WO2011049077A1 - Mask filter, method for producing same, pocket for mask filter, and mask - Google Patents
Mask filter, method for producing same, pocket for mask filter, and mask Download PDFInfo
- Publication number
- WO2011049077A1 WO2011049077A1 PCT/JP2010/068349 JP2010068349W WO2011049077A1 WO 2011049077 A1 WO2011049077 A1 WO 2011049077A1 JP 2010068349 W JP2010068349 W JP 2010068349W WO 2011049077 A1 WO2011049077 A1 WO 2011049077A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mask filter
- mask
- wire
- sheet
- manufacturing
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/105—Filters
- A61M16/1055—Filters bacterial
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/38—Threads in which fibres, filaments, or yarns are wound with other yarns or filaments, e.g. wrap yarns, i.e. strands of filaments or staple fibres are wrapped by a helically wound binder yarn
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/44—Yarns or threads characterised by the purpose for which they are designed
- D02G3/449—Yarns or threads with antibacterial properties
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/242—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
- D03D15/25—Metal
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/50—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D9/00—Open-work fabrics
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2101/00—Inorganic fibres
- D10B2101/10—Inorganic fibres based on non-oxides other than metals
- D10B2101/12—Carbon; Pitch
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2101/00—Inorganic fibres
- D10B2101/20—Metallic fibres
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/10—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/10—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/13—Physical properties anti-allergenic or anti-bacterial
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/16—Physical properties antistatic; conductive
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/04—Filters
Definitions
- the present invention relates to a mask filter and a manufacturing method thereof, a mask filter pocket and a mask.
- JP2009-226711A aluminum fine particles and zinc fine particles are supported on a non-woven fabric to form countless batteries on the non-woven fabric. And it is going to acquire the bactericidal effect using the electric current which flows between the both poles of this battery.
- JP2009-226711A has a complicated manufacturing process and high manufacturing costs. Moreover, if a dense nonwoven fabric is used to enhance the sterilizing effect, breathing becomes difficult. A high sterilizing effect cannot be obtained by using a coarse nonwoven fabric so that it can easily breathe. Also, the peeled metal fine particles may be taken into the body with breathing.
- the present invention has been made paying attention to such conventional problems, and an object of the present invention is to provide a mask filter capable of obtaining a high bactericidal effect while maintaining ease of breathing, a method for manufacturing the same, and a mask. It is to provide a filter pocket as well as a mask.
- a mask filter including a sheet woven with warp and weft yarns having resin fibers and copper wires spirally wound around the resin fibers.
- Such a configuration makes it difficult to charge static electricity and easily causes corona discharge. Therefore, if the mask filter is attached, static electricity accumulated in the human body is discharged from the mask filter. By this discharge action, bacteria and viruses can be sterilized and a high sterilization effect can be obtained. In particular, since the copper wire is spirally wound around the resin fiber, the surface area (contact area with bacteria and viruses) is large, and the bactericidal effect is high.
- FIG. 1 is an enlarged view showing an embodiment of a mask filter according to the present invention.
- FIG. 2A is a diagram illustrating a yarn making process in the mask filter manufacturing method.
- FIG. 2B is a diagram illustrating a sheet weaving process in the mask filter manufacturing method.
- FIG. 2C is a diagram illustrating a double weaving process in the method for manufacturing a mask filter.
- FIG. 3 is a diagram showing the results of a copper wire sterilization test.
- FIG. 4A is a diagram showing measurement results of the elution amount of copper ions in a sample wire.
- FIG. 4B is a diagram illustrating a measurement result of a residual resistance ratio in a sample wire.
- FIG. 4A is a diagram showing measurement results of the elution amount of copper ions in a sample wire.
- FIG. 4B is a diagram illustrating a measurement result of a residual resistance ratio in a sample wire.
- FIG. 5A is a diagram showing a measurement result of the elution amount of copper ions when the processing rate is changed.
- FIG. 5B is a graph plotting the measurement results of the elution amount of copper ions when the processing rate is changed.
- FIG. 6A is a diagram illustrating a measurement result of the residual resistance ratio when the processing rate is changed.
- FIG. 6B is a graph plotting measurement results of the residual resistance ratio when the processing rate is changed.
- FIG. 7A is a diagram showing the results of a sterilization test when the processing rate is changed.
- FIG. 7B is a diagram showing the results of a sterilization test when the processing rate is changed.
- FIG. 7C is a graph plotting the results of the sterilization test when the processing rate is changed.
- FIG. 8A is a diagram showing the results of an antibacterial cloth test (JIS L 1902) for a mask filter.
- FIG. 8B is a diagram showing the results of an antibacterial cloth test (JIS L 1902) for a mask filter.
- FIG. 8C is a diagram showing the results of an antibacterial cloth test (JIS L 1902) for a mask filter.
- FIG. 9 is a view showing an embodiment of a mask filter pocket according to the present invention.
- FIG. 1 is an enlarged view showing an embodiment of a mask filter according to the present invention.
- the mask filter 10 is woven with warps 11a and wefts 11b.
- the warp yarn 11a and the weft yarn 11b are yarns in which a copper wire 13 is spirally wound around several tens of resin fibers 12.
- the warp yarn 11a and the weft yarn 11b are wider than the yarn width between adjacent yarns. That is, the space area is wider than the yarn area.
- the resin fiber 12 is, for example, a polyester resin.
- the copper wire 13 is a wire that is cold drawn but not heat treated after cold working. The characteristics of such a copper wire will be described later.
- the mask filter 10 is formed by double weaving two sheets woven with such warps 11a and wefts 11b. It is desirable that the warp 11a and the weft 11b of the lower sheet overlap the weave of the upper sheet.
- FIG. 2A is a diagram illustrating a yarn making process in the mask filter manufacturing method.
- FIG. 2B is a diagram illustrating a sheet weaving process in the mask filter manufacturing method.
- FIG. 2C is a diagram illustrating a double weaving process in the method for manufacturing a mask filter.
- a copper wire 13 is spirally wound around the resin fiber 12 to form a thread 11.
- the sheet 100 is woven using the yarn 11 as the warp 11a and the weft 11b.
- the copper wire 13 is a wire that is cold drawn but not heat-treated after cold working. Such a copper wire has a high bactericidal effect. This will be described.
- the sterilization test was performed by measuring the time change of the viable count of Staphylococcus aureus when the sample wire was immersed in a test bacterial solution of Staphylococcus aureus.
- FIG. 3 is a diagram showing the results of a copper wire sterilization test.
- the sample wire 30N is a general commercially available annealed copper wire (JIS C3102) having a wire diameter of 30 ⁇ m. Hereinafter, this wire is referred to as a commercially available wire 30N.
- the sample wire 30A is obtained by subjecting an annealed soft copper wire (JIS C3102) having a wire diameter of 900 ⁇ m to cold wire drawing to a wire diameter of 30 ⁇ m, heat-treating at 300 ° C. for 30 minutes in a nitrogen atmosphere, and then naturally cooling to room temperature. It is a cold worked wire.
- this wire is usually referred to as cold-worked wire 30A.
- the sample wire 30C is a wire that is subjected to cold drawing of an annealed copper wire (JIS C3102) having a wire diameter of 900 ⁇ m to a wire diameter of 30 ⁇ m, but is not heat-treated after the cold working.
- this wire is referred to as a wire 30C without cold heat treatment.
- the time change of the viable count of Staphylococcus aureus was measured when the commercial wire 30N, the normal cold-worked wire 30A, and the wire 30C without heat treatment after cold were immersed in a test bacterial solution of Staphylococcus aureus 2g at a time. Note that there are two samples of each wire. As a comparative sample, the change over time in the number of viable bacteria when nothing was immersed in the test bacterial solution was also measured.
- the viable cell count became about 1/1000.
- the number of viable bacteria was about 1 / 10,000.
- the wire 30C without heat treatment after cold the viable cell count became almost zero.
- the wire 30C without the heat treatment after the cold had a greater bactericidal effect than other wires.
- FIG. 4A is a diagram showing the measurement results of the elution amount of copper ions in the sample wire.
- FIG. 4B is a diagram illustrating a measurement result of a residual resistance ratio in a sample wire.
- the sterilizing effect of copper is due to elution of copper ions.
- the bactericidal effect is considered to be great depending on the elution amount of copper ions (copper ion concentration). Therefore, the commercially available wire 30N, the normal cold-worked wire 30A, and the wire 30C without post-cold heat treatment are immersed in ultrapure water at 15 ° C. and left for 24 hours, and 10 mL of the solution is collected. And by adding a 15mol / L HNO 3 0.1mL, it fixes the eluted copper as Cu 2+. And when the elution amount of the copper ion was measured by the atomic absorption method, it was as shown in FIG. 4A. It can be seen that the wire 30C without cold after heat treatment having a large sterilizing effect has a large copper ion elution amount.
- the rate at which copper ions are eluted from the copper material into water is considered to be affected by the fine steps existing near the copper surface and immediately below the surface, and the amount of lattice defects in the metal crystal. This is because the greater the presence of these, the greater the redox potential difference of the copper atoms, and the easier it is for copper ions to elute from the copper material into the water.
- it can be estimated from electric resistance. That is, in general, the electrical resistance of a metal conductor is caused by three elements: atomic thermal vibration, lattice defects (dislocations), and impurities. At normal temperature, the electrical resistance is mostly due to thermal vibration of atoms.
- the electrical resistance near absolute zero is thought to be due to lattice defects and impurities. Since the sample is a pure metal with very few impurities, the electrical resistance near absolute zero is considered to be due to lattice defects. Therefore, lattice defects can be estimated based on the electrical resistance remaining in the vicinity of absolute zero. Therefore, based on the residual resistance ratio RRR (Residual Resistivity Ratio), which is the ratio of the electrical resistance R 293 at normal temperature (293K) and the residual electrical resistance R 0 at absolute zero (0K), as shown in the following equation (1). Estimate the number of lattice defects.
- RRR Residual Resistivity Ratio
- the sample is slowly cooled with a weak current of 2 ⁇ 10 ⁇ 5 W or less, which is sufficiently smaller than the capacity of the refrigerator (1.8 W at 20K). Then, it was cooled from room temperature (293K) to 10K, measured by the direct current four-terminal method, and the data of 25K or less was approximated by the following equation (2) and fitted to obtain the residual electric resistance R0 as an extrapolated value .
- the electric resistance R 293 was obtained by fitting the data of 273K or more with the following equation (3).
- the measurement result of the residual resistance ratio RRR is shown in FIG. 4B.
- the residual resistance ratio RRR of the commercially available wire rod 30N was 80.
- the residual resistance ratio RRR of the normal cold-worked wire 30A was 107.
- the residual resistance ratio RRR of the wire rod 30C without the heat treatment after cold was 29, which was small.
- the reason why the electric resistance ratio RRR of the normal cold-worked wire 30A is large is presumed to be because the processing strain is released by the heat treatment. It can be seen that the wire 30C without cold post heat treatment having a high sterilizing effect has a small residual resistance ratio RRR, that is, a large residual electric resistance R0 . From this result, it is presumed that many lattice defects exist in the wire 30C without heat treatment after cold.
