WO2011049059A1 - Composition comprising rna-enclosing carrier - Google Patents

Composition comprising rna-enclosing carrier Download PDF

Info

Publication number
WO2011049059A1
WO2011049059A1 PCT/JP2010/068314 JP2010068314W WO2011049059A1 WO 2011049059 A1 WO2011049059 A1 WO 2011049059A1 JP 2010068314 W JP2010068314 W JP 2010068314W WO 2011049059 A1 WO2011049059 A1 WO 2011049059A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
monocytes
mir
macrophages
cells
Prior art date
Application number
PCT/JP2010/068314
Other languages
French (fr)
Japanese (ja)
Inventor
幸博 赤尾
荘一朗 竹西
知樹 直江
Original Assignee
国立大学法人岐阜大学
北海道システム・サイエンス株式会社
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岐阜大学, 北海道システム・サイエンス株式会社, 国立大学法人名古屋大学 filed Critical 国立大学法人岐阜大学
Priority to JP2011537248A priority Critical patent/JPWO2011049059A1/en
Publication of WO2011049059A1 publication Critical patent/WO2011049059A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6901Conjugates being cells, cell fragments, viruses, ghosts, red blood cells or viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • RNA such as microRNA
  • RNA such as siRNA and microRNA is expected as a nucleic acid medicine.
  • RNA is considered to have a problem in delivery to a target site. That is, in the living body, there are abundant nucleases that degrade RNA.
  • Patent Document 1 As a method for avoiding attacks from nucleases, it is possible to encapsulate and administer nucleic acids in liposomes or nanopolymers (Patent Document 1).
  • the liposome is about 5 nm to 200 nm, and even if RNA is embedded, it is taken up by macrophages and decomposed. Liposomes induce an allergic reaction and may cause damage to the liver and kidneys. For these reasons, the actual dose of functional RNA is limited, and the current situation is that a sufficient effect cannot be expected.
  • the present inventors focused on monocytes, which are a type of white blood cell. That is, RNA of interest is introduced into monocytes collected from patients, and monocytes after introduction, macrophages obtained by differentiating monocytes, and microvesicles (Shedding microvesicles (SMV)) obtained from these culture supernatants are administered. It was found that the above problems can be solved. According to the disclosure of the present specification, the following means are provided.
  • RNA may be exogenous RNA, and the exogenous RNA may contain microRNA.
  • the foreign RNA may have antitumor activity, and such a composition can be used as an antitumor composition.
  • a composition may be a composition for RNA delivery into the living body of animals including humans.
  • a method for producing an RNA-encapsulating carrier comprises the step of introducing RNA or a DNA construct that expresses the RNA into monocytes or macrophages.
  • the manufacturing method further includes the following steps: (A) A step of culturing monocytes introduced with the RNA to differentiate into macrophages may be provided. Further, the manufacturing method may include (b) a step of releasing microvesicles from the monocytes and / or the macrophages.
  • the manufacturing method may be a method for manufacturing an antitumor composition.
  • FIG. 3 is a graph comparing the amount of introduced miR-143 in human monocyte leukemia cell THP-1. It is a figure which shows the measurement result of the quantity of miR-143 in the precipitate which concentrated the microvesicle by the ultracentrifugation from the culture supernatant when the cell in which miR-143 was introduce
  • the disclosure of the present specification includes one or more carriers selected from monocytes, macrophages, and microvesicles derived from these cells, a composition containing a carrier encapsulating RNA, and a composition of such an RNA-encapsulating carrier. It relates to a manufacturing method.
  • the composition disclosed in the present specification avoids degradation by macrophages or nucleases in the administered living body by containing such an RNA-encapsulating carrier. For this reason, RNA can be present in the living body at a higher concentration.
  • these carriers are derived from living bodies, side effects that may occur in liposomes and the like are avoided.
  • RNA contained in the carrier can be delivered to the foreign bodies.
  • microvesicles are preferred carriers in that they are stable to nucleases and distributed by the bloodstream throughout the body.
  • monocytes are cells in a stage before differentiation into macrophages of macrophage cells, and mean cells that can exist mainly in blood in a living body. Also called mononuclear sphere.
  • the term “monocytes” may include monocytes and pre-monocytes before differentiation into monocytes.
  • Monocytes can have antigen presenting action, adhesion and phagocytosis.
  • macrophages mean phagocytic cells differentiated from monocytes and have phagocytic ability. Macrophages can have cytotoxic effects such as antigen presenting action, adhesion, motility, misdifferentiated tumor cells and the like.
  • monocytes and macrophages do not include dendritic cells.
  • FIG. 1 shows an outline of RNA delivery using the composition disclosed in the present specification.
  • the RNA delivery disclosed in the present specification uses monocytes, macrophages and microvesicles derived from the membranes of these cells as RNA packaging carriers. These cells, particularly monocytes and macrophages, are themselves vehicles that deliver to the target site, etc., in the immune system in the living body, are carriers for packaging RNA, and microvesicles that contain RNA. It is presumed to have a function of releasing. In particular, the microvesicle is presumed to have a function of encapsulating RNA and delivering it to a target.
  • the RNA-encapsulating carrier can take various forms. Examples include monocytes introduced with RNA and the like, macrophages obtained by inducing differentiation of the monocytes, macrophages introduced with RNA and the like, and microvesicles released from these monocytes and macrophages.
  • the RNA-encapsulating carrier composition may contain only one type selected from these various types of RNA-encapsulating carriers, or may contain two or more types in combination.
  • the microvesicle means a vesicle obtained in the culture supernatant of monocytes introduced with foreign RNA or macrophages obtained by differentiating the monocytes.
  • These vesicles can be generated from biological membranes of monocytes and macrophages.
  • Such vesicles can include shedsome microvesicles (SMV, secretory microvesicles) as well as exosomes.
  • SMV is a vesicle that sprouting directly from the cell membrane. SMV is thought to sprout from various cells such as monocytes and macrophages. These particles may have a substantially spherical membrane structure.
  • RNA-containing carrier-containing composition one or more particles (carriers) selected from monocytes, macrophages, and microvesicles derived from these cells, and particles (carriers) containing RNA that may be exogenous ) Is referred to as an RNA-containing carrier.
  • Monocytes and macrophages may be cultured cells in addition to cells collected from living organisms, or may be obtained by differentiation from iPS cells or stem cells.
  • Monocytes can be collected by a known method from the blood of an individual organism, specifically, a mammal such as a human.
  • Macrophages can be obtained as macrophages by differentiating collected monocytes by a known method, and can also be collected from tissues such as mammals.
  • methods such as stimulation with TPA and certain cytokines can be mentioned.
  • Microvesicles can be obtained from a supernatant fraction obtained by culturing monocytes and / or macrophages. Microvesicles can be confirmed by observing the tsg101 protein by Western blot, as well as by observing the culture supernatant with an electron microscope.
  • the origin of monocytes, macrophages, and microvesicles is not particularly limited. However, in view of administration to an individual organism, from the viewpoint of suppressing rejection, it is preferably an allogeneic cell rather than a heterologous cell. Autologous cells are preferred.
  • the cell acquisition source is preferably an individual subject to prevention / treatment (such as a patient).
  • RNA means a polymer in which ribonucleotides are linked by phosphodiester bonds.
  • RNA may be composed entirely or partly of a known nucleotide analog. In addition, some modification may be made in order to avoid or suppress degradation by nuclease or the like.
  • examples of the RNA included in the carrier include mRNA, tRNA, rRNA, tRNA and non-coding RNA (ncRNA) other than rRNA, ribozyme, and antisense RNA.
  • ncRNA include micro RNA, siRNA, and shRNA.
  • RNA which has a base sequence complementary to these RNA is also mentioned. Such RNA can usually be artificially obtained by a known nucleic acid synthesis method.
  • the RNA may be a DNA construct configured such that such RNA can be expressed in cells.
  • This composition can be used for introducing such RNA into the body of animals including humans.
  • it can be used for tissue delivery.
  • a microRNA that is related to or likely to develop various diseases as RNA for example, by administering a composition containing such an RNA-encapsulating carrier to an animal or the like, the functional study of the microRNA Individuals can be obtained for research and testing such as the onset process.
  • an RNA-encapsulating carrier composition that encapsulates an RNA having a complementary base sequence of a disease-related RNA can be used for the prevention / treatment of such diseases or its test research.
  • a microRNA related to or possibly preventing or treating a disease such a composition containing an RNA-encapsulating carrier can be administered to an animal such as a human to be used for prevention / treatment or a test study thereof.
  • miR-143, miR-145, let-7, etc. are preferably used as the microRNA.
  • composition in addition to administration via a vascular route such as intravenous administration, it can be injected into a tissue percutaneously or with an incision. it can.
  • the RNA in the RNA-encapsulating carrier may be RNA that is inherently present in an organism individual that is a source of cells such as monocytes, or a heterogeneous or artificial RNA that cannot inherently exist in the individual organism. It may be.
  • the RNA may be exogenous introduced from the outside regardless of whether it is intrinsic to the acquisition source.
  • RNA-encapsulating carrier for example, a monocyte or macrophage obtained by collecting or differentiating progenitor cells is introduced with RNA or a DNA construct capable of generating RNA as a transcript by a known method.
  • nucleic acids such as RNA and DNA into such cells.
  • electroporation, calcium phosphate method, lipofection method and the like can be mentioned.
  • RNA or a DNA construct that expresses the RNA may be introduced into monocytes and then differentiated into macrophages.
  • the microvesicle encapsulating RNA as an RNA-encapsulating carrier can be obtained in the culture supernatant when culturing monocytes or macrophages into which RNA or DNA construct has been introduced. Microvesicles are released by culturing monocytes or macrophages. The release of microvesicles is promoted by serum-starved culture of monocytes and macrophages. Monesin (calcium ionate) treatment can also be employed.
  • the RNA-encapsulating carrier may contain RNA in one or more carriers selected from monocytes, macrophages and microvesicles, and any of these carriers may contain the target RNA.
  • the RNA-containing carrier-containing composition only needs to contain at least one RNA-encapsulating carrier, and even if it contains another carrier, the other carrier does not contain RNA. Good.
  • cells D ( ⁇ ) and D (+) before and after differentiation induction of human monocyte leukemia cell THP-1 were prepared.
  • TPA in the range of 20 to 160 nM was added to the medium.
  • MiR-143 was introduced into these cells using liposomes (liofectamine, Invitrogen), and after culturing for 18 hours, the amount of miR-143 found in the cell fraction of each culture was confirmed.
  • miR-143 was introduced into liposomes by embedding 40 nM, and culture was performed in RPMI 1640 medium containing 10% calf serum. Note that miR-143 was detected using real-time PR. The results are shown in FIG.
  • microRNAs are introduced into cells by using liposomes for THP-1 D ( ⁇ ) monocyte cells, and THP ⁇ after differentiation compared to cells before differentiation. It was found that when miRNA was introduced into 1 ⁇ D (+), more miR-143 was introduced and retained in the cell fraction. This supported that monocytes become macrophages by differentiating monocytes, but macrophages can retain more RNA in the cells than monocytes.
  • the cultured THP-1 D (+) is cultured under serum-starved culture conditions without serum for 24 hours, and the culture supernatant is collected and centrifuged at 3000 rpm for 30 minutes, and the supernatant is further collected at 50,000 to 100,000. Ultracentrifugation was performed at rpm for 3 hours to collect microvesicles adhering to the tube wall. From these vesicle suspensions, miR-143, GAPDH gene, which is a cytoplasmic marker protein gene, and ACTB gene, which is a cytoskeletal protein gene, were measured. Serum starvation culture was performed for 24 to 28 hours using serum-free RPMI 1640 medium. miR-143, miR-22, GAPDH gene and ACTB gene were each measured by real-time PCR. The results are shown in FIGS.
  • miR-143 in microvesicles secreted into the culture supernatant depends on the concentration of the introduced It was found that it was increasing. miR-143 was considered to be miR-143 in microvesicles because it increased as a relative amount to miR-22 inherent in THP-1 D (+) cells.
  • miR-143 was considered to be miR-143 in microvesicles because it increased as a relative amount to miR-22 inherent in THP-1 D (+) cells.
  • all the samples including the control contained almost the same amount, except for miR-143. It was shown that RNA was also present. This supported that the sample after ultracentrifugation was mainly composed of active vesicles, not cell dead bodies or fragments thereof.
  • FIG. 5 an electron micrograph of the microvesicles obtained by ultracentrifugation of the culture supernatant is shown in FIG. As shown in FIG. 5, SMV-like microvesicles were observed.
  • monocytes into which miR-143 was introduced via liposomes were intravenously administered to nude mice (BALB / c system, Charles River Japan, Inc.) bearing human colon cancer, and miR- 143 amount was confirmed. That is, tumor-bearing mice were prepared by transplanting 2 to 3 million human colon cancer DLD-1 cells subcutaneously in nude mice. MiR-143 and control miR-R 20 nM each were introduced into human monocytic cell line THP-1 (100,000 cells / ml) using Lipofectamine. One hundred thousand to 100,000 introduced THP-1 cells per tumor-bearing nude mouse were washed and administered through the tail vein of the mouse. Administration was once a day and twice a day (2 days).
  • D (+) was prepared by inducing differentiation of human chronic myeloid leukemia cell line K562 cells.
  • TPA in the range of 20 to 160 nM was added to the medium.
  • MiR-143 was introduced into these cells using liposomes (liofectamine, Invitrogen), and after culturing for 18 hours, the amount of miR-143 found in the cell fraction of each culture was confirmed.
  • miR-143 was introduced into liposomes by embedding 10 to 60 nM, and culture was performed in RPMI 1640 medium containing 10% calf serum.
  • miR-143 and miR-21 were measured by real-time PCR. Serum starvation culture was performed for 24 to 28 hours using serum-free RPMI 1640 medium. The results are shown in FIG.
  • miR-143 when miR-143 was introduced into K562 ⁇ D (+) and cultured under starvation conditions, miR-143 in microvesicles secreted into the culture supernatant increased depending on the introduction concentration. I found out. miR-143 was considered to be miR-143 in microvesicles because it increased as a relative amount to miR-21 inherent in K56256D (+) cells.
  • microvesicles secretory membrane vesicles
  • Cy5 could be detected in the intracellular multivesicular bodies (see arrows in the figure).
  • miR-143BP / Cy5 was able to be observed in the secreted microvesicle extracellularly (refer the arrow in a figure).
  • miR-143BP was introduced into THP-1 cells induced to differentiate in the same manner as in Example 1. Specifically, miR-143BP was introduced into liposomes (liofectamine, Invitrogen) by embedding 40 nM, and cultured for 18 hours. Culture was performed in RPMI 1640 medium containing 10% calf serum. Then, after culturing in a serum-free medium for 24 hours, THP-1 cells were intravenously administered to tumor-bearing mice at 1 to 5 ⁇ 10 5 / mouse. The tumor-bearing mice were prepared by transplanting human colon cancer DLD-1 cells under the skin of nude mice at 2 to 3 million cells / mouse. Administration was once a day and twice a day (2 days).
  • blood was collected from the mice 4 hours, 8 hours and 24 hours after the final administration, and miR-143 and miR-21 in the serum were measured by real-time PCR. The results are shown in FIGS.

