条件で伸縮率を測定し、50~200℃までを15℃間隔で分割し、各分割範囲の伸縮率/温度の平均値より求めた。
  装置名    ; MACサイエンス社製TMA4000S
  試料長さ   ; 20mm
  試料幅    ; 2mm
  初荷重    ; 34.5g/mm
  昇温開始温度 ; 25℃
  昇温終了温度 ; 400℃
  昇温速度   ; 5℃/min
  雰囲気    ; アルゴン
3. Linear thermal expansion coefficient (CTE) of polyimide film
The obtained polyimide film was measured for the expansion / contraction rate under the following conditions, divided from 50 to 200 ° C. at intervals of 15 ° C., and obtained from the average value of the expansion / contraction rate / temperature of each divided range.
Device name: TMA4000S manufactured by MAC Science
Sample length; 20mm
Sample width: 2 mm
Initial load: 34.5 g / mm 2
Temperature rise start temperature: 25 ° C
Temperature rising end temperature: 400 ° C
Temperature increase rate: 5 ° C / min
Atmosphere: Argon
4.ポリイミドフィルムのガラス転位温度
 得られたポリイミドフィルムを、下記条件でDSC測定し、ガラス転移点(Tg)をJIS K 7121に準拠して下記測定条件で求めた。
  装置名    ; MACサイエンス社製DSC3100SA
  パン     ; アルミパン(非気密型)
  試料質量   ; 4mg
  昇温開始温度 ; 30℃
  昇温終了温度 ; 400℃
  昇温速度   ; 20℃/min
  雰囲気    ; アルゴン
4). Glass transition temperature of polyimide film The obtained polyimide film was subjected to DSC measurement under the following conditions, and the glass transition point (Tg) was determined under the following measurement conditions in accordance with JIS K7121.
Device name: DSC3100SA manufactured by MAC Science
Pan : Aluminum pan (non-airtight)
Sample mass: 4mg
Temperature rising start temperature: 30 ° C
Temperature rising end temperature: 400 ° C
Temperature increase rate: 20 ° C / min
Atmosphere: Argon
5.ポリイミドフィルムの熱分解温度
 得られたポリイミドフィルムを充分に乾燥させ、下記条件でTGA測定(熱天秤測定)して、150℃における試料の重量を100%とし、その点から試料の重量が5%減る温度を5%質量減少温度として規定した。
  装置名    ; MACサイエンス社製TG-DTA2000S
  パン     ; アルミパン(非気密型)
  試料質量   ; 10mg
  昇温開始温度 ; 30℃
  昇温狩猟温度 ; 800℃
  昇温速度   ; 20℃/min
  雰囲気    ; アルゴン
5. Thermal decomposition temperature of polyimide film The obtained polyimide film was sufficiently dried, and TGA measurement (thermobalance measurement) was performed under the following conditions to set the weight of the sample at 150 ° C. to 100%. From this point, the weight of the sample was 5%. The decreasing temperature was defined as a 5% mass reduction temperature.
Device name: TG-DTA2000S manufactured by MAC Science
Pan : Aluminum pan (non-airtight)
Sample mass: 10 mg
Temperature rising start temperature: 30 ° C
Increased hunting temperature: 800 ℃
Temperature increase rate: 20 ° C / min
Atmosphere: Argon
5.ポリイミド樹脂塗膜の密着率
 得られたポリイミド樹脂塗膜付きシリコンウェハに対し、JIS K 5600に準拠して1mm×1mmの碁盤目(100マス)を作成し、セロテープ(登録商標)剥離試験を行い、
その残膜率を密着率とした。
5. Adhesion rate of polyimide resin coating film A 1 mm x 1 mm grid (100 squares) was created in accordance with JIS K 5600 on the obtained silicon wafer with a polyimide resin coating film, and a cello tape (registered trademark) peel test was performed. ,
The remaining film rate was defined as the adhesion rate.
 実施例などで使用する化合物の略称を下記する。
  PMDA:ピロメリット酸二無水物
  DAMBO:5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール(化9)
  PBABO:2,2’ーpーフェニレンビス(5-アミノベンゾオキサゾール)(化14)
  5,4-DAPBBO:2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール(化7)
  4,5-DAPBBO:2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール(化8)
  APDS:1,3-ビス(3-アミノプロピル)-1,1,3,3,-テトラメチルジシロキサン(化17)
  ODA:4,4’-ジアミノジフェニルエーテル
  MA :マレイン酸無水物
Abbreviations of compounds used in Examples and the like are described below.
PMDA: pyromellitic dianhydride DAMBO: 5-amino-2- (p-aminophenyl) benzoxazole (Chemical Formula 9)
PBABO: 2,2′-p-phenylenebis (5-aminobenzoxazole) (Chemical formula 14)
5,4-DAPBBO: 2,6- (4,4′-diaminodiphenyl) benzo [1,2-d: 5,4-d ′] bisoxazole
4,5-DAPBBO: 2,6- (4,4′-diaminodiphenyl) benzo [1,2-d: 4,5-d ′] bisoxazole
APDS: 1,3-bis (3-aminopropyl) -1,1,3,3, -tetramethyldisiloxane
ODA: 4,4′-diaminodiphenyl ether MA: maleic anhydride
(実施例1)

 窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール20.27g(0.090mol)、1、3-(3-アミノプロピル)―1,1,3,3-テトラメチルジシロキサン2.63g(0.010mol)、N―メチルー2-ピロリドン178.16gを導入し、完全に溶解させた後、ピロメリット酸二無水物20.07g(0.092mol)、マレイン酸無水物1.57g(0.016mol)を導入し、25℃の反応温度で24時間攪拌すると、黄色のポリイミド前駆体樹脂溶液が得られた。得られたポリイミド前駆体樹脂の還元粘度は0.60dl/gであった。ここで、得られたポリイミド前駆体樹脂溶液5gを2-プロパノール200gに導入して固形のポリイミド前駆体樹脂を得、さらに、このポリイミド前駆体樹脂を2-プロパノールで洗浄した後に60℃で24時間、真空乾燥させたものをDMSO-d6に溶解させてNMR分析し、1、3-(3-アミノプロピル)―1,1,3,3-テトラメチルジシロキサン由来のメチルプロトンと5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール由来の芳香族プロトンとのピーク面責比を算出することにより、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾールの残基とピロメリット酸二無水物の残基で構成される繰り返し単位数(A)と1、3-(3-アミノプロピル)―1,1,3,3-テトラメチルジシロキサンの残基とピロメリット酸二無水物の残基で構成される繰り返し単位(B)の比率がB/(A+B)=0.10となっていることを確認した。
Example 1

The inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, and then 5-amino-2- (p-aminophenyl) benzoxazole 20.27 g (0.090 mol), 1, 3- (3 -Aminopropyl) -1,1,3,3-tetramethyldisiloxane 2.63 g (0.010 mol) and N-methyl-2-pyrrolidone 178.16 g were introduced and completely dissolved. When 20.07 g (0.092 mol) of anhydride and 1.57 g (0.016 mol) of maleic anhydride were introduced and stirred at a reaction temperature of 25 ° C. for 24 hours, a yellow polyimide precursor resin solution was obtained. The reduced viscosity of the obtained polyimide precursor resin was 0.60 dl / g. Here, 5 g of the obtained polyimide precursor resin solution was introduced into 200 g of 2-propanol to obtain a solid polyimide precursor resin. Further, the polyimide precursor resin was washed with 2-propanol, and then at 60 ° C. for 24 hours. The vacuum-dried product was dissolved in DMSO-d6 and analyzed by NMR, and methyl protons derived from 1,3- (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane and 5-amino- By calculating the peak area responsibility ratio with the aromatic proton derived from 2- (p-aminophenyl) benzoxazole, the residue of 5-amino-2- (p-aminophenyl) benzoxazole and pyromellitic dianhydride Of repeating units (A) composed of residues of 1, 3- (3-aminopropyl) -1,1,3,3-tetramethyldisiloxane It was confirmed that the ratio of the composed residue of pyromellitic dianhydride repeating unit (B) is in the B / (A + B) = 0.10.
 次に、φ8インチのシリコンウェハを2枚準備し、得られたポリイミド前駆体樹脂溶液をスピンコータを用いて2000rpm×30秒の条件で2枚それぞれに回転塗布した後、ホットプレート上で60℃×30分間乾燥させることにより、2枚のポリイミド前駆体樹脂付きシリコンウェハを得た。次に、得られた2枚のポリイミド前駆体樹脂付きシリコンウェハのうちの1枚からポリイミド前駆体樹脂を剥離し、金枠に固定した。次に、この金枠に固定したポリイミド前駆体樹脂塗膜と上記2枚のポリイミド前駆体樹脂付きシリコンウェハの残りの1枚を窒素雰囲気下のマッフル炉に投入し、100℃から350℃まで80分かけて昇温させ、さらに350℃の温度で60分加熱することにより、ポリイミドフィルムとポリイミド樹脂付きシリコンウェハを得た。得られたポリイミドフィルムの膜厚は5um、線熱膨張係数は0.5ppm/℃、ガラス転移温度は380℃、熱分解温度は550℃であった。また、ポリイミド樹脂塗膜付きシリコンウェハを用いて密着性評価を実施したところ、密着率は50%であった。  Next, two silicon wafers having a diameter of 8 inches were prepared, and the obtained polyimide precursor resin solution was spin-coated on each of the two sheets under a condition of 2000 rpm × 30 seconds using a spin coater, and then heated at 60 ° C. on a hot plate. By drying for 30 minutes, two silicon wafers with polyimide precursor resin were obtained. Next, the polyimide precursor resin was peeled from one of the two obtained silicon wafers with a polyimide precursor resin, and fixed to a metal frame. Next, the polyimide precursor resin coating film fixed to the metal frame and the remaining one of the two silicon wafers with the polyimide precursor resin were put into a muffle furnace under a nitrogen atmosphere, and the temperature was increased from 100 ° C. to 350 ° C. at 80 ° C. The temperature was raised over a period of time, and heating was further performed at a temperature of 350 ° C. for 60 minutes to obtain a polyimide film and a silicon wafer with a polyimide resin. The obtained polyimide film had a thickness of 5 μm, a linear thermal expansion coefficient of 0.5 ppm / ° C., a glass transition temperature of 380 ° C., and a thermal decomposition temperature of 550 ° C. Moreover, when adhesive evaluation was implemented using the silicon wafer with a polyimide resin coating film, the adhesive rate was 50%. *
(実施例2~10)
 実施例1と同様な方法により、表1及び表2に示す配合割合でポリイミド前駆体溶液を調整し、さらに実施例1と同様な方法によりポリイミドフィルムとポリイミド樹脂塗膜付きシリコンウェハを作成し、線熱膨張係数、ガラス転移温度、熱分解温度、密着率を評価した。その結果を表1及び表2示す。
(Examples 2 to 10)
In the same manner as in Example 1, adjust the polyimide precursor solution at the blending ratio shown in Table 1 and Table 2, and further create a polyimide film and a polyimide resin coated silicon wafer by the same method as in Example 1. The linear thermal expansion coefficient, glass transition temperature, thermal decomposition temperature, and adhesion rate were evaluated. The results are shown in Tables 1 and 2.
(比較例1~3)
 実施例1と同様な方法により、表3に示す配合割合でポリイミド前駆体溶液を調整し、さらに実施例1と同様な方法によりポリイミドフィルムとポリイミド樹脂塗膜付きシリコンウェハを作成し、線熱膨張係数、ガラス転移温度、熱分解温度、密着率を評価した。その結果を表3示す。
(Comparative Examples 1 to 3)
A polyimide precursor solution was prepared at the blending ratio shown in Table 3 by the same method as in Example 1, and a polyimide film and a silicon wafer with a polyimide resin coating film were prepared by the same method as in Example 1, followed by linear thermal expansion. The coefficient, glass transition temperature, thermal decomposition temperature, and adhesion rate were evaluated. The results are shown in Table 3.
[規則26に基づく補充 25.01.2011] 
Figure WO-DOC-TABLE-1
[Supplement under rule 26 25.01.2011]
Figure WO-DOC-TABLE-1
[規則26に基づく補充 25.01.2011] 
Figure WO-DOC-TABLE-2
[Supplement under rule 26 25.01.2011]
Figure WO-DOC-TABLE-2
[規則26に基づく補充 25.01.2011] 
Figure WO-DOC-TABLE-3
[Supplement under rule 26 25.01.2011]
Figure WO-DOC-TABLE-3
 本発明のポリイミド前駆体およびその樹脂組成物は、シリコンウェハなどの低熱膨張基材の上に塗布、熱環化した後に得られるポリイミドと基材との熱膨張係数の差を小さくでき、なおかつ良好な密着性と高い耐熱性が発現するので、耐熱サイクル性、耐熱ショック性など、半導体デバイスの性能向上の要求に応えることができ、電子機器の高機能化や小型化や薄型化の市場ニーズに応えることができる。従って、産業界に寄与することが大である。 The polyimide precursor of the present invention and the resin composition thereof can be applied to a low thermal expansion substrate such as a silicon wafer, and the difference in thermal expansion coefficient between the polyimide obtained after thermal cyclization and the substrate can be reduced, and is good. Adhesiveness and high heat resistance are manifested, so it can meet the demands for improving the performance of semiconductor devices such as heat cycle resistance and heat shock resistance, and meet the market needs for higher functionality, smaller and thinner electronic devices. I can respond. Therefore, it is important to contribute to the industry.