- a commercially available annealed copper wire (JIS C3102) with a wire diameter of 160 ⁇ m is cold drawn to a wire diameter of 140, 120, 100, 80, 65 ⁇ m with a wire drawing machine, but the wire is formed without heat treatment after cold working did.
- 160N is a commercially available annealed copper wire with a wire diameter of 160 ⁇ m.
- 140C, 120C, 100C, 80C, and 65C are wires without cold post-heat treatment having wire diameters of 140, 120, 100, 80, and 65 ⁇ m, respectively.
- 5A and 5B are diagrams showing measurement results of the elution amount of copper ions when the processing rate is changed.
- the elution amount of copper ions was measured when immersed in ultrapure water at 15 ° C. for 24 hours while changing the processing rate. The surface area of each wire was tested at a constant 0.00284 m 2 . Then, it became like FIG. 5A. This is plotted for each processing rate as shown in FIG. 5B. From FIG. 5A and FIG. 5B, it turns out that the elution amount of a copper ion is so large that a processing rate becomes large.
- the elution amount of copper ions in the wire rod 65C without post-cold heat treatment with a processing rate of 6.1 was about 1.5 times that of the wire rod 160N.
- 6A and 6B are diagrams illustrating measurement results of the residual resistance ratio when the processing rate is changed.
- the residual resistance ratio RRR when the processing rate was changed was measured. Then, it became like FIG. 6A. This is plotted for each processing rate as shown in FIG. 6B. 6A and 6B that the residual resistance ratio RRR decreases as the processing rate increases. From this, it is presumed that the larger the processing rate, the more lattice defects exist.
- FIG. 7A, 7B, and 7C are diagrams showing the results of the sterilization test when the processing rate is changed. Furthermore, the sterilization test was performed by changing the processing rate.
- the bactericidal test is performed by immersing a sample wire having a constant surface area of 0.00284 m 2 in a test bacterial solution of S. aureus and measuring the number of live S. aureus per unit volume of the test bacterial solution after 24 hours. went. In addition, two samples are used for each wire, and the average value of two tests is shown in the graph of FIG. 7C.
- the number of viable bacteria in the test bacterial solution at the start of the test was 3.0 ⁇ 10 5 cells / mL.
- the wire without cold heat treatment was tested at a processing rate of 1.3 / 1.8 / 2.6 / 4.0 / 6.1. Usually, the cold-worked wire was tested at a working rate of 1.8 / 4.0 / 6.1. Then, the wire without heat treatment after cold was as shown in FIG. 7A. The normal cold-worked wire is as shown in FIG. 7B. This is plotted for each processing rate as shown in FIG. 7C. From these, it can be seen that the number of viable bacteria is reduced in the wire without heat treatment after cold than in the wire normally cold worked. It can also be seen that the viable count decreases as the processing rate increases.
- copper wire that is cold drawn but not heat-treated after cold working has a high bactericidal effect. This is because copper ions are easily eluted. It is presumed that copper ions are likely to elute because the residual resistance ratio is large and there are many lattice defects. And it is estimated that the larger the processing rate, the larger the residual resistance ratio and the more lattice defects, so that copper ions are more easily eluted and a higher sterilization effect can be obtained.
- FIG. 8A, 8B and 8C are diagrams showing the results of an antibacterial cloth test (JIS L 1902) for the mask filter.
- FIG. 8A shows the case where Staphylococcus aureus is used as a test bacterium.
- the viable cell count after culturing for 18 hours was 7.0 ⁇ 10 6 .
- the number of viable bacteria immediately after inoculation with the test filter solution of the mask filter was 1.0 ⁇ 10 4 .
- the viable cell count after 18 hours of culture was less than 20.
- the bacteriostatic activity value S was determined from these and was greater than 5.2.
- the bacteriostatic activity value S is obtained by the following formula (4).
- the bactericidal activity value L is obtained by the following equation (5).
- FIG. 8B shows the case where Klebsiella pneumoniae was used as a test bacterium.
- the viable cell count immediately after inoculation with the test bacterial solution of cotton standard white cloth was 2.5 ⁇ 10 4 .
- the viable cell count after 18 hours of culture was 2.6 ⁇ 10 7 .
- the number of viable bacteria immediately after inoculation of the test filter solution of the mask filter was 6.6 ⁇ 10 3 .
- the viable cell count after 18 hours of culture was less than 20. From these, the bacteriostatic activity value S was determined to be greater than 5.5.
- FIG. 8C shows the case where methicillin-resistant Staphylococcus aureus (MRSA) is used as a test bacterium.
- MRSA methicillin-resistant Staphylococcus aureus
- the mask filters according to the present embodiment all have a reference value of 2.2 or more, and a high deodorizing effect can be obtained.
- the bactericidal activity value L is larger than the reference value zero, it has higher performance than that for general purposes and can be used for specific purposes (for example, in medical institutions). It can be seen that all of the mask filters according to the present embodiment are larger than the reference value zero and can be used for specific applications (for example, applications in medical institutions).
- FIG. 9 is a view showing an embodiment of a mask filter pocket according to the present invention.
- the mask filter pocket 20 is formed by folding a nonwoven fabric sheet in half.
- the upper side 21 a of the lower part 21 is folded in half so as to be exposed from the upper side 22 a of the upper part 22.
- the left side and the right side are welded, and the upper side is opened.
- Between the lower part 21 and the upper part 22 is a part (accommodating part) for accommodating the mask filter 10.
- a double-sided tape 23 to which a release paper is affixed is affixed above the opening where the lower part 21 is exposed from the upper part 22.
- the user stores the mask filter 10 in the storage portion of the mask filter pocket 20.
- the user peels the release paper from the mask filter pocket 20 to expose the adhesive surface of the double-sided tape.
- the user affixes the mask filter pocket 20 in which the mask filter 10 is stored inside the mask.
- the user wears a mask.
- the yarn in which the copper wire is spirally wound around the resin fiber is woven as the warp weft.
- the material is copper, it is inexpensive. And if comprised in this way, it will become difficult to charge static electricity and it will become easy to produce corona discharge. Therefore, if a mask filter is attached, static electricity accumulated in the human body is easily discharged from the mask filter. Bacteria and viruses can be sterilized by this discharge action, and the sterilization effect is high.
- the copper wire is spirally wound around the resin fiber, the surface area (contact area with bacteria and viruses) is large, and a high bactericidal effect can be obtained even if the amount of copper wire used is small.
- the bactericidal effect is very high.
- the warp and weft are wider than the adjacent yarns than the yarn width. That is, the space area is wider than the yarn area. Therefore, air flows easily and does not make breathing difficult. Since at least two sheets woven with warps and wefts whose distance between adjacent yarns is wider than the yarn width are stacked, the bactericidal effect is enhanced.
- the bactericidal effect is enhanced, but it becomes difficult to breathe.
- a sheet woven with coarse warps and wefts whose distance between adjacent yarns is wider than the yarn width is used, so that the air flow is not hindered and breathing does not occur. And since it is double-woven with such a sheet, a high bactericidal effect is also obtained.
- the warp and the weft of the lower sheet are overlapped on the weave of the upper sheet, it is possible to further enhance both the ease of breathing and the bactericidal effect.
- a mask filter pocket is used, it can be easily attached to a conventional mask.
- the polyester resin is exemplified as the resin fiber material, but the material is not limited thereto. Anything other than polyurethane may be used. Synthetic fibers such as polyester, acrylic, nylon and vinylon, regenerated fibers such as rayon and polynosic, semi-synthetic fibers such as acetate, triacetate and promix. Moreover, inorganic fiber and carbon fiber may be sufficient. Moreover, although the case of the double weave in which two sheets are stacked has been described as an example, the sheets may be further stacked. Furthermore, although the case where the nonwoven fabric sheet was used as an example of the material for the mask filter pocket has been described, a woven fabric sheet may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Emergency Medicine (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Veterinary Medicine (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
- Filtering Materials (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Laminated Bodies (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Woven Fabrics (AREA)
Abstract
A mask filter comprising a sheet which is woven from warp and weft yarns consisting of a resin fiber and a copper wire spirally wrapped around said resin fiber.
Owing to this structure, the mask filter is scarcely electrostatically charged and easily undergoes corona-discharge. By putting this mask filter, therefore, static electricity accumulated in a human body is discharged through the mask filter. Due to this discharge, bacteria, viruses and so on can be inactivated or killed, which indicates that the mask filter can exert a high bactericidal effect. Since a copper wire is spirally wrapped around a resin fiber, in particular, the mask filter has a large surface area (i.e., the contact area with bacteria and viruses) and, therefore, can exert an enhanced bactericidal effect.
Description
この発明はマスクフィルター及びその製造方法、マスクフィルター用ポケット並びにマスクに関する。
The present invention relates to a mask filter and a manufacturing method thereof, a mask filter pocket and a mask.
空気中の細菌やウィルスを殺菌できるマスクが種々提案されている。
JP2009-226711Aでは、不織布にアルミニウム微粒子及び亜鉛微粒子を担持させることで、不織布上に無数の電池を形成する。そして、この電池の両極間で流れる電流を利用して殺菌効果を得ようとしている。 Various masks that can sterilize bacteria and viruses in the air have been proposed.
In JP2009-226711A, aluminum fine particles and zinc fine particles are supported on a non-woven fabric to form countless batteries on the non-woven fabric. And it is going to acquire the bactericidal effect using the electric current which flows between the both poles of this battery.
JP2009-226711Aでは、不織布にアルミニウム微粒子及び亜鉛微粒子を担持させることで、不織布上に無数の電池を形成する。そして、この電池の両極間で流れる電流を利用して殺菌効果を得ようとしている。 Various masks that can sterilize bacteria and viruses in the air have been proposed.
In JP2009-226711A, aluminum fine particles and zinc fine particles are supported on a non-woven fabric to form countless batteries on the non-woven fabric. And it is going to acquire the bactericidal effect using the electric current which flows between the both poles of this battery.
しかしながら、JP2009-226711Aに記載されたマスクは、製造工程が複雑で製造にかかるコストが嵩む。また殺菌効果を高めるために密な不織布を使用しては呼吸しにくくなってしまう。呼吸しやすいように粗な不織布を使用しては高い殺菌効果を得ることができない。また剥離した金属微粒子が呼吸とともに体内に取り込まれてしまう可能性もある。
However, the mask described in JP2009-226711A has a complicated manufacturing process and high manufacturing costs. Moreover, if a dense nonwoven fabric is used to enhance the sterilizing effect, breathing becomes difficult. A high sterilizing effect cannot be obtained by using a coarse nonwoven fabric so that it can easily breathe. Also, the peeled metal fine particles may be taken into the body with breathing.
本発明は、このような従来の問題点に着目してなされたものであり、本発明の目的は、呼吸のしやすさを維持しつつ高い殺菌効果が得られるマスクフィルター及びその製造方法、マスクフィルター用ポケット並びにマスクを提供することである。
The present invention has been made paying attention to such conventional problems, and an object of the present invention is to provide a mask filter capable of obtaining a high bactericidal effect while maintaining ease of breathing, a method for manufacturing the same, and a mask. It is to provide a filter pocket as well as a mask.