Abstract

Provided is a composition comprising one or more kinds of RNA-enclosing carriers, said carriers being selected from among a monocyte, a macrophage and a shedding microvesicle originating in these cells. The RNA-enclosing carrier(s) in the aforesaid composition can maintain the RNA in a stable state in vivo.

Description

RNA内包キャリア組成物RNA-encapsulating carrier composition
 本願は、2009年10月22日に出願された日本国出願特願2009-243466に基づく優先権を主張するものであって、その全ての内容は引用により本願に組み込まれるものとする。本明細書の開示は、マイクロRNA等のRNAの生体内へのデリバリーに適した組成物に関する。 This application claims priority based on Japanese Patent Application No. 2009-243466 filed on Oct. 22, 2009, the entire contents of which are incorporated herein by reference. The disclosure herein relates to compositions suitable for in vivo delivery of RNA, such as microRNA.
 siRNAやマイクロRNA等、RNAは核酸医薬として期待されている。一方、RNAは標的部位へのデリバリーにおいて課題があると考えられている。すなわち、生体内にはRNAを分解するヌクレアーゼが豊富に存在するからである。ここで、ヌクレアーゼからの攻撃を回避するための方法として、リポゾームやナノポリマーなどに核酸を包理して投与することが挙げられる(特許文献1)。 RNA such as siRNA and microRNA is expected as a nucleic acid medicine. On the other hand, RNA is considered to have a problem in delivery to a target site. That is, in the living body, there are abundant nucleases that degrade RNA. Here, as a method for avoiding attacks from nucleases, it is possible to encapsulate and administer nucleic acids in liposomes or nanopolymers (Patent Document 1).
2005-281146号公報2005-281146
 しかしながら、リポゾームは5nm~200nm程度であり、RNAを包理したとしても、マクロファージに取り込まれて分解されてしまう。また、リポゾーム等はアレルギー反応を誘起するほか、肝臓や腎臓などへの障害が生じるおそれもある。こうしたことから、機能的RNAの実質的な投与量は制限されたものとなり、十分な効果を期待できないのが現状であった。 However, the liposome is about 5 nm to 200 nm, and even if RNA is embedded, it is taken up by macrophages and decomposed. Liposomes induce an allergic reaction and may cause damage to the liver and kidneys. For these reasons, the actual dose of functional RNA is limited, and the current situation is that a sufficient effect cannot be expected.
 そこで、本明細書の開示は、RNAの新規なデリバリーシステムを提供し、併せてその利用を図ることを一つの目的とする。 Therefore, the disclosure of this specification is intended to provide a novel delivery system for RNA and to use it together.
 本発明者らは、白血球の一種である単球に着目した。すなわち、患者から採取した単球に目的のRNAを導入し、導入後の単球や単球を分化させたマクロファージやこれらの培養上清に得られる微小胞(Shedding microvesicle(SMV))を投与することで上記課題を解決できることを見出した。本明細書の開示によれば、以下の手段が提供される。 The present inventors focused on monocytes, which are a type of white blood cell. That is, RNA of interest is introduced into monocytes collected from patients, and monocytes after introduction, macrophages obtained by differentiating monocytes, and microvesicles (Shedding microvesicles (SMV)) obtained from these culture supernatants are administered. It was found that the above problems can be solved. According to the disclosure of the present specification, the following means are provided.
 本明細書の開示によれば、単球、マクロファージ及びこれらの細胞の微小胞から選択される1種又は2種以上のキャリアであって、RNAを内包するキャリアを含む組成物が提供される。前記RNAは外来性RNAであってもよく、当該外来性RNAは、マイクロRNAを含んでいてもよい。前記外来RNAは抗腫瘍活性を有しているものであってもよく、こうした組成物は、抗腫瘍組成物として用いることができる。また、こうした組成物は、ヒトを含む動物の生体内へのRNAデリバリー用である、組成物であってもよい。 According to the disclosure of the present specification, there is provided a composition comprising one or more carriers selected from monocytes, macrophages, and microvesicles of these cells, and a carrier containing RNA. The RNA may be exogenous RNA, and the exogenous RNA may contain microRNA. The foreign RNA may have antitumor activity, and such a composition can be used as an antitumor composition. Moreover, such a composition may be a composition for RNA delivery into the living body of animals including humans.
 本明細書の開示によれば、単球又はマクロファージにRNA又は当該RNAを発現するDNAコンストラクトを導入する工程、を備える、RNA内包キャリアの製造方法が提供される。前記製造方法は、さらに、以下の工程:
(a)前記RNAが導入された単球を培養してマクロファージに分化させる工程を備えていてもよい。さらに、前記製造方法は、(b)前記単球及び/又は前記マクロファージから微小胞を放出させる工程、を備えていてもよい。前記製造方法は、抗腫瘍組成物の製造方法であってもよい。
According to the disclosure of the present specification, a method for producing an RNA-encapsulating carrier is provided, which comprises the step of introducing RNA or a DNA construct that expresses the RNA into monocytes or macrophages. The manufacturing method further includes the following steps:
(A) A step of culturing monocytes introduced with the RNA to differentiate into macrophages may be provided. Further, the manufacturing method may include (b) a step of releasing microvesicles from the monocytes and / or the macrophages. The manufacturing method may be a method for manufacturing an antitumor composition.
本明細書の開示のRNA内包キャリアによるRNAのデリバリーの概要を示す図である。It is a figure which shows the outline | summary of the delivery of RNA by the RNA inclusion carrier of an indication of this specification. ヒト単球白血病細胞THP-1における導入miR-143量を比較する図である。FIG. 3 is a graph comparing the amount of introduced miR-143 in human monocyte leukemia cell THP-1. miR-143が導入された細胞を血清飢餓培養したときの培養上清から超遠心により微小胞を濃縮した沈殿物におけるmiR-143量の測定結果を示す図である。It is a figure which shows the measurement result of the quantity of miR-143 in the precipitate which concentrated the microvesicle by the ultracentrifugation from the culture supernatant when the cell in which miR-143 was introduce | transduced was serum-starved. miR-143が導入された細胞を血清飢餓培養したときの培養上清から超遠心により微小胞を濃縮した沈殿物におけるGAPDH遺伝子のmRNA及びACTB遺伝子のmRNAの測定結果を示す図である。It is a figure which shows the measurement result of mRNA of GAPDH gene and mRNA of ACTB gene in the precipitate which concentrated the microvesicle by the ultracentrifugation from the culture supernatant when the cell which introduce | transduced miR-143 was serum-starved. 培養上清から超遠心で濃縮された微小胞の電子顕微鏡写真を示す図である。It is a figure which shows the electron micrograph of the microvesicle concentrated by the ultracentrifugation from the culture supernatant. 担癌ヌードマウスの腫瘍部位におけるmiR-143量の測定結果を示す図である。It is a figure which shows the measurement result of the amount of miR-143 in the tumor site | part of a tumor bearing nude mouse. K562細胞に導入したmiRNA-143の濃度と微小胞におけるmiRNA-143の濃度との関係を示す図である。It is a figure which shows the relationship between the density | concentration of miRNA-143 introduce | transduced into K562 cell, and the density | concentration of miRNA-143 in a microvesicle. Cy5でラベルしたmiRNA-143BPを導入したTHP-1細胞の細胞内(a)THP-1細胞外(b)の免疫電子顕微鏡写真を示す図である。It is a figure which shows the immunoelectron micrograph of the intracellular (a) THP-1 extracellular (b) of the THP-1 cell which introduce | transduced miRNA-143BP labeled with Cy5. miRNA-143BPを導入したTHP-1細胞を投与した担癌マウスにおけるmiRNA-143BPの組織(腎臓)への蓄積を示す図である。It is a figure which shows accumulation | storage to the tissue (kidney) of the miRNA-143BP in the tumor bearing mouse | mouth which administered the THP-1 cell which introduce | transduced miRNA-143BP. miRNA-143BPを導入したTHP-1細胞を投与した担癌マウスにおけるmiRNA-143BPの血中濃度の変化を示す図である。It is a figure which shows the change of the blood level of miRNA-143BP in the tumor bearing mouse | mouth which administered the THP-1 cell which introduce | transduced miRNA-143BP.