Claims (4)

  1.  下記の一般式(化1)(式中、Rは炭素数6~30の4価の芳香族環または芳香族複素環基、Xは水素原子もしくは炭素数1~30の1価の有機基、Rはベンゾオキサゾー
    ル構造を有する2価の芳香族環基を示す)で表される繰り返し単位と下記の一般式(化2)(式中、Rは炭素数6~30の4価の芳香族環または芳香族複素環基、Xは水素原子もしくは炭素数1~30の1価の有機基、Rはシロキサン構造を有する2価の有機基)
    で表される繰り返し単位を少なくとも含むポリイミド前駆体であって、前記式(化1)で表される繰り返し単位数をAとし、前記式(化2)で表される繰り返し単位数をBとした場合に、0.10≦{B/(A+B)}≦0.30の関係を満たしており、N-メチル-2-ピロリドン中に0.2g/dlの樹脂濃度となるように溶解させて25℃で測定した時の還元粘度が0.1~5.0dl/gであることを特徴とするポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    The following general formula (Formula 1) (wherein R 1 is a tetravalent aromatic ring or aromatic heterocyclic group having 6 to 30 carbon atoms, X is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms) , R 2 represents a divalent aromatic ring group having a benzoxazole structure) and the following general formula (Formula 2) (wherein R 1 is a tetravalent having 6 to 30 carbon atoms) An aromatic ring or an aromatic heterocyclic group, X is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms, R 3 is a divalent organic group having a siloxane structure)
    A polyimide precursor containing at least a repeating unit represented by the formula: wherein the number of repeating units represented by the formula (Chemical Formula 1) is A, and the number of repeating units represented by the Formula (Chemical Formula 2) is B. In this case, the relationship of 0.10 ≦ {B / (A + B)} ≦ 0.30 is satisfied, and it is dissolved in N-methyl-2-pyrrolidone so as to have a resin concentration of 0.2 g / dl. A polyimide precursor having a reduced viscosity of 0.1 to 5.0 dl / g when measured at 0 ° C.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  2.  前記式(化1)のRがベンゾオキサゾール構造を有する2価の芳香族基であり、下記の一般式(化3)~(化6)(式中、R、R、R、Rは、それぞれ独立して単環または複数の環から構成される芳香族環基または複素環基を表す)からなる群から選ばれる少なくとも1種からなることを特徴とする請求項1記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    R 2 in the formula (Chemical Formula 1) is a divalent aromatic group having a benzoxazole structure, and the following general formulas (Chemical Formula 3) to (Chemical Formula 6) (wherein R 4 , R 5 , R 6 , 2. The R 7 is composed of at least one selected from the group consisting of an aromatic ring group or a heterocyclic group each independently consisting of a single ring or a plurality of rings. Polyimide precursor.
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  3.  前記式(化2)のRがシロキサン構造を有する2価の有機基であり、下記の一般式(化7)(式中、mは1~30の整数を表す)に示される構造であることを特徴とする請求項1~2のいずれかに記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000007
    R 3 in the formula (Formula 2) is a divalent organic group having a siloxane structure, and is a structure represented by the following general formula (Formula 7) (wherein m represents an integer of 1 to 30). The polyimide precursor according to any one of claims 1 to 2, wherein:
    Figure JPOXMLDOC01-appb-C000007
  4.  請求項1~3のいずれかに記載のポリイミド前駆体が有機溶剤に溶解していることを特徴とするポリイミド前駆体溶液。 A polyimide precursor solution, wherein the polyimide precursor according to any one of claims 1 to 3 is dissolved in an organic solvent.
PCT/JP2010/068436 2009-10-23 2010-10-20 Polyimide precursor, and polyimide precursor solution WO2011049105A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011513813A JPWO2011049105A1 (en) 2009-10-23 2010-10-20 Polyimide precursor and polyimide precursor solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-244286 2009-10-23
JP2009244286 2009-10-23

Publications (1)

Publication Number Publication Date
WO2011049105A1 true WO2011049105A1 (en) 2011-04-28