本発明のある態様によれば、樹脂繊維と、前記樹脂繊維の周りに螺旋状に巻かれた銅線と、を有する糸を経糸及び緯糸として織られたシートを含むマスクフィルターが提供される。
According to an aspect of the present invention, there is provided a mask filter including a sheet woven with warp and weft yarns having resin fibers and copper wires spirally wound around the resin fibers.
このように構成すると、静電気を帯電しにくくなりコロナ放電が生じやすくなる。したがって、マスクフィルターを装着すれば、人体に溜まった静電気がマスクフィルターから放電される。この放電作用によって、細菌やウィルスなどを滅殺菌することができ、高い殺菌効果が得られる。特に銅線が樹脂繊維の周りに螺旋状に巻かれているので、表面積(細菌やウィルスとの接触面積)が大きく、殺菌効果が高いのである。
Such a configuration makes it difficult to charge static electricity and easily causes corona discharge. Therefore, if the mask filter is attached, static electricity accumulated in the human body is discharged from the mask filter. By this discharge action, bacteria and viruses can be sterilized and a high sterilization effect can be obtained. In particular, since the copper wire is spirally wound around the resin fiber, the surface area (contact area with bacteria and viruses) is large, and the bactericidal effect is high.
本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
Embodiments of the present invention and advantages of the present invention will be described in detail below with reference to the accompanying drawings.
<マスクフィルターの構造>
図1は、本発明によるマスクフィルターの一実施形態を示す拡大図である。
マスクフィルター10は、経糸11aと、緯糸11bと、で織られている。
経糸11a及び緯糸11bは、数十本の樹脂繊維12の周りに銅線13が螺旋状に巻かれた糸である。経糸11a及び緯糸11bは、隣り合う糸との間隔が糸幅よりも広い。すなわち糸の面積よりも空間面積のほうが広いのである。
樹脂繊維12は、たとえばポリエステル樹脂である。
銅線13は、冷間線引き加工されるが冷間加工後に熱処理されない線材である。このような銅線の特性については後述する。
マスクフィルター10は、このような経糸11a及び緯糸11bで織られた2枚のシートを重ねて二重織りしてある。上側のシートの織り目に、下側のシートの経糸11a及び緯糸11bが重なることが望ましい。 <Mask filter structure>
FIG. 1 is an enlarged view showing an embodiment of a mask filter according to the present invention.
Themask filter 10 is woven with warps 11a and wefts 11b.
Thewarp yarn 11a and the weft yarn 11b are yarns in which a copper wire 13 is spirally wound around several tens of resin fibers 12. The warp yarn 11a and the weft yarn 11b are wider than the yarn width between adjacent yarns. That is, the space area is wider than the yarn area.
Theresin fiber 12 is, for example, a polyester resin.
Thecopper wire 13 is a wire that is cold drawn but not heat treated after cold working. The characteristics of such a copper wire will be described later.
Themask filter 10 is formed by double weaving two sheets woven with such warps 11a and wefts 11b. It is desirable that the warp 11a and the weft 11b of the lower sheet overlap the weave of the upper sheet.
図1は、本発明によるマスクフィルターの一実施形態を示す拡大図である。
マスクフィルター10は、経糸11aと、緯糸11bと、で織られている。
経糸11a及び緯糸11bは、数十本の樹脂繊維12の周りに銅線13が螺旋状に巻かれた糸である。経糸11a及び緯糸11bは、隣り合う糸との間隔が糸幅よりも広い。すなわち糸の面積よりも空間面積のほうが広いのである。
樹脂繊維12は、たとえばポリエステル樹脂である。
銅線13は、冷間線引き加工されるが冷間加工後に熱処理されない線材である。このような銅線の特性については後述する。
マスクフィルター10は、このような経糸11a及び緯糸11bで織られた2枚のシートを重ねて二重織りしてある。上側のシートの織り目に、下側のシートの経糸11a及び緯糸11bが重なることが望ましい。 <Mask filter structure>
FIG. 1 is an enlarged view showing an embodiment of a mask filter according to the present invention.
The
The
The
The
The
<マスクフィルターの製造方法>
図2Aは、マスクフィルターの製造方法における製糸工程を示す図である。図2Bは、マスクフィルターの製造方法におけるシート織り工程を示す図である。図2Cは、マスクフィルターの製造方法における二重織り工程を示す図である。 <Manufacturing method of mask filter>
FIG. 2A is a diagram illustrating a yarn making process in the mask filter manufacturing method. FIG. 2B is a diagram illustrating a sheet weaving process in the mask filter manufacturing method. FIG. 2C is a diagram illustrating a double weaving process in the method for manufacturing a mask filter.
図2Aは、マスクフィルターの製造方法における製糸工程を示す図である。図2Bは、マスクフィルターの製造方法におけるシート織り工程を示す図である。図2Cは、マスクフィルターの製造方法における二重織り工程を示す図である。 <Manufacturing method of mask filter>
FIG. 2A is a diagram illustrating a yarn making process in the mask filter manufacturing method. FIG. 2B is a diagram illustrating a sheet weaving process in the mask filter manufacturing method. FIG. 2C is a diagram illustrating a double weaving process in the method for manufacturing a mask filter.
(製糸工程#101;図2A)
樹脂繊維12の周りに銅線13を螺旋状に巻いて糸11を形成する。 (Yarnmaking process # 101; FIG. 2A)
Acopper wire 13 is spirally wound around the resin fiber 12 to form a thread 11.
樹脂繊維12の周りに銅線13を螺旋状に巻いて糸11を形成する。 (Yarn
A
(シート織り工程#102;図2B)
糸11を経糸11a,緯糸11bとしてシート100を織る。 (Sheetweaving process # 102; FIG. 2B)
Thesheet 100 is woven using the yarn 11 as the warp 11a and the weft 11b.
糸11を経糸11a,緯糸11bとしてシート100を織る。 (Sheet
The
(二重織り工程#103;図2C)
2枚のシート100を重ねて二重織りする。このとき上側のシートの織り目に、下側のシートの経糸11a及び緯糸11bが重なることが望ましい。 (Doubleweaving process # 103; FIG. 2C)
Twosheets 100 are stacked and double-woven. At this time, it is desirable that the warp yarn 11a and the weft yarn 11b of the lower sheet overlap the weave of the upper sheet.
2枚のシート100を重ねて二重織りする。このとき上側のシートの織り目に、下側のシートの経糸11a及び緯糸11bが重なることが望ましい。 (Double
Two
<マスクフィルターに使用する銅線の特性>
(第1試験)
上述のように、銅線13は、冷間線引き加工されるが冷間加工後に熱処理されない線材である。このような銅線は、殺菌効果が高い。これについて説明する。
試料線材を黄色ブドウ球菌の試験菌液に浸漬したときの黄色ブドウ球菌の生菌数の時間変化を測定することで殺菌試験を行った。
図3は、銅線の殺菌試験の結果を示す図である。
試料線材30Nは、線径30μmの一般市販の電気用軟銅線(JIS C3102)である。以下ではこの線材を市販線材30Nと称する。
試料線材30Aは、線径900μmの電気用軟銅線(JIS C3102)を線径30μmまで冷間線引き加工した後、窒素雰囲気中にて300℃で30分間熱処理し、その後室温まで自然冷却という通常通り冷間加工した線材である。以下ではこの線材を通常冷間加工線材30Aと称する。
試料線材30Cは、線径900μmの電気用軟銅線(JIS C3102)を線径30μmまで冷間線引き加工されるが冷間加工後に熱処理されない線材である。以下ではこの線材を冷間後熱処理なし線材30Cと称する。 <Characteristics of copper wire used for mask filter>
(First test)
As described above, thecopper wire 13 is a wire that is cold drawn but not heat-treated after cold working. Such a copper wire has a high bactericidal effect. This will be described.
The sterilization test was performed by measuring the time change of the viable count of Staphylococcus aureus when the sample wire was immersed in a test bacterial solution of Staphylococcus aureus.
FIG. 3 is a diagram showing the results of a copper wire sterilization test.
Thesample wire 30N is a general commercially available annealed copper wire (JIS C3102) having a wire diameter of 30 μm. Hereinafter, this wire is referred to as a commercially available wire 30N.
Thesample wire 30A is obtained by subjecting an annealed soft copper wire (JIS C3102) having a wire diameter of 900 μm to cold wire drawing to a wire diameter of 30 μm, heat-treating at 300 ° C. for 30 minutes in a nitrogen atmosphere, and then naturally cooling to room temperature. It is a cold worked wire. Hereinafter, this wire is usually referred to as cold-worked wire 30A.
Thesample wire 30C is a wire that is subjected to cold drawing of an annealed copper wire (JIS C3102) having a wire diameter of 900 μm to a wire diameter of 30 μm, but is not heat-treated after the cold working. Hereinafter, this wire is referred to as a wire 30C without cold heat treatment.
(第1試験)
上述のように、銅線13は、冷間線引き加工されるが冷間加工後に熱処理されない線材である。このような銅線は、殺菌効果が高い。これについて説明する。
試料線材を黄色ブドウ球菌の試験菌液に浸漬したときの黄色ブドウ球菌の生菌数の時間変化を測定することで殺菌試験を行った。
図3は、銅線の殺菌試験の結果を示す図である。
試料線材30Nは、線径30μmの一般市販の電気用軟銅線(JIS C3102)である。以下ではこの線材を市販線材30Nと称する。
試料線材30Aは、線径900μmの電気用軟銅線(JIS C3102)を線径30μmまで冷間線引き加工した後、窒素雰囲気中にて300℃で30分間熱処理し、その後室温まで自然冷却という通常通り冷間加工した線材である。以下ではこの線材を通常冷間加工線材30Aと称する。
試料線材30Cは、線径900μmの電気用軟銅線(JIS C3102)を線径30μmまで冷間線引き加工されるが冷間加工後に熱処理されない線材である。以下ではこの線材を冷間後熱処理なし線材30Cと称する。 <Characteristics of copper wire used for mask filter>
(First test)
As described above, the
The sterilization test was performed by measuring the time change of the viable count of Staphylococcus aureus when the sample wire was immersed in a test bacterial solution of Staphylococcus aureus.
FIG. 3 is a diagram showing the results of a copper wire sterilization test.
The
The
The
市販線材30N、通常冷間加工線材30A及び冷間後熱処理なし線材30Cを、2gずつ黄色ブドウ球菌の試験菌液に浸漬したときの黄色ブドウ球菌の生菌数の時間変化を測定した。なお各線材のサンプルは2個である。また比較試料として、試験菌液に何も浸漬しない場合の生菌数の時間変化も測定した。
The time change of the viable count of Staphylococcus aureus was measured when the commercial wire 30N, the normal cold-worked wire 30A, and the wire 30C without heat treatment after cold were immersed in a test bacterial solution of Staphylococcus aureus 2g at a time. Note that there are two samples of each wire. As a comparative sample, the change over time in the number of viable bacteria when nothing was immersed in the test bacterial solution was also measured.