 本明細書の開示は、単球、マクロファージ及びこれらの細胞由来の微小胞から選択される1種又は2種以上のキャリアであって、RNAを内包するキャリアを含む組成物及びかかるRNA内包キャリアの製造方法に関する。本明細書に開示される組成物は、かかるRNA内包キャリアを含有していることにより、投与された生体内においてマクロファージやヌクレアーゼによる分解を免れる。このため、より高濃度でRNAが生体内において存在されうる。また、これらのキャリアは、生体由来であるため、リポソーム等に生じうる副作用が回避される。さらに、これらのキャリアが取得源たる個体において単球が記憶している異物認識能を維持しうるとき、この個体に再度投与するときには、キャリアに内包されるRNAが異物までデリバリーされうる。特に、微小胞は、ヌクレアーゼに対して安定で全身に血流によって分布される点において好ましいキャリアである。 The disclosure of the present specification includes one or more carriers selected from monocytes, macrophages, and microvesicles derived from these cells, a composition containing a carrier encapsulating RNA, and a composition of such an RNA-encapsulating carrier. It relates to a manufacturing method. The composition disclosed in the present specification avoids degradation by macrophages or nucleases in the administered living body by containing such an RNA-encapsulating carrier. For this reason, RNA can be present in the living body at a higher concentration. Moreover, since these carriers are derived from living bodies, side effects that may occur in liposomes and the like are avoided. Furthermore, when the foreign substance recognition ability memorized by monocytes can be maintained in the individual from which these carriers are acquired, when they are administered again to this individual, the RNA contained in the carrier can be delivered to the foreign bodies. In particular, microvesicles are preferred carriers in that they are stable to nucleases and distributed by the bloodstream throughout the body.
 本明細書において単球とは、マクロファージ系細胞のマクロファージに分化する前の段階にある細胞であって、生体においては主として血液中に存在しうる細胞を意味している。単核球ともいう。本明細書において単球というとき、単球に分化する前の単芽球及び前単球をその一部に含んでいてもよい。単球は、抗原提示作用、付着性及び食作用を有しうる。本明細書においてマクロファージとは、単球から分化して貪食能を有する食細胞を意味している。マクロファージは、抗原提示作用、付着性、運動性、誤って分化した腫瘍細胞などの細胞傷害作用を有しうる。また、本明細書において、単球及びマクロファージは、樹状細胞を包含しない。 In the present specification, monocytes are cells in a stage before differentiation into macrophages of macrophage cells, and mean cells that can exist mainly in blood in a living body. Also called mononuclear sphere. In the present specification, the term “monocytes” may include monocytes and pre-monocytes before differentiation into monocytes. Monocytes can have antigen presenting action, adhesion and phagocytosis. In the present specification, macrophages mean phagocytic cells differentiated from monocytes and have phagocytic ability. Macrophages can have cytotoxic effects such as antigen presenting action, adhesion, motility, misdifferentiated tumor cells and the like. In the present specification, monocytes and macrophages do not include dendritic cells.
 図1に、本明細書に開示される組成物を用いたRNAのデリバリーの概要について示す。本明細書に開示されるRNAのデリバリーは、単球、マクロファージ及びこれらの細胞の膜に由来する微小胞をRNAのパッケージングキャリアとして用いるものである。これらの細胞、特に、単球及びマクロファージは、それ自体生体内の免疫系で標的部位等にまでデリバリーするビヒクルでありRNAを内胞するパッケージングするキャリアであるとともに、RNAを内包する微小胞を放出する機能を有していると推測される。また、特に、微小胞は、RNAを内包して標的に送達する機能を有していると推測される。 FIG. 1 shows an outline of RNA delivery using the composition disclosed in the present specification. The RNA delivery disclosed in the present specification uses monocytes, macrophages and microvesicles derived from the membranes of these cells as RNA packaging carriers. These cells, particularly monocytes and macrophages, are themselves vehicles that deliver to the target site, etc., in the immune system in the living body, are carriers for packaging RNA, and microvesicles that contain RNA. It is presumed to have a function of releasing. In particular, the microvesicle is presumed to have a function of encapsulating RNA and delivering it to a target.
 図1に示すように、RNA内包キャリアは各種形態を採ることができる。RNA等が導入された単球及び当該単球が分化誘導されて得られるマクロファージ、RNA等が導入されたマクロファージ、並びに、こられの単球及びマクロファージから放出される微小胞が挙げられる。RNA内包キャリア組成物は、これらの各種形態のRNA内包キャリアから選択される1種のみを含んでいてもよいし、2種以上を組み合わせて含んでいてもよい。 As shown in FIG. 1, the RNA-encapsulating carrier can take various forms. Examples include monocytes introduced with RNA and the like, macrophages obtained by inducing differentiation of the monocytes, macrophages introduced with RNA and the like, and microvesicles released from these monocytes and macrophages. The RNA-encapsulating carrier composition may contain only one type selected from these various types of RNA-encapsulating carriers, or may contain two or more types in combination.
 本明細書において微小胞とは、外来RNAを導入した単球又は当該単球を分化させて得られるマクロファージの培養上清に得られる小胞を意味している。これらの小胞は、単球やマクロファージの生体膜から生成されうる。こうした小胞は、shedding microvesicle(SMV、分泌微小胞)のほかエクソゾーム(exosome)を包含しうる。ここで、SMVは、細胞膜から直接萌芽する小胞である。SMVは、単球やマクロファージなど各種細胞から萌芽すると考えられている。この粒子は、略球状の膜構構造を有していてもよい。 In this specification, the microvesicle means a vesicle obtained in the culture supernatant of monocytes introduced with foreign RNA or macrophages obtained by differentiating the monocytes. These vesicles can be generated from biological membranes of monocytes and macrophages. Such vesicles can include shedsome microvesicles (SMV, secretory microvesicles) as well as exosomes. Here, SMV is a vesicle that sprouting directly from the cell membrane. SMV is thought to sprout from various cells such as monocytes and macrophages. These particles may have a substantially spherical membrane structure.
(RNA内包キャリア含有組成物)
 以下の説明において、単球、マクロファージ及びこれらの細胞由来の微小胞から選択される1種又は2種以上の粒子(キャリア)であって、外来性であってもよいRNAを内包する粒子(キャリア)を、RNA内包キャリアというものとする。
(RNA-containing carrier-containing composition)
In the following description, one or more particles (carriers) selected from monocytes, macrophages, and microvesicles derived from these cells, and particles (carriers) containing RNA that may be exogenous ) Is referred to as an RNA-containing carrier.
 単球及びマクロファージは、生物個体から採取した細胞のほか、培養細胞であってもよく、また、iPS細胞や幹細胞から分化させて取得したものであってもよい。単球は、生物個体、具体的には、ヒトなどの哺乳類の血液から公知の方法により採取することができる。マクロファージは、採取した単球を、公知の方法で分化させてマクロファージとして取得することができるほか、哺乳類などの組織から採取することができる。単球をマクロファージに分化させるには、例えば、TPA及びある種のサイトカインで刺激するなどの方法が挙げられる。微小胞は、単球及び/又はマクロファージ培養した上清画分から取得することができる。微小胞は、培養上清の電子顕微鏡観察のほか、tsg101タンパク質をウエスタンブロットで検出することなどにより確認することができる。 Monocytes and macrophages may be cultured cells in addition to cells collected from living organisms, or may be obtained by differentiation from iPS cells or stem cells. Monocytes can be collected by a known method from the blood of an individual organism, specifically, a mammal such as a human. Macrophages can be obtained as macrophages by differentiating collected monocytes by a known method, and can also be collected from tissues such as mammals. In order to differentiate monocytes into macrophages, for example, methods such as stimulation with TPA and certain cytokines can be mentioned. Microvesicles can be obtained from a supernatant fraction obtained by culturing monocytes and / or macrophages. Microvesicles can be confirmed by observing the tsg101 protein by Western blot, as well as by observing the culture supernatant with an electron microscope.