Family

ID=43900328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068436 WO2011049105A1 (en) 2009-10-23 2010-10-20 Polyimide precursor, and polyimide precursor solution

Country Status (2)

Country Link
JP (2) JP2011105926A (en)
WO (1) WO2011049105A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121271A (en) * 2019-01-30 2020-08-13 日東電工株式会社 Cleaning sheet and carrying member with cleaning function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251584A (en) * 1988-11-16 1990-10-09 Asahi Chem Ind Co Ltd Heterocyclic ring-containing polyimide composite
JPH07157560A (en) * 1993-12-02 1995-06-20 P I Zairyo Kenkyusho:Kk Production of polyimide block copolymer and its solution composition
WO2004087793A1 (en) * 2003-03-28 2004-10-14 Pi R & D Co. Ltd. Crosslinked polyimide, composition comprising the same and method for producing the same
JP2004285129A (en) * 2003-03-19 2004-10-14 Nippon Zeon Co Ltd Photosensitive polyimide precursor, photosensitive polyimide resin composition and method for manufacturing semiconductor element using the resin composition
JP2006251478A (en) * 2005-03-11 2006-09-21 Toyobo Co Ltd Positive photosensitive polyimide precursor composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02251584A (en) * 1988-11-16 1990-10-09 Asahi Chem Ind Co Ltd Heterocyclic ring-containing polyimide composite
JPH07157560A (en) * 1993-12-02 1995-06-20 P I Zairyo Kenkyusho:Kk Production of polyimide block copolymer and its solution composition
JP2004285129A (en) * 2003-03-19 2004-10-14 Nippon Zeon Co Ltd Photosensitive polyimide precursor, photosensitive polyimide resin composition and method for manufacturing semiconductor element using the resin composition
WO2004087793A1 (en) * 2003-03-28 2004-10-14 Pi R & D Co. Ltd. Crosslinked polyimide, composition comprising the same and method for producing the same
JP2006251478A (en) * 2005-03-11 2006-09-21 Toyobo Co Ltd Positive photosensitive polyimide precursor composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020121271A (en) * 2019-01-30 2020-08-13 日東電工株式会社 Cleaning sheet and carrying member with cleaning function
JP7270397B2 (en) 2019-01-30 2023-05-10 日東電工株式会社 Cleaning sheet and conveying member with cleaning function

Also Published As

Publication number Publication date
JPWO2011049105A1 (en) 2013-03-14
JP2011105926A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5733070B2 (en) Polyimide precursor aqueous solution composition
CN103261278B (en) Polyamic acid resin composition and method of producing the same
JP4774754B2 (en) Solvent-soluble polyimide copolymer and polyimide varnish
JP4962046B2 (en) Polyimide film and method for producing the same
JP6485996B2 (en) Polyimide copolymer oligomer, polyimide copolymer, and production method thereof
JP2011213853A (en) Polyimide and polyimide solution
US10308766B2 (en) Solvent soluble polyimide copolymer
JP5270865B2 (en) Adhesive and its use
JP2010195856A (en) Polyamic acid varnish composition and polyimide metal laminated plate obtained using the same
JP6496993B2 (en) Polyimide precursor composition, method for producing polyimide precursor, polyimide molded body, and method for producing polyimide molded body
KR20160094551A (en) Polyamic acid composition and polyimide substrate
WO2011049105A1 (en) Polyimide precursor, and polyimide precursor solution
TW201930257A (en) Dimer diamine composition, method for producing the same and resin film having high transparency and low degree of coloring while using dimer diamine
JP2022159241A (en) Polyimide block copolymerization based polymer, polyimide block copolymerization based film, polyamic acid-imide copolymer, and resin composition
JPH07242820A (en) Resin composition improved in physical property at high temperature
JP3855327B2 (en) Polyimide coating material
US20220195119A1 (en) Polyamic acid composition for producing polyimide resin with superior adhesion and polyimide resin produced therefrom
JP6765093B2 (en) Polyimide
JPH07242821A (en) Resin composition improved in physical property at high temperature
WO2013111241A1 (en) Polyimide precursor and resin composition using same
TWI789796B (en) Polymer and application thereof
JP6758875B2 (en) Polyimide resin composition and molded article using it
JPH0277468A (en) Polyamic acid solution
JP2719271B2 (en) Soluble polyimide resin
JP3646947B2 (en) Polyimide resin

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011513813

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824954

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10824954

Country of ref document: EP

Kind code of ref document: A1