すると図3に示すように、24時間後に、市販線材30Nでは、生菌数は1000分の1程度になった。また通常冷間加工線材30Aでは、生菌数は10000分の1程度になった。これに対して、冷間後熱処理なし線材30Cでは、生菌数はほぼゼロになった。このように、冷間後熱処理なし線材30Cは、他の線材と比較して殺菌効果が大きかった。
Then, as shown in FIG. 3, after 24 hours, in the commercially available wire 30N, the viable cell count became about 1/1000. Moreover, in the normal cold-worked wire 30A, the number of viable bacteria was about 1 / 10,000. On the other hand, in the wire 30C without heat treatment after cold, the viable cell count became almost zero. Thus, the wire 30C without the heat treatment after the cold had a greater bactericidal effect than other wires.
図4Aは、試料線材における銅イオンの溶出量の測定結果を示す図である。図4Bは、試料線材における残留抵抗比の測定結果を示す図である。
FIG. 4A is a diagram showing the measurement results of the elution amount of copper ions in the sample wire. FIG. 4B is a diagram illustrating a measurement result of a residual resistance ratio in a sample wire.
銅の殺菌効果は、銅イオンの溶出によると考えられる。また殺菌効果は、銅イオン溶出量(銅イオン濃度)によって殺菌効果が大小すると考えられる。そこで市販線材30N、通常冷間加工線材30A及び冷間後熱処理なし線材30Cを、15℃の超純水中に浸漬して24時間放置し、溶液10mLを採取する。そして15mol/L HNO30.1mLを加えることで、溶出した銅をCu2+として固定する。そして原子吸光法によって銅イオンの溶出量を測定すると図4Aのようになった。殺菌効果の大きい冷間後熱処理なし線材30Cは、銅イオン溶出量が大きいことが判る。
It is considered that the sterilizing effect of copper is due to elution of copper ions. In addition, the bactericidal effect is considered to be great depending on the elution amount of copper ions (copper ion concentration). Therefore, the commercially available wire 30N, the normal cold-worked wire 30A, and the wire 30C without post-cold heat treatment are immersed in ultrapure water at 15 ° C. and left for 24 hours, and 10 mL of the solution is collected. And by adding a 15mol / L HNO 3 0.1mL, it fixes the eluted copper as Cu 2+. And when the elution amount of the copper ion was measured by the atomic absorption method, it was as shown in FIG. 4A. It can be seen that the wire 30C without cold after heat treatment having a large sterilizing effect has a large copper ion elution amount.
銅素材から銅イオンが水中へ溶出する速度は、銅表面及び表面直下近傍に存在する微細ステップ並びに金属結晶の格子欠陥量に影響されると考えられる。これらが存在するほど、銅原子の酸化還元電位差が大きくなり、銅素材から銅イオンが水中へ溶出しやすくなると考えられるからである。
格子欠陥やステップの存在割合を直接測定することは困難であるが、電気抵抗から推定できる。すなわち一般に金属導電体の電気抵抗は、原子の熱振動、格子欠陥(転位)、不純物、の3要素に起因する。常温では電気抵抗は、ほとんど原子の熱振動に起因する。これに対して、絶対零度付近では原子の熱振動がゼロに近づくので、絶対零度付近での電気抵抗は格子欠陥及び不純物に起因すると考えられる。試料は不純物が非常に少ない純金属であるので、絶対零度付近での電気抵抗は格子欠陥によるものであると考えられる。したがって絶対零度付近で残留している電気抵抗に基づいて格子欠陥を推定できる。
そこで次式(1)のように、常温(293K)での電気抵抗R293と絶対零度(0K)での残留電気抵抗R0との比である残留抵抗比RRR(Residual Resistivity Ratio)に基づいて、格子欠陥の多少を推定する。 The rate at which copper ions are eluted from the copper material into water is considered to be affected by the fine steps existing near the copper surface and immediately below the surface, and the amount of lattice defects in the metal crystal. This is because the greater the presence of these, the greater the redox potential difference of the copper atoms, and the easier it is for copper ions to elute from the copper material into the water.
Although it is difficult to directly measure the existence ratio of lattice defects and steps, it can be estimated from electric resistance. That is, in general, the electrical resistance of a metal conductor is caused by three elements: atomic thermal vibration, lattice defects (dislocations), and impurities. At normal temperature, the electrical resistance is mostly due to thermal vibration of atoms. On the other hand, since the thermal vibration of atoms approaches zero near absolute zero, the electrical resistance near absolute zero is thought to be due to lattice defects and impurities. Since the sample is a pure metal with very few impurities, the electrical resistance near absolute zero is considered to be due to lattice defects. Therefore, lattice defects can be estimated based on the electrical resistance remaining in the vicinity of absolute zero.
Therefore, based on the residual resistance ratio RRR (Residual Resistivity Ratio), which is the ratio of the electrical resistance R 293 at normal temperature (293K) and the residual electrical resistance R 0 at absolute zero (0K), as shown in the following equation (1). Estimate the number of lattice defects.
格子欠陥やステップの存在割合を直接測定することは困難であるが、電気抵抗から推定できる。すなわち一般に金属導電体の電気抵抗は、原子の熱振動、格子欠陥(転位)、不純物、の3要素に起因する。常温では電気抵抗は、ほとんど原子の熱振動に起因する。これに対して、絶対零度付近では原子の熱振動がゼロに近づくので、絶対零度付近での電気抵抗は格子欠陥及び不純物に起因すると考えられる。試料は不純物が非常に少ない純金属であるので、絶対零度付近での電気抵抗は格子欠陥によるものであると考えられる。したがって絶対零度付近で残留している電気抵抗に基づいて格子欠陥を推定できる。
そこで次式(1)のように、常温(293K)での電気抵抗R293と絶対零度(0K)での残留電気抵抗R0との比である残留抵抗比RRR(Residual Resistivity Ratio)に基づいて、格子欠陥の多少を推定する。 The rate at which copper ions are eluted from the copper material into water is considered to be affected by the fine steps existing near the copper surface and immediately below the surface, and the amount of lattice defects in the metal crystal. This is because the greater the presence of these, the greater the redox potential difference of the copper atoms, and the easier it is for copper ions to elute from the copper material into the water.
Although it is difficult to directly measure the existence ratio of lattice defects and steps, it can be estimated from electric resistance. That is, in general, the electrical resistance of a metal conductor is caused by three elements: atomic thermal vibration, lattice defects (dislocations), and impurities. At normal temperature, the electrical resistance is mostly due to thermal vibration of atoms. On the other hand, since the thermal vibration of atoms approaches zero near absolute zero, the electrical resistance near absolute zero is thought to be due to lattice defects and impurities. Since the sample is a pure metal with very few impurities, the electrical resistance near absolute zero is considered to be due to lattice defects. Therefore, lattice defects can be estimated based on the electrical resistance remaining in the vicinity of absolute zero.
Therefore, based on the residual resistance ratio RRR (Residual Resistivity Ratio), which is the ratio of the electrical resistance R 293 at normal temperature (293K) and the residual electrical resistance R 0 at absolute zero (0K), as shown in the following equation (1). Estimate the number of lattice defects.
ただし絶対零度での残留電気抵抗R0を実測することは不可能である。そこで発熱の影響が小さくするために、冷凍機の能力(1.8W at 20K)よりも試料の発熱が十分小さい2×10-5W以下の微弱電流で徐冷する。そして室温(293K)から10Kまで除冷して直流4端子法にて測定し、25K以下のデータを次式(2)で近似してフィットし外挿値として残留電気抵抗R0を求めた。
However, it is impossible to actually measure the residual electric resistance R 0 at absolute zero. Therefore, in order to reduce the influence of heat generation, the sample is slowly cooled with a weak current of 2 × 10 −5 W or less, which is sufficiently smaller than the capacity of the refrigerator (1.8 W at 20K). Then, it was cooled from room temperature (293K) to 10K, measured by the direct current four-terminal method, and the data of 25K or less was approximated by the following equation (2) and fitted to obtain the residual electric resistance R0 as an extrapolated value .
また電気抵抗R293は、273K以上のデータを次式(3)で近似してフィットし求めた。
The electric resistance R 293 was obtained by fitting the data of 273K or more with the following equation (3).
残留抵抗比RRRの測定結果を示すと図4Bのようになった。市販線材30Nの残留抵抗比RRRは、80であった。通常冷間加工線材30Aの残留抵抗比RRRは、107であった。これらに対して冷間後熱処理なし線材30Cの残留抵抗比RRRは、29と小さかった。通常冷間加工線材30Aの電気抵抗比RRRの値が大きいのは、熱処理によって加工歪が解放されたためと推定される。殺菌効果の高い冷間後熱処理なし線材30Cは、残留抵抗比RRRが小さい、すなわち残留電気抵抗R0が大きいことが判る。この結果から冷間後熱処理なし線材30Cには、多くの格子欠陥が存在していると推定される。
The measurement result of the residual resistance ratio RRR is shown in FIG. 4B. The residual resistance ratio RRR of the commercially available wire rod 30N was 80. The residual resistance ratio RRR of the normal cold-worked wire 30A was 107. On the other hand, the residual resistance ratio RRR of the wire rod 30C without the heat treatment after cold was 29, which was small. The reason why the electric resistance ratio RRR of the normal cold-worked wire 30A is large is presumed to be because the processing strain is released by the heat treatment. It can be seen that the wire 30C without cold post heat treatment having a high sterilizing effect has a small residual resistance ratio RRR, that is, a large residual electric resistance R0 . From this result, it is presumed that many lattice defects exist in the wire 30C without heat treatment after cold.
(第2試験)
次に加工率を変えたときの特性を測定する。
一般市販の線径160μmの電気用軟銅線(JIS C3102)を、伸線機にて線径140,120,100,80,65μmに冷間線引き加工するが冷間加工後に熱処理しないで線材を形成した。160Nは、線径160μmの一般市販電気用軟銅線である。140C,120C,100C,80C,65Cは、それぞれ線径140,120,100,80,65μmの冷間後熱処理なし線材である。 (Second test)
Next, the characteristics when the processing rate is changed are measured.
A commercially available annealed copper wire (JIS C3102) with a wire diameter of 160 μm is cold drawn to a wire diameter of 140, 120, 100, 80, 65 μm with a wire drawing machine, but the wire is formed without heat treatment after cold working did. 160N is a commercially available annealed copper wire with a wire diameter of 160 μm. 140C, 120C, 100C, 80C, and 65C are wires without cold post-heat treatment having wire diameters of 140, 120, 100, 80, and 65 μm, respectively.
次に加工率を変えたときの特性を測定する。
一般市販の線径160μmの電気用軟銅線(JIS C3102)を、伸線機にて線径140,120,100,80,65μmに冷間線引き加工するが冷間加工後に熱処理しないで線材を形成した。160Nは、線径160μmの一般市販電気用軟銅線である。140C,120C,100C,80C,65Cは、それぞれ線径140,120,100,80,65μmの冷間後熱処理なし線材である。 (Second test)
Next, the characteristics when the processing rate is changed are measured.