 単球、マクロファージ及び微小胞の由来は特に問わないが、生物個体に投与することを考慮すると、拒絶反応を抑制する観点から、異種細胞よりも同種細胞であることが好ましく、他家細胞であるよりも自家細胞であることが好ましい。例えば、本組成物を、予防・治療用として用いる場合には、細胞取得源は、予防・治療対象個体(患者等)とすることが好ましい。 The origin of monocytes, macrophages, and microvesicles is not particularly limited. However, in view of administration to an individual organism, from the viewpoint of suppressing rejection, it is preferably an allogeneic cell rather than a heterologous cell. Autologous cells are preferred. For example, when the present composition is used for prevention / treatment, the cell acquisition source is preferably an individual subject to prevention / treatment (such as a patient).
 本明細書においてRNAは、リボヌクレオチドがホスホジエステル結合で連結されたポリマーを意味している。なお、RNAは、公知のヌクレオチドアナログによって全体又は一部が構成されていてもよい。また、ヌクレアーゼ等による分解を回避又は抑制するために、何らかの修飾がなされていてもよい。キャリアに内包されるRNAとしては、例えば、mRNA、tRNA、rRNA、tRNA及びrRNA以外のノンコーディングRNA(ncRNA)、リボザイム、アンチセンスRNA等が挙げられる。ncRNAとしては、マイクロRNA、siRNA、shRNAが挙げられる。また、これらのRNAに相補的な塩基配列を有するRNAも挙げられる。こうしたRNAは、通常、公知の核酸合成法により人工的に取得できる。さらに、RNAとしては、こうしたRNAを細胞内で発現可能に構成されたDNAコンストラクトであってもよい。 In this specification, RNA means a polymer in which ribonucleotides are linked by phosphodiester bonds. RNA may be composed entirely or partly of a known nucleotide analog. In addition, some modification may be made in order to avoid or suppress degradation by nuclease or the like. Examples of the RNA included in the carrier include mRNA, tRNA, rRNA, tRNA and non-coding RNA (ncRNA) other than rRNA, ribozyme, and antisense RNA. Examples of ncRNA include micro RNA, siRNA, and shRNA. Moreover, RNA which has a base sequence complementary to these RNA is also mentioned. Such RNA can usually be artificially obtained by a known nucleic acid synthesis method. Furthermore, the RNA may be a DNA construct configured such that such RNA can be expressed in cells.
 本組成物は、こうしたRNAをヒトを含む動物の体内へ導入用として用いることができる。また、特に、組織デリバリー用として用いるとができる。例えば、RNAとして、各種疾患の発症に関連するあるいはその可能性のあるマイクロRNAを用いることで、例えば、こうしたRNA内包キャリアを含む組成物を動物等に投与することで、当該マイクロRNAの機能研究や発症プロセスなどの研究や試験用の個体を得ることができる。また、疾患関連RNAの相補的な塩基配列を有するRNAを内包するRNA内包キャリア組成物は、こうした疾患の予防・治療又はその試験研究に用いることができる。 This composition can be used for introducing such RNA into the body of animals including humans. In particular, it can be used for tissue delivery. For example, by using a microRNA that is related to or likely to develop various diseases as RNA, for example, by administering a composition containing such an RNA-encapsulating carrier to an animal or the like, the functional study of the microRNA Individuals can be obtained for research and testing such as the onset process. In addition, an RNA-encapsulating carrier composition that encapsulates an RNA having a complementary base sequence of a disease-related RNA can be used for the prevention / treatment of such diseases or its test research.
 疾患の予防又は治療に関連するあるいはその可能性のあるマイクロRNAを用いることで、こうしたRNA内包キャリア含有組成物をヒトなど動物に投与することで、予防・治療又はその試験研究に用いることができる。この態様において、マイクロRNAとしては、miR-143、miR-145、let-7等が好ましく用いられる。 By using a microRNA related to or possibly preventing or treating a disease, such a composition containing an RNA-encapsulating carrier can be administered to an animal such as a human to be used for prevention / treatment or a test study thereof. . In this embodiment, miR-143, miR-145, let-7, etc. are preferably used as the microRNA.
 生体に対して、本組成物を投与するには、静脈投与等の脈管経由の投与のほか、組織に対して経皮的に注入投与することもできるし、切開を伴って投与することもできる。 In order to administer this composition to a living body, in addition to administration via a vascular route such as intravenous administration, it can be injected into a tissue percutaneously or with an incision. it can.
 RNA内包キャリアにおけるRNAは、単球等の細胞の取得源である生物個体において本来的に存在するRNAであってもよいし、当該生物個体において本来的に存在しえない異種ないし人工的なRNAであってもよい。また、RNAは、取得源に本来的であるかどうかに関わらず、外部から導入した外来性のものであってもよい。 The RNA in the RNA-encapsulating carrier may be RNA that is inherently present in an organism individual that is a source of cells such as monocytes, or a heterogeneous or artificial RNA that cannot inherently exist in the individual organism. It may be. In addition, the RNA may be exogenous introduced from the outside regardless of whether it is intrinsic to the acquisition source.
(RNA内包キャリアの製造)
 RNA内包キャリアを取得するには、例えば、採取若しくは前駆細胞を分化させることで取得した単球又はマクロファージに公知の方法でRNAあるいは転写産物としてRNAを生成可能なDNAコンストラクトを導入する。RNAやDNA等の核酸をこうした細胞に導入するには各種方法が挙げられる。例えば、エレクトロポレーション、リン酸カルシウム法、リポフェクション法等が挙げられる。なお、RNA内包キャリアとして、RNAを内包するマクロファージを得るには、単球にRNAや当該RNAを発現するDNAコンストラクトを導入し、その後、マクロファージに分化させてもよい。
(Manufacture of RNA inclusion carrier)
To obtain an RNA-encapsulating carrier, for example, a monocyte or macrophage obtained by collecting or differentiating progenitor cells is introduced with RNA or a DNA construct capable of generating RNA as a transcript by a known method. There are various methods for introducing nucleic acids such as RNA and DNA into such cells. For example, electroporation, calcium phosphate method, lipofection method and the like can be mentioned. In order to obtain macrophages encapsulating RNA as an RNA-encapsulating carrier, RNA or a DNA construct that expresses the RNA may be introduced into monocytes and then differentiated into macrophages.
 RNA内包キャリアとしてのRNAを内包する微小胞は、RNA又はDNAコンストラクトが導入された単球又はマクロファージを培養するとき、その培養上清に取得することができる。単球又はマクロファージを培養することで、微小胞が放出される。なお、微小胞は、単球やマクロファージを血清飢餓培養することにより、その放出が促進される。また、モネシン(カルシウムイオネート)処理も採用することもできる。 The microvesicle encapsulating RNA as an RNA-encapsulating carrier can be obtained in the culture supernatant when culturing monocytes or macrophages into which RNA or DNA construct has been introduced. Microvesicles are released by culturing monocytes or macrophages. The release of microvesicles is promoted by serum-starved culture of monocytes and macrophages. Monesin (calcium ionate) treatment can also be employed.
 RNA内包キャリアは、単球、マクロファージ及び微小胞から選択される1種又は2種以上のキャリアにRNAを含み、これらのいずれかのキャリアに目的とするRNAが含まれていればよい。また、RNA内包キャリア含有組成物は、少なくとも1種のRNA内包キャリアを含んでいればよく、他のキャリアを含んでいる場合であっても、当該他のキャリアがRNAを内包していなくてもよい。 The RNA-encapsulating carrier may contain RNA in one or more carriers selected from monocytes, macrophages and microvesicles, and any of these carriers may contain the target RNA. In addition, the RNA-containing carrier-containing composition only needs to contain at least one RNA-encapsulating carrier, and even if it contains another carrier, the other carrier does not contain RNA. Good.
 以下、本明細書の開示を実施例を挙げて具体的に説明するが、以下の実施例は本明細書の開示を限定するものではない。 Hereinafter, the disclosure of the present specification will be specifically described by way of examples. However, the following examples do not limit the disclosure of the present specification.
 本実施例では、ヒト単球白血病細胞THP-1の分化誘導前後の細胞D(-)及びD(+)をそれぞれ準備した。なお、分化誘導にあたっては、20~160nMの範囲のTPAを培地に添加して用いた。これらの細胞に、miR-143をリポソーム(liofectamine、Invitrogen社)を用いて導入し、18時間培養後、各培養液の細胞画分に見出されるmiR-143の量を確認した。具体的には、リポソーム中にmiR-143を40nMを包理させてして導入し、培養は、10%仔牛血清含有RPMI 1640培地で行った。なお、miR-143の検出は、リアルタイムPRを用いて行った。結果を図2に示す。 In this example, cells D (−) and D (+) before and after differentiation induction of human monocyte leukemia cell THP-1 were prepared. For differentiation induction, TPA in the range of 20 to 160 nM was added to the medium. MiR-143 was introduced into these cells using liposomes (liofectamine, Invitrogen), and after culturing for 18 hours, the amount of miR-143 found in the cell fraction of each culture was confirmed. Specifically, miR-143 was introduced into liposomes by embedding 40 nM, and culture was performed in RPMI 1640 medium containing 10% calf serum. Note that miR-143 was detected using real-time PR. The results are shown in FIG.
 図2に示すように、THP-1 D(-)単球細胞に対して、リポソームを用いることでマイクロRNAが細胞内に導入されること、また分化前の細胞に比べて分化後のTHP-1 D(+)にマイクロRNAを導入すると、より多くのmiR-143が細胞画分に導入保持されることがわかった。このことは、単球を分化させることにより、単球はマクロファージとなるが、マクロファージは単球よりも多くのRNAを細胞内に保持することができることを支持した。 As shown in FIG. 2, microRNAs are introduced into cells by using liposomes for THP-1 D (−) monocyte cells, and THP− after differentiation compared to cells before differentiation. It was found that when miRNA was introduced into 1 導入 D (+), more miR-143 was introduced and retained in the cell fraction. This supported that monocytes become macrophages by differentiating monocytes, but macrophages can retain more RNA in the cells than monocytes.
 さらに、培養後のTHP-1 D(+)を血清なしの血清飢餓培養条件で24時間培養後、培養上清を採取して、3000rpmで30分遠心後、その上清をさらに5~10万rpmで3時間超遠心を行い、チューブ壁に付着した微小胞を回収した。この小胞の浮遊液につき、miR-143、細胞質マーカータンパク質遺伝子であるGAPDH遺伝子及び細胞骨格タンパク質遺伝子であるACTB遺伝子を測定した。血清飢餓培養は、血清フリーのRPMI 1640培地を用いて24~28時間行った。miR-143、miR-22、GAPDH遺伝子及びACTB遺伝子は、それぞれリアルタイムPCRで測定した。結果を図3及び図4に示す。 Further, the cultured THP-1 D (+) is cultured under serum-starved culture conditions without serum for 24 hours, and the culture supernatant is collected and centrifuged at 3000 rpm for 30 minutes, and the supernatant is further collected at 50,000 to 100,000. Ultracentrifugation was performed at rpm for 3 hours to collect microvesicles adhering to the tube wall. From these vesicle suspensions, miR-143, GAPDH gene, which is a cytoplasmic marker protein gene, and ACTB gene, which is a cytoskeletal protein gene, were measured. Serum starvation culture was performed for 24 to 28 hours using serum-free RPMI 1640 medium. miR-143, miR-22, GAPDH gene and ACTB gene were each measured by real-time PCR. The results are shown in FIGS.
 図3及び図4に示すように、THP-1 D(+)にmiR-143を導入して飢餓条件で培養すると、培養上清に分泌された微小胞中のmiR-143がその導入濃度依存的に増大していることがわかった。miR-143は、THP-1 D(+)細胞に本来的に内在するmiR-22に対する相対量として増大しているため、微小胞中のmiR-143であると考えられた。また、同じ試料につき、Betha-Actin、GAPDHなどの内部標準になる遺伝子のmRNA量につき測定した結果によれば、コントロールをはじめ、すべての試料にほぼ同量含有されており、miR-143以外のRNAも存在していることが示された。このことは、超遠心後のサンプルには、細胞の死骸やその断片でなく、活性のある小胞が主成分であることを支持していた。 As shown in FIGS. 3 and 4, when miR-143 is introduced into THP-1PD (+) and cultured under starvation conditions, miR-143 in microvesicles secreted into the culture supernatant depends on the concentration of the introduced It was found that it was increasing. miR-143 was considered to be miR-143 in microvesicles because it increased as a relative amount to miR-22 inherent in THP-1 D (+) cells. In addition, according to the results of measuring the amount of mRNA of genes that become internal standards such as Betha-Actin and GAPDH for the same sample, all the samples including the control contained almost the same amount, except for miR-143. It was shown that RNA was also present. This supported that the sample after ultracentrifugation was mainly composed of active vesicles, not cell dead bodies or fragments thereof.
 また、培養上清を超遠心した取得した微小胞の電子顕微鏡写真を図5に示す。図5に示すように、SMV様の微小胞が観察された。 Also, an electron micrograph of the microvesicles obtained by ultracentrifugation of the culture supernatant is shown in FIG. As shown in FIG. 5, SMV-like microvesicles were observed.
 本実施例では、ヒト大腸癌を担癌させたヌードマウス(BALB/c系、日本チャールズリバー社)に、miR-143がリポソームを介して導入された単球を静脈投与し、組織におけるmiR-143量を確認した。すなわち、ヒト大腸癌DLD-1細胞を200万~300万個/匹でヌードマウスの皮下に移植して担癌マウスを作製した。ヒト単球細胞株THP-1(10万個/ml)にmiR-143とコントロールmiR-R各20nMを、Lipofectamineを用いて導入した。担癌ヌードマウス1匹あたり5~10万個の導入処理されたTHP-1細胞を洗浄し、マウスの尾静脈により投与した。投与は1日1回で2回連日(2日間)とした。miR-143及びコントロールにつきそれぞれ5匹の担癌ヌードマウスを処理した。最終投与から24時間後に、解剖し、臓器、腫瘍部を摘出した。摘出部位からRNAをトリゾールにて抽出し、リアルタイムPCRによりmiR-143の量を測定した。結果を図6に示す。 In this example, monocytes into which miR-143 was introduced via liposomes were intravenously administered to nude mice (BALB / c system, Charles River Japan, Inc.) bearing human colon cancer, and miR- 143 amount was confirmed. That is, tumor-bearing mice were prepared by transplanting 2 to 3 million human colon cancer DLD-1 cells subcutaneously in nude mice. MiR-143 and control miR-R 20 nM each were introduced into human monocytic cell line THP-1 (100,000 cells / ml) using Lipofectamine. One hundred thousand to 100,000 introduced THP-1 cells per tumor-bearing nude mouse were washed and administered through the tail vein of the mouse. Administration was once a day and twice a day (2 days). Five tumor-bearing nude mice were treated for each miR-143 and control. Twenty-four hours after the final administration, the tissue was dissected and organs and tumors were removed. RNA was extracted from the excised site with Trizol, and the amount of miR-143 was measured by real-time PCR. The results are shown in FIG.
 図6に示すように、コントロールの腫瘍部で検出されたmiR-143量を1としたとき、miR-143導入マウスの腫瘍部では、約2倍量のmiR-143の蓄積が確認された。この結果から、RNAを導入した単球を静脈投与することにより、腫瘍細胞に対して選択的に単球あるいは単球から分化したマクロファージ若しくは微小胞が到達し、腫瘍組織にmiR-143が観察されたと考えられた As shown in FIG. 6, when the amount of miR-143 detected in the control tumor site was 1, accumulation of about twice as much miR-143 was confirmed in the tumor site of miR-143-introduced mice. From this result, when monocytes introduced with RNA are intravenously administered, monocytes or macrophages or microvesicles differentiated from monocytes selectively reach tumor cells, and miR-143 is observed in the tumor tissue. It was thought