A commercially available annealed copper wire (JIS C3102) with a wire diameter of 160 μm is cold drawn to a wire diameter of 140, 120, 100, 80, 65 μm with a wire drawing machine, but the wire is formed without heat treatment after cold working did. 160N is a commercially available annealed copper wire with a wire diameter of 160 μm. 140C, 120C, 100C, 80C, and 65C are wires without cold post-heat treatment having wire diameters of 140, 120, 100, 80, and 65 μm, respectively.
図5A及び図5Bは、加工率を変えたときの銅イオンの溶出量の測定結果を示す図である。
最初に、加工率を変えて15℃の超純水中に浸漬して24時間放置したときの銅イオン溶出量を測定した。各線材の表面積は、0.00284m2の一定で試験した。すると図5Aのようになった。これを加工率ごとにプロットすると図5Bのようになった。図5A及び図5Bから、加工率が大きくなるほど、銅イオンの溶出量が大きいことが判る。特に、加工率6.1の冷間後熱処理なし線材65Cにおける銅イオンの溶出量は、線材160Nの約1.5倍となった。 5A and 5B are diagrams showing measurement results of the elution amount of copper ions when the processing rate is changed.
First, the elution amount of copper ions was measured when immersed in ultrapure water at 15 ° C. for 24 hours while changing the processing rate. The surface area of each wire was tested at a constant 0.00284 m 2 . Then, it became like FIG. 5A. This is plotted for each processing rate as shown in FIG. 5B. From FIG. 5A and FIG. 5B, it turns out that the elution amount of a copper ion is so large that a processing rate becomes large. In particular, the elution amount of copper ions in thewire rod 65C without post-cold heat treatment with a processing rate of 6.1 was about 1.5 times that of the wire rod 160N.
最初に、加工率を変えて15℃の超純水中に浸漬して24時間放置したときの銅イオン溶出量を測定した。各線材の表面積は、0.00284m2の一定で試験した。すると図5Aのようになった。これを加工率ごとにプロットすると図5Bのようになった。図5A及び図5Bから、加工率が大きくなるほど、銅イオンの溶出量が大きいことが判る。特に、加工率6.1の冷間後熱処理なし線材65Cにおける銅イオンの溶出量は、線材160Nの約1.5倍となった。 5A and 5B are diagrams showing measurement results of the elution amount of copper ions when the processing rate is changed.
First, the elution amount of copper ions was measured when immersed in ultrapure water at 15 ° C. for 24 hours while changing the processing rate. The surface area of each wire was tested at a constant 0.00284 m 2 . Then, it became like FIG. 5A. This is plotted for each processing rate as shown in FIG. 5B. From FIG. 5A and FIG. 5B, it turns out that the elution amount of a copper ion is so large that a processing rate becomes large. In particular, the elution amount of copper ions in the
図6A及び図6Bは、加工率を変えたときの残留抵抗比の測定結果を示す図である。
次に加工率を変えたときの残留抵抗比RRRを測定した。すると図6Aのようになった。これを加工率ごとにプロットすると図6Bのようになった。図6A及び図6Bから、加工率が大きくなるほど、残留抵抗比RRRは小さくなることが判る。このことから、加工率が大きいほど、より多くの格子欠陥が存在していると推定される。 6A and 6B are diagrams illustrating measurement results of the residual resistance ratio when the processing rate is changed.
Next, the residual resistance ratio RRR when the processing rate was changed was measured. Then, it became like FIG. 6A. This is plotted for each processing rate as shown in FIG. 6B. 6A and 6B that the residual resistance ratio RRR decreases as the processing rate increases. From this, it is presumed that the larger the processing rate, the more lattice defects exist.
次に加工率を変えたときの残留抵抗比RRRを測定した。すると図6Aのようになった。これを加工率ごとにプロットすると図6Bのようになった。図6A及び図6Bから、加工率が大きくなるほど、残留抵抗比RRRは小さくなることが判る。このことから、加工率が大きいほど、より多くの格子欠陥が存在していると推定される。 6A and 6B are diagrams illustrating measurement results of the residual resistance ratio when the processing rate is changed.
Next, the residual resistance ratio RRR when the processing rate was changed was measured. Then, it became like FIG. 6A. This is plotted for each processing rate as shown in FIG. 6B. 6A and 6B that the residual resistance ratio RRR decreases as the processing rate increases. From this, it is presumed that the larger the processing rate, the more lattice defects exist.
図7A、図7B及び図7Cは、加工率を変えたときの殺菌試験の結果を示す図である。
さらに加工率を変えて殺菌試験を行った。殺菌試験は、表面積が0.00284m2一定の試料線材を、黄色ブドウ球菌の試験菌液に浸漬し、24時間後の試験菌液単位体積当たりの黄色ブドウ球菌の生菌数を測定することで行った。なお、各線材でサンプルを2個使用し、図7Cのグラフには2個の試験の平均値を示す。また試験開始時における試験菌液の生菌数は、3.0×105個/mLであった。
冷間後熱処理なし線材については、加工率1.3/1.8/2.6/4.0/6.1で試験した。
通常冷間加工線材については、加工率1.8/4.0/6.1で試験した。
すると冷間後熱処理なし線材については、図7Aのようになった。通常冷間加工線材については、図7Bのようになった。これを加工率ごとにプロットすると図7Cのようになった。これらから、冷間後熱処理なし線材のほうが、通常冷間加工線材よりも生菌数が減少することが判る。また加工率が大きくなるほど、生菌数が減少することが判る。 7A, 7B, and 7C are diagrams showing the results of the sterilization test when the processing rate is changed.
Furthermore, the sterilization test was performed by changing the processing rate. The bactericidal test is performed by immersing a sample wire having a constant surface area of 0.00284 m 2 in a test bacterial solution of S. aureus and measuring the number of live S. aureus per unit volume of the test bacterial solution after 24 hours. went. In addition, two samples are used for each wire, and the average value of two tests is shown in the graph of FIG. 7C. The number of viable bacteria in the test bacterial solution at the start of the test was 3.0 × 10 5 cells / mL.
The wire without cold heat treatment was tested at a processing rate of 1.3 / 1.8 / 2.6 / 4.0 / 6.1.
Usually, the cold-worked wire was tested at a working rate of 1.8 / 4.0 / 6.1.
Then, the wire without heat treatment after cold was as shown in FIG. 7A. The normal cold-worked wire is as shown in FIG. 7B. This is plotted for each processing rate as shown in FIG. 7C. From these, it can be seen that the number of viable bacteria is reduced in the wire without heat treatment after cold than in the wire normally cold worked. It can also be seen that the viable count decreases as the processing rate increases.
さらに加工率を変えて殺菌試験を行った。殺菌試験は、表面積が0.00284m2一定の試料線材を、黄色ブドウ球菌の試験菌液に浸漬し、24時間後の試験菌液単位体積当たりの黄色ブドウ球菌の生菌数を測定することで行った。なお、各線材でサンプルを2個使用し、図7Cのグラフには2個の試験の平均値を示す。また試験開始時における試験菌液の生菌数は、3.0×105個/mLであった。
冷間後熱処理なし線材については、加工率1.3/1.8/2.6/4.0/6.1で試験した。
通常冷間加工線材については、加工率1.8/4.0/6.1で試験した。
すると冷間後熱処理なし線材については、図7Aのようになった。通常冷間加工線材については、図7Bのようになった。これを加工率ごとにプロットすると図7Cのようになった。これらから、冷間後熱処理なし線材のほうが、通常冷間加工線材よりも生菌数が減少することが判る。また加工率が大きくなるほど、生菌数が減少することが判る。 7A, 7B, and 7C are diagrams showing the results of the sterilization test when the processing rate is changed.
Furthermore, the sterilization test was performed by changing the processing rate. The bactericidal test is performed by immersing a sample wire having a constant surface area of 0.00284 m 2 in a test bacterial solution of S. aureus and measuring the number of live S. aureus per unit volume of the test bacterial solution after 24 hours. went. In addition, two samples are used for each wire, and the average value of two tests is shown in the graph of FIG. 7C. The number of viable bacteria in the test bacterial solution at the start of the test was 3.0 × 10 5 cells / mL.
The wire without cold heat treatment was tested at a processing rate of 1.3 / 1.8 / 2.6 / 4.0 / 6.1.
Usually, the cold-worked wire was tested at a working rate of 1.8 / 4.0 / 6.1.
Then, the wire without heat treatment after cold was as shown in FIG. 7A. The normal cold-worked wire is as shown in FIG. 7B. This is plotted for each processing rate as shown in FIG. 7C. From these, it can be seen that the number of viable bacteria is reduced in the wire without heat treatment after cold than in the wire normally cold worked. It can also be seen that the viable count decreases as the processing rate increases.
以上から、冷間線引き加工されるが冷間加工後に熱処理されない銅線は、高い殺菌効果がある。これは銅イオンが溶出しやすいためである。銅イオンが溶出しやすいのは、残留抵抗比が大きく格子欠陥が多いためであると推定される。そして加工率が大きいほど残留抵抗比が大きくなり格子欠陥が多くなると推定され、銅イオンが溶出しやすくなり、より高い殺菌効果が得られるのである。
From the above, copper wire that is cold drawn but not heat-treated after cold working has a high bactericidal effect. This is because copper ions are easily eluted. It is presumed that copper ions are likely to elute because the residual resistance ratio is large and there are many lattice defects. And it is estimated that the larger the processing rate, the larger the residual resistance ratio and the more lattice defects, so that copper ions are more easily eluted and a higher sterilization effect can be obtained.
<マスクフィルターの特性>
(第1試験)
図8A、図8B及び図8Cは、マスクフィルターに対する抗菌布試験(JIS L 1902)の結果を示す図である。
図8Aは黄色ブドウ球菌を供試菌にした場合である。図8Aに示すように、綿標準白布の試験菌液接種直後の生菌数は、2.3×104であった。18時間培養後の生菌数は、7.0×106であった。これに対してマスクフィルターの試験菌液接種直後の生菌数は、1.0×104であった。18時間培養後の生菌数は、20未満であった。これらから静菌活性値Sを求めると5.2より大であった。なお静菌活性値Sは次式(4)で求められる。 <Characteristics of mask filter>
(First test)
8A, 8B and 8C are diagrams showing the results of an antibacterial cloth test (JIS L 1902) for the mask filter.
FIG. 8A shows the case where Staphylococcus aureus is used as a test bacterium. As shown in FIG. 8A, the number of viable bacteria immediately after inoculation with the test bacterial solution of cotton standard white cloth was 2.3 × 10 4 . The viable cell count after culturing for 18 hours was 7.0 × 10 6 . In contrast, the number of viable bacteria immediately after inoculation with the test filter solution of the mask filter was 1.0 × 10 4 . The viable cell count after 18 hours of culture was less than 20. The bacteriostatic activity value S was determined from these and was greater than 5.2. The bacteriostatic activity value S is obtained by the following formula (4).
(第1試験)
図8A、図8B及び図8Cは、マスクフィルターに対する抗菌布試験(JIS L 1902)の結果を示す図である。
図8Aは黄色ブドウ球菌を供試菌にした場合である。図8Aに示すように、綿標準白布の試験菌液接種直後の生菌数は、2.3×104であった。18時間培養後の生菌数は、7.0×106であった。これに対してマスクフィルターの試験菌液接種直後の生菌数は、1.0×104であった。18時間培養後の生菌数は、20未満であった。これらから静菌活性値Sを求めると5.2より大であった。なお静菌活性値Sは次式(4)で求められる。 <Characteristics of mask filter>
(First test)
8A, 8B and 8C are diagrams showing the results of an antibacterial cloth test (JIS L 1902) for the mask filter.
FIG. 8A shows the case where Staphylococcus aureus is used as a test bacterium. As shown in FIG. 8A, the number of viable bacteria immediately after inoculation with the test bacterial solution of cotton standard white cloth was 2.3 × 10 4 . The viable cell count after culturing for 18 hours was 7.0 × 10 6 . In contrast, the number of viable bacteria immediately after inoculation with the test filter solution of the mask filter was 1.0 × 10 4 . The viable cell count after 18 hours of culture was less than 20. The bacteriostatic activity value S was determined from these and was greater than 5.2. The bacteriostatic activity value S is obtained by the following formula (4).
また殺菌活性値Lを求めると3.1より大であった。なお殺菌活性値Lは次式(5)で求められる。
Further, when the bactericidal activity value L was determined, it was larger than 3.1. The bactericidal activity value L is obtained by the following equation (5).
図8Bは肺炎桿菌を供試菌にした場合である。図8Bに示すように、綿標準白布の試験菌液接種直後の生菌数は、2.5×104であった。18時間培養後の生菌数は、2.6×107であった。これに対してマスクフィルターの試験菌液接種直後の生菌数は、6.6×103であった。18時間培養後の生菌数は、20未満であった。これらから静菌活性値Sを求めると5.5より大であった。また殺菌活性値Lを求めると3.1より大であった。
FIG. 8B shows the case where Klebsiella pneumoniae was used as a test bacterium. As shown in FIG. 8B, the viable cell count immediately after inoculation with the test bacterial solution of cotton standard white cloth was 2.5 × 10 4 . The viable cell count after 18 hours of culture was 2.6 × 10 7 . In contrast, the number of viable bacteria immediately after inoculation of the test filter solution of the mask filter was 6.6 × 10 3 . The viable cell count after 18 hours of culture was less than 20. From these, the bacteriostatic activity value S was determined to be greater than 5.5. Moreover, when the bactericidal activity value L was calculated | required, it was larger than 3.1.
図8Cはメチシリン耐性黄色ブドウ球菌(MRSA)を供試菌にした場合である。図8Cに示すように、綿標準白布の試験菌液接種直後の生菌数は、2.1×104であった。18時間培養後の生菌数は、7.7×106であった。これに対してマスクフィルターの試験菌液接種直後の生菌数は、2.0×103であった。18時間培養後の生菌数は、20未満であった。これらから静菌活性値Sを求めると5.6より大であった。また殺菌活性値Lを求めると3.0より大であった。
FIG. 8C shows the case where methicillin-resistant Staphylococcus aureus (MRSA) is used as a test bacterium. As shown in FIG. 8C, the viable cell count immediately after inoculation with the test bacterial solution of cotton standard white cloth was 2.1 × 10 4 . The viable cell count after culturing for 18 hours was 7.7 × 10 6 . On the other hand, the number of viable bacteria immediately after inoculation of the test filter solution on the mask filter was 2.0 × 10 3 . The viable cell count after 18 hours of culture was less than 20. The bacteriostatic activity value S was determined from these and was greater than 5.6. Moreover, when the bactericidal activity value L was calculated | required, it was larger than 3.0.
静菌活性値Sが基準値2.2以上であれば防臭効果が認められる。本実施形態によるマスクフィルターでは、いずれも基準値2.2以上であり高い防臭効果が得られることが判る。
If the bacteriostatic activity value S is 2.2 or more, the deodorizing effect is recognized. It can be seen that the mask filters according to the present embodiment all have a reference value of 2.2 or more, and a high deodorizing effect can be obtained.
殺菌活性値Lが基準値ゼロよりも大きければ一般用途向けよりも高性能であって特定用途(たとえば医療機関における用途など)にも使用可能である。本実施形態によるマスクフィルターでは、いずれも基準値ゼロよりも大きく特定用途(たとえば医療機関における用途など)にも使用できることが判る。
If the bactericidal activity value L is larger than the reference value zero, it has higher performance than that for general purposes and can be used for specific purposes (for example, in medical institutions). It can be seen that all of the mask filters according to the present embodiment are larger than the reference value zero and can be used for specific applications (for example, applications in medical institutions).
(第2試験)
次にマスクフィルターに対して摩擦帯電圧試験(JIS L 1094)を行った。この摩擦帯電圧試験は、温湿度条件20℃,40%RHの下で、試験片を摩擦布で摩擦し、摩擦開始から60秒経過後の帯電圧を測定するものである。絹などでは帯電圧が数千ボルトに達する。これに対して本実施形態によるマスクフィルターでは帯電圧が14~20ボルトであった。すなわち帯電しにくくコロナ放電が生じやすいことが判る。たとえば冬季などは静電気が人体に溜まりやすいが、本実施形態によるマスクフィルターを装着すれば、マスクフィルターから静電気が放電されることが判る。この放電エネルギーによって、細菌やウィルスなどを滅菌することができ、高い殺菌効果が得られる。 (Second test)
Next, a frictional voltage test (JIS L 1094) was performed on the mask filter. In this frictional voltage test, a test piece is rubbed with a friction cloth under a temperature and humidity condition of 20 ° C. and 40% RH, and a charged voltage after 60 seconds from the start of friction is measured. In silk etc., the charged voltage reaches several thousand volts. On the other hand, in the mask filter according to the present embodiment, the charged voltage was 14 to 20 volts. In other words, it is difficult to charge and corona discharge is likely to occur. For example, in winter, static electricity tends to accumulate in the human body, but it can be seen that if the mask filter according to the present embodiment is attached, the static electricity is discharged from the mask filter. Bacteria and viruses can be sterilized by this discharge energy, and a high sterilization effect can be obtained.
次にマスクフィルターに対して摩擦帯電圧試験(JIS L 1094)を行った。この摩擦帯電圧試験は、温湿度条件20℃,40%RHの下で、試験片を摩擦布で摩擦し、摩擦開始から60秒経過後の帯電圧を測定するものである。絹などでは帯電圧が数千ボルトに達する。これに対して本実施形態によるマスクフィルターでは帯電圧が14~20ボルトであった。すなわち帯電しにくくコロナ放電が生じやすいことが判る。たとえば冬季などは静電気が人体に溜まりやすいが、本実施形態によるマスクフィルターを装着すれば、マスクフィルターから静電気が放電されることが判る。この放電エネルギーによって、細菌やウィルスなどを滅菌することができ、高い殺菌効果が得られる。 (Second test)
Next, a frictional voltage test (JIS L 1094) was performed on the mask filter. In this frictional voltage test, a test piece is rubbed with a friction cloth under a temperature and humidity condition of 20 ° C. and 40% RH, and a charged voltage after 60 seconds from the start of friction is measured. In silk etc., the charged voltage reaches several thousand volts. On the other hand, in the mask filter according to the present embodiment, the charged voltage was 14 to 20 volts. In other words, it is difficult to charge and corona discharge is likely to occur. For example, in winter, static electricity tends to accumulate in the human body, but it can be seen that if the mask filter according to the present embodiment is attached, the static electricity is discharged from the mask filter. Bacteria and viruses can be sterilized by this discharge energy, and a high sterilization effect can be obtained.
<マスクフィルター用ポケットの構造>
図9は、本発明によるマスクフィルター用ポケットの一実施形態を示す図である。
マスクフィルター用ポケット20は、不織布シートが二つ折りされて形成される。図9では、下部21の上辺21aが、上部22の上辺22aから露出するように二つ折りされる。そして左辺及び右辺は溶着され、上方は開口する。下部21及び上部22の間が、マスクフィルター10を収納する部分(収納部)である。下部21が上部22から露出する部分であって開口の上方には、剥離紙が貼付された両面テープ23が貼り付けられる。 <Mask filter pocket structure>
FIG. 9 is a view showing an embodiment of a mask filter pocket according to the present invention.
Themask filter pocket 20 is formed by folding a nonwoven fabric sheet in half. In FIG. 9, the upper side 21 a of the lower part 21 is folded in half so as to be exposed from the upper side 22 a of the upper part 22. The left side and the right side are welded, and the upper side is opened. Between the lower part 21 and the upper part 22 is a part (accommodating part) for accommodating the mask filter 10. A double-sided tape 23 to which a release paper is affixed is affixed above the opening where the lower part 21 is exposed from the upper part 22.
図9は、本発明によるマスクフィルター用ポケットの一実施形態を示す図である。
マスクフィルター用ポケット20は、不織布シートが二つ折りされて形成される。図9では、下部21の上辺21aが、上部22の上辺22aから露出するように二つ折りされる。そして左辺及び右辺は溶着され、上方は開口する。下部21及び上部22の間が、マスクフィルター10を収納する部分(収納部)である。下部21が上部22から露出する部分であって開口の上方には、剥離紙が貼付された両面テープ23が貼り付けられる。 <Mask filter pocket structure>
FIG. 9 is a view showing an embodiment of a mask filter pocket according to the present invention.
The
<マスクフィルター用ポケットの使用方法>
まず使用者は、マスクフィルター用ポケット20の収納部にマスクフィルター10を収納する。
次に使用者は、マスクフィルター用ポケット20から剥離紙を剥がして両面テープの接着面を露出する。
続いて使用者は、マスクフィルター10が収納されたマスクフィルター用ポケット20をマスクの内側に貼付する。
そして使用者は、マスクを装着する。 <How to use the pocket for mask filter>
First, the user stores themask filter 10 in the storage portion of the mask filter pocket 20.
Next, the user peels the release paper from themask filter pocket 20 to expose the adhesive surface of the double-sided tape.
Subsequently, the user affixes themask filter pocket 20 in which the mask filter 10 is stored inside the mask.
The user wears a mask.
まず使用者は、マスクフィルター用ポケット20の収納部にマスクフィルター10を収納する。
次に使用者は、マスクフィルター用ポケット20から剥離紙を剥がして両面テープの接着面を露出する。
続いて使用者は、マスクフィルター10が収納されたマスクフィルター用ポケット20をマスクの内側に貼付する。
そして使用者は、マスクを装着する。 <How to use the pocket for mask filter>
First, the user stores the
Next, the user peels the release paper from the
Subsequently, the user affixes the
The user wears a mask.