 本実施例では、実施例1に準じ、ヒト慢性骨髄性白血病細胞株K562細胞を分化誘導してD(+)を準備した。なお、分化誘導にあたっては、20~160nMの範囲のTPAを培地に添加して用いた。これらの細胞に、miR-143をリポソーム(liofectamine、Invitrogen社)を用いて導入し、18時間培養後、各培養液の細胞画分に見出されるmiR-143の量を確認した。具体的には、リポソーム中にmiR-143を10~60nMを包理させて導入し、培養は、10%仔牛血清含有RPMI 1640培地で行った。 In this example, according to Example 1, D (+) was prepared by inducing differentiation of human chronic myeloid leukemia cell line K562 cells. For differentiation induction, TPA in the range of 20 to 160 nM was added to the medium. MiR-143 was introduced into these cells using liposomes (liofectamine, Invitrogen), and after culturing for 18 hours, the amount of miR-143 found in the cell fraction of each culture was confirmed. Specifically, miR-143 was introduced into liposomes by embedding 10 to 60 nM, and culture was performed in RPMI 1640 medium containing 10% calf serum.
 さらに、培養後のK562・D(+)を血清なしの血清飢餓培養条件で24時間培養後、培養上清を採取して、3000rpmで30分遠心後、その上清をさらに5~10万rpmで3時間超遠心を行い、チューブ壁に付着した微小胞を回収した。この小胞の浮遊液につき、miR-143、miR-21をリアルタイムPCRで測定した。血清飢餓培養は、血清フリーのRPMI 1640培地を用いて24~28時間行った。結果を図7に示す。 Further, K562 · D (+) after culturing was cultured under serum-starved culture conditions without serum for 24 hours, and the culture supernatant was collected and centrifuged at 3000 rpm for 30 minutes, and the supernatant was further added at 50,000 to 100,000 rpm. Then, ultracentrifugation was performed for 3 hours to collect microvesicles adhering to the tube wall. For the vesicle suspension, miR-143 and miR-21 were measured by real-time PCR. Serum starvation culture was performed for 24 to 28 hours using serum-free RPMI 1640 medium. The results are shown in FIG.
 図7に示すように、K562・D(+)にmiR-143を導入して飢餓条件で培養すると、培養上清に分泌された微小胞中のmiR-143がその導入濃度依存的に増大していることがわかった。miR-143は、K562 D(+)細胞に本来的に内在するmiR-21に対する相対量として増大しているため、微小胞中のmiR-143であると考えられた。 As shown in FIG. 7, when miR-143 was introduced into K562 · D (+) and cultured under starvation conditions, miR-143 in microvesicles secreted into the culture supernatant increased depending on the introduction concentration. I found out. miR-143 was considered to be miR-143 in microvesicles because it increased as a relative amount to miR-21 inherent in K56256D (+) cells.
 本実施例では、化学修飾miR-143BPを、蛍光物質Cy5でラベルしたmiR-143BP/Cy5を、実施例1と同様にして分化誘導したTHP-1細胞に導入した。具体的には、miR-143BP/Cy5をリポソーム(liofectamine、Invitrogen社)中に40nMを包理させて導入し、18時間培養した。培養は、10%仔牛血清含有RPMI 1640培地で行った。さらに、培養後のTHP-1細胞を血清なしの血清飢餓培養条件で24時間培養後、細胞を抗Cy5イムノゴールドで反応後、電子顕微鏡で観察した。なお、血清飢餓培養は、血清フリーのRPMI 1640培地を用いて24~28時間行った。結果を、図8に示す。 In this example, chemically modified miR-143BP and miR-143BP / Cy5 labeled with the fluorescent substance Cy5 were introduced into THP-1 cells induced to differentiate in the same manner as in Example 1. Specifically, miR-143BP / Cy5 was introduced into liposomes (liofectamine, Invitrogen) by embedding 40 nM, and cultured for 18 hours. Culture was performed in RPMI 1640 medium containing 10% calf serum. Further, the cultured THP-1 cells were cultured under serum-starved culture conditions without serum for 24 hours, and the cells were reacted with anti-Cy5 immunogold and then observed with an electron microscope. Serum starvation culture was performed for 24 to 28 hours using serum-free RPMI 1640 medium. The results are shown in FIG.
 図8(a)に示すように、細胞内の多小胞体には、Cy5を内包する微小胞(分泌膜小胞)を検出できた(図中の矢印参照)。また、図8(b)に示すように、細胞外には、分泌された微小胞にmiR-143BP/Cy5を観察することができた(図中の矢印参照)。 As shown in FIG. 8 (a), microvesicles (secretory membrane vesicles) enclosing Cy5 could be detected in the intracellular multivesicular bodies (see arrows in the figure). Moreover, as shown in FIG.8 (b), miR-143BP / Cy5 was able to be observed in the secreted microvesicle extracellularly (refer the arrow in a figure).
 本実施例では、化学修飾miR-143BPを、実施例1と同様にして分化誘導したTHP-1細胞に導入した。具体的には、miR-143BPをリポソーム(liofectamine、Invitrogen社)中に40nMを包理させて導入し、18時間培養した。培養は、10%仔牛血清含有RPMI 1640培地で行った。その後、血清フリーの培地で24時間培養後THP-1細胞を1~5×105/マウスで、担癌マウスに静脈投与した。なお、担癌マウスは、ヒト大腸癌DLD-1細胞を200万~300万個/匹でヌードマウスの皮下に移植して作製した。投与は1日1回で2回連日(2日間)とした。最終投与から24時間後に、解剖し、腎臓、腫瘍部を摘出した。摘出部位からRNAをトリゾールにて抽出し、リアルタイムPCRによりmiR-143の量を測定した。また、最終投与から、4時間、8時間及び24時間後にマウスより採血して血清中のmiR-143及びmiR-21をリアルタイムPCRにより測定した。結果を図9及び10に示す。 In this example, chemically modified miR-143BP was introduced into THP-1 cells induced to differentiate in the same manner as in Example 1. Specifically, miR-143BP was introduced into liposomes (liofectamine, Invitrogen) by embedding 40 nM, and cultured for 18 hours. Culture was performed in RPMI 1640 medium containing 10% calf serum. Then, after culturing in a serum-free medium for 24 hours, THP-1 cells were intravenously administered to tumor-bearing mice at 1 to 5 × 10 5 / mouse. The tumor-bearing mice were prepared by transplanting human colon cancer DLD-1 cells under the skin of nude mice at 2 to 3 million cells / mouse. Administration was once a day and twice a day (2 days). Twenty-four hours after the final administration, the patient was dissected and the kidney and tumor area were removed. RNA was extracted from the excised site with Trizol, and the amount of miR-143 was measured by real-time PCR. In addition, blood was collected from the mice 4 hours, 8 hours and 24 hours after the final administration, and miR-143 and miR-21 in the serum were measured by real-time PCR. The results are shown in FIGS.
 図9に示すように、コントロールマウスの腎臓で検出されたmiR-143BP量を1としたとき、miR-143/BP導入TPH-1細胞が全身投与されたマウスの腎臓では、約2倍量のmiR-143の蓄積が確認された。この結果から、RNAを導入した単球を静脈投与することにより、腎臓に対して選択的にTHP-1細胞あるいはTHP-1細胞から分化したマクロファージ若しくは微小胞が到達し、腎臓においてmiR-143レベルの上昇が観察されたと考えられた。また、糸球体に蓄積した可能性があると考えられた。また、腫瘍部への分布を調べた結果、腫瘍部にも選択的な蓄積が認められた。 As shown in FIG. 9, when the amount of miR-143BP detected in the kidney of the control mouse is 1, the amount of about twice the amount in the kidney of the mouse systemically administered with miR-143 / BP-introduced TPH-1 cells. Accumulation of miR-143 was confirmed. From this result, by administering monocytes introduced with RNA intravenously, macrophages or microvesicles differentiated from THP-1 cells or THP-1 cells selectively reach the kidney, and miR-143 levels in the kidney It was thought that an increase in was observed. In addition, it was thought that it may have accumulated in the glomeruli. Moreover, as a result of examining the distribution to the tumor part, selective accumulation was recognized also in the tumor part.
 図10に示すように、血清中のmiR-143BPは、最終投与から時間の経過とともに徐々に血中濃度が低下していることがわかった。すなわち、投与によって有効に血中濃度が上昇することがわかった。 As shown in FIG. 10, it was found that the blood concentration of miR-143BP in the serum gradually decreased with the passage of time from the final administration. That is, it was found that the blood concentration was effectively increased by administration.

Claims (8)

  1.  単球、マクロファージ及びこれらの細胞由来の微小胞から選択される1種又は2種以上のキャリアであって、RNAを内包するキャリアを含む組成物。 A composition comprising one or more carriers selected from monocytes, macrophages, and microvesicles derived from these cells, the carrier encapsulating RNA.
  2.  前記RNAは外来性RNAである、請求項1に記載の組成物。 The composition according to claim 1, wherein the RNA is exogenous RNA.
  3.  前記外来性RNAは、マイクロRNAを含む、請求項2に記載の組成物。 The composition according to claim 2, wherein the exogenous RNA includes micro RNA.
  4.  前記外来性RNAは抗腫瘍活性を有する、請求項2又は3に記載の組成物。 The composition according to claim 2 or 3, wherein the exogenous RNA has antitumor activity.
  5.  ヒトを含む動物の生体内へのRNAデリバリー用である、請求項1~4のいずれかに記載の組成物。 The composition according to any one of claims 1 to 4, which is used for RNA delivery into the living body of animals including humans.
  6.  RNAを内包するキャリアの製造方法であって、
     単球又はマクロファージにRNA又は当該RNAを発現するDNAコンストラクトを導入する工程、
    を備える、製造方法。
    A method for producing a carrier containing RNA, comprising:
    Introducing RNA or a DNA construct expressing the RNA into monocytes or macrophages;
    A manufacturing method comprising:
  7.  さらに、以下の工程:
    (a)前記RNAが導入された単球を培養してマクロファージに分化させる工程を備える、請求項6に記載の製造方法。
    In addition, the following steps:
    (A) The production method according to claim 6, comprising a step of culturing the monocytes introduced with RNA to differentiate into macrophages.
  8.  さらに、(b)前記単球及び/又は前記マクロファージから微小胞を放出させる工程、を備える、請求項6又は7に記載の製造方法。 The manufacturing method according to claim 6 or 7, further comprising (b) a step of releasing microvesicles from the monocytes and / or the macrophages.
PCT/JP2010/068314 2009-10-22 2010-10-19 Composition comprising rna-enclosing carrier WO2011049059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011537248A JPWO2011049059A1 (en) 2009-10-22 2010-10-19 RNA-encapsulating carrier composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-243466 2009-10-22
JP2009243466 2009-10-22