本実施形態によれば、樹脂繊維の周りに銅線が螺旋状に巻いた糸を経糸緯糸として織られている。このように材料が銅であるので安価である。そしてこのように構成すると、静電気を帯電しにくくなりコロナ放電が生じやすくなる。したがって、マスクフィルターを装着すれば、人体に溜まった静電気がマスクフィルターから放電されやすくなる。この放電作用によって、細菌やウィルスなどを滅菌することができ、殺菌効果が高い。特に銅線が樹脂繊維の周りに螺旋状に巻かれているので、表面積(細菌やウィルスとの接触面積)が大きく、銅線の使用量が少なくても高い殺菌効果が得られる。
また銅線として特に冷間線引き加工されるが冷間加工後に熱処理されない線材を使用すれば、多くの格子欠陥が形成され、表面積(細菌やウィルスとの接触面積)が大きく、銅線の使用量が少なくても殺菌効果が非常に高いのである。
さらに経糸及び緯糸は、隣り合う糸との間隔が糸幅よりも広い。すなわち糸の面積よりも空間面積のほうが広いのである。したがって空気が流れやすく呼吸を息苦しくしない。そして隣り合う糸との間隔が糸幅よりも広い経糸及び緯糸で織ったシートを少なくとも2枚重ねているので、殺菌効果が高くなる。すなわち1枚のシートで経糸及び緯糸を密にすれば殺菌効果は高まるものの呼吸しにくくなる。しかしながら本実施形態では、隣り合う糸との間隔が糸幅よりも広い粗な経糸及び緯糸で織られたシートを使用しているので、空気の流れを妨げず呼吸を息苦しくしない。そしてこのようなシートで二重織りされているので、高い殺菌効果も得られるのである。特に上側のシートの織り目に、下側のシートの経糸及び緯糸を重ねれば、呼吸のしやすさと殺菌効果の両立をさらに高めることができるのである。
またマスクフィルター用ポケットを使用すれば、従来マスクに容易に装着することができる。 According to this embodiment, the yarn in which the copper wire is spirally wound around the resin fiber is woven as the warp weft. Thus, since the material is copper, it is inexpensive. And if comprised in this way, it will become difficult to charge static electricity and it will become easy to produce corona discharge. Therefore, if a mask filter is attached, static electricity accumulated in the human body is easily discharged from the mask filter. Bacteria and viruses can be sterilized by this discharge action, and the sterilization effect is high. In particular, since the copper wire is spirally wound around the resin fiber, the surface area (contact area with bacteria and viruses) is large, and a high bactericidal effect can be obtained even if the amount of copper wire used is small.
Also, if a wire rod that is particularly cold drawn but not heat-treated after cold working is used, many lattice defects are formed, the surface area (contact area with bacteria and viruses) is large, and the amount of copper wire used Even if there is little, the bactericidal effect is very high.
Furthermore, the warp and weft are wider than the adjacent yarns than the yarn width. That is, the space area is wider than the yarn area. Therefore, air flows easily and does not make breathing difficult. Since at least two sheets woven with warps and wefts whose distance between adjacent yarns is wider than the yarn width are stacked, the bactericidal effect is enhanced. That is, if the warp and the weft are made dense with one sheet, the bactericidal effect is enhanced, but it becomes difficult to breathe. However, in this embodiment, a sheet woven with coarse warps and wefts whose distance between adjacent yarns is wider than the yarn width is used, so that the air flow is not hindered and breathing does not occur. And since it is double-woven with such a sheet, a high bactericidal effect is also obtained. In particular, if the warp and the weft of the lower sheet are overlapped on the weave of the upper sheet, it is possible to further enhance both the ease of breathing and the bactericidal effect.
If a mask filter pocket is used, it can be easily attached to a conventional mask.
また銅線として特に冷間線引き加工されるが冷間加工後に熱処理されない線材を使用すれば、多くの格子欠陥が形成され、表面積(細菌やウィルスとの接触面積)が大きく、銅線の使用量が少なくても殺菌効果が非常に高いのである。
さらに経糸及び緯糸は、隣り合う糸との間隔が糸幅よりも広い。すなわち糸の面積よりも空間面積のほうが広いのである。したがって空気が流れやすく呼吸を息苦しくしない。そして隣り合う糸との間隔が糸幅よりも広い経糸及び緯糸で織ったシートを少なくとも2枚重ねているので、殺菌効果が高くなる。すなわち1枚のシートで経糸及び緯糸を密にすれば殺菌効果は高まるものの呼吸しにくくなる。しかしながら本実施形態では、隣り合う糸との間隔が糸幅よりも広い粗な経糸及び緯糸で織られたシートを使用しているので、空気の流れを妨げず呼吸を息苦しくしない。そしてこのようなシートで二重織りされているので、高い殺菌効果も得られるのである。特に上側のシートの織り目に、下側のシートの経糸及び緯糸を重ねれば、呼吸のしやすさと殺菌効果の両立をさらに高めることができるのである。
またマスクフィルター用ポケットを使用すれば、従来マスクに容易に装着することができる。 According to this embodiment, the yarn in which the copper wire is spirally wound around the resin fiber is woven as the warp weft. Thus, since the material is copper, it is inexpensive. And if comprised in this way, it will become difficult to charge static electricity and it will become easy to produce corona discharge. Therefore, if a mask filter is attached, static electricity accumulated in the human body is easily discharged from the mask filter. Bacteria and viruses can be sterilized by this discharge action, and the sterilization effect is high. In particular, since the copper wire is spirally wound around the resin fiber, the surface area (contact area with bacteria and viruses) is large, and a high bactericidal effect can be obtained even if the amount of copper wire used is small.
Also, if a wire rod that is particularly cold drawn but not heat-treated after cold working is used, many lattice defects are formed, the surface area (contact area with bacteria and viruses) is large, and the amount of copper wire used Even if there is little, the bactericidal effect is very high.
Furthermore, the warp and weft are wider than the adjacent yarns than the yarn width. That is, the space area is wider than the yarn area. Therefore, air flows easily and does not make breathing difficult. Since at least two sheets woven with warps and wefts whose distance between adjacent yarns is wider than the yarn width are stacked, the bactericidal effect is enhanced. That is, if the warp and the weft are made dense with one sheet, the bactericidal effect is enhanced, but it becomes difficult to breathe. However, in this embodiment, a sheet woven with coarse warps and wefts whose distance between adjacent yarns is wider than the yarn width is used, so that the air flow is not hindered and breathing does not occur. And since it is double-woven with such a sheet, a high bactericidal effect is also obtained. In particular, if the warp and the weft of the lower sheet are overlapped on the weave of the upper sheet, it is possible to further enhance both the ease of breathing and the bactericidal effect.
If a mask filter pocket is used, it can be easily attached to a conventional mask.
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
たとえば、上記説明においては、樹脂繊維の材料としてポリエステル樹脂を例示したが、それには限られない。ポリウレタン以外であればよい。ポリエステル、アクリル、ナイロン、ビニロンなどの合成繊維や、レーヨン、ポリノジックなどの再生繊維、アセテート、トリアセテート、プロミックスなどの半合成繊維などである。また無機繊維や炭素繊維であってもよい。
また2枚のシートを重ねる二重織りの場合を例示して説明したが、さらにシートを重ねてもよい。
さらにマスクフィルター用ポケットの材料として不織布シートを使用する場合を例示して説明したが、織布シートを使用してもよい。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
For example, in the above description, the polyester resin is exemplified as the resin fiber material, but the material is not limited thereto. Anything other than polyurethane may be used. Synthetic fibers such as polyester, acrylic, nylon and vinylon, regenerated fibers such as rayon and polynosic, semi-synthetic fibers such as acetate, triacetate and promix. Moreover, inorganic fiber and carbon fiber may be sufficient.
Moreover, although the case of the double weave in which two sheets are stacked has been described as an example, the sheets may be further stacked.
Furthermore, although the case where the nonwoven fabric sheet was used as an example of the material for the mask filter pocket has been described, a woven fabric sheet may be used.
たとえば、上記説明においては、樹脂繊維の材料としてポリエステル樹脂を例示したが、それには限られない。ポリウレタン以外であればよい。ポリエステル、アクリル、ナイロン、ビニロンなどの合成繊維や、レーヨン、ポリノジックなどの再生繊維、アセテート、トリアセテート、プロミックスなどの半合成繊維などである。また無機繊維や炭素繊維であってもよい。
また2枚のシートを重ねる二重織りの場合を例示して説明したが、さらにシートを重ねてもよい。
さらにマスクフィルター用ポケットの材料として不織布シートを使用する場合を例示して説明したが、織布シートを使用してもよい。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
For example, in the above description, the polyester resin is exemplified as the resin fiber material, but the material is not limited thereto. Anything other than polyurethane may be used. Synthetic fibers such as polyester, acrylic, nylon and vinylon, regenerated fibers such as rayon and polynosic, semi-synthetic fibers such as acetate, triacetate and promix. Moreover, inorganic fiber and carbon fiber may be sufficient.
Moreover, although the case of the double weave in which two sheets are stacked has been described as an example, the sheets may be further stacked.
Furthermore, although the case where the nonwoven fabric sheet was used as an example of the material for the mask filter pocket has been described, a woven fabric sheet may be used.
本願は2009年10月19日に日本国特許庁に出願された特願2009-240713に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。
This application claims priority based on Japanese Patent Application No. 2009-240713 filed with the Japan Patent Office on October 19, 2009, the entire contents of which are incorporated herein by reference.
Claims (11)
- 樹脂繊維と、
前記樹脂繊維の周りに螺旋状に巻かれた銅線と、
を有する糸を経糸及び緯糸として織られたシートを含むマスクフィルター。 Resin fibers,
A copper wire spirally wound around the resin fiber;
A mask filter comprising a sheet woven as warps and wefts. - 請求項1に記載のマスクフィルターにおいて、
前記銅線は、冷間線引き加工されるが冷間加工後に熱処理されない線材である、
マスクフィルター。 The mask filter according to claim 1,
The copper wire is a wire that is cold drawn but not heat treated after cold working,
Mask filter. - 請求項1又は請求項2に記載のマスクフィルターにおいて、
前記経糸及び緯糸は、隣り合う糸との間隔が糸幅よりも広い、
マスクフィルター。 The mask filter according to claim 1 or 2,
The warp and weft are wider than the yarn width between adjacent yarns,
Mask filter. - 請求項1から請求項3までのいずれか1項に記載のマスクフィルターにおいて、
前記シートが複数枚重ねられた多重織りで形成される、
マスクフィルター。 In the mask filter according to any one of claims 1 to 3,
Formed of multiple weaves in which a plurality of the sheets are stacked,
Mask filter. - 請求項4に記載のマスクフィルターにおいて、
上側のシートの織り目に、下側のシートの経糸及び緯糸が重ねられる、
マスクフィルター。 The mask filter according to claim 4,
The warp and weft of the lower sheet are superimposed on the weave of the upper sheet,
Mask filter. - 請求項1から請求項5までのいずれか1項に記載のマスクフィルターを収納する収納部と、
マスクに接着する接着部と、
を備えるマスクフィルター用ポケット。 A storage unit that stores the mask filter according to any one of claims 1 to 5,
An adhesive part that adheres to the mask;
Mask filter pocket with - 請求項6に記載のマスクフィルター用ポケットにおいて、
前記収納部は、一枚のシートの一辺に沿った縁部が露出するように二つ折りされて両脇が接着されて形成され、
前記接着部は、前記露出した縁部に形成される、
マスクフィルター用ポケット。 In the mask filter pocket according to claim 6,
The storage portion is formed by being folded in two so that an edge portion along one side of one sheet is exposed, and bonded on both sides,
The adhesive portion is formed on the exposed edge.