Publications (1)

Publication Number Publication Date
WO2011049059A1 true WO2011049059A1 (en) 2011-04-28

Family

ID=43900285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068314 WO2011049059A1 (en) 2009-10-22 2010-10-19 Composition comprising rna-enclosing carrier

Country Status (2)

Country Link
JP (1) JPWO2011049059A1 (en)
WO (1) WO2011049059A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091136A1 (en) * 2010-12-28 2012-07-05 学校法人東京医科大学 Expression vector, method for producing carrier using same, and use of same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514523A (en) * 1999-11-18 2003-04-22 カイロン エセ.ピー.アー. Method for preparing purified HCV RNA by exosome separation
WO2007126386A1 (en) * 2006-05-03 2007-11-08 Loetvall Jan Olof Exosome transfer of nucleic acids to cells
WO2008134487A1 (en) * 2007-04-25 2008-11-06 Ghc Research Development Corporation Macrophage transfection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003514523A (en) * 1999-11-18 2003-04-22 カイロン エセ.ピー.アー. Method for preparing purified HCV RNA by exosome separation
WO2007126386A1 (en) * 2006-05-03 2007-11-08 Loetvall Jan Olof Exosome transfer of nucleic acids to cells
WO2008134487A1 (en) * 2007-04-25 2008-11-06 Ghc Research Development Corporation Macrophage transfection method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NOURA ISMAIL ET AL.: "MicroRNA Expression in Macrophages-Derived Microvesicles May Contribute to Cellular Survival and Differentiation", BLOOD, vol. 112, 2008, XP008127619 *
TOMOKO TANAKA ET AL.: "Sendai Virus Vector nite Idenshi Donyu shita Masshoketsu Tankyu ni yoru Shinki Idenshi Delivery-kei no Kakuritsu", DAI 68 KAI THE JAPANESE SOCIETY OF HEMATOLOGY - DAI 48 KAI THE JAPANESE SOCIETY OF CLINICAL HEMATOLOGY GODO SOGO PROGRAM, 2006, pages 1170 *
YOSHIHITO NAKAGAWA ET AL.: "Daicho Shuyo ni Okeru microRNA Hatsugen profile to Rinsho eno Oyo", GASTROENTEROLOGY, vol. 44, no. 5, 2007, pages 484 - 492 *
YUKIHIRO AKAO ET AL.: "Downregulation of microRNAs-143 and -145 in B-cell malignancies", CANCER SCIENCE, vol. 98, no. 12, 2007, pages 1914 - 1920, XP002563566, DOI: doi:10.1111/j.1349-7006.2007.00618.x *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091136A1 (en) * 2010-12-28 2012-07-05 学校法人東京医科大学 Expression vector, method for producing carrier using same, and use of same

Also Published As

Publication number Publication date
JPWO2011049059A1 (en) 2013-03-14

Similar Documents

Publication Publication Date Title
US11220687B2 (en) Exosomes and micro-ribonucleic acids for tissue regeneration
Zhang et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy
Pei et al. Exosome membrane-modified M2 macrophages targeted nanomedicine: Treatment for allergic asthma
Costa et al. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: A new multimodal gene therapy approach for glioblastoma
CN107427466B (en) Nanobubsomes derived from cell membranes and uses thereof
EP2450032B1 (en) Microvesicles derived from nucleated, mammalian cells and use thereof
US11648260B2 (en) Vesicles comprising a PTEN inhibitor and uses of same
WO2021021634A1 (en) Nanomaterials containing constrained lipids and uses thereof
CN107920995A (en) For delivering the micro-capsule foaming composition from edible plants of miRNA and the method for treating cancer
CN107375944B (en) Targeted malignant melanoma resistant dacarbazine and miR-205 co-loading exosome and preparation method and application thereof
EP2791336B1 (en) Methods, systems, and compositions for cell-derived/vesicle-based microrna delivery
CN113355290B (en) Anti-tumor engineered exosome, preparation method and application
CN109762821B (en) Interfering RNA for inhibiting expression of AFAP1-AS1 and application of interfering RNA in increasing sensitivity of breast cancer radiotherapy
US10695293B2 (en) Method of preventing or treating radiation-induced dermatitis with extracellular vesicles
Kim et al. Efficient Delivery of Globotriaosylceramide Synthase siRNA using Polyhistidine‐Incorporated Lipid Nanoparticles
WO2011049059A1 (en) Composition comprising rna-enclosing carrier
KR20210013170A (en) Microencapsulated modified polynucleotide compositions and methods
RU2800729C2 (en) Vesicles containing pten inhibitor and their use
Dilsiz Exosomes as new generation vehicles for drug delivery systems
de Abreu CHAPTER II-Native and bioengineered extracellular vesicles for cardiovascular
Way Folate receptor-targeting liposomes for the delivery of antisense molecules to cancer cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824908

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011537248

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10824908

Country of ref document: EP

Kind code of ref document: A1