Mask filter pocket. - 請求項1から請求項5までのいずれか1項に記載のマスクフィルターと、
請求項6又は請求項7に記載のマスクフィルター用ポケットと、
を備え、
前記マスクフィルターが前記マスクフィルター用ポケットに収納され、
前記マスクフィルター用ポケットが前記接着部で接着される、
マスク。 The mask filter according to any one of claims 1 to 5,
The mask filter pocket according to claim 6 or 7,
With
The mask filter is stored in the mask filter pocket,
The mask filter pocket is bonded at the bonding portion,
mask. - 樹脂繊維の周りに銅線を螺旋状に巻いて糸を形成する製糸工程と、
前記糸を経糸及び緯糸としてシートを織るシート織り工程と、
を含むマスクフィルター製造方法。 A spinning process in which a copper wire is spirally wound around a resin fiber to form a thread;
A sheet weaving step of weaving a sheet using the yarn as warp and weft;
A method for manufacturing a mask filter. - 請求項9に記載のマスクフィルター製造方法において、
冷間線引き加工するが冷間加工後に熱処理しないで前記銅線を製造する銅線製造工程を含む、
マスクフィルター製造方法。 In the mask filter manufacturing method according to claim 9,
Including a copper wire manufacturing process for manufacturing the copper wire without cold treatment after cold drawing,
Mask filter manufacturing method. - 請求項9又は請求項10に記載のマスクフィルター製造方法において、
前記シート織り工程で織られたシートを複数枚重ねて多重織りする多重織り工程を含む、
マスクフィルター製造方法。 In the mask filter manufacturing method according to claim 9 or 10,
Including a multiple weaving step of overlapping and weaving a plurality of sheets woven in the sheet weaving step,
Mask filter manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080047282.0A CN102573996B (en) | 2009-10-19 | 2010-10-19 | Mask filter, method for producing same, pocket for mask filter, and mask |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009240713A JP4581027B1 (en) | 2009-10-19 | 2009-10-19 | Mask filter and manufacturing method thereof, mask filter pocket and mask |
JP2009-240713 | 2009-10-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011049077A1 true WO2011049077A1 (en) | 2011-04-28 |
Family
ID=43365144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/068349 WO2011049077A1 (en) | 2009-10-19 | 2010-10-19 | Mask filter, method for producing same, pocket for mask filter, and mask |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4581027B1 (en) |
CN (1) | CN102573996B (en) |
WO (1) | WO2011049077A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2730293B1 (en) * | 2012-11-13 | 2015-07-22 | Heyer Medical AG | Gas filter with copper for removing bacteria and viruses from a gas volume |
JP6313785B2 (en) * | 2013-01-21 | 2018-04-18 | ジー.アイ. ビュー エルティーディー.G.I. View Ltd. | Integrated steering device |
CN103653407A (en) * | 2013-12-17 | 2014-03-26 | 江苏波波熊纺织品有限公司 | Anti-bacterium haze-proof mask and post-processing method thereof |
CN104544625A (en) * | 2014-01-09 | 2015-04-29 | 山东普华紫光环保设备有限公司 | Alloy disinfection silk and PM (particulate matter)2.5 removing mask prepared from alloy disinfection silk |
TWI630942B (en) * | 2017-03-21 | 2018-08-01 | 呂瑞娥 | Improved structure of disposable mask |
US11559191B2 (en) | 2018-10-29 | 2023-01-24 | G.I. View Ltd. | Insertion unit for medical instruments and an intubation system thereof |
US10646104B1 (en) | 2018-10-29 | 2020-05-12 | G.I. View Ltd. | Disposable endoscope |
CN111424360A (en) * | 2020-04-23 | 2020-07-17 | 吴宁西 | Long-acting reusable N90-grade mask and preparation method thereof |
JP6861451B1 (en) * | 2020-06-29 | 2021-04-21 | 株式会社グローバルテックコーポレーション | Sterilization filter and sterilization filter set |
KR102379237B1 (en) * | 2021-03-04 | 2022-03-24 | 김효진 | Multilayer mask |
DE102021106813A1 (en) * | 2021-03-19 | 2022-09-22 | Universität Kassel, Körperschaft des öffentlichen Rechts | Filter device for air purification, in particular for rendering viruses harmless |
KR102447574B1 (en) * | 2022-04-25 | 2022-09-27 | 주식회사 아성섬유 | Breathable fabric |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5964150U (en) * | 1982-10-22 | 1984-04-27 | 長崎商事株式会社 | antibacterial mask |
JPS61194251A (en) * | 1985-02-21 | 1986-08-28 | 東レ・デュポン株式会社 | Extensible fabric containing metal wire |
JPH0416683Y2 (en) * | 1986-12-31 | 1992-04-14 | ||
JPH10298855A (en) * | 1997-04-24 | 1998-11-10 | Sabona Tokyo:Kk | Composite sheet |
JP2000197711A (en) * | 1998-12-31 | 2000-07-18 | Tm Adotekku:Kk | Mask and mask cover |
JP2008303872A (en) * | 2007-05-07 | 2008-12-18 | Oishi Corporation:Kk | Air static elimination member |
JP2009226711A (en) * | 2008-03-21 | 2009-10-08 | Acoustic Engineering Kk | Mask |
JP2009242351A (en) * | 2008-03-31 | 2009-10-22 | Niigata Univ | Bactericidal copper material and sterilization method using copper material |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191879U (en) * | 1982-06-15 | 1983-12-20 | 長崎商事株式会社 | Futon |
JPH0342096U (en) * | 1989-09-01 | 1991-04-22 | ||
JP3174181B2 (en) * | 1993-01-19 | 2001-06-11 | 松下精工株式会社 | Filters and filter units |
JP3625548B2 (en) * | 1995-11-15 | 2005-03-02 | 旭化成せんい株式会社 | Composite structure fabric for mask |
CN100392166C (en) * | 2000-03-24 | 2008-06-04 | 花王株式会社 | Bulkyl sheet and process for producing the same |
JP2003060386A (en) * | 2001-07-27 | 2003-02-28 | Three M Innovative Properties Co | Electromagnetic wave shielding coating material |
WO2004027132A1 (en) * | 2002-09-14 | 2004-04-01 | W. Zimmermann Gmbh & Co. Kg | Electrically conductive thread |
CN101306278B (en) * | 2002-09-16 | 2011-08-17 | 特里奥辛控股有限公司 | Mask and filter closure combination |
US7445853B2 (en) * | 2002-10-17 | 2008-11-04 | Nv Bekaert Sa | Layered filter structure comprising short metal fibers |
CN100490925C (en) * | 2003-04-21 | 2009-05-27 | 王家君 | Sterilizing and toxicant preventing breathing mask and its preparation method |
JP4880913B2 (en) * | 2004-05-28 | 2012-02-22 | 松山毛織株式会社 | Conductive fabric and metal fabric |
-
2009
- 2009-10-19 JP JP2009240713A patent/JP4581027B1/en not_active Expired - Fee Related
-
2010
- 2010-10-19 CN CN201080047282.0A patent/CN102573996B/en not_active Expired - Fee Related
- 2010-10-19 WO PCT/JP2010/068349 patent/WO2011049077A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5964150U (en) * | 1982-10-22 | 1984-04-27 | 長崎商事株式会社 | antibacterial mask |
JPS61194251A (en) * | 1985-02-21 | 1986-08-28 | 東レ・デュポン株式会社 | Extensible fabric containing metal wire |
JPH0416683Y2 (en) * | 1986-12-31 | 1992-04-14 | ||
JPH10298855A (en) * | 1997-04-24 | 1998-11-10 | Sabona Tokyo:Kk | Composite sheet |
JP2000197711A (en) * | 1998-12-31 | 2000-07-18 | Tm Adotekku:Kk | Mask and mask cover |
JP2008303872A (en) * | 2007-05-07 | 2008-12-18 | Oishi Corporation:Kk | Air static elimination member |
JP2009226711A (en) * | 2008-03-21 | 2009-10-08 | Acoustic Engineering Kk | Mask |
JP2009242351A (en) * | 2008-03-31 | 2009-10-22 | Niigata Univ | Bactericidal copper material and sterilization method using copper material |
Also Published As
Publication number | Publication date |
---|---|
JP2011083549A (en) | 2011-04-28 |
JP4581027B1 (en) | 2010-11-17 |
CN102573996A (en) | 2012-07-11 |
CN102573996B (en) | 2014-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011049077A1 (en) | Mask filter, method for producing same, pocket for mask filter, and mask | |
KR102287122B1 (en) | Structures used for piezoelectric elements, braided piezoelectric elements, fabric piezoelectric elements using braided piezoelectric elements, and devices using them | |
JP4880913B2 (en) | Conductive fabric and metal fabric | |
KR101233818B1 (en) | Method for Preparing the Fiber Treated by Graphene | |
JP2018073997A (en) | Braided string piezoelectric element and device using same | |
KR101781690B1 (en) | Air filter media sheet using Cu-Fe alloy wire | |
WO2018079739A1 (en) | Structure for use in piezoelectric element, braided piezoelectric element, fabric-like piezoelectric element using braided piezoelectric element, and device using these | |
JP4604152B1 (en) | Woven fabric and magnetic field generator | |
JP6624968B2 (en) | Piezoelectric sensor | |
CN212666831U (en) | Antibacterial woolen fabric | |
CN108638634B (en) | Preparation method of intelligent fabric and intelligent fabric | |
Qian et al. | Atomic layer deposition of ZnO on polypropylene nonwovens for photocatalytic antibacterial facemasks | |
CN210940772U (en) | Antibacterial and anti-mite garment fabric based on biomass fibers | |
JP6956580B2 (en) | Woven fabric | |
CN212073240U (en) | Antibacterial oxford | |
CN210706409U (en) | Conductive composite spunlace non-woven fabric | |
CN108611724A (en) | Ultra-thin fencing cloth | |
JP6785618B2 (en) | Structures used for piezoelectric elements and devices using them | |
CN217319579U (en) | High-temperature air filter cloth | |
CN219856262U (en) | Novel composite non-woven fabric | |
JP4255362B2 (en) | Textile product and manufacturing method thereof | |
CN213675819U (en) | Non-woven fabric with toughness | |
JP2018074000A (en) | Structure used for piezoelectric element, and device using the same | |
CN219856271U (en) | Hot air cotton with good antibacterial property | |
CN213696499U (en) | Easily clean curtain cloth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080047282.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10824926 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10824926 Country of ref document: EP Kind code of ref document: A1 |